# THE EFFECTIVENESS OF FILM COOLING

by

Bhaskar Ramchandra Pai B.Tech., M.Sc.(Eng.), D.I.C.

ę.

Thesis submitted for the degree of Doctor of Philosophy in the Faculty of Engineering, University of London.

October 1969

#### ABSTRACT

The present investigation is part of a research programme, committed to the development of a procedure for predicting the effectiveness of film cooling devices. The first step towards this objective is an understanding of the hydrodynamics and thermal performance of two-dimensional film cooling slots with tangential injection, by recourse to experimental and analytical techniques.

2

The present experimental programme investigated the influence of slot to mainstream velocity and density ratio and longitudinal pressure gradient on the impervious -wall effectiveness and flow-development downstream of a plane, two-dimensional slot with tangential injection, and the influence of velocity ratio and slot-lip thickness on the adiabatic-wall effectiveness and the heat transfer coefficient downstream of an axisymmetric slot.

A modified form of the Prandtl mixing-length hypothesis was used within the framework of the solution procedure of reference (49) to predict the flow downstream of two-dimensional slots. The appropriate physical inputs were obtained by examining experimental data and also by comparison of predicted and measured velocity and conserved-property profiles and wall properties over a practically useful range of velocity and density ratios and pressure gradients.

The predicted influence of velocity and density ratio, adverse and mild favourable pressure gradients and lip-thickness ratio on the impervious- or adiabatic-wall effectiveness showed, on the whole, a good correspondence with a wide range of experimental data, including those from the present investigation. Predictions of heat transfer coefficient in the presence of film cooling were also satisfactory.

The relevance of the present prediction procedure to a practical film-cooled combustion chamber was briefly examined. It was concluded that an accurate prediction of the flame-tube temperature required a precise knowledge of the conditions within the chamber and a prediction procedure for practical slot geometries. The author's suggestions in this connection are presented.

### ACKNOWLEDGEMENT

I wish to express my gratitude to various persons whose guidance, help and encouragement were invaluable in the accomplishment of the present work. First, I am indebted to Dr. J.H. Whitelaw for his excellent supervision and deep personal interest in the project, which made my work challenging and interesting.

I wish to thank Professor D.B.Spalding for his help in the development of the prediction procedure and for his guidance of the project. My thanks are also due to Dr. S.V. Patankar for his invaluable help in the early stages of the project; to Dr. T. Mukerjee for the loan of his instrumented test  $\frac{s}{2}$  ection; to my colleague Mr. S.C. Kacker for helpful discussions and cooperation and to my family for their understanding and encouragement.

Finally, I wish to acknowledge the Council of Scientific and Industrial Research, India, for the award of the Burmah-Shell scholarship which was responsible for my presence at the Imperial College and to the Ministry of Technology Grant AT/2037/027/XR which enabled me to undertake the present research project.

| C | ONTE | NTS |
|---|------|-----|

| •      |                         |                                                             |            |
|--------|-------------------------|-------------------------------------------------------------|------------|
|        | 1.                      | INTRODUCTION                                                | 7          |
|        |                         | 1.1 Applications of film cooling                            | 7          |
| •      | ,                       | 1.2 Basic factors influencing film cooling                  | 9          |
|        |                         | 1.3 Prediction of film cooling performance                  | 12         |
| •      |                         | 1.4 Scope of present investigation                          | 13         |
|        |                         | 1.5 Outline of thesis content                               | 14         |
|        | 2.                      | BRIEF REVIEW OF PREVIOUS AND CURRENT INVESTIGATIONS         | . 16       |
| •      |                         | 2.1 Experimental studies of film cooling                    | 16         |
|        | • .                     | 2.2 Brief review of previous prediction<br>procedures       | 22         |
|        |                         | . 2.2-1 Correlations                                        | 23         |
|        | •                       | 2.2-2 Integral methods                                      | 24         |
|        |                         | 2.2-3 Differential methods                                  | 26         |
| •      |                         | 2.2-4 Discussion of previous prediction procedures          | 26         |
| •      | 3.                      | THE FLOW DOWNSTREAM OF A TWO-DIMENSIONAL, FILM COOLING SLOT | <b>2</b> 9 |
| ,, ,   | ban kan kan sa sa sa sa | 3.1 Qualitative description of the flow field               | 29         |
| • •    |                         | 3.2 Equations governing the flow                            | 31         |
|        | •                       | 3.3 Choice of solution procedure                            | 35         |
|        |                         | 3.4 Brief description of the marching integra               |            |
|        |                         | -tion procedure of reference (49)                           | 38         |
|        | 4.                      | THE EXPERIMENTAL INVESTIGATION                              | 43         |
|        |                         | 4.1 Description of apparatus A                              | 43         |
| -      |                         | . 4.1-1 Description of apparatus A                          | 43 ·       |
| •      |                         | 4.1-2 Auxiliary apparatus                                   | 46         |
|        | :                       | 4.1-3 Operation of apparatus A                              | . 47       |
| •<br>• |                         | 4.2 Presentation and discussion of experimental             |            |
|        |                         | results - apparatus A                                       | 49         |
| •      |                         | 4.2-1 Experiments in nominally zero                         |            |
|        |                         | pressure gradient                                           | 49         |
|        |                         | 4.2-2 Experiments in presence of                            |            |
|        |                         | • significant pressure gradients                            | 52         |
| •      |                         | 4.2-3 Precision and accuracy of the data                    | 5 <b>7</b> |
| .×     |                         | 4.2-4 Summary of results with apparatus A                   | 59         |
|        | ·                       | 4.3 Description of apparatus B                              | 61         |
|        |                         | 4.3-1 Description of apparatus B                            | 61         |
|        | •                       | 4.3-2 .Design and development of apparatus B                | 62         |
| •      |                         | 4.3-3 Operation of apparatus B                              | 64         |
|        |                         | 4.4 Presentation and discussion of experimental             |            |
|        |                         | results - Apparatus B                                       | 66         |
|        |                         | · ·                                                         |            |

4

÷

| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        | •        |                                                             | 5    |     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------|-------------------------------------------------------------|------|-----|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |          | <del>.</del>                                                |      | · - |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.4-1  | Influ    | ence of the velocity ratio on                               |      |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | effec    | tiveness and heat transfer                                  |      |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | coeff    | icient.                                                     | 66   |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.4-2  | Influ    | ence of slot-lip thickness                                  | 68   |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.4-3  | ±        | imental uncertainties                                       | 69   |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.4-4  | Summa    | ry of results with apparatus B                              | 70   |     |
| 5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | THE P  | HYSICAL  | INPUTS TO THE PREDICTION PROCEDURE                          | 72   | •   |
| · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.1    | Determi  | nation of the mixing coefficients                           |      |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |          | perimental data (direct approach)                           | 75   |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 5.1-0    | Introduction                                                | 75   |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 5.1-1    | Measurements with apparatus A                               | 76   |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 5.1-2    | Results with the data of ref (29)                           | 78   |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 5.1-3    | Discussion of procedure and results                         | 78   |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.2    |          | ions based on the mixing length and                         |      | ·   |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        | effecti  | ve Prandtl/Schmidt number hypothesis<br>(Indirect approach) | 81   |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 5.2-1    | Procedure                                                   | 81   |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 5.2-2    | Data for comparison                                         | 82   |     |
| a a shekeya waxaa a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | 5.2-3    | The choice of the mixing length                             |      |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | :      |          | and effective Prandtl/Schmidt                               |      |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |          | number distribution                                         | 83   |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 5.2-4    | Comparison of predictions with exp-                         |      |     |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        | •        | erimental data: flows in uniform pressure                   | 84   |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 5.2-5    | Flows in presence of streamwise                             |      |     |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |          | pressure gradients                                          | 88 - |     |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        | 5.2-6    | Conclusions and summary                                     | 92   |     |
| 6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | THE PF | REDICTIO | N OF EFFECTIVENESS AND HEAT TRANSFEE                        |      |     |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DOWNST | FREAM OF | A FILM COOLING SLOT                                         | 94   |     |
| and a state of the | 6.1    | Predicti | ion of adiabatic-or impervious -wall                        |      |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | effectiv | veness: case of uniform pressure                            |      |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | and thir | n slot lip                                                  | 96   |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.2    | Influenc | ce of slot-lip thickness on effective-<br>ness              | 101  |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.3    | Predicti | ion of heat transfer in presence of                         |      |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | film coo | oling                                                       | 107  |     |
| · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.4    | Influenc | ce of longitudinal pressure gradient                        |      |     |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •      | on the e | effectiveness of film cooling                               | 109  |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.5    |          | of predicted trends                                         | 111  |     |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.6    | Film coc | oling in gas turbines                                       | 115  |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.7    | Suggesti | lons for future research in film<br>Cooling                 | 119  |     |

· · ·

• •

|           | · · ·                                  |     |  |  |  |  |  |
|-----------|----------------------------------------|-----|--|--|--|--|--|
| REFERENCE | S                                      | 123 |  |  |  |  |  |
| NOMENCLAT | URE                                    | 128 |  |  |  |  |  |
| FIGURES   |                                        | 131 |  |  |  |  |  |
| APPENDICE | S                                      |     |  |  |  |  |  |
| A.1       | Details of some auxiliary apparatus    | 200 |  |  |  |  |  |
|           | A.1-1 A gas sampling system            | 200 |  |  |  |  |  |
|           | A.1-2 A rotary pressure switch         | 201 |  |  |  |  |  |
| A.2       | Experiments with apparatus B - Test    |     |  |  |  |  |  |
|           | section of ref (39)                    | 203 |  |  |  |  |  |
| A•3       | Experimental data - apparatus A        | 206 |  |  |  |  |  |
|           | A.3-1 Impervious-wall effectiveness    | 206 |  |  |  |  |  |
|           | A.3-2 Velocity profiles                | 215 |  |  |  |  |  |
|           | A.3-3 Concentration profiles           | 232 |  |  |  |  |  |
|           | A.3-4 Wall-shear-stress                | 245 |  |  |  |  |  |
| A.4       | Experimental data - apparatus B .      | 248 |  |  |  |  |  |
|           | A.4-1 Adiabatic-wall effectiveness     |     |  |  |  |  |  |
|           | and heat transfer coefficients         | 248 |  |  |  |  |  |
| A.5       | Computer program for the prediction of |     |  |  |  |  |  |
|           | the adiabatic-wall effectiveness and   |     |  |  |  |  |  |
|           | heat transfer coeffcient downstream of |     |  |  |  |  |  |
|           | a two-dimensional film cooling slot    | 251 |  |  |  |  |  |
|           |                                        |     |  |  |  |  |  |

6

÷

#### CHAPTER 1

# 1. Introduction.

## 1.1 Applications of film cooling.

Film cooling is a process for protecting a surface exposed to a high temperature gas stream by the injection of a cool fluid along the surface, to form a cooling film between the surface and the hot gas stream. The coolant is generally injected through slots, holes or porous sections in the surface to be cooled. In most of the applications the coolant is also gaseous and mixes with the hot gas downstream of the injection region. Film cooling is widely used in gas turbine combustion chambers, reheat nozzles of aircraft engines, turbine blades of gas turbines and in ram-jet and rocket nozzles. In all these applications the gas temperatures are very high (of the order of 2000<sup>O</sup>C) and film cooling is essential to keep the temperature of the surfaces within metallurgical limits.

The cooling effect of a film is closely dependent on the mixing process between the coolant and the hot main stream: the greater the mixing, the shorter the distance downstream of the injection region which can be effectively film cooled. In the applications mentioned above, film cooling is supplementary to the more conven -tional convection cooling. For example, in the combustion chamber of a gas turbine, the flame tube is cooled on its outer surface by convection to the secondary air, part of which is bled into the chamber through slots for film cooling the inner surface of the flame tube, ie. the surface exposed to the flame.

Film cooling has been employed since the early days of the gas turbine. For example, the combustion chamber of the Whittle engine, which was of the counter flow type, had slots injecting tangentially in the circumferential direction (as opposed to axial). However the designs of film cooling slots in gas turbine combustion slots have since undergone considerable change and refinement. As the thermal loading of the combustion chambers has increased (ie., an increase in temperature, mass flow and pressure, and a decrease in the volume of the combustion chamber),

the demands on the cooling system have also continually increased. These have been met with improved injection slot design and an increase in the number of film cooling strips. For example, in the early turbo-prop engines, film cooling was obtained by means of a few large holes at two regions of locally high flare in the flame tube, whereas a modern combustion chamber may have about <u>fight</u> film cooling strips, each comprising a machined ring designed to obtain a specific pressure drop and slot-to-mainstream velocity ratio at the slot exit. The design of film cooling slots is to date, an art rather than science.

When injected through slots, the coolant generally enters parallel to the surface, and the film can be considered as a 'wall-jet' in a moving stream. There are some applications closely related to film cooling by virtue of their wall-jet nature. These include the process of film heating for de-icing of aircraft wings or de-misting of windscreens by injection of warm air through slots or holes. Another related field is the application of wall jets to boundary layer control for example on helicopter rotors for increasing lift, or in diffusors to prevent separation at the walls.

The examples mentioned above have two common features: first, there is a surface and second, there is a gas stream with a principal direction of flow, such that the gradients of velocity and temperature normal to the surface are much greater than those along it and are confined to a narrow region adjacent the surface. These features are characteristic of boundary layers near walls and so flows downstream of a film cooling slot may be considered to be of the boundary-layer type, at least in the region far downstream of the injection region.

Though some aspects are particular to each of the above applications, a study of almost any of them would serve to high-light the main features of film cooling or the associated applications. Thus film cooling as applied to gas turbine combustion chambers serves as a useful case study for film cooling in general and much of the present treatment is biased in this direction.

## 1.2 Basic factors influencing film cooling.

This section is devoted to a qualitative description of the factors influencing film cooling in a gas turbine combustion chamber. The main object in cooling the flame tube is to maintain its temperature below the maximum acceptable metallurgical limit. To this end, the flame tube is cooled by means of the secondary air, which is approximately at the compressor delivery temperature. The temperature assumed by the flame tube is such that the net heat received by it through radiation and convection from the flame and heat lost through its outer surface by convection and radiation, are equal. Film cooling essentially influences the convective mode of heat transfer within the flame tube.

It is convenient to represent the convective heat transfer in the presence of film cooling through two quantities. The first is a quantity which depends on the mixing characteristics of the injected coolant and the main stream and is denoted as the adiabatic-wall effective -ness. This is defined as the ratio of the hot gas-to wall enthalpy difference at a location downstream of the slot, to the hot gas-to coolant enthalpy defference for an adiabatic wall. If the specific heat at constant pressure is assumed to be uniform within the flow, the enthalpies in the last sentence may be replaced by temperatures. Thus the adiabatic-wall effectiveness is given by the following expression:

$$\eta = \frac{h_{G}-h_{a,W}}{h_{G}-h_{C}} = \left[\frac{T_{G}-T_{a,W}}{T_{G}-T_{C}}\right]_{C_{p}=\text{ const.}} 1.2.1$$

The adiabatic-wall effectiveness can be considered as a measure of the preservation of the identity of the cooling film: a value equal to unity signifies that the adiabaticwall temperature is equal to the coolant temperature while a zero- value indicates an adiabatic-wall temperature equal to the hot gas temperature.

The adiabatic-wall effectiveness does not however provide any clue to the resistance of the film to heat transfer through it: for this a heat transfer coefficient based of the adiabatic-wall temperature is useful:

SN

1.2.2.

where  $T_W$  is the temperature of the surface in the presence of the heat flux  $\dot{q}^{"}_{W}$  and  $T_{a,W}$  is the wall temperature which would exist for the same initial conditions, and an adiabatic wall from the slot exit. Thus the adiabatic -wall effectiveness and the heat transfer coefficient  $h_f$ , defined in the above manner, serve to characterise the convective heat transfer in the presence of film cooling. Further, the distribution of these two quantities in the downstream direction gives a measure of the performance of the cooling slot and also provide part of the informa -tion from which the wall temperature can be computed.

Tw-Ta.W

 $h_f = \frac{q_W''}{W}$ 

It is to be expected that the effectiveness and the heat transfer coefficient will depend on several factors including the following:

> geometry of the injection region; distance from the slot exit; gas velocities through the slot and mainstream ; pressure gradients in the streamwise and cross-

> > stream direction;

turbulence intensities in the flow field.

This list of variables suggests that the flow downstream of a practical film cooling slot is very complex, since a large number of permutations and combinations of the above variables is possible and do exist in practice. It is useful therefore to indicate the ranges of the above variables which are likely to be encountered in gas turbine practice.

An impression of the wide range of injection geometries which are used in gas turbine applications can be found in reference (77). An ideal slot from the view of good performance is an unobstructed, two-dimensional slot which injects the fluid along the surface to be cooled. However such a design is not feasible in practice, as the components forming the slot have to be supported. The most commonly used designs are the 'wiggle strip'

and the 'machined ring'. The former comprises a corrugated spacer mounted in an annular gap between two concentric overlapping sections of the flame tube, and the latter is a ring with discrete holes. Numerous variations on the design of practical devices is possible, but they have all one feature in common: the flow through them is invariably three dimensional, ie., apart from varying in directions normal to the wall and in the downstream direction, there is a variation in the spanwise direction also, at least in the region close to the slot. The width of the gap for practical slots (ie. the slot height) in modern gas turbine combustion chambers ranges from about 1.25 mm to 6 mm. The distance to be (or which can be sufficiently) cooled is of the order of 50 mm, which for the above range of slot heights corresponds from 8 to 40 slot heights.

The velocity ratios (ie., the mean velocity at slot exit to the main stream value) in practical devices range from about 0.5 to about 2.0. There is some incentive to set this value in the vicinity of unity and values slightly this are often selected to optimise the coolant below flow rate and effectiveness. The Mach numbers are generally low in combustion chambers (less than 0.3) and so compressibility is not generally of major importance. Density gradients due to temperature differences are however significant; slot to mainstream density ratios are greater than unity and values around three are common. Pressure gradients occur due to flare as well as to combustion and flow losses. Thus in the flared region near the primary zone an adverse presseure gradient is to be expected, whereas downstream a favourable pressure gradient due to combustion and geometry can be expected.

Fluid properties such as viscosity and conductivity can be expected to vary steeply in the regions of large temperature gradients. These gradients occur in the core of the flame tube due to combustion, and near the wall due to the cooling film and heat transfer.

The last item mentioned in the list of variables is the turbulence intensity. This can be expected to be high in the regions behind the fuel burner and colander and also

where dilution streams mix with the primary stream. No measured values for this quantity are available for the case of a gas turbine combustion chamber.

Thus a considerable simplification of the flow downstream of a practical film cooling device is necessary to render it amenable to a systematic study.

## 1.3 Prediction of film cooling performance.

Procedures for the prediction of the adiabaticwall effectiveness downstream of a film cooling slot have developed along two different lines. The first is the correlation of experimental data on the basis of dimensional analysis and guessed functional relationships between the relevant non-dimensional groups. The other is based on the analysis of the hydrodynamic and thermal flow field downstream of a film cooling slot, and may be considered a more fundamental approach than the first. The method of empirical correlations has the advantage of being simple in use but is severely limited by the data on which the correlations are based: their extension to include the effects of additional variables is tedious and needs a large amount of experimental data. Though empirical correlations may give satisfactory predictions over the range of experimental data on which they are based, the predictions are likely to be in error outside the range. The analytical approach, of which there are many variations, are invariably based on the equations of motion either in the differential or integrated form. It is wrong to suppose that analytical methods are superior to correlations because they do not need any empirical information. Analytical methods do need empirical information but at least some of it is of a general nature, and may be valid for a variety of flows. The amount of empirical information varies considerably with the method and the complexity of the model on which they are based. In general, the methods using the integrated equations of motion need more empirical information than those based on the differential equations: this matter will be discussed further in chapter 2. It should be mentioned that at present, analytical techniques are capable of handling only two- dimensional flows.

Most of the analytical methods currently available are valid only far downstream of the slot (say  $x/y_{C} \ge 30$ ) and for a restricted range of velocity ratios (either much less or much greater than unity). Thus to date, analytical methods have not found much favour mainly because their validity is restricted to distances and velocity ratios which are not usually of interest to practical film cooling applications.

As regards the prediction of the heat transfer coefficient in the presence of film cooling, the present state of art is even more inadequate. In general, formulae valid for flat plates in zero-pressure gradient or fully developed pipe flow are used though, of course, neither is likely to be valid in the presence or film cooling.

# 1.4 Scope of the present investigation.

The present study is almost wholly concerned with two-dimensional slots. A study of two-dimensional slots is a useful step in the understanding of film cooling since they are, in principle, amenable to analysis. The use of a simple injection geometry also means that the task of controlled and independent variation of the individual factors is much easier.

On the experimental side the present investigation explores two-dimensional slots with tangential injection with particular reference to the adiabatic- or imperviouswall effectiveness and heat transfer coefficient, as they are influenced by the following parameters:

> slot to mainstream velocity ratio; slot to mainstream density ratio; longitudinal pressure gradients; slot lip thickness.

The data are obtained in sufficient detail to test a prediction procedure for two-dimensional flows: this entails measurement of velocity and temperature ( or mass fraction of slot fluid) profiles and the wall-shear stress, besides the impervious- or adiabatic-wall effectiveness and heat transfer coefficient.

Another objective of the present investigation is to apply a recent general prediction procedure due to

Patankar and Spalding (49) to the flow downstream of a two-dimensional slot with a view of predicting the influence of the factors mentioned above. As mentioned above, no fully satisfactory procedure exists, even for two-dimensional slots with tangential injection. The prediction procedure of reference (49) provides for the first time, a method for the solution of parabolic equations for boundary layer flows, which is sufficiently flexible, economical and general to be used in film cooling situations. This procedure requires the specification of the laws of turbulent exchange of momentum and mass before any predictions can be made, and the correctness of the predictions essentially rests on the validity of the exchange hypothesis chosen. The implications of the mixing length hypothesis of Prandtl (1925) for flows downstream of a film cooling slot are examined.

A final objective of the present study is to examine the relevance of prediction procedures, such as the one mentioned above, to practical applications of film cooling. An empirical procedure to extend the procedure to predict the performance of practical slots is suggested.

# 1.5 Outline of thesis content.

In order to place the present investigation in perspective, it is useful to survey the previous and concurrent investigations in film cooling. The next chapter (chapter 2) outlines and summarises the principal investigations in film cooling with tangential injection through two-dimensional slots, as well as available prediction procedures for effectiveness and heat transfer.

The steps leading to the development of a prediction procedure for the adiabatic-wall effectiveness and heat transfer coefficient may be enumerated as follows:

- 1. Selection of the type of prediction procedure
- 2. Procurement of experimental data against which to test the prediction procedure.
- 3. Specification of the physical inputs required for the prediction procedure.
- Prediction of the effectiveness and heat transfer coefficient and comparison with the corresponding experimental data.

Chapters 3 to 6 deal with these problem in the above

sequence. The salient features of the treatment in each of these chapters will now be briefly mentioned.

The first of the above steps implies the formulation of the mathematical and physical aspects of the problem, as well as a discussion on the relative merits of the various types of prediction procedures. This task is carried out in chapter 3.

Steps 2 and 3 in the above list need to be accomplished before the performance of the prediction procedure can be assessed. Accordingly, chapter 4 describes the experimental investigation which provides the requisite data as outlined in the previous section and, in chapter 5, the task of obtaining the appropriate physical inputs is undertaken. The latter exercise proceeds in two directions. The first is the direct examination of the physical inputs with reference to experimental data. The second (indirect) approach involves the comparison of predictions based on tentative assumptions about the physical inputs, with experimental hydrodynamic. and conserved property data. For the latter exercise, the calculations are commenced from measured profiles, downstream of the slot (say  $x/y_C \approx 20$ ) and consequently the predictions are of little direct utility.

Predictions of effectiveness and heat transfer coefficient, commencing from the slot exit and based on the physical inputs selected in chapter 5 are made in chapter 6 and compared with a wide range of experimental data. The influence of the variables listed in the previous section are examined.

Chapter 6 also examines the conditions within a practical .gas turbine combustion chamber and the relative importance of the factors influencing the flame tube temperatures are discussed. The relevance of prediction procedures such as the present one are discussed and the chapter concludes with the author's suggestions for future research in film cooling.

#### CHAPTER 2

# 2. Brief review of previous and current investigations.

The object of the present section is to outline the major investigations in film cooling with two-dimensional slots with tangential injection. The various experimental investigations in this field are first briefly described, and their main findings are summarised. This is followed by a discussion of the various currently available prediction procedures. The limitations of these prediction procedures, as well as aspects needing further experimental investigation are pointed out.

Reviews of some of the investigations up to 1965 are to be found in references (76) and (77), while a summary of prediction procedures published before 1964 is to be found in reference (71).

## 2.1 Experimental studies of film cooling.

The systematic study of film cooling can be traced to the pioneering work of Wieghardt (75) at Göttingen in 1943. Wieghardt's interest was mainly in de-icing applications for aircraft wings by blowing through near-tangential slots. Brief particulars of Wieghardt's investigation as well as other subsequent comprehensive investigations of film cooling with two-dimensional tangential slots are shown in Table 2.1.1. There appears to be a gap of some thirteen years between the work of Wieghardt and the next publication on film cooling, after which there has been a sustained interest in the process. The general features of film cooling were revealed in Wieghardt's investigation and so it is appropriate to discuss these at the outset, so that the contributions of later workers can be viewed against this background.

The slot used by Wieghardt was designed to be flush with the surface (please see Table 2.1.1, col. 10): this caused the flow from the slot to emerge at a small angle to the surface, but the flow aligned itself to the plate within a short distance. As can be seen from the fourth column of the table, Wieghardt obtained data for a wide range of velocity ratios, but only for a very limited range of density (col. 5) and pressure (col.6) gradients.

| TABLE 2.1.1. SUFFAMI OF INVESTIGATIONS OF FILE COOLING. WITH TARGANITAL DESCRIPTION THROUGH THE DEREMINAL SLOPES<br>• VP - VELOCITY, TP - TEMPERATURE, CP - CONCENTRATION |                                                                                                 |              |                       |                                                                           |                                                          |                                             |                                                                                             |                                                                                                                                                                                            |                                                                                                                                                                            |                                                                      |                                                                                                                                                                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------|-----------------------|---------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                           | 1<br>ИЛТНОВ                                                                                     | 2<br>YEAR    | 3<br>x/y <sub>0</sub> | $1.\frac{4}{\overline{u}_{c}/u_{c}}$ $11.u_{c}\left(\frac{\pi}{s}\right)$ | DENSITY<br>RATIO, C/2                                    | 6<br>Pressure<br>Gradient                   | 7 -<br>SLOT HEIGHT<br>(mm)& INI-<br>TIAL CONDI-<br>TIONS.                                   | 9<br>Profile:                                                                                                                                                                              | y<br>Other Variables<br>Investigated                                                                                                                                       | 10<br>Injection<br>Geometry                                          | 11<br>PREDICTIONS                                                                                                                                                                                |
|                                                                                                                                                                           | WIEGHARDT<br>(75)                                                                               | 1944         | to 800                | 1. 0.22-<br><b>69</b><br>11. 16 -<br>32                                   | 0.80 -`0.91                                              | ZERO;<br>MILD FAVERL.;<br>MILD ADVERSE,     | y <sub>C</sub> = 10; 5<br>y <sub>G.C</sub> = 15;<br>17.                                     | *VF: m= 0.22<br>0.74<br>1.01<br>1.45<br>*TP: m= 0.74                                                                                                                                       | <ol> <li>Normal injection through<br/>slots.</li> <li>Flow directions near<br/>slot exit.</li> </ol>                                                                       | E                                                                    | 1.Empirical relation:<br>$\eta = 21.8 \cdot (x/xy_c)^{-0.8}$ ;<br>for $x/y_c > 100 \ge x \le 1$ .                                                                                                |
|                                                                                                                                                                           | SEBAN. CHAN<br>and SCESA<br>(59)                                                                | 1957         | to 125                | 1. 0.08-<br>0.92<br>11.13 -<br>38.                                        | 0.88 - 0.95                                              | ZERO.                                       | <b>y<sub>C</sub>= 3.2</b>                                                                   | VP, Outer<br>surface<br>of lip.                                                                                                                                                            | <ol> <li>Normal injec-<br/>tion through<br/>single olot.</li> <li>Heat transfer<br/>Cpefficient;<br/>q constant.</li> </ol>                                                | 1635                                                                 | 1. $\frac{7}{4} = 0.16 \frac{1}{20} \frac{3.3}{3} (\frac{1}{2} \frac{1}{20} \frac{1}{6})^{-\frac{1}{2}}$<br>b =0.25 $(\frac{1}{2} \frac{1}{20} \frac{1}{6})^{-\frac{1}{2}} < 40$ ;<br>=0.70 740. |
|                                                                                                                                                                           | SEBAN (60)<br>SEBAN & BACK<br>(61), (62)                                                        | 1960<br>1962 | to 290                | 1. 0.20-<br>23.7<br>11.1.5 -<br>37.0                                      | 0.88 - 0.95                                              | ZERO (60),(61)<br>FAVREL.(62)<br>(2 valuen) | y <sub>C</sub> 1.0;<br>3.2;<br>6.3.<br>y <sub>G,C</sub> 9.1;<br>31.6.                       | (61) VP,<br>TPIM= .36<br>5 station<br>-9.                                                                                                                                                  | 1. Heat transfer<br>coefficient,<br>of = constant                                                                                                                          |                                                                      | $1. \eta = 25 n^{1.2} (x/xy_0) \int_{x}^{xy_0} 1 = 1.09 c^{-0.5} (1.004 m^2) = 1.09 c^{-0.5} (1.004 m^2) = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = $                                                 |
|                                                                                                                                                                           | CHIN, SKIHVIN<br>and HAYES<br>(8)                                                               | 1958         | to 233                | 1. 0.26-<br>2.85<br>11. 19-<br>54                                         | 0.83 - 1.17<br>(≠ 1.0)                                   | ZERO •                                      | y <sub>C</sub> = 2.7<br>y <sub>C</sub> ,c=20;<br>50                                         | VP, Outer<br>surface<br>of lip.                                                                                                                                                            | <ol> <li>Influence of<br/><sup>y</sup>G;0.</li> </ol>                                                                                                                      | K                                                                    | $1.\eta = a \Lambda^{-b};$<br>see text for a, b;<br>$\Lambda \approx \binom{n_c}{r_a} \binom{l_u}{u_c} R_c^{-e,p} \binom{u_c}{v_c}$                                                              |
|                                                                                                                                                                           | HARTNETT,<br>BIEKEBACK<br>and DOKERT<br>(22),(23)                                               | 1961<br>1962 | to 138                | 1. 0.28<br>(22)<br>0.28 -1.1<br>(23)<br>11. 50                            | 0.875                                                    | ZERO (22).(23)<br>PAVREL.,<br>ADVERSE (23)  | У <sub>С</sub> = 3.1                                                                        | Vr. 5 stns.<br>TP, 4 stns.                                                                                                                                                                 | <ol> <li>(T<sub>C</sub>-T<sub>C</sub>) vari-<br/>ed from<br/>6 to 80°C.</li> <li>Heat Transfer<br/>coefficient;<br/><u>d</u><sup>*</sup><sub>a</sub> = constant</li> </ol> | einilar to<br>VINCANTY<br>(75)                                       | 1.η - 16.9 (x/=y <sub>c</sub> ) <sup>-0.8</sup>                                                                                                                                                  |
|                                                                                                                                                                           | SAMUEL and<br>JOUBERT<br>(56)                                                                   | 1965         | to 406                | 1. 0.23<br>2.90                                                           | 1.1 - 1.25                                               | ZNRO                                        | yc= 3.2;<br>6.3;<br>9.4                                                                     | VP:}m=0.88,<br>TP:}10 stns                                                                                                                                                                 | none.                                                                                                                                                                      |                                                                      | 1. Similar to CHIN st.al.<br>(8); separate<br>expression for each y <sub>C</sub>                                                                                                                 |
|                                                                                                                                                                           | GOLDSTEIN and<br>HAJI- SHEIER<br>(20)                                                           | 1966         | to 160                | m= 041<br>(Air).<br>m=.01;.03<br>(Helium)<br>11.Ha= 3                     | not<br>specified                                         | 23E0                                        | yc= 1.6;3);<br>4.6(Aix<br>= 1.58<br>(Helium)                                                | None.                                                                                                                                                                                      | <ol> <li>Mach No. of<br/>free stream<br/>= 3.</li> <li>Schlieren<br/>studies.</li> </ol>                                                                                   | 77                                                                   | 1. $\gamma = a \cdot m^{b} \cdot (x/y_0)^{c}$<br>nees text for a, b and c.                                                                                                                       |
|                                                                                                                                                                           | CARLSON and<br>TALMOR<br>(7)                                                                    | 1968         | ta 72                 | 1. 0.19<br>0.90<br>11.64 - $132$<br>(at x=0)                              | ∽ 2 <b>.</b> 76                                          | MODERATE<br>PAVRBL.                         | y <sub>C</sub> = 1.58                                                                       | None.                                                                                                                                                                                      | <ol> <li>Pres stream<br/>turbulence,<br/>= 12, 12, 22\$</li> <li>Heat Transfer<br/>Coefficient;<br/>without film<br/>ecoling.</li> </ol>                                   | 120<br>120<br>120<br>120<br>120<br>120<br>120<br>120<br>120<br>14050 | 1. $\frac{1-\eta}{X_1} = 0.329 \text{ m } X_1 \text{ whore}$<br>$\frac{1}{X_1} = X_1 \{\frac{10}{10}, M_{21}\} \}$<br>$X = K_1^{+2} F_0/F_0 \cdot C_{21}$<br>and $a = f((X_2), a_2/A_2).$        |
|                                                                                                                                                                           | WHITELAW (76), (70)<br>WHITELAW &<br>MICOLL (41)<br>KACKER and<br>WHITELAW<br>(20), (30), (31), | 1966<br>1969 | to 288                | 1. 0.29<br>2.66<br>11. 21                                                 | 1.0                                                      | ZERO                                        | yc=1.88 to<br>12.7(79)<br>=0.243<br>(30)<br>t =0.128 to<br>yc 1.90<br>(6 valueo)<br>(30)    |                                                                                                                                                                                            | <pre>i. c<sub>f</sub> (28),(31) i1.k, u'v' prof- ilco (28),(3) i11 u' spectra (31).</pre>                                                                                  | <u> </u>                                                             | 1. Equations for R. R. R. R. R. are solved with<br>auxillary relations<br>based on experiments.<br>(41).                                                                                         |
|                                                                                                                                                                           | BURNS and<br>STOLLERY<br>(5), (6)                                                               | 1968<br>1969 | to 512                | 1. 0.58-<br>4.0<br>(5)<br>0.30-<br>1.42<br>(6)<br>11. 6.1;<br>17.3.       | 0.14;4.17<br>(5),(6)<br>0.3;0.6;1.9;<br>1;38;2.5;<br>(5) | ZERO                                        | $y_{c} = 1.58$ $\frac{t}{y_{c}} = (0), 1,$ $(0), 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,$ | $\frac{VP}{v_{c}} + \frac{CP_{1}}{v_{c}} + \frac{1}{2}$<br>$\frac{VP}{c_{c}} + \frac{1}{2} + \frac{1}{2}$<br>$\frac{VP}{c_{c}} + \frac{1}{2} + \frac{1}{2}$<br>$\frac{1}{2} + \frac{1}{2}$ | i. y <sub>G,C/y<sub>C</sub>= 0.09<br/>2.54<br/>(5).<br/>ii. Colour Johli<br/>-eren. %. 0.14<br/>(6)</sub>                                                                  |                                                                      | i. Correlation of Ref (72).                                                                                                                                                                      |

TABLE 2.1.1. SUTTARY OF INVESTIGATIONS OF FILE COOLING, WITH TANGE MIAL INJECTION THROUGH TWO DIMENSIONAL SLOTS

11

÷.\* .

One of the important conclusions from his study was that the adiabatic-wall effectiveness at a given station increased with the velocity ratio for mass velocity ratios less than approximately unity, but decreased with a further increase in the velocity ratio. Wieghardt also made detailed measurements of the velocity and temperature fields and came to the conclusion that the temperature profiles were relaitvely insensitive to the velocity ratio and were similar far downstream of the slot. The velocity field on the other hand was complex and allowed no simple analytical description. Far downstream of the slot, the velocity profiles approached a fully turbulent boundary layer shaper (ie., a 'power-law' profile). For velocity ratios greater than unity, the velocity profiles exhibited a maximum, which decayed in the downstream direction. Further, Wieghardt found that the effectiveness for any given non-dimensional distance x/yc and velocity ratio, was practically the same for the two slot heights which he set up (see col. 7 of Table 2.1.1). He also found that the effect of a mild adverse or favourable pressure gradient, commencing fifty slot-heights downstream of the slot, was small.

One can now proceed to examine the other investigations on a comparative basis. First, some remarks about the slot geometries employed (see col. 10 of Table 2.1.1). The slots used by Hartnett et.al. (22), (23) and by Eckert and Birkeback (13) at the university of Minnesota were similar to the one used by Wieghardt. The slots used by all the other investigators shown in the table were of a backward facing step type and in principle, injected the fluid tangential to the surface. However, there are differences in the details of the various slots shown. The significant ones relate to the design of the slot lip; for example, its taper, thickness and overhang on the surface. The other design feature is the contraction leading to . the slot exit. For example, in the slot used by Seban et.al. (59), and Chin et. al. (8), the contraction from the plenum chamber occurs far upstream of the slot exit and the lead-in to the slot is a curved constant-area duct. In the other examples shown, the contraction occurs close to the slot exit. In all the cases, the flow suffers a bend before emerging from the slot, which may introduce

secondary vortices in the slot flow, particularly in the slot geometries of references (59) and (8). In the case of references (56), (20), (78), (30) and (5), the over-hang of the slot-lip tends to reduce any residual effects of this secondary flow. The slot heights used by the various investigators are shown in column 7 of Table 2.1.1.

With the exception of references (20), (57) and (7), all the investigations were carried out in low speed, turbulent flow (mainstream velocities of the order of 30 m/s), and consequently the slot to main stream density ratio were in the vicinity of unity, except where foreign gas was injected through the slot (20), (5), (6). Gases such as helium (20), (5), (6) or Arcton-12 (5), (6) were injected through the slot, to obtain large density ratios on either side of unity, without incurring the experimental problems associated with large temperatures. In the majority of the investigations with air injection (ie. references where the density ratios is slightly below unity), the secondary air was heated by some 30 to 40 deg C, whereas the mainstream was nominally at room temperature. This was mainly a matter of convenience, as the quantity of air to be heated was less if the secondary flow was heated. Reference (22) demonstrated that for a given mass flow through the slot, the same effectiveness was obtained with slot to mainstream temperature differences from 6 to 80 deg C.

The use of a mass transfer analogy to film cooling experiments was introduced by Whitelaw (78); a small quantity of helium was mixed in the secondary stream. The mass fraction of helium within the flow is analogous to the temperature (or enthalpy) field, provided the eddy-diffusivities for enthalpy and species transport are same (ie. if the turbulent Lewis number is equal to unity). The use of such a technique implies that mass concentration of the injected tracer are measured rather than temperatures. In particular, measurement of the mass concentration at the . wall permits the evaluation of the impervious-wall effectiveness, analogous to the adiabatic-wall effectiveness. The advantage of the mass transfer analogue is that an imperviouswall condition can be realised more closely than an adiabatic-wall. Such a technique also permits the study of equal slot to free stream density.

The influence of longitudinal pressure gradients have been investigated in references (75), (62), (23), and (7). All, except reference (7), have noticed a small decrease in the effectiveness when the main stream is accelerated or decelerated. Reference (7) indicates a large influence due to favourable pressure gradient but, in this case, pressure gradients normal to the flow direction were also present (as can be expected from the slot geometry shown in Table 2.1.1). Also, the width of the test section of reference (7) was only 13 mm, which probably resulted in three-dimensional flow, especially in the vicinity of the injection region. In general, the range of pressure gradients investigated is small and the influence of pressure gradients in the presence of significant density gradients has not been investigated.

Information concerning the development of velocity and temperature (or mass fraction) profiles is useful, both for a qualitative understanding of the flow field and also for devising or assessing prediction procedures. When the two-dimensionality of the flow is good, the velocity and temperature profiles also permit the evaluation of wall-shear stress and eddy viscosity or diffusivity across the layer. Profiles of mean velocity and temperature (or mass fraction) have been provided by several authors shown in column 8 of Table 2.1.1.

Some of the other quantities investigated experimentally will now be briefly discussed. Heat transfer in the presence of film cooling has been investigated by Seban et. al. (59),(60),(61),(62) and by Hartnett et. al. (22),(23). Seban and Hartnett employed electrically heated walls, which resulted in nominally constant heat flux boundary conditions. The major conclusions reached by these authors was that for velocity ratios less than unity and for large distances from the slot ( $x/y_C \ge 30$ ), the heat transfer coefficients (defined by eq. 1.2) approach values corresponding to a flat plate. The nature of the heat transfer coefficient near the slot was more complex and was a function of the velocity ratio.

The influence of the thickness of the boundary layer on the outer surface of the slot lip has been investigated by Chin et.al. (8), Seban and Back (61) and by Kacker and Whitelaw (27). The thickening of this boundary layer appears to result in a lowering of the effectiveness, but the effect is not very large, provided the lip-thickness ratio  $(t/y_{\rm C})$  is above about 0.4. For example, the data of reference (27) show a maximum decrease of about 4 percent (of unity) in the effectiveness for an increase of the boundary layer thickness from 2.4 to 10 slot-heights.

The influence of the slot-lip thickness on effectiveness has been investigated by Whitelaw et.al. (79), (64), (30), for uniform density flows and by Burns and Stollery (6) for non-uniform density cases. In reference (79), it was suggested that the influencing parameter for uniform density flows, is the ratio of the slot-lip thickness to the slot height (t/y\_C) and this was confirmed by the work of references (64) and (30). Reference (79) describes measurements where the slot height was varied for a constant lip thickness, whereas references (64), (30), and (6) describe measurements for which the lip thickness was varied for a constant slot height. These investigations demonstrate that an increase in the lip thickness to slot height ratio  $(t/y_{C})$  has a strong adverse influence of the effectiveness of film cooling. For example, the data of reference (30) show that for a velocity ratio of 0.86 and  $x/y_{C}$  of 28, the imperviouswall effectiveness decreases from 0.85 to 0.45 as the lip thickness ratio is increased from 0.128 to 1.14. For large downstream distances, the impervious-wall effectiveness with a thick lip tends towards the thin lip value. These statements are valid for the case of uniform density cases. For the case of Arcton-12 injection ( $\rho_C / \rho_G = 4.17$ ) however, the influence of the lip thickness diminishes with increasing velocity ratio (6). Another interesting finding of reference (79) and (30) is that for values of  $t/y_C$  greater than about 0.4, the maxima in effectiveness for velocity ratios in the vicinity of unity, disappears: the value of effectiveness for a given downstream distance remains practically constant for velocity ratios greater than approximately unity.

Further variables investigated by Kacker and Whitelaw (28), (31) are mainly concerned with the hydrodynamics of the flow downstream of film cooling slot, in uniform density and pressure flows. These include the measurement of turbulence intensities, kinetic energy of turbulent motion, u'-spectra,

wall-shear stress and the distribution of the turbulent shear stress across the layer. The data provide a basis for assesing a hypothesis of turbulent momentum transport in the elliptic and parabolic flow regimes.

An examination of the hydrodynamics of a wall-jet in stagnant surroundings has been made by Tailland and Mathieu (73) and by Gartshore (17), and for wall-jets in a moving stream by Bradshaw and Gee (4). Wall-jets in adverse pressure gradients have been investigated by Eskinazi and Kruka (26), Patel and Newman(50). Heat transfer to a wall-jet in stagnant surroundings has been studied by Myers et.al. (40). These studies are relevant to film cooling in so far as the velocity profiles have a velocity maximum such as thatoccurringin a film cooling situation for velocity ratios in excess of unity.

Though there have been numerous experimental investigations in film cooling, all the influencing factors have not been systematically investigated. For example; there is a need for experiments in which the injection geometry (ie. the slot height) and initial conditions at the slot exit are kept unaltered while the variables such as velocity ratio, density ratio and pressure gradients are varied independently as well as simultaneously and sufficient measurements concerning wall properties and profiles are obtained to asses prediction procedures. A certain amount of overlap with previous investigations is desirable in order to asses the consensus or otherwise between the various sets of data.

# 2.2 Brief review of previous prediction procedures.

Every experimenter at the conclusion of his investigation, wishes to see some order or regularity in his data, such that a simple analytical expression or law can be found to charaterise his findings. On the other hand, a designer wishes to predict the performance of a film cooling device for a projected application. Thus there is a need to predict, amongst other things, the film cooling effectiveness and heat transfer coefficient downstream of a two-dimensional slot. As mentioned in the introduction, the distance generally of interest in propulsion applications,

is of the order of 40 slot-heights downstream of the slot. Prediction procedures may be classified under the

following categories:

- 1. Correlations;
- 2. Integral methods;
- 3. Differential methods.

The following three sub-sections briefly outline the various proposals in the above categories and a discussion on them is included in section 2.2.4.

2.2.1 Correlations. In correlating experimental data, use is made of dimensional analysis and some observed regularity when the data are plotted in these dimensionless groups. They are not generally based on any physical or transport hypothesis. There are numerous examples under this category. Wieghardt (75) in his pioneering paper on film cooling found that all his effectiveness data for m < 1, tended to fall on a single straight line when plotted... on log-log paper against the parameter  $(x/my_{C})$ . Consequently he found that the equation shown in column 11 of Table 2.1.1 correlated his data for large distances from the slot  $(x/y_{c} > 100)$  and m < 1. Seban et.al. (60) found a correlation for the 'potential core' region (ie., the distance from the slot for which the effectiveness is unity) and used this relation, in conjunction with a power-law relationship, to correlate their data for mass velocity ratios less than unity. They found that their data displayed a power-law decay with  $x/y_{C}$  at large distances from the slot: the power being 0.8 for m less than unity and 0.5 for m greater than unity. Chin et.al. provided another correlation, which included a correction for the hydrodynamic starting length (R<sub>x,C</sub>). Three different power law regimes were discerned and the coefficients of the equation shown in Table.2.1.1 are as follows:

a = 1, b = 0A < 15a = 1.5, b = 0.1515 < A < 72a = 12.7, b = 0.6572 < A

where the correlating parameter A is as defined in the table. A similar correlation was provided for velocity ratios between 1 and 2. Samuel and Joubert (56) correlated their data in a similar way, but they found that a separate correlation was needed for each of the slot heights. A correlation developed by the Lucas Research Laboratories, Burnley (34), employed an exponential function. The advantage of the exponential function chosen was that it indicated a smooth decrease in the effectiveness from a value of unity near the slot. The recommended equation in this reference is:

$$\eta = 1 - \exp \left[ \frac{-44.1}{m^{-0.8} (T_G/T_C)^{0.6} (x^{0.8}/Y_C) \cdot x} \right],$$
where  $X = 1$ 

$$x = \left[ \frac{u_G}{u_C} + 0.2 \right]^{-1.2^{u_G}} \frac{\overline{u_C}}{u_C} > 1.25,$$
2.2.1

(note that x and y<sub>C</sub> are to be measured in inches). Another simple correlation, provided by Spalding, Jain and Nicoll (65), which is valid for velocity ratios on either side of unity is as follows:

This expression is based on the notion that near the slot, the flow is jet-like and reverts to a boundary layer far downstream of the slot.

2.2.2 Integral methods. Under this category are implied methods which solve the integrated forms of the conservation equations applicable to boundary layers. Numerous varieties and hybrids of the integral methods exist (see for example the introduction in reference (49)). For film cooling applications, most of them solve the integral thermal energy (or species) conservation equation, after solving (or assuming) a solution of the integral hydrodynamic properties of the flow. The solution of the integral equations require auxiliary relations between the various dependent variables and other quantities appearing in the equations. These may either be explicit functions derived from experimental data (in which case the method is called an 'explicit integral method', for example reference (41)) or they may be derived from a general hypothesis for eddy transport. The latter

24

2.2.2

variety may be called the 'implicit' type (see for example (48)). Integral methods employ assumptions regarding the shape of the velocity and temperature profiles, which thereby permit some of the relations between the integral properties to be worked out. For example, several of the methods (Wieghardt (75), Stollery and El-Ehwany (71)), assume that the velocity profiles are similar and can be described by a power-law relation of the type  $u/u_{\rm G} = (y/y_{\rm G})^n$ , where n is approximately equal to 1/7. Similar assumptions are made concerning the temperature or species profiles.

Again, it is fair to cite Wieghardt's case as a typical integral method of the 'explicit' type, and then to point out the differences of later proposals. Wieghardt solved the energy equation assuming similarity in the velocity and temperature profiles - a power law for the former and an exponential for the latter. He obtained the result that for a power-law exponenent of 1/7, the effectiveness far downstream of a film cooling slot is given by the equation

 $\eta = 2.01 \text{ m} (y_C/y_G) . 2.2.3$ 

The x-wise distribution of effectiveness can be obtained from this equation if a relation betweent the boundary layer thickness  $y_G$  and the distance x is assumed. Thus, if  $y_G$  is taken from the relation

 $\frac{Y_G}{x} = \frac{0.37 R_x^{-0.2}}{x}, \qquad 2.2.4$  which is known to be valid for flat-plate boundary layers

in zero pressure gradient (58), one obtains  $\gamma = 5.44 (x/my_c)^{-0.8} R_c^{0.2}$ 

It should be pointed out that the exponential form for the temperature profiles was obtained by Wieghardt by integrating the energy equation along with the continuity equation and assuming that the eddy viscosity at any station was constant across the layer.

The expressions obtained by Hartnett et.al. (22), Klein and Tribus (32), Stollery and El-Ehwany (71) are similar to the above expression and differ essentially in the value of the constant in the equation. The procedures of these authors differ mainly with regard to the assumption of the shape of the temperature profile. One integral method which differs markedly from the above methods is that of reference (41). In this procedure, three integral equations are solved. These are the integral momentum-deficit, integral kinetic-energydeficit and the energy (or species) equations. Empirical relations, based on experimental data between the dependent variables  $R_2$  and  $R_3$  and the other quantities such as H,  $H_{32}$ ,  $c_f/2$  and  $\bar{s}$  are employed, which then permit the solution of the three ordinary differential equations, for example by forward integration procedures. Further empirical relations between conditions at the slot exit and the values at a downstream station are provided, which permit the prediction of effectiveness, commencing from the slot exit.

2.2.3 Differential methods. Under this category are implied methods which solve the parabolic, partial differential equations valid for boundary layers. Methods for solving these equations are of the numerical, finitedifference type, which may either be of the

marching integration or cross-stream integration

type. Finite difference methods for turbulent boundary layers have only recently found general application (49). Procedures available prior to that of reference (49) were expensive in computer time and had inherent problems such as instabilities due to step size. Previous application of numerical methods to film cooling problems are not known to the author. Brief particulars of the two types of finite difference procedures mentioned above are given in the next chapter (3.3).

It is relevant to mention that methods of the 'parametric integral' type also solve the parabolic equations, after reducing them to a set of first order ordinary differential equations (for example Patankar and Spalding (48)); however, the solutions of the integral equations tend to that of the parabolic equations only when the number of parameters becomes very large.

2.2.4 Discussion of previous prediction procedures.

In the above three sub-sections, the various methods for the prediction of film cooling effectiveness

have been presented without comment. In the present section, the advantages, limitations and successes of the various procedures are briefly discussed.

The correlations of references (75), (59), (22), and (72) which are based on assumptions valid for flat-plate boundary layers, are valid in the presence of film cooling, only at large distances from the slot and for mass velocity ratios less than unity. For example, Wieghardt found his correlation was valid for  $x/y_{C}$  greater than about 100. The use of such correlations for values of  $(x/my_c)$  less than about 50 appears to be unreliable. Even for large values of this parameter, the scatter of data from different sources around any of the above correlations is of the order of ± 40 percent of the local values of effectiveness (22),(72). This clearly indicates the limited use of such correlations from a practical view-point, since the distance of practical importance in gas turbine applications is seldom more than 40 slot-heights and mass velocity ratios greater or equal. to unity are common. Further such methods are not capable of including the effects of factors in the near-slot region. These limitations are essentially due to the over simplifying assumptions concerning the velocity profiles: velocity profiles in the vicinity of a film cooling slot exhibit a maximum and a minimum, whereas the profiles assumed in the analysis are monotonic. The correlation of reference (36) and (65) do not suffer from these two limitations.

The explicit integral method of reference(41) is based on more intricate equations and a considerable amount of experimental data is needed to devise the auxiliary relations used in the method. For example, for the simplest case of uniform density and pressure flows, the total number of constants to be obtained by reference to experiment is 24. Extension to include the influence of further variables (such as density and pressure gradients) would increase this number even further and the amount of experimental data required to base the auxiliary equations would be formidable. Even so, the method fails to provide realistic predictions of effectiveness for velocity ratios in the vicinity of unity, and in the near-slot region.

The main conclusion that can be drawn from the above discussion is that, at present, there is no single procedure which can satisfactorily predict the effectiveness of a two-dimensional film cooling slot for a practically useful range of distance from the slot exit, velocity ratio, density ratio and pressure gradients and which takes some cognizance of the conditions at the slot exit. It is likely that further progress in this direction would be made by prediction procedures having as their basis, the partial differential equations which describe the flow downstream of a film cooling slot.

### CHAPTER 3

# 3. The flow downstream of a two-dimensionsl, film

cooling slot.

The purpose of this chapter is threefold: first, to provide a qualitative description of the flow downstream of a two-dimensional slot and to identify the different flow regimes. Second to introduce the equations governing such flows and thirdly, to outline the solution procedure which is considered most suitable. The third objective implies a brief discussion of the various calculation procedures avilable, to enable a selection to be made.

### 3.1 Qualitative description of the flow field.

The flow development downstream of a film cooling slot is sketched in Fig.3.1.1. The figure indicates the shapes of the velocity and enthalpy profiles and effectiveness for a velocity ratio close to unity, as well as the relevant notation.

The velocity profiles in this figure have been normalised with the freestream value. At the slot exit, three boundary layers can be discerned: two within the slot and one on the outer surface of the slot lip. In the example shown, the two boundary layer within the slot exit are separated by a region of uniform velocity. Immediately behind the slot lip, there is a region of separated and recirculating flow. The two boundary layers on either side of the slot lip converge downstream of the this separated flow region and develop as a 'mixing layer', up to the point where it joins the boundary layer growing on the wall. Thereafter the layer develops a wall boundary layer. The shape of the velocity profiles near the slot depends mainly on the velocity ratio at the slot exit. The example shown in Fig. 3.1.1 corresponds to a slot to mainstream velocity ratio of approximately unity. For velocity ratios less than this value, the velocity profiles would have a larger defect near the wall, whereas for velocity ratios greater than unity, the velocity profiles resemble that of a wall-jet, with a velocity maximum greater than the free stream value. Both the peak and trough in the velocity profiles decay in the downstream direction as a result of momentum exchange, till far downstream, the velocity profiles are monotonic and similar to those existing on a flat plate in a uniforn velocity stream.

The enthalpy profiles shown in Fig.3.1.1.have been normalised with the free-stream and wall values in the following manner:

$$h' = \frac{h - h_G}{h_W - h_G}$$

The wall value of enthalpy appears in the adiabatic-wall effectiveness, as defined in equation 1.2.1. The temperature (or enthalpy) profile at slot exit is of a 'top hat' shape: there is a steep gradient at the lip from the value in the slot to the free stream value. As the mixing between the coolant and the mainstream progresses, the step in the temperature profile is smoothed out and the profiles become S- shaped far downstream. The gradient of the temperature profile is of course zero at the wall, for the case of an adiabatic wall. The profiles of mass fraction of the coolant are similar to the enthalpy profiles and are exactly analogous if the turbulent Lewis number is unity. This is tacitly assumed to be true in this thesis and some enthalpy and mass fraction of coolant are sometines used interchangeably in particular, the adiabatic-wall and impervious-wall effectiveness are assumed to be equal, and merely referred to as effectiveness. The effectiveness as indicated in Fig. 3.1.1. is equal to unity near the slot but decreases downstream as the coolant mixes with the free stream. In the immediate vicinity of the slot, the flow can be expected to be significantly influenced by the slot geometry and initial conditions such as the thickness of the boundary layer on the outer surface of the slot-lip  $(y_{G,C})$ or the shape of the velocity profile within the slot. In particular, due to the finite thickness of the slot lip and the separated flow region behind it, the streamlines close to the slot lip would show significant curvature and there would be pressure gradients normal to the predominant flow direction. Thus in this region the flow is not of the boundary layer type, and departures from it are likely to increase with an increase in the lip thickness or as the velocity ratio approaches zero. The extent of the 'initial region' near the slot is hard to define precisely, and several definitions are in vogue. Some authors define it as the 'potential core' length, the distance from the slot at which the effectiveness begins to depart from unity, while others define is as the point of intersection between the

mixing layer originating from the slot lip and the wall boundary layer. The concept of an initial region is no longer of particular significance and in the present work it will be taken to mean the region close to the slot where the geometry of the injection region can be expected to have a significant influence (about 10 to 30 slot-heights, depending on the lip-thickness ratio).

## 3.2 Equations governing the flow.

9 х

For the present purpose the flow downstream of a film cooling slot will be assumed to be that of a perfect gas; steady, incompressible, fully turbulent, with negligible body forces and two-dimensional (ie. there are property variations normal to the wall and in the downstream direction only). The equations which govern fluid flow of this type are the following:

The Navier-Stokes equations for turbulent flow have to be considered on a time averaged basis to render them amenable to present day solution procedures. With these restrictions, the relevant set of equations in Cartesian coordinates are:

$$u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = -\frac{1}{\rho} \frac{\partial p}{\partial x} + v \left\{ \left( \frac{\partial^2 u}{\partial x^2} \right) + \left( \frac{\partial^2 u}{\partial y^2} \right) \right\} - \frac{1}{\rho} \left( \frac{\partial \rho u'^2}{\partial x} + \frac{\partial^2 \rho u' v'}{\partial y} \right) 3.2.1$$

$$u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} = -\frac{1}{\rho} \frac{\partial p}{\partial y} + y \left\{ \left( \frac{\partial^2 v}{\partial x^2} \right) + \left( \frac{\partial^2 v}{\partial^2 y^2} \right) \right\}$$

$$- \frac{1}{\rho} \left( \frac{\partial u' v'}{\partial x} + \frac{\partial}{\partial y} - \frac{\partial \rho v'^2}{\partial y} \right) 3.2.2$$

$$3.2.2$$

3.2.3

$$\frac{\partial h}{\partial x} + \frac{v}{\partial y} = \frac{\pi}{\rho} \left\{ \left( \frac{\partial^2 h}{\partial x^2} \right) + \left( \frac{\partial^2 h}{\partial y^2} \right) \right\} - \left( \frac{\partial \overline{u'h'}}{\partial x} + \frac{\partial \overline{v'h'}}{\partial y} \right) + \frac{\partial \overline{v'h'}}{\partial y} + \frac{\partial \overline{v'h'}}{\partial y} \right)$$

$$+ \frac{v}{\Phi} = \frac{\pi}{3.2.4}$$

$$\frac{1}{\rho} = \pi T/p \qquad 3.2.5$$

Thus there are five equations and five unknowns viz. u, v, h, p and  $\rho$ , and so in principle form a soluble set, provided the turbulent stresses in eq. 3.2.1 and 3.2.2 and the turbulent enthalpy fluxes in eq. 3.2.4 can be expressed as functions of the other dependent variables. The last proviso, which is an important one, will be discussed later in this chapter.

The Navier-Stokes equations shown above are elliptic in nature and are capable of describing flows with or without recirculation and pressure gradients in both directions. Consequently the above equations are valid in the immediate vicinity of the slot as well as further downstream. Numerical methods for the solution of the equations of the above type have recently been devised and are under development (19). However, they are quite expensive in computer time and need considerable experimenting before satisfactory solutions can be obtained.

For slots with fairly thin lips (say  $t/y_C \leq 0.5$ ), the factors which cause a violation of the boundary layer assumptions due to Prandtl (58), namely recirculation and pressure gradients normal to the flow direction, can be expected to vanish fairly close to the slot (28). Thus for practical purposes the flow downstream of a film cooling slot can be considered to be of the boundary layer type, except in the immediate vicinity of the slot lip. This implies that the elliptic equations (3.2.1) and (3.2.2) may be reduced to parabolic ones using the well known boundary layer assumptions. These imply that the thickness of the boundary layer is small in comparison with a characteristic dimension of the flow and that there is no region of recirculation. An order of magnitude analysis of the various terms in equations 3.2.1 and 3.2.2, permits them to be reduced to the following:

 $u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = -\frac{1}{\rho} \frac{dp}{dx} + v \frac{\partial^2 u}{\partial y^2} - \frac{1}{\rho} \frac{\partial}{\partial y} \frac{\rho u' v'}{\rho} , 3.2.6$ and  $\frac{dp}{dy} \approx 0 . 3.2.7$ 

Essentially, the second derivatives of velocity in the xdirection have been neglected in comparison with the corresponding term in the y- dirextion, since the latter is of an order  $(1/y_G)^2$  greater than the former. Eq. 3.2.2 is truncated to the above form (eq.3.2.7) due to the fact that all the terms in it are of the order  $(y_G)$  which is small in comparison with the terms of eq.3.2.6, which are of order unity. Further, the contributions of the normal turbulent stresses have been neglected in comparison with the turbulent shear stresses. The main implications of the parabolic equations 3.2.6 are as follows. First, the pressure distribution is no longer an unknown: the x-direction pressure gradient is taken to be the same as that existing at the outer edge of the layer (which is generally known, or calculable from the data of the problem) and the y-direction pressure gradient is assumed to be zero (eq. 3.2.7). Second, it is necessary to specify the boundary and initial conditions on only three sides of the 'flow domain: the wall, the free stream and along a normal to the wall at the initial value of x, whereas the elliptic equations 3.2.1 and 3.2.2 need boundary and initial conditions within an enclosed domain. The implication of this statement is that for the parabolic equations, there is no downstream influence and they can be solved by a method of marching integration, which is a relatively cheap (in computer time) process.

The energy equation, 3.2.4 is also further simplified as a result of the boundary layer assumptions. In particular, the second derivative of h in the x-direction and the term containing  $\overline{u'h'}$  are neglected. Further, the dissipation term  $\nu \phi$  is neglected for low-speed flow and for fluids of low viscosity.

However, equations 3.2.6 and the reduced form of equation 3.2.4 are still non-linear, partial differential equations for which general analytical solutions are not available. Possible methods of solution are outlined in the

next section.

In connection with the elliptic equations 3.2.1 and 3.2.2 it was stated that they form a soluble set, along with eqns. 3.2.3 to 3.2.5, provided the turbulent stresses and diffusional fluxes can be related to the other variables. This proviso still holds for the parabolic form of the equations, and in fact constitutes the central problem of the physical aspects of turbulent flow.

By far the most common practice is to relate the turbulent stresses and heat fluxes to the gradients of mean velocity and enthalpy (or the respective scalar conserved property), in the manner analogous to laminar flow:

> ie.,  $\tau_{eff} = \mu_{eff} \frac{du}{dy}$ , 3.2.8 and  $J_h = \frac{\mu_{eff}}{\sigma_{eff}} \frac{dh}{dy}$ . 3.2.9

Here  $\tau_{eff}$  and  $J_h$  represent the total (ie., the sum of laminar and turbulent components) shear stress and diffusive enthalpy flux, while  $\mu_{eff}$  represents the effective viscosity and  $\sigma'_{eff}$ , the ratio of the effective viscosity to diffussivity. Unlike laminar flow,  $\mu_{eff}$  and  $\sigma'_{eff}$  are not unique thermodynamic properties of the fluid, but are function of the flow field as well. Before proceeding to the various proposals for the effective transport coefficients, it should be mentioned that the concept of an eddy (or effective) exchange coefficient is not the only possible way of accounting for the turbulent quantities. For example, it is possible to obtain from the Navier-Stokes equations, a differential equation for the turbulent shear stress which in principle, can be solved along with the other equations (55). This possibility has not been explored to any depth at present.

Several hypotheses have been proposed in the past for eddy viscosity and a fairly comprehensive list of these can be found in (68). All of them are empirical, but some are based on a heuristic model for the motion of eddies while others are based purely on dimensional analysis. In spite of the large number of proposals for eddy viscosity relationships, it is fair to say that no single entirely satisfactory and general hypothesis is yet available: each proposal has its advantages and limitations. It is not the intention

here to discuss the merits and demerits of all available hypotheses: instead three hypotheses which have been widely used and one which is currently being investigated will be mentioned. These are the hypotheses due to Prandtl (1925), Clauser (1954) and Kolmogorov - Prandtl (1942-45). The first two of these have been adequately described in reference (58), whereas the third and fourth have been described in chapter 2 of reference (68). These four hypotheses are relevant to the present problem, but a selection from these is deferred to chapter 5.

# 3.3 Choice of solution procedure.

The mathematical problem is thus the solution of a set of four equations, 3.2.6, 3.2.3, 3.2.4 and 3.4.5, three of which are partial differential equations, in conjunction with some specific relations for the eddy viscosity and diffusivity, and appropriate boundary and initial conditions.

As mentioned earlier there are no general analytic solutions for the set of equations mentioned above. There are two possible lines of attack: the first is to reduce the partial differential equations to ordinary differential equations, which are soluble by standard techniques and the second is the finite-difference type numerical methods.

There are a number of methods under the first category. The first is to multiply the partial differential equations with weighting functions (which may equal unity or be functions of velocity etc.) and integrate across the layer. The result is a set of ordinary differential equations, with the integral properties (such as the momentum thickness, shape factor etc.) as the dependent variables and the streamwise distances as the independent variable. These can be solved, for example by forward integration, in conjunction with certain auxiliary relations. These relations can be in the form of explicit functional relations between the dependent variables and other variables occuring in the equations (this includes a drag law) or they can be related to the shape of the velocity and temperature profiles. The latter possibility is the basis of the 'parametric integral' technique, for example ref (48). As pointed out by the authors of this reference, this method is not an approximate one and its accuracy can be increased with the number of free parameters (and consequently the number of integral equations). The partial differential equation reduce to ordinary ones for a certain class of flows which are called equilibrium flows. In such flows the velocity profiles become 'similar' to one another, when non-dimensionalised with a suitable para -meter, for example the boundary-layer thickness. Flows of the equilibrium type require certain non-dimensional groups, representing longitudinal gradients of free stream velocity, stream function and mass transfer through the wall, to be constant. The derivation of the relevant equations may be found in section IV, p. 18 of reference (67). When the above conditions are satisfied, the partial differential equations reduce to ordinary ones, which can be solved numerically by forward integration.

Under the second category, there are two main varieties: one is denoted the 'cross-stream integration' and the other is the 'marching integration' procedure. The cross stream integration procedure involves the reduction of the partial differential equations to ordinary differential equations, valid for successive sections across the layer. This set of ordinary differential equations may then be solved numerically, for example by forward integration. Iteration is however necessary, since boundary conditions on either edge of the domain have to be satisfied. This latter condition implies a considerable increase of computing time and storage over methods which do not need iteration.

The marching integration procedure on the other hand, posses the desirable characteristic that no iteration is necessary. In this procedure, the calculation proceeds downstream by means of a forward step: commencing with the appropriate boundary conditions, the unknowns at a short distance downstream are calculated. The computed values at the downstream station then become the 'upstream' conditions for the next step and thus the calculation progressively solves the flow field. The partial differential equations are reduced to a set of linear algebraic equations which can be solved by matrix inversion or, the cheaper, recurrence formulae. Thus the marching integration procedure appears attractive since iteration can be avoided and only linear, algebraic equations have to be solved. The elements of this method have been known for a long time, but it is only recently that a form particularly suited for boundary layer-

type flows (both laminar and turbulent) has been devised (Patankar ans Spalding (49)). This general solution procedure provides the framework for the solution of the parabolic equations valid for boundary layers for a wide range of boundary conditions such as heat or mass transfer through the wall, or stream-wise pressure gradients. It is equally applicable to both free flows and flows in the vicinity of walls. It is of the implicit, marching integration type and consequently is stable for all step lengths. It is economical in computer time and is flexible enough to accomodate almost any hypothesis for turbulent exchange.

The choice of the solution procedure to be used for the present problem can now be made on the basis of the brief outline of the various methods given above. The methods under the first category, which reduce the parabolic equations to ordinary ones may be discarded for the following reasons. The integral techniques using explicit auxiliary relations have the disadvantage of requiring a vast amount of experimental data: as mentioned in chapter 2.2.2. The parameteric integral method has two major drawbacks : its complexity increases with the number of free parameters used, and secondly, as reported by the authors of reference (48), matrix singularity, encountered ocassionally during the solution procedure, can be troublesome. The procedure valid for equilibrium flows may be ruled out, since in general, the flow near a film cooling slot is not of this type.

The choice is then between the two finite difference schemes: the cross-stream integration and the forward integration procedures. As mentioned earlier, the former needs a trial and error forward integration procedure and considerable computer storage in comparison with the marching integration procedure. Thus the logical choice is a marching integration technique, preferably of the 'implicit' type, since this is relatively free from restrictions on the step length. The procedure of reference (49) provides just such a solution procedure, and will be used as the basis for the present work. A brief outline of this method is given in the next section.

3.4 Brief description of the marching integration procedure of Patankar and Spalding (49).

The conservation equations (3.2.3, 3.2.4 and 3.2.6) are cast into the von Mises form by the introduction of the stream function. These read, in axisymmetric coordinates as:

$$\frac{\partial u}{\partial x}\Big|_{\psi} = \frac{\partial(\tau r)}{\partial \psi}\Big|_{x} - \frac{1}{\rho u}\frac{dp}{dx}$$

$$3.4.1$$

$$\frac{\partial \varphi}{\partial x}\Big|_{\psi} = \frac{\partial(J_{j}r)}{\partial \psi}\Big|_{x} + \frac{R_{j}}{\rho u}$$

$$3.4.2$$

 $d\psi = \rho u r dy$  3.4.3

where  $\varphi$  is some scalar conserved property (such as mass fraction of the coolant or the total enthalpy). Equation 3.4.1 signifies the conservation of the x-direction momentum, and equation 3.4.2, the conservation of  $\varphi$ .

The independent variable  $\psi$  is transformed to a non-domensional stream function  $\omega$  defined as

$$\omega = \frac{\psi - \psi_{I}}{\psi_{E} - \psi_{I}} \qquad 3.4.4$$

where I and E refer to the internal and external edges of the boundary layer. Thus the value of  $\omega$  is 0 at the inner edge and 1 at the outer edge of the layer, a fact which ensures that computation is always limited to the boundary layer region. Thus equations 3.4.1, 3.4.3 and 3.4.4 yield,

$$\frac{\partial \varphi}{\partial x} |_{w} + \frac{\partial \varphi}{\partial w} |_{x} = \frac{\partial \varphi}{\partial w} |_{x} + \frac{\partial \varphi}{\partial w} |_{x} + d$$

3.4.5

where

$$a = i_{I}m_{I} \quad / (\psi_{E} - \psi_{I})$$

$$b = (r_{E}\tilde{m}_{E}^{"} - r_{I}\tilde{m}_{I}^{"}) / (\psi_{E} - \psi_{I})$$

$$c = r^{2}\rho^{u}\mu_{eff} / \{(\psi_{E} - \psi_{I})^{2}, \sigma_{eff}\}$$

The next step is to obtain a finite difference form of the above equations. The calculations are based on an orthogonal x- w grid as indicated in Fig. 3.4.1.

The values of the dependent variables are known at discrete points (eg. at U, U<sup>+</sup>, U<sup>-</sup>) at the upstream station, while those at the downstream station are unknown. The finite difference equations are obtained by using an integ. -rated average over a control colume around a grid line, indicated by the shaded area in Fig.3.4.1, of the various terms in the partial differential equations 3.4.5. The details of this averaging procedure are as follows. The finite difference expressions for the convection terms (ie. the left hand side of equation 3.4.5) are obtained by integrating the terms in the  $\omega$ - and x- directions over the control volume, in conjunction with an assumed (linear) profile of the dependent variable between the grid lines in the  $\omega$ direction. This process is indicated by the following equations:

$$\frac{\partial \varphi}{\partial \mathbf{x}} \approx \left\{ \int_{\mathbf{x}_{U}}^{\mathbf{x}_{D}} \int_{\mathbf{w}_{DD-}}^{\mathbf{w}_{DD+}} \frac{\partial \varphi}{\partial \mathbf{x}} d\mathbf{w} d\mathbf{x} \right\} / \left\{ (\mathbf{x}_{D} - \mathbf{x}_{U}) (\mathbf{w}_{DD+} - \mathbf{w}_{DD-}) \right\} \qquad 3.4.6$$

$$(a + bw)\left(\frac{\partial\varphi}{\partial w}\right) = \left\{ \int_{w_{DD-}}^{w_{DD+}} (a + bw) \frac{\partial\varphi}{\partial x} \Big|_{x=x_{D}}^{dw} \right\} / (w_{DD+} - w_{DD-}) \qquad 3.4.7$$

$$\frac{\partial \varphi}{\partial x} \stackrel{(a + b_w)}{\longrightarrow} \frac{\partial \varphi}{\partial w} \approx g_{1 D_{+}} \stackrel{+}{\longrightarrow} g_{2 D} \stackrel{+}{\longrightarrow} g_{3 D^{+}} g_{4} \qquad 3.4.8$$

where the g's are functions of  $_{\rm W}$ , x, a and b, which are known quantities. Further, only the downstream values of  $\varphi$  appear in the equations, which makes the equations of the implicit type.

The flux terms are similarly treated, noting that a step -variation of  $\varphi$  in the downstream direction is assumed:  $\varphi$  is assumed to have a uniform value, equal to  $\varphi_{\rm D}$ , except at x=  $x_{\rm U}$ , where  $\varphi$  has the upstream value. One obtains for the flux terms:

$$\frac{\partial}{\partial \omega} \left( c \frac{\partial \varphi}{\partial \omega} \right) \approx \frac{2}{\omega_{D+} - \omega_{D}} \left\{ c_{UU+} \left( \frac{\varphi_{D+} - \varphi_{D-}}{\omega_{D+} - \omega_{D-}} \right) - c_{UU} \frac{(\varphi_{D-} - \varphi_{D-})}{(\omega_{D} - \omega_{D-})} \right\} \quad 3.4.9$$

$$\approx g_5(\varphi_{D+}-\varphi_D) - g_6(\varphi_D - \varphi_{D-})$$
, 3.4.9  
where the g's are functions of  $\omega$  and the upstream values  
of c, which contains the all-important eddy exchange  
coefficients.

Finally the finite difference version of the source term d, is obtained by a linearising procedure:

$$d_{\rm D} \approx d_{\rm U} + \frac{\partial d}{\partial \varphi} \left| \begin{array}{c} (\varphi_{\rm D} - \varphi_{\rm U}) \\ \end{array} \right|$$
 3.4.10

For the velocity equation, for which  $d = -(1/\rho u)dp/dx$ , a linear variation of d with  $^{\odot}$  is assumed and one obtains:

$$d \approx \int_{\substack{\omega_{DD-} \\ \omega_{DD-}}}^{\substack{\omega_{DD+} \\ x=x_{D}}} d\omega / (\omega_{DD+} - \omega_{DD-}) ,$$

or  $d_{x=x_{D} \approx s_{1}u_{D+} + s_{2}u_{D} + s_{3}u_{D-} + s_{4}}$ • 3.4.11

where the s's are known functions of the pressure gradient and other variables at the upstream station.

The final difference equation is of the form

$$\varphi_{\rm D} = A \varphi_{\rm D+} + B \varphi_{\rm D-} + C$$
, 3.4.12

where

$$A = \frac{g_5 - g_1}{g_2 + g_5 + g_6 - (\partial d/\partial \varphi)_U}$$

$$B = \frac{g_6 - g_3}{g_2 + g_5 + g_6 - (\partial d/\partial \varphi)_U}$$

$$C = \frac{d_U - (\partial d/\partial \varphi)_U - g_4}{g_2 + g_5 + g_6 - (\partial d/\partial \varphi)_U}$$

The coefficients  $\mathbf{A}$ ,  $\mathbf{B}_{a}$  and  $\mathbf{C}$  are all calculable from known quantities at the upstream station.

The main advantage of the above micro-integral formulation is that the conservation across the whole boundary layer is automatically satisfied. An equation of the form of eq. 3.4.12 is obtained for each of the grid lines and the result is a set of linear, algebraic equations which are soluble with standard techniques such as matrix inversion. However, since the matrix turns out to be one with three non-vanishing diagonals, a simple recurrence formula of

the successive-substitution type is used. For this procedure, the computing effort is proportional to the number of equations (or grid intervals), whereas for matrix inversion techniques, it is proportional to the square or cube of the number of equations to be solved.

Special procedures are adopted near the wall to obviate the need of having a large number of grid lines to cover the region of steep gradients of velocity and temperature. The flow is assumed to be one-dimensional in the vicinity of the wall, since the x-convection is locally negligible in this region, since the velocities are low. Couette flow solutions using the van Driest's hypothesis (74) for the mixing length distribution are obtained and expressed as explicit algebraic functions. Thus the non-dimensional wall shear stress and heat flux are expressed as functions of the local Reynolds number R ( $\equiv$  uy/y), a mass transfer and a pressure gradient parameter. The Couette flow solution near the wall is matched with the adjacent grid value such that the slope and value of  $\varphi$  at the matching point are the same for the Couette flow and the adjacent control volume. Two types of boundary conditions are permitted at the wall. The first is the case where the value of the variable along the wall is specified (eg. u= 0, or  $T_W = \text{constant}$ ), and the second is when the total flux through the wall is specified (eg.  $q^{"}_{W}$  = constant). The case of an adiabatic wall is a boundary condition of the second type when the heat flux through the wall is zero.

One novel feature of the procedure of reference (49) is that the width of the computational grid grows or diminishes in correspondence with the boundary-layer thickness. This is accomplished by incorporating an entrainment law which is based on the equations of motion and the viscosity hypothesis. This ensures that the w= 1 or w = 0 line (depending on which is adjacent to a free stream) is located along the edge of the boundary layer. For a fluid assumed to obey the mixing length hypothesis, the outer edge is defined as the point where the eddy viscosity goes to zero. For such flows flows it can be shown that the entrainment is proportional to the second derivative of the velocity at the outer edge (which is generally non-zero). The assumption of a parabolic velocity profile permits the evaluation of this derivative.

It should be pointed out that any entrainment formula would serve, so long as it ensured that sufficient number of grid lines were present within the region of significant velocity and temperature gradients.

#### CHAPTER 4

# . The experimental investigation.

The purpose of the present experimental program was to investigate the influence of the velocity ratio  $(\bar{u}_C / u_G)$ , distance from the slot exit  $(x/y_C)$ , density ratio  $(\rho_C / \rho_G)$ , and the longitudinal pressure gradient(dp/dx) on the effectiveness, heat transfer, velocity and mass fraction profiles and wall-shear stress downstream of two-dimensional slots with tangential injection.

The measurements were carried out in two low-speed wind tunnels; the test section of one was rectangular in cross section (apparatus A) and that of the other was circular (apparatus B). Apparatus A had a plane, two-dimensional slot and an impervious wall, with the provision or the injection of air or foreign gases through the slot, in order to attain significant density gradients, and an adjustable false roof to apply longitudinal pressure gradients. Apparatus B had an axisymmetric slot with a heated wall, to permit the study of heat transfer.

The next two section (4.1 and 4.2) describe the investigation with apparatus A, and the subsequent two (4.3 and 4.4) describe the investigation with apparatus B. The description of apparatus, method of operation, presentation and discussion of results are dealt with in turn for each apparatus. For apparatus A, the experiments with nominally zero pressure gradient are discussed first, followed by those in non-zero pressure gradients.

# 4.1.1 Description of apparatus A.

The low speed, once through wind tunnel with provision for tangential injection through a plane, twodimensional slot is shown schematically in Fig.4.1.1. The wind tunnel comprised a primary and secondary circuit: the primary circuit included an entry section, the test section, the plenum chamber, the centrifugal fan and an exit diffusor; the secondary circuit included a source of injected fluid an orifice plate for metering the flow, a plenum chamber and a slot, venting into the test section. These items, together with the auxiliary equipment used for the experiments, are described below. The wind tunnel designed by Nicoll (42) was intended for use in the present investigation. Several modifications to the tunnel were found necessary and it turned out that only the test section, the injection slot and the secondary blower from the original tunnel were retained for the present investigation.

The main difficulty encountered with the tunnel of ref. (42) was the presence of large, low frequency fluctuations in the total and static pressures (around 20 percent of the local dynamic head) The cause of the unsteadiness was traced to the entrance section which in the original tunnel comprised a bell-mouth with a radius of approximately 40 mm. An improved entry section (fig, 4.1.2 (a)) described below was installed and removed the unsteadiness in the flow, almost entirely. Other alterations to the tunnel included a new secondary circuit with an orifice meter and arrangement for the injection of Arcton-12 and hydrogen through the slot. The primary circuit.

The entry section.(Fig. 4.1.2 (a)) The entry section was formed by a plenum chamber leading to a contraction section with an area ratio of 19.2. The plenum chamber was fitted with a row of 13 mm x 13 mm x 51 mm honeycomb flow straightener, followed by two 28 x 20 s.w.g. mesh, wire screens, 355 mm apart. The exit of the contraction section was lined with a 25 mm- wide strip of coarse emery cloth to act as a boundary-layer trip.

The test section. (Fig. 4.1.2 (b)) The test section was rectangular in cross-section (152 mm x 127 mm) and 1.8 m long, with a 6.3 mm- thick Dural base plate, and perspex windows in the side walls. 0.51 mm-diameter static pressure holes were located on the centre line of the base plate as well as on one of the side walls. The top of the test section had a slot for the insertion of probes mounted on a traversing gear.

Provision was mad<sub>e</sub> for mounting of a 152 mm-wide Dural plate inside the test section to form a false roof, which permitted favourable or adverse pressure gradients to be applied. Five holes were located along the centre line of this plate for the insertion of probes for measurement of velocity and concentration profiles. Fairing between the

edges of the plate and the tunnel roof was provided by flexible sheet-metal sections.

The plenum chamber and fan. The plenum chmaber downstream of the test section was 620 mm x 620 mm and contained two wire screens 355 mm apart and a honeycomb section flush with the inlet flange of the fan. The function of the plenum chamber was to remove any upstream influence of the fan.

A radial flow fan, throttled on its pressure side and driven by a 6 kW, 3 phase induction motor provided the primary stream, continuously variable from 0 to 45 m/s. The free-stream turbulence intensity was approximately 0.35 percent at 20 m/s tunnel velocity.

The secondary circuit.

<u>Injected gases.</u> Air, hydrogen, argon and Arcton-12 (di-chlorodi-fluoro methane) were injectdd in turn through the slot, resulting in a slot to mainstream density ratio of 1.0, 0.069, 1.38 and 4.17 respectively. The secondary air stream was provided by a small radial blower, fitted with a sliding throttle on its suction flange. Hydrogen and argon were available in high pressure (14 x 10<sup>6</sup> N/m<sup>2</sup>) bottles, while Arcton-12 was available in bottles at relatively low pressures ( $0.49 \times 10^{-6}$ N/m<sup>2</sup>approx).Consequently,regulating valves were used with the first two, while care was taken to minimise the pressure losses in the secondary line for Arcton-12 injection, inorder to achieve sufficiently high velocity at the slot exit. Three or four bottles were used in parallel, each being connected to a manifold upstream of a pressure regulating valve.

Metering section. The manifold (or the exit flange of the blower, in case of air injection) was connected to a length of 76 mm inside diameter pipe, fitted with a "D and D/2" orifice meter designed in accordance with B.S. 1042 (1966). This pipe was coupled to a plenum chamber, 71 mm x 150 mm x 730 mm, leading to the slot assembly.

<u>The slot.</u> Details of the slot assembly are shown in Fig. 4.1.3. It comprised a contraction section with an area ratio of 35, from the plenum chamber to the slot exit. The lip of the slot was tapered, with a trailing edge thickness of approximately 0.25 mm. The slot height was set to 2.5 mm with a spanwise variation of  $\frac{1}{2}$  50  $\mu$ . This setting of the slot height was used for all the experiments.

#### 4.1.2 Auxiliary apparatus.

<u>Gas sampling devices.</u> Gas samples were drawn through static-pressure holes in the base plate of the tunnel by means of a vacuum pump and stored in sample bottles shown in Fig.4.1.4. Each sample bottle had a gas-tight cock at inlet and exit, and a serum cap for the extraction of samples with a hypodermic syringe.

Gas samples from locations within the flow field were sucked through a hand-pump arrangement and collected over mercury in a bank of cylindrical sample bottles, shown in Fig. A.1.1. A detailed description of the sampling system is given in appendix A.1.1.

Gas-chromatographic equipment.

A Shandon KG-2 gas chrimatograph with a 2 m- long molecular sieve column and a 'GOWMAC' double filament thermal conductivity cell was used for the analysis of the gas samples. The thermal conductivity cell and the column were mounted within a temperature controlled oven and ..... nitrogen was used as the carrier gas. The gas samples were injected into the chromatograph by means of a 1 ml Hamilton gas syringe and the output of the thermal conductivity cell was recorded on a Honeywell chart recorder, with a 1 mv full scale deflection. The peak-heights recorded on the chart recorder were used as a measure of the concentration of the respective constituent; the chromatograph was periodically calibrated against samples of known concentration of the relevant gas mixtures. Fig. 4.1.5 shows typical calibrations of the chromatograph for hydrogen-air, helium-air, argon-air and Arcton-12- air mixtures; Fig. 4.1.6 shows typical chromatograms corresponding to these mixtures. Helium-air mixtures for the calibration were prepared in a gas jar of approximately 1000 ml, whereas the other mixtures were prepared in the botlles shown in Fig.A. 1-1. Pressure measuring devices.

A Hilger-Watt electonic micro-manometer with a .variable-capacitance pressure transducer (range 0 to ± 50mm of water), connected to a Honeywell chart recorder was used to record total pressure from an impact tube. A bank of inclined-tube manometers containing paraffin (specific gravity 0.787) was used to measure the streamwise static pressure distribution and a Betz manometer was used for the measurement of the pressure difference across the orifice meter in the secondary circuit. Differential pressures between a

number of pairs of static pressure holes were measured by successively coupling them to a micro-manometer. This operation was facilitated by a pressure switch, designed by the author which employed a mercury seal. Details of this pressure switch are given in appendix A.1.2. <u>Traverse gear and impact probe.</u>

The traverse gear for impact probes etc. is shown in Fig. 4.1.7. It comprised a micrometer mounted on a block which could be locked at any position along two vertical parallel rods. The micrometer which was graduated in 0.001 inch divisions, propelled a sliding member which carried the impact probe at the end of a 6.35 mm-diameter tube.

The impact tubes were constructed from flattened stainless steel hypodermic tubing, 2 mm outside diameter. The finished dimensions were approximately 0.35 mm x 1.5 mm on the outside and 0.1 mm x 1.0 mm inside. The impact probes were also used for the extraction of gas samples from within the flow field. In some experiments a rake of twelve impact probes was used, but its use for sequential measurement of total pressure and gas sampling was found to be cumbersome, and the use of a single probe was preferred.

# 4.1.3 Operation of apparatus A.

Apparatus A was used for the measurement of impervious-wall effectiveness, velocity and mass-fraction profiles and wall-shear stress. The procedure for performing these measurements will now be briefly described.

The tunnel was set to operate at the desired velocity ratio by operating the throttles in the primary and secondary circuits: the free-stream velocity was inferred from the static and total free-stream pressures in the plane of the slot exit, while the slot velocity was obtained from the orifice-meter in the secondary line. For the case of air injection, a small amount of helium (of the order of 1 percent by volume) was introduced into the secondary stream through a rake just downstream of the secondary blower, to function as a tracer during effectiveness and concentration profile measurements. Gas samples were sucked through the staticpressure holes in the tunnel floor and plenum chamber upstream of the slot, and stored in the bank of sample bottles, Fig.4.1.4. The sampling rate was kept sufficiently low to ensure that the measured concentration was not influenced by the sampling rate. The gas samples were later analysed in the gas chromatograph described in section 4.1.2 above.

Velocity and mass fraction profiles were obtained by traversing an impact probe across the boundary layer: , total pressures were recorded through a pressure transducer or liquid-manometer, while gas samples were drawn through impact probes and collected in the sample bottles described in appendix A.1.1 and later analysed with the gas chromatograph. The static pressure at the measuring stations was obtained from the longitudinal pressure distribution existing in the test section in the absence of the traversing gear. Velocity profiles were computed from a knowledge of the total and static pressure and the local density.

Values of wall-shear stress were inferred from two independent procedures: first from the 'Clauser plot' and second from the razor-blade technique: wall shear stress measurements were carried out only for the case of air injection. The Clauser plot method is well known and will not be described here: this method implies a logarithmic velocity distribution in the wall layer, characterised by two 'universal' constants K and E.

The use of razor-blades for the measurement of the wall-shear stress has been described in reference (46). It was demonstrated that a razor-blade segment, fixed over a static-pressure hole with adhesive tape or cement, was a viable instrument for the measurement of wall-shear stress. Razor-blade segments located in this manner were calibrated in a fully-developed channel flow, set up for the purpose, and then relocated over static pressure holes in the tunnel floor, downstream of the injection slot. The reproducibility of the shear stress measurements was  $\pm$  4 percent in case of the 229  $\mu$ - thich blade segments secured with adhesive tape. The reproducibility of the 102  $\mu$ - thick blade segments secured with cement was subequently found to be worse than that claimed in reference (46) and an 'in situ' calibration in a fully developed channel flow was preferred. The use of the razor-blade technique is preferred in wall-jet and wall-wake flows, since they

are generally submerged in the sub-layer and are relatively uninfluenced by the outer region of the flow, or by pressure gradients.

# 4.2 Presentation and discussion of experimental resultsapparatus A.

The measurements of impervious-wall effectiveness, hydrodynamic and species properties made with apparatus A are described in this section. Experiments in nominally zero pressure gradient are presented first, followed by those in significant longitudinal pressure gradients. Some of the present data for the nominally zero pressure gradient have previously been reported in references (44), (46) and (29), while some of the data for non-zero pressure gradients have been reported in reference (47). The present data are given in tabular form in appendix 3.

## 4.2.1 Experiments in nominally zero pressure gradient.

The test section, in the absence of the false roof, was of uniform cross section and provided a small favourable pressure gradient in the flow direction (0.5 mm of water in a distance of 300 mm at a free-stream velocity of 20 m/s). This pressure gradient is negligibly small for present purposes.

# Impervious-wall effectiveness.

Measurements of the impervious-wall effectiveness are given in tabular form in appendix A.3.1. Fig. 6.1.2 (a)\* to (h) show some of the measured values of imperviouswall effectiveness for air injection plotted against the non-dimensional distance from the slot,  $x/y_C$  for eight velocity ratios. The data are represented by the points while the lines are predictions which will be discussed in chapter 6: this convention is adopted throughout this study, wherever experiment and predictions are shown in the same figure. Fig. 6.1.3 (a) to (h) show similar plots

\* Footnote: This reference to a figure in chapter 6 is due to the intention to present predictionsof available data in a sequence in that chapter. This remark also applies to references to figures in chapter 5, later in this chapter. for the case of argon and Arcton-12 injection through the slot; these resulted in slot to mainstream density ratios of 1.38 and 4.17 respectively. Fig. 6.1.4 (a) to (d) show similar data for hydrogen injection, ie. a density ratio of 0.069.

The influence of velocity ratio on the effectiveness is clearly indicated in Fig. 4.2.1 (a) to (d). In each of these figures, the effectiveness is plotted against the velocity ratio for four values of  $x/y_{C}$  and for a constant density ratio. The points represent experimental data and the lines are smooth curves through them. It can be seen that for all the cases, the effectiveness increases with the velocity ratio up to approximately unity. For the case of air injection, a small decrease in effectiveness for velocity ratios greater than unity is noticeable whereas for argon injection effectiveness is practically constant in this range. For hydrogen and Arcton-12 injection, the effectiveness increases for velocity ratios above unity, a common though for the latter case the increase is quite small. The figure implies that for density ratios less than unity it is highly advantageous to employ a velocity ratio greater than unity; for density ratios around unity it can be disadvantageous; and for large density ratios it is not significantly advantageous.

Fig. 4.2.2 clearly shows the influence of density ratio on effectiveness: in this figure, effectiveness is plotted against the density ratio for constant values of  $x/y_{C}$  and  $\bar{u}_{C}/u_{G}$ . As expected, for a particular velocity ratio and distance from the slot, the effectiveness increases with the density of the injected gas.

It is interesting to compare the present measurements with those obtained by other investigators. Exact agreement is hardly to be expected since, apart from experimental uncertainties, differences in geometry and initial conditions at the slot exit may cause differences in the measured values of the impervious-wall effectiveness. Fig. 4.2.3 (a) compares the present measurements for air injection with those of reference (30) for a lip-thickness ratio  $(t/y_C)$  of 0.126. The present slot configuration had a tapered lip, whose effective lip thickness was unknown. The good agreement between the two sets of data (maximum discrepancy around

7 percent of effectiveness at a distance of 52 slot-heights) suggests that the present tapered lip effectively functioned as a thin lip. However, the presence of other differences between the two apparatus, such as the thickness of the boundary layer on the outer surface of the lip; the shape of the velocity profile within the slot, render a further resolution of the differences between the two sets of data, impractical. Fig. 4.2.3 (b) shows a similar comparison with the data of reference (5) for the injection of Arcton-12 ( $\rho_{\rm C}/\rho_{\rm G}$ = 4.17). The agreement is again good (maximum differences are around 6 percent of effectiveness at 112 slot-heights). The geometry of reference (5) was similar to the present one and so good agreement between the two sets of data was not unexpected. Hydrodynamic and species properties.

Profiles of mean velocity and concentration were measured at several downstream locations for representative values of density and velocity ratios. These are tabulated in appendices A.3.2 and A.3.3 respectively. Values of the skin friction coefficient obtained from the razor-blade technique are also tabulated ( $\lambda$ .3.4).

Profiles of a representative selection of velocity ratios are plotted in Figs. 5.2.3 (a) to (d), (j) and (k). The velocity ratios selected for constant-density flows, include two values less than, one slightly above and one significantly above unity. The experimental data are shown as points and the lines are predictions, and will be discussed later (chapter 5). In these figures, the velocities have been normalised with the free-stream values and the concentration values with the corresponding value at the wall.

Velocity profiles corresponding to velocity ratios less than unity exhibit a wake-like profile at  $x/y_{C}$  of 20 (Fig.5.2.3 (b)): the velocity defect is larger than for a conventional flat-plate boundary layer and the wake due to the lip- boundary layers is noticeable. Further downstream  $(x/y_{C} \ge 50)$ , the profiles closely resemble conventional flat-plate boundary layers in zero-pressure gradient. The integral property  $R_{2}$  and the shape factor H, corresponding to a velocity ratio of 0.55, are shown in Fig. 5.2.5 (d). As expected,  $R_{2}$  increases in the downstream direction and

the shape factor H tends towards the value for a flat-plate boundary layer in zero pressure gradient (ie. approximately equal to 1.28). This figure also shows the skin friction coefficient, which is approximately constant for  $x/y_c$  greater than 50.

Velocity profiles corresponding to velocity ratios greater than unity (Fig.5.2.3 (c) and (d)) exhibit a velocity maximum akin to a wall-jet. The wake due to the slot-lip is noticeable at  $x/y_{C}$  of approximately 20. For the velocity ratio of 1.85 (Fig.5.2.3 (d)), the velocity maximum is noticeable at  $x/y_{C}$  of 100, but for the velocity ratio of 1.23 (Fig.5.2.3 (c)), the maximum has almost vanished at  $x/y_{C}$  of 75. The decay of the velocity maximum, as well as the growth rate of the layer, as characterised by the increase in  $y_{HALF}$  for the former case is shown in Fig.5.2.5 (a). This figure also indicates the downstream distribution of the skin friction coefficient: as expected, it decreases with x and the values are much greater than those for velocity ratios less than unity.

4.2.2 Experiments in presence of significant pressure

#### gradients.

The influence of favourable and adverse pressure gradients on the flow development and the impervious-wall effectiveness was investigated for three cases of favourable and one adverse pressure gradient. The pressure gradient was applied by means of the straight adjustable roof, resulting in a wedge-shaped flow passage. It is easy to dug show that for such a flow passage, the parameter  $K_p = \frac{\gamma}{u_G^2 d_{er}}$ 

is constant for a particular wedge angle and velocity at the entry to the wedge, provided the boundary layers are thin (or similar in shape). The nominal values of  $K_p$  for the four non-zero pressure gradients, and the corresponding inclinations of the false roof are indicated an Fig.4.2.4.

Pressure gradient designated PG1 may be regarded as a mild acceleration, PG2 a moderate and PG3, a strong favourable pressure gradient, since it is known that for values of  $K_p$  greater than approximately 2 x 10<sup>-6</sup>, a conventional turbulent boundary layer gradually reverts to a laminar state (33), (1). The values of the free stream velocities at slot exit were different for the favourable and adverse pressure gradient situations: they were 10 m/s and 21 m/s respectively. This change in the initial velocity was necessary to permit large values of K<sub>p</sub> to be attained for the favourable pressure gradients and to prevent side-wall separation for the adverse pressure gradient. However, the different initial free-stream velocities resulted in different values of the slot Reynolds number  $R_C$ , for the same velocity ratio. Consequently, zero-pressure gradient data needed for comparison was obtained for each of the values of the initial free stream velocity.

The longitudinal static pressure distributions for the various settings of the roof and for a velocity ratio less than unity is shown in Fig. 4.2.5. The pressure distributions did not vary appreciably with the velocity ratio, except in the immediate vicinity of the slot. Fig. 4.2.5 also shows the symbols used to represent the data for the various pressure gradients in subsequent figures. Impervious-wall effectiveness.

The influence of pressure gradients on the imperviouswall effectiveness for constant density flows is described first, followed by the case of non-uniform density.

Fig. 4.2.6 shows the influence of the above - mentioned pressure gradients on 'the impervious-wall effectiveness; Fig.4.2.6 (a) refers to the favourable pressure gradients and Fig. 4.2.6 (b) to the adverse pressere gradient. It is evident that the influence of pressure gradients, both favourable and adverse is to reduce the effectiveness below the zero-pressure gradient values. Further, this influence decreases with increasing the velocity ratio. For the favourable pressure gradients, the influence of the pressure gradients increases with the severity of the pressure gradient. In general, the influence of both the favourable and adverse pressure gradient on effectiveness . is small (less than 5 per cent of unity), except for the case of the strongest favourable pressure gradient, PG3, for which the maximum reduction in effectiveness was of the order of 20 percent of unity. Am examination of the hydrodynamics of the flow in the strongest favourable pressure gradient (presented later in this section), reveals that the flow was no longer fully turbulent in this case.

Fig. 4.2.7 shows the influence of the favourable pressure gradient PG2 and adverse pressure gradient PG4 on the impervious-wall effectiveness for the case of Arcton-12 and hydrogen injection. The influence of the favourable pressure gradient is similar to the uniform density case: a small reduction in effectiveness with the influence decreasing with increasing velocity ratio. The adverse pressure gradient appears to have no significant influence for the cases of Arcton-12 and hydrogen injection shown.

# Influence of the slot Reynolds number, R.

As mentioned above, the use of two values of the initial free strean velocities resulted in a change of the slot Reynolds number, for a given velocity ratio. The observed influence of the slot Reynolds number for the case of uniform density and pressure flow is shown in Fig.4.2.8 for two velocity ratios. It is evident that for a prescribed velocity ratio, and distance from the slot, the effectiveness increases with an increase in  $R_{c}$ : far downstream the increase is approximately proportional to  $R_c^{0.2}$ . This is in accord with the boundary layer model of reference (72). At distances closer to the slot, the influence of R<sub>c</sub> appears to be greater than that suggested by this relation. The reasons for this may be associated with changes in the initial conditions at slot exit, such as the boundary layer thickness,  $Y_{G,C}$  and the shape of the velocity profile in the slot exit, brought about by a change in the Reynolds number. It should be noted that a change in  $R_{C}^{-}$  brought about by a change in  $\overline{u}_{C}^{}$  is not necessarily equivalent to that due to a change in  $Y_C$ ,  $P_C$  or  $\mu_C$ .

Hydrodynamics and species properties.

Measurements of the mean velocity and concentration profiles and wall-shear stress were obtained for the case of uniform density injection only. These are tabulated in appendices A.3.2, A.3.3 and A.3.4 respectively. The velocity profiles corresponding to velocity ratio less than unity and for the favourable (PG2) and the adverse (PG4) pressure gradient are shown in Fig. 5.2.9 (a) and (b), while the corresponding profiles for a velocity ratio greater than unity are shown in Fig.5.2.9 (c) and (d).

The following observations are relevant in connection with these profiles. First for velocity ratios less than unity, the thickness of the velocity profiles decreases' in the downstream direction in case of the favourable pressure gradient and increases for the adverse pressure gradient. Again, for these velocity ratios, the velocity defect is much smaller for the case of the favourable pressure gradient than for the adverse pressure gradient case. The velocity profiles corresponding to velocity ratios greater than unity are not qualitatively different from the corresponding zero pressure gradient profiles. The decay of the velocity maxima, growth of  $y_{\rm HALF}$  and the wall-shear stress are indicated in Fig. 5.2.11.

The shape and thickness of the concentration profiles (Fig.5.2.9) on the other hand are relatively uninfluenced by the pressure gradients, for all velocity ratios. Further, the thickness of the concentrations profiles tends to be larger than that of the velocity profiles in the case of the favourable pressure gradients. This is to be expected, since the species conservation equation (eq. 3.4.2) does not contain a pressure gradient term.

It is of interest to note the influence of pressure gradients on the momentum- thickness Reynolds number R2. These are plotted in Figs. 4.2.9 and 5.2.10. It can be seen (Fig.4.2.9) that for velocity ratios less than unity, the influence of the favourable pressure gradients is to decrease R2 below the corresponding zero-pressure gradient value. It can be shown that for constant-K flows, there exists an equilibrium value of  $R_2$  and shape factor H for each value of  $K_p$  (33). Figs. 11 and 12 of this reference permit the equilibrium values computed for laminar and turbulent flow (on the basis of a mixing length assumption) to be obtained. Though equilibrium conditions were not reached within the test section, the values of R, and H measured at the last measuring station for PG2 and PG3 corresponding to a velocity ratio of 0.54 are shown in Table 4.2.1 below, along with the equilibrium values obtained from (33).

| Quan-<br>tity. | к <sub>р</sub> 10 <sup>6</sup> | Pressure<br>Gradient |            | ibrium<br>lue<br>turb. | measured<br>value at<br>last stn. |  |
|----------------|--------------------------------|----------------------|------------|------------------------|-----------------------------------|--|
| R <sub>2</sub> | 1.82<br>3.30                   | PG2<br>PG3           | 270<br>190 | 760<br>450             | 500<br>260                        |  |
| Н              | 1.82<br>3.30                   | PG2<br>PG3           | 2.0<br>2.0 | 1.28<br>1.30           | 1.49<br>2.50                      |  |

Table. 4.2.1 Measured and equilibrium values of R2 and H

From this table it is evident that for the case of pressure gradients PG2 and PG3 the flow is tending towards a laminar state (please see Fig.5.2.10). Though the criteria for reverse transition have not yet been fully established, (33), (51), (1), values of  $K_p$  corresponding to PG2 and PG3 appear to be large enough for the onset of reverse transition. The value of the measured shape factor for PG3 in the above table is seen to be higher than the laminar value of reference (33): in fact the value of H for a Blasius-type profile is 2.6 (58). Besides, the boundary layer thickness was small, causing some experimental uncertainty in the value of H. A criterion proposed by Patel (51) for the onset of reverse transition is that the value of  $\Delta_p = -K_p (c_f/2)^{-3/2}$ should exceed about-0.0245. For this value of  $\Delta_p$ , departures from the logarithmic law of the wall occur and the velocity profiles indicate an "overshoot" above the log-law line.

The present velocity profiles in the vicinity of the slot  $(x/y_{C} \leq 30)$  indicated an overshoot above the log-law line for all the cases with the initial free stream velocity of 10 m/s. The reason for this is probably the low Reynolds number as well as the effects of the slot-geometry, resulting in a low wall-shear stress in the region. For the case of the strongest pressure gradient PG3 and for velocity ratios less than and greater than unity, the downstream profiles indicated a prominent overshoot above the log-law line, at locations where  $\Delta_p$  exceeded - 0.0245. Thus the present data for wall-jet and wall-wake flows are in accord with Patel's criterion for the onset of retransition.

4.2.3 Precision and accuracy of the experimental data.

The uncertainties in any experimental data in fluid flow are of two kinds: those due to departures of the flow from that which the experimenter believes it to be and those due to the imprecision and inaccuracy of the measuring techniques. In the present context, departure from two-dimen - sional turbulent flow is implied in the first category while errors in the measurement of pressure, concentration etc., are implied in the second. These will now be examined in turn.

Two dimensionality of the flow implies that there are no spanwise variations in the hydrodynamic or species quantities, such as mean velocity, shear-stress, intensity or scale of turbulence, or concentration. Clearly in a plane "two-dimensional" tunnel, this is possible only in the vicinity of the central span of the slot. Some of the obvious factors influencing the two-dimensionality of the flow include the spanwise uniformity of the slot-height, uniform tripping--of the boundary layers on the slot lip and the squareness of the test section. In the present apparatus, the slot height was uniform to within 2 percent, the boundary layers were tripped at the entry to the test section and the squareness of the tunnel cross section was better than one percent.

Further, velocity profiles were measured at three spanwise locations, 10 slot- heights on either side of the centre line and on the centre line, for a velocity ratio equal to 1.85, and for four values of  $x/y_{C}$  ( $x/y_{C}=$  0, 43, 93 - and 200). The salient information from these tests was as as follows:

The maximum spanwise variation in the value of the velocity maxima, wall-shear stress (as obtained from 'Clauser plot'), and momentum thickness Reynolds number  $R_2$  were  $\pm$  1.5,  $\pm$  3.0 and  $\pm$  20 percent respectively.

The mean velocity profiles at a constant  $x/y_{C}$  exhibited good agreement in the log-law region: whence the good agreement in the wall-shear stress; but they showed a relatively large variation in the outer region of the layers. This is reflected in the large spanwise variation of the integral property,  $R_2$ . Agreement with the two-dimensional integral momentum equation was erratic: values of the wallshear stress deduced from the momentum balance between adja-

cent profiles were in agreement with those deduced from 'Clauser plot' in some instances, but differed by as much as 100 percent for the case for velocity ratios less than unity and  $x/y_c$  less than about 50. The discrepancies were attributed to the non-two dimensionality of the flow, and the uncertainty in obtaining x-derivatives of the measured integral quantities, which change but slowly in the x-direction.

Measurementerrors in the experimental data relate to the primary and secondary mass flow rates, the impervious- wall effectiveness, velocity and concentration profiles. These will now be briefly discussed.

Errors in the flow measurement were estimated to be around 2 percent; the values of the mean slot velocity  $\overline{u}_{C}$ obtained by the integration of the slot-velocity profile agreed with that obtained from the orifice meter within about 2 percent, for air injection.

Errors in the measurement of effectiveness arose from the sampling technique and chromatographic analysis. Tests at a number of sampling rates indicated that the measured values of the wall concentration were insensitive to the sampling rate. The precision of the values of the impervious-wall effectiveness was around 3 percent of unity for the case of air (plus helium tracer) injection. This is in agreement with the observation of Whitelaw(78). Marginally worse precision was obtained for the injection of Arcton-12, argon and hydrogen, since in these cases, there was no oxygen peak to provide an additional check on the quantity of sample injected each time.

Errors in the measurement of velocity profiles were due to errors in the probe location, pressure and density measurement and the interaction between the flow and the probe. The accuracy of the probe location was of the order of  $\frac{+}{25\mu}$  in the y- direction. Total pressures were measured with a pressure transducer whose linearity was found to be better than 2 percent; the transducer was periodically calibrated with a Betz manometer, graduated in 0.1 mm of water-column. In case of foreign gas injection, the errors in density measurement corresponded to the error in concentration measurement, discussed below. It is known impact tubes are influenced by the proximity to the wall,

velocity gradients, turbulence intensity and the Reynolds number. The influence of the last three factors was expected to be negligibly small for the present experiments. The y-values of the probe were increased by 15 percent of the outside dimension of the impact probe, in order to allow for the influence of the first two of the above factors, as suggested by McMillan (37).

Errors in the measurement of the concentration profiles were due to errors in the probe location (as for the velocity profiles ) and errors in the concentration measurement. The latter were similar in magnitude to the errors in the effectiveness measurements discussed above.

# 4.2.4 Summary of results with apparatus A.

To conclude the present section, the main results with apparatus A are enumerated below.

1. Measurements which demonstrate the influence of velocity ratio, distance from the slot exit, density ratio and pressure gradients on the impervious-wall effectiveness, velocity and concentration profiles and wall-shear stress are presented. (Tabulated in appendix A.3)

2. The qualitative influence of the velocity and density ratio on the impervious-wall effectiveness is as follows:

| ū <sub>C</sub> /u <sub>G</sub> | ₽ <sub>C</sub> ∕₽ <sub>G</sub> | Effectiveness at const-<br>ant x/y <sub>C</sub>                                           |
|--------------------------------|--------------------------------|-------------------------------------------------------------------------------------------|
| < 1.0                          | 0.069 to 4.17                  | increases with u <sub>C</sub> /u <sub>G</sub> .                                           |
| <u>≽</u> 1.0                   | $\int \approx 1.0$             | decreases with increasing ${}^{\rm u}{}_{\rm C}{}^{\prime}{}^{\rm u}{}_{\rm G}{}_{ullet}$ |
|                                | < 1.0<br>>> 1.0                | increases with $u_C^{u_G}$ .                                                              |

3. The present data of the impervious-wall effectiveness for air injection are in good agreement (within 7 percent of unity) with those of reference (30) for t/y<sub>C</sub> of 0.126 and suggest that the present tapered lip functions as a thin lip. The present data for Arcton-12 injection ( $\rho_C^{\prime}/\rho_G = 4.17$ ) are in good agreement (within 6 percent of unity) with those of reference (5).

4. The influence of favourable and adverse longitudinal pressure gradients in the range  $-1.0 < K_p \times 10^6 < 1.8$  for constant-density flows was to cause a small reduction in the impervious-wall effectiveness (less than 5 percent of unity). The influence of pressure gradient decreases with increasing velocity ratio.

5. The influence of a strong favourable pressure gradient  $(K_p \times 10^6 \approx 3.8)$  was to decrease the impervious-wall effectiveness by a maximum of about 20 percent of unity, for velocity ratios less than 1.2.

6. The influence of pressure gradients (K x  $10^6 \approx -1.0$  and 1.8) on the impervious-wall effectiveness in the presence of density gradients ( $\rho_C / \rho_G = 0.069$  and 4.17) was similar to that for the uniform-density case.

7. Velocity profiles, for which the pressure gradient parameter  $\Delta_p$  was greater than -0.0245, showed an over-shoot above the log-law line, indicating the presence of re-laminarisation. This phenomenon was also indicated for the case of  $u_C/u_G < 1.0$ , by values of  $R_2$  below and H above, the equilibrium values for turbulent flows with constant  $K_p$ .

8. The influence of an increase in  $R_C$  in constant density flows, due to a change in  $\overline{u}_C$  only, was to increase the impervious-wall effectiveness. This increase was approximately proportional to  $R_C^{0.2}$  far downstream, but was greater closer to the slot.

#### 4.3.1 Description of apparatus B.

The once-through, low speed wind tunnel with an axi-symmetric slot configuration is shown schematically in Fig. 4.3.1 and a photograph of the same appears in Fig. 4.3.2 (a) and (b). This apparatus was designed to obtain measurements of the adiabatic-wall effectiveness and the heat-transfer coefficient in the presence of tangential injection.

The wind tunnel comprised a drum assembly (see Fig.4.3.1) concentric with a test section of inside diameter approximately equal to 73 mm. The test section was coupled to a source of vacuum through a run of 51 mm 'Durapipe' with an orifice meter (designed in accordance with B.S. 1042, 1966) installed within it.

The plenum chamber was connected to a source of compressed air through a run of 38 mm-Durapipe and an electric air heater. An orifice meter was included in the Durapipe section to meter the secondary air.

The drum assembly, the test section and the auxiliary equipment will now be described in turn. A discussion on the design and development of the apparatus follows thereafter (section 4.3.2).

The drum assembly. (Fig. 4.3.3 (a)) comprised a drum, 355 mm in diameter, one side of which carried a bell-mouth made from fibre-glass. The bell-mouth terminated in a cylindrical pyrex tube of 1.6 mm-wall-thickness and 63 mm-outside diameter, to form the 'slot lip'. A ring of 6 mm-thick plywood, was fixed in the plenum chamber to diffuse the air entering it. A wooden fairing ring provided a smooth contraction from the plenum chamber to the slot exit. The test section, Fig. 4.3.3 (b) was formed from a  $126\mu$ thick stainless steel sheet rolled into a cylinder, 73 mm in diameter and 510 mm long, with its longitud nal extremeties bent outwards. The s.s. sheet was bonded with Araldite to the inner surface of a split- 'Tufnol' pipe of 73 mm-inside diameter and 510 mm long. Two copper bars, 510 mm x 28 mm x 6.3 mm were clamped along the extremeties of the s.s. sheet and were separated from one another by a 1.6 mm-thick bakelite sheet. Thermocouples made from 35 s.w.g copper and 34 s.w.g. constantan enamelled wires were spot-welded on the outer surface of the sheet

at locations indicated in Fig.4.3.3 (c). The thermocouple wires were laid on the sheet at right angles to the axis of the test section before bonding to the Tufnol halves. Three thermocouples were located at the slot exit, 120 degrees apart. The thermocouple wires led to a set of selector switches and a reference junction at room temperature.

#### Auxiliary equipment.

A highamperage (0 to 1000 amperes), variac was used to supply the current for heating the s.s. sheet in the test section. A calibrated, temperature compensated resistance (equal to 333  $\mu_{\Omega}$ ) was connected in series with the s.s.heater; the voltage drop across it was a measure of the current through the heater. A "Solartron" precision a.c. valve mili-voltmeter was used for measuring a.c. potentials and a "Fenlow" digital voltmeter with a resolu -tion of 10  $\mu_{v}$  was used for recording the thermo-e.m.f.-s.

Manometers filled with water or mercury were used for the measurement of differential and absolute pressures at the two orifice meters.

#### 4.3.2 Design and development of apparatus B.

The measurement of heat transfer coefficients in the presence of film cooling was not envisaged in the early stages of the present investigation. The realisation of the lack of sufficient experimental data of this important quantity coincided with the availability of a test section with a large number of heat-flux meters, previously used by Mukerjee (39) for the investigation of heat transfer in a supersonic-parallel diffuser. It was decided to design a suitable annular slot to match this test section, to study theadiabatic wall effectiveness and heat transfer in the presence of film cooling, under subsonic conditions; the College supply of compressed air and vacuum provided a ready source for the two air streams.

With this intention the drum assembly and the rest of the apparatus described in the last section was constructed. Fibre-glass and pyrex were selected for the bell-mouth and slot-lip to reduce the heat transfer bewteen the mainstream and secondary stream , upstream of the slot. The thickness of the slot lip was dictated by the minimum wall-thickness of the pyrex tube which could be readily fabricated. The slot-height was chosen to obtain a reasonable percentage uniformity ( $\frac{+}{-}$  5 percent) of the annular gap with the available test section.

Details of the test section used by Mukerjee (39) are shown in Fig. 4.3.4. It comprised a 73 mm-inside diameter Tufnol pipe, with 47 heat-flux meters located along a line parallel to its axis. Each of the heat flux meters comprised a 0.8 mm-thick polypropelene sheet, sand - wiched between the two copper studs, one of which was flush with the inner surface of the Tufnol pipe and the other immersed in a water-jacket. A copper-constantan thermocouple was located in each of the copper studs.

In principle, the steady state heat flux through the meters could be inferred from the temperature difference across the plastic material, its thermal conductivity and its thickness.

Experiments conducted with the above test section yielded values of the heat-transfer coefficient which were about seven times larger than that expected on the basis of previous experiments (62), (22). The reasons for this large discrepancy was attributed to the following:

i. Thermal starting length effect;
ii. Uneven contact between the plastic sheet and copper studs (ie. air gaps);
iii. Errors in temperature measurement.

The first of the above reasons appeared to be most important, since the leading edge of each of the copper studs presented a step in the wall heat flux; the Tufnol was a near-adiabatic surface, followed by a region of finite heat flux through the copper studs. Thus a new thermal boundary layer was initiated at the leading edge of each of the heat flux meters. It is well known that for such a boundary condition, the heat transfer coefficient is locally much higher than that for the case of a thermal layer starting coincidentally with the velocity- boundary ·layer (53), (12). It can be expected that the arrangement used would lead to high local heat fluxes, and consequently to a high heat transfer coefficient. It is not possible to allow for this effect on a theoretical basis, mainly because the thermal boundary layer was three-dimensional. Attempts were made to calibrate the heat flux meters 'in

situ', by making the test section a part of a fully developed pipe flow. Details of the calibration procedure and the results obtained are given in appendix A.2.

The main conclusion from these tests was that an 'in situ' calibration of the heat flux meters is essential and that an adiabatic wall with intermittent heat sinks (or sources) was not a desirable boundary condition for the measurement of heat transfer coefficient. It is interesting to note that other investigators using similar heat-flux measuring devices have also reported inexplicably high values of the heat-transfer coefficient (2), (11). It seems probable that the discrepancies can be partly explained on the basis of a thermal starting length effect. Thus the test section described in the previous section, with an electrically heated wall was developed.

One important consideration in the design of an electrically heated test-section was the heat loss through the buss bars which renders the heat-flux into the flow in the vicinity of the buss-bars difficult to determine precisely (21). A design in which the buss-bars are attached at right angles to the ends of pipe section is more susceptible to this error than the design shown in Fig.4.3.3, in which the influence of the buss bars is limited to a narrow, circumferential region of the flow, not in the vicinity of the measuring thermocouples. The 50 mm- lead-in between the buss bars and the interior of the test section ensured that the electric field within the s.s.sheet was uniform. The thin s.s. sheet provided a sufficiently high elecrical resistance and minimised axial heat-conduction effects.

# 4.3.3 Operation of apparatus B.

The test section was subjected to a heat loss test to determine the heat transfer coefficient between the heated s.s. sheet and the surroundings. For this test, the ends of the test section were sealed with 12mm-thick plywood discs and a certain current passed through the s.s. sheet. Under steady state conditions, the electrical power input into the s.s. sheet was equal to the heat lost by it to the surroundings. Measurement of the temperature distribution on the sheet surface permitted the heat transfer coefficient between the s.s. sheet and the surroundings  $(h_2)$  to be determined. The s.s. sheet Was heated by some 15 to 25 deg C above room temperature and the heat transfer coefficient  $h_2$  was found to be practically independent of the temperature difference in this range.

The procedure for obtaining the adiabatic-wall effectivness and the heat-transfer coefficient was as follows. The desired velocity ratio (deduced from the readings of the two orifice meters) was set and the secondary air stream heated by some 22 deg C above room temperature. When conditions were steady (in about one and a half hours), the temperature distributions in the s.s. sheet and the slot were recorded by noting the thermo-e.m.f.-s developed by the thermocouples. Next, a current of approximately 250 A was passed through the sheet. The velocities and temperatures at the slot were maintained at their previous values. When conditions were steady, (in approximately one hour), the thermo-e.m.f.-s, the a.c. potential distribution in the s.s. sheet, as well as the voltage drop across the standard resistance in series with the s.s. sheet were recorded. The data reduction procedure was as follows. The rate of heat generation was calculated from the product of the current through the s.s. sheet and the local a.c. voltage gradient across the s.s. sheet. The latter was obtained by a least-squares fit between the a.c. potential distribution and the spanwise distance measured along the curved surface of the sheet. The potential distribution on the s.s.sheet was measured with an a.c. milivoltmeter, using the spot-welds of the thermocouples as the measuring nodes. The heat loss to the surroundings was computed foom the heat transfer coefficients on the outer surface of the s.s. sheet  $(h_2)$  and the local wallto- room temperature difference. A heat balance for an element of the s.s. sheet leads to (neglecting axial heat conduction) the relation

 $\dot{q}''_{gen} = h_1 (T_W - T_{a,W}) + h_2 (T_W - T_G)$ . 4.3.1 Since for each velocity ratio, the experiments were carried out for two values of  $\dot{q}''_{gen}$  (equal to zero and one non-zero value), the two unknowns in the above equation,  $h_1$  and  $T_{a,W}$  (whence  $\eta$ ) could be readily computed.

This assumed that the heat transfer coefficient  $h_1$  was independent of  $\dot{q}_{gen}^{"}$ : this was confirmed by obtaining  $h_1$ for two different, non-zero values of  $\dot{q}_{gen}^{"}$ .

# 4.4 Presentation and discussion of experimental results - apparatus B.

The following section describes the results obtained with apparatus B and corresponding to a lip thickness ratio  $t/y_{\rm C}$ , of 0.35. Experiments conducted with a lip insert which resulted in a lip thickness ratio of unity are described in section 4.4.2, which is followed by a discussion of the experimental inaccuracies (section 4.4.3), and a summary of experimental results (section 4.4.4). The density ratio was approximatley 0.93 and the pressure gradient negligible, for all the runs.

# 4.4.1 Influence of the velocoty ratio on the effectiveness and heat-transfer coefficient.

Effectiveness. The solid circles in Fig. 6.2.3 (a) to (g) represent the measured values of the adiabatic-wall effectiveness for seven velocity ratios in the range 0.389 to 3.55, and for a lip thickness ratio of 0.35. The data shown were obtained from the bottom row of thermocouples (Fig. 4.2.2 (b)). The qualitative behaviour of the adiabatic-wall effectiveness is similar to the impervious-wall effectiveness measured with the plane slot, apparatus A. Fig. 4.4.1 shows the adiabaticwall effectiveness for three values of  $x/y_C$  plotted against the mass-velocity ratio. The points refer to measurements with apparatus B (interpolated for the values of  $x/y_{c}$  shown), and the broken lines represent faired curves through the corresponding measurements with apparatus A. Despite the numerous differences between the two apparatus, the agreement in the measured impervious / adiabatic- wall effectiveness is remarkable: the largest discrepancy is about 5 percent of unity at  $x/y_{C}$  of 32.5 and about 10 percent of unity at  $x/y_{C}$  . of 52.2. This essentially indicates that the differences in the two apparatus had compensating influences on effectiveness. For example, the lip thickness ratio for apparatus B was 0.35, whereas the corresponding value for apparatus  $\lambda$  (with a tapered lip) was probably lower. Thus in this respect, apparatus B would have a lower effectiveness than that of

apparatus A. On the other hand, apparatus B was axisymmetric, with a radius ratio (inner radius of slot annulus to test section radius) equal to 0.825 as compared with the value of unity for the plane slot. This means that in the vicinity of the slot, the interface area between the mainstream and secondary stream was roughly 20 percent less in apparatus B than for apparatus A. Other factors remaining the same, this would lead to a lower degree of mixing between the two streams for apparatus B, and consequently higher effectiveness. Though the good agreement between the effectiveness measured with the two apparatus cannot be taken as conclusive evidence for the unity-value of the turbulent Lewis number, it does indicate the plausibility of this value. Heat transfer coefficient. The solid circles in Fig.6.2.3 (h) to (n) represent the measured values of the heat transfer coefficient (expressed as a Nusselt number based on slotheight and conductivity at slot temperature) corresponding to the velocity ratios indicated in Fig. 6.2.3 (a) to (g). The heat transfer coefficient is based on the adiabatic-wall temperature defined in eq.1.2.1. The lines in Fig.6.2.3 (h) to (n) are predictions which will be discussed in chapter 6.

Some scatter is evident in the data, especially in the vicinity of the slot  $(x/y_c < 5)$ , but the trends in the range 10 <  $x/y_{C}$  < 50 are clearly indicated. For velocity ratios less than about 1.2, the Nusselt numbers tend to a value lower than the value corresponding to fully-developed pipe flow, for the same bulk-Reynolds number, based on the pipe diameter (obtained from the Colburn-analogy (26)) by some 15 percent. The latter are indicated by the short chain -dotted lines in the figures. For velocity ratios greater than 1.2, the Nusselt numbers are higher than the pipe flow values. The authors of references (23) and (60) have found that, for velocity ratios less than unity and  $x/y_{C}$ greater than about 30, the heat-transfer coefficients agree with flat -plate values within  $\frac{1}{2}$  10 percent. The present data do not support this conclusion; these are lower than the flat plate values ( $R_{\rm v}$  based in the distance from the slot exit) by about 30 percent for velocity ratios less than unity and  $x/y_c$  greater than 30. The agreeement with flat plate values based on the distance from the 'effective origin' of the boundary layer rather than the slot exit,

is likely to be better : this has not been examined partly because the prediction method described later (chapter 6) does not require this information and partly because the effective origin of the velocity boundary-layer was not known in the present instance.

The influence of the velocity ratio on the heat transfer coefficient is clearly demonstrated in Fig.4.4.2, in which the Nusselt number for three values of  $x/y_C$  is plotted against the mass-velocity ratio. The figure shows that, at a particular location, the heat-transfer coeff-icient increases with the velocity ratio - or, since the free-stream velocity was approximately the same for all the runs, with the slot Reynolds number. This increase is rapid for velocity ratios in excess of unity and is relatively small for velocity ratios less than unity. This implies that for velocity ratios greater than unity, the velocity of the secondary stream is the governing parameter for the heat-transfer coefficient while, for velocity ratios less than approximately unity, the free stream velocity is of primary importance.

# 4.4.2 Influence of slot-lip thickness.

The influence of the slot lip thickness on the impervious-wall effectiveness has been shown to be significant (79), (64), (30). The object of the present experiments was to examine the influence of this parameter on the heat-transfer coefficient and the adiabatic-wall effectiveness. The measurements of adiabatic-wall effectiveness and heat transfer coefficients in presence of a lip insert resulting in a lip thickness ratio of unity, are indicated by the open squares for two velocity ratios in Fig.6.2.3 (b), (f), (i) and (m). It is clear that the adiabatic-wall effectiveness is reduced by an increase in the lip thickness ratio,  $t/y_c$ . On the other hand, the influence on the heat-transfer coefficient in the range 10  $< x/y_{c} < 50$  is practically negligible. In the immediate vicinity of the slot  $(x/y_{C}<10)$ the behaviour of the heat transfer coefficient is complex: for velocity ratio less than unity, there appears to be a small increase whereas for the velocity ratio greater than unity, there is a significant reduction

over the thin lip case.

The above finding concerning the insensitivity of the heat transfer coefficient to the lip thickness is of considerable engineering utility. It is compatible with the observation of Kestin et. al. (24) that the freestream turbulence intensity has little influence on the heat transfer coefficient in the fully turbulent regime of a flat-plate boundary layer in zero pressure gradient, since one of the effects of the increased lip thickness is an increase in the turbulence intensity (see for example reference (31)). It also indicates another advantage of basing the heat transfer coefficient on the adiabatic wall temperature (which is influenced by the lip thickness ratio).

It should be noted that though the heat transfer coefficient is not appreciably altered due to an increase in the lip thickness, the value of the heat transferred for a given boundary condition would alter, since the adiabatic-wall temperature (on which the heat-transfer coefficient is based ) is altered. For example, in the case where the wall temperature is maintained at a certain value which is below tht adiabatic-wall temperature, an increase in the lip thickness would result in a reduction in the heat flux through the wall.

# 4.4.3 Experimental uncertainties.

The uncertainties in the experimental data for effectiveness and heat-transfer coefficient were mainly due to non-two dimensionality of the flow, errors in the measurement of temperature and heat-flux and effects of heat conduction within the s.s. sheet. The slot height was uniform to within 2 percent, as estimated by the insertion of a tapered plug. The spanwise variation in effectiveness, as measured by the thermocouples at three circumferential locations (Fig.4.2.2(b)) was of the order of 6 percent of unity.

The errors in the observed temperatures were mainly due to errors in the measurement of the thermoe.m.f.-s. These were measured with a digital voltmeter with a resolution of 10  $\mu$ v (equivalent to 0.27 deg C for the copper-constantan thermocouples used). This corresponds to about 1 percent of the temperature difference between

the slot and the free stream. Variations up to 3 deg C occured in the ambient temperature during the day: the influence of this variation was minimised by keeping the reference junction at the temperature of the mainstream, ie., the room temperature. Conduction errors through the thermocouple leads was negligible since they were placed along isotherms for a length of at least 60 mm along the s.s. sheet.

Uncertainty in the value of the heat flux was mainly due to instrument errors in the a.c. valve voltmeter and errors in the determination of the voltage gradient across the s.s. sheet. The accuracy of the ACVM was estimated at around 2 percent at full scale deflection, the resulting error in the power input being 4 percent. The scatter of the voltage gradient across the sheet at four x- stations was around  $\frac{1}{2}$  2 percent about the mean value. The estimated error in the wall temperature due to axial conduction was less than one percent. Thus the cumulative error in the heat transfer coefficient was approximately  $\frac{1}{2}$  6 percent.

# 4.4.4 Summary of results with apparatus B.

The main results of the investigation with apparatus B are enumerated below.

1. Measurement of the adiabatic-wall effectiveness and the heat transfer coefficient downstream of an axisymmetric slot are presented. (Tabulated in appendix A.4)

2. Measurements of the adiabatic-wall effectiveness with apparatus B show good agreement (within 5 percent of unity) with the impervious-wall effectiveness measured with apparatus A. This suggests compensating differences between the two apparatus and the plausibility of a unity-value of the turbulent Lewis number.

3. The heat-transfer coefficient, in the presence of film cooling, is a function of the velocity

ratio and cannot be represented accurately either by the flat-plate or pipe-flow formulae.

4. An increase in the lip-thickness ratio from 0.35 to 1.0 leads to a significant decrease in the adiabatic-wall effectiveness (up to 20 percent of unity), but the heat-transfer coefficient (based on the adiabatic-wall effectiveness) in the range  $10 < x/y_C < 50$  is negligibly influenced.

# CHAPTER 5.

5. The physical inputs to the prediction procedure. Introduction.

In chapter 3 the mathematical problem associated with the prediction of the flow downstream of a twodimensional film cooling slot was identified and a solution procedure for the purpose was selected. It was pointed out that the relevant parabolic partial differential equations can be solved provided relations are available, linking the total (ie., sum of laminar and turbulent) shear stress, and the diffusive flux of conserved property such as enthalpy to some time averaged quantity. This implied the specification of an eddy transport hypothesis, The assumption of an eddy transport hypothesis (equations 3.2.8 and 3.2.9) tacitly implies that the shear stress and diffusive fluxes can be related to the gradients of mean velocity and conserved property respectively. The invalidity of this assumption is in some instances obvious. For example, it is known that in a wall-jet there is a finite shear stress at the location of zero mean-velocity gradient (73), (16). However, there are many cases of boundary layer and pipe flows where such a turbulent exchange postulate, in conjunction with a specific eddy transport hypothesis yields satisfactory solutions. The implications of any hypothesis have to be worked out by comparing calculations based upon it with the relevant experimental data. As mentioned in chapter 3, four eddy viscosity hypotheses which are likey to be of relevance to the present problem are those of Prandtl (1925 and 1942), Clauser (1954) and Kolmogorov-Prandtl (1942-45). These hypotheses are represented by the following equations:

$$\begin{split} \mu_{eff} &= \mu + \rho \ell^2 \left| \frac{du}{dy} \right| & \text{Prandtl (1925) 5.0.1} \\ \mu_{eff} &= \mu + \text{const. } \ell \rho \left| \left( u_{max} - u_{min} \right) \right| \\ & \text{Prandtl (1942) 5.0.2} \\ \mu_{eff} &= \mu + 0.018 \rho u_G \delta_1 & \text{Clauser (1954) 5.0.3} \\ \mu_{eff} &= \mu + k^2 \ell f \left( \rho k^2 \ell / \mu \right) & \text{Kolmogorov (1942) 5.0.4} \\ \mu_{eff} &= \mu + k^2 \ell f \left( \rho k^2 \ell / \mu \right) & \text{Prandtl (1945) 5.0.4} \end{split}$$

The  $\ell$ -s in the above equations denote length scales which have to be specified empirically. The second

term on the right hand side in the above equations represents the turbulent component which far out-weighs the laminar viscosity except very close to the wall.

Equation 5.0.1 above has been used with some success for turbulent flow in pipes and boundary layers on flat plates (58), (35), It is applicable to flows with or without velocity maxima, except for the deficiency that it indicates a zero-value for the turbulent viscosity at a location of zero velocity gradient.

Equation 5.0.2 was formulated by Prandtl for free flows such as jets and wakes. It may thus be of relevance in a film cooling situation for the wake region behind the slot-lip.

Equation 5.0.3 was devised by Clauser (9) for boundary layers in adverse pressure gradients, for which the displacement thickness  $\delta_1$  is positive. In a film cooling situation, this is the case only for velcoity ratios less than unity. Since velocity ratios on either side of unity are of practical importance, it would be unwise to select this hypothesis for the present problem.

The potential of the last of the hypotheses mentioned above (eq. 5.0.4) has only recently been investigated to any extent (70). Its aesthetic superiority over equation 5.0.1 lies in the fact that it predicts a finite eddy viscosity at the point of zero mean velocity gradient, and that it is also capable of taking into account, the influence of free-stream turbulence. However, it requires the solution of an additional partial differential equation for the conservation of k, the kinetic energy of turblulent motion. The empirical information needed is in no way less than that for the simple mixing length theory, eq.5.0.1, since the length scale of turbulence has still to be specified. In fact, the empirical information needed is greater since the constants expressing the transport of the kinetic energy of turbulence have to be specified. Further it provides no explanation for the existence of a finite shear-stress at a zero-velocity gradient location mentioned earlier in the chapter. Thus it would appear that the use of eqution 5.0.4 in a film cooling situation would be justified only if the performance of the simple mixing length theory, eq. 5.0.1 is found to be seriously inadequate.

The previous sentence implies that the objectives

of any prediction procedure need to be clearly stated. The quantities which are of direct interest in the present study of film cooling (in order of practical importance) are the following:

> properties at the wall (ie., adiabatic- or imperviouswall effectiveness, heat transfer coefficient and skin friction);

profiles of time-mean quantities (such as <u>velocity</u>, mass-fraction or enthalpy);

and

integral properties (such as momentum thickness, shape-factor, energy thickness).

The above discusiion suggests that the Prandtl mixing-length hypothesis (eq. 5.0.1) with some modification may suffice to permit the prediction of the above quantities. The implications of any eddy transport hypothesis should be regarded in the manner in which they influence the above variables. For example, the implication of a vanishing eddy diffusivity at a zero velocity gradient prevents the diffusion of the conserved property (enthalpy or mass-fraction) across the velocity maximum or minimum, resulting in kinks in the conserved property profiles.

Another implication of the Prandtl mixing-length hypothesis is that it tacitly assumes local equilibrium between the production and dissipation of the kinetic energy of turbulence. This is approximately true in the fully turbulent region of flows near walls in mild pressure gradients, but not for example, in flows with strong favourable pressure gradients or in which abrupt streamwise changes in the wall boundary conditions occur. In such cases, the predictions of all the quantities mentioned above are likely to de deficient.

Finally, distributions of the mixing length and effective Prandtl or Schmidt number have to be specified before calculations can be performed. This is essentially an empirical process since the mixing length and the effective Prandtl or Schmidt number are not fundamental physical properties. There are two ways by which suitable mixing length and effective Prandtl/Schmidt number distributions can be obtained. The first is to deduce the distributions of these quantities by reference to experimental data. This may be referred to as the direct approach. The indirect approach is to perform calculations on the basis of a certain tentative distribution of the mixing length and the effective Prandtl/Schmidt number and to compare the resulting profiles of mean velocity, conserved property and the wall properties with the experimental data. The assumed distributions may be considered satisfactory if the comparison with the experimental data is satifactory. Both these avenues are explored in the present chapter.

# 5.1 Determination of the mixing coefficients from experimental data.

Introduction. Inorder to deduce mixing lengths and the effective Prandtl/Schmidt numbers from equations 3.2.8, 3.2.9 and 5.0.1, profiles of mean velocity, conserved property, shear stress and diffusive flux across the boundary layer are required. In the absence of direct measurements of the last two quantities, it is possible, in principle, to obtain them by applying the conservation equations for mass, momentum and energy (or species).

Such an exercise for the determination of mixing length distributions in boundary layers and wall-jets has been previously carried our by Escudier (14). The tentative conclusion reached by him was that the mixing length distributions in a number of boundary layers and a limited number of wall-jets examined by him could be approximately represented by a ramp function of the form

> $\ell = K Y$ ,  $0 < Y \le Y_G \lambda/K$  $\ell = \lambda$ ,  $\frac{\lambda Y_G}{K} < Y \le Y_G$ . 5.1.1

The mixing length distributions presented in this reference show considerable scatter and values of K from 0.28 to 0.6 and  $\lambda$  from 0.05 to 0.11 are prevalent. These numbers refer to experiments in which the shear stress was measured with hot-wire equipment; the scatter was even greater for experiments in which the shear stress was obtained by momentum balanace. The representative values suggested by Escudier were K = 0.41 to 0.45 and  $\lambda$  = 0.075.

Though the ramp-distribution (eq.5.1.1) is by no means conclusive, it does provide a simple and reasonable approximation to available data in boundary layers and walljets. However, its validity to flows downstream of a film cooling slot remains to be demonstrated.

Evaluation of the effective Prandtl or Schmidt number for flows downstream of a film cooling slot have not previously been reported except in reference (29), whose findings are presented later in this chapter. The status of the experimental information on the turbulent Prandtl number in boundary layers and pipe flows has been reviewed in references (25) and (3). Despite several experimental investigations, two basic questions, namely, the influence of the molecular Prandtl or Schmidt number on the turbulent counterparts (if any), and the distribution of the turbulent Prandtl or Schmidt number across the boundary layer, remain to be conclusively answered. For example, reference (3) indicates values of the turbulent Prandtl number for gases (of molecular Prandtl number in the vicinity of unity) ranging from 0.15 to 1.5, with the majority of the data points between 0.7 and 1.0, while referencee(25) indicated values of the turbulent Prandtl number from 1.1 to 2.0 for mercury (molecular Prandtl number of 0.025). Results from recent experiments have been equally conflicting. The data of reference (63), for air flow over porous flat-plates with air injection and suction, indicate that the turbulent Prandtl number lies between 0.8 and 1.0 for a substantial part of the boundary layer (0.1  $\leq$  y/y<sub>G</sub>  $\leq$  0.8). On the other hand, data of reference (18) for the turbulent diffusion of foreign gases into air indicate variations of the turbulent Schmidt number ranging from 1.0 to 3.0 for helium, 0.6 to 1.4 for carbon dioxide and 0.17 to 1.0 for n- octane.

## 5.1.1 Measurements with apparatus A.

The data for two velocity ratios, equal to 0.55 and 1.85 (Runs 9 and 10) for air injection with nominally zero pressure gradient were examined with the view to obtaining mixing length and effective Schmidt number distributions. Since there were no measurements of the shear stress or diffusional flux of species across the

layer, these quantities had to be obtained by the use of the two-dimensional conservation equations. It was found that good integral momentum balance was not obtained at all locations. Fig.5.1.1 (a) and (b) shows the values of wall-shear stress obtained by four methods, viz. : Clauser plot, calibrated razor-blades, momentum balance between adjacent profiles and momentum balance using a least-squared cubic fit through measured values of  $R_2$ , H and  $u_G$  in the streamwise direction. It may be seen that while there is reasonable agreement between the values of skin friction obtained by Clauser plot and razor-blade methods, there is considerable scatter in those obtained through momentum balance. This is a combined effect of non-two dimensionality in the flow, errors in the measurement and the procedure for obtaining x- wise derivatives of quantities that change slowly in the x- direction.

Fig. 5.1.2 (a) and (b) show a selection of the mixing length distributions deduced from the data of runs 9 and 10 respectively. The mixing lengths and the y-values have been non-dimensionalised with the boundary layer thickness  $y_{c}$  (defined as the distance from the wall where the velocity is 0.99 times the free-stream value). In general the ramp mixing length distribution, eq. 5.1.1 (indicated by the broken lines in Fig.5.1.2) is not a bad representation of the majority of the data points shown, except in the vicinity of the velocity maxima (run 10) and the outer edges of the boundary layer. Near the velocity maximum the mixing length tends to infinity since the shear stress is finite at this point. A short distance from the velocity maxima towards the wall, the mixing length goes towards zero, at the location of zero- shear stress. Towards the outer edge of the layer, the mixing length tends to large values: significance can hardly be attached to this in view of the experimental uncertainties in this region.

In obtaining the mixing lengths, the shear stress distribution was obtained by momentum balance between adjacent profiles; the velocity gradient (du/dy) was taken as the mean between the adjacent profiles (for a constant y) and was obtained by fitting a parabola through three adjacent points in each profile.

Fig.5.1.1 (c) and (d) shows the integral mass balance at different x-locations at which concentration profiles were measured. A unity- value of the ordinate  $(R_{\varphi} \cdot n/R_{C})$ , indicates an exact balance. The majority of the points are within  $\pm$ ,10 percent of this value and the worst deviation is about 20 percent.

Effective Schmidt numbers were obtained by evaluating the diffusive flux at each y-location through species balance between adjacent profiles and the y-direction gradient of the concentration profiles smoothed 'by eye'. Some of the deduced Schmidt numbers, between locations where reasonable over-all species and momentum conservation were obtained, are shown in Fig. 5.1.3 (a) and (b). There is considerable scatter and the results allow only the limited conclusion that the majority of the points are in the range 1.0  $\pm$  0.3.

#### 5.1.2 Results with the data of reference (29).

Mass fraction profiles measured by the author in the wind tunnel of reference (30) indicated a good integral species balance (within 2 percent). Consequently, mixing lengths and the effective Schmidt number were deduced in the manner described and presented in reference (29). In this case the shear stress distribution across the layer was obtained with an inclined, constant temperature hot-wire and the diffusive flux by a species balance between adjacent profiles. Typical mixing lengths obtained in this investigation are shown in Fig. 1 of reference (29). Though there is considerable scatter, the data suggest that, except in the vicinity of the velocity maxima, a ramp mixing-length distribution is a fair representation of the data. There seems to be a tendency for the value of  $\lambda$  to increase downstream. Fig. 3 of this reference shows the typical effective Schmidt numbers deduced from the data. Again, the scatter is large and the allows the limited conclusion that an effective Schmidt number of  $0.5 \pm 0.3$ is representative of most of the data points.

## 5.1.3 Discussion of procedure and results.

The above results emphasise the difficulties in deducing the mixing lengths and turbulent Schmidt numbers from profile data in non-equilibrium flows. The problem

may be expected to be somewhat simpler in equilibrium flows, such as fully developed flow in pipes and channels, where the x-derivatives are zero and the shear-stress distribution across the layer is precisely known.

The reasons for the large scatter in the mixing length distributions presented above and elsewhere (14),(29), may be attributed to the following:

 that similarity in the mixing length, normalised with the thickness of the boundary layer, does not exist;

 sensitivity of the deduced mixing lengths to data-reduction procedures and experimental inaccuracies of the dependent variables, namely

i. Determination of Y<sub>G</sub> from experimental data;

ii. differentiation of experimental velocity

profiles to obtain the velocity gradients, (du/dy);

iii. Errors in the shear-stress distribution deduced from the integral momentum equation, due to the non-twodimensionality of the flow and differentiation of the experimental integral quantities in the x-direction.

Although reason 1 above is likely to be true, the uncertainties under 2 make it difficult to asses the lack of similarity. The assumption of similarity in mixing length distribution is a very useful simplification in the development of prediction procedures.

There is no conclusive evidence on the value of. the turbulent Prandtl or Schmidt number. While it is likeky that a unique value for the turbulent Prandtl or Schmidt number does not exist, difficulties in the experiments prevent this to be proved one way or other. However, there seems to be considerable experimental and theoretical reason to suggest that for the turbulent flow of air over solid surfaces, the turbulent Prandtl or Schmidt number is in the vicinity of unity.

The use of the two dimensional conservation equations to obtain the shear stress and the diffusional fluxes appears to be unreliable, unless the two-dimensionality of the flow is exceptionally good. The use of an inclined hot-wire to measure shear stress distribution can be expected to be more reliable. The use of hot wires to measure the turbulent heat and species fluxes may eventually yield more reliable information about the distribution of these quantities.

The relative importance of the quantities appearing in equations 3.2.8, 3.2.9, and 5.0.1 are indicated in the following equations, obtained by differentialing the above equations:

 $\frac{dl}{l} = \frac{1}{2} \frac{d^{T}}{T} - \frac{d(u')}{u'}, \qquad 5.1.2$   $\frac{do'_{eff}}{o'_{eff}} = -\frac{d(u')}{u'} + \frac{dc'}{c'} + \frac{dT}{T} - \frac{dJ_{p}}{J} 5.1.3$ 

In these equations the primes denote differentiation with respect to y. From equation 5.1.2 it is evident that the percentage error in the mixing length is the sum of half the percentage error in the shear stress and the error in the velocity gradient. For the effective Schmidt number, the influence of an error in the shear stress is twice as significant, and two additional sources of error are present. The percentage error in the velocity gradient is likely to be large near the velocity maximum and near the wall, while the error in shear stress is likely to be large near a velocity maximum. The error in the diffusive flux J is likely to be large near the wall (for an impervious wall), while errors in the concentration gradients are likely to be important in the outer part of the layer. Thus meaningful results may be expected in a limited region between the velocity maximum and the outer edge of the layer.

Finally it is appropriate to enumerate the main findings of the present section.

1. The mixing length distribution presented in the two preceding sub-sections provide additional plausibility to the ramp-mixing length distribution for flows downstream of a film cooling slot, except in the vicinity of velocity maxima. Though the uncertainties in the data preclude the positive confirmation of the constants in the ramp-function, the values K = 0.41 and  $\lambda = 0.09$  appear to be a reasonable

#### first approximation to the data.

2. The present experimental data do not reveal a universal value of the turbulent Schmidt number. The data from apparatus A suggests a value of  $1.0 \pm 0.3$ in the outer region of the boundary layer, while that of reference (29) suggests a value of  $0.5^{\pm}$  0.3. However the uncertainties in the data and data reduction procedures preclude a resolution of this difference.

# 5.2 Predictions based on the mixing length and effective Prandtl/Schmidt number hypothesis.

Some guidance about the mixing length distributions and the effective Prandtl/Schmidt number was obtained in the previous section: this was by no means conclusive or universal. However, it remains to ascertain whether it is possible to obtain acceptable predictions using the mixinglength and the effective Prandtl/Schmidt number hypothesis, within the framework of the calculation procedure of reference (49), described briefly in chapter 3.4. This possibility is examined in the present section by comparing predictions based on tentative distributions of the mixing length and effective Prandtl/Schmidt number, with available experimental data.

#### 5.2.1 Procedure.

A finite difference grid was located on measured profiles of velocity and concentration (or enthalpy) downstream of an injection slot, in a region where the effects due to slot-geometry could be expected to be small (about 20 slot-heights downstream). The appropriate boundary conditions along the wall and the free stream were specified. Integration of the momentum and species (or enthalpy) equations was commenced using the procedure of reference (49), which yielded downstream profiles of velocity and species, along with the quantities such as the impervious-wall effectiveness, wall-shear stress, momentum thickness etc. The object of the exercise was to perform these calculations for a specific distribution of the mixing-length and effective Prandtl/Schmidt number and to alter the chosen distribution, if necessary, to

obtain the best over-all agreement with selected experimental data.

At this stage it is desirable to quantify the criterion for satisfactory prediction of the impervious-adiabatic-wall effectiveness, because of its importance to film cooling. Two quantities are sufficient to characterise the the quality of prediction: (a) the maximum deviation  $(D_{max})$  between the prediction and the experimental data over a specified distance from the slot and (b) the quantity defined by

$$\Lambda^{2} = \frac{1}{L} \int_{0}^{L} (\eta_{PRD} - \eta_{EXPT})^{2} dx , \qquad 5.2.1$$

where  $\eta_{\text{EXPT}}(\mathbf{x})$  represents a smooth curve through the dataponts and  $\eta_{\text{PRD}}$  the predicted distribution of effectiveness. Thus  $\Lambda$  can be considered as the root-mean square deviation between the predicted and experimental effectiveness, with the streamwise distance as the weighting function (see Fig. 5.2.1). A mean value of  $\Lambda$  for a number of sets of data (say NSETS) can be evaluated through the expression:

$$\bar{\Lambda}^{2} \equiv \sum_{i=1}^{NSETS} \Lambda_{i}^{2} L_{i} / \sum_{i=1}^{NSETS}$$

5.2.2

#### 5.2.2 Data for comparison.

For the present exercise only those measurements which include downstream profiles of velocity and concentration (or enthalpy) are of interest. This considerably limits the number of experimental data available. The data of references (5), (56), (61), (23) and (29) are relevant and along with the present measurements, are used for comparison with predictions. The above data cover a useful and wide range of conditions:

 $\begin{array}{rcl} 0.36 &< u_{C}/u_{G} &< 1.85 &; \\ 0.88 &< \rho_{C}/\rho_{G} &< 4.17 &; \\ 1970 &< R_{C} &< 17400 &; \\ -1.0 &< K_{p}10^{6} < 3.8 & \end{array}$ 

Besides the above data, references (28), (73), (16), (4) and (17) present hydrodynamic quantities such as profiles of mean velocity and wall-shear stress. The case of the pure wall-jet ( $u_G \rightarrow \infty$ ) isincluded (73) and (17). The prediction of these data is also examined, to extend the range of variables covered.

A check on the internal consistency of the data is provided by evaluating the integral of the species or enthalpy flux,  $\int_{\rho}^{\chi_{4}} \varphi \, dy$  for each set of velocity and concentration profiles, which should equal the enthalpy or mass flux through the slot. Such a check was carried out and the results showed discrepancies in the integral species (or enthalpy) conservation of upto 30 percent, and the majority of the points were within 10 percent. This may be considered satisfactory in view of the compounding of the errors which occur in the evaluation of the integral and inaccuracies in the measurement of concentration /enthalpy profiles in the outer region of the flow.

# 5.2.3. The choice of the mixing length and effective Prandtl/ Schmidt number distribution.

The ramp mixing-length distribution discussed in chapter 5.1.1 was tentatively adopted for the present calculations. The value of K and  $\lambda$  are taken as 0.419 and 0.09 respectively. The former is a fairly well accepted value for turbulent boundary layers (51), (14) and shown to be valid for wall-jets (45). The latter is a value representative of the experimental data examined in references (14) and (29) and the data presented in the previous section.

In view of its importance to film cooling, it is preferable to optimise the predictions for the imperviousadiabatic- wall effectiveness, by examining the predictions corresponding to a number of plausible distributions of the effective Prandtl or Schmidt number. Various values of the effective Prandtl /Schmidt number were tried, including  $\sigma_{\rm eff}$  of 0.5 and 1.0, as suggested by the experiments in the previous section.

The mixing-length theory yields zero eddy viscosity and diffusivity at the point of zero-velocity-gradient.

As this is unrealistic, the simple expedient of bridging the region of zero eddy diffusivity with a straight line between the points of highest eddy diffusivity was employed (please see Fig. 5.2.2)

The distributions of mixing length and the procedure near zero velocity gradient outlined above appear crude over simplifications of the processes taking place within the flow and indeed this is so. It is the object of the present exercise to examine the predictions that result with this crude hypothesis and to outline areas where a more sophisticated hypothesis is necessary. It is in the nature of turbulent flow that its gross properties are not always sensitive to assumptions about its complex internal structure.

# 5.2.4 Comparison of predictions with experimental data: flows in uniform pressure.

The results of computations using the above mixing length and effective Prandtl/Schmidt number are presented in this section. Fig.5.2.3 (a) to (m) shows predicted profiles of mean velocity and concentration (or enthalpy) for thirteen sets of data from the references mentioned in section 5.2.2 above, along with the measured profiles. The corresponding predictions of effectiveness are shown in Fig. 5.2.4 (a) to (m). The predictions are shown as full lines and the data as points. The constants used for these computations, K,  $\lambda$ , and  $\sigma'_{eff}$  are 0.419, 0.09 and 1.0 respectively. Table 5.2.1 presents a summary of the data along with the quantitative measure of agreement between predicted and measured values of effectivenees mentioned previously, viz.  $\Lambda$  and  $D_{max}$ .

It can be seen from Fig.5.2.3 that the predictions of velocity profiles is on the whole satisfactory for all the cases, including a wall-jet, a wall-wake and a weak walljet which decays to a normal turbulent boundary layer, far downstream. There are small discrepancies between the predictions and measurements but these do not appear to be systematic. The largest discrepancy (around 8 percent of velocity) in Fig. 5.2.3 (h) occurs for the lowest velocity ratio considered ( $\bar{u}_{\rm C}/u_{\rm G} = 0.36$ ).

Before proceeding to examine the predictions of effectiveness and concentration profiles, the predictions

|     | •       |                                | TAE            | LE 5.2.1 | Summary                 | of com           | pariso | on of pr             | edicted | and r | neasured                      | l effeci          | iveness     |
|-----|---------|--------------------------------|----------------|----------|-------------------------|------------------|--------|----------------------|---------|-------|-------------------------------|-------------------|-------------|
|     |         |                                |                | •        |                         |                  | •      |                      |         |       |                               |                   |             |
| No. | DATA    | ū <sub>c</sub> /u <sub>c</sub> | <sup>R</sup> C | p/p<br>G | ్ <sub>t</sub> =        | 1.0              | •      | σ <sub>t</sub> ≕ 0.5 |         |       | $\sigma_{t} = 1.75$           |                   |             |
|     |         |                                | N.             |          | .A <br>_x/yc<br>=100    | D <sub>max</sub> |        | A X/YC=              | D max   |       | $A \Big _{\frac{x/y_c}{100}}$ | Dmax              |             |
| a   | Run 9   | 0.55                           | 1970           | 1.0      | 0.030                   | +0.03            | GOOD   | 0.090                | -0.07   | FAIR  | 0.103                         | +0.12             | FAIR        |
| b   | Run 4   | 0.76                           | 2620           | 1.0      | 0.034                   | ±0.03            | GOOD   | 0.143                | -0.15   | POOR  | 0.037                         | +0.04             | GOOD        |
| С   | Run 1   | 1.23                           | 4170           | 1.0      | 0.024                   | +0.02            | GOOD   | 0.090                | -0.10   | FAIR  | 0.075                         | +0.10             | FAIR        |
| d   | Run 10  | 1.85                           | 6330           | 1.0      | 0.063                   | +0.07            | FAIR   | 0.055                | -0.05   | FAIR  | 0.122                         | +0.08             | POOR        |
| е   | Ref(29) | 0.76                           | 5570           | 1.0      | 0.099                   | +0.11            | FAIR   | .0.048               | -0.03   | GOOD  | 0.174                         | +0.22             | POOR        |
| f   | Ref(29) | 2.30                           | 17400          | 1.0      | 0.107                   | +0.14            | FAIR   | 0.024                | ±0.02   | GOOD  | 0.176                         | +0.24             | POOR        |
| g   | Ref(23) | 0.67                           | 5670           | ≈1.0     | 0.038                   | -0.06            | GOOD   | 0.153                | -0.17   | POOR  | 0.043                         | +0.07             | GOOD        |
| h   | Ref(61) | 0.36                           | 4300.          | ≈1.0     | 0.091                   | +0.10            | FAIR   | 0.025                | ±0.03   | GOOD  | 0.148                         | +0.17             | POOR        |
| i   | Ref(56) | 0.88                           | 4580           | ≈1.0     | 0.021                   | ±0.03            | GOOD   | 0.102                | -0.12   | FAIR  | 0.080                         | +0.08             | FAIR        |
| j   | Run 2   | 0.58                           | 5150           | 4.17     | 0.012                   | ±0.02            | GOOD   | ·0 <b>.</b> 112      | -0.15   | POOR  | 0.012                         | +0.05             | GOOD        |
| k   | Run 6   | 1.65                           | 14250          | 4.17     | 0.018                   | -0.07            | GOOD   | 0.093                | -0.15   | FAIR  | 0.048                         | <u>+</u> 0.02     | GOOD        |
| 1   | Ref(5)  | 1.01                           | 9800           | 4.17     | 0.013                   | -0.05            | GOOD   | 0.085                | -0.13   | FAIR  | 0.027                         | +0.03             | GOOD        |
| m   | Ref(5)  | 1.01                           | 1990           | 1.38     | 0.028                   | <u>+</u> 0.03    | GOOD   | 0 <b>.</b> 080       | -0.15   | FAIR  | 0.087                         | +0.08             | FAIR        |
|     |         | - <del>-</del> .               |                | Λ        | 0.054                   |                  |        | 0.112                |         |       | 0.101                         |                   |             |
|     |         |                                |                |          | R.                      | ATINGS           |        |                      |         |       |                               | · · · · · · · · · | <del></del> |
|     |         |                                |                |          | $\Lambda < 0.05$        |                  |        | GOOD                 |         |       |                               |                   |             |
|     |         |                                |                |          | $0.05 < \Lambda < 0.11$ |                  |        | FAIR                 | •       |       |                               |                   |             |
|     |         |                                |                | •        | 0.11 < 1                |                  |        | POOR                 |         |       |                               |                   |             |
|     |         |                                |                | I        |                         |                  |        |                      |         |       | •                             |                   |             |

of some additional hydrodynamic quantities will now be discussed. Fig. 5.2.5 (a) and (b) show predicted and measured growth rate, decay of velocity maxima and wallshear stress for two velocity ratios greater than unity. The data shown in (a) are present measurements and those in (b) are from reference (28). The predictions are satisfactory. Fig. 5.2.5 (c) shows the prediction of integral properties and wall-shear stress for the case of a weak wall-jet where the velocity maxima disappears downstream and R2 passes from negative to positive values. There is also a discontinuity in the shape factor H. Fig. 5.2.5 (d) and (e) show similar predictions for two velocity ratios less than unity. Again one set of data is from reference (28), and the other is present measurement . The agreement between the predictions and experiment is satisfactory.

The largest velocity ratio examined so far is 2.74 and the predictions found to be satisfactory. It is of interest to see whether this is valid for the case of the wall-jet in still surroundings  $(u_C/u_G \rightarrow \infty)$  Fig. 5.2.6 shows predictions of the growth rate of  $\boldsymbol{y}_{\text{HALF}}$  and decay of  $u_{MAX}$  for the data of Gartshore (17) and Tailland and Mathieu (73): wall-shear stres data is also shown for the data of reference (73). The corresponding velocity profiles are shown in Fig.5.2.7. It may be seen from the full lines in Fig.5.2.6 that the use of the constants K= 0.419 and  $\lambda$ =0.09, lead to satisfactory predictions of  $y_{HAT,F}$  and  $u_{MAX}$  and the wall-shear stress. The predicted velocity profile is defective, as shown in Fig.5.2.7, in that the velocity maximum occurs too close to the wall and exhibits a peaky shape. The velocity profile can be corrected by reducing  $\lambda$  to give K/ $\lambda$  of 7, but this leads to excessively low rates of spread and velocity maximum decay. This is shown by the broken lines in Fig.5.2.6 and 5.2.7. It may be concluded that for the case of the pure wall-jet, no one set of values of K and  $\lambda$  will result in satisfactory predictions of more than two of

the shape of the mean velocity profile,  $y_{\rm HALF}$  and  $u_{\rm MAX}$   $c_{\rm f}/2$  .

and

Since the shape of the mean velocity profile is the least important of these, the value of 0.419 and 0.09 for K and  $\lambda$  are considered most satifactory. The data of Bradshaw and Gee (7) and Eskinazi and Kruka (16) for a velocity ratio of 10 were also examined and similar conclusions were found to be appropriate.

Thus it may be concluded that the simple ramp- mixing length distribution gives fairly satisfactory predictions of the hydrodynamic quantities over a wide range of velocity and density ratios. For high velocity ratios the mean velocity profile is incorrectly predicted but this is not considered a serious draw back.

Returning to the problem of predicting concentration profiles and effectiveness, it is evident from Figs. 5.2.3 and 5.2.4 that both these quantities are well predicted with an effective Prandtl/Schmidt number of 1.0. The shape of the concentration profile (normalised with the value at the wall) is in good qualitative agreement with the experimental profiles. The discrepanciss are mainly in the outer regions of low concentrations where the accuracy of the measurements is low.

The predictions of effectiveness carried out with three different specifications of the turbulent Prandtl/ Schmidt number, viz.  $\sigma'_t$  of 1.0 (full lines), 0.5 (broken lines) and a linear distribution across the layer from 1.75 at the wall to 0.5 in the free stream (chain dotted lines) are shown in Fig.5.2.4. It can be seen that the best over-all agreement is obtained with  $\sigma_{ ext{t}}$ = 1.0. This may be substantiated by comparing the values of  $\Lambda$  (as explained in section 5.2.1) . Table 5.2.1 (p. 85) indicates the value of  $\Lambda$  evaluated at a distance of 100 slot-heights along with the maximum deviation between the predicted and measured effectiveness, for each of the above specifica -tions for  $\sigma'_{+}$ . It can be seen that there is a certain amount of compensation amongst the predictions for the different sets of data, ie., no one specification of  $\sigma'_{t}$  predicts all the data equally well. However, the predictions obtained with  $\sigma'_t$  of 1.0 gives the lowest value for the  $ar{oldsymbol{\lambda}}$  , equal to 0.054 percent of effectiveness as compared to  $\overline{\Lambda}$  of 0.112 and 0.101 for  $\sigma_{t}$  of 0.5 and the linear distribution of  $\mathcal{O}_+$  respectively.

The present conclusion regarding the best value for  $\sigma_{+}$  is at variance with the suggestion of reference (29), of the linear distribution across the layer. There are two reasons for this reconsideration. First, that certain data (shown in Fig, 5.2.4 (e), (f), and (i)), examined since the writing of the report, were poorly predicied with the linear distribution of  $\sigma_{+}$ . The second reason stems from the use of the Couette-flow assumption in the procedure of reference (49). The consequences of this assumption were (a) that the conservation of species across the flow was not precisely observed and (b) it caused the non-dimensional concentration profile to bulge outwards due to the incorrect slope at the first grid interval near the wall. Subsequently, the formulation near the wall was revised (69) to allow for the convection in the half-interval near the wall. An example of the velocity and concentration profile obtained with the original and modified procedures, for a constant  $\sigma'_{+}$  of 1.0 is shown in Fig. 5.2.8. The new formulation results in a higher value of the effectiveness and a 'flatter' non-dimensional concentration profile. A similar effect was previously obtained by the use of a linear distribution of  $\sigma_{t}$ .

#### 5.2.5 Flows in the presence of streamwise pressure gradients.

In chapter 4.2.2 data pertaining to the flow downstream of a two-dimensional film cooling slot in the presence of pressure gradients were presented. It is of interest to examine the prediction of these data with the simple mixing-length hypothesis, in conjunction with the mixing length and effective Prandtl or Schmidt number adopted in the previous section.

The procedure for the calculations was basically similar to the one for the zero-pressure gradient flows discussed in the last section. The appropriate boundary conditions along the free stream implied that the freestream velocity was varied in the streamwise direction to correspond with the experimental data. The value of the free stream velocity at a downstream station during the

marching integration procedure was obtained from polynomials fitted to the experimental values of  $K_{n}$ .

Before proceeding to examine the results of these computations, two factors pertinent to flows with pressure gradients should be mentioned. First, that the wall functions incorporated in the calculation procedure of reference (49) were based on the van Driest's hypothesis (74), extended to include the influence of pressure gradients and mass transfer, on the drag and heat transfer in turbulent flow. The validity of these functions for heat transfer in adverse pressure gradients has been examined by the present author (43) and by the authors of ref.(49) for several boundary layers with favourable and adverse pressure gradients. They have been found to be satisfactory for all the cases except those in presence of strong favourable pressure gradients.

The second remark is to note that predictions obtained with the mixing-length distribution used in the previous section are not valid as such, to flows in strong favourable pressure gradients, such as PG2 and PG3 (described in chapter 4), in which re-transition to laminar flow is imminent. In such cases, the deviation between the predictions and experiments is an indication of re-transition.

It is also pertinent to note that in majority of the applications of film cooling, the favourable pressure gradients are unlikely to be strong enough to induce re-transition.

The calculations and comparison with the experimental data will now be presented. Fig. 5.2.9 (a) and (c) show predicted and measured profiles of mean velocity and concentration(of helium tracer) corresponding to the favourable pressure gradient PG2 ( $K_p$  (nominal) = 1.8×10<sup>-6</sup>), for two velocity ratios. Fig. 5.2.9 (b) and (d) present similar information for the case of the adverse pressure gradient PG4 ( $K_p$  (nominal) = -1.0×10<sup>-6</sup>). The velocity profiles have been normalised with the local free stream velocity.

It is evident from Fig. 5.2.9 (a) that significant discrepancies exist between the prediction based on the assumption of fully turbulent flow and the experimental velocity profiles for the case of the favourable pressure gradient, PG2. In particular, the predicitions underestimate the thickness of the viscous sub-layer and indicate a greater velocity defect than that shown by the experimental data. However, for the velocity ratio greater than unity, and for the same nominal value of  $K_p$  (Fig.5.2.9 (c)) the velocity profiles appear to be well predicted. It should be noted that the value of the pressure gradient parameter  $\Delta_p$  for this velocity ratio is lower than that for the lower velocity ratio (Fig.5.2.9 (a)); consequently, PG2 constitutes a milder pressure gradient for this case.

The above observations are also reflected in the predictions of integral quantities and skin-friction coefficient. Fig. 5.2.10 (a) shows measured and predicted values of  $R_2$ , H and  $c_f/2$  for the run shown in Fig.5.2.9 (a) (ie. PG2,  $\overline{u}_{C}/u_{G} = 0.58$ ). The predicted value of R<sub>2</sub> tends towards the equilibrium value for turbulent flow, corresponding to the prevailing value of  $K_{p}$ , as obtained from Fig. 11 of reference (33), while the experimental data tend towards the corresponding asymptote for laminar flow. The predicted and measured values of the shape factor H, do not show much change except far downstream, where the experimental values begin to rise towards a laminar asymptote and the predictions towards a turbulent asymptote. The measured skin friction coefficients are everywhere below the predictions based on the assumption of turbulent flow. The trends shown in Fig.5.2.10 (a) are more clearly illustrated in Fig.5.2.10 (b) for the stronger favourable pressure gradient PG3, and for the same velocity ratio. In this figure, the experimental values of R2 and H are close to the equilibrium laminar values while the corresponding predictions tend towards the turbulent asymptotes. The predicted skin-friction coefficients increase with the downstream direction, while the measured values indicate a sharp decrease at about 100 slot-heights.

The predicted and measured growth of  $y_{HALF}$ , decay in the velocity maximum and the skin-friction coefficient for the favourable pressure gradient PG2 and a velocity ratio greater than unity, are shown in Fig.5.2.11 (a). The agreement between the predictions and experiment are excellent. This is not surprising since, as as suggested above, the pressure gradient PG2 constitutes a mild pressure gradient for this velocity ratio. The predictions and measurementindicate a decrease in the velocity maximum upto a distance of about 70 slot-heights, followed by an increase further downstream. This suggests that in the initial region the loss of momentum due to viscous forces is dominant, but far downstream, its increase due to the acceleration is greater. The predictions also indicate a decrease in the thickness of the layer from  $x/y_{\rm C}$  of approxi -mately 130. The good agreement between the predicted and measured skin friction coefficients suggests that the flow is still turbulent in the wall region.

The above comparison of predictions based on the assumption of turbulent flow and the experiments in flows with imminent re-transition does not provide any positive criterion for the onset of reverse transition. The reason for this is partly because reverse transition is a gradual process and there can be a lag in space and time between its manifestations in the various mean properties. For example, a decrease in the skin-friction coefficient does not always coincide with the minimum in the shape factor (see for example, Figs. 5 and 9 of reference (1)), which has been cited as an approximate criterion for the onset of reverse transition (52). However, in the present problem of wall-jet and wall-wake flows, numerical values of quantities such as R2 and H do not always connote the same meaning as corresponding values for conventional boundary layers and thus the criteria for reverse transition based on these quantities has limited relevance. For present purposes, significant departures from predictions based on turbulent-flow assumption is a fair indication that reverse transition is taking place.

Predictions of the hydrodynamic quantities in the adverse pressure gradient PG4 will now be examined. As mentioned earlier, Fig.5.2.9 (b) and (d) show measured and predicted profiles for two velocity ratios on either side of unity. In general, the mean velocity profiles are well predicted, except for some discrepancy far downstream, in the outer regions of the layer and for the case of velocity ratio less than unity. Part of this discrepancy may be attributed to the non-two dimensionality of the flow in this region. The rapid increase in the layer thickness

is well demonstrated by the predictions and experimental data. Fig.5.2.10 (c) shows the predicted and measured values of integral properties  $R_2$  and H and the skin-friction coefficient. The prediction for  $R_2$  and H are satisfactory, while the skin friction is well predicted far downstream. Closer to the slot, the experimental data for skin friction are lower than the predicted values. Fig.5.2.11 (b) shows predicted and measured growth of  $y_{HALF}$ , decay of velocity maximum and the skin-friction coefficient corresponding to a velocity ratio greater than unity, and for the adverse pressure gradient PG4. Again the agreement between the predictions and experiments is very satisfactory.

Finally, Fig.5.2.12 (a) to (d) show the predicted and measured values of the impervious-wall effectiveness in the presence of pressure gradients. Fig.5.2.12 (a) and (b) correspond to the favourable pressure gradient PG2 while (c) and (d) correspond to the adverse pressure gradient PG4. Predictions for the case of the strong favourable pressure gradient over-estimate the effectiveness far downstream. This demonstrates the unsatisfactoriness of the mixing length and effective Schmidt- number concept in flows in which reverse transition is either taking place or is imminent. It is plausible that for such flows, the laminar Schmidt number ( $\sigma'= 0.22$  for the diffusion of helium into air) will influence the effective Schmidt number over a considerable part of the flow.

The prediction of the impervious-wall effectiveness and concentration profiles for the case of the adverse pressure gradient PG4, shown in Figs. 5.2.12 (c), (d) and 5.2.9 (b) and (d), are very satisfactory.

## 5.2.6 Conclusions and summary.

The main object of this section was to asses the validity of the simple mixing-length theory to predict • the time-mean properties of turbulent flow downstream of a film cooling slot. Available experimental data, corresponding to a wide range of velocity ratios, density and pressure gradients, have been compared with the predictions of mean velocity and concentration (or enthalpy) profiles, the impervious- or adiabatic- wall effectiveness,

wall-shear stress and integral properties.

The principal conclusion that can be drawn is that the ramp-distribution of the mixing-length (eq.5.1.1) and a unity value of the effective Prandtl or Schmidt number can provide acceptable predictions of the above quantities for all the cases examined, except those in favourable pressure gradients, strong enough to re-laminarise the boundary layers.

#### CHAPTER 6

6. The prediction of effectiveness and heat transfer downstream of a film cooling slot. Introduction.

In the previous chapter, the validity of the mixing length hypothesis was examined in the region sufficiently downstream of the slot, where the effects of the slot geometry were likely to be of less importance. For this exercise, integration was commenced from measured profiles of velocity and conserved property downstream of the slot. However in most practical situations profiles at a downstream station are not available and only the conditions at the slot exit are known. For example, the velocity and temperature prevailing in the slot and main -stream may be known or deducible and it is desired to predict the adiabatic-wall effectiveness and heattransfer coefficient downstream of the slot exit. In some applications, neither the wall temperature nor the heat flux are known a priori; these can be determined from the predicted adiabatic-wall temperature and a heat-transfer coefficient based on this temperature.

In this chapter the possibility of obtaining predictions of film cooling effectiveness and the heat-transfer coefficient from the slot exit, using the prediction procedure discussed in the previous chapter is examined. It must be pointed out that close to the slot exit, the assumptions leading to the parabolic, boundary-layer equations, are not strictly valid, due to the presence of cross-stream pressure gradients and recirculation behind the slot lip. This region is more accurately represented by the Navier Stokes equations in their entirety: these equations are partial, elliptic differential equations and their solution involves greater computer time and complexity.<sup>1</sup> It is therefore interesting to examine the performance of the marching integration procedure for parabolic equations, commencing from the slot exit. However, in view. of the inconsistency of using parabolic equations in the

 This approach has been concurrently examined at Imperial College. See for example, Kacker, S.C., Ph.D. thesis (1969) vicinity of the slot, discrepancies between the predictions and experiment are to be expected; it is to be hoped however, that these will affect the details of the flow pattern rather than the wall properties, such as the effectiveness of film cooling and the heat-transfer coefficient.

As suggested by the experimental data presented in chapter 4 and the literature survey of chapter 2, the effectiveness of a film cooling slot is influenced by several variables. The important ones were shown to be . the slot to mainstream velocity and density ratio, the geometry of the injection region and to a lesser extent, the longitudinal pressure gradient and the initial conditions at the slot exit, such as the thickness of the boundary layer on the outer surface of the slot lip. Further, in most applications of film cooling, heat transfer through the film cooled wall is present and it is to be expected that this quantity will also be influenced by the variables mentioned above. Out of these variables, the geometry of the injection region is probably the most complex, since the number of geometriaal parameters is large; only a few of them have been systematically investigated (79), (30), (64). Most geometries used in practical applications render the flow three dimensional and thus go beyond present analytical capability. One variable which has been experimentally investigated for two dimensional flows and shown to have a practically important influence, is the slot-lip thickness to height ratio,  $t/y_c$  (79), (30).

In the present chapter, the predicted trends with respect to the above-mentioned variables and their agreement with available experimental data for two-dimensional flow are examined. Where a serious shortcoming of the turbulence model used is encountered, attempt has been made to overcome it by empirical means. This artifice was found to be necessary, for example in the prediction of the influence of the lip thickness on effectiveness.

A further exercise which has been attempted in this chapter relates to the prediction of wall temperatures in a gas turbine combustion chamber. The motivation for this exercise is two fold: first to demonstrate the relative importance of the variables which influence the temperature of a film cooled surface, and second, to outline the role of prediction procedures such as the present one, in the

prediction of wall-temperatures in practical devices.

The chapter commences with the case of tangential injection through a plane two-dimensional slot with a nominally thin slot lip, and in flows with uniform density and pressure, bounded by an adiabatic or impervious wall. The effects of density ratio and slot lip thickness are examined next. Film cooling in the presence of heat transfer at the wall is then considered, followed by the effects of longitudinal pressure gradients on the effectiveness of film cooling. This is followed by a brief discussion on film cooling in gas turbines. Comparison with available data is made for each of the factors mentioned above. The chapter concludes with the author's suggestion for future research in film cooling. A listing of the computer programme for the prediction of the flow development, effectiveness and heat transfer coefficient is given in appendix A.5, together with explanatory notes.

# . <u>6.1</u> Prediction of adiabatic- or impervious- wall effectiveness: case of uniform pressure and thin slot lip.

The flow downstream of a film cooling slot has been qualitatively described in chapter 3 (see Fig. 3.1.1). Three boundary layers growing in the vicinity of the slot may be distinguished: one on either side of the slot lip and one on the surface to be cooled. The ones growing on the slot lip merge just downstream of the slot exit, and develop as a mixing layer. This mixing layer merges with the wall boundary layer further downstream. There is also a region of separated flow immediately behind the slot lip.

In order to apply the prediction procedure in this region, one has to decide on two matters: first the location of the grid, and second, the choice of characteristic lengths in the various regions of the flow. These will be discussed in turn.

## The grid location.

The simplest possibility is to locate the finite difference grid from the wall to the outer edge of the boundary layer on the outer surface of the lip. This is procedure adopted here and a typical grid is shown in

Fig.6.1.1. The grid lines are not uniformly spaced: a larger number is provided in regions of large velocity gradients. In the region directly behind the lip, a small forward velocity (say 10 percent of the free stream value) is assumed. This is incorrect, but preserves compatibility with the parabolic nature of the solution procedure. With this set-up, it is necessary to specify the profiles of velocity and conserved property (enthalpy or mass fraction) across the slot. This can be obtained from measured profiles or guessed from a knowledge of the mass flow rates through the slot and free stream and assumed profile shapes. For instance, in the example shown in Fig.6.1.1, the velocity profile at the slot exit is composed of three power-law profiles, representing the three boundary layers mentioned above. The two boundary layers within the slot are separated by a region of uniform velocity. The advantage of the present practice of grid location is that the presence of the boundary layer within the slot and on the outer surface of the lip is taken into consideration. A different approach was used by the authors of reference (10): the development of a mixing layer originating from a point near the tip of the slot lip was calculated, up to the station where this layer impinged on the wall. Thereafter the calculation proceeded as for a wall boundary layer. The initial conditions assumed in this method were unrealistic as they do not include the effects of the boundary layers at the slot exit. Consequently, the predictions from this procedure are poor in the initial region, particularly for velocity ratios close to unity.

## Characteristic lengths.

The mixing lengths are generally specified in relation to a characteristic width of the layer being calculated. For example, in the previous chapter, the characteristic length was taken as the distance from the wall to the point where the velocity differed from the free stream value by one percent. The question arises, whether this practice should be retained in the region near the slot, where two layers can be identified,

ie., the mixing layer and the wall boundary layer. It might be more appropriate, for example, to use two characteristic lengths, one for each of the two regions. Further downstream where the velocity defect due to the lip has vanished, only one characteristic length would suffice. This possibility has been investigated by the present author in reference (45). Fairly satisfactory predictions of the impervious-wall effectiveness were obtained for velocity ratios outside the range 0.9 to 1.5 and for a desity ratio of unity. Within this range of velocity ratio, the effectiveness was over estimated. It is also worth while to explore the possibility of using the width of the whole layer, ie. from the wall to the outermost point where the velocity differs from the free stream value by say one percent , as the characteristic This practice, apart from being simpler, has the length. advantage that there is no abrupt change in the characteristic length: the two-layer model suffered from this at the station where the velocity defect behind the lip disappeared. Resluts of calculations performed with with the width of the whole layer as the characteristic length are discussed below.

#### Details of the calculation procedure.

The prediction of impervious-wall effectiveness and heat transfer coefficient were made with the following values of the numerical and physical parameters:

35

0.419 0.09 1.0

| number of grid lines |   |
|----------------------|---|
| K                    | c |
| λ                    |   |
| $\sigma_{t}$         |   |
| Step length          |   |
|                      |   |

Such that mass flow entrained in each forward step is 2.5 percent of the mass flow in the layer, provided the step legth does not exceed the following: dx < .05  $Y_G$ ; 0<x/ $Y_C$ <10 < .15  $Y_G$ ; 10<x/ $Y_C$ <20 < .30  $Y_G$ ; 20<x/ $Y_C$ .

The characteristic length was taken as the distance from the wall to the point where the velocity differed from the free stream value by one percent. Further, the eddy diffusivity profile was bridged across the peaks as explained in chapter 5.

# Comparison of predicted and measured impervious-wall effectiveness.

Fig. 6.1.2 (a) to (h) show predicted and measured values of the impervious-wall effectiveness for eight values of the velocity ratio, ranging from 0.37 to 3.12 and for a density ratio of unity. The experimental data, shown by the solid circles are present measurements for air injection through a 2.54 mm-plane slot (apparatus A, chapter 4). This slot had a tapered lip and for present purposes can be considered as a lip of vanishing effective thickness. The diagrams are plotted on a semi-logarithmic axes and unlike Fig.5.2.4, the predictions extend from the slot exit. It can be seen that the agreement between the predictions and experiment is, on the whole, good. This is true even for the case of velocity ratio in the vicinity of unity((d) and (e)). For the lowest velocity ratio ( $\bar{u}_c/u_c = 0.37$ ), the predictions are pessimistic in the initial region but agree with the experimental data further downstream. For the two highest velocity ratios, the predictions overestimate the effectiveness far down -stream. In fact the predicted effectiveness for a constant downstream distance is practically the same for velocity ratios greater than about 1.2, whereas the experimental values decrease slightly with increasing velocity ratio. It may be noted that this decrease has been observed only for unobstructed slots with thin lips (t/y  $_{\rm C}$  < 0.4) (30), (79). In spite of this deficiency, the predictions are acceptable. It may be noted that the two-layer model (45) did indicate a decrease of effectiveness with an increase of velocity ratio in excess of unity. However, the predictions shown in Fig.6.1.2 are to be preferred, in view of their better agreement with experiment especially for velocity ratios in the vicinity of unity.

Fig.6.1.3 shows similar computations for cases of density ratios greater than unity. Fig.6.1.3 (a) to (d) show predicted and measured impervious-wall effectiveness for the injection of argon through the slot; this corresponds to a density ratio of 1.38. Figure 6.1.3 (e) to (h) relate to a density ratio of 4.17, obtained by the injection · of Arcton-12. Again the agreement between the predictions and experiment is satisfactory: the predictions differ from experiment by less than ten percent of unity. In most cases there is a tendency for the predictions to slightly underestimate the effectiveness far downstream.

Predictions for the case of density ratios much less than unity (for example hydrogen injection, which resulted in a density ratio 0.069) present a special difficulty, since the flow is likely to be not fully turbulent in the initial region, due to the low Reynolds numbers. Predictions obtained by assuming fully turbulent flow, with the eddy viscosity and diffusivity augmented with the laminar values are shown for four velocity ratios in Fig.6.1.4. It can be seen that the predictions are of the right order, but tend to over estimate the effectiveness in the downstream region. It is possible that for low Reynolds numbers, the tur-- bulent Schmid number may be appreciably influenced by the laminar value (0.22 for hydrogen diffusing into air). The mixing length distribution is also likely to be significantly different from the one assumed here. For such a possibility to be examined, detailed information of the velocity and concentration profiles as well as the wall-shear stress are needed. Such information is not available at present. Light-gas injection has no immediate film cooling application and so the prediction of hydrogen-injection-data will not be pursued further in this study.

Before proceeding to examine the influence of other variables, it is instructive to examine briefly the predictions for the above data for density ratios greater and equal to unity, obtained from some of the empirical correlations mentioned in the literature survey of chapter 2. Three of these are of particular interest: that of Spalding et. al. (65), Stollery and El-Ehwany (71) and that developed by the Lucas Gas-turbine Equipment Ltd. (36). The expression of reference (65) is chosen in view of its validity for velocity ratios greater and less than unity, and that of reference (71) for its theoretical foundation. The Lucas correlation has been included in view of its wide use in industry.

Predictions of the impervious-wall effectiveness obtained from the above correlations for the initial

conditions appropriate to the present data are shown in Fig.6.1.5 (a) to (p). It should be mentioned that the expression of reference (65) has been generalised to non-uniform density cases by replacing the velocity ratio  $\overline{u}_{c}/u_{c}$ , by the mass-velocity ratio, m. The following conclusions can be drawn concerning the agreement of these predictions with the present measurements. For the uniform density case, the Lucas correlation seems to give the best agreement with the data, except for the lowest velocity ratio, where it tends to over estimate the effectiveness. For the lowest velocity ratio, the boundary layer model of Stollery and El-Ehwany gives good agreement, but the predictions from this model deteriorate rapidly with increasing velocity and density ratio. The correlation of Spalding et. al. appears to give good predictions for the uniform density case, for velocity ratios not close to unity. For the higher velocity ratios, the correlation of Spalding et. al. tends to overestimate the so called 'poten -tial core' region by a significant amount. The predictions for the cases with density ratios greater than unity show greater discrepancies and all except the data for the lowest velocity ratio for argon are poorly predicted with the correlations of references (65) and (71). Also the LuCas correlation greatly under estimates the effectiveness for velocity ratios greater than about 0.5. Thus the general conclusion that can be drawn regarding these three correlations is that they provide acceptable predictions in certain limited ranges of velocity and density ratios, but that outside these ranges, the predictions are poor. In particular the Lucas correlation can under estimate effectiveness by about 25 percent of unity for density ratios greater than unity and  $x/y_c$  of approximately 30.

## 6.2 Influence of the slot lip thickness on effectiveness.

In specifying the velocity profile at the slot exit, the region hehind the slot lip was represented by a region of low forward velocity of corresponding width. Computations of adiabatic-wall effectiveness for a constant velocity ratio and varying lip thickness indicated very little influence of this parameter. This is contrary to the experimental

findings of references (30) and (63), which report a significant decrease in effectiveness with increase of the slot lip thickness-to-height ratio. The discrepancy between predicted and experimental trends can be attributed partly to the turbulent exchange hypothesis and partly to the use of the boundary layer equations in the vicinity of the slot The former reason seems to be more important: an increase in the lip thickness leads to higher turbulent kinetic energy in the mixing layer behind the lip (as substantiated by the measurements of reference (31)). One would expect on the basis of the hypothesis of Prandtl and Kolmogorov (eq.5.0.4) that the eddy diffusivity (and hence the mixing) would consequently increase and result in a lowering of the effectiveness. The mixing length theory does not indicate a marked increase in the diffusivity, since the velocity gradients are not very different for the thick and thin lips. Thus logically one must abandon the simple mixinglength theory and adopt a more general theory of turbulence. which would, amongst other things, predict quantitatively, the observed decrease of effectiveness with an increase in the slot lip thickness. Unfortunately such a model of turbulence is not yet forthcoming: the higher order models of turbulence invariably need a greater number of empirical constants whose specification and generality is, to date, in a nebulous state. Thus one is tempted to retain the mixing length concept, particularly in view of satisfactory predictions for the thin- lip configuration. It is however necessary to introduce further empiricism with respect to the eddy diffusivity, such that the predictions of effectiveness accord with experiment. One such attempt will be described presently. It is based in the notion that there is a relationship between tha eddy diffusivity downstream of the lip and the lip-thickness to slot-height ratio. The other tacit requirement is that the effect due to the lip diminishes in the streamwise direction. Thus one could, as a first approximation, merely add to the eddy diffusivity specification used in the last section, a term which is related to the lip thickness and which diminshes in the downstream direction.

The present procedure for enhancing the diffusivity in the wake region in indicated in Fig.6.2.1.  $\Gamma_{\rm c}$  represents

the effective viscosity or diffusivity profile resulting from the Prandtl mixing-length hypothesis, as modified by the bridging procedure described in chapter 5.2.3. In the region between the two outer peaks of the eddy diffusivity profiles, an additive diffusivity  $\Gamma_{add}$  is imposed to represent the effect of the lip thickness.  $\Gamma_{add}$  is computed from a form of the eddy viscosity hypothesis suggested by Prandtl (58) for free flows:

$$T_{add} = \frac{\xi}{\sigma_t} \rho \ell_w u_w , \qquad 6.2.1$$

where  $\xi$  represents a function to be specified empirically,  $\ell_w$  is a characteristic width and  $u_w$  is a characteristic velocity of the wake. In the region between the two inner peaks of the diffusivity profile, the diffusivity is assumed to vary linearly from the value at the innermost peak to the augmented value at the adjacent peak. Thus the resulting eddy diffusivity profile is continuous across the layer and exhibits an increased value on the wake region behind the lip. The additive term  $\Gamma_{add}$  decreases to zero as the wake disappears.

The next problem is the specification of the quantities in equation 6.2.1.  $\rho$  is taken as the local density, which therby permits the application of the above expression to cases of non-uniform density;  $\ell_w$  is taken as the distance between two points near the edges of the wake region where the velocity differs from the free stream and velocity maxima by one percent, and u, is taken as the velocity difference between the minimum velocity in the wake and the mean of the free stream and velocity maxima (see Fig.6.2.1). As mentioned above  $\xi$  is a quantity to be specified empirically. It would be convenient for example, to obtain a relation between  $\xi$  and the lip thickness to slot height ratio, which would result in satisfactory predictions of the adiabaticwall effectiveness over a useful range of velocity ratios. An attempt has been made to obtain this function by trial and error, so as to obtain agreement with the measured values of effectiveness for the data of Kacker and Whitelaw (30) for the following range of variables:

0.13 < 
$$t/y_{C}$$
 < 1.1  
1.0 <  $x/y_{C}$  < 100  
0.75 <  $\bar{u}_{C}/u_{G}$  < 2.3  
 $\rho_{C}/\rho_{G}$  = 1.0

and

This may be considered a useful practical range of variables for film cooling application, except that the density ratio is frequently greater than unity. The following power-law relationship between  $\xi$  and  $t/y_C$  has been found to yield reasonable predictions of the impervious-wall effectiveness:

 $\xi = 0.28 \ (t/y_C)^2 \qquad . \qquad 6.2.2 \ According to this expression <math display="inline">\xi$  varies from 0.0047 to 0.34 for the range of  $t/y_C$  indicated above.

Predictions of the impervious-wall effectiveness obtained with the above expression for  $\xi$  in conjunction with the eddy diffusivity distribution described in Fig.6.2.1 are shown in Fig.6.2.2, along with the experimental data from reference (30). Predictions and measured values of effectiveness for five values of lip thickness ratio and five values of the velocity ratio are shown in this figure. The predictions for the velocity ratio up to 1.27 and  $t/y_{c}$ of 0.63 are highly satisfactory. For the highest velocity ratio, the predictions overestimate the effectiveness in the far downstream region (x/ $y_{C}$  >70 ). The predictions for the largest value of  $t/y_{C}$  (of 1.14) can be considered satisfactory for all the velocity ratios, but the predictions for  $t/y_c$  equal to 0.89 are conservative for velocity ratios greater than unity. The experimental data for this lip thickness ( 0.89 ) and the largest velocity ratio shows a rather unexpected (high) value of effectiveness around 30 slot-heights downstream.

In general, the ability of the above simple expression for 5 to provide acceptable predictions over such a range of velocity and lip thickness is encouraging. However, its ultimate utility depends on its ability to predict data from other sources, with or without density gradients. It may be noted that the present data discussed in the previous section, were obtained in a plane twodimensional slot with tapered lip, whose effective thickness is not known. In light of the present predictions indicating the effect of lip thickness, such a tapered lip is suggestive of a vanishing effective lip thickness. Further available data will now be examined.

Fig. 6.2.3 (a) to (g) shows measured and predicted values of the adiabatic-wall effectiveness for a density ratio of 0.93. The data points are present measurements made in an axisymmetric flow configuration presented in chapter 4.4 (apparatus B). The slot-lip thickness to height ratio was 0.35 for all the runs except the data indicated by the square symbols in (b) and (f). These correspond to tests conducted with a lip insert which resulted in a lipthickness ratio of unity. Predictions corresponding to a value of  $t/y_{C}$  of 0.35 and a value of  $\xi$  obtained from equation 6.2.2 are shown as full lines. These predictions agree very satisfactorily with the experimental values, except for the lowest and highest velocity ratios, where the predictions tend to overestimate the effectiveness by about 10 percent of unity. The discrepancy for the largest velocity ratio ( $\overline{u}_C/u_G = 3.54$ ) is not surprising as the present procedure does not predict a significant lowering of effectiveness for velocity ratios in excess of unity. The discrepancy for the lowest velocity ratio is rather unexpected as this suggests an effect of the circumferential radius of curvature for low velocity ratios which is contrary to the predicted trend: the broken line in Fig.6.2.3 (a) represents a prediction for a plane slot with identical initial conditions. The measurements are not sufficiently detailed to explain this discrepancy. The chain - dotted lines in (b) and (f) represent predictions corresponding to a slot lip thickness to height ratio of unity. Agreement with the measurements, represented by the square symbols, is satisfactory for distances greater than 20 slot-heights. Thus the predictions shown in Fig.6.2.3 (a) to (g) lend further support to the prediction procedure described in this chapter.

Finally, Fig.6.2.4 (a) to (i) show predicted and measured effectiveness for the data of Seban (60), Samuel and Joubert (56), Burns and Stollery (5),(6). For the tapered lip of references (56), (5) and (6), the value of  $\xi$  has been calculated from equation 6.2.2 corresponding to a small lip thickness (t/y<sub>C</sub> of 0.1). The predictions for the thin lip cases and all the density ratios are satisfactory. The preditions for the data of Burns and Stollery (6) for a value of t/y<sub>C</sub> of unity (see Fig 6.2.4 (f),(g) and (i))

are fair only for velocity ratios less than 0.5. For the two higher velocity ratios, the predictions over-estimate the detrimental influence of the lip thickness. This would suggest that for large density and velocity ratios the simple formula given by equation 6.2.2. fails to give acceptable predictions. However, the density ratio for Arcton 12 is 4.17, which is greater than that likely to be found in gas turbine practice. It would therefore be interesting to examine the largest value of density and velocity ratio for which the present procedure will provide acceptable predictions. Beyond these limiting values the empirical expression, eq. 6.2.2, will have to be modified and further free parameters introduced. This has not been attempted at present.

It is, however, interesting to note the predicted influence of the density ratio on effectiveness for various lip thickness ratios, on the basis of equation 6.2.2. Fig.. 6.2.5(a) shows the predicted values of effectiveness at a distance of 32.5 slot-heights corresponding to a velocity ratio of 0.8 and for three values of the lip thickness ratio  $(t/y_{C} = 0.2, 0.5 \text{ and } 1.0)$ , plotted against the density ratio. Fig. 6.2.5(b) shows similar predictions for a velocity ratio equal to 1.5 and a slot Reynolds number of 5000. The predictions indicate, as one would expect, that the influence of the lip thickness ratio decreases with increasing density This trend is more pronounced at the larger velocity ratio. ratio. Further judgement on the validity of equation 6.2.2 should await additional experimental data for a range of density ratios between 1 and 4, in order to confirm or negate the accuracy of the trends predicted in this figure.

In making the above predictions, the thickness of the boundary layer on the outer surface of the lip  $(y_{G,C})$  was chosen to correspond with the experimental value, where available. The present procedure indicates a lowering of effectiveness with increasing thickness of the boundary layer. This trend is in accord with the measurements of Kacker and Whitelaw (27). The predictions indicate that the effect of the boundary layer thickness is significant for  $y_{G,C}/y_C$  less than about 2.5. For the value of this ratio greater than about 3, the predicted effectiveness appears to be only weakly

dependent on this quantity. The predicted influence of  $y_{G,C}$  is greater than that indicated by the measurements of ref. (27). However, these predictions refer to a thin lip configuration, whereas the measurements of reference (27) correspond to a lip-thickness to slot-height of 0.42. It is possible that for values of this parameter above a certain value, the influence of the lip boundary layer diminishes and the influence of the lip thickness itself becomes the controlling factor.

## 6.3 Prediction of heat transfer in presence of film cooling:

So far the predictions have been made for an adiabaticor impervious-wall boundary condition, but frequently film cooling is accompanied by heat transfer at the wall. If the thermal boundary condition at the wall is known a priori, a prediction of the unknown quantity can be readily made using the prediction procedure of reference (49). For example, if the heat flux at the wall is prescribed, the wall temperature can be predicted using the prediction procedure, or vice-versa. Thus, the conventional concept of a heat-transfer coefficient becomes unnecessary. However, in some situations, neither the heat flux at the wall nor the wall temperature is known in advance, and in such situations, it is convenient to define and compute a heat transfer coefficient based on the adiabaticwall temperature. The adiabatic-wall temperature has thus to be initially computed: this follows readily from a prediction of the adiabatic-wall effectiveness on the lines outlined in the previous section. For fluids with Prandtl number close to unity and for small values of the heat flux at the wall, the heat transfer coefficient defined in the above manner is likely to be independent of the wall temperature or heat flux distribution. Thus, a possible sequence for the computation of the heat transfer coefficient corresponding to a set of initial conditions at the slot exit is as follows: first, a prediction of the adiabatic-wall temperature is made on the lines outlined in the previous two sections, and the values stored as a function of the distance from the slot. Next, a calculation of the wall temperature is made, commencing from the slot exit and corresponding to a (arbitrary) constant heat flux at the wall. The heat-transfer coefficient can then be readily calculated.

Calculations in this sequence were carried out corresponding to the initial conditions of runs 1 to 7 with the axisymmetric test-section (Apparatus B, chapter 4) and a realistic boundary condition. A constant heat flux equal to  $630 \text{ W/m}^2$  extending from the slot exit was used for the computations. A check calculation with a heat flux equal to  $950 \text{ W/m}^2$  yielded practically the same values of the heat transfer coefficient, thus confirming the insensitivity of this quantity to the magnitude of the heat flux for the range of the experiments. The mixing length constants were the same as used previously.

The results of these calculations are shown in Fig. 6.2.3. along with the experimental data which are shown as points: (a) to (g) display the predicted and measured adiabaticwall effectiveness which have been discussed in the previous section. (h) to (i) show the streamwise distribution of the heat-transfer coefficient (expressed as a Nusselt number based on the slot height and conductivity at slot temperature) for the initial conditions indicated in (a) to (g). For distances greater than about ten slot heights, the agreement between the predicted and measured heat-transfer coefficients is very satisfactory; the maximum discrepancy is of the order of 10 per cent. For distances less than ten slot heights, the measured values are below the predictions. At least part of the discrepancies in this region is due to the use of the parabolic equations in the vicinity of the slot. Another feature of interest is that for velocity ratios less than 1.3, both the measured and predicted heat transfer coefficients tend towards values which are lower than the fully-developed pipe flow values (indicated by the short dashed chain-dotted line) by some 15 per cent. For velocity ratios greater than 1.3, the predicted and measured heat transfer coefficients at a distance of 50 slot heights are higher than the fully-developed pipe flow values.

A further feature is that the predictions for the heat transfer coefficient for the thick lip case  $(t/y_{\rm C} = 1.0)$  corresponding to (i) and (m) of Fig. 6.2.3 do not differ appreciably from the prediction for the thin lip case. For run 2 ( $\bar{u}_{\rm C}/u_{\rm G} = 0.616$ ) this is in good agreement with the experimental finding and for run 6 ( $\bar{u}_{\rm C}/u_{\rm G} = 2.88$ ) it is a

reasonable approximation. The implication of this statement is that for a given wall-heat-flux, the departure from the prevailing adiabatic-wall temperature is independent of the lip thickness.

# 6.4 Influence of longitudinal pressure gradient on the effectiveness of film cooling:

The cases considered so far have been those of uniform, or nearly uniform, pressure. It is interesting to examine the predictions for the case where the flow downstream of the slot is either accelerated or decelerated. Experimental data for such flows was presented in chapter 4 for three favourable and one adverse pressure gradients. The main experimental findings were that the influence of moderate pressure gradients, both favourable and adverse ( $K_p = \pm 1.0 \times 10^{-6}$ ) and for density ratios equal or greater than unity, was quite small. Decreases in effectiveness of around ten per cent were recorded and the effect was less for velocity ratios greater than unity. For the flow was no longer fully turbulent and the reversion towards a laminar state occurred. For this case, a larger decrease in effectiveness for velocity ratios less than unity was observed.

Predictions of impervious-wall effectiveness with initial conditions corresponding to the experiments, described in chapter 4 (Apparatus A), with a variable free stream velocity were carried out. The free stream velocity was varied . to keep the value of the parameter  $K_p$  constant and equal to the nominal values existing in the experiment. These computations indicated only a small effect of the pressure gradients on the effectiveness. In particular, a small increase in effectiveness with favourable pressure gradients (about 3 per cent of local value at  $x/y_{C} = 32.5$  and  $K_{p} = 3.3 \times 10^{-6}$ ) for velocity ratios less than unity was indicated. For the higher velocity ratios, the predicted effect was less than 1 per cent. Thus, the insensitivity of the predicted effectiveness to favourable pressure gradients is in keeping with the experimental observations for the moderate pressure gradient PG1(K  $\approx$  1.0 x  $10^{-6}$ ), though the trend for low velocity ratios is opposite to that observed. The reason for this behaviour may be found by examining the energy equation which is repeated here in Cartesian coordinates:

$$u \frac{\partial h}{\partial x} + v \frac{\partial u}{\partial y} = -\frac{\partial \mu_{eff}}{\partial y} \frac{\partial h}{\partial y} + \left(\frac{\partial^2 h}{\partial x^2} + \frac{\partial^2 h}{\partial y^2}\right) + \nu \Phi_D$$

For an adiabatic wall in the presence of turbulent flow, the molecular transport terms may be neglected near the wall. Also, for an adiabatic wall, both  $\partial h / \partial y$  and v may be expected to be small in the vicinity of the wall. Thus the predominant terms near the wall are the x-wise convection and the turbulent diffusion term. The latter may be expected to increase in a favourable pressure gradient since the (dimensional) velocity gradient increases and the eddy viscosity, given by the mixing-length theory is proportional to the velocity gradient. However, the increase in the eddy viscosity due to an increase in du/dy would be partially off-set by a decrease in the characteristic length,  $y_{c}$ . The gradient of h in the y-direction is unlikely to be sensitive to the pressure gradient, since dp/dx does not appear in the energy equation. Thus, it follows that an increase in the diffusion term is compensated by an increase in u on the left-hand side, leaving  $\partial h/\partial x$  relatively unaltered near the wall. The effectiveness is of course directly influenced by  $\partial h/\partial x$ .

For the large pressure gradient, PG3 ( $K_{\rm p} \approx 3.3 \times 10^{-6}$ ) the predictions are at greater variance with the experimental observations; the latter indicate a decrease in effectiveness of the order of 20 percent of the local value at a distance of 32.5 slot-heights. For such values of  $K_{p}$ , the flow is no longer fully turbulent and, in fact, is undergoing reverse transition to laminar flow. The use of the mixing length hypothesis in the manner used for fully turbulent flow in this situation is incorrect and undoubtedly is the major cause of thes discrepancy between prediction and experiment. The transport hypothesis valid for such flows is not fully known. It is to be expected that the laminar viscosity and the laminar Schmidt number will play an increasing role as the reverse transition progresses. It should ne noted that the laminar Schmidt number for helium (which was used as a tracer in the experiments) is around 0.22 and so the effective Schmidt number could have been significantly lower than unity for the low Reynolds numbers prevailing in such flows. This would explain tha fact that the predictions using

an effective Schmidt nuber of unity over estimate the effectiveness for the strong favourable pressure gradient case. Thus satisfactory prediction of film cooling with strong favourable pressure gradients would appear to be possible only after a fuller understanding of the process of relaminarisation and a realistic exchange hypothesis for such phenomena is available. The flow downstream of a film cooling slot is not a suitable one for a fundamental study of this phenomenon since the distribution of velocity and shear stress across the layer are complex. Such a study is best carried out in a simple boundary layer flow of the equilibrium type (33).

The predictions for the adverse pressure gradient ( $K_{p} \approx -1.0 \times 10^{-6}$ ) indicate a small decrease (about 2 percent  $at'x/y_{c}$  of 32.5) in effectiveness for velocity ratios less than unity. For velocity ratios greater than unity, the decrease in effectiveness is less than one percent. Thus the predicted trends are in accord with experimental. observations, though the predicted effect of adverse pressure gradient is lower than the measured one for low velocity ratios. On the above basis, the present procedure appears to be satisfactory for predicting the effectiveness of film cooling in the presence of moderate favourable or adverse pressure gradients. It is not, however, in its present form suitable for flows with favourable pressure gradients which are strong enough to cause retransition to laminar flow.

#### 6.5 Review of predicted trends.

A number of aspects of film cooling with two dimensional slots operating under controlled conditions have now been dealt with. It is appropriate to review the contents of the thesis so far, before proceedigg to an examination of practical applications of film cooling. The modified Patankar-Spalding prediction procedure has been used for predicting the flow development starting from the slot exit. The Prandtl mixing-length hypothesis has been used, taking the width of the whole layer as the characteristic length and a bridging procedure for the eddy diffusivity, to overcome the unrealsitic result of zero eddy diffusivity at a zero-velocity-gradient location. Integration of the momentum and species (or enthalpy)

conservation equations was commenced from the slot exit, using realisitic profiles of velocity and mass fraction (or enthalpy). The appropriate boundary conditions were imposed: these comprised an adiabatic or a heated wall on one side and a free stream with constant or varying fluidvelocity on the other. Density variations within the flow, resulting either from temperature or mass fraction variations were taken into account. The downstream development of the flow was computed and in particular, predictions of the impervious- or adiabatic- wall effectiveness and the heat-transfer coefficient (based on the adiabatic-wall temperature) were made. Comparison of predictions with available data for these quantities was carried out in order to asses the utility of the procedure using the mixing-length constants selected in chapter 5. A summary of this exercise follows presently.

A representative selection of predictions and relevant experimental data are cross plotted in Fig.6.5.1 to show the influence of the variables considered in this chapter. Fig.6.5.1 (a) shows the predicted and measured influence of velocity ratio on the imperviouswall effectiveness for three values of the distance from the slot. The data shown are present measurements for air injection through a plane two-dimensional slot (apparatus A). The smallest value of  $x/y_{C}$  shown in the figure ( $x/y_{C}$  of 32.5) corresponds to a measuring station and the largest distance that is likely to be of interest in gas turbine practice. The agreement between the predictions and the measurements is good throughout except for velocity ratios greater than about two, where predictions tend to over estimate the effectiveness. The predictions for velocity ratios in the vicinity of unity are also satisfactory.

Fig. 6.5.1 (b) indicates the influence of the slot to mainstream density ratio on the effectiveness for density ratios varying from 0.069 to 4.17. and for a velocity ratio of 0.8. The predicted trends agree well with the present measurements. There is however a tendency for the predictions to under estimate the effectiveness for large density ratios.

Fig. 6.5.1 (c) shows the effect of favourable and adverse pressure gradients for constant density flows: the ratio of effectiveness in the presence of pressure gradients to the zero-pressure- gradient-value is plotted against the velocity ratio for a value of  $x/y_{C}$  of 32.5. The predictions are essentially insensitive to the pressure gradients: for velocity ratios less than unity, a small increase (about 2 per cent) in effectiveness is predicted for favourable pressure gradients (K  $_{\rm p} \leq 3.3 \times 10^{-6}$ ) and a small decrease of the same order for the adverse pressure gradient ( $K_{p} \approx -1 \times 10^{-6}$ ) is indicated. The predicted trend is thus in accord with with the present experimental data for adverse pressure gradient, though the predicted effect is smaller than the observed one for velocity raios less than unity. For moderate favourable pressure gradients ( $K_p \leq 1 \times 10^{-6}$ ), the insensitivity of the predicted effectiveness is again in agreement with the measurements, but for the strong pressure gradients ( $K_p > 2 \times 10^{-6}$ ), the predictions on the basis of turbulent flow are inadequate.

Fig. 6.5.1 (d) shows the influence of lip thickness on the impervious-wall effectiveness at a density ratio of unity and a velocity ratio of 0.8. The data points correspond to the measurements of Kacker and Whitelaw (30), interpolated for the values of the velocity ratio and  $x/y_{C}$ shown. The predictions were obtained with an empirical procedure to enhance the eddy diffusivity behind the lip in relation to lip thickness. to slot height ratio. Briefly, the diffusivity was augmented with a value obtained from Prandtl's formula for mixing layers (eq.6.2.1). The multiplying coefficient in this expression was empirically related to the lip thickness (eq.6.2.2) so as to give good predictions of effectiveness for a particular set of experimental data (30), which covered a useful range of velocity ratios and lip thicknesses. Prediction of data from other sources yielded mixed results: the present data with a plane slot and a tapered lip (assumed to have a nominally zero effective lip thickness) as well as present data with the axisymmetric slot configuration with a lip thickness ratio of 0.35 and 1.0 are well predicted, except for the lowest and the highest velocity ratios. Prediction of the data of Burns and Stollery (5), (6), for a plane

slot with a tapered lip and a density ratio of 1.38 and 4.17 respectively are satisfactory, and so are the predictions for the data of Seban (60), Samuel and Joubert (56). However, the predictions for the recent data of Burns and Stollery (6) for a density ratio of 4.17 and a lip thickness ratio of unity are poorly predicted. This suggests that the present procedure would have to be modified for the case of high density and velocity ratios. Sufficient data to place upper limits of the velocity, density and lip thickness ratio for the present procedure do not exist.

Fig.6.5.1 (e) shows the predicted and measured influence of velocity ratio on the heat transfer coefficient (expressed as a Nusselt number based on the slot height and the conductivity at slot temperature) for the values of  $x/y_{C}$ . The data are present measurements obtained with the axisymmetric flow configuration (apparatus B) with a heated wall. Again, the agreement between the prediction and experiment is very satisfactory, the largest discrepancy being of the order of 10 percent. The predictions are insensitive to an increase of the lip thickness, a fact which is borne out by the experiments.

Fig.6.5.1 (f) shows the influence of the thickness of the boundary layer on the outer surface of the lip  $(Y_{G,C})$ for a velocity ratio of 0.8 and a density ratio close to unity for three values of  $x/Y_C$ . The predictions indicate that the effect of the boundary layer thickness  $Y_{G,C}$  diminishes for  $(Y_{G,C}/Y_C)$  greater than about 3, and is significant for values of this ratio below about 2.5. The present data with apparatus A, the data of references (30)  $(t/Y_C = 0.128)$ , (60) and (56) support the predicted trends for a range of  $Y_{G,C}/Y_C$  from 0.8 to 7.0. These data correspond to relatively thin lip configurations, and the agreement with the present predictions seems to suggest that the thickness of the boundary layer is significant for such geometries.

#### 6.6 Film cooling in gas turbines.

The discussion so far has mainly been concerned with film cooling through unobstructed two-dimensional slots in low turbulence wind tunnels and in the absence of combustion. It is important however, to examine the conditions under which film cooling slots have to operate in practice, for example in gas turbine combustion chambers or reheat nozzles of aircraft engines. The object of the present discussion is two-fold. First, to place the thermal aspects of film cooling in perspective by identifying the importance of the various parameters involved, and second, to define the relevance of the prediction procedures of the type discussed in the previous section.

The flow inside a flame tube of a gas turbine combustion chamber is characterised by the following features, not normally present in wind tunnels in which film cooling slots are tested:

a) large radiative heat-fluxes,

- b) three-dimensional flow resulting form assymetry and irregularities in the geometries and pressure field,
- periodicity in the flow caused by instabilities in the recirculating-flow pattern,
- d) large gradients of temperature and concentration in the radial direction due to combustion and mixing in the primary and dilution streams.

Thus the flow is of a very complex nature and, particularly in view of (c) above, any time averaged quantity has to be regarded with caution. Although the solution of the flow 'in toto'is unlikely to be accomplished in the near future, the prediction of the mean wall-temperature and other time-mean properties is a feasible and challenging task.

The temperature assumed by the flame tube is such that the heat received by it through radiation and convection . from the interior of the chamber is balanced by the heat loss to the surroundings by convection and radiation. For practical purposes the following equation represents this heat balance:

 $\underbrace{\sigma_{\mathrm{B}}^{(\frac{1}{2})} \varepsilon_{\mathrm{G}}^{\mathrm{T}_{\mathrm{G}}^{1}} (\mathrm{T}_{\mathrm{G}}^{2} - \mathrm{T}_{\mathrm{W}}^{2})}_{\mathrm{R}_{\mathrm{A}}} + \underbrace{\mathrm{h}_{1}^{(\mathrm{T}_{\mathrm{a}}, \mathrm{W}^{-} \mathrm{T}_{\mathrm{W}}^{-})}_{\mathrm{C}_{\mathrm{A}}^{\mathrm{C}}}$  $= \underbrace{\sigma_{B}^{c}(\frac{1}{\varepsilon_{W}^{c}-1}) (T_{W}^{4}-T_{C}^{4}) + h_{2}(T_{W}^{-}-T_{C}^{-})}_{R_{2}}$ 6.6.1

The major empiricism and simplification in the above equation is involved in the gas radiation term, R1. The derivation of this term is discussed in reference (34) and assumes, among other things, that

| α              |   | π. 1.5                       |  |
|----------------|---|------------------------------|--|
| W              | - | $\left(\frac{-G}{-G}\right)$ |  |
| ε <sub>G</sub> | - | $T_{W}$                      |  |

where  $\epsilon_{\rm G}$  is the flame emissivity at flame temperature and  $\alpha_{\rm W}$  is the flame absorptivity at wall temperature. The effects of reflection and re-radiation at the wall are approximately allowed for by terms(1+ $\epsilon_{\rm W}$ )/2. For simplicity, equation 6.6.1 assumes the equality of the emissivities of the flame tube and the outer casing ( $\epsilon_{\rm W}$ ) and that the outer casing is at a temperature T<sub>C</sub>.

It is convenient to consider the wall-temperature  $(T_{\rm W})$ as being directly determined by the seven quantities appearing in equation 6.6.1, viz. the adiabatic-wall temperature,  $T_{a.W}$ (determined by the adiabatic-wall effectiveness,  $\eta$ ), the flame and coolant temperatures ( $T_{C}$  and  $T_{C}$ ), the two convective heattransfer coefficients (h<sub>1</sub> and h<sub>2</sub>) and the two emissivities ( $\epsilon_{G}$  and  $\epsilon_{W}$ ). Some idea of the relative importance of these quantities can be obtained from Fig. 6.6.1, which shows the variation of the wall temperature as each of these quantities is varied in turn from a set of datum values indicated in the same figure. The abscissa at the bottom of the figure indicates the values of these variables as a fraction of the datum, and the corresponding dimensional values are shown by the scales at the top. The datum values chosen may be considered representative of conditions existing at some point within a modern high-compression-ratio aero engine. The wall temperature was computed from equation 6.6.1 by an iterative solution procedure.

It can be seen from Fig. 6.6.1 that the wall temperature

is strongly dependent on the gas temperature,  $T_{\rm G}$ , and the adiabatic-wall effectiveness,  $\eta$ . The least important factor appears to be the emissivity of the wall, while the influence of the two heat-transfer coefficients and the flame emissivity are comparable in magnitude and on a percentage basis, equal to about a fourth of the influence of the effectiveness and gas temperatures. If one assumes an error of  $\frac{1}{2}$  10 per cent in each of the quantities, the worst resulting error in the wall temperature would be about  $\frac{1}{20}$ °C (i.e. about 16 per cent of datum value). Conversely, if one wishes to predict the wall temperature to say within  $\frac{1}{20}$ °C (i.e. 2 per cent of datum), all the controlling quantities (except the emissivity of the wall) need to be known to an accuracy better than 2 per cent. This is undoubtedly a stringent requirement.

It should be noted that the trends shown in Fig. 6.6.1 refer to a particular set of datum conditions. Trends for other datum conditions are likely to be similar, except for a particular case when the effectiveness is close to unity and a large radiation flux is present. In such a case, the direction of the convective heat flux inside the flame tube can be reversed (i.e. into the main stream) and a high heattransfer coefficient in fact decreases the wall temperature.

The computational or experimental uncertainties in these seven factors will now be briefly discussed. The adiabatic-wall effectiveness and the two convective heat transfer coefficients can, in principle, be obtained from the prediction procedure described earlier in this chapter. As mentioned previously, the adiabatic-wall effectiveness is influenced by a number of factors including the velocity and density ratio, the geometry of the injection region and to a lesser extent, by pressure gradients. The prediction procedure described earlier has been shown to provide reasonably good predictions for two-dimensional slots with and without density and pressure gradients, and to a limited extent, the effect of the slot lip thickness to height ratio. However, slots used in practice are not two-dimensional and have a significant and complex effect of geometry. The present procedure, without modification, is therefore unlikely to provide satisfactory predictions for such geometries. The

deficiencies of the present procedure may be judged from the example given later in this section. The film-heat-transfer coefficient, on the other hand, appear to be a weak function of the lip thickness, at least for the case of unobstructed slot described in chapter 4. Thus, predictions of the heat-transfer coefficients on the film-cooled surface obtained with the present procedure, can probably be used, unless threedimensional effects are dominant. The heat-transfer coefficient on the outer surface of the flame-tube can also be obtained as a first approximation from the boundary-layer prediction procedure. Here a suitable boundary condition which does not differ a great deal from the actual one would have to be assumed. Of course the flow in the annulus between the flame tube and outer casing is not strictly two-dimensional, especially for tubo-annular arrangements and near dilution holes.

The next important factor is the flame emissivity. There is considerable uncertainty in its value, especially athigh pressures (say thirty atmospheres). The gas emissivity is a function of the pressure, temperature, the fuel and its burning characteristics. The current industrial practice seems to be its evaluation from an empirical formula due to Reeves, referenced in (34). However, reliable experimental data for this quantity at typical engine conditions is urgently needed. It is conceivable that the value given by the empirical expression may be in error by as much as 100 per cent, the resulting error in the wall temperature being about 55<sup>o</sup>C for the datum conditions shown in Fig. 6.6.1.

Finally, the two gas temperatures, the mainstream and coolant temperatures need to be known accurately for the wall temperature to be computed. The compressor delivery temperature is probably a good approximation to the coolant temperature at least for the cooling strips near the primary zone. Estimation of the flame temperature, on the other hand, is fraught with uncertainties. The practice of obtaining the flame temperature from the overall fuel-air ratio and an assumption of the combustion efficiency is probably too crude. The best procedure at present seems to be the use of experimentally determined values using, for example, an aspirated probe. Again such data is scarce and generally of

a restricted nature. Even if such data were available, the problem still remains as to the radial station at which the gas temperature should be measured. It would be reasonable to expect that since the layer near the wall is transparent to radiation, the flame temperature used in the radiation term of equation 6.6.1 should correspond to the core of the flame tube, whereas the gas temperature for the convection term should correspond to the temperature at the edge of the boundary layer (i.e. the film).

A sample calculation was conducted corresponding to a practical combustion chamber with a wiggle strip geometry. The adiabatic-wall effectiveness and the heat transfer coefficient were computed using the prediction procedure mentioned earlier in the chapter. The slot height was taken equal to the maximum opening of the wiggle strip gap, and the lip thickness equal to that of the wiggle strip material. The predicted wall temperatures were some 300°C lower than the thermal paint results of Rolls Royce Ltd. (54). This is not surprising, as the predicted values of effectiveness correspond to unobstructed slots, whereas wiggle strips are known to yield much lower values of effectiveness. Further, the flame temperatures were calculated on the basis of overall fuel-air ratio and assumed combustion efficiency. These could be significantly in error: no direct measurements of the flame temperature were available.

### 6.7 Suggestions for future research in film cooling

The example above serves to stress the point that there is still a big gap before the prediction of mean wall temperatures of a film-cooled surface, such as the flame tube of a combustion chamber, can be achieved with any degree of confidence. The two main regions of uncertainty are (a) the effectiveness of practical slot geometries under operatingengine conditions, and (b) the gas conditions existing inside the combustion chamber. Future research should be mainly directed towards the examination of these two aspects. The present state of knowledge with two-dimensional slots in laboratory conditions is a useful starting point for the above goal, but is not the end in itself.

The two items mentioned above will now be discussed in turn. First, the question of the adiabatic-wall effectiveness

for practical geometries. Fig. 6.6.1 indicates that there is considerable incentive for achieving high values of effectiveness, as the wall temperature varies almost linearly with effectiveness. The problem here is not so much the acquisition of experimental data (although even this is hard to come by) but to devise a method of predicting the performance of practical devices. This can be done from first principles only when a solution procedure for time-dependent elliptic equations in three dimensions becomes available. Until such time, one would need to use considerable empiricism in any prediction procedure. In chapter 6.2 it was shown that it is possible to allow for one geometrical variable viz. the slot lip thickness to height ratio within the framework of the present prediction procedure for twodimensional flows. It may be possible to extend this procedure to practical geometries by introducing the concept of an equivalent two-dimensional slot. Thus, for a given practical slot geometry, a value of  $y_{C}$  and  $t/y_{C}$  corresponding to a twodimensional slot of similar performance would have to be found. The effectiveness for the two-dimensional slot with a finite lip thickness can be found using, for example, the procedure outlined in chapter 6.2.

There is some similarity between the performance of practical slots and two-dimensional slots with thick lips  $(t/y_{C} \ge 0.5)$ . For example, neither show a decrease in effectiveness for velocity ratios greater than unity. It is probably worth investigating this similarity further by comparing the performance of a specific practical slot and 2-D slots with varying lip thickness ratio. A design change in the practical device would be reflected in a change in the values of the 'equivalent clean slot' but the extent of the change cannot be predicted without experience. For example, if the pitch of a wiggle strip is altered, fresh data for the new design would be needed to determine the new value of the equivalent clean slot. The only advantage of this concept would be that relatively few parameters would be sufficient (two if equation 6.6.2 is used, or only one if a value of  $\xi$  in equation 6.2.1 for a given geometry, is chosen directly) to characterise the performance of a practical cooling strip over a range of velocity and density ratios. This is an attractive

proposition and should, in the author's opinion, be explored further. Plots of the type shown in Fig. 6.5.1(d) (i.e. effectiveness plotted against  $t/y_C$  for constant values of  $x/y_C$ ) would aid in the determination of the equivalent  $t/y_C$ . It should be a relatively straightforward procedure to check if the value of 5 (equation 6.2.1) chosen is satisfactory for the desired range of velocity and density ratios, provided reliable experimental data for the practical geometry are available.

The other aspect of the effectiveness of film cooling which needs investigation is the observation (by personnel of the Rolls Royce Ltd., Derby and Bristol) that the effectiveness of cooling strips under 'engine conditions' is different (worse) than in rig tests. It would be worthwhile to perform cold tests with a modified practical combustion chamber to determine the causes of this discrepancy. In particular, realistic density gradients could be achieved for the cold test by foreign gas injection in the secondary stream (the flow splitter at the inlet to the combustion chamber would have to be blanked off to permit independent control of the primary and secondary streams) and the impervious-wall effectiveness of the cooling strips determined by gas samples drawn through static-pressure holes drilled in the wall of the flame tube. Further, such cold tests would permit a better estimation of the flow pattern within the chamber and, in particular, the velocity ratio prevailing at the cooling strip could be measured accurately. Such a test will provide the much-needed information about the performance of cooling strips under realistic conditions and in the absence of radiation. It would then be possible to assess the effects due to the radiation term independently: at present one of the major difficulties is to determine the proportion of the discrepancy between measured and predicted wall temperatures which is due to error in the prediction of effectiveness and that due to incorrect gas temperatures and emissivities.

Another item which needs further investigation is the determination of the flow properties inside the combustion chamber. In particular, more accurate methods for measuring the gas temperatures and gas emissivity need to be devised and the spatial variations of these quantities within the chamber

need to be measured. It also seems worthwhile to attempt to use the solution procedure of reference (19) to determine the temperature and velocity field on an analytical basis. This would probably be more accurate than the current practice of obtaining the gas temperatures from the overall fuel-air ratio and an assumed combustion efficiency.

The task of predicting the wall temperatures of a practical film-cooled surface should become more hopeful when the distributions of the gas temperature, velocity and emissivity within the chamber are known more accurately, and the science of predicting the effectiveness of practical devices, perhaps on the lines indicated here, is more advanced.

#### REFERENCES.

- 1. BADRINARAYANAN, M.A. and RAMJEE, V. : On the criteria for reverse transition in a two-dimentional boundary layer flow. J. Fluid Mech. 35, 2 (1969).
- BAKER, P.J. : Heat tranfer in a supersonic parallel diffuser. J. of Mech. Eng. Sci. <u>7</u>, 1 (1965).
- BLOM, J and deVRIES, D.A.: On the value of the Turbulent Prandtl number. Proc. of the 3rd All Union Heat and Mass Transfer Conference, Minsk. Paper No. 1.8 (1968).
- BRADSHAW, P and GEE, M.T.: Turbulent wall jets with and without an external stream. A.R.C., R & M 3252,(1962).
- 5. BURNS,K and STOLLERY,J.L. : Film cooling: The influences of foreign gas injection and slot geometry on impervious-wall effectiveness. Imperial College, Dept. of Aero., Rep. EHT/TN/12 (1968).
- BURNS, W.K. and STOLLERY, J.L. : The influence of lip thickness on the impervious-wall effectiveness of a wall jet with foreign gas injection. Imperial Coll. Dept. of Aero., EHT/TN/19, (1969).
- 7. CARLSON, L.W. and TALMOR, E. : Gaseous film cooling at various degrees of hot gas acceleration and turbulence levels. Int. J. of Heat and Mass Transfer, <u>11</u>, 1695, (1968).
- 8. CHIN, J.H., SKIRVIN, S.C., HAYES, L.E. and SILVER, A.H. : Adiabatic wall temperatures downstream of a single, tangential injection slot. A.S.M.E., Paper 58-A-107 (1958).
- 9. CLAUSER, F.H. : The turbulent boundary layer. Advances in App. Mech., IV, 1. Academic Press, N.York (1956).
- 10. COLE, E.H., SPALDING, D.B. and STOLLERY, J.L. : Film cooling effectiveness calculated by a finite-difference procedure. Imperial Col. Rep. EHT/TN/3 (1967).
- 11. DEDMAN, deFORGE, A.S. and MARTIN, B.W. : Effects of secondary injection on the characteristics of a supersonic parallel diffuser. J. of Mech. Eng. Sci. <u>10</u>, 5 (1968).
- 12. ECKERT, E.R.G. and DRAKE R.M. (Jr): Heat and Mass Transfer. McGraw-Hill, (1959).
- 13. ECKERT, E.R.G. and BIRKEBACK, R.C. : Effects of slot geometry on film cooling. Heat Transfer Thermodynamics Education (Boelter anniversary vol.) McGraw-Hill Book Co. (1964).
- 14. ESCUDIER, M.P. : The distribution of the mixing length in turbulent flows near walls. Imperial Coll., Dept. of Mech. Eng. Rep. TWF/TN/1, (1965).
- 15. ESCUDIER, M.P. and WHITELAW, J.H. : The influence of strong adverse pressure gradients on the effectiveness of film cooling. Int. J. of Heat and Mass Transfer, 11, 1289 (1968).

- 16. ESKINAZI, S. and KRUKA, V. : The wall jet in a moving stream. J. Fluid Mech. 20, 555, (1964).
- 17. GARTSHORE, I.S. and HAWALESHKA, O. : The design of a two-dimensional blowing slot and its application to a turbulent wall-jet in still air. McGill Univ. Mech. Eng. Res. Labs., Tech Note 64-5 (1964).
- 18. GOLDMAN, J.B. and MARCHELLO, J.M. : Turbulent Schmidt numbers. Int. J. Heat and Mass Transfer 12, (1968).
- 19. GOSMAN, A.D., PUN, W.M., RUNCHAL, A.K., SPALDING, D.B. and WOLFSTEIN,W. : Heat and Mass Transfer in recirculating flows. Academic Press (1969).
- 20. GOLDSTEIN, R.J., ECKERT. E.R.G., TSOU, F.K. and HAJI-SHEIKH, A., : Film cooling with air and helium injection through a rearward-facing slot into a supersonic air flow. A.I.A.A., J., <u>4</u>, 6, 981 (1966).
- 21. HARTNETT, J.P. : Experimental distribution of the thermal-entrance length for the flow of water and oil in circular pipes. Trans. A.S.M.E., 77, 1211 (1955).
- 22. HARTNETT, J.P., BIRKEBACK, R.C. and ECKERT, E.R.G.: Velocity distributions, temperature distributions effectiveness and heat transfer for air injection through a tangential slot into a turbulent boundary layer. A.S.M.E., J. of Heat Transfer <u>83</u>,293 (1961).
- 23. HARTNETT, J.P., BIRKEBACK, R.C. and ECKERT, E.R.G.: Velocity distributions, temperature distributions, effectiveness and heat transfer in cooling a surface with a pressure gradient. A.S.M.E., Int. Dev. in Heat Transfer, Part IV, 682 (1961).
- 24. KESTIN, J, MAEDER, P.F. and WANG, H.E. : Influence of turbulence on the transfer of heat from plates with and without a pressure gradient. Int. J. of Heat and Mass transfer 3, (1961).
- 25. KESTIN, J. and RICHARDSON, P.D. : Heat transfer across turbulent, incompressible boundary layers. Int. J. of Heat and Mass Transfer, 6, 147 (1963).
- 26. KREITH, F. : Principles of Heat Transfer. Int. Text Book Co., Scranton (1958).
- 27. KACKER, S.C. and WHITELAW, J.H. : The dependence of the impervious-wall effectiveness of a two-dimensional wall-jet on the thickness of the upper lip boundary layer. Int. J. of Heat and Mass Transfer, <u>10</u>, 1623 (1967).
- 28. KACKER, S.C., And WHITELAW, J.H. : Some properties of the two-dimensional turbulent wall-jet in a moving stream. A.S.M.E., J. of App. Mech., Trans.,35,4 (1968).
- 29. KACKER, S.C., PAI, B.R., and WHITELAW, J.H.: The prediction of wall-jet flows with particular reference to film cooling. Prog. in Heat and Mass Transfer, Vol.2, Eckert presentation vol. Pergamon Press (1969).
- 30. KACKER, S.C. and WHITELAW, J.H. : An experimental investigation of the influence of slot-lip-thickness on the impervious wall effectiveness of the uniform density, two-dimensional wall jet. Imperial Coll., Dept. of Mech. Eng. Rep. EHT/TN/13 (1968). To be published in the Int. J. of Heat and Mass Transfer.

•

- 31. KACKER, S.C. and WHITELAW, J.H. : The turbulence characteristics of two dimensional wall jet and wall wake flows. Imperial Coll., Dept. of Mech. Eng. Rep. BL/TN/6 (1969).
- 32. KLEIN, J. and TRIBUS, M. : Forced convection from non-isothermal surfaces. Heat Transfer, a sympssium, Univ. of Michigan, Ann Arbor, Michigan (1953).
- 33. LAUNDER, B.E. and STINCHCOMBE, H.S.: Non-normal similar turbulent boundary layers. Imperial Coll., Dept. of Mech. Eng., Rep. TWF/TN/21 (1967).
- 34. LEFEBVRE, A.H. and HERBERT, M.V. : Heat Transfer Process in Gas-Turbine combustion chambers. Proc. Inst. of Mech. Engrs. <u>174</u>, 12 (1960).
- 35. LOCKWOOD, F.C. : Equilibrium-turbulent boundary layer prediction for a proposed Prandtl mixing length distribution. J. of Mech. Eng. Sci., <u>10</u>, 5, (1968).
- 36. LUCAS GAS TURBINE EQUIPMENT, Res. Rep. B.48016 : The skin cooling process and flame tube temperatures.
- 37. McMILLAN, F.A. : Experiments on Pitot tubes in shear flow. A.R.C., R.&M. No. 3028 (1957).
- 38. METZGER, D.E., CARPER, H.J. and SWANK, L.R. : Heat transfer with film cooling near non-tangential injection slots. Trans., A.S.M.E., J. of Engineering for Power, Paper No. 67- WA/GT-1 (1967).
- 39. MUKERJEE, T. : Design and performance criteria for supersonic parallel diffuser-ejector systems. Univ. of London, Ph.D. Thesis, (1968).
- 40. MYERS, G.E., SCHAUER, J.J. and EUSTIS, R.H. : The plane turbulent wall-jet. Part II. Heat Transfer. Tech. Rep. 2, NSFG 9705, Thermosciences Div., Dept. of Mech. Eng. Stanford Univ. (1961)
- 41. NICOLL, W.B. and WHITELAW, J.H.: The effectiveness of the uniform density, two-dimensional wall jet. Int. J. Heat and Mass Transfer <u>10</u>, 623 (1966).
- 42. NICOLL, W.B. : The turbulent wall jet: Its development and film-cooling effectiveness. Ph.D. Thesis, Univ. of London, Faculty of Engineering, (1967).
- 43. PAI, B.R. : Heat and Mass Transfer in Turbulent Boundary Layers - A Survey. Imperial Coll., Dept. of Mechanical Eng., Rep. TWF/TN/23 (1967).
- 44. PAI, B.R. and WHITELAW, J.H. : The influence of density gradients on the effectiveness of film-cooling. A.R.C., C.P. 1013 (1968).
- 45. PAI, B.R. : The application of the boundary-layer model to predict the influence of slot boundary conditions on film cooling. Imperial Coll., Dept. of Mech. Eng. Rep. EHT/TN/9 (1968).
- 46. PAI, B.R. and WHITELAW, J.H. : Simplification of the razor blade technique and its application to the measurement of wall-shear stress in wall-jet flows. To be published in the Aero-Quarterly.

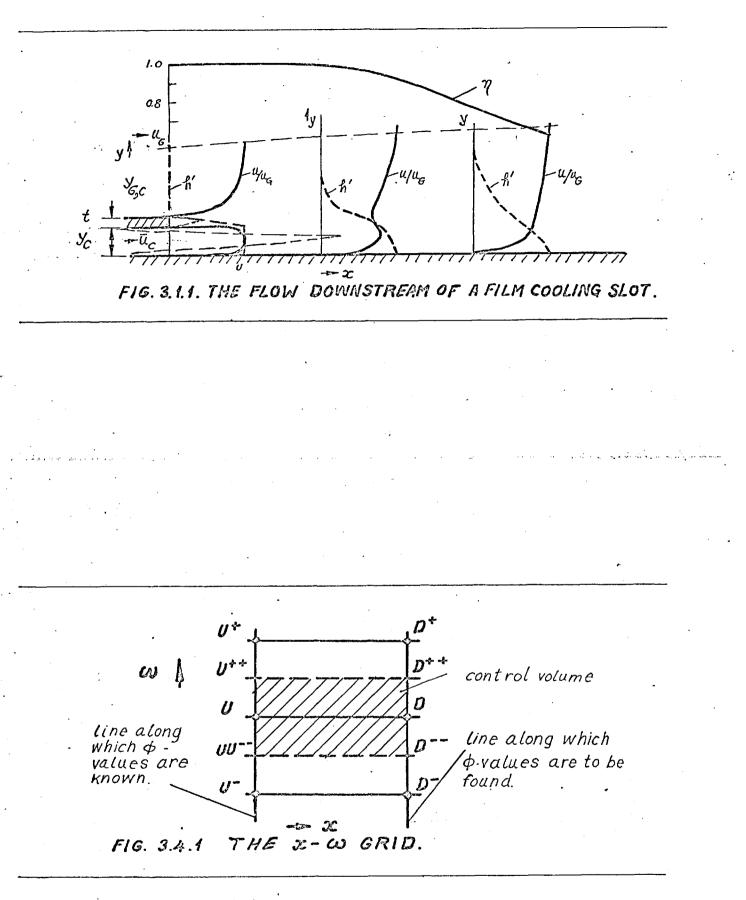
- 47. PAI, B.R. and WHITELAW, J.H. : The influence of strong pressure gradients on film cooling. Imperial Coll. Dept. of Mech. Eng., Rep. EHT/TV/A/15.
- 48. PATANKAR, S.V. and SPALDING, D.B. : A calculation procedure for heat transfer by forced convection through two-dimensional uniform property turbulent boundary layer on smooth impermeable wall. Proc. of 3rd Int. Heat Transfer Conf., Chicago (A.I.Ch.E.) <u>11</u>, (1966).
- 49. PATANKAR, S.V. and SPALDING, D.B. : Heat and Mass Transfer in Boundary Layers, Morgan-Grampian Press. (1967).
- 50. PATEL, R.P. and NEWMAN, J. : Self preserving, twodimensional turbulent jets and wall jets in a moving stream. McGill Univ. Rep. Ae 5, (1961).
- 51. PATEL, V.C. : Calibration of the Preston tube and limitations on its use in pressure gradients. J. Fluid Mech., 23, (1965).
- 52. PATEL, V.C. and HEAD, M.R. : Reverse transition of turbulent to laminar flow. J. Fluid Mech. <u>34</u>, 371 (1968).
- 53. REYNOLDS, W.C., KAYS, W.M. and KLINE, S.J. : Heat transfer in turbulent incompressible boundary layer. II - Step wall-temperature distribution. N.A.S.A. MEMO 12 - 2-58W (1958).
- 54. ROLLS ROYCE LTD., Aero Engine Division, Derby (Combustion Research Department): Private communication, (1969).
- 55. ROTTA, J. : Statische Theorie nicht homogenous Turbulenz. Z. Physik <u>129</u>, 547 (1951).
- 56. SAMUEL, A.E. and JOUBERT, P.N. : Film cooling of an adiabatic flat plate in zero pressure gradient in the presence of a hot mainstream and cold tangential secondary injection. J. of Heat Transfer, Paper No. 64 WA/HT - 48, (1965).
- 57. SCHETZ, A.J. and GILREATH, H.E. : Tangential slot injection in supersonic flow. A.I.A.A., J. <u>5</u>, 12 (1967).
- 58. SCHLICHTING, H. : Boundary layer theory. 4th Ed., McGraw Hill, N. York.
- 59. SEBAN, R.A., CHAN, H.W. and SCESA, S. : Heat transfer to a turbulent boundary layer downstream of an injection slot. A.S.M.E. Paper No. 57 - A- 36 (1957).
- 60. SEBAN, R.A. : Heat transfer and effectiveness for a turbulent boundary layer with tangential fluid injection. A.S.M.E., Journal of Heat Tranfer, 82 C, 303 (1960).
- 61. SEBAN, R.A. and BACK, L.H. : Velocity and temperature profiles in turbulent boundary layers with tangential injection. A.S.M.E., 84, 45-54 (1962).

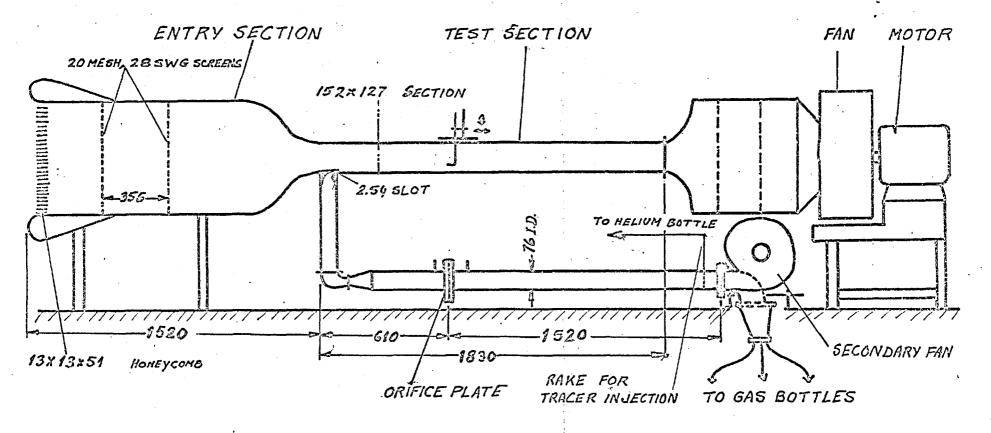
62. SEBAN, R.A. and BACK, L.H. : Effectiveness and heat transfer for a turbulent boundary layer with tangential injection and variable free-stream velocity. A.S.M.E., J. of Heat Tranfer, <u>84 C</u>, 235 (1962).

63. SIMPSON, R.L., WHITTEN, D.G. and MOFFAT, R,J. : An experimental study of the turbulent Prandtl number of air with injection and suction. Int. J. of Heat and Mass Transfer, 12 (1969).

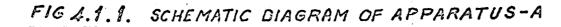
- 64. SIVASEGARAM, S. and WHITELAW, J.H. : Film cooling slots; the importance of lip thickness and injection angle. J. of Mech, Eng. Sci. <u>11</u>, 1, 22 (1969).
- 65. SPALDING, D.B., JAIN, V.K. and NICOLL, W.B. : Film cooling in incompressible turbulent flow: examination of experimental data for the adiabatic-wall temperature. A.R.C., REP. 25311 (1963).
- 66. SPALDING, D.B. : A unified theory of friction, heat transfer and mass transfer in the turbulent boundary layer and wall jet. A.R.C. CP 829 (1965).
- 67. SPALDING, D.B. : Lecture notes on turbulent jets, wakes and boundary layers. Imperial Col., Dept. of Mech. Eng. (1965).
- 68. SPALDING, D.B. : Monograph on turbulent boundary layers. Imperial Coll., Dept. of Mech. Eng., Report Nos. TWF/TN 24, 33, 34, 35, 37, 41. (1967 - 68).
- 69. SPALDING, D.B. : Private communication; Slip relations near boundaries. (1968).
- 70. SPALDING, D.B. : The calculation of the length scale of turbulence in some turbulent boundary layers remote from walls. Progress in Heat and Mass transfer, Eckert Presentation vol. 2, Pergamon Press. (1969).
- 71. STOLLERY, J.L. and EL-EHWANY, A.A. : On the use of a boundary-layer model for correlating film-cooling data. Int. J. of Heat and Msss transfer <u>10</u>, 101 (1967).
- 72. STOLLERY, J.L. and EL-EHWANY, A.A. : A note on the use of a boundary-layer model for correlating filmcooling data. Int. J. of Heat and Mass Transfer, <u>8</u>, 55 (1965).
- 73. TAILLAND, A. and MATHIEU, J. : Jet Parietal. J. de Mecanique, <u>6</u>, 103, (1967).
- 74. van DRIEST, E.R. : On turbulent flow near a wall. J. Aero. Sci. 23, (1956).
- 75.WIEGHARDT, K. : On the blowing of warm air for de-icing devices. German ref. : FB No. 1900 (1944) - Zentrale f. wiss. Bericht. (ZWB).
- 76. WHITELAW, J.H. : Review of heat transfer literature pertaining to wall jets. Imperial Coll. Rep. IC/HRJ/25 (1965).
- 77. WHITELAW, J.H. : The effect of the geometry of the injection region on wall cooling processes. A.R.C. 27373, HMT. 78 (1965).
- 78. WHITELAW, J.H. : An experimental investigation of the two-dimensional wall jet. A.R.C. C.P. 942 (1967).
- 79. WHITELAW, J.H. : The effect of slot height on the effectiveness of the uniform density, two-dimensional wall-jet. Imperial Coll., Dept. of Mech. Eng., Rep. EHT/TN/4 (1967).

|                  | · · · ·                                                                         |                |
|------------------|---------------------------------------------------------------------------------|----------------|
| SYMBOL           | MEANING NOMENCLATURE.                                                           | UNITS          |
| P A              | calibration coefficient of heat-flux meter. (Eq. A.2.1)                         | W/m²-deg C     |
| с                | mass-fraction of injected fluid                                                 | · _            |
| c <sub>f</sub>   | skin-friction coefficient $[2\tau_W/\rho u_G^2]$                                | -              |
| Cp               | specific heat at constant pressure                                              | J/kg-deg C     |
| E                | constant in the law of the wall                                                 | -              |
| h                | specific (total) enthalpy                                                       | kcal/kg        |
| h'               | non-dimensional enthalpy [h-h <sub>G</sub> /h <sub>W</sub> -h <sub>G</sub> ]    | -              |
| h <sub>f</sub>   | convective heat transfer coefficient<br>in the presence of film cooling         | W/m²-deg C     |
| h <sub>1</sub>   | convective heat transfer coefficient at inner surface of flame tube             | W/m²-deg C     |
| h <sub>2</sub>   | heat transfer coefficient at outer<br>surface of flame tube                     | W/m²-feg C     |
| Н                | shape factor; displacement to momentum<br>thickness ratio                       | -              |
| <sup>H</sup> 32  | shape factor; kinetic energy to momentum<br>- thickness ratio                   |                |
| Jh               | diffusive enthalpy flux                                                         | W/m²           |
| k                | kinetic energy per unit mass of fluid<br>associated with turbulent motion       | _              |
| K                | constant in the law of the wall                                                 |                |
| ĸp               | pressure gradient parameter [ $\nu/u_{G}^{2} \cdot du_{G}/dx$ ]                 | -              |
| ł                | mixing length                                                                   | m <sup>·</sup> |
| łw               | characterisitc length of the wake                                               | m ·            |
| m                | slot to main-stream mass velocity ratio                                         |                |
|                  | $[(\rho_C \overline{u}_C) / (\rho_G u_G)]$                                      | -              |
| ۳                | mass flux                                                                       | kg/s-m²        |
| М                | molecular weight                                                                |                |
| Ma               | Mach number                                                                     | -              |
| NuC              | Nusselt number [ h <sub>f</sub> y <sub>C</sub> /n <sub>C</sub> ]                | • <b></b>      |
| р                | static pressure                                                                 | N/m²           |
| · p <sub>o</sub> | stagnation pressure                                                             | N/m²           |
| ٩ <b>"</b> ٣     | heat flux through the wall .                                                    | M\Ws           |
| <b>q</b> "gen    | heat flux generated                                                             | W/m²           |
| <sup>R</sup> 2   | momentum-thickness Reynolds number $[\delta_2 u_G / \nu]$                       | -              |
| R <sub>3</sub>   | kinetic-energy thickness Reynolds number<br>[8 <sub>3</sub> u <sub>G</sub> /y ] | -              |


|   |                   | •                                                                                                                                                                       |                       |
|---|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
|   | SYMBOL            | MEANING                                                                                                                                                                 | UNITS                 |
|   | R <sub>C</sub>    | slot-Reynolds number [ $\bar{u}_{C} \gamma_{C} / \gamma$ ]                                                                                                              | <b>—</b> .            |
|   | R                 | Reynolds number [ $xu_G^{\prime}/\gamma$ ]                                                                                                                              | · —                   |
|   | R.                | rate of generation of species j                                                                                                                                         | kg/ft <sup>2</sup> -s |
| • | Ŕ                 | universal gas law constant                                                                                                                                              | m²/s²-deg C           |
|   | S .               | shear work integral<br>∫ <sup>y</sup> <sub>6</sub> (τ/ρug )(∂u/∂y) dy                                                                                                   | -                     |
|   | S                 | Stanton number (eq. A.2.2)                                                                                                                                              | -                     |
|   | t                 | slot-lip thickness                                                                                                                                                      | m                     |
|   | Т                 | absolute temperature                                                                                                                                                    | o <sub>K</sub>        |
|   | u                 | mean velocity in x-direction                                                                                                                                            | m/s                   |
|   | 'u'               | fluctuating component of velocity in the x-direction                                                                                                                    | m/s                   |
|   | uw                | characterisitc velocity of the wake                                                                                                                                     | m/s                   |
|   | ū <sub>C</sub>    | mean velocity at slot exit $1/y_{C} \cdot \int_{0}^{y_{C}} dy$                                                                                                          | m/s                   |
| • | u <sub>G</sub>    | free stream velocity                                                                                                                                                    | m/s                   |
|   | u <sub>MAX</sub>  | velocity maximum                                                                                                                                                        | m/s                   |
|   | v                 | mean velocity in the y-direction                                                                                                                                        | m/s                   |
|   | V I               | fluctuating component of velocity in the y-direction                                                                                                                    | m/s                   |
|   | <b>x</b>          | distance from the slot exit                                                                                                                                             | m                     |
|   | X                 | correlating parameter, eqns. (2.2.1)<br>and (2.2.2)                                                                                                                     | _                     |
|   | У                 | distance normal to the wall                                                                                                                                             | m                     |
|   | y <sub>HALF</sub> | distance from the wall where (u-u <sub>G</sub> )<br>has half its maximum value                                                                                          | m                     |
|   | Y <sub>MAX</sub>  | distance from the wall to the location<br>where u is a maximum                                                                                                          | m                     |
|   | У <sub>С</sub>    | slot height                                                                                                                                                             | m                     |
|   | У <sub>G</sub>    | velocity-boundary layer thickness                                                                                                                                       | m.                    |
|   | Уł                | characteristic width of boundary layer                                                                                                                                  | m                     |
|   | $\Gamma_{o}$      | effective diffusivity (Fig.6.2.1)                                                                                                                                       | kg/m-s                |
|   | $\Gamma_{add}$    | additive diffusivity (Eq. 6.2.1)                                                                                                                                        | kg∕m-s                |
|   | δ1                | displacement thickness $\exists \int_{1}^{4} (1 - \rho u / \rho_{G} u_{G}) dy$                                                                                          | m                     |
|   | <sup>8</sup> 2    | displacement thickness $\equiv \int_{0}^{y_{G}} (1 - \rho u / \rho_{G} u_{G}) dy$<br>momentum thickness $\equiv \int_{0}^{y_{G}} (\rho u_{G}) (1 - \frac{u}{u_{G}}) dy$ | m                     |
|   |                   |                                                                                                                                                                         |                       |


.

.


|                             |                                                                                                                                   | 100                               |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| SYMBOL                      | MEANING 2.                                                                                                                        | UNITS                             |
| δ <sub>3</sub>              | kinetic energy thickness = $\int_{0}^{y} \left(\frac{\rho u}{\rho_{G} u_{G}}\right)^{2} \left(\frac{1}{\sigma_{G}}\right)^{2} dy$ | m                                 |
| Δ <sub>p</sub>              | pressure gradient parameter<br>$[-K_{p}(c_{f}/2)^{-3/2}]$                                                                         |                                   |
| 6 -                         | emissivity of the flame                                                                                                           | -                                 |
| €G                          | - · ·                                                                                                                             | •                                 |
| €o                          | emissivity of the combustion-chamber casing                                                                                       | <b>_</b> ·                        |
| ·ε <sub>W</sub>             | emissivity of flame-tube wall                                                                                                     | <del>-</del> .                    |
| η                           | effectiveness based upon the general conserved property $arphi$                                                                   | _                                 |
| $\mathfrak{n}_{\mathbb{T}}$ | impervious-wall effectiveness                                                                                                     | -                                 |
| n                           | thermal conductivity                                                                                                              | W/m-deg C                         |
| λ                           | mixing length constant (eq. 5.1.1)                                                                                                | _                                 |
| Λ                           | a measure of deviation (eq. 5.2.1)                                                                                                | -                                 |
| $\overline{\Lambda}$        | a mean value of $\Lambda$ (eq. 5.2.2)                                                                                             | <u> </u>                          |
| μ                           | laminar viscosity                                                                                                                 | Ns/m²                             |
| $\mu_{eff}$                 | effective viscosity                                                                                                               | Ns/m²                             |
| ُ<br>ک                      | kinematic viscosity                                                                                                               | m²/s                              |
| ξ                           | coefficient in eq. 6.2.1                                                                                                          | -                                 |
| ρ                           | fluid density                                                                                                                     | kg/m <sup>3</sup>                 |
| с ·                         | laminar Schmidt number                                                                                                            |                                   |
| ° <sub>B</sub>              | Stefan-Boltzman constant                                                                                                          | W/m²- <sup>o</sup> K <sup>4</sup> |
| ſ                           | shear-stress in fluid                                                                                                             | N/m²                              |
| φ.                          | a conserved property                                                                                                              | <b>-</b> .                        |
| $\Phi$                      | dissipation function (eq. 3.2.4)                                                                                                  | -                                 |
| Ir                          | stream function(defined by eq.3.4.3)                                                                                              |                                   |
| Ψ                           |                                                                                                                                   |                                   |

W pertaining to the wall G pertaining to the free stream С pertaining to the slot exit 'pertaining to an adiabatic wall a,W inner edge Ι ۰E external edge U upstream station D downstream station; pertaining to pipe diameter eff effective (ie. laminar + turbulent) turbulent · t





DIMENSIONS IN MM






Fig. 4.1.2 (a) Entry section, apparatus A.

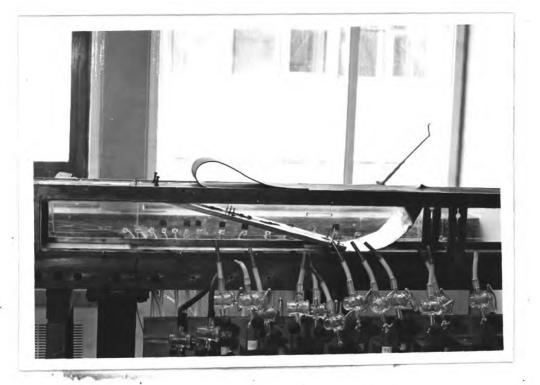



Fig. 4.1.2 (b) Test Section , apparatus A.

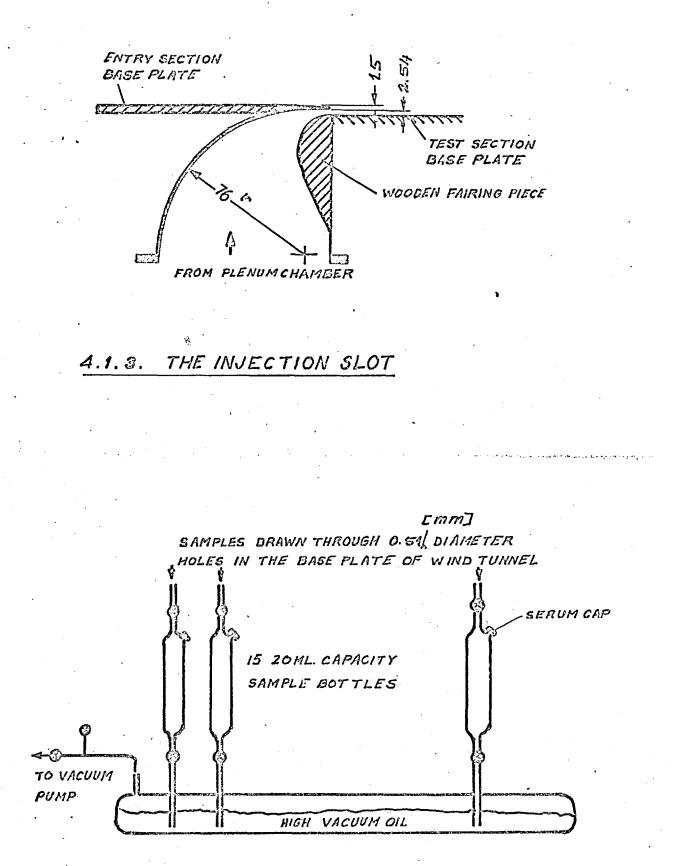



FIG.4.1.4. SAMPLING SYSTEM

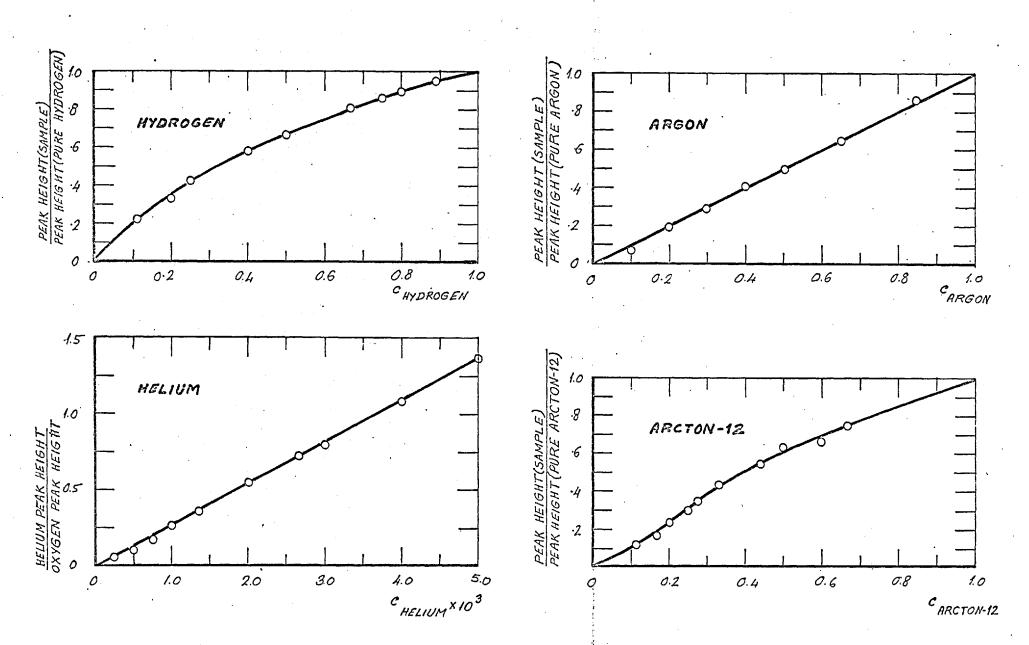
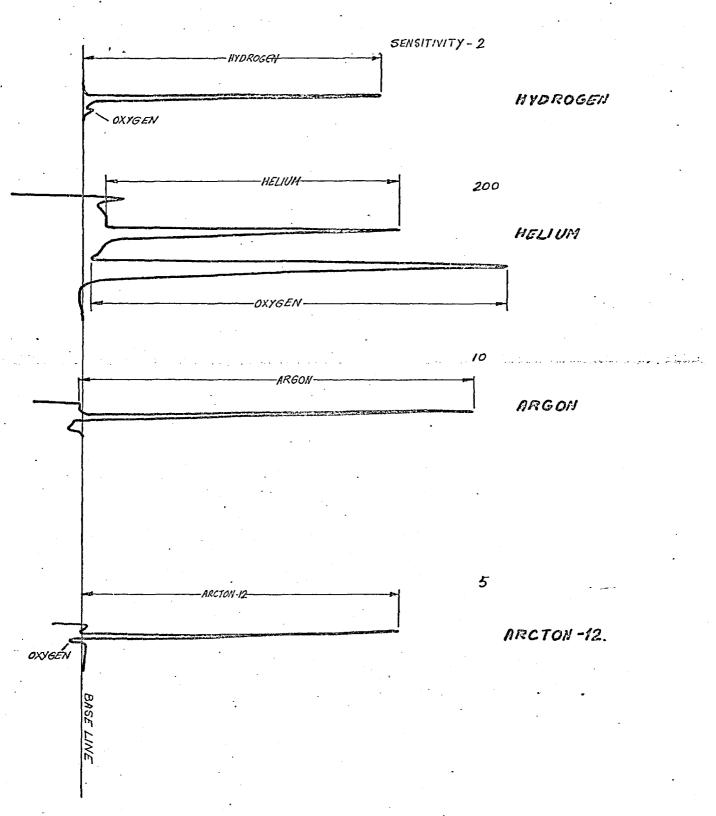
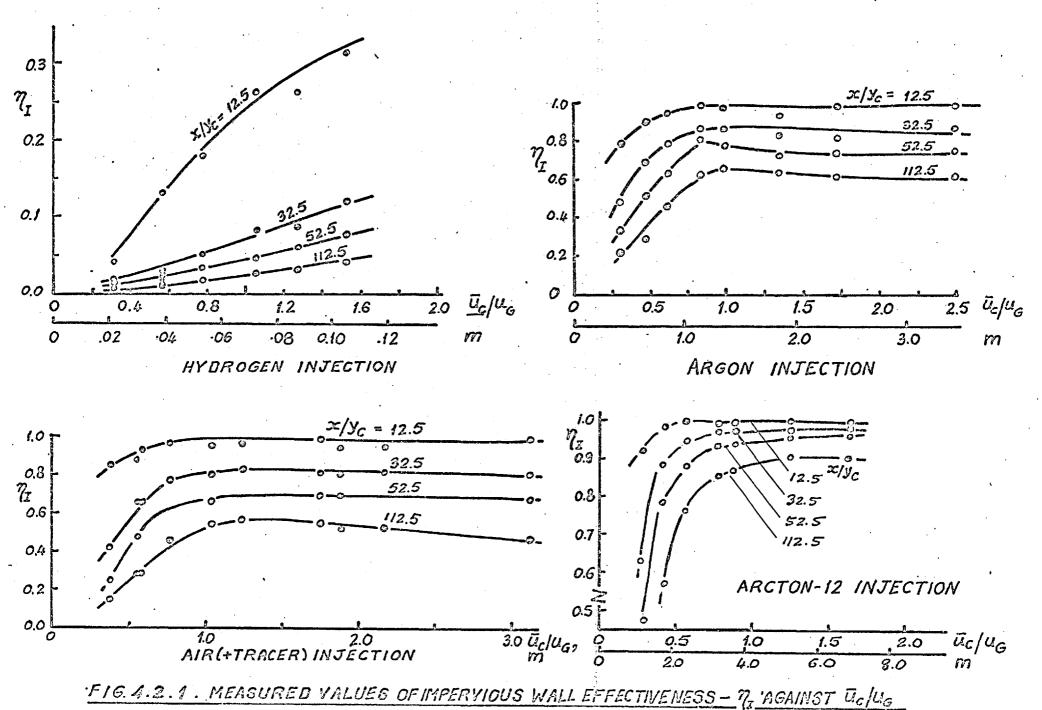
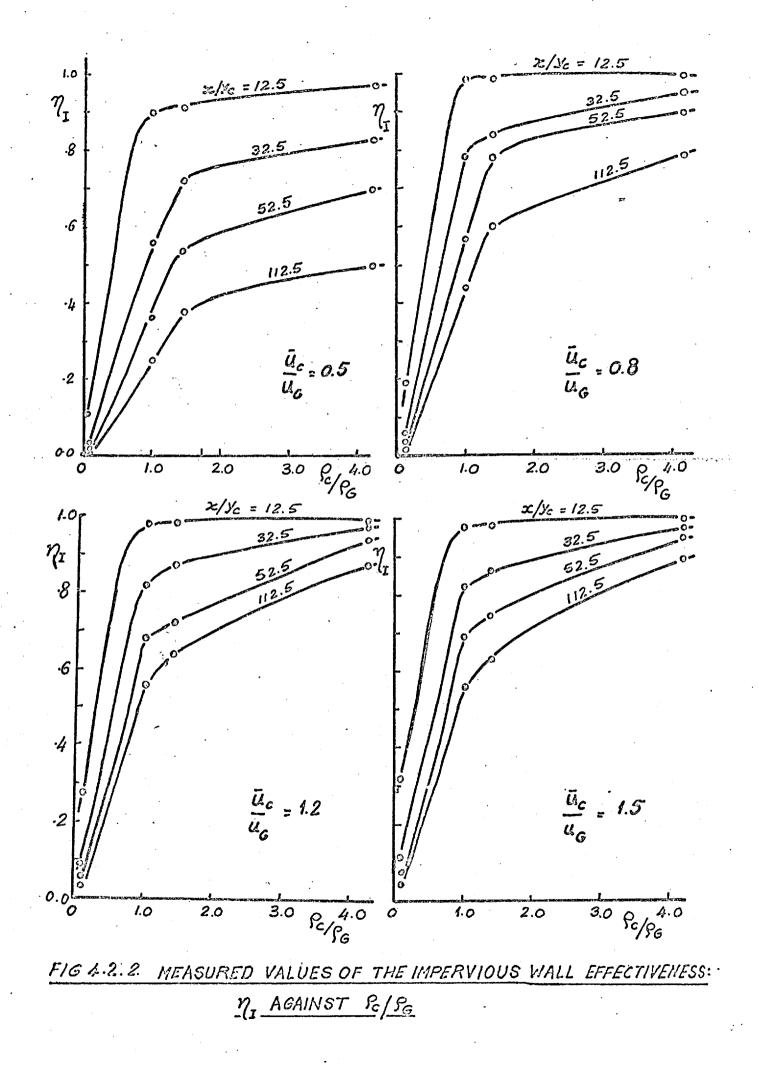




FIG. 4.1.5. TYPICAL CALIBRATIONS OF THE CHROMATOGRAPH. FOR ALL CALIBRATIONS, THE CARRIER GAS WAS NITROGEN, COLUMN TEMPERATURE - 55°C, FLOW RATE SETTING 38 (ON ROTAMETER), BRIDGE CURRENT 130 MA.





### FIG. 4.1.6 TYPICAL CHROMATOGRAMS

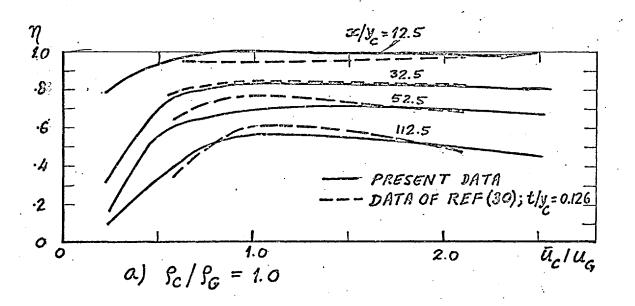

•



Fig. 4.1.7 The Traverse Gear.







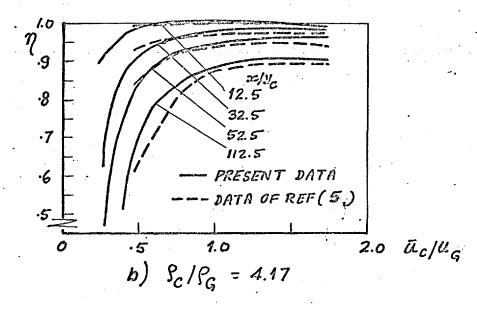
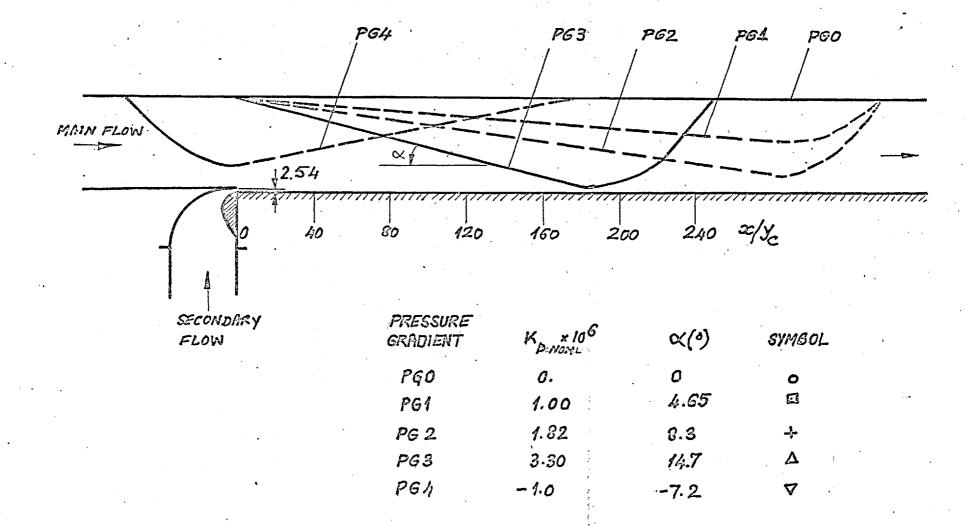
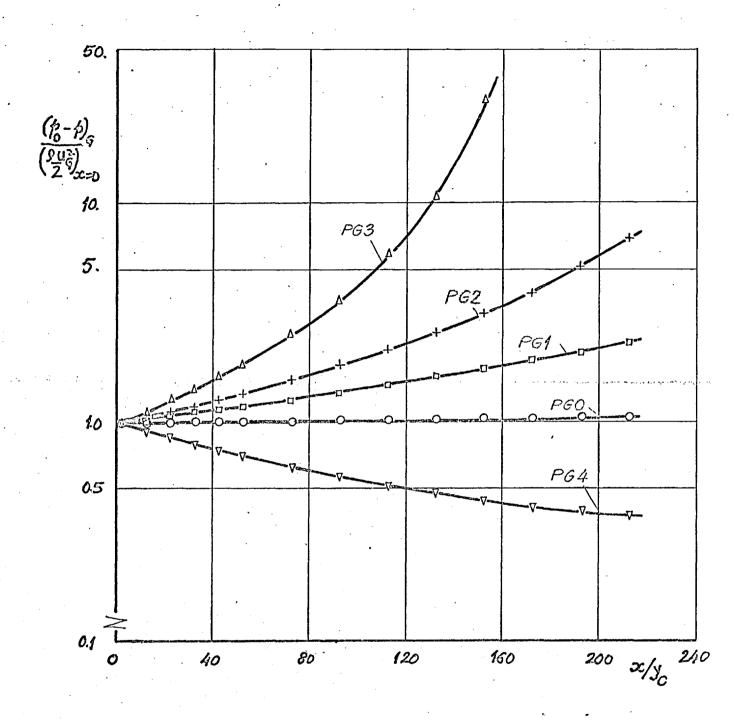





FIG. 4.2.3 COMPARISON OF PRESENT MEASUREMENTS OF THE IMPERVIOUS WALL EFFECTIVENESS WITH DATA OF REFERENCES (30) AND (5).

140



FIGALA SCHEMATIC DIAGRAM OF TEST SECTION WITH PRESSURE GRADIENTS



FIGA.2.5. FREE-STREAM STATIC PRESSURE DISTRIBUTIONS.

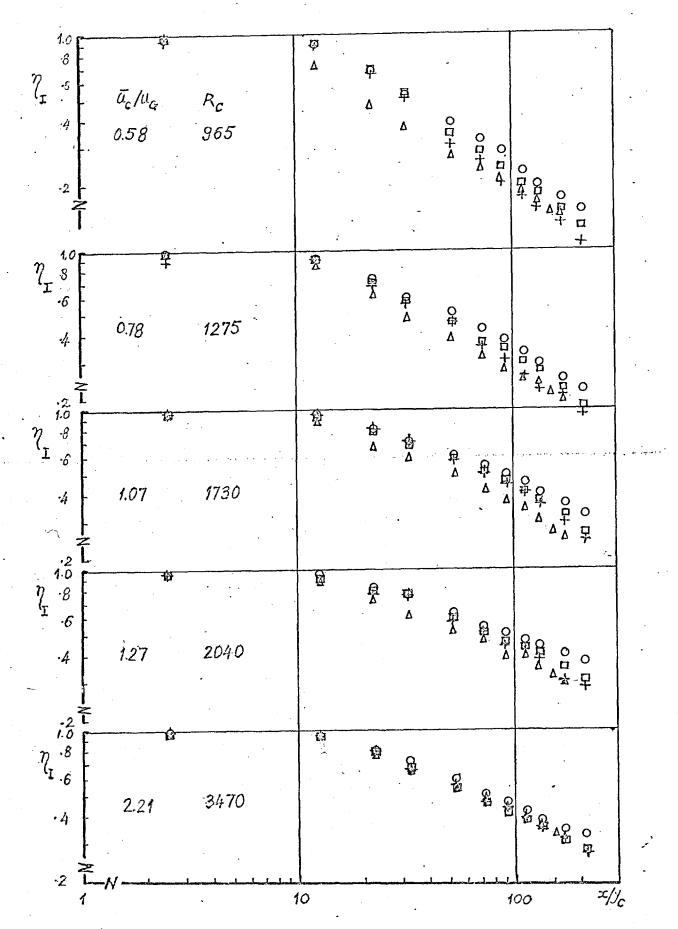



FIG.4.2.6(a) MEASURED VALUES OF IMPERVIOUS WALL EFFECTIVENESS IN FRESENCE OF FAVOURABLE PRESSURE GRADIENTS:



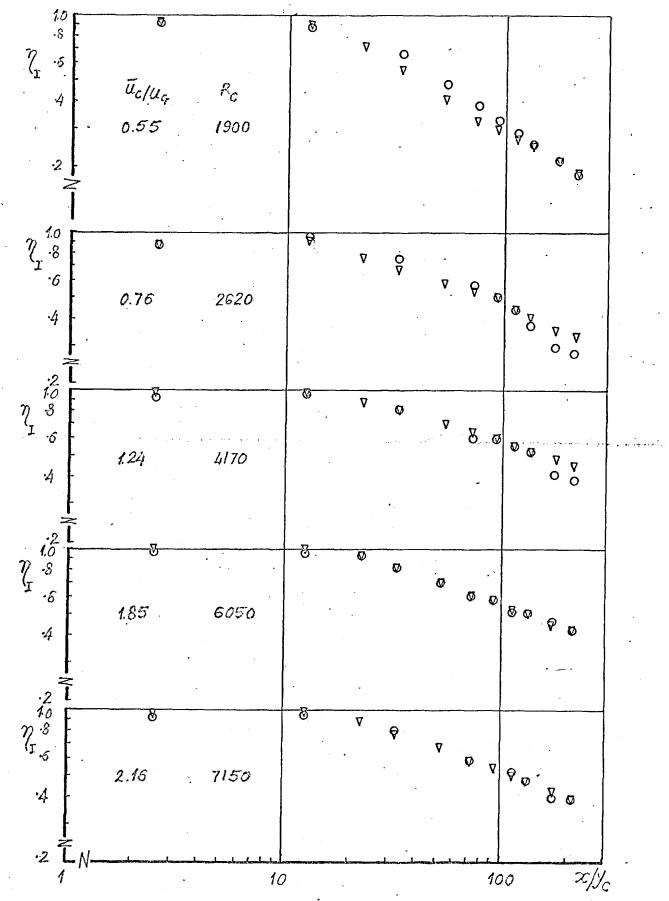



FIG. 4.2.6 (b) MEASURED VALUES OF IMPERVIOUS WALL EFFECTIVENESS IN PRESENCE OF ADVERSE PRESSURE GRADIENT: P. ....

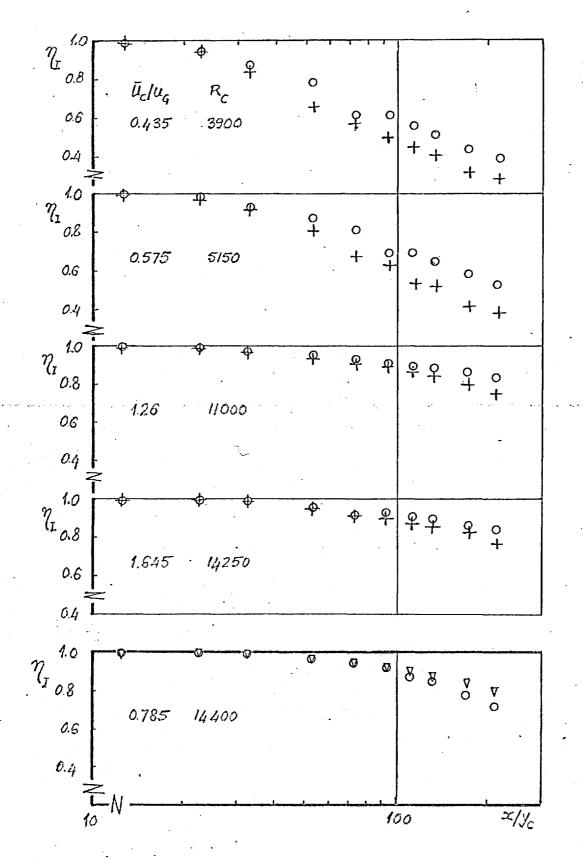
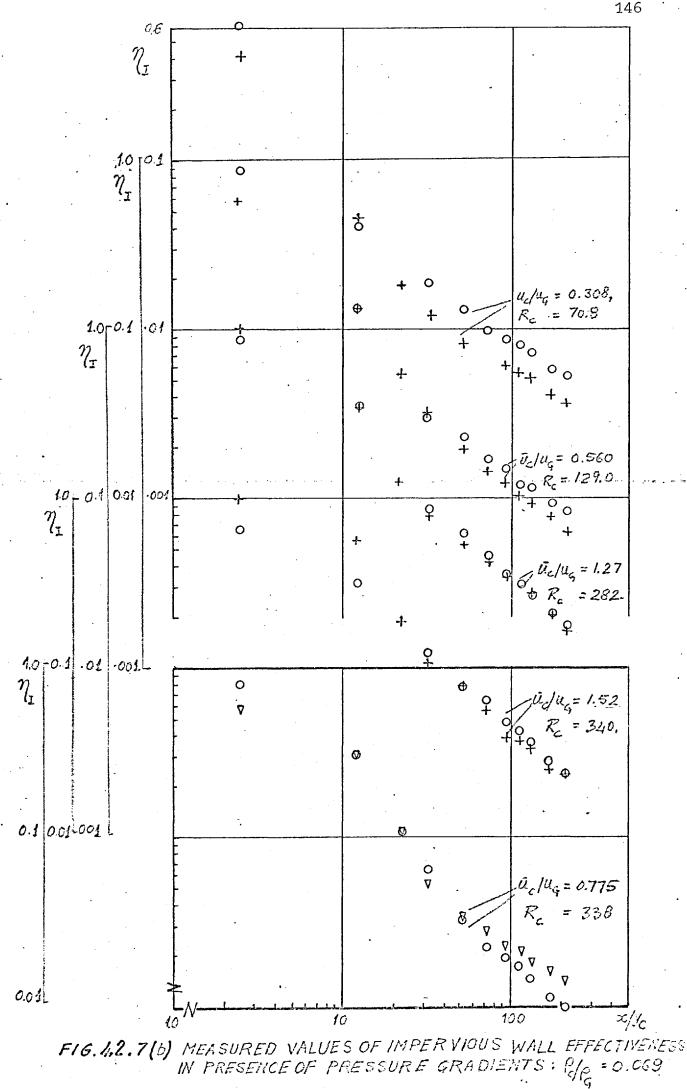




FIG.4.2.7(a) MEASURED VALUES OF IMPERVIOUS WALL EFFECTIVENESS IN PRESENCE OF PRESSURE GRADIENTS: Pc/Pc = 4.17

1.



, , , , ,

147

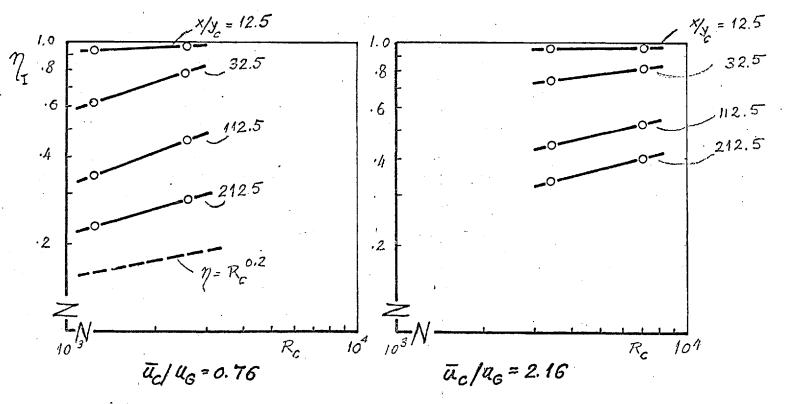



FIG. 4.2.8 . EFFECT OF SLOT REYNOLDS NUMBER ON EFFECTIVE NESS: P/P=1.0

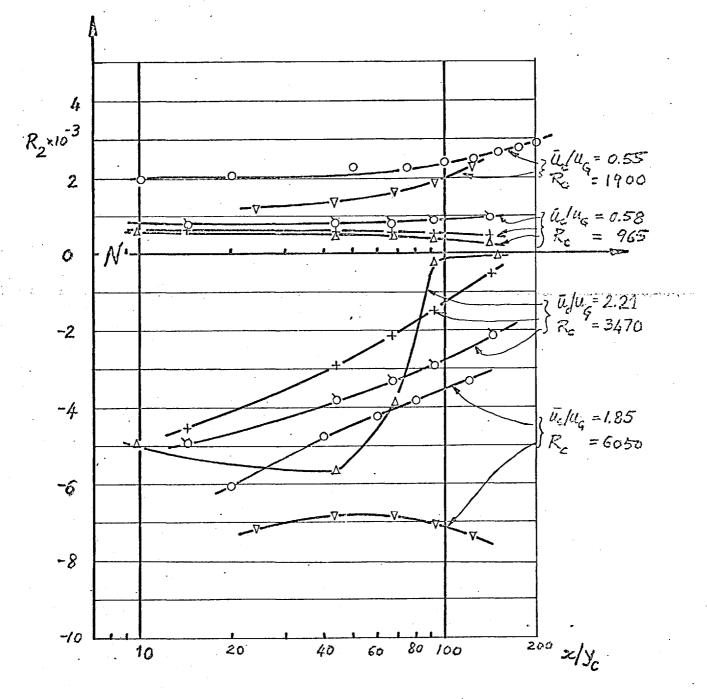



FIG. 4.2.9 INFLUENCE OF PRESSURE GRADIENT ON THE MOMENTUM THICKNESS REYNOLDS NUMBER

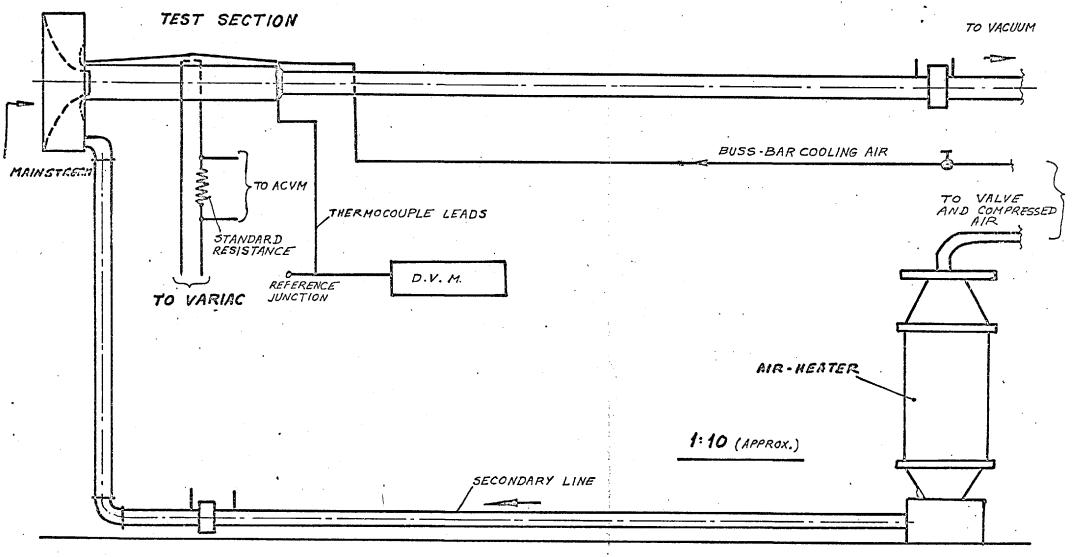



FIG. 4.3.1 SCHEMATIC DIAGRAM OF APPARATUS 'D'

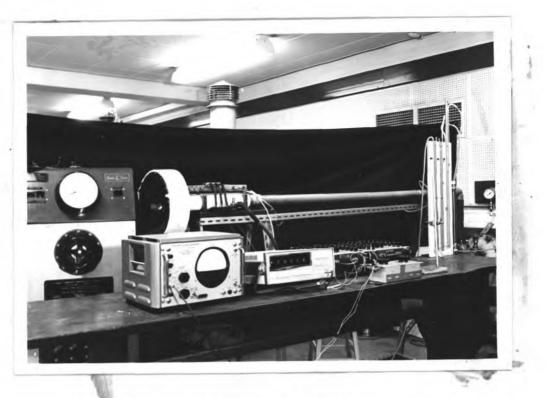



Fig. 4.3.2 (a) General view of apparatus B.

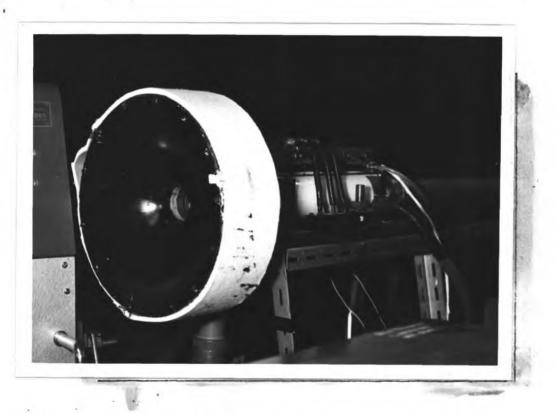



Fig. 4.3.2 (b) Test Section, apparatus B.

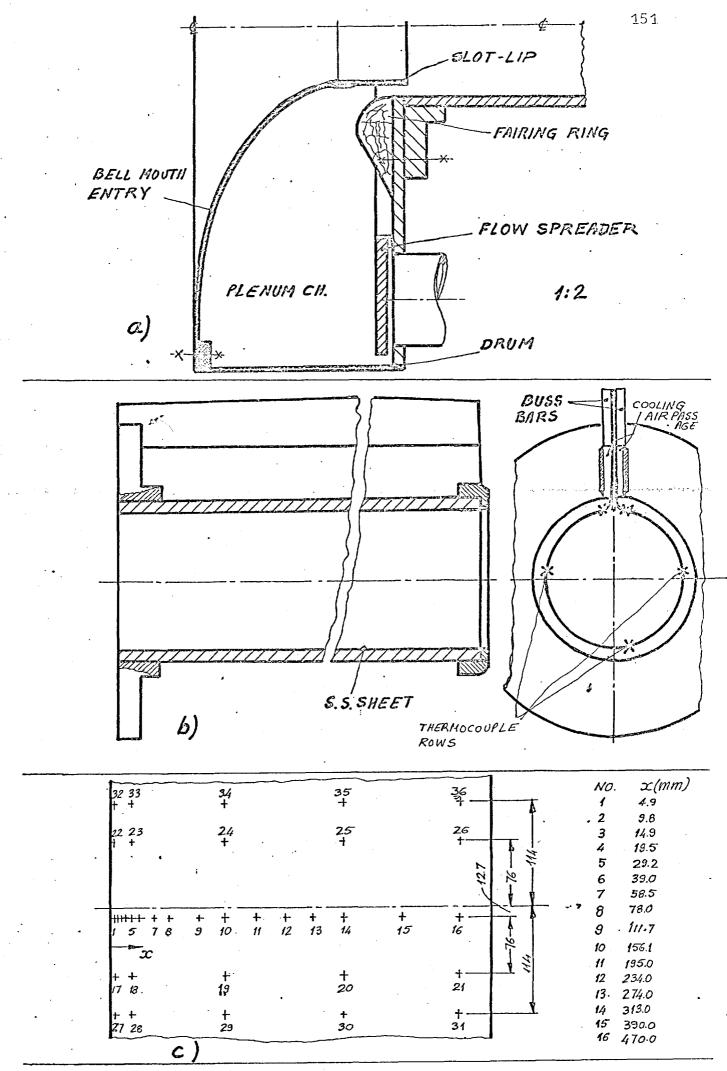



FIG.4.3.3. BETAILS OF APPARATUS 'B'.

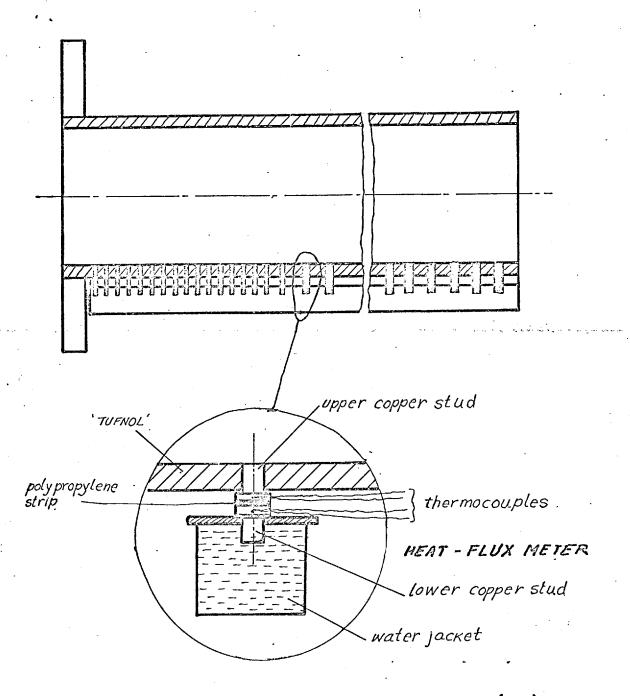



FIG. 4.3.4 TEST SECTION OF REFERENCE (39).

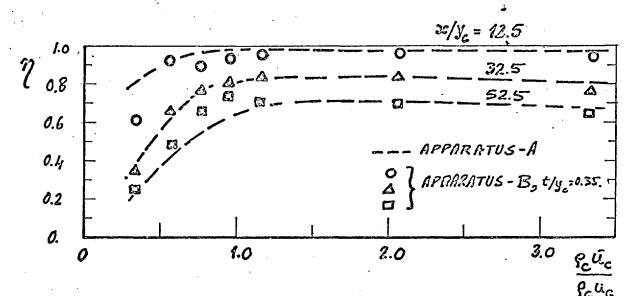



FIG. 4.4.1. COMPARISON OF MEASURED ADIABATIC AND IMPERVIOUS-WALL EFFECTIVENESS : APPARATUS-B AND APPARATUS-A.

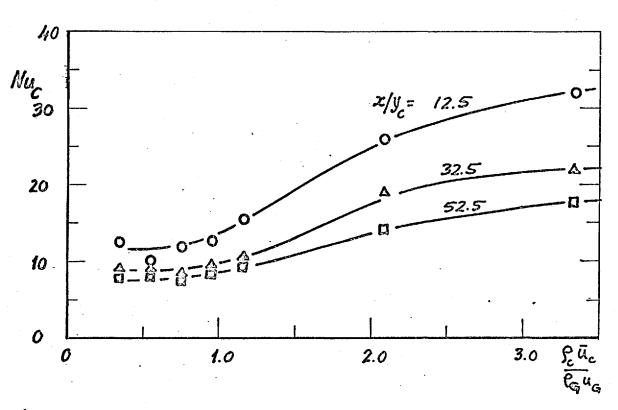



FIG. 4.4.2. INFLUENCE OF THE MASS-VELOCITY RATIO ON THE MEASURED HEAT -TRANSFER COEFFICIENT: APPAR ATUS -B, t/y, =0:35.

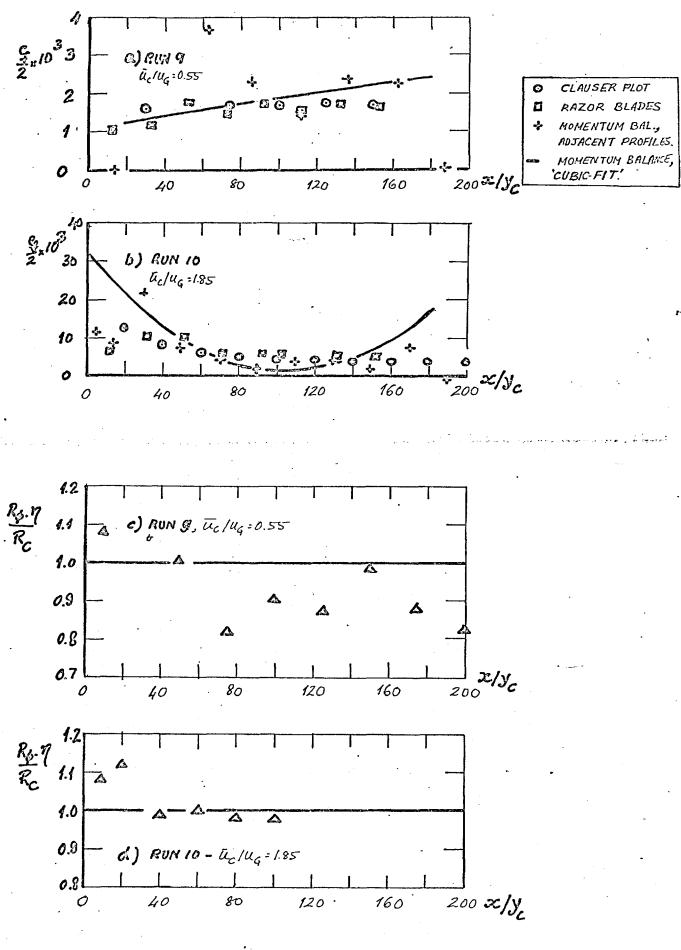



FIG. 5.1.1 NOMENTUM AND MASS BALANCE FROM MEASURED PROFILES.

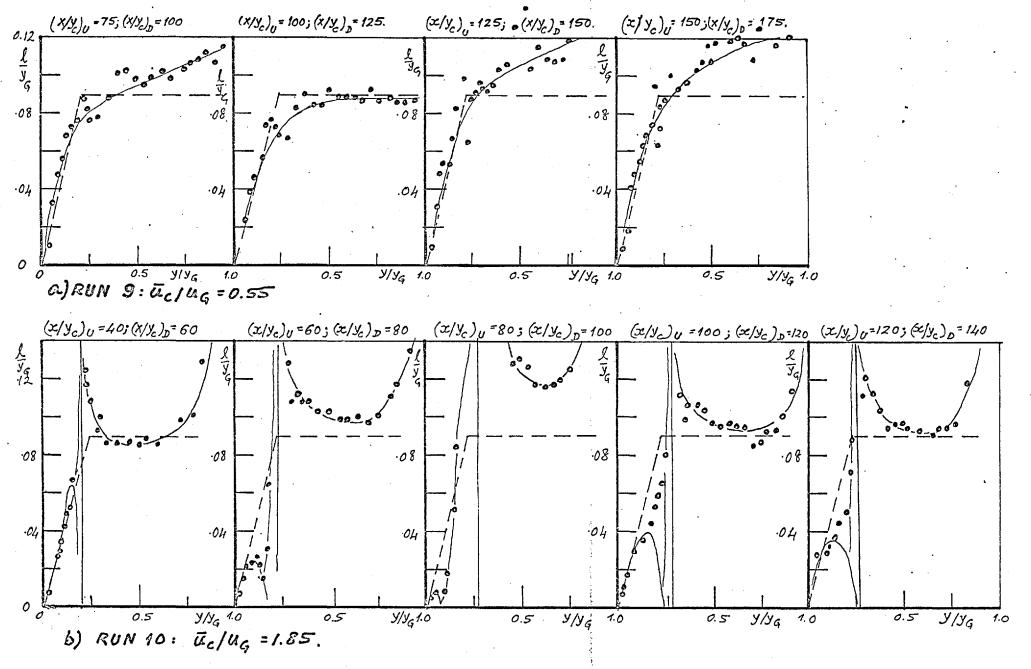



FIG. 5.1.2 MIXING LENGTH DISTRIBUTIONS DERIVED FROM PRESENT DATA (APPARATUS'A')

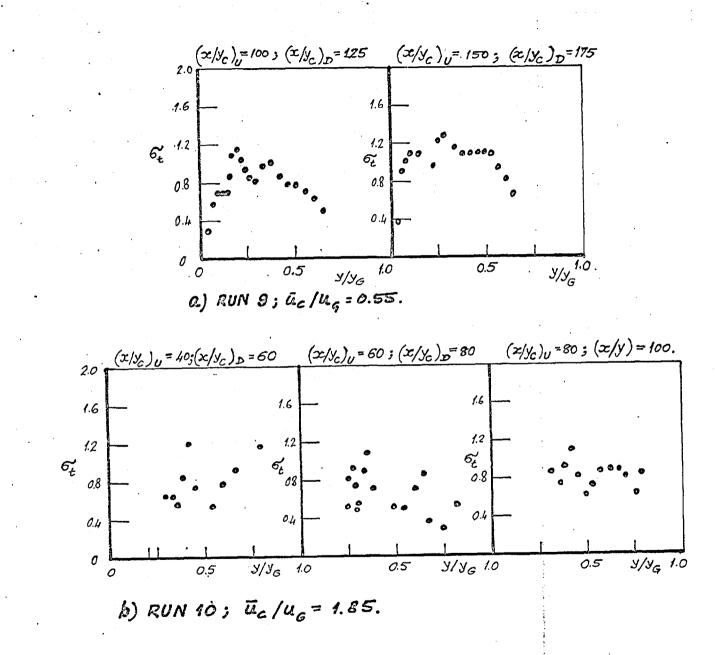
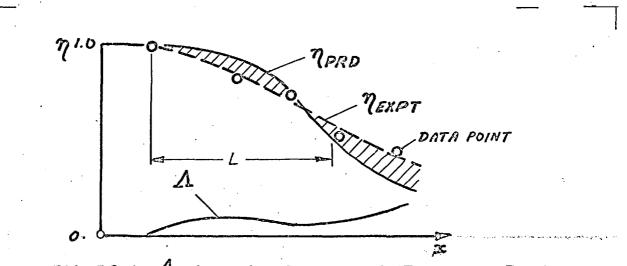
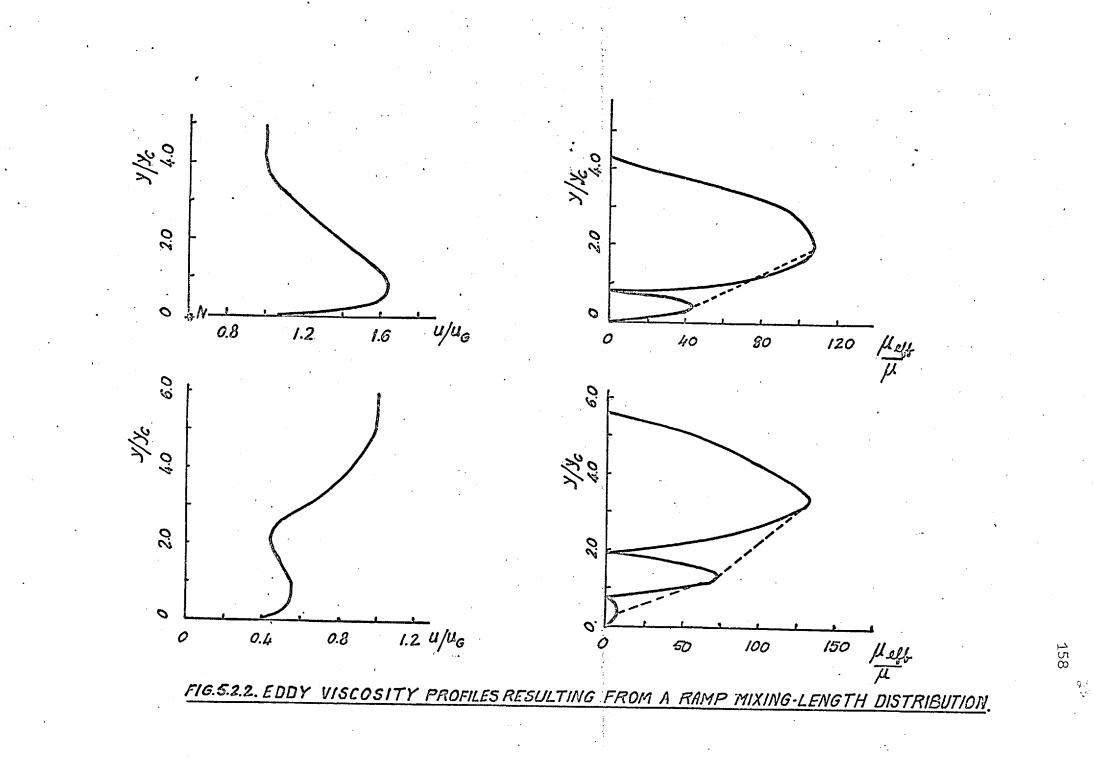
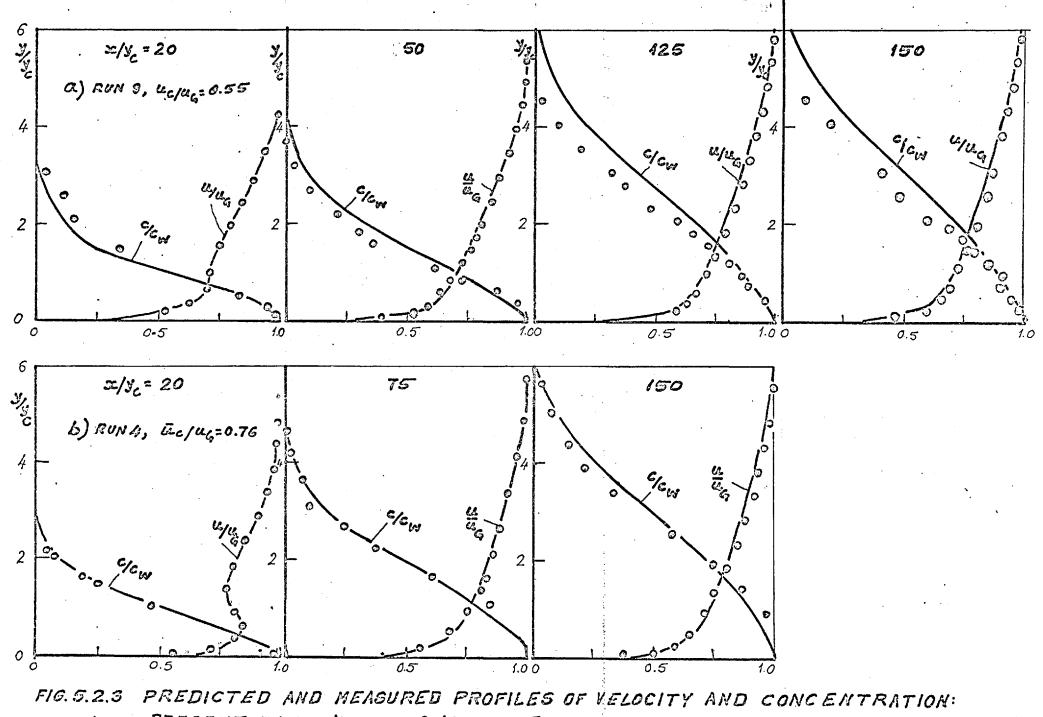
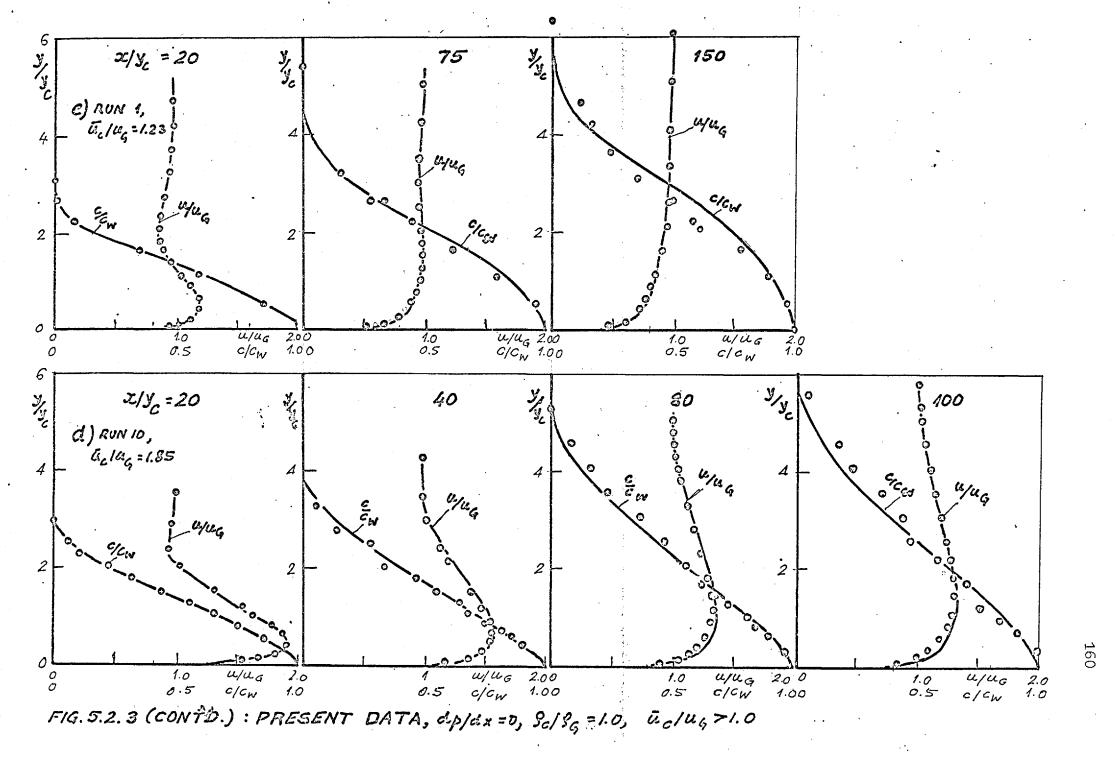
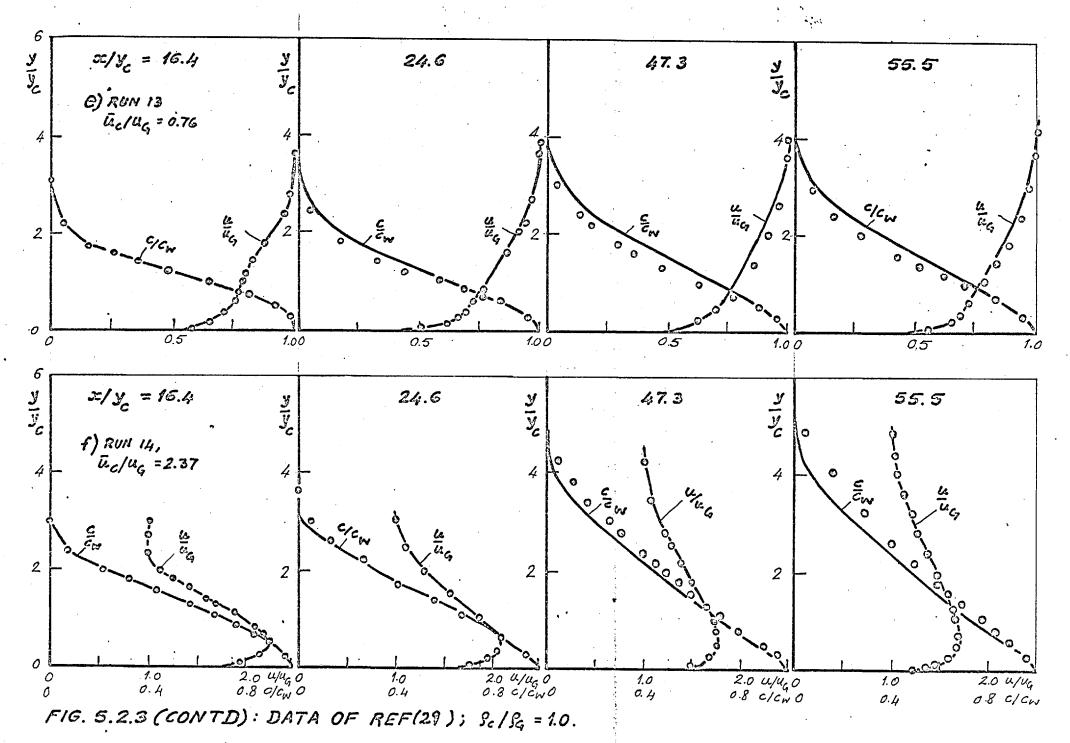
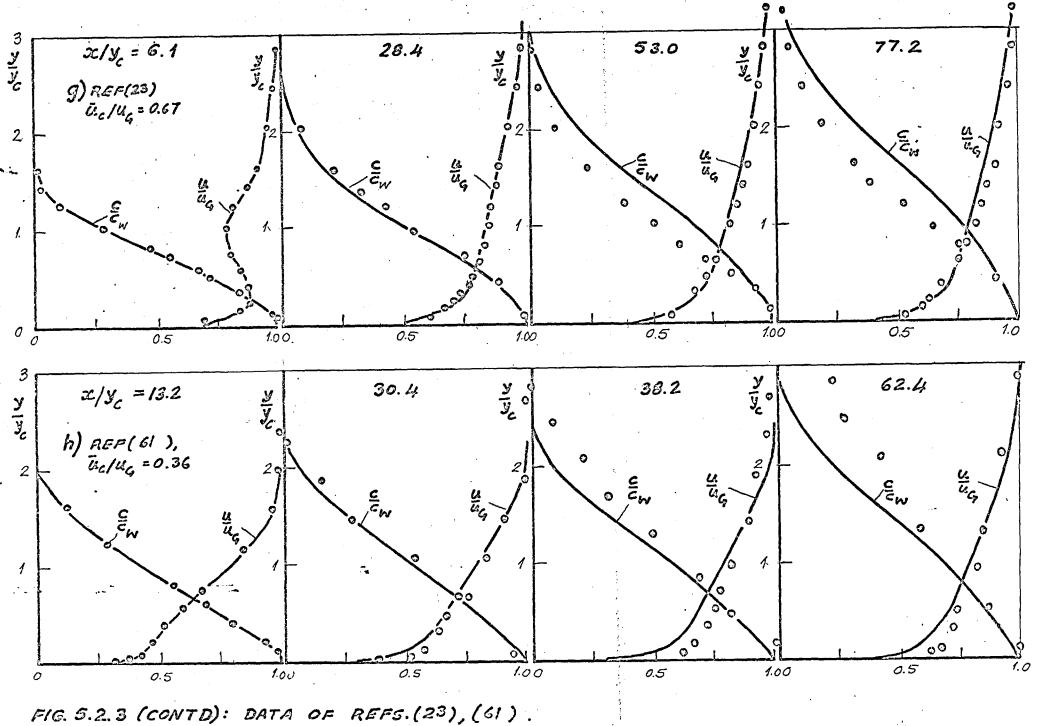



FIG. 5.1.3. TURBULENT SCHMIDT NUMBERS DERIVED FROM PRESENT DATA.



FIG. 5.2.1. A., A MEASURE OF AGREE MENT BETWEEN PREDICTED AND MEASURED EFFECTIVENESS.






PRESENT DATA, aplax =0, Sc/Sg=1.0, Dc/Ug <1.0.







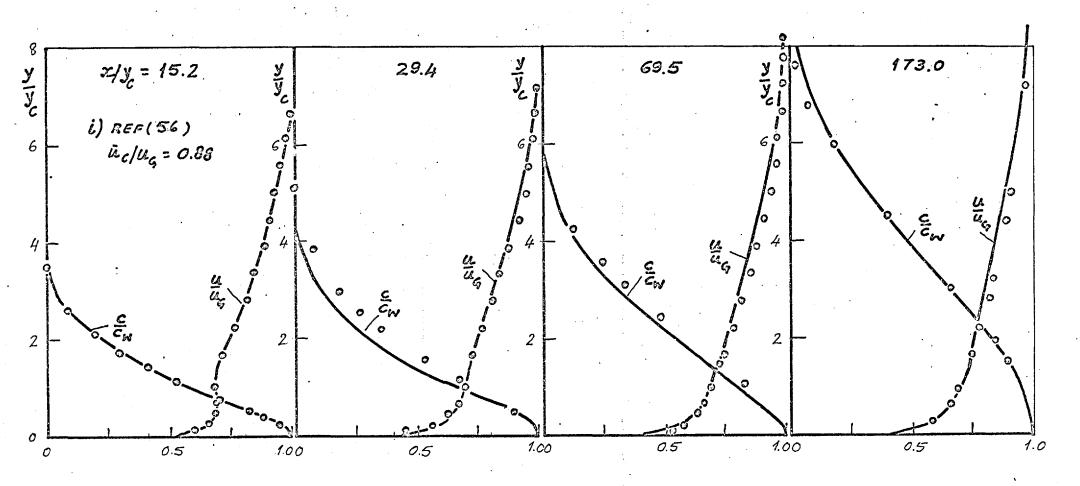
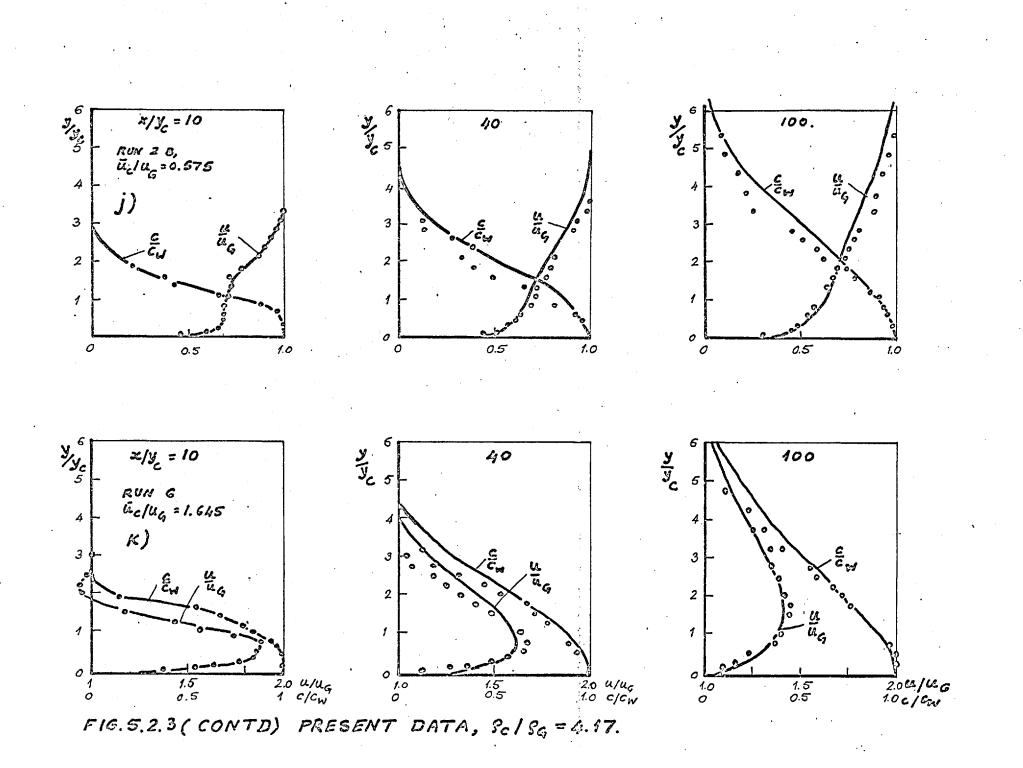




FIG. 5.2.3 (CONTD) DATA OF REF (56).



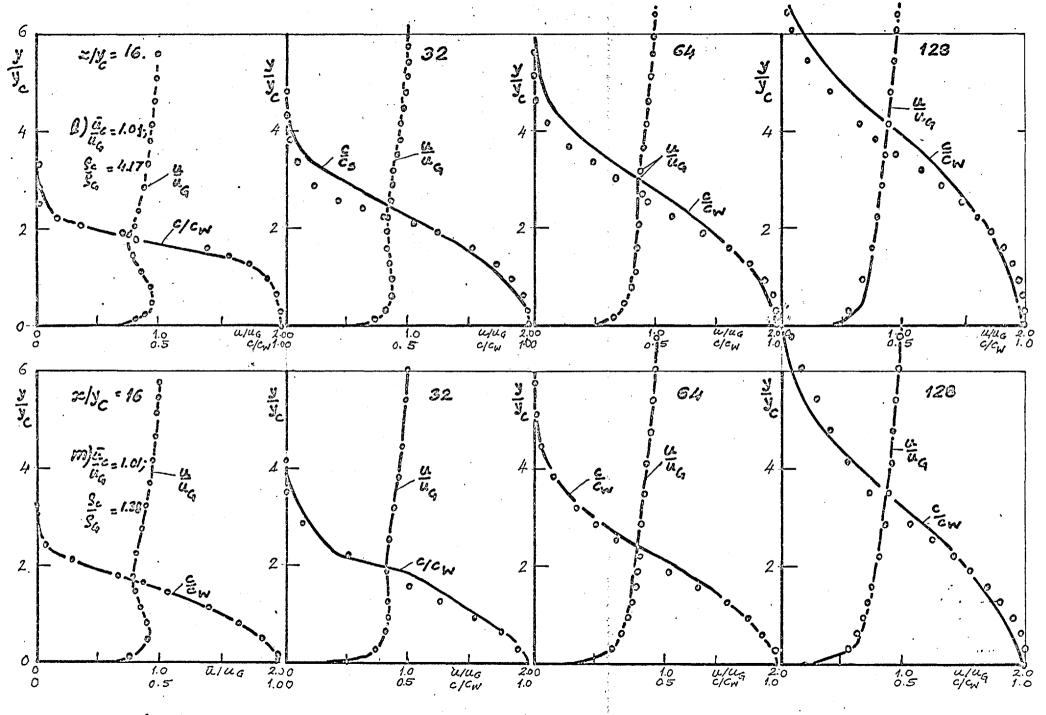
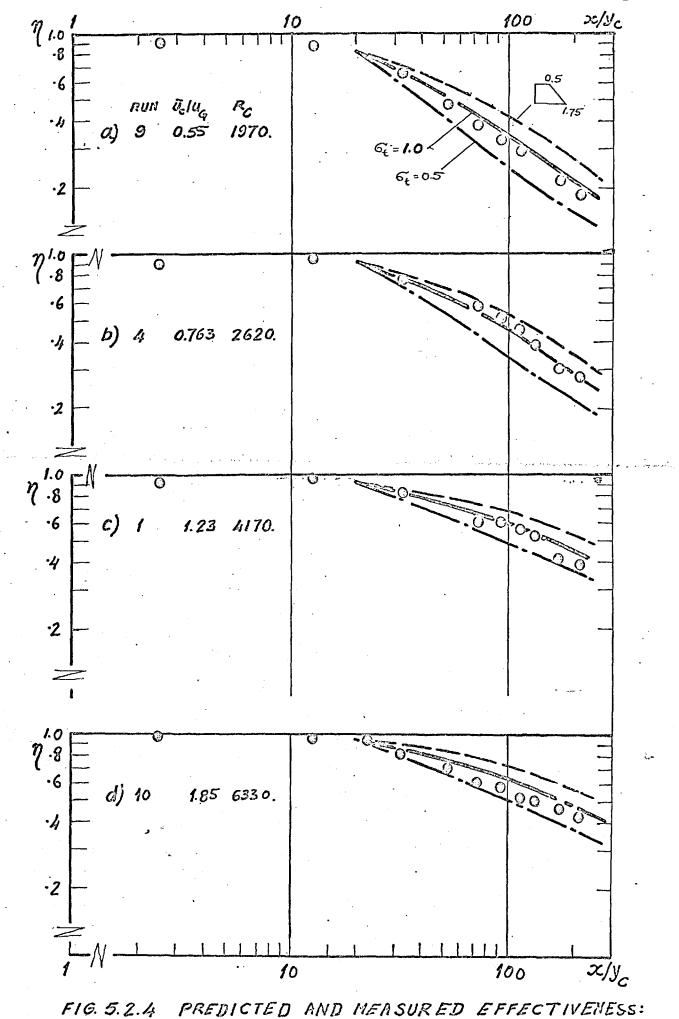
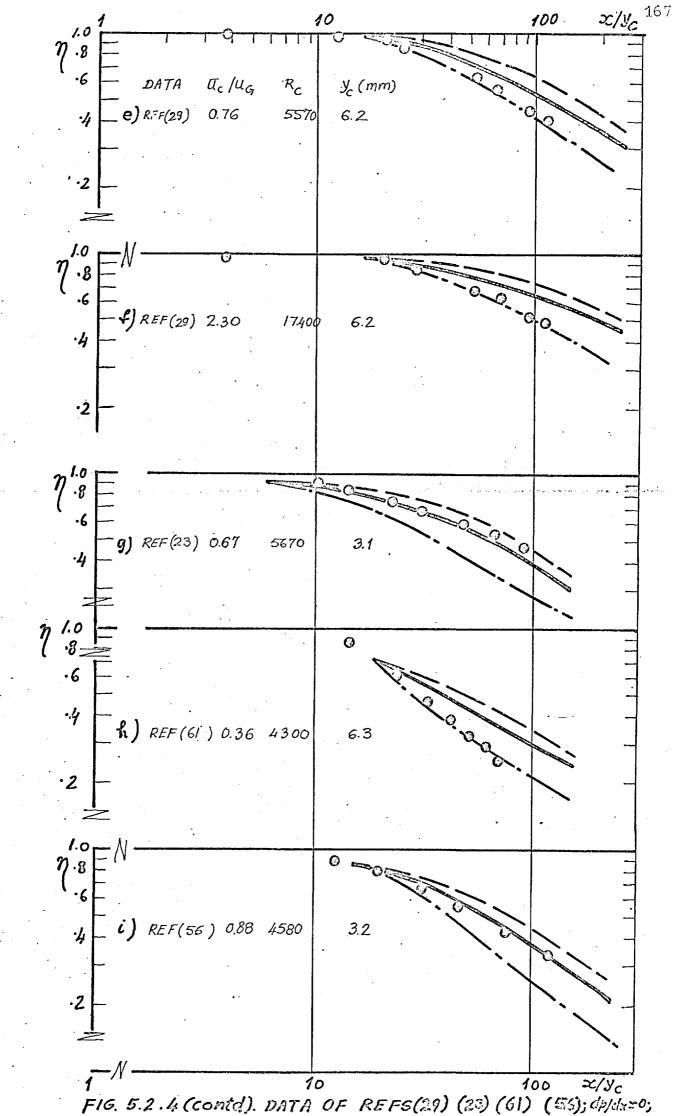





FIG. 5.2.3 (CONCLUCED): DATA OF REF (5); Sc/Sc = 4.17 0 1.30.



PRESENT DATA; dp/dx=0, Pc/cg=1.0





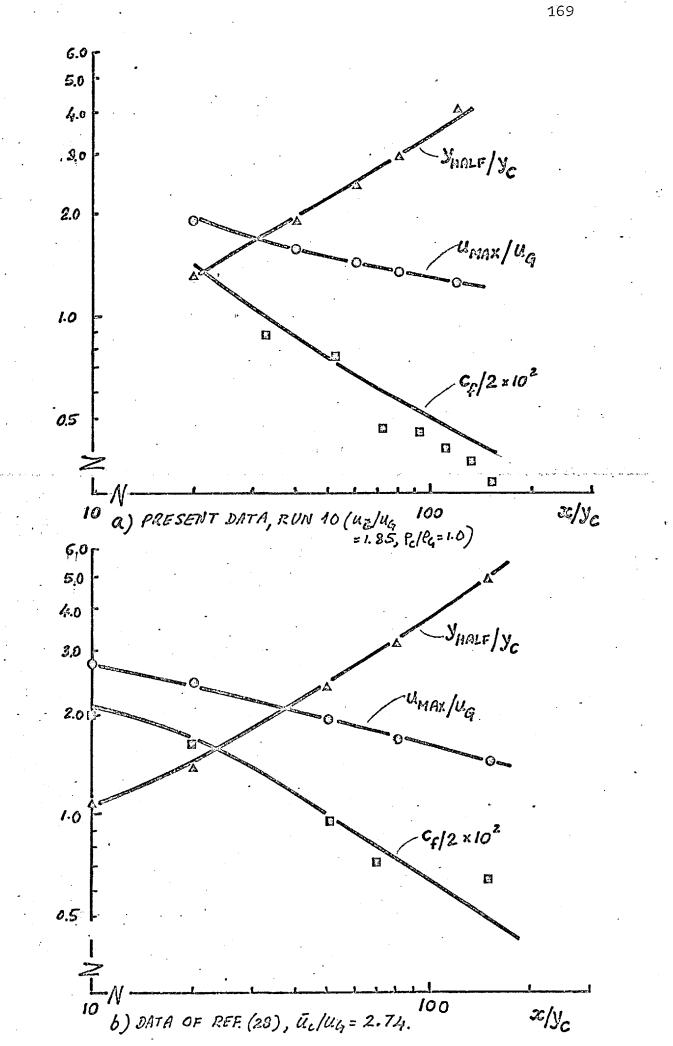



FIG. 5:2.5. MEASURED AND PREDICTED WALL JET DEVELOPMENT AND WALL SHEAR STRESS: G. /UG71.0, P. P. = 1.0.

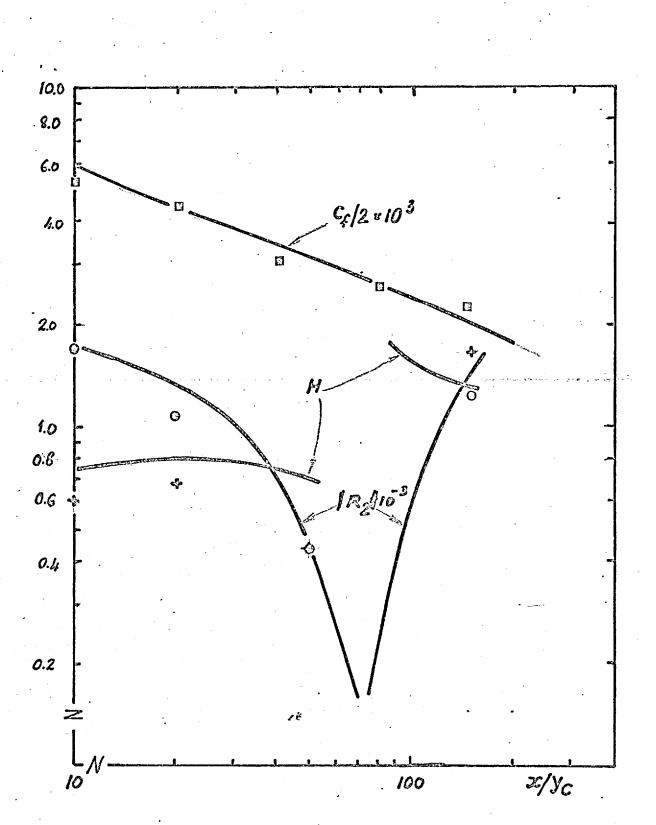



FIG. 5. 2. 5 (c): MEASURED AND PREDICTED INTEGRAL PROPERTIES AND WALL SHEAR STRESS: Qc/UG=1.33, Cc/Cg=1.0. (DATA OF REF. (28)).

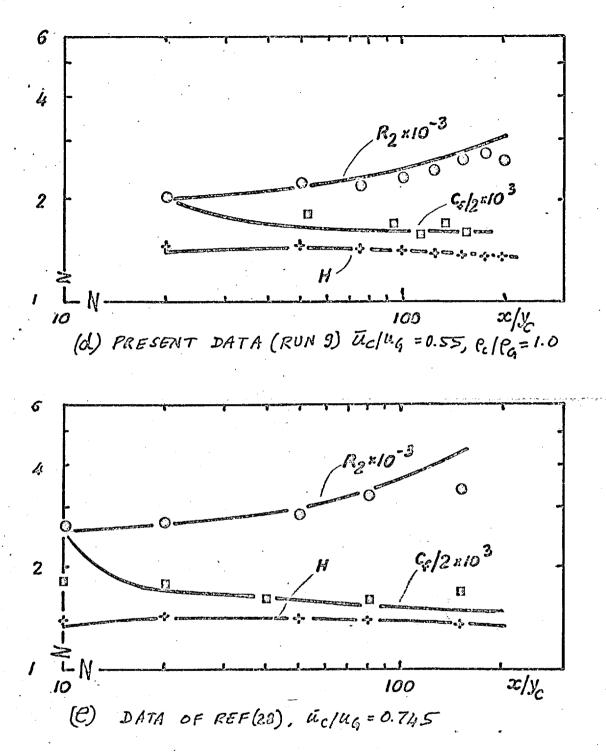
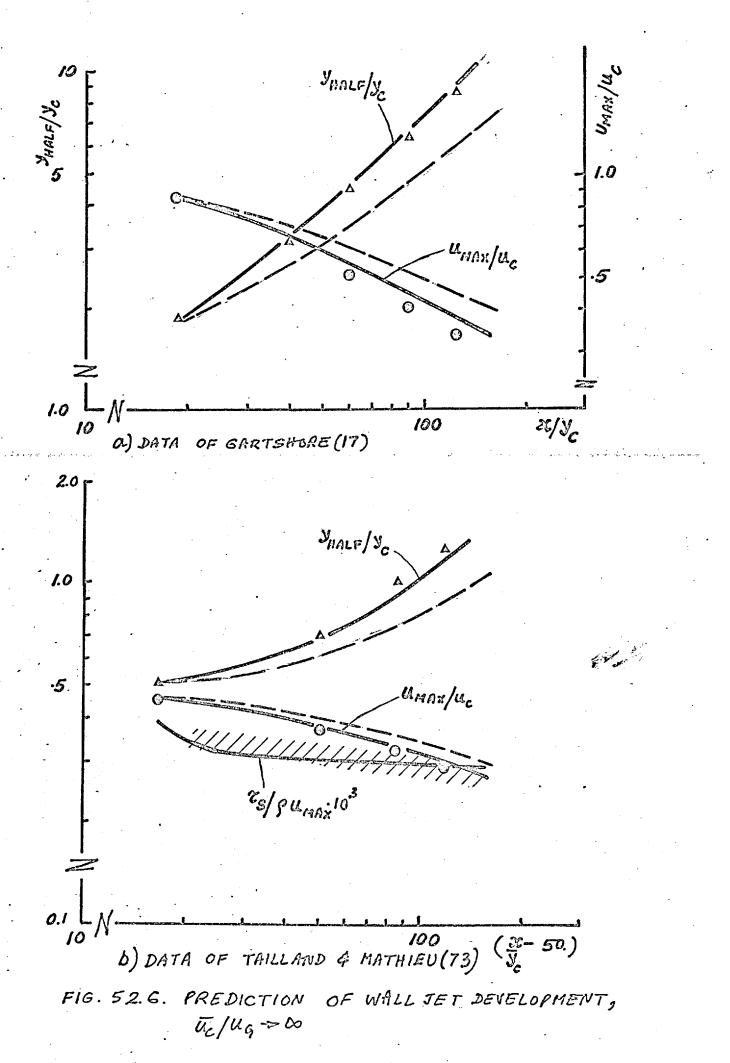




FIG. 5.2.5 (CONCLUDED) MEASURED AND PREDICTED INTEGRAL PPROPERTIES AND WALL SHEAR STRESS:  $\bar{u}_c/u_q < 1.0, \ P_c/P_q = 1.0$ 



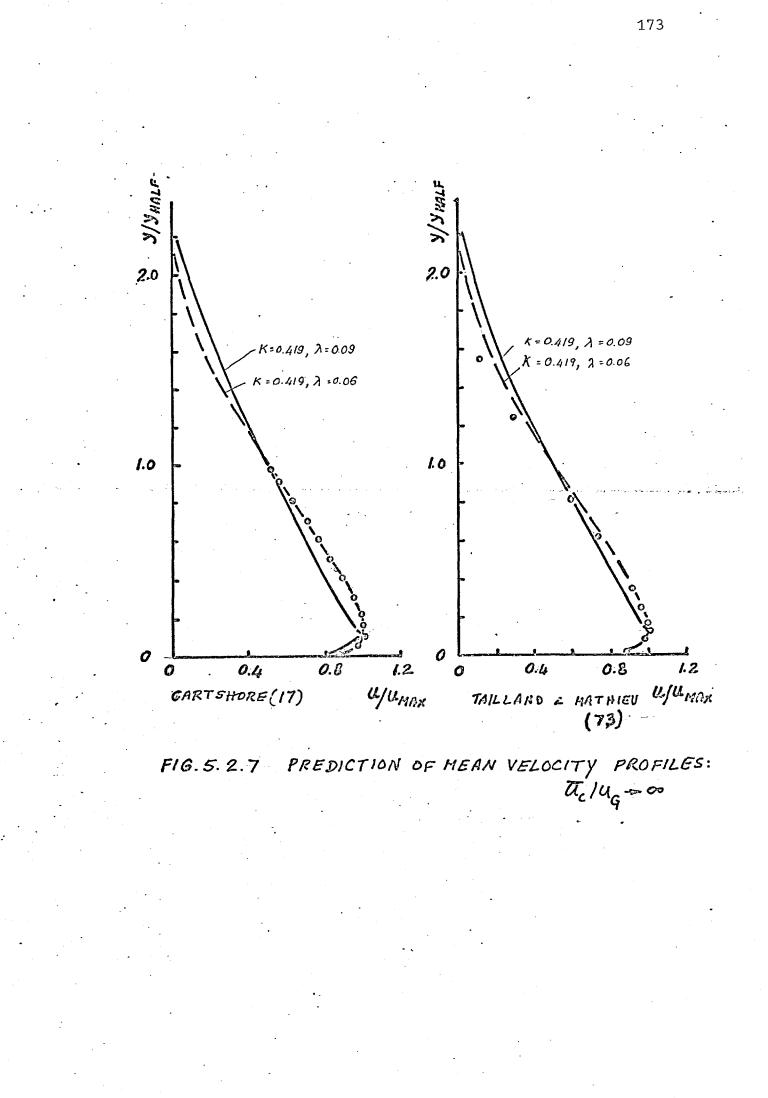





FIG. 5.2.8. INFLUENCE OF MODIFIED SLIP-RELATIONS ON PREDICTED PROFILES OF MEAN VELOCITY AND MASS-FRACTION.

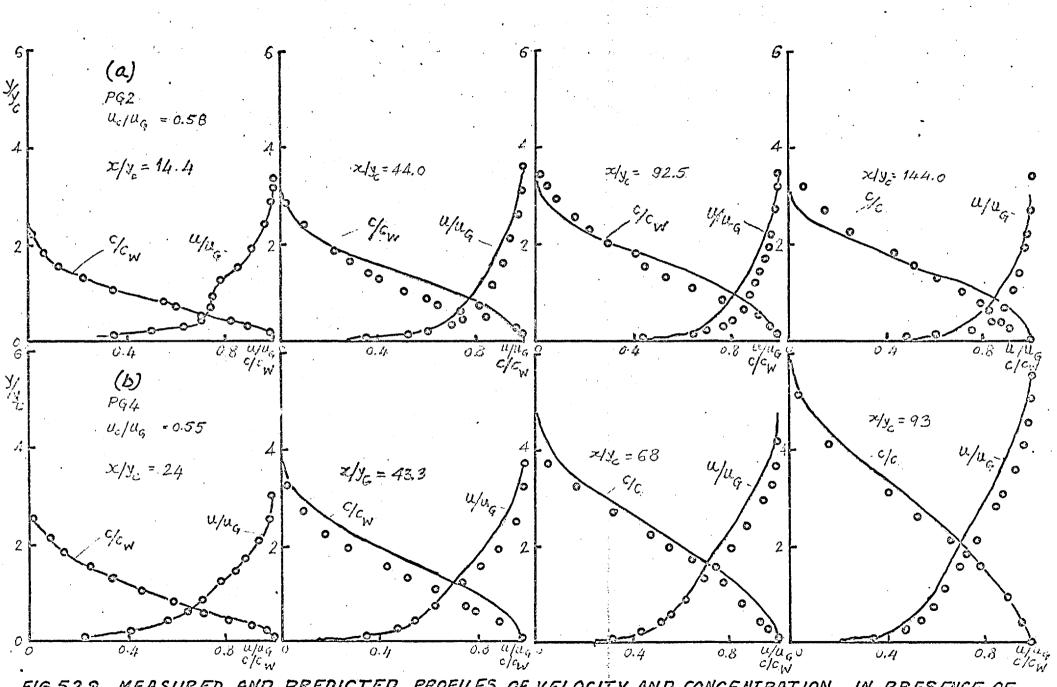
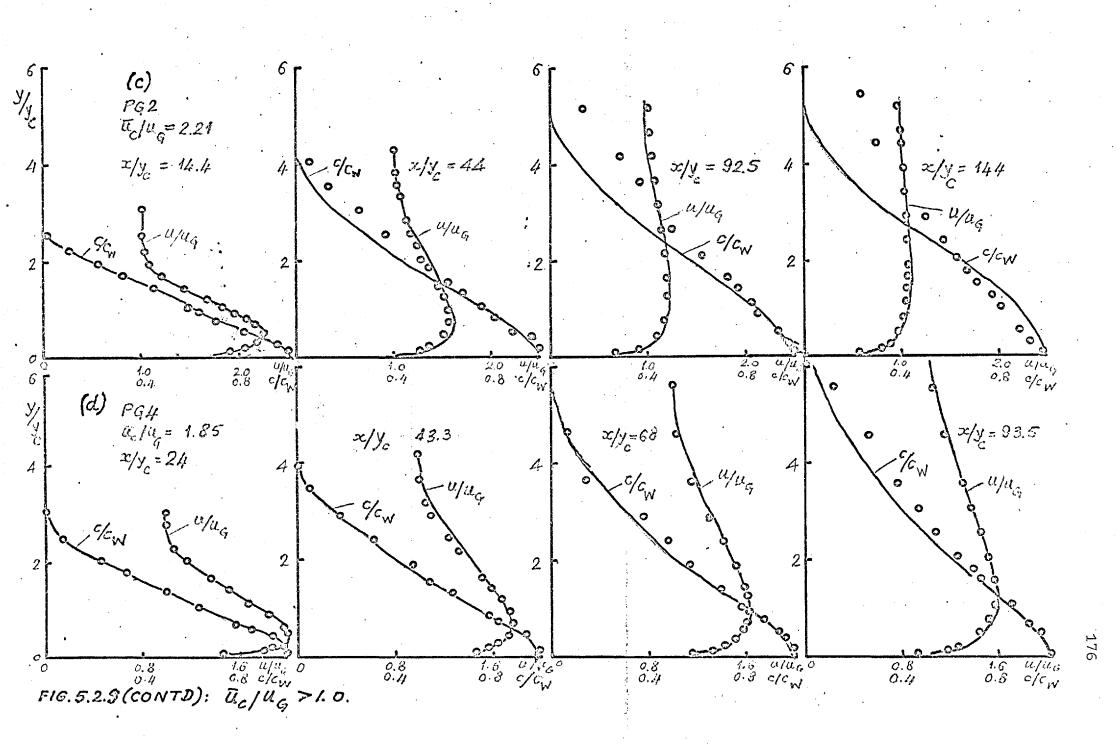
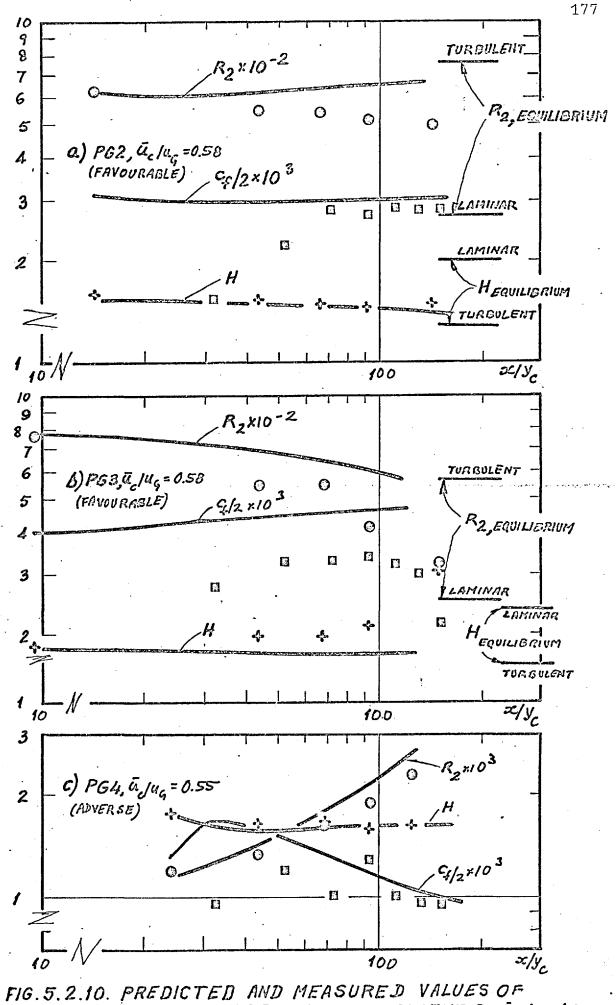





FIG.5.2.9 MEASURED AND PREDICTED PROFILES OF VELOCITY AND CONCENTRATION IN PRESENCE OF PRESSURE GRADIENTS: Q<sub>C</sub>/U<sub>G</sub> <1.0; S<sub>C</sub>/S<sub>G</sub>=1.0







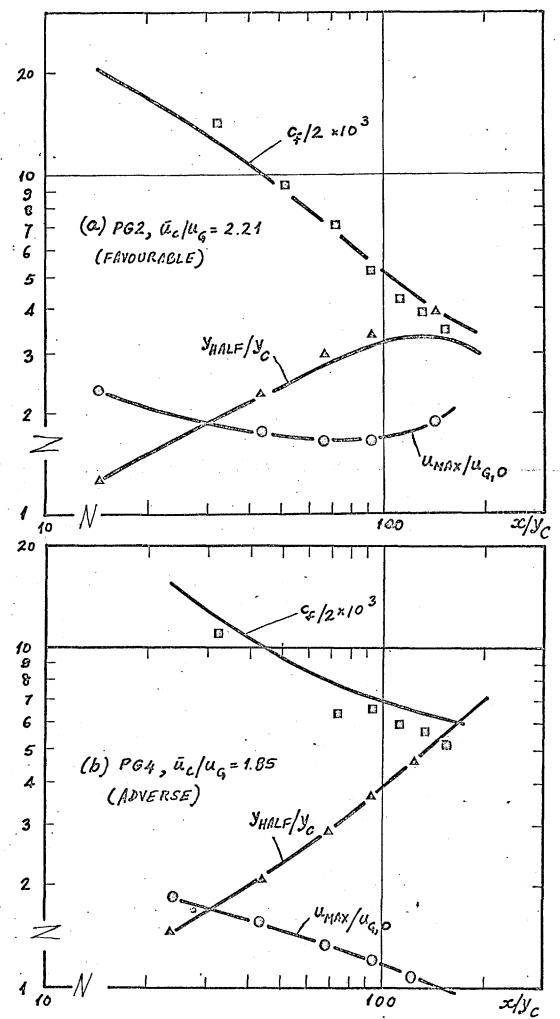



FIG.5.2.11 PREDICTED AND MEASURED WALL-JET DEVELOP-MENT IN FAVOURABLE AND ADVERSE PRESSURE GRADIENTS.

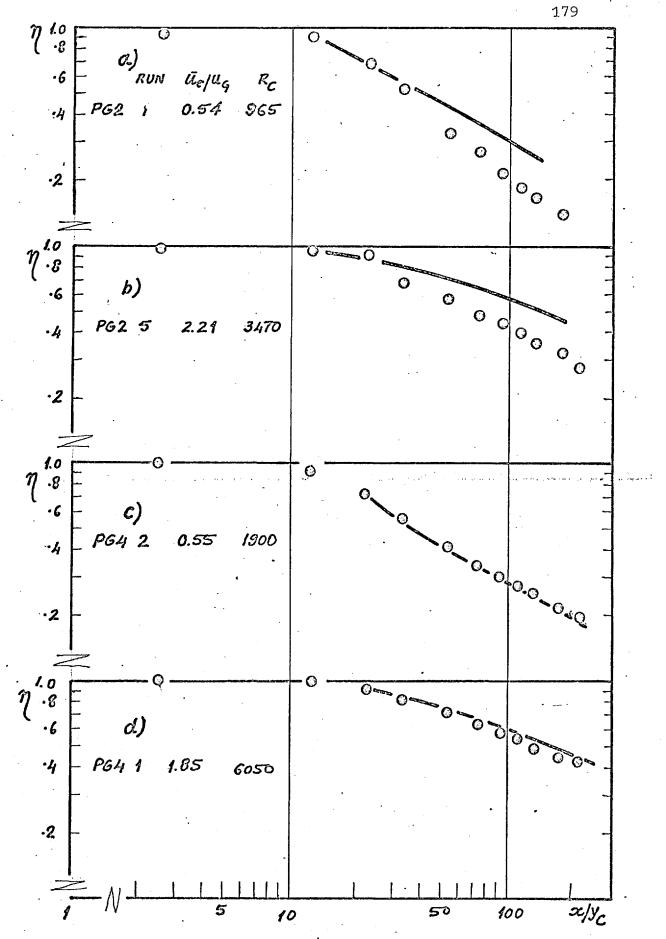



FIG. 5.2.12. PREDICTED AND MEASURED IMPERVIOUS WALL EFFECTIVENESSIN PRESENCE OF PRESSURE GRADIENTS.

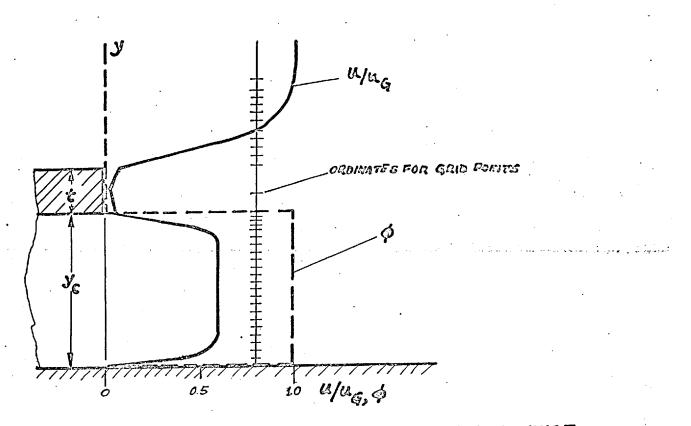



FIG.G.1.1 TYPICAL PROFILES AND FINITE DIFFERENCE GRID AT SLOT EXIT.

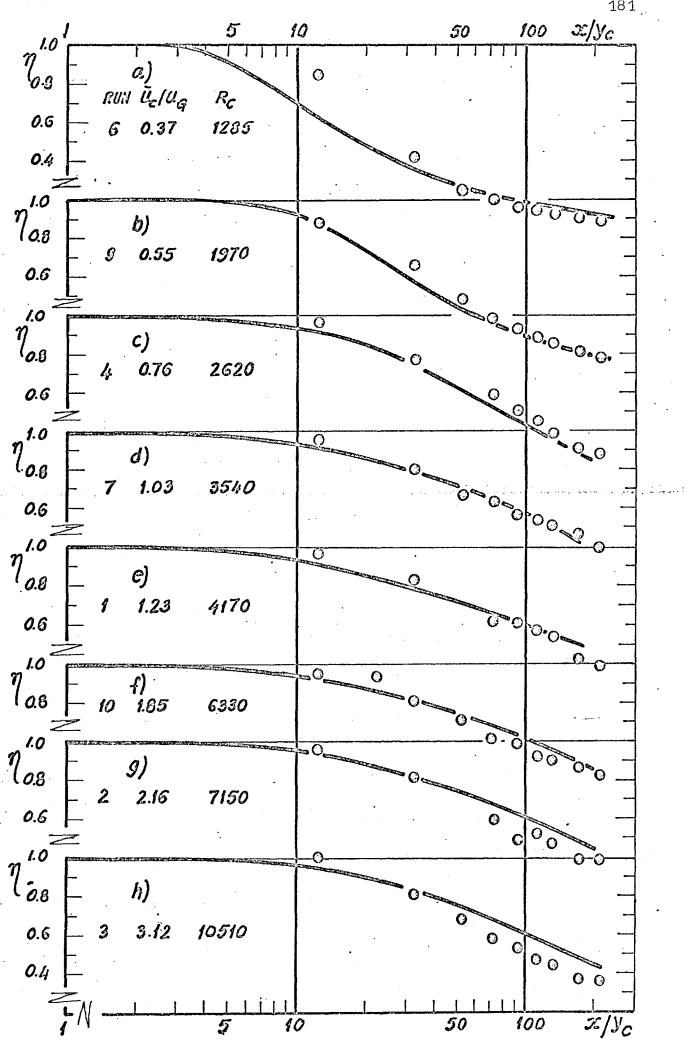



FIG. G.1.2. PREDICTED AND MEASURED IMPERVIOUS WALL EFFECTIVE -NESS: PRESENT MEASURE MENTS (APPARATUS A), y<sub>c</sub> = 2.54 mm g<sub>c</sub>/g<sub>c</sub> = 1.0 (AIR + TRACER IN JECTION).

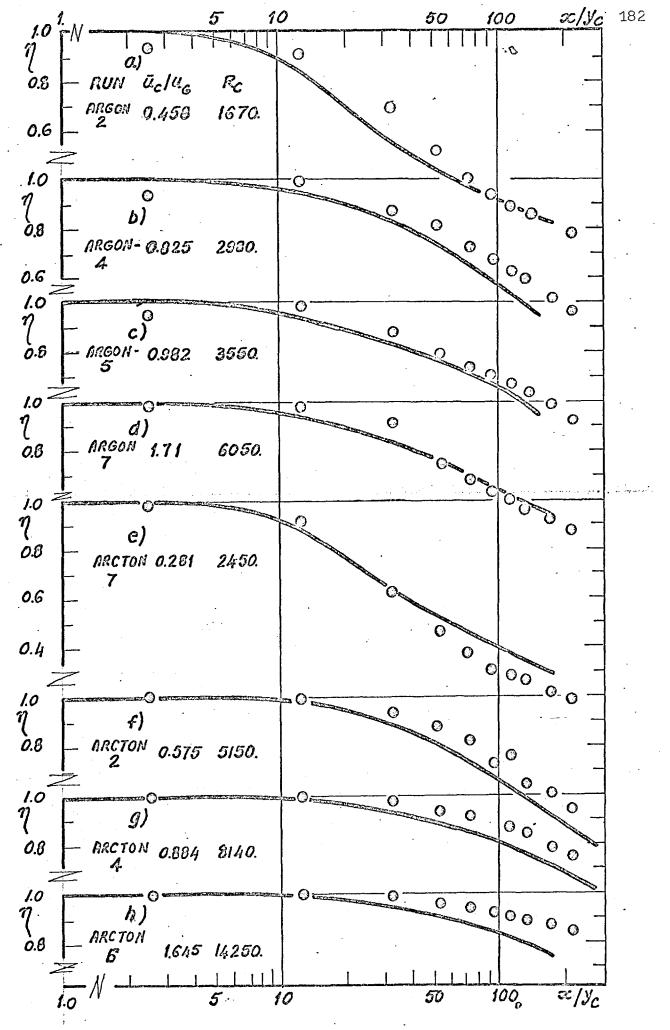



FIG. G.1.3. PREDICTED AND MEASURED IMPERVIOUS WALL EFFECTIVE -NESS: PRESENT MEASUREMENTS (APPARATUS A), y = 2.54 mm, fc/fg > 1.0 (ARGON AND ARCTON-12 INJECTION).

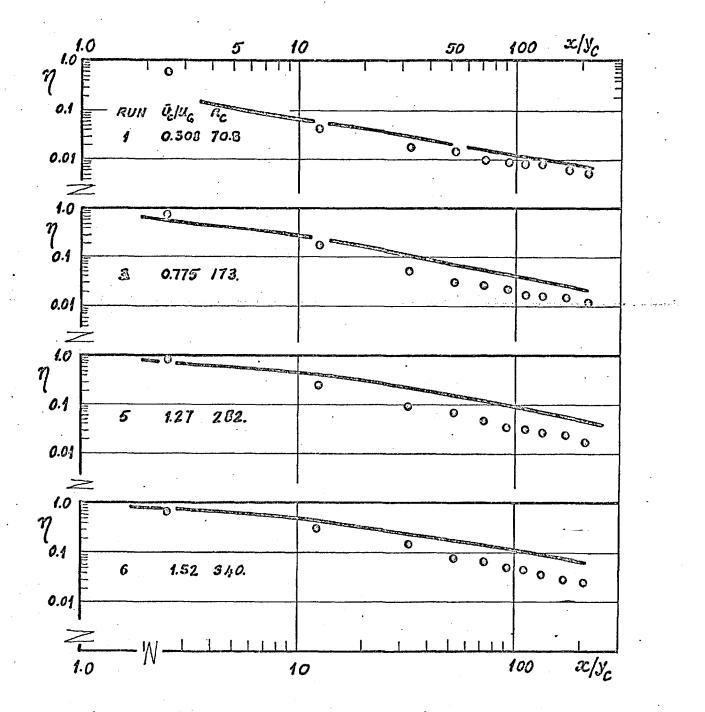



FIG. 6.1.4. PREDICTED AND MEASURED IMPERVIOUS WALL EFFECTIVENESS: PRESENT MEASUREMENTS FOR HYDROGEN INJECTION (Sc/SG=0.069).

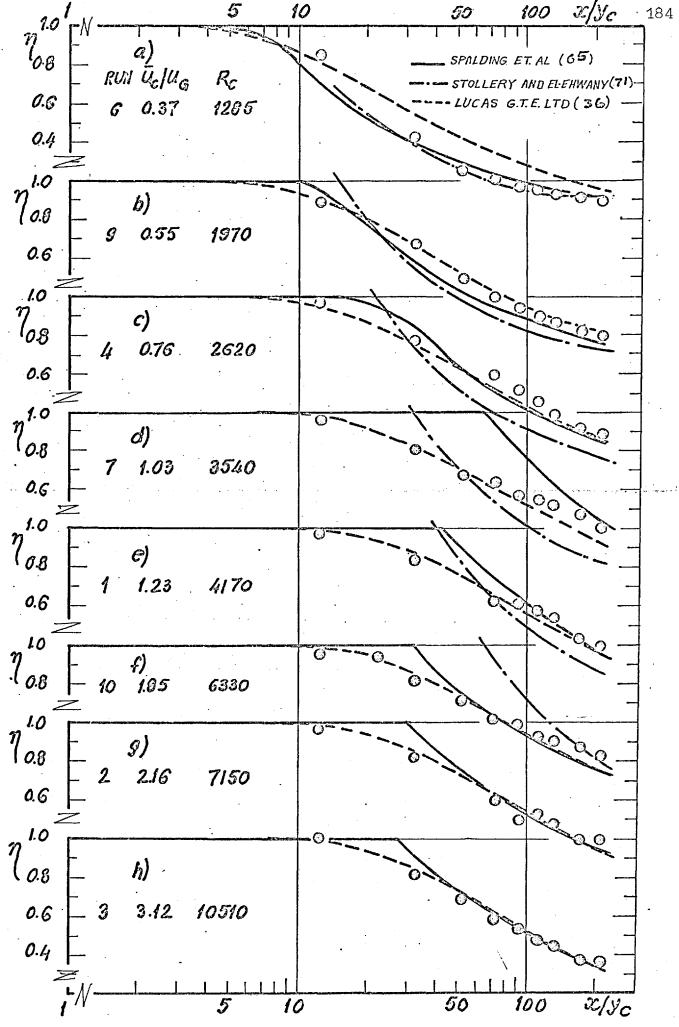



FIG. 6.1.5. PREDICTIONS OF PREBENT DATA FROM CORRELATIONS OF REFERENCES (65), (71), (36):  $P_c/P_g = 1.0$ .

186 25/Yc 1.0 M 50 100 10 5 Q Č) RUN UC UG Rc 0.8 ARGON 0.458 1670. 0.G 1.0 j, η 0.8 ARGON- 0.825 2880. °° -° o 0.6 к) ( 1.C n 0.8 (XGON 0.982 3550. 0 0 1.0 Л 0.8 ARGON 1.71 6050. 20000 Q 1.0 0 7 0.8 m) ARCTON 0.281 2450. 0.6 0. Lş 000000 1.0 M 0.8 0 1) 0 ARCTÓN 0.575 5150. do 1.0 v-0 0 0000 o) 0 0.8 A2CTON 0984 8140. 1.0 M 0.8 00000 0 *p*) ARCTON 1.645 14250. LN \_\_\_\_\_ 5 10 x/yc 50 100

FIG. G.1.5. (CONTD.) DENSITY RATIO. P. P. 71.0.

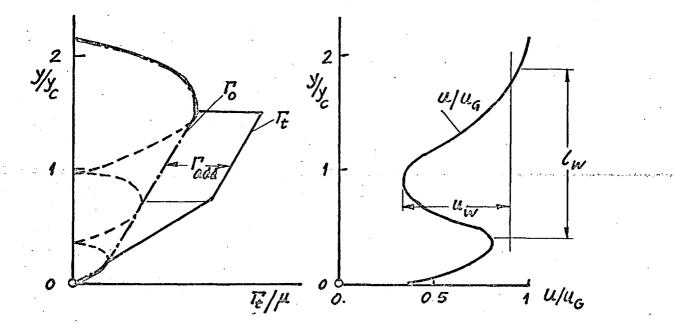



FIG.6.2.1. EDDY DIFFUSIVITY PROFILE USED FOR PREDICTION OF THE INFLUENCE OF LIP THICKNESS ON EFFECTIVENESS.

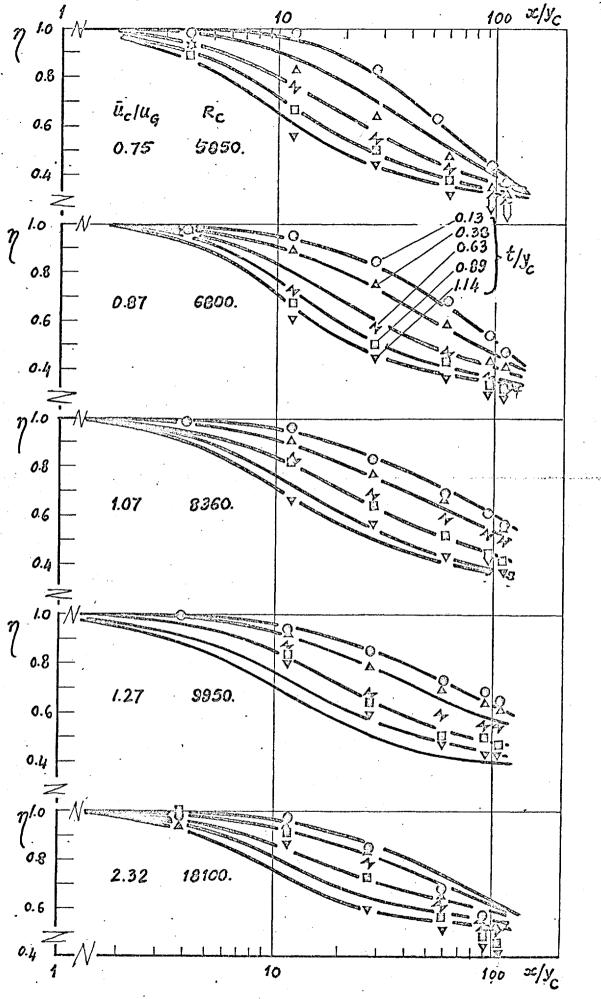
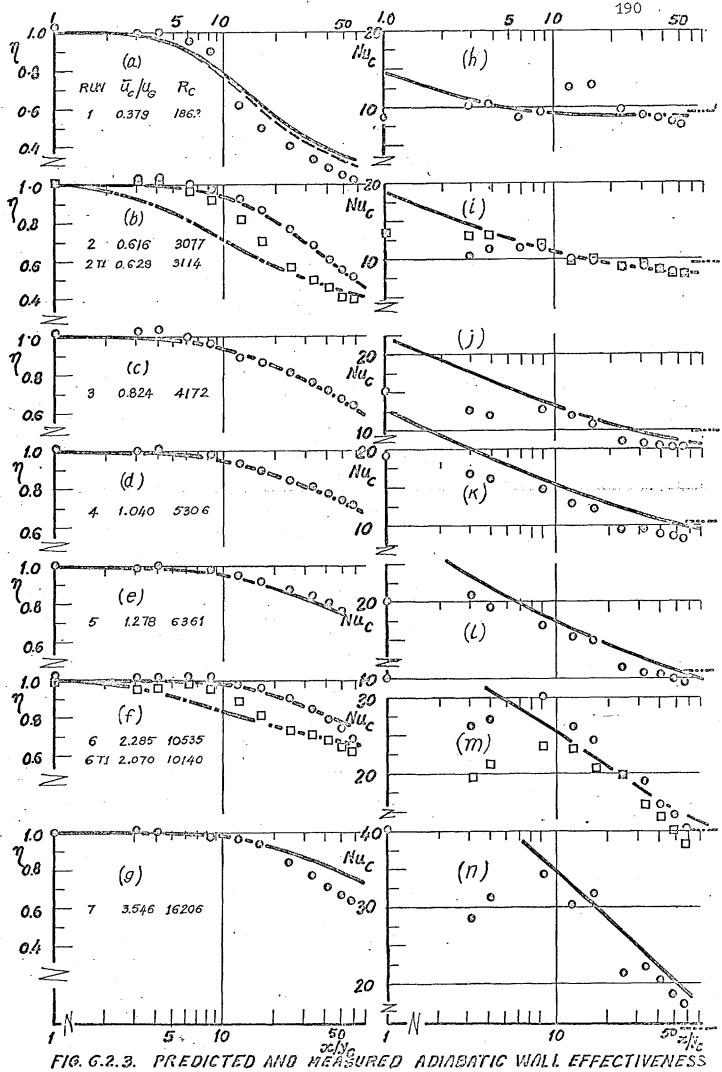
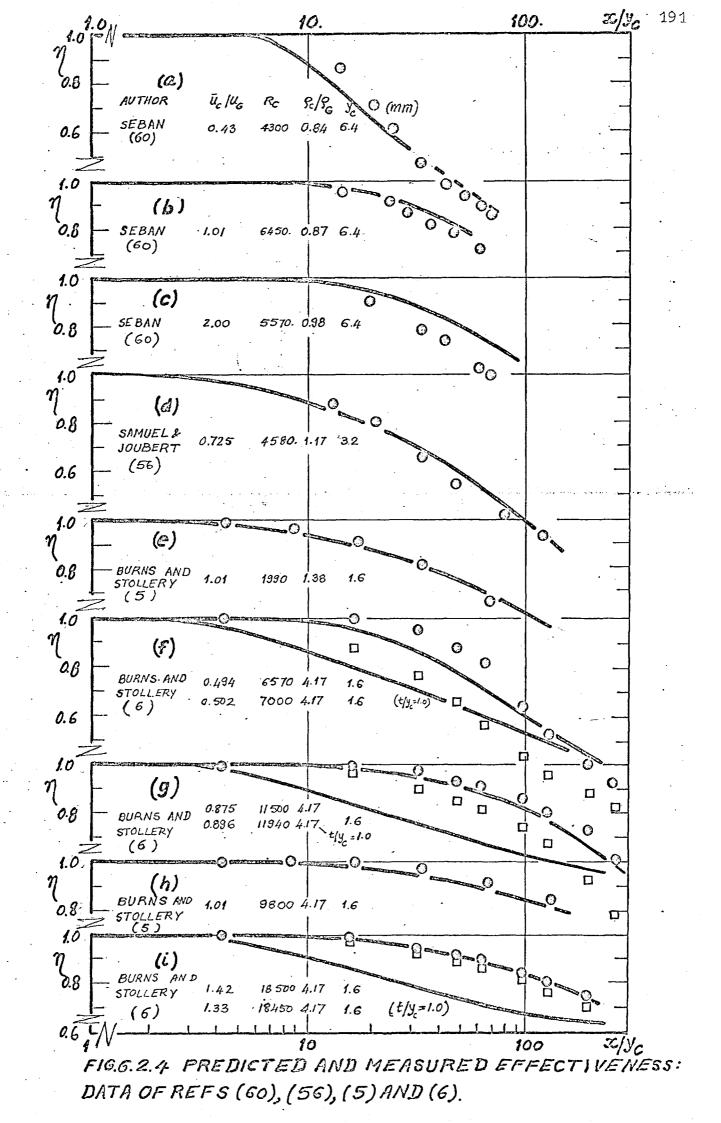
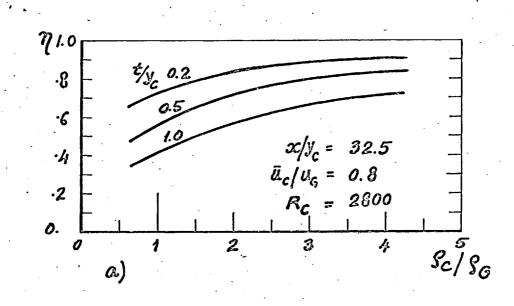






FIG.G.2.2. PREDICTED AND MEASURED IMPERVIOUS WALL EFFECTIVENESS: INFLUENCE OF SLOT LIP THICKNESS: DATA OF REFERENCE(30), Pc/Pg=1.0, y\_c = 6.2 mm



AND MEAT TRANSFER COEFFICIENT : PRESENT MEASUREMENTS (APPARATUS B),  $y_c = 4.7 mm$ ,  $S_c/R_G = 0.93$ ,  $t/y_c = 0.35$  AND 1.0.





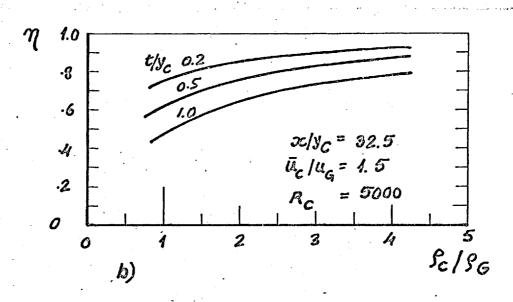



FIG. G.2.5. PREDICTED INFLUENCE OF DENSITY AND LIP THICKNESS RATIO ON EFFECTIVENESS.

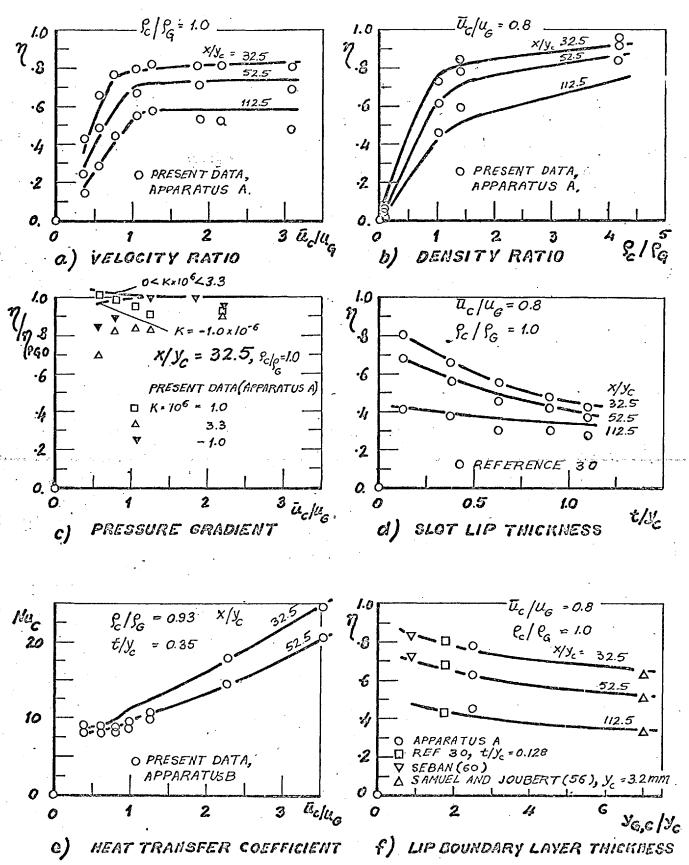



FIG.6.5.1. SUMMARY OF COMPARISONS OF PREDICTIONS AND EXPERIMENTAL DATA FOR EFFECTIVENESS AND HEAT TRANSFER COEFFICIENT.

Tc % 200 400 800 600 1000 To <u>~</u>K 1000 2000 3000 0.4 Т E. 0.2 0.6 1.0 . 0.8 Т Τ 0.5 EG -0.1 0.3 0.2 0.4 0.6 0.7 0,8 Т h2 CHU/FT2HR C 100 зÒО 200 40Ò Т h, CHU/FTHRE100 200 300 400 <u>50</u>0 Т Т 0.2 0.4 0.6 0.8 1.0 7 T Т Twy (%)  $\Delta T(\mathcal{C})$  $T_G, \mathcal{E}_G$ Ņ T<sub>ç</sub> h, TwsEw TG h2 T<sub>C</sub> 1100 hz. 100  $\mathcal{E}_{\mathcal{G}}$ 1000 ·n<sub>4</sub> Ew 0 έ. Έw h2  $\mathcal{E}_{\mathcal{G}}$ h, N 900 DATUM VALUES 100 0.7 η h<sub>i</sub> 250 C.H.U/FT<sup>2</sup>IRV TG Tc 200  $h_2$ -11-E<sub>G</sub> 0.40 Ew 0.70 1800  $T_G$ °K Tc 1750 îK 1.2 1.4 ·b ·6 ·Ø 1.0 1.8 2Ò 1.6 FRACTION OF DATUM

FIG. 6.6.1. INFLUENCE OF 7, h1, h2, C0, EW, TS AND TC ON THE TEMPERATURE OF A FILM-COOLED SURFACE.

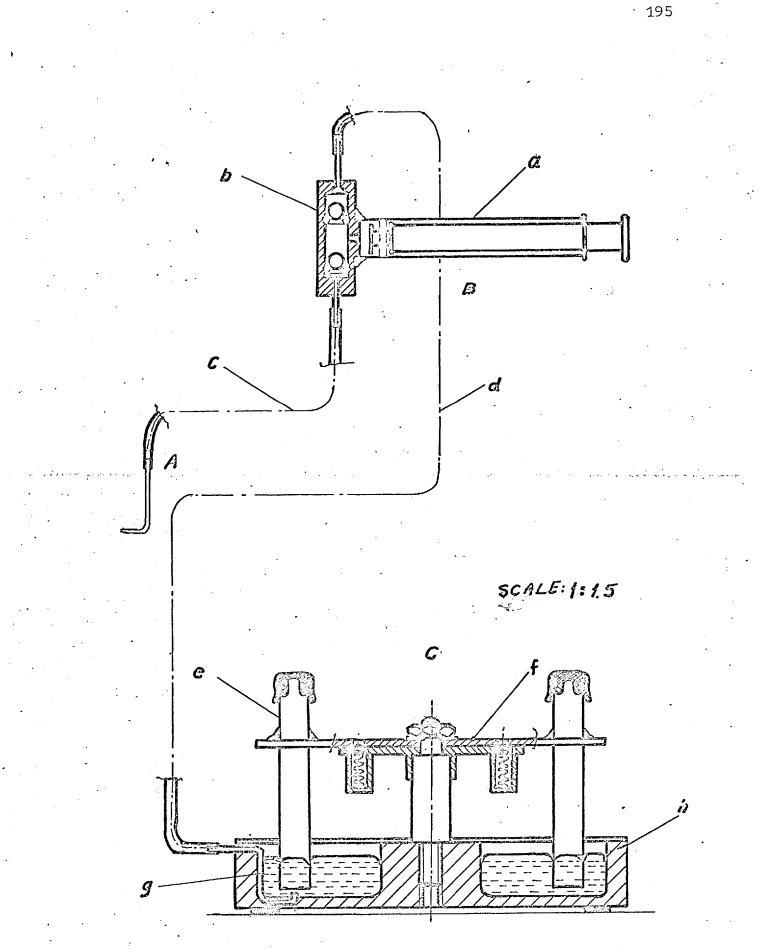



FIG. A.1-1 GAS SAMPLING SYSTEM.



Fig.A.1.2 Bank of Sample Bottles.

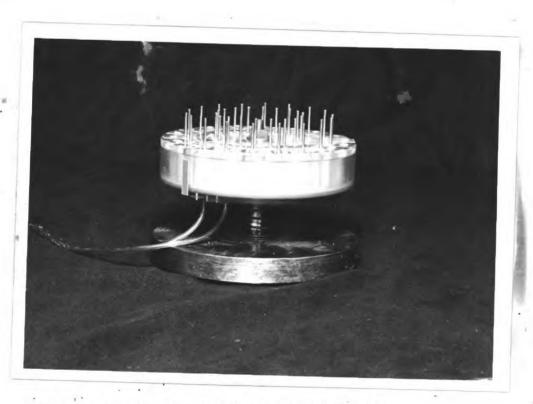



Fig. A.1.3 Rotary Pressure Switch.

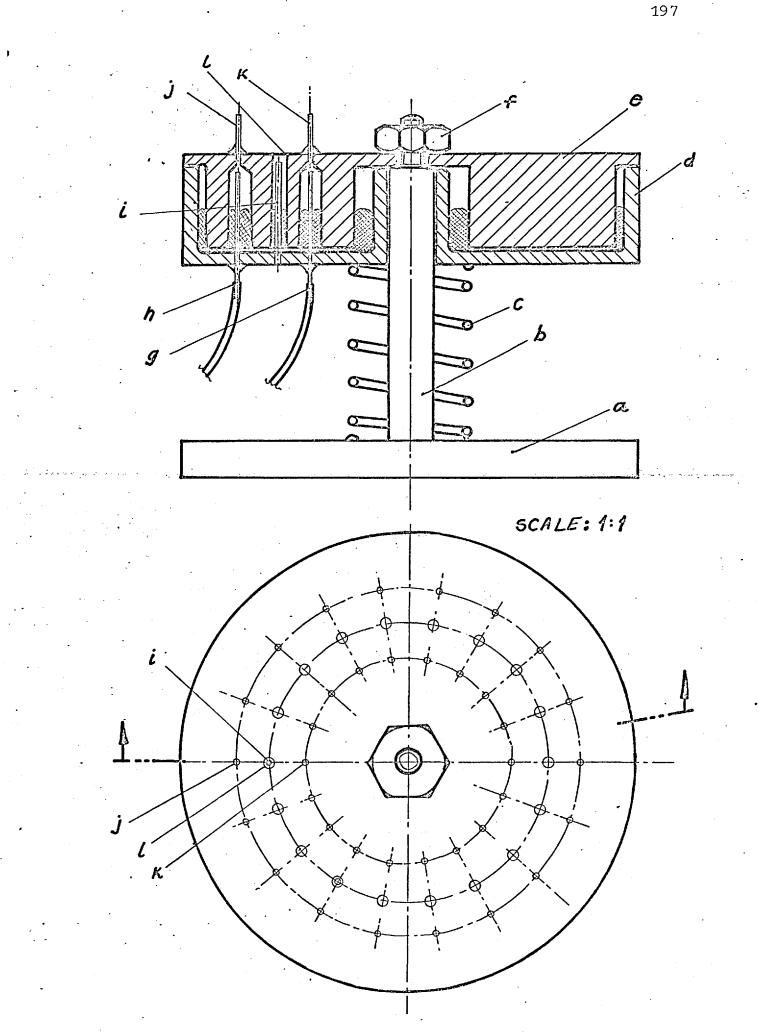
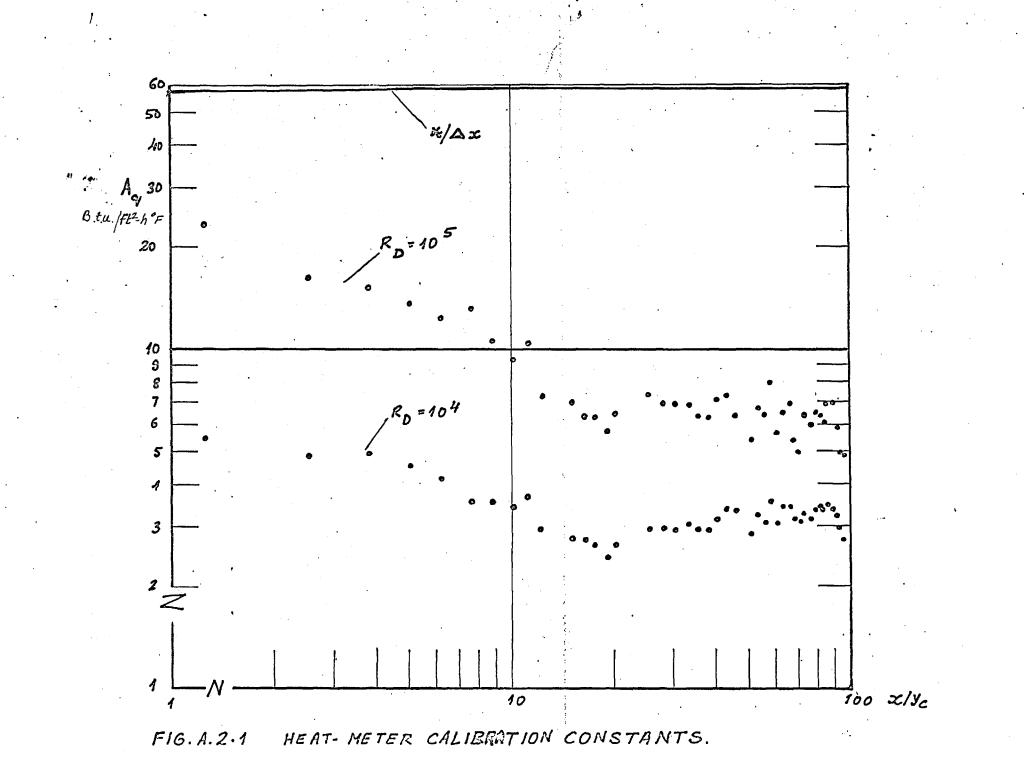




FIG. A. 1.-4 : A ROTARY PRESSURE SWITCH.



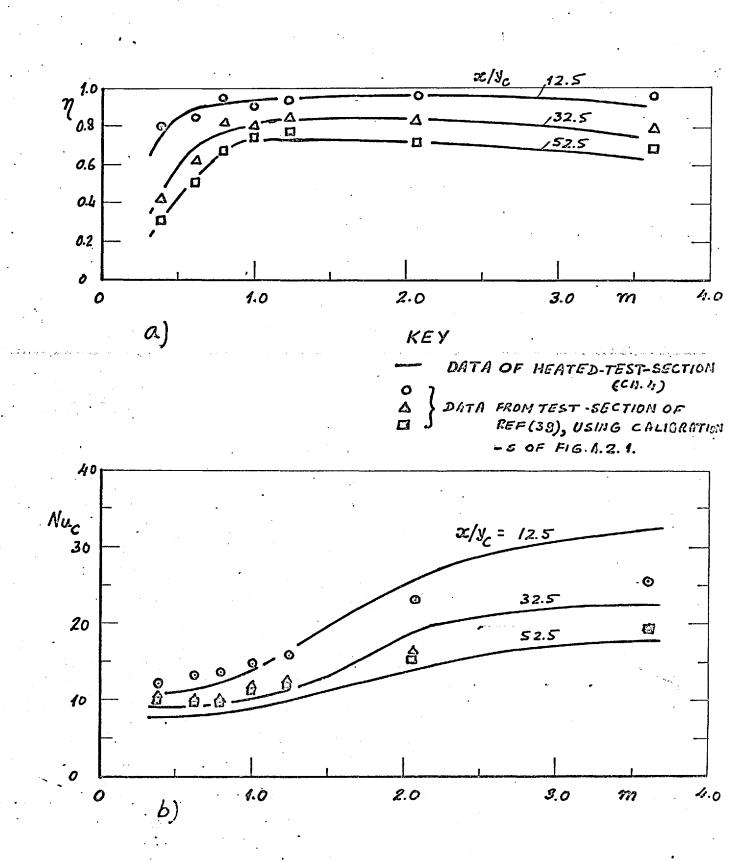



FIG. A.2. 2 COMPARISON OF MEASURED VALUES OF EFFECTIVENESS AND HEAT-TRANSFER COEFFICIENT OBTAINED WITH HEATED-TEST SECTION AND TEST-SECTION OF REF (39).

#### APPENDIX A.1

#### A.1 Details of some auxiliary apparatus

### A.1-1 A gas-sampling system

The gas sampling system shown in Fig. A.1-1 was designed and developed to obtain concentration profiles across the boundary layer at any desired streamwise location. It enabled gas samples to be rapidly withdrawn and collected in sample bottles from successive locations of the sampling probe across the boundary layer.

The sampling system comprised (see Fig. A.1-1) a sampling probe 'A', a hand-pump 'B' and a bank of sample bottles 'C'. A photograph of the hand-pump appears in Fig. 4.1.7, while that of the bank of sample bottles in Fig. A.1-2.

The probe 'A' was connected to one of the non-return valves by means of a 2 mm-bore neoprene tube 'C' about 30 cm long. A similar neoprene tube 'd' connected the other non-return valve to the inlet of the bank of sample-bottles.

The bank of sample bottles 'C' comprised eighteen sample bottles 'e', a pivoted disc 'f', a perspex dish 'h' and a discharge spout 'g'. Each sample bottle was a length of pyrex tube, 10.5 mm inside diameter and 79 mm long, with a serum cap plugged in its upper end. The sample bottles were mounted on the periphery of the disc 'f', which could be rotated manually and was indexed to click at 36 preferred positions. The discharge spout 'g' was a bent hypodermic tube, 1.6 mm I.D., and was arranged to be either vertically below or in between two sample tubes, as the disc 'f' was rotated through successive indexed positions. The perspex dish 'h' was filled with mercury so that the lower ends of the sample bottles were always immersed.

<u>Operation:</u> The operation of the system is best explained by describing the sequence of obtaining a concentration profile across the boundary layer. First, the sample bottles 'e' were completely filled with mercury, by withdrawing the air in the bottles with a hypodermic needle, coupled to a vacuum pump, and pierced through the serum caps. Next, the plate 'f' was rotated so that the spout 'g' was in between two sample bottles. The sampling probe was placed in its first desired position and the tubes 'c' and 'd' and the syringe 'a' flushed

by the operation of the plunger. Next, the plate 'f' was ' indexed to its next preferred position, so that one of the sample bottles was vertically over the discharge spout. The sample was then collected in the sample bottle by activation of the plunger. The sampling probe was then moved to its next position in the boundary layer and the tube-bank advanced to its next preferred position for which the spout was in between a pair of sample bottles. The procedure of flushing the line, collecting the sample and advancing the sampling probe was repeated until the traverse was completed. The samples were later withdrawn in turn through the self-sealing serum caps by means of a 1 ml gas-tight syringe and injected into a gas chromatograph. A single stroke of the syringe was sufficient to fill a sample bottle of about 7 ml capacity. Further, the volumes of the connecting tubes 'c' and 'd' were kept to a minimum to reduce the dead space which had to be flushed. The time required for a traverse with eighteen points was approximately two and a half minutes.

A.1-2 A rotary pressure switch.

A rotary pressure switch was designed by the author to enable successive pairs of static-pressure holes in a wind tunnel to be conveniently connected to a differential micromanometer. Mercury was used as a seal between the moving parts and the device was suitable for gauge pressures up to  $\pm 100$  mm of water. The design and dimensions of the device implied that no great precision was required in the manufacture of any of its components.

<u>Construction</u>: Fig. A.1-4 shows a cross-section and plan view of the rotary pressure switch. A photograph of the same appears in Fig. A.1-3. It comprised a base 'a', an arbor 'b', a compression spring 'c', a sliding perspex dish 'd', a stationary perspex disc 'e' and a lock nut 'f'.

The dish 'd' had a central bore which permitted it to slide and rotate freely on the arbor 'b'. It carried along one of its radii, two hypodermic tubes 'g' and 'h' of 1.6 mm O.D. and a locating pin 'i', 1.6 mm O.D. The tubes 'g' and 'h' protruded 21 mm over the inner surface of the dish 'd' and the locating pin 23 mm. The stationary disc 'e' carried 18 pairs of hypodermic tubes (such as 'j' and 'k'), each 1.6 mm O.D., at 20-degree intervals; the radial location of each pair corresponded to that of the tubes 'g' and 'h' on the sliding dish 'd'. The disc 'e' also had 18 holes (such as 'l'), each of 2.4 mm diameter along a radius corresponding to the locating pin 'i' and along angular positions corresponding to the tubes 'g' and 'h'. The stationary disc 'e' was fixed to the arbor 'b' by the lock-nut 'f'.

The dish 'd' contained mercury to a depth of approximately 10 mm, when the dish was at its highest position on the arbor 'b'.

<u>Operation</u>: The pairs of tubes 'j' and 'k' were connected to the static-pressure holes in the test section of the wind tunnel through neoprene tubing, 2 mm I.D.; the tubes 'g' and 'h' were connected to a differential micromanometer through similar tubing.

To connect the micromanometer to the desired pair of static-pressure holes, the dish 'd' was lowered and rotated until the tubes 'g' and 'h' were directly below the desired pair of 'k' - 'l' tubes. The dish was then released, which caused it to be raised due to the compression spring 'c'. The chamfer at entry and an easy clearance between the hole 'l' and the locating pin 'i', as well as a fiducial on the outside of the dish, ensured that the process of aligning the dish against the required tube pair was a simple matter.

The use of mercury ensured reliable sealing and also that the tube pairs not connected to the manometer were sealed from the atmosphere. The range of the device could be altered to some extent by changing the amount of mercury in the dish 'd'. For instance, if all the static pressures were subatmoshperic, a lower level of the mercury would permit a larger range of operating pressures. The design for a larger range of pressure can of course be obtained by increasing the vertical dimensions of the device.

APPENDIX A-2 .

### A.2 Experiments with apparatus B- Test section of ref (39).

The test section reported in (39) has been briefly described in chapter 4.2.2. In the present section, the experimental procedure and results for the adiabatic-wall effectiveness and the heat transfer coefficient, are discussed.

Experimental procedure. The desired velocities and temperatures of the main and secondary streams were set in the tunnel, as described in section 4.3.3.

The value of the heat-flux through each of the forty seven heat- flux meters (see Fig,4.2.4) could be altered by changing the temperature of the water flowing through the jacket enclosing the lower set of copper studs. For each flow condition, the steady-state temperatures of all the copper studs, corresponding to three different values of the water temperature in the jacket, were recorded. This permitted the evaluation of the adiabaticwall effectiveness and heat-tranfer coefficient as described below.

Evaluation of the adiabatic-wall effectiveness and the heat-transer coefficient.

The steady-state heat flux through each of the heat-flux meters could be infereed from the following equation:

 $\dot{q}_W^{"} = A_q (T_W - T_B)$ , A.2-1 where  $A_q$  is a calibration coefficient of the heat flux meter,  $T_W$  is the temperature of the upper copper stud, assumed to be equal to the local wall temperature, and  $T_B$  is the temperature of the lower copper stud. Since the wall-temperatures corresponding to three values of  $\dot{q}_W^{"}$ were measured, the adiabatic-wall temperature and the heat-tranfer coefficient was obtained by a linear fit between the  $\dot{q}_W^{"}$ 's and  $T_W$ 's for each of the heat-flux meters - a least squares procedure was used for this purpose.

If the heat-transfer coefficient was completely independent of the boundary conditions, and the contact between the copper studs and the polypropylene sheet of each heat-flux meter was perfect, the value of the coefficient  $A_q$  should equal ( $*/\Delta x$ ), where \* is the thermal conductivity of the polypropylene sheet and  $\Delta x$ its thickness. However, values of the heat-tranfer coefficient obtained on this basis were found to be higher than expected, by a factor of about seven; the reasons for this discrepancy are outlined in chapter 4.2.2. Consequently an 'in situ' calibration was arranged - the drum assembly upstream of the test section was replaced by a 3.6 m length of 73 mm inside diameter Dural pipe section, so that a fully developed pipe flow was established at the test section, for which the teat tranfer coefficient could be obtained from the well known Colburn relation (26):

St = 0.023  $R_D^{-0.2} Pr^{-2/3}$  A.2.2 The calibration coefficient  $A_q$  for each heat-flux meter was obtained by equating the heat flux through the meter (as given by eq. A.2.1) to the product of the pipe-flow value of the heat tranfer coefficient (eq. A.2.2) and the local wall-to-mainstream temperature difference. It was found that values of the coefficent  $A_q$  determined in this manner were a function of the pipe-Reynolds number,  $R_D$ . In the range of the experiments; a power-law relat n of the type

 $A_q = C_R_D^m$ 

was found to be appropriate to describe this relationship. Consequently, C and m were obtained by a least-squares linear fit between log  $A_q$  and  $R_D$  for each of the heat-flux meters. Values of  $A_q$  corresponding to two values of  $R_D$ ( $R_D = 10^4$  and  $10^5$ ) are shown in Fig. A.2.1. It is evident that values of  $A_q$  are much below (\*/ $\Delta x$ ), thevalue corresponding to the 'ideal' case; the large scatter in the values of  $A_q$  for the different heat-flux meters is indicative of their variable characteristics.

Results and discussion.

Values of the adiabatic-wall effectiveness and the heat transfer coefficient obtained in conjunction with q'the  $A_q$ 's obtained with the above calibration procedure are shown in Fig. A.2.2 (a) and (b) respectively, for three values of  $x/y_c$ , plotted against the mass-velocity ratio. The symbols represent the data in question, and the lines are mean curves through corresponding data obtained with the electrically heated test section, presented in chapter 4.4.1.

It is evident from Fig. A.2.2 (a) that values of the adiabatic-wall effectiveness measured with the two testsections are in good agreement (within 5 percent of unity) with one another. This was to be expected, since the same slot assembly was used for both the test sections.

Values of the heat tranfer coefficients, Fig. A.2.2 (b) obtained with the two test sections are in good qualitative agreement with one another. Discrepancies of upto 18 percent are noticeable for large values of m. The agreement between the two sets of data may be considered to be satisfactory, in view of the differences in the boundary conditions, experimental uncertainties and the limited validity of the calibration procedure for the heat-flux meters.

The present experience with the test-section of reference (39) indicates that an 'in situ' calibration of the heat flux meters is essential. However, the fact that the calibration coefficients are a function of the Reynolds number, makes its application problematic, since Reynolds number, based on a bulk-velocity may not be appropriate to a film cooling problem. Further, the use of an adiabatic wall with intermittent heat sinks or sources does not appear to be a desirable boundary condition for the measurement of the heat-transfer coefficient.

| CONTENTS     |                      |                 |        |  |  |  |
|--------------|----------------------|-----------------|--------|--|--|--|
| TABLE<br>NO. | PRESSURE<br>GRADIENT | INJECTED<br>GAS | PAGE   |  |  |  |
|              | PG0                  | HYDROGEN        | A312   |  |  |  |
| 2            | PGO                  | AIR             | A312   |  |  |  |
| -3           | PGO                  | ARGON           | A 31 4 |  |  |  |
| 4            | PGO                  | ARCTON-12       | A315   |  |  |  |
|              | PG1                  | AIR             | A316   |  |  |  |
| 6            | PG2                  | AIR             | A316   |  |  |  |
| 7            | PG3                  | AIR             | A317   |  |  |  |
| 8            | PG4                  | AIR             | A317   |  |  |  |
|              | PG2                  | HYDROGEN        | A318   |  |  |  |
| 10           | PG2-                 | ARCTON-12       | A318   |  |  |  |

HYDROGEN

ARCTON-12

A319

A319

A.3.1

- ----

PG4

PG4

ł

11

12

A311 SEOF

## IMPERVIOUS-WALL EFFECTIVENESS

206

T I

I I Ŧ I Ī ī T I I I I I Ŧ I

Ī

ī

Ŧ I

| •                    | TABLE 3          | .1-1 IMF       | PERVIOUS | WALL EFF | ECTIVENE           | SS      |                |
|----------------------|------------------|----------------|----------|----------|--------------------|---------|----------------|
|                      |                  | GRADIEN<br>GAS |          | GEN DEN  | 10##6<br>ISITY RA1 |         | 0.069          |
| UC/UG                | RUN 1            | RUN 2          |          |          |                    |         | RUN 7          |
| M<br>RC              | 0.021<br>70.8    | 0.039          | 0.054    | 0.073    | 0.088              | 0.105   | 0.035<br>338.0 |
| X/YC<br>2.5          |                  |                |          |          |                    |         | 0.800          |
| 12.5<br>32.5<br>52.5 | 0.0186           |                | 0.0505   | -0-0825  | 0.0855             | 0.1208  | 0.300<br>0.064 |
|                      | 0.0097           | 0.0169         | 0.0256   | 0.0374   | 0.0458             | 0.0640- |                |
| 132.5                | 0.0079           | 0.0115         | 0.0168   | 0.0209   | 0.0256             | 0.0352  | 0.014          |
|                      | 0.0057<br>0.0052 |                |          |          |                    |         |                |

TABLE 3-1-2 IMPERVIOUS-WALL EFFECTIVENESS

| PRESSURE GRADIENT PGO | KP-10++6 (NOM) = 0.0    |
|-----------------------|-------------------------|
| INJECTED GAS AIR      | DENSITY RATIO = 1.0     |
|                       | SLOT HEIGHT (MM) = 2.54 |

|                                | RUN 6                                 | RUN 9                                     |                                           | RUN 4                            | RUN 7                                     |
|--------------------------------|---------------------------------------|-------------------------------------------|-------------------------------------------|----------------------------------|-------------------------------------------|
| UC/UG                          | 0.37                                  | 0.55                                      | 0.575                                     | 0.763                            | 1.035                                     |
| <u>M</u>                       | 0.37                                  | 0.55                                      | 0.575                                     | 0.763                            | 1.035                                     |
| RC                             | 1285.                                 | 1970.                                     | 1990.                                     | 2620.                            | 3540.                                     |
| -X/YC                          |                                       |                                           |                                           |                                  |                                           |
| 2.5                            | 0.806                                 | 0.910                                     | 0.725                                     | 0-879-                           | 0.770                                     |
| 12.5                           | 0.842                                 | 0.880                                     | 0.930                                     | 0.966                            | 0.955                                     |
| 22.5                           | · · · · · · · · · · · · · · · · · · · |                                           |                                           |                                  | •                                         |
| 32.5                           | 0.418                                 | 0.660                                     | 0.655                                     | 0.770                            | 0.800                                     |
|                                |                                       |                                           |                                           |                                  |                                           |
| 52.5                           | 0.244                                 | 0.480                                     |                                           |                                  | 0.661                                     |
| 52.5<br>72.5                   | 0.244                                 |                                           |                                           |                                  | 0.661                                     |
|                                |                                       | 0.385                                     | 0-405                                     | 0.587                            |                                           |
| 72.5                           | 0.205                                 | 0.385                                     | 0-405<br>0-318                            | 0.587                            | 0.635<br>0.565                            |
| 72.5                           | 0.205                                 | 0.385<br>0.330<br>0.290                   | 0.405<br>0.318<br>0.288                   | 0•587<br>0•510<br>0•455          | 0.635<br>0.565                            |
| 72.5<br>92.5<br>112.5          | 0.205<br>0.167<br>0.150<br>0.128      | 0.385<br>0.330<br>0.290<br>0.260          | 0.405<br>0.318<br>0.288<br>0.244          | 0.587<br>0.510<br>0.455<br>0.384 | 0.635<br>0.565<br>0.540                   |
| 72.5<br>92.5<br>112.5<br>132.5 | 0.205<br>0.167<br>0.150<br>0.128      | 0.385<br>0.330<br>0.290<br>0.260<br>0.215 | 0.405<br>0.318<br>0.288<br>0.244<br>0.210 | 0.587<br>0.510<br>0.455<br>0.384 | 0.635<br>0.565<br>0.540<br>0.511<br>0.461 |

A312 \$E0F

| TABLE 3.1-2 (CONTD) IMPERVIOUS-WALL EFFECTIVENESS |                                       |       |                                   |              |        |  |
|---------------------------------------------------|---------------------------------------|-------|-----------------------------------|--------------|--------|--|
|                                                   | PRESSURE GI                           |       | KP 10**6<br>DENSITY I<br>SLOT HEI | RATIO        | = 1.0  |  |
|                                                   | RUN 1                                 | RUN 8 | RUN 10                            | RUN 2        | RUN 3  |  |
| UC/UG                                             | 1.23                                  | 1.74  | 1.85                              | 2.16         | 3.12   |  |
| M                                                 | 1.23                                  | 1.74  | 1.85                              | 2.16         | 3.12   |  |
| RC                                                | 4170.                                 | 5700. | 6330.                             | 7150.        | 10510. |  |
| X/YC                                              | · · · · · · · · · · · · · · · · · · · |       |                                   |              |        |  |
| 2.5                                               | 0.920                                 | 0.920 | 0.972                             | 0.929        | 1.00   |  |
| 12.5                                              | 0.965                                 | 0.994 | 0.954                             | 0-950        | 1.00   |  |
| 22.5                                              |                                       |       | 0.938                             |              |        |  |
| 32.5                                              | 0.825                                 | 0.818 | 0.807                             | 0.815        | 0.805  |  |
| 52.5                                              | · · · · · · · · · · · · · · · · · · · | 0.694 | 0.705                             |              | 0.680  |  |
| 72.5                                              | 0.610                                 | 0.636 | 0.608                             | 0.594        | 0.587  |  |
| 92.5                                              | 0.605                                 | 0.587 | 0.594                             | <b>0.493</b> | 0.525  |  |
| 112.5                                             | 0.562                                 | 0.555 | 0.520                             | 0.521        | 0.473  |  |
| 132.5                                             | 0.530                                 | 0.476 | 0.505                             | 0.479        | 0.442  |  |
| 172.5                                             | 0.416                                 | 0.456 | 0.461                             | 0.394        | 0.370  |  |
| 212.5                                             | 0.394                                 | 0.412 | 0.425                             | 0.398        | 0.366- |  |

## TABLE 3.1-2 (CONTD) IMPERVIOUS-WALL EFFECTIVENESS

| PRESSURE GRADIEN | IT-PGO                                | KP 10**6 (NOM) == 0.0   |   |
|------------------|---------------------------------------|-------------------------|---|
| INJECTED GAS     | AIR                                   | DENSITY RATIO = 1.0     |   |
|                  | · · · · · · · · · · · · · · · · · · · | SLOT HEIGHT (MM) = 2.54 | - |

|       | RUN 15      | RUN 16 | RUN 17 | -RUN 18- | RUN 19 |
|-------|-------------|--------|--------|----------|--------|
| UC/UG | 0.583       | 0.780  | 1.070  | 1.268    | 2.210  |
| M     | 0.583       | 0.780  | 1.070  | 1.268    | 2.210  |
| RC    | 965.        | 1275.  | 1730.  | 2040.    | 3470.  |
| X/YC  |             |        |        |          |        |
| 2.5   | 0.970       | 0.985  | 0.974  | 0.950    | 0.975  |
| 12.5  | 0.932       | 0.940  | 0.940  | 0.982    | 0.954  |
| 22.5  | 0.710       | 0.742  | 0.825  | 0.845    | 0.820  |
| 32.5  | 0.557       | 0.610  | 0.725  | 0.768    | 0.735  |
| 52.5  | 0.414       | 0.522  | 0.624  | 0.640    | 0.610  |
| 72.5  | 0.345       | 0.440  | 0.559  | 0.551    | -0.517 |
| 92.5  | 0.304       | 0.393  | 0.513  | 0.520    | 0.478  |
| 112.5 | 0.243       | 0.345  | 0.470  | 0.482    | 0.434  |
| 132.5 | 0.224       | 0.308  | 0.421  | 0.455    | 0.397  |
| 172.5 | 0.187       | 0.258  | 0.378  | 0.415    | 0.358  |
| 212.5 | 0.165       | 0.230  | 0.338  | 0.380    | 0.338  |
|       | - · - · · · |        |        |          |        |

.

A313 \$E0F

|       | -TARIE 2.1-2 | THOED  |            | EFFECTIVENESS   |                                       |
|-------|--------------|--------|------------|-----------------|---------------------------------------|
|       | INDEC JOI J  |        | VICUS WALL |                 |                                       |
|       | PRESSURE GR  | ADIENT | PGO        | KP 10##6 (NOM)  | = 0.0                                 |
|       | INJECTED GA  |        |            | DENSITY RATIO   | +                                     |
|       |              |        |            | SLOT HEIGHT (MM |                                       |
|       |              |        |            |                 |                                       |
|       | RUN 1        | RUN 2  | RUN 3      | RUN 4           |                                       |
| UC/UG | 0.292        | 0-458  | 0.600      | 0.825           |                                       |
| M     | 0.403        | 0.632  | 0.830      | 1.140           |                                       |
| RC    | 1065.        | 1670.  | 2180.      | 2980.           |                                       |
| X/YC  |              |        |            |                 |                                       |
| 2.5   | 0.935        | 0.910  | 0.910      | 0.935           |                                       |
| 12.5  | 0.785        | 0.905  | 0.951      | 0.991           |                                       |
| 32.5  | 0.478        | 0.688  | 0.785      | 0.865           |                                       |
| 52.5  | 0.331        | 0.510  | 0.628      | 0.810           |                                       |
| 72.5  | 0.273        | 0.396  | 0=545      | 0.720           |                                       |
| 92.5  | 0.245        | 0.329  | 0.478      | 0.667           |                                       |
| 112.5 | 0.218        | 0.288  | 0.457      | 0.620           |                                       |
| 132.5 | 0.194        | 0.254  | 0.368      | 0.580           |                                       |
| 172.5 | 0.171        | 0.207  | 0.332      | 0.498           | · · · · · · · · · · · · · · · · · · · |
| 212.5 | 0.153        | 0.175  | 0.266      | 0.446           |                                       |
|       |              |        |            |                 |                                       |

\_\_\_\_\_

## TABLE 3.1-3 (CONTD) IMPERVIOUS-WALL EFFECTIVENESS

|       | RUN 5    | RUN 8 | BUN 7 | RUN 6 |
|-------|----------|-------|-------|-------|
| UC/UG | 0.982    | 1.340 | 1.710 | 2.480 |
| M     | 1.357    | 1.850 | 2.36  | 3.42  |
| RC    | 3550.    | 4800. | 6050. | 8720. |
| X/YC  | <u> </u> |       |       |       |
| -2.5  | 0.950    | 0.919 | 0.986 | 0.999 |
|       | 0.975    |       |       |       |
| 32.5  | 0.866    | 0.830 | 0.918 | 0.877 |
| 52.5  | 0.775    | 0.730 | 0.745 | 0.756 |
| 72.5  | 0.720    | 0.685 | 0.690 | 0.690 |
| -92.5 | 0.690    | 0.660 | 0.638 | 0.639 |
| 112.5 | 0.660    | 0.633 | 0.617 | 0.616 |
| 132.5 | 0.620    | 0.607 | 0.570 | 0.575 |
| 172.5 | 0.562    | 0.558 | 0.529 | 0.525 |
|       | 0.500    |       |       |       |

A314 \$E0F

|         | TABLE 3.1-4 | IMPER | VIOUS-WALL | EFFECTIVENESS                                     |           |
|---------|-------------|-------|------------|---------------------------------------------------|-----------|
|         | PRESSURE GR |       |            | KP 10**6 (NOM)<br>DENSITY RATIO<br>SLOT HEIGHT (M | = 4.17    |
|         | RUN 7       | RUN 1 |            | RUN 3                                             |           |
|         |             | 0.435 |            |                                                   |           |
| M<br>RC | 1.17        | 1.815 | 2.40       | - 3.26<br>- 7000                                  |           |
| X/YC    | 27708       |       |            |                                                   |           |
| 2.5     | 0.985       | 0.998 | 1.00       | 0.998                                             |           |
| 12.5    | 0.915       | 0.979 | 0.995      | 0.997                                             |           |
| 32.5    | 0.630       | 0.880 | 0.945      | 0.973                                             |           |
| 52.5    | 0.473       | 0.780 | 0.886      | 0.930                                             | · · · · · |
| 72.5    | 0.382       | 0.646 | 0.828      | 0.910                                             |           |
| 92.5    | 0.316       | 0.630 | 0.722      | 0.885                                             |           |
| 112.5   | 0.304       | 0.568 | 0.761      | 0.857                                             |           |
| 132.5   | 0.278       | 0.512 | 0.635      | 0.815                                             |           |
| 172.5   | 0.224       | 0.442 | 0.613      | 0.802                                             |           |
| 212.5   | 0.197       | 0.394 | 0.540      | 0.745                                             |           |

in the second second

# TABLE 3.1-4 (CONTD) IMPERVIOUS-WALL EFFECTIVENESS

|          |       |        |        | 1. State 1. |
|----------|-------|--------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | RUN 4 | RUN 5  | RUN 6  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| UC/UG    | 0.884 | 1.26   | 1.645  | 0.785                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <u>M</u> | 3.68  | 5.25   | 6.87   | 3.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| RC       | 8140. | 11000. | 14250. | 14400.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| X/YC     |       |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2.5      | 0.995 | 1.00   | 0.996  | 0.975                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 12.5     | 1.000 | 1.00   | 0.996  | 0.995                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 32.5     | 0.975 | 0.985  | 0.990  | 0.990                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 52.5     | 0.936 | 0.960  | 0.960  | 0.960                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 72.5     | 0.920 | 0.940  | 0.940  | 0.945                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 92.5     | 0.885 | 0.925  | 0.922  | 0.920                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 112.5    | 0.870 | 0.908  | 0.905  | 0.898                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 132.5    | 0.840 | 0.897  | 0.890  | 0.870                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 172.5    | 0.785 | 0.870  | 0.870  | 0.840                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 212.5    | 0.752 | 0.835  |        | 0.788                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|          |       |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

|    | <br> |  |
|----|------|--|
|    | <br> |  |
| A3 | <br> |  |
|    |      |  |
| SE |      |  |
|    |      |  |

ar. •

210

.

| TABLE 3.1-5 IMPERVIOUS-WALL EFFECTIVENESS |                           |                         |                         |                       |                                  |      |
|-------------------------------------------|---------------------------|-------------------------|-------------------------|-----------------------|----------------------------------|------|
|                                           | PRESSURE GI<br>Injected G |                         | PG1<br>AIR              | DENSITY               | (NOM) =<br>RATIO =<br>GHT (MM) = | -1.0 |
| UC/UG                                     |                           | RUN 2<br>0.780<br>0.780 | RUN 3<br>1.070<br>1.070 | RUN 4<br>1.27<br>1.27 |                                  |      |
| M<br>RC<br>X XXC                          | 0.583<br>965.             | 1275.                   |                         | 2040                  |                                  | •    |
| X/YC<br>2.5                               | 0.955                     | 0.940                   |                         | 0.965                 |                                  |      |
| 12.5<br>22.5                              | 0.950                     | 0.930                   | 0.950                   | 0.942                 | 0.965                            |      |
| 32.5                                      | 0.570                     | 0.600                   | 0.687                   | 0.695                 |                                  |      |
| 72.5                                      | 0.306                     | 0.387                   | 0.530<br>0.488          | 0.520                 | 0.470                            |      |
| 112.5<br>132.5                            | 0.216                     | 0.310                   | 0.429                   | 0.448                 | 0•394<br>0•365                   |      |
| 172.5<br>212.5                            | 0.164<br>0.139            | 0.234                   | 0.338                   | 0.363                 | 0.314                            |      |

-----

211

ŝ

## TABLE 3-1-6 IMPERVIOUS-WALL EFFECTIVENESS

|                                       | PRESSURE GRADIENT PG2                 |                                       |          |           | (NOM) = 1.82    |
|---------------------------------------|---------------------------------------|---------------------------------------|----------|-----------|-----------------|
|                                       | INJECTED GA                           | 15                                    | AIR      | DENSITY   | RATIO = 1.0     |
| · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · |          | SLOT HEIC | GHT (MM) = 2.54 |
|                                       | · · · · · · · · · · · · · · · · · · · |                                       |          |           |                 |
|                                       |                                       | RUN 2                                 | RUN-3    | RUN4      | RUN 5           |
| UC/UG                                 | 0.583                                 | 0.780                                 | 1.070    | 1.27      | 2.21            |
| M                                     | 0.583                                 | 0.780                                 | 1.070    | 1.27      | 2.21            |
| RC                                    | 965.                                  | 1275.                                 | 1730.    | 2040.     | 3470.           |
| X/YC=                                 |                                       |                                       | <u> </u> |           |                 |
| 2.5                                   | 0.941                                 | 0.887                                 | 0.995    | 0.984     | 0.986           |
| 12.5                                  | 0.905                                 | 0.913                                 | 0.985    | -0.967    | 0.970           |
| 22.5                                  | 0.682                                 | 0.690                                 | 0.845    | 0.780     | 0.810           |
| 32.5                                  | 0.525                                 | 0.570                                 | 0.710    | 0.680     | 0.679           |
| 52.5                                  | 0.324                                 | 0.469                                 | 0.596    | 0.590     | 0.574           |
| 72.5                                  | 0.274                                 | 0.360                                 | 0.520    | 0.525     | 0.478           |
| 92.5                                  | 0.216                                 | 0.316                                 | 0.460    | 0.454     | 0.444           |
| 112.5                                 | 0.187                                 | 0.264                                 | 0.420    | 0.438     | 0.400           |
| 132.5                                 | 0.165                                 | 0.229                                 | 0.372    | 0.398     | 0.364           |
| 172.5                                 | 0.140                                 | 0.218                                 | 0.308    | 0.318     | 0.325           |
| 212.5                                 | 0.115                                 | 0.178                                 | 0.255    | 0.295     | 0.278           |
|                                       |                                       | · · · · · · · · · · · · · · · · · · · |          |           |                 |

A316 \$E0F

1997 - S

|       | TABLE 3.1-7 | IMPERV | IOUS-WALL | EFFECTIV | ENESS              |      |
|-------|-------------|--------|-----------|----------|--------------------|------|
|       | PRESSURE GR |        | G3<br>AIR |          | (NOM) =<br>RATIO = |      |
|       | <u> </u>    |        | ·         | SLOT HEI | GHT (MM) =         | 2.54 |
|       | RUN 1       | RUN 2  | RUN 3     | RUN 4    | RUN 5              |      |
| UC/UG | 0,583       | 0.780  | 1.070     | 1.27     | 2.21               |      |
| M     | 0.583       | 0.780  | 1.070     | 1.27     | 2.21               |      |
| RC    | 965.        | 1275.  | 1730.     | 2040.    | 3470.              |      |
| X/YC  |             |        |           |          |                    |      |
| 2.5   | 1.000       | 0.970  | 0.975     | 0.985    | 1.000              |      |
| 12.5  | 0.753       | 0.840  | 0.872     | 0.900    | 0.945              |      |
| 22.5  | 0.498       | 0.625  | 0.678     | 0.735    | 0.775              |      |
| 32.5  | 0.390       | 0.498  | 0.605     | 0.630    | 0.660              |      |
| -52.5 | 0.288       | 0.397  | 0.513     | -0.540   | 0.550              |      |
| 72.5  | 0.252       | 0.334  | 0.440     | 0.481    | 0.501              |      |
| 92.5  | 0.227       | 0.283  | 0.398-    | -0.410   | 0.466              |      |
| 112.5 | 0.195       | 0.260  | 0.363     | 0.414    | C.422              |      |
| 132.5 | 0.177       | 0.250  | 0.328     | 0-360    | 0.383              |      |
| 172.5 | 0.160       | 0.220  | 0.280     | 0.330    | 0.340              |      |
| 212.5 | 0.152       | 0.204  | 0.268     | 0.310    | 0.304              |      |

# TABLE 3.1-8 IMPERVIOUS-WALL EFFICTIVENESS

|       | PRESSURE G |                                | 264  <br>AIR |       | (NOM) =<br>Ratio = |          |
|-------|------------|--------------------------------|--------------|-------|--------------------|----------|
|       |            | AJ                             | AIN          | i i   | GHT (MM) ==        |          |
|       |            |                                |              |       |                    |          |
|       | RUN 2      | RUN-3                          | RUN 4        |       |                    | ·        |
| UC/UG | 0.55       | 0.760                          | 1.24         | 1.85  | 2.1                |          |
| _M    | 0.55       | 0.760                          | 1.24         | 1.85  | 2.16               |          |
| RC    | 1970.      | 2620.                          | 4200.        | 6330. | 7150.              |          |
| X/YC  |            |                                |              |       |                    |          |
| 2.5   | 0.910      | 0.890                          | 0.980        | 1.020 | 0.974              |          |
| 12.5  | 0.905      | 0.890                          | 0.990        | 1.010 | 0.965              |          |
| 22.5  | 0.718      | 0.770                          | 0.895        | 0.926 | 0.885              |          |
| 32.5  | 0.556      | 0.683                          | 0.825        | 0.822 | 0.790              |          |
| 52.5  | 0.412      | 0.600                          | 0.712        | 0.715 | 0.676              |          |
| 72.5  | 0.335      | 0.540                          | 0.662        | 0.631 | 0.596              |          |
| 92.5  | 0.300      | 0.523                          | 0.605        | 0.590 | 0.545              |          |
| 112.5 | 0.272      | 0.462                          | 0.560        | 0.545 | 0.500              |          |
| 132.5 | 0.251      | 0.422                          | 0.545        | 0.496 | 0.478              |          |
| 172.5 | 0.216      | 0.371                          | 0.490        | 0.455 | -0.422             | <u> </u> |
| 212.5 | 0.198      | 0.348                          | 0.456        | 0.428 | 0.396              |          |
|       | ·····      | and the strength of the second |              |       |                    | <u></u>  |

A317 \$EOF

s)r ·

|       | TABLE 3.1-9 | IMPERV | IOUS-WALL | EFFICTIVENESS                                     |         |
|-------|-------------|--------|-----------|---------------------------------------------------|---------|
|       | PRESSURE GR |        |           | KP 10**6 (NDM)<br>DENSITY RATIO<br>SLOT HEIGHT (M | = 0.069 |
|       | RUN 1       | RUN 2  | RUN 3     | RUN 4                                             |         |
| UC/UG | 0.308       | 0.560  | -1.27     | 1.52                                              | · · ·   |
| M     | 0.021       | 0.0388 | 0.088     | 0.105                                             |         |
| RC    | 70.8        | 129.0  | 282.0     | 340.0                                             |         |
| X/YC  |             | · . ·  |           |                                                   |         |
| 2.5   | 0.4050      | 0.5680 | 1.00      | 1.00                                              |         |
| 12.5  | 0.0460      | 0.1325 | 0.3350    | 0.5680                                            |         |
| 22.5  | 0.0180      | 0.0540 | 0.1240    | 0.1870                                            |         |
| 32.5  | 0.0120      | 0.0320 | 0.0778    | 0.1072                                            |         |
| 52.5  | 0.0080      | 0.0190 | 0.0520    | 0.0695                                            |         |
| 72.5  |             | 0.0140 | 0.0410    | 0.0552                                            |         |
| 92.5  | 0.0060      | 0.0120 | 0.0334    | 0.0380                                            |         |
| 112.5 | 0.0055      | 0.0100 |           | 0.0362                                            |         |
| 132.5 | 0.0050      | 0.0090 | 0.0273    | 0.0330                                            |         |
| 172.5 | 0.0040      | 0.0076 | 0.0200    | 0.0250                                            |         |
| 212.5 | 0.0035      | 0.0060 | 0.0160    | 0.0238                                            |         |

-----

## TABLE 3.1-10 IMPERVIOUS-WALL EFFICTIVENESS

| PRESSURE GRADIEN | PG2    | KP-1( | )**6 (NOM) | = 1.82    |
|------------------|--------|-------|------------|-----------|
| INJECTED GAS     |        |       | TY RATIO   |           |
| INGEGIED OAS     | ANGION |       |            |           |
|                  |        |       | HEIGHT (M  | 11 = 2.34 |

|       | RUN 1                                 | RUN 2 | RUN 3  | RUN 4  |
|-------|---------------------------------------|-------|--------|--------|
| UC/UG | 0.435                                 | 0.575 | 1.26   | 1.645  |
| M     | 1.815                                 | 2.40  | 5.25   | 6.87   |
| RC    | 3900.                                 | 5150. | -11000 | 14250. |
| X/YC  | · · · · · · · · · · · · · · · · · · · |       |        |        |
| 2.5   | 0.985                                 | 0.995 | 0.995  | 1.00   |
| 12.5  | 0.998                                 | 1.000 | 1.000  | 1.00   |
| 22.5  | 0.946                                 | 0.972 | 0.997  | 1.00   |
| 32.5  | 0.840                                 | 0.915 | 0.980  | 0.990  |
| 52.5  | 0.657                                 | 0.800 | 0.940  | 0.946  |
| 72.5  | 0.564                                 | 0.675 | 0.910  | 0.920  |
| 92.5  | 0.495                                 | 0.622 | 0.890  | 0.895  |
| 112.5 | 0.440                                 | 0.533 | 0.865  | 0.875  |
| 132.5 | 0.400                                 | 0.520 | 0.845  | 0.860  |
| 172.5 | 0.315                                 | 0.415 | 0.796  | 0.817  |
| 212.5 | 0.280                                 | 0.380 | 6.740  | -0.760 |
|       |                                       |       |        |        |

213

A318 \$EOF

R L .

# TABLE 3.1-11 IMPERVIOUS-WALL EFFECTIVENESS

| PRESSURE GRADIENT | PG4   | KP 10##6 (NDM)    | = -1.0  |
|-------------------|-------|-------------------|---------|
| INJECTED GAS      | HYDRC | GEN DENSITY RATIO | = 0.069 |
|                   |       | SLOT HEIGHT (MM)  | = 2.54  |

| RUN- 1                 |  |
|------------------------|--|
| UC/UG 0.775<br>M 0.053 |  |
| M 0.053                |  |
| RC 338.0<br>X/YC       |  |
| X/YC                   |  |
| 2.5 0.575              |  |
| 12.5 0.306             |  |
| 22.5 0.107             |  |
| 32.5 0.057             |  |
| 52.5 0.034             |  |
| 72.5 0.028             |  |
| 92.5 0.023             |  |
| 112.5 0.021            |  |
| 132.5 0.018            |  |
| 172.5 0.016            |  |
| 212.5 0.014            |  |

# TABLE 3.1-12 IMPERVIOUS-WALL EFFECTIVENESS

| PRESSURE GRADIEN | T PG4   | KP-10**    | 6 (NOM)  | = -1-0   |
|------------------|---------|------------|----------|----------|
| INJECTED GAS     | ARCTON- | 12 DENSITY | RATIO    | = 4.17-  |
|                  |         | SLOT HE    | IGHT (MM | ) = 2.54 |

|                                       | RUN-1       |                                       |
|---------------------------------------|-------------|---------------------------------------|
|                                       |             |                                       |
| UC/UG                                 | 0.785       | · · · · · · · · · · · · · · · · · · · |
| M                                     |             |                                       |
|                                       |             |                                       |
| RC                                    | 14400.      |                                       |
| <u>X/YC</u>                           | <u> </u>    |                                       |
|                                       |             |                                       |
| 2.5                                   | 0.985       |                                       |
| 12.5                                  | -1.900      |                                       |
|                                       |             |                                       |
| 22.5                                  | 1.00        |                                       |
| 32.5                                  | 0.99        |                                       |
| 52.5                                  |             |                                       |
|                                       | 0.965       |                                       |
| 72.5                                  | 0.945       |                                       |
| 92.5                                  | 0.915       |                                       |
| · · · · · · · · · · · · · · · · · · · |             |                                       |
| 112.5                                 | 0.875       |                                       |
| 132.5                                 | 0.840       |                                       |
|                                       | • • • • • • |                                       |
| 172.5                                 | 0.775       |                                       |
| 212.5                                 | 0.710       |                                       |
| 212.0                                 | 0.110       |                                       |
| · · · · · · · · · · · · · · · · · · · |             |                                       |
|                                       |             |                                       |

A319 \$EDF

P.A.

\_\_\_\_

v

|       | A=3∎i | 2 VEL | OCITY  | PROFILES |           |                                       |
|-------|-------|-------|--------|----------|-----------|---------------------------------------|
| TABLE | RON   | UC/UG | RC     | PRESSURE | INJECTED  | PAGE                                  |
| NO    |       |       |        | GRADIENT | GAS       | · · · · · · · · · · · · · · · · · · · |
| 1     | 9     | 0.550 | 1970.  | PG0      | AIR       | A32 1                                 |
| - 2   | 4     | 0.760 | 2620+  | PGO      | AIR       | A32 3                                 |
| 3     | 1     | 1.230 | 4170.  | PGO      | AIR       | A32 4                                 |
| 4     | 10    | 1.850 | 6330.  | PGO      | AIR       | A32-5                                 |
| 5     | 2     | 0.575 | 5150.  | PGO      | ARCTON-12 | A32 7                                 |
| 6     | 6     | 1.645 | 14250. | PGO      | ARCTON-12 | A32 8                                 |
| 7     | 1     | 0.583 | 965•   | PG2      | AIR       | A32 9                                 |
| 8     | - 5   | 2.210 | 3470.  | PG2      | AIR       | A3211                                 |
| 9     | 1     | 0.583 | 965.   | PG3      | AIR       | A3213                                 |
| 10    | 5     | 2.210 | 3470.  | PG3      | AIR       | A3214                                 |
| 11    | 2     | 0.550 | 1970.  | PG4      | AIR       | A3215                                 |
| -12   | 1     | 1.850 | 6330.  | PG4      | AIR       | A3216                                 |

A 32 0

END

215

. · ·

|        |        |          |     |       | •<br>• |                |                                       |                |          |       |
|--------|--------|----------|-----|-------|--------|----------------|---------------------------------------|----------------|----------|-------|
|        | TABLE  | 3.2- 1   | R   | UN 9. |        | .55. RC=       | 1970.,                                | PGO, A         | IR INJEC | TION  |
|        |        |          |     |       |        |                |                                       |                |          |       |
| X/YC   | 0.0    | 0.0 10.0 |     | 20.0  |        | 50             | 50.0                                  |                | 75.0     |       |
| UG-M/S |        |          |     | 21.0  |        | 21+4           |                                       | 21             | 1        |       |
| Y/YC   | UTUG   |          | YC- | U/UG  | Y/YC   | U/UG           | Y/YC                                  | UZUG           | Y/YC     | U/UG  |
|        | 0.000  |          | 00  | 0.000 | 0.00   | 0.000          | 0.00                                  | 0.000          | 0.00     | 0.000 |
|        | 0,505  |          | 10  | 0.430 | 0.10   | 0.354          | 0.10                                  | 0.394          | 0.10     | 0.415 |
|        | 0.565  |          |     | 0,539 |        | 0•531          |                                       | 0.528          | 0.16     | 0+552 |
|        | 0.597  |          | 22  | 0.627 | 0.22   | 0.565          | 0.22                                  | 0.546          | 0.55     | 0.572 |
|        | 0.649  |          |     | 0,674 |        | 0.631          |                                       | 0,586          | 0,34     | 0.614 |
| •22    | 0.706  | <u> </u> | 34  | 0.716 | 0.34   | 0.653          | 0.47                                  | 0.614          | 0.47     | 0.634 |
|        | 0.729  |          |     | 0.727 |        | 0.690          |                                       | 0.639          |          | 0.657 |
|        | 0.734  |          |     | 0.718 |        | 0.706          |                                       | 0.661          | 0.72     | 0.674 |
|        | 0,735  |          |     | 0,702 |        | 0.710          |                                       | 0.682          |          | 0+688 |
| •84    | 0.733  |          |     | 0.692 |        | 0.710          | 0.97                                  |                | 0,97     | 0.708 |
| •91    | 0,722  |          |     | 0,686 |        | 0.713          | 1.09                                  | 0.718          |          | 0.723 |
| •97    | 0.645  |          | •   | 0.685 | 1.09   |                | 1.22                                  |                | 1.22     | 0.733 |
|        | 0.514  |          |     | 0.694 |        | 0.729          |                                       | 0.751          |          | 0.748 |
| 1.03   | 0.443  |          | 34  | 0.708 | 1.34   | 0.736          | 1.47                                  | -              | 1.47     | 0.762 |
|        | 0.336  |          |     | 0,722 |        | 0.748          | · · · · · · · · · · · · · · · · · · · | 0.781          |          | 0.775 |
|        | 0.320  |          |     | 0.744 | · ·    | 0.755          |                                       | 0.789          | 1.84     | 0.801 |
|        | 0.408  |          |     | 0.759 |        | 0.763          |                                       | 0.796          |          | 0.823 |
|        | 0.447  |          |     | 0.780 |        | 0.781          |                                       | 0.809          | 2.34     | 0.844 |
|        | 0.529  |          |     | 0.797 |        | 0.797          |                                       | 0.827          |          | 0.859 |
|        | 0.569  |          |     | 0.822 |        | 0.811          |                                       | 0.850          | 2.84     | 0.876 |
|        | 0.608  |          |     | 0.857 |        | 0+842          |                                       | 0.870          | 3.09     |       |
|        | 0.632  |          |     | 0.883 |        | 0.870          |                                       | 0.885          | 3.34     |       |
|        | 0.716  |          |     | 0.908 |        | 0+894          |                                       | 0.899          | 3.59     |       |
| 1      | -0.716 |          | _   | 0.930 |        | 0.918          |                                       | -0-922-        | 3.84     | 0.940 |
|        | 0 770  |          |     | 0.951 |        | 0.938          |                                       | 0.939          | 4.09     |       |
|        | 0.807  |          |     | 0.966 |        | 0.960          | _                                     | 0.957          | 4.35     | 0.968 |
|        | 0.840  |          |     | 0.977 |        | 0+973          |                                       | 0.971          |          | 0.976 |
| 14 C   | 0.868  |          |     | 0.985 |        | 0.985          |                                       | 0.980          | 4.84     | 0.984 |
|        | 0.898  |          |     | 0.994 |        | -0+992         |                                       | 0.989          | 5.09     |       |
|        | 0.947  |          |     | 0.998 |        | 0.997          |                                       | 0.993          |          | 0.995 |
|        | -0.977 |          |     | 0.999 |        | 1.000          |                                       | 0,996          | 5.60     |       |
|        | 0.994  |          |     | 0.999 |        | 1.000          |                                       | 0.996          | 5.84     |       |
|        | 0,999  |          |     | 0.999 |        | 1.000          |                                       | 0.997          | 6.09     |       |
|        | 1.000  |          |     | 1.000 |        | 1.000<br>1.000 | · · · ·                               | 0.997          | 6.34     |       |
| ****   | ****   |          |     | 1.000 |        | 1.000          |                                       | 0,999<br>0,999 | 6.60     |       |
| *****  | ****   |          |     | 1.000 |        | 1.000          |                                       | 1.000          | 6.85     | 1.000 |
|        |        |          |     |       |        | 10000          |                                       | 1 9000         | 7.09     | 1.000 |

A 32 1

1A.

----

|      |        |                                        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 55 00  | - 1070 - | 0000   | IR INJEC                              |                                                                                                                |
|------|--------|----------------------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|--------|---------------------------------------|----------------------------------------------------------------------------------------------------------------|
|      | IABLE  | 3.2-1                                  | RUN 9. | 00/06=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.554 RC | .= 1970  | PGUT / | IR INJEC                              |                                                                                                                |
| X/YC | 100.0  | ) 12                                   | 5.0    | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0      | 175      | •0     | 200                                   | •0                                                                                                             |
|      | 21.2   |                                        | 1.4    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.5      |          |        | 21                                    | the second s |
|      |        | ······································ | U/UG   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U/UG     |          | U/UG   | Y/YC                                  | U/UG                                                                                                           |
| -    | -0.000 | 0.00                                   | 0.000  | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0+000    | 0+00     | 0.000  | 0.00                                  | 0+000                                                                                                          |
| •10  | 0.422  | 2 0.10                                 | 0.441  | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0+459    | 0.10     | 0.430  | 0.10                                  | 0.469                                                                                                          |
|      | 0.576  |                                        | 0.588  | 0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.596    | 0+22     | 0.588  | 0.22                                  | 0.604                                                                                                          |
| •34  | 0.617  | 0.34                                   | 0.631  | 0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.630    | 0.34     | 0.629  | 0.34                                  | 0.645                                                                                                          |
|      | 0.645  | 0.47                                   | 0.653  | 0.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.655    | 0.47     | 0.654  | 0.47                                  | 0.670                                                                                                          |
| •59  | 0.664  | 0.59                                   | 0.669  | 0.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.671    | 0.59     | 0.675  | 0.59                                  | 0.690                                                                                                          |
| •72  | 0,682  | 2 0.72                                 | 0,685  | 0,72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.694    | 0.72     | 0.689  | 0,72                                  | 0.703                                                                                                          |
| •84  | 0.696  | 5 0.84                                 | 0.707  | 0.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.706    | 0.84     | 0.705  | 0.84                                  | 0.719                                                                                                          |
| .97  | 0,707  | 0,97                                   | 0,717  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.721    |          | 0,719  | 0,97                                  | 0.727                                                                                                          |
| 1.09 | 0.717  | 1.09                                   | 0.730  | 1.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.729    | 1.09     | 0.732  | 1.09                                  | 0.739                                                                                                          |
| 1.22 | 0.731  | 1.22                                   | 0.737  | 1.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0+724    | 1.25     | 0.739  | 1+22                                  | 0.752                                                                                                          |
| 1.34 | 0.744  | 1.34                                   | 0.748  | 1.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.750    | 1.34     | 0.749  | 1.34                                  | 0.765                                                                                                          |
| 1.47 | 0.756  | 5 1.47                                 | 0,761  | 1.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.758    | 1.47     | 0.760  | 1.47                                  | 0.774                                                                                                          |
| 1.59 | 0.770  | 1.59                                   | 0.773  | 1.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.767    | 1.59     | 0.773  | 1.59                                  | 0.784                                                                                                          |
| 1.84 | 0.795  | 1.84                                   | 0.790  | 1.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.778    | 1.84     | 0.786  | 1.84                                  | 0.801                                                                                                          |
| 2.09 | 0.813  | 2.09                                   | 0.808  | 1.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.788    | 2.09     | 0.800  | 2.09                                  | 0.817                                                                                                          |
| 2,34 | 0.827  |                                        | 0,829  | 1.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |          | 0.819  |                                       | 0.833                                                                                                          |
| 2.59 | 0.850  | 2.59                                   | 0.846  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 2.59     | 0.835  | 2.59                                  | 0.850                                                                                                          |
|      | 0.867  |                                        | 0.862  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.827    |          | 0.848  |                                       | 0.863                                                                                                          |
| 3.09 | 0.886  |                                        | 0.874  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.841    |          | 0.866  | 3.09                                  | 0.874                                                                                                          |
|      | 0,901  |                                        | 0.892  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.860    |          | 0.881  |                                       | 0.885                                                                                                          |
| 3.59 | 0.915  |                                        | 0.906  | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.868    |          | 0.890  |                                       | 0.895                                                                                                          |
|      |        |                                        | 0.920  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.879    |          | 0,903  |                                       | 0.906                                                                                                          |
| 4.09 | 0.944  | •                                      | 0.931  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0+893    | 4.09     | 0.910  | 4.09                                  | 0.915                                                                                                          |
|      | 0.953  |                                        | 0,945  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 0.905  |          | 0.922  |                                       | 0.926                                                                                                          |
| 4.59 | 0.964  |                                        | 0.956  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.921    |          | 0.931  | 4.59                                  | 0.936                                                                                                          |
|      | 0.974  |                                        | 0,965  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.933    |          | 0.944  |                                       | 0.946                                                                                                          |
| 5.09 | 0.983  |                                        | 0.974  | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.945    |          | 0.951  |                                       | 0.954                                                                                                          |
|      | 0,989  |                                        | 0,981  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0+955    |          | 0.961  | · · · · · · · · · · · · · · · · · · · | 0.964                                                                                                          |
| 5.60 | 0.994  |                                        | 0,988  | the state of the s |          | 5.60     | 0.970  | 5.60                                  | 0.968                                                                                                          |
|      | 0,997  |                                        | 0,992  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.968    |          | 0,977  |                                       | 0.979                                                                                                          |
|      | 1.000  | •                                      | 0,995  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.977    |          | 0,985  | 6.09                                  | 0.979                                                                                                          |
|      | 1.000  |                                        | 1.000  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.986    |          | 0.988  | 6.34                                  | 0.989                                                                                                          |
| 6.60 | 1.000  |                                        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.988    | 6.60     |        | 6.60                                  | 0.997                                                                                                          |
| **** | *****  |                                        | *****  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.993    |          | 0.996  |                                       | 1.000                                                                                                          |
| **** | *****  |                                        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.997    | 7.09     | 1.000  | 7.09                                  | 1.000                                                                                                          |
| **** | *****  | ****                                   | *****  | 6.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.000    | (+34     | 1.000  | /+34                                  | 1.000                                                                                                          |
|      |        |                                        | 4      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |        |                                       |                                                                                                                |

<u>A 32 2</u>

| · · · · · · · · · · · · · · · · · · · |         | · · · · · · · · · · · · · · · · · · · |        |          |          |                                       | ·····                                 |                                        |          |
|---------------------------------------|---------|---------------------------------------|--------|----------|----------|---------------------------------------|---------------------------------------|----------------------------------------|----------|
| •                                     | TABLE 3 | 2-2 RUN                               | 4• 1   | UC/UG= 0 | •76• RC= | 2620                                  | PGO. AIR                              | INJECTIO                               | N        |
| ×/Yc                                  | 20.0    | 75.0                                  |        | 150      | •0       |                                       |                                       |                                        |          |
|                                       | 21+3    | 21.3                                  |        | 21       | •3       |                                       | · · · · · · · · · · · · · · · · · · · |                                        | <u> </u> |
| Y/YC                                  | UZUG    | Y/YC U                                | /UG    |          | UZUG     |                                       |                                       |                                        |          |
| .00                                   | 0.000   | 0.00 0                                |        | ·        | -0.000   |                                       |                                       |                                        |          |
|                                       | 0.450   |                                       |        |          | 0.367    |                                       | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · ·  |          |
| •11                                   | 0.564   | 0.11 0                                | -481-  | 0.12     | 0.443    |                                       |                                       |                                        |          |
| •14                                   | 0.628   | 0.14 0.                               | .525   | 0.15     | 0.491    |                                       |                                       |                                        |          |
| •19                                   | 0.657   | 0.19 0.                               | .549   | 0.21=    | 0.552    |                                       |                                       |                                        |          |
| •24                                   | 0.718   | 0.24 0.                               |        | 0,25     | 0.582    | · · · ·                               | ·                                     |                                        |          |
|                                       | 0.761   | 0,34 0                                | 629=   | 0.36     | 0.613    |                                       |                                       |                                        |          |
| •44                                   | 0.822   | 0.54 0                                | .674   | 0.50     | 0.642    |                                       |                                       |                                        |          |
|                                       | 0.843   | 0.74 0                                | 718    | 0.71     | 0.670    |                                       |                                       |                                        |          |
| •69                                   | 0.853   | 0.94 0                                | .748   | 0.95     | 0.703    |                                       |                                       |                                        |          |
| • 84                                  | 0.840   | 1.14 0                                | 749    | 1.36     | 0.748    |                                       |                                       |                                        |          |
| •99                                   | 0.823   | 1.39 0.                               | 808    | 1.85     | 0.798    |                                       |                                       |                                        |          |
| 1.19                                  | 0,804   | 1.64 0                                | 831    | 2+35     | 0.841    |                                       |                                       |                                        |          |
| 1•44                                  | 0.791   | 2.14 0                                | .861   | 2.86     | . 0.875  |                                       |                                       | -                                      | <u> </u> |
| 1.69                                  | 0.799   | 2.64 0                                | .884   | 3.35     | 0.909    |                                       |                                       |                                        |          |
| 1.94                                  | 0.811   | 3.39 0                                | •919   | 3.85     | 0.929    |                                       |                                       |                                        | <u> </u> |
| 2.44                                  | 0.861   | 4.14 0                                | •956   | 4.35     | 0.956    |                                       | ·····                                 |                                        |          |
| 2.94                                  | 0.911   | 4.89 0                                | 985    | 4.86     | 0.976    |                                       |                                       |                                        | ·        |
| 3.44                                  | 0,954   | 5.89 0.                               | 999    | 5.61     | 0.991    |                                       |                                       | ······································ |          |
| 3.94                                  | 0,981   | 6.89 1                                | -      |          | 0.997    |                                       | · · ·                                 |                                        |          |
|                                       | 0.988   | ***** *                               | ······ |          | 1.000    |                                       |                                       |                                        |          |
|                                       | 0.999   |                                       | ***    |          | 1.000    | · · · · · · · · · · · · · · · · · · · |                                       |                                        |          |
|                                       | 1.000   | ****                                  |        |          | ****     |                                       |                                       |                                        |          |
| 5.94                                  | 1.000   | *****                                 | ****   | ****     | ****     |                                       |                                       |                                        |          |

A 32 3

-----÷.

218

|      | TADLE |          | 1 la 4 |      |           | 4170 . |         | R INJECTI                             |                         |
|------|-------|----------|--------|------|-----------|--------|---------|---------------------------------------|-------------------------|
|      | TABLE | 3•2- 3 k |        |      | 1.231 RC= | 4170.4 | PGUI AI | RINJECTIC                             | JN                      |
| XZYC | 20.0  | 75       | .0     | 150  | 0.0       |        |         |                                       |                         |
|      | 21.0  |          | •0     | 2    |           |        |         |                                       |                         |
|      | UZUG  |          |        |      | UZUG      |        |         |                                       |                         |
|      | 0.000 | 0.00     | 0.000  | 0.00 | 0.000     |        |         |                                       | ·                       |
| •09  | 0.816 |          | 0.519  |      | 0.451     |        |         |                                       |                         |
|      | 0,944 | 0.11     | 0.599  | 0.12 | 0.544     |        |         |                                       |                         |
| •13  | 1.023 | 0.13     | 0.672  | 0.15 | 0.608     |        |         |                                       |                         |
| 17   | 1.075 | 0.18     | 0.716  | 0.21 | 0.638     |        |         |                                       |                         |
| •24  | 1.126 | 0.28     | 0.797  | 0.27 | 0.685     |        |         | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · |
| •34  | 1.167 | 0,43     | 0.846  | 0.43 | 0.721     |        |         |                                       | •                       |
| •44  | 1.202 | 0.58     | 0.890  | 0.63 | 0.766     |        |         | · · · · ·                             |                         |
|      | 1.210 | 0.78     | 0.944  |      | 0.812     |        |         |                                       |                         |
| •64  | 1.204 | 1.03     | 0,981  | 1.13 | 0.847     |        |         |                                       |                         |
|      | 1.166 |          | 0,997  |      | 0•912     |        |         |                                       |                         |
|      | 1.129 |          | 0.996  |      | 0.949     |        | ·····   |                                       |                         |
|      | 1.088 |          | _0,987 |      | 0,963     |        |         | -                                     |                         |
|      | 1.057 |          | 0,977  |      | 0.965     |        |         |                                       |                         |
|      | 1.008 | <u> </u> | 0,957  |      | 0.969     |        |         |                                       |                         |
|      | 0.978 |          | 0.951  |      | 0.981     |        |         |                                       |                         |
|      | 0.951 |          | 0.954  |      | 0+994     |        |         |                                       |                         |
| 1.64 | 0.911 |          | 0.977  |      | 0.999     |        | •       |                                       |                         |
|      | 0.881 |          | 0.997  |      | 1.000     |        |         |                                       |                         |
|      | 0.870 |          | 1.000  |      | 1.000     |        | ·       |                                       |                         |
|      | 0.881 |          | 1.000  |      | ****      |        |         |                                       |                         |
| 2.74 | 0.919 |          | *****  |      | ****      |        |         |                                       |                         |
|      | 0,957 |          | *****  |      | ***       |        |         |                                       |                         |
| 3.74 | 0.987 |          | ****   |      | ****      |        |         |                                       |                         |
|      | 0.997 |          | *****  |      | *****     |        |         |                                       |                         |
| 4•74 | 1.000 | *****    |        | **** | ****      |        | -       |                                       |                         |
| 5.24 | 1.000 | *****    | *****  |      | ****      |        |         |                                       |                         |
|      |       |          |        |      |           |        |         |                                       |                         |

\_\_\_\_

A 32 4

| 1                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                     |           |           |               |          |        |
|------------------------------------------------------------------------------------------------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------|-----------|-----------|---------------|----------|--------|
|                                                                                                                  |        | 3 3 4 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |                     | 1.85. RC= | 6220      |               |          | TIAN   |
|                                                                                                                  | ADLL   | 3.2-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 | 00706=              | 1.851 RC- | 033044    | FGCT A        | IR INJEC |        |
| XZYC                                                                                                             | 10.0   | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0             | ^                   | 0.0       | 60        | •0            | 80       |        |
| UG M/S                                                                                                           |        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ).3=====        |                     | 0.2       | 20        |               |          | •3     |
|                                                                                                                  | UZUG   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                     |           |           | U/UG          |          |        |
|                                                                                                                  | =0,000 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,000           |                     | 0.000     |           | 0.000         |          |        |
|                                                                                                                  | 1.375  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.536           |                     | 1.167     |           | 1.015         | 0.10     | 0.000  |
|                                                                                                                  | · · ·  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                     |           | _         |               | -        | 0.908  |
|                                                                                                                  | 1.717  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.673           |                     | 1.363     |           | 1.124         |          | 1.053  |
|                                                                                                                  | 1.906  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.729           |                     | 1.430     |           | 1.171         | 0.22     | 1.122  |
|                                                                                                                  | 2.119  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.813           |                     | 1.468     |           | 1.233         |          | 1•147  |
|                                                                                                                  | 2.152  | -,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.852           | 0.34                |           |           | 1.269         | 0.34     | 1.187  |
|                                                                                                                  | 2,165  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.889           |                     | 1.536     |           | 1.311         |          | 1.212  |
|                                                                                                                  | 2.152  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.899           |                     | 1.553     |           | 1.338         | 0.47     | 1.241  |
|                                                                                                                  | 2.127  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.894           |                     | 1.565     |           | 1.368         |          | 1+254  |
|                                                                                                                  | 2.114  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.889           |                     | 1.572     |           | 1.383         | 0.59     | 1.279  |
|                                                                                                                  | 2.069  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.862           |                     | 1.571     |           | 1.401         |          | 1.291  |
|                                                                                                                  | 2.028  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.834           |                     | 1.568     |           | 1+416         |          | 1.305  |
|                                                                                                                  | 1.970  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.803           |                     | 1.566     |           | 1.422         |          | 1.312  |
|                                                                                                                  | 1.926  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.776           | 0.84                | 1+556     | 0.78      | 1.429         | 0.84     | 1.325  |
|                                                                                                                  | 1.839  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.691           | 0.91                | 1+545     |           | 1.432         | 0.91     | 1.332  |
|                                                                                                                  | 1.700  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.621           | 1.03                | 1-523     | 0.91      | 1.430         | 0.97     | 1.338  |
|                                                                                                                  | 1.548  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.538           | 1.16                | 1•489     | 0+97      | 1.430         | 1.03     | 1.342  |
| 1.22                                                                                                             | 1.403  | 1.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.466           | 1.28                | 1.462     | 1.03      | 1.430         | 1.09     | 1.343  |
| 1,34                                                                                                             | 1.256  | 1.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.381           | 1.41                | 1.423     | 1.09      | 1.426         | 1.16     | 1.344  |
| 1•47                                                                                                             | 1.132  | 1.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.302           | 1.53                | 1.392     | 1.16      | 1.419         | 1.22     | 1.343  |
| 1+59                                                                                                             | 1.015  | 1.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.220           | 1.66                | 1+351     | 1-22      | 1.414         | 1.28     | 1.343  |
| 1.72                                                                                                             | 0.815  | 1.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.201           | 1.78                | -1-317    | 1.34      | 1.400         | 1.34     | 1.341  |
| 1.84                                                                                                             | 0.884  | 1.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.157           | 1.91                | 1.278     | 1.47      | 1.381         | 1.41     | -1.336 |
| 1.97                                                                                                             | 0.870  | 2.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.031           | 2.03                | 1.243     | 1.59      | 1.362         | 1.47     | 1.332  |
| 2.09                                                                                                             | 0.865  | 2.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.988           | 2.16                | 1.203     | 1+72      | 1.342         | 1.59     | 1+325  |
| 2.22                                                                                                             | 0.878  | 2.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.958           | 2.28                | 1-174     | 1.84      | 1.321         | 1.72     | 1.311  |
| 2+34                                                                                                             | 0.890  | 2.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.940           | 2.41                | 1+136     | 1.97      | 1.301         |          | 1.301  |
|                                                                                                                  | 0.900  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | 2.53                |           |           | 1.276         |          | 1.272  |
| and the second | 0,925  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.940           |                     | 1.071     |           | 1.257         |          | 1.244  |
|                                                                                                                  | 0.945  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.949           | 2.78                |           |           | 1.213         |          | 1.215  |
|                                                                                                                  | 0-965  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.967           |                     | 1.015     |           | 1.169         |          | 1.183  |
|                                                                                                                  | 0.975  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,978           |                     | 0.995     |           | 1.128         |          | 1.155  |
| the second se  | 0.989  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.989          |                     | 0.990     |           | 1.088         |          | 1+128  |
|                                                                                                                  | 0.997  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,994           |                     | 0.991     |           | 1.056         |          | 1.096  |
|                                                                                                                  | 0.999  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,999           |                     | 0.995     |           | <b>1.0</b> 31 |          | 1.072  |
|                                                                                                                  | 0.997  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.000           |                     | 0.998     |           | 1.015         |          | 1.048  |
|                                                                                                                  | 1.000  | The State of the S | _1.000          |                     | 1.000     |           | 1.007         |          | 1.028  |
|                                                                                                                  | 1.000  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                     | 1.000     |           | 1.000         |          | 1.015  |
| ****                                                                                                             |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ****            |                     | ****      |           | 1.000         |          |        |
| *****                                                                                                            | ****   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *****           |                     | ****      | *****     |               |          | 1.009  |
| ****                                                                                                             | *****  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del>****</del> | *****               | · · · · · |           | *****         |          | 1.004  |
| A 32 5                                                                                                           |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A-A-A-A-A-      | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | <u> </u>  | - A A T X | <u> </u>      |          | 1.000  |
|                                                                                                                  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u></u>         | •                   | •         |           |               |          | 220-   |

| •      | TABLE 3.2- 4 | RUN 10, UC/UG | • 1•85• RC= 6                                 | 330.+ PG0+                            | AIR INJECTION                          |
|--------|--------------|---------------|-----------------------------------------------|---------------------------------------|----------------------------------------|
| XZYC   | 100.0        |               |                                               |                                       |                                        |
|        | 20.3         |               |                                               | · · · · · · · · · · · · · · · · · · · |                                        |
| Y/YC   |              |               |                                               |                                       |                                        |
|        | 0.000        |               |                                               |                                       |                                        |
|        | 0.824        |               |                                               |                                       |                                        |
| -16    | 0.891        |               |                                               |                                       |                                        |
| •22    | 0.991        |               |                                               |                                       |                                        |
| .28    | 1053         |               |                                               | ,                                     |                                        |
| • 34   | 1.076        |               |                                               |                                       |                                        |
|        | 1.114        |               |                                               |                                       |                                        |
| •47    | 1.135        |               |                                               |                                       | · · · · · · · · · · · · · · · · · · ·  |
| •59    | 1.174        |               |                                               |                                       |                                        |
| •72    | 1.213        |               | · · · · · · · · · · · · · · · · · · ·         |                                       |                                        |
|        | 1.240        |               |                                               |                                       |                                        |
| •97    | 1.261        |               |                                               |                                       | ······································ |
| 1.09   |              |               |                                               |                                       |                                        |
|        | 1.292        |               |                                               |                                       |                                        |
|        | 1.294        |               |                                               |                                       |                                        |
|        | 1.300        |               |                                               |                                       |                                        |
|        | 1.298        |               |                                               |                                       |                                        |
|        | 1.297        |               | •                                             |                                       |                                        |
|        | 1.288        |               |                                               |                                       |                                        |
|        | 1.283        |               |                                               |                                       |                                        |
|        | 1.275        |               |                                               |                                       |                                        |
|        | 1.266        |               | · · · · · · · · · · · · · · · · · · ·         |                                       | . •                                    |
|        | 1.257        |               |                                               |                                       |                                        |
| 2.59   | 1.0230       |               | · <u>· · · · · · · · · · · · · · · · · · </u> |                                       |                                        |
| 3.09   |              |               |                                               |                                       |                                        |
|        | 1.168        |               | · · · · · · · · · · · · · · · · · · ·         |                                       | · · · · · · · · · · · · · · · · · · ·  |
| 3.59   |              |               |                                               |                                       |                                        |
|        | 1.122        |               |                                               |                                       |                                        |
|        | 1.103        |               |                                               |                                       |                                        |
|        | 1.080        |               | <u> </u>                                      |                                       |                                        |
| 4.59   |              |               |                                               |                                       |                                        |
| 4.84   |              |               |                                               | · · · · · · · · · · · · · · · · · · · |                                        |
| 5.09   | 1.032        |               |                                               |                                       |                                        |
|        | 1.021        |               |                                               |                                       |                                        |
| 5.60   |              |               |                                               |                                       |                                        |
|        | 1.009        |               |                                               |                                       |                                        |
| 6.09   |              |               |                                               |                                       |                                        |
|        | 1.004        |               |                                               |                                       |                                        |
| A 32 6 |              |               |                                               |                                       | 221                                    |
|        |              |               |                                               |                                       | <b></b>                                |

۰.

• • •

A 32 6 \_\_\_\_\_

.

2

|       | TABLE 3 | 3.2-5 RUN 2 | 2• UC/UG= 0 | •575 RC= | 5150 | PGO. ARC | TON -12 |   |
|-------|---------|-------------|-------------|----------|------|----------|---------|---|
| x/Yc  | 10.0    | 40.0        | 100         | •0       |      |          |         |   |
|       |         | 101         |             |          |      |          |         |   |
|       |         | Y/YC U/U    |             |          |      |          |         |   |
| •00   | -0.000- | 0.00 0.00   | 00-0-00-    | 0.000    |      |          |         |   |
| •10   | 0.460-  | 0.10 0.44   | 40 0.10     | 0.300    |      |          |         |   |
| •16   | 0.597   |             | 07-0-22     | 0•444    |      |          |         |   |
| •22   | 0.653   | 0.22 0.54   | 40 0.35     | 0.483    |      |          |         |   |
| •35   | 0.672   | 0.35 0.50   | 65 0.60     | 0•530    |      |          |         |   |
| •47   | 0.683   | 0.47 0.6    | 10 0.85     | 0.561    |      |          |         |   |
| •60   | -0.685  | 0.60 0.6:   | 35 1.10     | 0.590    |      |          |         |   |
| •72   | 0.646   | 0.85 0.69   | 96 1.35     | 0.630    |      |          |         |   |
| •85   | 0.690   | 1.10 0.7    | 17 1.60     | 0.668    |      |          |         |   |
| 1.10  | 0.707   | 1.35 0.72   | 20 1.85     | 0.690    |      |          |         |   |
| 1.35  | 0.731   | 1.60 0.7    | 70 2.10     | 0.735    |      |          |         |   |
| 1.60  | 0.716   | 1.85 0.79   | 98 2.35     | 0.755    |      |          |         |   |
| 1+85- | 0,788   | 2.10 0.8    | 15 2.60     | 0.780    |      |          |         |   |
| 2.10  | 0.870   | 2.35 0.80   | 2.85        | 0.808    |      |          |         |   |
| 2.35  | 0,900   | 2.60 0.84   | 403•35      | 0.885    |      |          |         |   |
|       | 0.935   | 2.85 0.91   |             | 0.895    |      |          |         |   |
|       |         | 3.11 0.95   |             | 0.935    |      |          |         |   |
|       | 0.986   |             | -           | 0.966    | •    |          |         | · |
| 3+35  | 1.000   | 3.61 1.00   | )0          | 1.000    |      |          |         |   |
| ÷ .   | · · · · |             |             |          |      |          |         |   |

.....

A 32 7

۰.

V

|        | TABLE 3 | 3.2-6 R | UN 6.  | UC/UG= | 1.645    | RC=14250 | • • PG0 •                             | ARCTON | -12 |  |
|--------|---------|---------|--------|--------|----------|----------|---------------------------------------|--------|-----|--|
|        |         |         |        |        |          |          |                                       |        |     |  |
| XXXC   | 10.0    | 40      | •0     | 10     | 0.0      |          | · · · · ·                             |        |     |  |
| UG M/S | 9.8     | 9       | •8     |        | 9•8      |          |                                       |        |     |  |
| Y/YC   | U/UG    | Y/YC    | U/UG   | YZYC   | U/UG     | ······   | · · · · · · · · · · · · · · · · · · · |        |     |  |
| •00    | 0,000   | 0.00    | 0.000  | 0.00   | 0.00     | 0        |                                       |        |     |  |
| •10    | 1.370   | 0.10    | 1.130  | 0.10   | 0.93     | 5        |                                       |        |     |  |
| •16    | 1.540   | 0.17    | 1.275  | 0.22   | = 1.09   | 2        |                                       |        |     |  |
| •22    | 1.635   | 0.22    | 1.362  | 0.35   | 1 • 16   | 0        |                                       |        |     |  |
| .35    | 1,770   | 0,35    | 1.485  | 0,60   | 1.23     | 4        |                                       |        |     |  |
| •47    | 1.850   | 0.47    | 1.570  | 0.85   | 1.36     | 5        | · · · · · · · · · · · · · · · · · · · |        |     |  |
| .60    | 1.860   | 0.60    | 1.650  | 1.10   | 1.40     | 0        |                                       |        | ·   |  |
| •72    | 1.875   | 0.85    | 1.630  | 1.35   | 1.48     | 5        | • •                                   |        |     |  |
| .85    | 1.890   | 1.10    | 1.740  | 1.60   | 1.44     | 3        |                                       |        |     |  |
| •98    | 1.740   | 1.35    | 1.462  | 1.85   | 1.45     | 5        |                                       |        |     |  |
| 1+10   | 1.560   | 1.60    | 1.480  | 2.10   | 1+41     | 2        |                                       | _      |     |  |
| 1.35   | 1.432   | 1.85    | 1.400  | 2.35   | 1.39     | 3        |                                       |        |     |  |
| 1.60   | 1.165   | 2.10    | -1-325 | 2.60   | <u> </u> | 2        |                                       |        |     |  |
| 1.85   | 1.370   | 2.35    | 1.248  | 2.85   | 1.34     | 1        | <u>_</u>                              |        |     |  |
| 2.10   | 0.950   | 2.60    | 1.186  |        | 1.340    | 9        |                                       |        |     |  |
| 2.35   | 0.950   | 2.85    | 1.065  | 3.85   | 1.230    | o        |                                       |        |     |  |
|        | 0.975   | 3.10    | 1-042  | 4.35   | 1.180    | )        |                                       |        |     |  |
|        |         | 3.35    |        |        | 1.120    |          |                                       |        |     |  |
|        |         | 3.60    |        |        |          | -        |                                       |        |     |  |
|        |         |         |        |        |          |          |                                       |        |     |  |
|        |         |         |        |        | · · · ·  |          |                                       |        |     |  |

\_\_\_\_\_

\_\_\_\_

\_\_\_\_

A 32 8

-----

V

\_\_\_\_\_ 223-

| -                     |                  |                   |                                                                                                                 |                                        |              |
|-----------------------|------------------|-------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------|
|                       | TABLE 3          | 3.2-7 RUN 1       | • UC/UG= 0.583 RG                                                                                               | C= 965 PG2. A                          | IR INJECTION |
|                       |                  |                   |                                                                                                                 |                                        |              |
| X/YC                  |                  | 14.4              | 44.0                                                                                                            | 67.0                                   | 92.5         |
|                       | 5-10.0           |                   | 11•3                                                                                                            | 12.2                                   | 13.5         |
|                       |                  | Y/YC U/UG         |                                                                                                                 | Y/YC U/UG                              | YYC UZUG     |
|                       | 0.000            | 0.00 0.00         |                                                                                                                 |                                        | 0.00 0.000   |
|                       | 0.390            | 0.10 0.30         |                                                                                                                 | 0.10 0.392                             | 0.10 0.441   |
|                       | 0.433            |                   |                                                                                                                 |                                        | 0.13 0.565   |
| •16                   | 0.473            | 0.16 0.34         | ,                                                                                                               | 0.16 0.486                             | 0.16 0.654   |
| •19                   |                  | 0,22 0,50         |                                                                                                                 | 0.19 0.593                             | 0.19 0.687   |
| •22                   | 0.683            | 0.28 0.55         | · · ·                                                                                                           | 0.22 0.648                             | 0.22 0.704   |
|                       | 0.728            | 0.34 0.65         |                                                                                                                 | 0.25_0.680                             | 0.25 0.733   |
| • 34                  | 0.751            | 0.41 0.67         |                                                                                                                 | 0.28 0.698                             | 0.28 0.762   |
|                       |                  | 0.47 0.70         |                                                                                                                 | 0.34 0.747                             | 0.31 0.772   |
| •84                   | 0.718            | 0.53 0.72         | · · · · · · · · · · · · · · · · · · ·                                                                           | 0•41 0•764                             | 0.34 0.783   |
| •91                   |                  | 0.59 0.73         |                                                                                                                 | 0+47 0+792                             | 0.41 0.809   |
| •97                   | 0.501            | 0.66 0.73         |                                                                                                                 | 0.53 0.806                             | 0.47 0.817   |
|                       | 0.439            | 0.72 0.74         |                                                                                                                 | 0.59 0.819                             | 0.53 0.834   |
| 1.03                  | 0,360            | 078 0.74          |                                                                                                                 | 0.66 0.827                             | 0.59 0.841   |
| 1.06                  |                  | 0.84 0.74         |                                                                                                                 | 0.72 0.840                             | 0.66 0.857   |
| 1.09                  |                  | 0.97 0.75         |                                                                                                                 | 0.78 0.846                             | 0.72 0.859   |
|                       | 0.349            | 1.09 0.77         |                                                                                                                 | 0,84 0,856                             | 0.84 0.876   |
| 1.16                  | 0.367            | 1.22 0.78         |                                                                                                                 | 0.91 0.863                             | 0.97 0.888   |
|                       | 0,501            | 1.34 0.81         |                                                                                                                 | ······································ |              |
|                       | 0.570            | 1.47 0.83         |                                                                                                                 | 1.03 0.878                             | 1.22 0.912   |
|                       | 0.683            | 1.59 0.85         |                                                                                                                 |                                        | 1.34 0.923   |
|                       | 0.760            | 1.72 0.87         |                                                                                                                 | 1.16 0.886                             | 1.47 0.931   |
|                       | 0,764            |                   |                                                                                                                 | 1+28 0+900                             | 1.59 0.942   |
|                       |                  | <u>1.97 0.91;</u> |                                                                                                                 | 1.41 0.911                             | 1.72 0.949   |
|                       | -0.859           | 2.22 0.94         |                                                                                                                 | 1•53 0•920                             | 1.84 0.959   |
|                       | 0,904            | 2.47 0.96         |                                                                                                                 | 1.66 0.930                             | 1.97 0.963   |
|                       | -0,929-          | 2.72 0.98         |                                                                                                                 |                                        | 2,09 0,970   |
|                       | 0.964            | 2.97 0.99         |                                                                                                                 | 1.91 0.947                             | 2.22 0.975   |
|                       | 0.972            | 3,22 0,99         | ·······                                                                                                         | 2.16 0.959                             | 2•34 0•980   |
| ,                     |                  | 3.47 0.99         |                                                                                                                 | 2.41 0.973                             | 2.47 0.983   |
|                       | <b></b> 998      | 3.72 1.000        |                                                                                                                 | 2.66 0.983                             | 2.59 0.989   |
|                       |                  | <u>3.97 1.00(</u> | · · ·                                                                                                           | 2.91 0.990                             | 2.72 0.992   |
| 4.91                  |                  | <u>*****</u>      |                                                                                                                 | 3.16 0.994                             | 2,97 0,997   |
| <u> </u>              |                  | *****             |                                                                                                                 | 3.41 0.997                             | 3.22 0.999   |
| *****                 | <del>*****</del> | ****** *****      |                                                                                                                 |                                        | 3•47 1•000   |
| and the second second |                  | ****              |                                                                                                                 | 3.91 1.000                             | 3.72 1.000   |
| *****                 | *****            | <del>****</del>   |                                                                                                                 | 4.16-1.000                             | 3•97 1•000   |
| *****                 | *****            | ****              | The second se | 4.66 1.000                             | 4.47 1.000   |
| *****                 | <del></del>      | ***** ****        |                                                                                                                 | <u>5•16 1•000</u>                      | ******       |
| *****                 | *****            | <del>*****</del>  | <del>*****</del> *******                                                                                        | 5.66 1.000                             | ****         |
| <u>A 32 9</u>         | <b>.</b>         |                   | 5 C C C C C C C C C C C C C C C C C C C                                                                         |                                        |              |

-

|        | TABLE 3.2- 7   | RUN 1 • U                             | C/UG= 0.583                           | RC= 965 | PG2 + AIR | INJECTION |
|--------|----------------|---------------------------------------|---------------------------------------|---------|-----------|-----------|
|        | 144.0          |                                       |                                       |         |           |           |
|        | 16.9           |                                       |                                       |         |           |           |
| Y/YC   | U/UG           |                                       | · · · · · · · · · · · · · · · · · · · |         |           |           |
|        | 0.000          |                                       |                                       |         |           |           |
|        | 0.485          |                                       | - <u> </u>                            |         |           |           |
|        | 0.582          |                                       |                                       |         |           |           |
|        | 0.703          |                                       |                                       |         |           |           |
|        | 0,739          |                                       |                                       |         |           |           |
|        | 0.745          |                                       | · · · · · · · · · · · · · · · · · · · |         |           | ·         |
|        | 0.794          |                                       |                                       |         |           |           |
| •34    | 0.616          |                                       | · · · · · · · · · · · · · · · · · · · |         |           |           |
| •41    | 0.839          |                                       |                                       |         |           |           |
| •47    | 0.848          |                                       |                                       |         |           |           |
|        | 0.863          |                                       |                                       |         | · · ·     |           |
|        | 0.873          |                                       |                                       |         |           |           |
|        | 0.886          |                                       |                                       |         |           |           |
|        | 0.891          |                                       |                                       |         |           |           |
|        | 0.906          |                                       |                                       |         |           |           |
|        | 0.933          |                                       |                                       |         |           |           |
| 1•22   | 0.943          |                                       |                                       |         |           |           |
| 1+34   | 0.951          |                                       |                                       |         |           |           |
| 1•47-  | 0.958          |                                       |                                       |         |           |           |
| 1.59   | 0.966          |                                       |                                       |         |           |           |
|        | 0.973          |                                       |                                       |         |           |           |
|        | 0.978          |                                       |                                       |         |           |           |
|        | 0•983          |                                       |                                       |         |           |           |
|        | U-989          |                                       |                                       |         | · · ·     |           |
|        | 0.996<br>0.999 |                                       |                                       |         |           |           |
|        | 1.000          |                                       |                                       |         |           |           |
|        | 1.001          |                                       |                                       |         |           |           |
| 3.47   | 1.001          |                                       |                                       |         |           |           |
| 3.12   | 1.000          |                                       |                                       |         |           |           |
| 3+97   | 1.000          |                                       |                                       |         |           |           |
| 4.22   | 1.000          |                                       |                                       |         |           |           |
|        |                |                                       |                                       |         |           |           |
|        | 1.000          |                                       |                                       |         |           |           |
| 4+97   | 1.000          |                                       |                                       |         |           |           |
|        |                | · · · · · · · · · · · · · · · · · · · |                                       |         |           |           |
|        |                |                                       |                                       |         |           |           |
| A 3210 |                |                                       |                                       |         | -         |           |
|        |                |                                       |                                       |         |           |           |
|        |                |                                       |                                       |         |           |           |
|        |                |                                       |                                       |         |           |           |
|        |                |                                       |                                       |         |           |           |
|        |                |                                       |                                       |         |           |           |
|        |                |                                       |                                       |         |           |           |
|        |                |                                       |                                       |         |           |           |
|        |                |                                       |                                       |         |           |           |
|        |                |                                       |                                       |         |           |           |
|        |                |                                       |                                       |         |           |           |
|        |                |                                       |                                       |         |           |           |
|        |                |                                       |                                       |         |           |           |

\_ .

|          |                                               |       |                  |                  |                   | · · · · · · · · · · · · · · · · · · · |                   |          |        |
|----------|-----------------------------------------------|-------|------------------|------------------|-------------------|---------------------------------------|-------------------|----------|--------|
|          | TADLE                                         | 3.2-8 |                  |                  | 2•21 RC=          | - 3470.                               | DC2.              |          | TTON   |
|          | TADLE                                         | 3.2-0 |                  |                  | 2021 RC-          | - 3470.                               | PGZ A             | IR INJEC |        |
| ×/ YC    | 0.0                                           | ,     | ¥•4              | - 40             | +•0               | 67                                    | •0                | 92       | .5     |
|          | 9.2                                           |       |                  |                  | •6                |                                       | •5                |          | •3     |
| TZYC     | 0/06                                          |       | -U/UG            |                  | U/UG              |                                       | UZUG              | YZYC     | UZUG   |
|          | -0-000                                        | . –   | 0.000            | · · · · ·        | -0.000            |                                       | 0.000             |          | 0,000  |
|          | 1.753                                         |       | 1,381            |                  | 0.997             |                                       | 0.718             | 0.10     | 0.670  |
|          | 2.508                                         |       | 1-628-           |                  | 1-199             | _                                     | 0.927             |          | 0.0785 |
| •16      | 2.588                                         |       | 1.902            | 0.16             | 1.268             |                                       | 1.029             | 0.16     | 0.919  |
|          | 2.595                                         |       | 1.989            |                  | 1.316             |                                       |                   |          | 0.964  |
| ·····    | 2,607                                         |       |                  |                  | 1.359             |                                       | 1.091             | 0.22     | 0.980  |
|          | -2-607                                        |       | 2 120            |                  | 1.396             |                                       | <u> </u>          |          | 1.002  |
|          | 2.609                                         |       | 2.183            |                  | 1.413             |                                       | 1.165             |          | 1.037  |
|          | 2.615                                         |       | -2.226           |                  | 1-459             |                                       | 1.203             |          | 1.068  |
|          | 2.607                                         |       | 2.256            |                  | 1•455             |                                       | 1.238             |          | 1.096  |
|          | <del>2,524</del>                              |       | 2.272            | - · · ·          | 1.500             |                                       | <u>1+258</u>      | · _ · ·  | 1.106  |
|          | 2.357                                         |       | 2.264            |                  | 1.518             |                                       | 1.270             |          | 1.129  |
|          | = <u>1.982</u>                                |       | 2_245=           | -                | 1-530             | _                                     | <u>1-289</u>      |          | 1.146  |
|          | 1.253                                         |       | 2.215            |                  | 1.536             |                                       | 1.308             |          | 1•159  |
|          | -0.770                                        |       | 2.174            |                  | 1•543             |                                       | 1.317-            | _        | 1•159  |
|          | 0.324                                         |       | 2.123            |                  | 1•549             |                                       | 1.325             |          | 1.175  |
|          | 0.407                                         |       | 2.084            |                  | 1•549<br>=1•537== |                                       | 1.323             |          | 1•175  |
| 1+41     | 0.477                                         |       | 1.958            |                  | 1.530             |                                       | 1.342             |          | 1.193  |
|          | <u>-0-555</u>                                 |       | 1.958            |                  | 1•530             | + -                                   | 1•342<br>1•346    |          | 1•193  |
| 1.53     |                                               |       | 1.673            |                  | 1.485             |                                       | 1.345             |          |        |
|          |                                               |       | _1.073<br>1.558= |                  | 1•465<br>         |                                       | 1•343<br>=1•338== |          | 1.202  |
|          |                                               |       |                  |                  |                   |                                       |                   |          | 1.210  |
| 1.78     | 0.834                                         |       | 1.412            | 1.59             | 1.437             | 1.47                                  |                   | 1.28     | 1.213  |
| 2003     | 0.881                                         |       | 1.295            | 2.09             | 1•381             |                                       | 1.324             |          | 1.213  |
|          | -                                             |       | -                |                  |                   |                                       | 1.314             |          | -1.212 |
|          | 0.958                                         |       | 1.137            |                  | 1.258             |                                       | 1.286             |          | 1.210  |
| 2.53     | 0,990<br>0,990                                |       |                  |                  |                   |                                       | 1.258             |          | 1.200  |
|          |                                               |       | 1.045            |                  | 1•155             |                                       | 1.230             |          | 1.186  |
| 3.03     | <u>1.010</u>                                  |       |                  |                  | 1.126             |                                       | 1.202             | 2.41     | 1.175  |
| 3.53     | 1.008                                         |       | <u>1,006</u>     |                  | 1.084             |                                       | 1.172             | 2.66     | 1.156  |
|          |                                               |       | 0.996            |                  | 1.055             |                                       | 1.145             | 2.91     | 1.139  |
|          | 1.000                                         |       | 1.000            | ب بي منهجين ري م | 1+037<br>1+022    |                                       |                   |          | 1.122  |
|          |                                               |       | · · ·            |                  |                   |                                       | 1.084             | 3.41     | •      |
| *****    | *****                                         |       | -0,996-          |                  | 1.012             |                                       | 1.080             |          | 1.089  |
|          | 1997 - P. |       | 0.996            |                  | 1.005             |                                       | 1.033             | 3.91     | 1.076  |
| *****    | ****                                          |       | 1.000            |                  | 1.004             |                                       | 1.014             |          | 1.059  |
|          |                                               | · •   | 1.000            | 5.35             |                   |                                       | 1.008             | 4.66     | 1.035  |
| *****    | *****                                         |       | 1.000            |                  | 1.000             |                                       | 1.002             |          | 1.021  |
|          |                                               |       | 1.000            | 6.34             | 1.000             |                                       | 1.000             | 5.66     | 1.011  |
| ****     | *****                                         |       | *****            |                  | *****             |                                       | 0.997             |          | 1.006  |
| ****     | ****                                          | ****  | *****            | *****            | ****              | 7.47                                  | 1.001             | 6.66     | 1.002  |
| <u> </u> |                                               |       |                  |                  |                   |                                       |                   |          | 226    |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | IABLE          | 3.2- 8                                | RUN 5    | • UC/UG=                              | 2•21      | RC= | 3470 | PG2. | AIR 1    | NJECT     | TON      |           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------------------------|----------|---------------------------------------|-----------|-----|------|------|----------|-----------|----------|-----------|
| <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 144.0          |                                       |          |                                       |           |     |      |      |          |           |          |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |                                       |          | -                                     |           |     |      |      |          |           |          | ·         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |                                       |          |                                       |           |     |      |      |          |           |          |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.000          |                                       |          |                                       |           |     |      |      |          |           |          |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | V•585          |                                       |          |                                       |           |     |      |      |          |           |          |           |
| •13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.692          |                                       |          |                                       |           |     |      |      | <u> </u> |           |          |           |
| •16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | U.815          | 5                                     |          |                                       |           |     |      |      |          |           |          |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,850          |                                       |          |                                       |           |     |      |      |          |           |          |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | V.859          |                                       |          | · · · · · · · · · · · · · · · · · · · |           |     |      |      |          |           |          |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.883<br>0.905 |                                       |          |                                       |           |     |      |      |          |           |          |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,905          |                                       | <u> </u> |                                       |           |     |      |      |          |           |          |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.921<br>0.955 |                                       |          |                                       |           |     |      |      |          |           |          |           |
| •47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.966          |                                       |          | · · · · · · · · · · · · · · · · · · · |           |     |      |      |          |           |          |           |
| •53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.983          | <b>b</b>                              |          |                                       |           |     |      |      |          |           |          | _         |
| •59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.994          |                                       |          |                                       |           |     |      |      |          |           |          |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.009          |                                       |          |                                       |           |     |      |      |          |           |          |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.017          |                                       |          |                                       |           |     |      |      |          |           |          |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.026          |                                       |          |                                       |           |     |      |      |          |           |          |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.035          |                                       |          |                                       |           |     |      |      |          |           |          |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.045          |                                       |          |                                       |           |     |      |      |          |           |          |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.050          |                                       |          |                                       |           |     |      |      |          |           |          |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.050          |                                       | /        |                                       |           |     | •    |      |          |           | <u> </u> |           |
| A Company of the second s | 1.074          |                                       |          |                                       |           |     |      |      |          |           |          |           |
| 1.441                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.077          |                                       |          | · · · · · · · · · · · · · · · · · · · |           |     |      |      |          |           |          |           |
| 1•53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.081          |                                       |          |                                       |           |     |      |      |          |           |          | - <u></u> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.084          |                                       | ,<br>    |                                       |           |     |      |      |          |           |          |           |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.085          |                                       |          |                                       |           |     |      |      |          |           |          |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.085          |                                       |          |                                       |           |     |      |      |          |           |          |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.079          |                                       |          |                                       |           |     |      |      |          | - <u></u> |          |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.081          |                                       |          |                                       |           |     |      |      |          |           |          |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.077          |                                       |          |                                       |           |     |      | -    |          |           |          |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.072          |                                       |          |                                       |           |     |      |      |          |           |          |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.058          |                                       |          |                                       |           |     |      |      |          |           |          |           |
| 3041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.053          |                                       |          |                                       |           |     |      |      |          |           |          |           |
| 3791                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.043          |                                       |          |                                       |           |     |      |      |          |           |          |           |
| 4+41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.030          |                                       |          |                                       |           |     |      |      |          |           |          |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.019          |                                       |          |                                       |           |     |      |      |          |           |          |           |
| 5•41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.010          | · · · · · · · · · · · · · · · · · · · |          |                                       | · · · · · |     |      |      | ·        |           |          |           |
| <b>5.9</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.005          |                                       |          |                                       |           |     |      |      |          |           |          |           |
| A JZIZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                                       |          |                                       |           |     |      |      |          |           |          | 293       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |                                       |          |                                       |           |     |      |      |          |           |          |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |                                       |          |                                       |           |     | •    |      |          |           |          | -         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |                                       |          |                                       |           |     |      |      |          |           |          |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -              |                                       |          |                                       |           |     |      |      |          |           |          |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |                                       |          |                                       |           |     |      |      |          |           |          |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |                                       |          |                                       |           |     |      |      |          |           |          |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |                                       |          |                                       |           |     |      |      |          |           |          |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |                                       |          |                                       |           |     |      |      |          |           |          |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |                                       |          |                                       |           |     |      |      |          |           |          |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |                                       |          |                                       |           |     |      |      |          |           |          |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |                                       |          |                                       |           |     |      |      |          |           |          |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |                                       |          |                                       |           |     |      |      |          |           |          |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |                                       | •        |                                       |           |     |      |      |          |           |          |           |

# ABLE 3.2- 8 RUN 5. UC/UG= 2.21 RC= 3470.. PG2. AIR INJECTION

|                                                                                                                  |                      | 3.2- 9 RUN                                                                                                       |                                                                                                                  | 0.583 PC                                           | - 965.  | PG3. A         | TR TNUEC        | TION     |
|------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|---------|----------------|-----------------|----------|
|                                                                                                                  |                      | 502- 3 RON                                                                                                       | 11 00/03-                                                                                                        |                                                    | ,= ,0,, |                |                 |          |
|                                                                                                                  | . 9.                 | 44.0                                                                                                             |                                                                                                                  | 68+3                                               |         | •5             | 150             | •0       |
|                                                                                                                  | - 10.z               | 12.4                                                                                                             |                                                                                                                  | 14.9                                               | 18      | •5             | 54              | •2       |
| 1/10                                                                                                             | 0/06                 | Y/YC U                                                                                                           | 7UG Y7Y                                                                                                          | C-U/UG                                             | Y/YC    | - U7UG         | Y/YC            | UZUG     |
| •00                                                                                                              | - <del>0 .00</del> ( | )                                                                                                                | .000 0.0                                                                                                         | 00000                                              | 0.00    | 0.000          | 0.00            | 0.000    |
| •10                                                                                                              | 0.221                | 0.10-0                                                                                                           | •408 0.1                                                                                                         | 0 0.428                                            | 0.10    | 0.494          | 0.10            | 0.756    |
| •13                                                                                                              | 0.335                | 5-0.13-0                                                                                                         | •457 0•1                                                                                                         | 3 0.527                                            | 0.13    | 0.716          | 0.13            | 0.884    |
| •16                                                                                                              | 0.452                | 2 0.16 0                                                                                                         | •477 0•1                                                                                                         | 6 0,568                                            | 0.16    | 0.777          | 0.16            | 0.912    |
| •22                                                                                                              | 0.539                | ) 0,19 0                                                                                                         | 544 0.1                                                                                                          | 9 0.650                                            | 0.19    | 0,795          | 0.19            | 0.954    |
| •28                                                                                                              | 0.657                | 0.22 0                                                                                                           | •590 0•2                                                                                                         | 2 0.721                                            | 0.22    | 0.828          | 0.22            | 0.970    |
| • 34                                                                                                             | 0.686                | <b>0.28</b> 0                                                                                                    | .678 0.2                                                                                                         | 25 0.757                                           | 0.25    | 0.859          | 0.25            | 0.979    |
| •41                                                                                                              | 0.730                | 0.0.34 0                                                                                                         | •723 0•2                                                                                                         | 28 0.771                                           | 0.28    | 0.872          | 0.28            | 0.981    |
| •47                                                                                                              | 0.739                | 0.41 0                                                                                                           | .794 0.3                                                                                                         | 64 0.818                                           | 0+31    | 0.877          | 0.34            | 0.990    |
| •53                                                                                                              | 0.755                | 0.47 0                                                                                                           | •821 0•4                                                                                                         | 1 0.838                                            | 0.34    | 0.894          | 0.41            | 0.992    |
| •59                                                                                                              | 0.765                | 5                                                                                                                | •850 0•4                                                                                                         | 7 0.856                                            | 0+41    | 0.911          | 0.47            | 0•995    |
| •66                                                                                                              | 0.773                | 3 0.59 0                                                                                                         | •860 0•E                                                                                                         |                                                    | 0.47    | 0.917          | 0.59            | 0.998    |
| • 12                                                                                                             | 0.776                |                                                                                                                  |                                                                                                                  | 59-0 <b>•</b> 880-                                 | 0+53    |                | 0.72            | 0.999    |
| • 78                                                                                                             | U.782                |                                                                                                                  | •879 0.6                                                                                                         | 6 0.887                                            | 0.59    | 0.936          | 0.84            | 0.999    |
| •84                                                                                                              | 0.784                |                                                                                                                  | •891 0•7                                                                                                         |                                                    | 0.66    |                | 0.97            | 1.000    |
| •97                                                                                                              | 0.789                |                                                                                                                  | .907 0.7                                                                                                         |                                                    | 0.72    | 0.946          | 1.09            | 1.000    |
| 1+09                                                                                                             |                      |                                                                                                                  | •913 0•8                                                                                                         |                                                    |         | 0.952          |                 | 1.000    |
| 1.22                                                                                                             | 0.816                |                                                                                                                  | •926 0•9                                                                                                         |                                                    | 0.84    | 0.957          | *****           | *****    |
|                                                                                                                  | 0.835                |                                                                                                                  |                                                                                                                  | 0.921                                              |         | 0,963          | ****            | ****     |
| 1.47                                                                                                             | 0.848                |                                                                                                                  | 946 1.0                                                                                                          |                                                    |         | 0.964          | *****           | ****     |
|                                                                                                                  | 9.853                |                                                                                                                  |                                                                                                                  | 9 0+935                                            |         | 0.967          | *****           |          |
| 1.72                                                                                                             | 0.872                |                                                                                                                  | .972 1.1                                                                                                         | (a) (1) (2) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3 |         | 0.972          | ****            | ****     |
|                                                                                                                  | 0.887                |                                                                                                                  |                                                                                                                  | 8 0.946                                            |         | 0.978          | ****            | ****     |
| 1.97                                                                                                             |                      | and the second | 993 1.4                                                                                                          |                                                    | 1.34    | 0,982          | *****           | ****     |
|                                                                                                                  | 0.937                |                                                                                                                  |                                                                                                                  |                                                    |         | 0.986          | *****           | ****     |
| and the second | 0.952<br>0.978       |                                                                                                                  |                                                                                                                  | 6 0.971<br>8 0.975                                 | 1.59    | 0,989-         |                 |          |
| 2.97                                                                                                             | 0.978                |                                                                                                                  |                                                                                                                  |                                                    | 1.84    | 0.993          | ******<br>***** | *****    |
|                                                                                                                  | <u>0</u> ,991        |                                                                                                                  |                                                                                                                  | 1 0∙981<br>6 0∙989                                 |         | 0.995<br>0.997 |                 | *****    |
| 3.47                                                                                                             | 1.000                |                                                                                                                  | 000 2.4                                                                                                          |                                                    |         | 0.998          | *****           | ****     |
|                                                                                                                  | *****                |                                                                                                                  |                                                                                                                  | 6 <u>0</u> •995                                    |         | 1.000          | *****<br>*****  | <u> </u> |
| ****                                                                                                             | *****                |                                                                                                                  |                                                                                                                  | 1 0.999                                            | *****   | *****          |                 | ****     |
| ****                                                                                                             | *****                |                                                                                                                  | and the second | 6 0.999                                            |         |                | *****           |          |
| ****                                                                                                             | *****                |                                                                                                                  |                                                                                                                  | 1 1.000                                            |         | *****          | *****           |          |
| *****                                                                                                            | *****                |                                                                                                                  |                                                                                                                  | 6 1.000                                            |         |                |                 |          |
| *****                                                                                                            | ****                 |                                                                                                                  |                                                                                                                  | * *****                                            |         | *****          |                 |          |
| 2.<br>                                                                                                           |                      |                                                                                                                  | -                                                                                                                |                                                    |         |                |                 | ·        |
|                                                                                                                  |                      |                                                                                                                  |                                                                                                                  |                                                    |         |                |                 |          |

A 3213

. . •

|                                                                                                                 | 74.01 6 |        |                                       |        |           | 2470                                                                                                             |         |           | TION   |
|-----------------------------------------------------------------------------------------------------------------|---------|--------|---------------------------------------|--------|-----------|------------------------------------------------------------------------------------------------------------------|---------|-----------|--------|
|                                                                                                                 | TABLE   | 3.2-10 | RUN 54                                | UC/UG= | 2.213 RC= | = 3470.                                                                                                          | PG3 A   | AIR INJEC | TION   |
| XZYC                                                                                                            | 9.      | , .    | 44.0                                  |        | 8.3       | as                                                                                                               | 2•5     | 150       | • 0    |
| UG M/S                                                                                                          |         |        | 1.9                                   | · ·    | 4•1       |                                                                                                                  |         | 53        | + =    |
| Y/YC                                                                                                            | U/UG    |        | U/UG                                  |        | UZUG      |                                                                                                                  | U/UG    |           | U/UG   |
|                                                                                                                 | 0.000   |        |                                       |        | 0.000     |                                                                                                                  | 0.000   |           | 0+000  |
| •10                                                                                                             | 1.421   |        | 1.140                                 |        | 0.897     |                                                                                                                  | 0.585   |           | 0.782  |
|                                                                                                                 | 1.4727  |        | 3 1.258                               |        | 1.038     | and the second | 0.815   |           | 0.882  |
| •16                                                                                                             | 1.978   |        |                                       |        |           |                                                                                                                  | 0.874   | 0.16      | 0.920  |
|                                                                                                                 | 2-03    |        |                                       |        | 1.210     |                                                                                                                  | 0.888   |           | 0.966  |
| •22                                                                                                             | 2.082   |        |                                       |        | 1.249     |                                                                                                                  | 0.913   |           | 0.978  |
|                                                                                                                 | 2.161   |        | 5 1-534                               |        | 1.276     |                                                                                                                  | 0,940   |           | 0.984  |
| •28                                                                                                             |         |        |                                       |        | 1.291     |                                                                                                                  | 0.956   |           | 0.978  |
|                                                                                                                 | -2.238  |        | 1-665                                 |        | 1.337     | • • • • • • • • • • • • • • • • • • •                                                                            | 0.962   |           | 1.000  |
| •41                                                                                                             | 2.266   |        | 1.702                                 |        |           |                                                                                                                  | 0.977   | 0.41      | 1.003  |
|                                                                                                                 | 2.276   | _      |                                       | *      | -1-387-   |                                                                                                                  | 1.000   |           |        |
| •53                                                                                                             | 2.253   |        | 1.758                                 |        | 1.398     |                                                                                                                  | 1.008   |           | 1.011  |
|                                                                                                                 | 2.242   |        | - 1.782                               |        | 1+416     |                                                                                                                  | =1.023  |           | -1-014 |
|                                                                                                                 | 2.200   |        | 1.788                                 |        | 1.422     | and the second second second second                                                                              | 1.033   | 0.66      | 1.015  |
|                                                                                                                 | 2.177   |        | 1.790                                 |        | 1.435     |                                                                                                                  | 1.045   | -         | 1.016  |
|                                                                                                                 | 2.113   |        | 3 1.795                               |        | 1.440     |                                                                                                                  | 1.048   | 0.78      | 1.017  |
|                                                                                                                 | 2.082   | · · _  | 793                                   |        | 1.445     |                                                                                                                  | 1.054   |           | 1.017  |
|                                                                                                                 | 1.980   |        | 1.777                                 |        | 1.446     |                                                                                                                  | 1.064   |           | 1.017  |
|                                                                                                                 | 1.861   | · · ·  |                                       | •      | 1.445     |                                                                                                                  | 1.066   | <b>•</b>  | 1+017  |
|                                                                                                                 | 1.746   |        | 1.734                                 |        | 1.440     |                                                                                                                  | 1.067   |           | 1.017  |
|                                                                                                                 | -1-617  |        | 1.707                                 |        | 1-431     |                                                                                                                  | 1.065   |           | 1.017  |
|                                                                                                                 | 1.514   |        | 1.679                                 |        | 1.418     |                                                                                                                  | 1.064   |           | 1.017  |
| A STATE OF A | 1.400   |        | 1.643                                 | -      | 1+407     |                                                                                                                  | 1.061   |           | 1.016  |
| · · · · · · · · · · · · · · · · · · ·                                                                           | 1.304   |        | 1.606                                 |        | 1.392     |                                                                                                                  | 1.056   |           | 1.016  |
| 1.84                                                                                                            | 1.216   |        | -1,571                                |        | 1-365     |                                                                                                                  | -1.051  |           | 1.015  |
| 1.97                                                                                                            | 1.149   |        | 1.542                                 |        | 1.328     |                                                                                                                  | 1.044   |           | 1.014  |
|                                                                                                                 | 1.089   |        | 1.505                                 | 1      | 1+299-    |                                                                                                                  | 1.039   |           | 1.013  |
| 2.22                                                                                                            | 1.046   | 2.22   | 1.463                                 | 2.72   | 1.260     | 2.16                                                                                                             | 1.032   | 1.72      | 1.012  |
| 2.34                                                                                                            | 1.013   | 2.34   | 1.421                                 |        | 1.229     |                                                                                                                  | 1-029   | 1.84      | 1.013  |
| 2.59                                                                                                            | 0.991   | 2.59   | 1.358                                 | 3.22   | 1+195     | 2.41                                                                                                             | 1.019   |           | 1.010  |
| 2.84                                                                                                            | 0.991   |        | 1,283                                 |        | 1+157     |                                                                                                                  | 1.012   |           | 1.009  |
| 3.09                                                                                                            | 0.991   | 3.09   | 1.212                                 | 3.72   | 1.124     | 2.66                                                                                                             | 1.006   | 2.34      | 1.007  |
|                                                                                                                 | 0,999   |        | 1.145                                 |        | 1.095     |                                                                                                                  | -1.000- |           | 1.006  |
| 3.84                                                                                                            | 0,999   |        | 1.059                                 |        |           |                                                                                                                  | *****   | 2.84      | 1.003  |
|                                                                                                                 | 1.000   |        | <u> </u>                              |        | 1.018     | ****                                                                                                             |         |           | 1.002  |
| 4.84                                                                                                            | 0.9999  |        |                                       |        | 1.006     |                                                                                                                  | *****   | 3.59      | 1.000  |
|                                                                                                                 | 1.000   |        | 000                                   |        | 1.002     | *****                                                                                                            | *****   | *****     | ****   |
| *****                                                                                                           | *****   |        | · · · · · · · · · · · · · · · · · · · |        | 1.000     | *****                                                                                                            | ****    | ****      | ****   |
|                                                                                                                 |         |        |                                       |        |           |                                                                                                                  |         |           |        |
| A 3214                                                                                                          |         |        |                                       |        |           |                                                                                                                  |         |           | 229    |
|                                                                                                                 |         |        |                                       |        |           |                                                                                                                  |         |           |        |
|                                                                                                                 |         |        |                                       |        |           |                                                                                                                  |         |           |        |

المتعجب والمستعمية

|                                                                                                                  |                       |          |              |          |                  |                       |                      |                                        | •                                     |
|------------------------------------------------------------------------------------------------------------------|-----------------------|----------|--------------|----------|------------------|-----------------------|----------------------|----------------------------------------|---------------------------------------|
|                                                                                                                  | TABLE                 | 3.2-11 6 | RUN 2.       | UC/UG= C | •553 RC          | = 1970                | PG4 A                | IR INJEC                               | TION                                  |
|                                                                                                                  | <u> </u>              |          |              |          |                  |                       |                      |                                        |                                       |
| X/YC                                                                                                             | 24.0                  | 4.       | 3•3          | 68       | 3•5              | 93                    | •5                   | 123                                    | •0                                    |
| UG M/S                                                                                                           | 19.5                  | 18       | 3.5          | 1.7      | 1•2              | 16                    | •4                   | 15                                     | •5                                    |
| Y/YC                                                                                                             | U/UG                  | YZYC     | U/UG         | YZYC     | UZUG             | Y/YC                  | U/UG                 | Y/YC                                   | UZUG                                  |
| •00                                                                                                              | 0.000                 | 0.00     | 0.000        | 0.00     | 0.000            | 0.00                  | 0.000                | 0.00                                   | 0.000                                 |
| •10                                                                                                              | 0.230                 | -        |              | 0.10     | 0.316            | 0.10                  | 0.338                | 0.10                                   | 0.312                                 |
|                                                                                                                  | 0.585                 |          | 0.374        | 0.13     | 0.369            | 0.13                  | 0.407                | 0.16                                   | 0+410                                 |
| •16                                                                                                              | 0.346                 | 0.16     | 0.430        | 0.16     | 0.402            | 0.16                  | 0.454                | 0.22                                   | 0.437                                 |
|                                                                                                                  | <del>0.363</del>      |          | 0,465        |          | 0.408            |                       | 0.466                |                                        | 0+469                                 |
|                                                                                                                  | 0.415                 |          | 0.479        | •        | 0.433            |                       | 0.477                | 0.34                                   | 0.482                                 |
|                                                                                                                  | 0.490                 |          | 0.511        |          | 0.477            |                       | 0.508                |                                        | 0.496                                 |
|                                                                                                                  | • <del>•537</del>     |          | 0.535        | _        | 0.494            |                       | 0.523                |                                        | 0.502                                 |
|                                                                                                                  | 0.575                 |          | 0,546        |          | 0+517            |                       | 0.538                |                                        | 0.515                                 |
|                                                                                                                  | 0.598                 |          | 0.568        |          | 0.531            |                       | 0.546                |                                        | 0.524                                 |
|                                                                                                                  | 0.631                 |          | 0.582        |          | 0.543            |                       | 0.559                |                                        | 0.533                                 |
|                                                                                                                  | 0.649                 |          | 0.597        |          | 0.557            |                       | 0.566                |                                        | 0.539                                 |
| •66_                                                                                                             | 0.671                 |          | 0.612        |          | 0.571            |                       | 0.574                |                                        | 0+551                                 |
| •72                                                                                                              | 0.677                 |          | 0.632        | 0.72     | 0.573            |                       | 0.584                | 0.84                                   | 0.551                                 |
|                                                                                                                  | 0.692                 |          | 0.644        |          | 0.595            |                       | 0.591                |                                        | 0.568                                 |
|                                                                                                                  | 0.709                 |          | 0.663        | 0.84     | 0.606            |                       | 0.599                |                                        | 0.568                                 |
|                                                                                                                  | 0,734                 |          | 0.672        |          | 0.619            |                       | 0.613                |                                        | 0,588                                 |
| and the second | 0.766                 |          | 0.688        |          | 0.623            |                       | 0.615                | 1.16                                   | 0.591                                 |
|                                                                                                                  | 0,787                 |          | 0.727        |          | 0.649            |                       | 0.636                |                                        | 0.604                                 |
|                                                                                                                  | 0.811                 |          | 0.748        |          | 0.671            |                       | 0.649                |                                        | 0.620                                 |
|                                                                                                                  | 0.846                 |          | 0.778        |          | -0+700-          |                       | 0.669                |                                        | 0.638                                 |
|                                                                                                                  | 0.862                 |          | 0.798        |          | 0.716            |                       | 0.686                |                                        | 0.648                                 |
|                                                                                                                  | 0.888                 |          | -0.825       |          | 0.747            |                       | 0.703                |                                        | 0•670                                 |
| +                                                                                                                | 0.910                 |          | 0.854        |          | 0.769-           |                       | 0.731                |                                        | 0.693                                 |
|                                                                                                                  | 0,933                 |          | 0.891        |          | 0.804            |                       | 0.769                |                                        | 0.719                                 |
|                                                                                                                  | 0.947                 |          | 0,929        | -        | 0.844            |                       | -0 <del>.797</del> - |                                        | 0.749                                 |
|                                                                                                                  | 0.976                 |          | 0.955        |          | 0.878            |                       | 0.834-               |                                        | 0•775                                 |
|                                                                                                                  |                       |          | 0.976        |          | 0.911            | -                     | 0.847                |                                        | 0.797                                 |
|                                                                                                                  | -0,997<br>-0,999      |          | -0.989-      |          | -0.942<br>-0.961 |                       | 0.889                |                                        | 0.844                                 |
|                                                                                                                  |                       |          | 0,995        |          |                  |                       | 0 <b>.935</b>        |                                        | 0.894                                 |
|                                                                                                                  | 1.000                 |          | 1.000        |          | 0.990            |                       | 0.969                | ······································ | 0.930                                 |
|                                                                                                                  | <u>1.000</u><br>1.000 |          | 1.000        |          | 1.000            |                       | 0.988                |                                        | 0.962                                 |
|                                                                                                                  | 1.000                 |          | <u>1.000</u> |          | 1.000            |                       | 0.997                |                                        | 0.980                                 |
| 1                                                                                                                | 1.000                 |          | 1.000        |          | 1.000            |                       | 1.000                |                                        | 0.992                                 |
|                                                                                                                  | 1.000                 |          | 1.000        |          | 1.000            | <b>6</b> •09<br>★★★★★ | 1.000                |                                        | 0.997                                 |
| and the second | A 11                  |          |              |          | 1.000            |                       |                      |                                        | 1.000                                 |
| ****                                                                                                             | 1.000                 | 5.71     | 1.000        | *****    | *****            | *****                 | ****                 | /•53                                   | 1.000                                 |
|                                                                                                                  |                       |          |              |          |                  |                       |                      |                                        | · · · · · · · · · · · · · · · · · · · |

A 3215

| · · · · · · · · · · · · · · · · · · · |                                                  |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |            |
|---------------------------------------|--------------------------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------|
|                                       |                                                  |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |            |
|                                       | TABLE 3                                          | •2-12 RUN 1                    | • UC/UG= 1.853 R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C= 6330 PG4. AI            | RINJECTION |
| X/YC                                  | 24.0                                             | 43•3                           | 68•5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 93•5                       | 123.0      |
|                                       |                                                  | 18+0                           | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 15.7                       | 14.8       |
| Y/YC                                  |                                                  | Y/YC U/UC                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Y/YC U/UG                  | Y/YC U/UG  |
| -                                     | 0.000                                            | 0.00 0.00                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | 0.00 0.000 |
| •10                                   | 1.435                                            | 0.10 1.17                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.10 0.920                 | 0.10 0.922 |
|                                       | 791                                              | 0-13 1-42                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e sta Terra in Tradicio da | 0.16 1.152 |
| •16                                   | 1.789                                            | 0.16 1.49                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.16 1.163                 | 0.22 1.185 |
|                                       | 1.828                                            | 0.19 1.52                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.19 1.213                 | 0.28 1.241 |
|                                       | 1.856                                            | 0.22 1.55                      | and the second s | 0.22 1.258                 | 0.34 1.262 |
| · · · · · · · · · · · · · · · · · · · | 1.910                                            | 0.28 1.62                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.28 1.305                 | 0.41 1.301 |
| •34                                   | 1.931                                            | 0.34 1.65                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.34 1.350                 | 0.47 1.320 |
|                                       | 1.962                                            | 0.41 1.70                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.41 1.385                 | 0.53 1.350 |
| •47                                   | 1.973                                            | 0.47 1.72                      | 2 0.53 1.556                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.47 1.409                 | 0.59 1.363 |
| .53                                   | 1.972                                            | 0.53 1.74                      | 1 0.59 1.581                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.53 1.436                 | 0.66 1.391 |
| •59                                   | 1.955                                            | 0.59 1.74                      | 8 0.66 1.594                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.59 1.451                 | 0.72 1.404 |
| •66                                   | 1.926                                            | 0.66 1.75                      | 7 0.72 1.606                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.66 1.478                 | 0.78 1.421 |
| •78                                   | 1.880                                            | 0.72 1.76                      | 2 0.78 1.614                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.72 1.498                 | 0.84 1.432 |
| •91                                   | 1.811                                            | 0,78 1,76                      | 4 0.84 1.622                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.78 1.511                 | 0.91 1.447 |
| 1.03                                  | 1.751                                            | 0.84 1.75                      | 0.91 1.630                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.84 1.526                 | 1.03 1.468 |
| 1+16                                  | 1.665                                            | 0.97 1.73                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.91 1.532                 | 1.16 1.488 |
| 1.28                                  | 1.593                                            | 1.09 1.70                      | 4 1.03 1.636                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.97 1.549                 | 1.28 1.504 |
| 1.41                                  | 1.504                                            | 1.22 1.67                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.09 1.559                 | 1.41 1.507 |
| 1.53                                  | 1.424                                            | 1.34 1.63                      | 1.28 1.614                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.22 1.568                 | 1.53 1.512 |
| 1.66                                  | 1.358                                            | 1.47 1.59                      | 6 1•41 1•602                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1•34 1•568                 | 1.66 1.511 |
| 1.78                                  | 1.293                                            | 1.59 1.55                      | 3 1.53 1.585                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1•47 1•565                 | 1.78 1.507 |
| 2.03                                  | 1.156                                            | 1.72 1.50                      | 9 1.66 1.556                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.59 1.559                 | 1.91 1.504 |
| 2.28                                  | 1.059                                            | 1.97 1.41                      | 7 1.91 1.518                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.84 1.544                 | 2.03 1.500 |
| 2.53                                  | 1.010                                            | 2.22 1.32                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | 2.16 1.494 |
| 2•78                                  | 1.000                                            | 2.47 1.24                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.34 1.478                 | 2•41 1•478 |
|                                       | 1.000                                            | 2                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.59 1.439                 | 2.66 1.450 |
| 3.28                                  | 1.000                                            | 2.97 1.08                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.84 1.402                 | 2.91 1.428 |
|                                       | 1.000                                            | 3.22 1.04                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.09 1.366                 | 3.16 1.404 |
| 3.78                                  | 1.000                                            | 3.47 1.01                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.59 1.292                 | 3•41 1•382 |
|                                       | 1.000                                            | 3.72 1.00                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | 3.91 1.327 |
| *****                                 | *****                                            | 3.97 1.00                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.59 1.146                 | 4•41 1•275 |
| ****                                  | *****                                            | 4.22 1.00                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | 4,91 1,221 |
| *****                                 | ****                                             | 4.47 1.00                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.60 1.042                 | 5.41 1.173 |
| *****<br>*****                        | <del>`````````````````````````````````````</del> | 4.72 1.00                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.09 1.021                 | 5.91 1.125 |
| *****                                 |                                                  | 4.97 1.00                      | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.60 1.006                 | 6.41 1.081 |
|                                       | *****                                            | <u>5.22 1.</u> 00<br>***** *** |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.09 1.000<br>*****        | 6.91 1.049 |
|                                       | ****                                             | ***** *****<br>*****           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | 7.41 1.026 |
| *****                                 | *****                                            | ****                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del>*****</del>           | 7,91 1,010 |
| A 3216                                |                                                  |                                | A AKKAK % <b>KKXX</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ·····                      | 8•41 1•000 |
|                                       |                                                  |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | 231        |

\_\_\_\_\_

END

<u>.</u>

|                                      | A.3.                                  | 3 CONC                                       | ENTRAT                                                               | ION PROFIL                             | ES                                                        |                                                                                                                                                            |
|--------------------------------------|---------------------------------------|----------------------------------------------|----------------------------------------------------------------------|----------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TABLE<br>NO                          | RUN                                   | UC7UG                                        | RC                                                                   | PRESSURE<br>GRADIENT                   | INJECTED<br>GAS                                           | PAGE                                                                                                                                                       |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8 | 9<br>4<br>1<br>10<br>2<br>6<br>1<br>5 | 1.85 <sup>0</sup><br>0.575<br>1.645<br>0.583 | 1970.<br>2620.<br>4170.<br>6330.<br>5150.<br>14250.<br>965.<br>3470. | PG0<br>PG0<br>PG0<br>PG0<br>PG0<br>PG2 | AIR<br>AIR<br>AIR<br>ARCTON-12<br>ARCTON-12<br>AIR<br>AIR | A33       1         A33       3         A33       4         A33       5         A33       7         A33       8         A33       9         A3310       10 |
| 9<br>10                              |                                       | 0.553<br>1.853                               | 1970.                                                                |                                        | AIR<br>AIR                                                | A3311<br>A3312                                                                                                                                             |

.

## A 3300

END

|       | TABLE 3 | •3-1 RI | UN 9. | UC/UG= | 0.55. 1 | RC=      | 1970., | PG0.    | AIR INJ | ECTION  |            |
|-------|---------|---------|-------|--------|---------|----------|--------|---------|---------|---------|------------|
| X/YC  | 10.0    | 20.     | •0    | 5      | 0.0     |          | 75     | • • • • | 1       | 00.0    |            |
| ETA   | 0.88    | 0.8     | 5     | O.     | 49      |          | 0.3    | 9       | 0       | •31     |            |
| YZYC  | C/C5    | YZYC    | C/CS  | Y/YC   | C/CS    |          | Y/YC   | C/CS    | YZY     | c c/cs  |            |
| .00   | 1.000   | 0.00    | 1.000 | 0.00   | 1.000   | 0        | 0.00   | 1.000   | 0.0     | 0 1.000 | 0          |
| •10   | 0.995   | 0.16    | 0.985 | 0.10   | 0.97    | 1        | 0.16   | 0.990   | 0.1     | 0 0.96  | 5          |
| •22   | 0.995   | 0.29    | 0.950 | 0.16   | 0.995   | 5        | 0.34   | 0.955   | 0.2     | 2 0.990 | 6          |
| •47   | 0.915   | 0.47    | 0.833 | 0.34   | 0.956   | 6        | 0.59   | 0,926   | 0.4     | 7 0.97  | 7          |
| •72   | 0.655   | 0.98    | 0.516 | 0.59   | 0.870   | 0        | 0.72   | 0.866   | 0.7     | 2 0•98  | 5          |
| •98   | 0,505   | 1.22    | 0.340 | 0.84   | 0.727   | 4        | 0.84   | 0.863   | 0.9     | 7 0.90  | 1          |
| 1.22  | 0.446   | 1.48    | 0.425 | 1.09   | 0.614   | 4        | 0.97   | 0.829   | 1.2     | 2 0.88  | 7          |
| 1.48  | 0.247   | 1.72    | 0.287 | 1.59   | 0.360   | 0        | 1.22   | 0.718   | 1.3     | 4 0.810 | 0          |
| 1.72  | 0,134   | 1.97    | 0.156 | 1.84   | 0.30    | 6        | 1.47   | 0,593   | 1.4     | 7 0.73  | 4          |
| 1.80  | 0.037   | 2.10    | 0.115 | 2.22   | 0.216   | 6        | 1.84   | 0.464   | 1.5     | 9 0.730 | 0          |
| 2.47  | 0.000   | 2.60    | 0.041 | 2.72   | 0.105   | 5        | 2.34   | 0.275   | 1.8     | 4 0.62  | 2          |
| ***** | *****   | 3.10    | 0.000 | 3.22   | 0.04    | 1        | 2.84   | 0.199   | 2.0     | 9 0.56  | 7          |
| ***** | *****   | *****   | ***** | 3•72   | 0.01    | 1        | 3.09   | 0.108   | 2.3     | 4 0.460 | 6          |
| ***** | *****   | *****   | ***** | 4.22   | 0.000   | 0        | 3.59   | 0.042   | 2.8     | 4 0.319 | 9          |
| ***** | ****    | ****    | ****  | *****  | ****    | *        | 4.09   | 0.000   | 3.0     | 9 0.23  | 5          |
| ****  | ****    | *****   | ***** | *****  | ****    | ¥        | *****  | ****    | 3.5     | 9 0.169 | 9          |
| ***** | ****    | *****   | ***** | *****  | ****    | <b>*</b> | *****  | *****   | 4.0     | 9 0.06  |            |
| ***** | *****   | ****    | ***** | ****   | ****    | *        | ****   | *****   | 4.5     | 9 0.029 | 9          |
| ***** | *****   | *****   | ***** | *****  | ****    | *        | ****   | *****   | 5.3     | 5 0.000 | э <u> </u> |
|       |         |         |       |        |         |          |        |         |         |         |            |

\_\_\_\_\_

233

A 3301 END

| •    |          | -            |                 |                   |          |
|------|----------|--------------|-----------------|-------------------|----------|
|      | TABLE 3. | 3-1 RUN 9. U | C/UG= 0.55. RC= | = 1970 PGO. AIR I | NJECTION |
| XZYr | 125.0    | 150.0        | 175+0           | 200.0             |          |
|      | 0.27     |              |                 | 0.20              |          |
|      | C/CS     | Y/YC C/CS    | YZYC CZCS       | Y/YC C/CS         |          |
| -    |          |              |                 |                   |          |
|      | 0.982    | 0.22 0.985   | 0.22 0.986      | 0.22 0.997        |          |
|      |          |              |                 |                   |          |
|      |          | 0.47 0.951   |                 | 0.47 0.984        |          |
|      | 0.885    | 0.72 0.912   | 0.72 0.930      | 0.72 0.896        |          |
|      | 0.861    | 0,97 0,917   |                 | 0,97 0,922        |          |
|      | 0.811    | 1.22 0.859   | 1.22 0.857      | 1.22 0.864        |          |
| 1.34 | 0.797    | 1.47 0.798   | 1.47 0.845      | 1.47 0.837        |          |
| 1•47 | 0.761    | 1.59 0.756   | 1.59 0.752      | 1.84 0.760        | •        |
| 1.59 | 0.720    | 1.12 0.752   | 1•84 0•768      | 2.34 0.634        |          |
| 1.84 | 0.660    | 1.84 0.721   | 2.34 0.613      | 2.59 0.574        |          |
| 2.09 | 0.597    | 1.97 0.695   | 2.59 0.597      | 2.84 0.531        |          |
| 2.34 | 0.488    | 2.09 0.600   | 2.84 0.512      | 3.09 0.472        |          |
| 2+84 | 0.384    | 2.59 0.485   | 3.34 0.436      | 3.59 0.415        |          |
| 3.09 | 0.330    | 3.09 0.411   | 3.59 0.349      | 4.35 0.263        |          |
| 3.59 | 0,202    | 4.09 0.200   | 4.59 0.122      | 5.09 0.064        |          |
| 4.09 | 0.108    | 4.59 0.095   | 5.09 0.079      | 5.60 0.048        |          |
|      | 0.041    | 4.59 0.041   |                 | 6.09 0.018        |          |
|      | 0.000    | 5.35 0.000   | 5.35 0.000      | 6.60 0.000        |          |
|      | 0.000    | 5.35 0.000   | 5.35 0.000      | ***               |          |
|      |          |              |                 |                   |          |
|      |          |              |                 |                   |          |

A 33 2

33 2 END

END

.

234

.

| •     | TABLE  | 3.3-2 RL | JN 4. | UC/UG= 0.76                           | 5. RC= | 2620 | PG0.     | AIR | INJECTION |   |
|-------|--------|----------|-------|---------------------------------------|--------|------|----------|-----|-----------|---|
|       |        |          |       |                                       |        |      |          |     |           |   |
| X/YC  | 20.0   | 75       | ,0    | 150.0                                 |        |      |          |     |           |   |
| ETA   | 0.91   | 0.5      | 1     | 0.35                                  |        |      |          |     |           |   |
| Y/YC  | c/cs   | Y/YC     | C/CS  | Y/YC C/                               | 'CS    |      |          |     |           |   |
| •00-  | -1,000 | 0.00     | 1.000 | 0.00 1.                               | .000   |      |          |     |           |   |
| •06   | 1.000  | 0.06     | 1.000 | 0.06 1                                | 000    |      |          |     |           |   |
| .53   | 0.830  | 0.53     | 1.000 | 0.93 0.                               | 960    |      |          |     |           |   |
| 1.06  | 0.470  | ) 1.11   | 0.840 | 1.43 0.                               | 860    |      |          |     |           |   |
| 1.53  | 0.250  | 1.66     | 0.600 | 1.92 01                               | 740    |      |          |     | •         |   |
| 1.66  | 0.190  | 2.24     | 0.370 | 2.55 0                                | 570    |      |          |     |           |   |
| 2.11  | 0,070  | 2,53     | 0,250 | 3,40 0                                | -330   |      |          |     |           | • |
| 2.24  | 0.040  | 2.67     | 0.240 | 3.90 0.                               | 210    |      |          |     |           |   |
| 2.66  | -0.000 | 3.11     | 0.100 | 4.40 0.                               | 140    |      |          |     |           |   |
| ***** | *****  | 3.66     | 0.070 | 5.05 0.                               | .070   |      |          |     |           |   |
| ***** | ****   | 4.24     | 0.020 | 5.65 0.                               | -030   |      |          |     |           |   |
| ****  | ****   | 4.67     | 0.000 | 6.30 0.                               | .000   |      |          |     |           |   |
|       |        |          |       |                                       |        |      | <u> </u> |     | -         |   |
|       |        |          |       |                                       |        |      |          |     |           |   |
|       |        |          |       | · · · · · · · · · · · · · · · · · · · |        |      |          |     |           |   |
|       |        |          |       |                                       |        |      |          |     |           |   |
|       |        |          |       |                                       |        |      |          |     |           |   |

A 33 3 END

. se .

\_\_\_\_\_

| TABLE 3.3- 3 RUN 1. UC/UG= 1.23, RC= 41/0., PGU, AIR INJECTION |  |
|----------------------------------------------------------------|--|
|                                                                |  |

236

| X/YC  | 20.0  | 75    | •0    | 150   | •0    |
|-------|-------|-------|-------|-------|-------|
| ETA   | 0.92  | 0.6   | 3     | 0.5   | 0     |
| Y/YC  | c/cs  | Y/YC  | c/cs  | YZYC  | c/cs  |
| •00   | 1.000 |       | 1.000 |       | 1.000 |
| •06   | 1.000 | 0.06  | 1.000 | 0.06  | 1.000 |
| •53   | 0.860 | 0.53  | 0.960 | 0.53  | 0.970 |
| 1.11  | 0.590 | 1.11  | 0.800 | 1.11  | 0.890 |
| 1.65  | 0.350 | 1.66  | 0.620 | 1.66- | 0.780 |
| 2.24  | 0.090 | 2.24  | 0.450 | 2.06  | 0.610 |
| 2.67  | 0.010 | 2.66  | 0,280 | 2.24  | 0.580 |
| 3.11  | 0.000 | 2.67  | 0.340 | 2.53  | 0.500 |
| ***** | ***** | 3.24  | 0.160 | 2.67  | 0.500 |
| ****  | ****  | 3.67  | 0.090 | 3.11  | 0.350 |
| ***** | ***** | ****  | ***** | 3.66  | 0.240 |
| ****  | ***** | ****  | ***** | 4.24  | 0.160 |
| ***** | ***** | ***** | ***** | 4.67  | 0.120 |
| ****  | ****  | ***** | ***** | 6.00  | 0.000 |
|       |       |       |       |       |       |

A 33 4 END

|       | TABLE 3 | 3- 4 RU | v 10.        | UCZUG= 1 | .85, RC | = 6330•• | PGO A | IR INJEC | TION  |
|-------|---------|---------|--------------|----------|---------|----------|-------|----------|-------|
|       |         |         |              |          |         |          |       |          |       |
| X/YC  | 10.0    | 20.0    | <del>,</del> | 40       | •0      | 60       | • 0   | 80       | •0    |
| ETA   | 0.96    | 0.94    |              | 0.7      | '8      | 0.6      | 3     | 0.60     | )     |
| Y/YC  | c/cs    | Y/YC (  | c/cs         | Y/YC     | C/CS    | Y/YC     | C/C5  | Y/YC     | C/CS  |
| •00   | 1.000   | 0.00    | .000         | 0.00     | 1.000   | 0.00     | 1.000 | 0.00     | 1.000 |
| •10   | 1.003   | 0.10 1  | .000         | 0.10     | 1.000   | 0.10     | 0.945 | 0.10     | 1.000 |
| •41   | 0,921   | 0.16    | ,005         | 0.22     | 0.979   | 0.16     | 0.994 | 0,22     | 0.994 |
| •53   | 0.880   | 0.28 (  | .936         | 0.34     | 0.907   | 0.22     | 1.000 | 0.34     | 0.965 |
| •66   | 0.825   | 0.41 (  | 935          | 0.47     | 0.904   | 0•34     | 0.977 | 0.47     | 0.921 |
| 1.09  | 0.572   | 0.53 (  | .861         | 0.59     | 0.856   | 0.47     | 0.944 | 0.66     | 0.901 |
| 1.22  | 0.492   | 0.78    | 752          | 0.72     | 0.823   | 0.53     | 0.902 | 0.84     | 0.845 |
| 1•34  | 0.397   | 0.91 0  | .682         | 0.84     | 0.746   | 0.59     | 0.896 | 1.03     | 0.814 |
| 1.47  | 0.298   | 1.03 (  | .655         | 1.03     | 0•678   | 0.72     | 0.855 | 1.28     | 0.734 |
| 1.97  | 0.137   | 1.28 0  | •558         | 1.28     | 0.643   | 0.84     | 0.811 | 1.47     | 0.686 |
| 2.22  | 0,037   | 1.53    | .437         | 1.53     | 0•547   | 0.97     | 0.790 | 1.72     | 0.628 |
| 2.47  | 0.000   | 1.78 0  | .320         | 1.78     | 0.464   | 1.09     | 0.741 | 2.09     | 0.555 |
| ***** | *****   | 2.03 (  | .221         | 2.03     | 0+329   | 1.16     | 0.778 | 2.59     | 0.470 |
| ***** | ****    | 2.28 0  | 0.103        | 2.53     | 0.279   | 1.34     | 0.693 | 3.09     | 0.369 |
| ****  | ****    | 2.53 (  | .061         | 2.78     | 0.144   |          | 0.641 | 3.59     | 0.234 |
| ****  | ****    | 2.91 0  | 000          | 3.28     | 0.059   | 2.09     | 0.543 | 4.09     | 0.164 |
| ***** | ****    | ***** * | ****         | 3.80     | ****    | 2•47     | 0.414 | 4.59     | 0.082 |
| ****  | *****   | *****   | ****         | ****     | ****    | 3.22     | 0.247 | 5.00     | 0.000 |
| ***** | ****    | *****   | ****         | *****    | *****   | 4.20     | 0.000 | *****    | ***** |
|       | · · ·   |         |              |          |         |          |       |          |       |

:

A 33 5 END

\_

• 5

237

. . . . \_\_\_\_\_

|              |   |                |                | <br>    |
|--------------|---|----------------|----------------|---------|
| TABLE 3.3- 4 | ^ |                |                | <br>*** |
|              |   | - UCZUG= 1.48° | \. R(= 0.3.3() |         |
|              |   |                |                |         |

÷.,

.

| X/YC | 100.0 |                                       |   |                                       |                                       |                                       |   |
|------|-------|---------------------------------------|---|---------------------------------------|---------------------------------------|---------------------------------------|---|
| ETA  | 0.55  |                                       |   |                                       |                                       |                                       |   |
|      | c/cs  |                                       |   |                                       |                                       |                                       |   |
|      |       | · · · · · · · · · · · · · · · · · · · |   |                                       |                                       |                                       |   |
|      | 1.000 |                                       |   |                                       |                                       |                                       |   |
| •22  | 0.991 |                                       |   |                                       |                                       |                                       |   |
|      | 1.000 |                                       |   |                                       | · · · · · · · · · · · · · · · · · · · |                                       |   |
|      | 0.910 |                                       |   |                                       |                                       |                                       |   |
|      |       |                                       |   |                                       | •                                     |                                       |   |
| ●97  | 0.838 |                                       |   |                                       |                                       |                                       |   |
| 1.22 | 0.753 |                                       |   |                                       |                                       |                                       |   |
| 1.72 | 0,645 |                                       |   |                                       |                                       |                                       | · |
|      | 0.604 |                                       |   |                                       |                                       |                                       |   |
|      |       |                                       |   | · · · ·                               |                                       |                                       |   |
| 2.22 | 0.578 |                                       |   |                                       |                                       |                                       |   |
| 2.59 | 0.471 |                                       |   |                                       |                                       |                                       |   |
|      | 0.436 |                                       |   |                                       |                                       |                                       |   |
|      |       |                                       |   |                                       |                                       |                                       |   |
| -    | 0.352 | ۰.                                    |   |                                       |                                       |                                       |   |
| 4.09 | 0,229 |                                       |   |                                       |                                       |                                       |   |
| 4.59 | 0.173 |                                       | • |                                       |                                       |                                       |   |
| 5.60 | 0.045 | · · · · · · · · · · · · · · · · · · · |   |                                       |                                       | · · · · · · · · · · · · · · · · · · · |   |
|      | 0.000 |                                       |   |                                       |                                       |                                       |   |
| 0.50 | 0.000 |                                       |   | · · · · · · · · · · · · · · · · · · · |                                       | · . ·                                 |   |
|      |       |                                       |   |                                       |                                       |                                       |   |
|      |       |                                       |   |                                       |                                       |                                       |   |

A 33 6 END

238

· /.

| TABLE 3.3- 5 | RUN 2. UC | /UG= 0.575 RC= 5150 | + PGO+ ARCTON -12 |
|--------------|-----------|---------------------|-------------------|

|      | TABLE . | 3•3- 5 RUN 2• 0 |            | SISUN POUN ARCTUN -12 |
|------|---------|-----------------|------------|-----------------------|
| X/YC | 10.0    | 40.0            | 100.0      |                       |
| ETA  | 1.00    | 0,93            | 0.74       |                       |
| Y/YC | c/cs    | Y/YC C/CS       | Y/YC C/CS  |                       |
| .00  | 1.000   | 0.00 1.000      | 0.00 1.000 |                       |
| •10  | 0,995   | 0.10 1.000      | 0.10 1.000 |                       |
| •16  | 1.000   | 0.16 1.000      | 0.22 0.977 |                       |
| •22  | 1.000   | 0.22 0.995      | 0.35 0.985 |                       |
| .35  | 1,000   | 0.35 0.984      | 0.60 0.935 |                       |
| •47  | 1.000   | 0.47 0.950      | 0.85 0.935 |                       |
| .60  | 0.975   | 0.60 0.915      | 1.10 0.905 |                       |
| •72  | 0.970   | 0.85 0.807      | 1.35 0.840 |                       |
| •85  | 0.875   | 1.10 0.715      | 1.60 0.778 |                       |
| 1.10 | 0.660   | 1.35 0.652      | 1.85 0.735 |                       |
| 1.35 | 0.430   | 1.60 0.490      | 2.10 0.620 |                       |
| 1.60 | 0.380   | 1.85 0.394      | 2.35 0.588 |                       |
| 1.85 | 0.210   | 2.10 0.332      | 2.60 0.510 |                       |
| 2010 | 0.000   | 2.35 0.300      | 2.85 0.448 |                       |
| 2.35 | 0.000   | 2.60 0.278      | 3.35 0.248 |                       |
| 2.60 | 0.000   | 2.85 0.131      | 3.85 0.220 |                       |
|      | 0.000   | 3.11 0.126      | 4.35 0.179 |                       |
| 3.10 | 0.000   | 3.36 0.000      | 4.85 0.103 |                       |
| 3.35 | 0.000   | 3.61 0.000      | 5.35 0.000 |                       |
|      |         |                 |            |                       |

A 33 7 END

299

v

|       |                         | <u> </u> |          |    |        |           |        |            |      |              |     |
|-------|-------------------------|----------|----------|----|--------|-----------|--------|------------|------|--------------|-----|
|       |                         |          |          |    |        |           |        |            |      |              |     |
| 7     |                         |          | E31 18 1 |    |        | * * * * * | De Lor | <b>C</b> 0 | 000  | A CYC T CILL |     |
| IABLE | - <b>t</b> • <b>t</b> - | 0        | RON      | 0. | UC/UG= | 1.045     | RC=142 | ;⊃0●♥      | PGU. | ARCION       | -12 |

| X/YC | 10.0  | 40.0        | 100+0      |  |
|------|-------|-------------|------------|--|
| ETA  | 1.00  | 0,98        | 0.91       |  |
| Y/YC | c/cs  | Y/YC C/CS   | Y/YC C/CS  |  |
| .00  | 1.000 | 0.00 1.000  | 0.00 1.000 |  |
| •10  | 0.998 | 0.10 1.000  | 0.10 1.000 |  |
| •16  | 0,986 | 0.17 0.990  | 0,22 0,988 |  |
| •22  | 0.998 | 0.22 0.996  | 0.35 1.000 |  |
| •35  | 0.995 | 0.35-0.980- | 0.60 0.995 |  |
| •47  | 0.985 | 0.47 0.965  | 0.85 0.968 |  |
| •60  | 0.967 | 0.60 0.932  | 1.10 0.912 |  |
| •72  | 0.932 | 0.85 0.820  | 1.35 0.846 |  |
| •85  | 0,860 | 1.10 0.746  | 1.60 0.810 |  |
| •98  | 0.845 | 1.35 0.775  | 1.85 0.755 |  |
| 1.10 | 0,795 | •           |            |  |
| 1.35 | 0.664 | 1.85 0.633  | 2.35 0.666 |  |
| 1.60 | 0.538 | 2.10 0.523  | 2.60 0.580 |  |
| 1.85 | 0.140 | 2.35 0.441  | 2.85 0.545 |  |
| 2.10 | 0.000 | 2.60 0.312  | 3,35 0,400 |  |
| 2.35 | 0.000 | 2.85 0.174  | 3.85 0.306 |  |
| 2.60 | 0.000 | 3.10 0.103  |            |  |
| 2.85 | 0.000 | 3.35 0.051  | 4.85 0.100 |  |
| 3.10 | 0.000 | 3.60 0.000  | 5.35 0.000 |  |

A 33 8 END

v

.....

240-

|         | TABLE 3 | 3.3- 7 RL | JN 1+ | UC/UG= C | •583 RC= | 965•• | PG2+  | AIR INJEC | TION                                  |
|---------|---------|-----------|-------|----------|----------|-------|-------|-----------|---------------------------------------|
|         |         |           |       |          |          |       |       |           |                                       |
| X/YC    | 14•4    | 44.       | 0     | 92       | •5       | 144   | • 0 · |           |                                       |
| FTA     | 0.85    | 0,40      | )     | 0,2      | 21       |       | 6     |           |                                       |
| Y/YC    | c/cS    | Y/YC      | C/CS  | Y/YC     | c/cs     | Y/YC  | C/CS  |           |                                       |
| .00     | 1.000   | 0.00      | 1.000 | 0.00     | 1.000    | 0.00  | 1.000 |           |                                       |
| •10     | 1.008   | 0.10      | 0.926 | 0.10     | 0.944    | 0.10  | 1.001 |           |                                       |
| •22     | 0,980   | 0.16      | 1.002 | 0,16     | 1,000    | 0.16  | 0.925 |           |                                       |
| •34     | 0.892   | 0.28      | 0.967 | 0.28     | 0.964    | 0.28  | 0.902 |           | · · · · · · · · · · · · · · · · · · · |
| .47     | 0.820-  | 0.41      | 0.876 | 0+41     | 0.935    | 0.41  | 0.877 |           |                                       |
| .59     | 0.700   | 0.53      | 0.849 | 0.53     | 0.929    | 0.53  | 0.872 |           | ,                                     |
|         | -0-601  |           | 0.742 |          | 0.853    |       | 0.824 |           | •                                     |
|         | 0.501   | 0.78      |       |          | 0.778    |       | 0.793 |           |                                       |
|         |         |           |       |          |          |       |       |           |                                       |
|         | 0.336   |           |       |          | 0+649    |       | 0,705 |           |                                       |
| • • - · | 0.213   | 1.03      |       | 1.34     |          | 1.34  |       |           |                                       |
| 1.59    | 0,122   | 1+16      | 0,432 | 1.59     | 0.456    | 1.59  | 0.513 |           |                                       |
| 1.84    | 0.065   | 1.41      | 0.373 | 1.84     | 0.420    | 1.84  | 0.433 | -         |                                       |
| 2.22    | 0.024   | 1.66      | 0,286 | 2.09     | 0.295    | 2.22  | 0.247 |           |                                       |
| •00     | 0.000   | 1.91      | 0.227 | 2.34     | 0.222    | 2.72  | 0.148 |           |                                       |
| *****   | ****    | 2.41      | 0.100 | 2.59     | 0.169    | 3+22  | 0.061 |           |                                       |
| ****    | ****    | 2.91      | 0.032 | 2.97     | 0.096    | 3.72  | 0.000 |           |                                       |
| *****   | *****   | 3.16      | 0.000 | 3.22     | 0.055    | ***** | ***** |           |                                       |
| *****   | *****   | *****     | ****  | 3.47     | 0.037    | ***** | ****  |           |                                       |
| *****   | ****    | ****      | ***** | 3.72     | 0.009    | ***** | ***** | <u> </u>  |                                       |
|         |         |           |       |          |          |       |       |           |                                       |

÷.,

· .

A 33 9 END 241

|       |         |             |                 | · · · · · · · · · · · · · · · · · · · |           |
|-------|---------|-------------|-----------------|---------------------------------------|-----------|
|       | TABLE 3 | -3-8 RUN 5. | UC/UG= 2.21 RC= | 3470 PG2 . AIR                        | INJECTION |
|       |         |             |                 |                                       |           |
| X/YC  | 14•4    | 44.0        | 92+5            | 144.0                                 |           |
| ETA   | 0.94    | 0.61        | 0,44            | 0.35                                  |           |
| Y/YC  | c/cs    | Y/YC C/CS   | Y/YC C/CS       | Y/YC C/CS                             |           |
| .00   | 1.000   |             | 0,00 1,000      | 0.00 1.000                            |           |
| •10   | 1.018   | 0.10 1.015  | 0.10 0.825      | 0.10 1.000                            |           |
| •16   | 1.000   | 0.16 0.999  | 0.16 0.859      | 0.16 0.956                            |           |
| •28   | 0.950   | 0.28 0.990  | 0.28 0.835      | 0.28 0.923                            |           |
| •41   | 0+877   | 0.41 0.971  | 0.41 0.846      | 0.41 0.915                            |           |
| •53   | 0.826   | 0.53 0.888  | 0.66 0.769      | 0.53 0.886                            |           |
| •66   | 0,734   | 0.66 0.844  | 0.91 0.717      | 0.66 0.856                            |           |
| •78   | 0.702   | 0.84 0.829  | 1.16 0.697      | 0.78 0.878                            |           |
| •97   | 0.638   | 1.09 0.761  | 1.41 0.660      | 0.91 0.842                            |           |
| 1.09  | 0.595   | 1.34 0.705  | 1.66 0.623      | 1.03 0.817                            |           |
| 1+22  | 0.559   | 1.59 0.635  | 1.91 0.556      | 1.28 0.775                            |           |
| 1.47  | 0.450   | 2.09 0.518  | 2.16 0.529      | 1•53 0•717                            |           |
| 1.72  | 0.325   | 2.59 0.367  | 2.66 0.421      |                                       |           |
| 1.97  | 0.222   | 3.09 0.264  | 3.16 0.384      | 2.03 0.633                            |           |
| 2.25  | 0,108   | 3.59 0.139  | 3,66 0,317      | 2.41 0.579                            |           |
| 2.59  | 0.023   | 4.09 0.062  | 4.16 0.245      | 2.91 0.508                            |           |
| 2.84  | 0,000   | 4.59 0.023  | 5.16 0.115      | 3.41 0.450                            |           |
| ***** | ****    | 5.35 0.000  | 6.16 0.038      | 4.41 0.300                            |           |
| ***** | *****   | ***** ****  | 7.16 0.006      | 5.41 0.242                            |           |
| ***** | *****   | ***** ****  | ****            | 0.00 0.067                            |           |
|       |         |             |                 |                                       |           |

.

, F

<u>A-3310</u>

END

| TABLE 3.3-9       RUN       2.       UC/UG=       0.553       RC=       1970       PG4.       AIR       INJECTION         X/YC       24.0       43.3       68.5       93.5         ETA       0.69       0.46       0.35       0.30         Y/YC       C/CS       Y/YC       C/CS       Y/YC       C/CS         .00       1.000       0.00       1.000       0.00       1.000       0.00         .10       1.001       0.10       0.999       0.10       1.000       0.944         .16       0.953       0.16       0.941       0.16       0.957       0.16       0.993         .22       0.970       0.28       0.927       0.28       0.956       0.28       1.008         .34       0.903       0.41       0.892       0.41       0.930       0.41       0.959         .47       0.812       0.53       0.876       0.8851       0.66       0.8893         .50       0.712       0.66       0.793       0.66       0.851       0.656       0.885         .72       0.674       0.778       0.768       0.858       0.710       0.901         1.09       0.433 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                             |       |         |             |                  |                |           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------|-------------|------------------|----------------|-----------|
| ETA $0.69$ $0.446$ $0.35$ $0.430$ Y/YCC/CSY/YCC/CSY/YCC/CS $000$ $1.000$ $0.00$ $1.000$ $0.00$ $1.000$ $0.10$ $1.000$ $0.00$ $1.000$ $0.00$ $1.000$ $0.10$ $1.000$ $0.00$ $1.000$ $0.00$ $1.000$ $0.10$ $1.000$ $0.00$ $1.000$ $0.00$ $1.000$ $0.10$ $1.000$ $0.00$ $1.000$ $0.00$ $0.00$ $0.10$ $0.993$ $0.16$ $0.9993$ $0.16$ $0.9977$ $0.22$ $0.970$ $0.28$ $0.927$ $0.28$ $0.956$ $0.28$ $0.903$ $0.41$ $0.892$ $0.41$ $0.930$ $0.41$ $0.959$ $0.47$ $0.812$ $0.53$ $0.8870$ $0.653$ $0.888$ $0.53$ $0.8890$ $0.53$ $0.66$ $0.793$ $0.66$ $0.8851$ $0.666$ $0.8855$ $0.72$ $0.674$ $0.78$ $0.768$ $0.858$ $0.78$ $0.890$ $0.532$ $0.9718$ $0.977$ $0.820$ $0.991$ $0.901$ $1.09$ $0.459$ $1.09$ $0.630$ $1.22$ $0.770$ $1.09$ $0.840$ $1.34$ $0.332$ $1.34$ $0.514$ $1.47$ $0.724$ $1.34$ $0.872$ $1.659$ $0.247$ $1.659$ $0.222$ $0.471$ $1.97$ $0.549$ $1.84$ $0.704$ $2.09$ $0.087$ $2.22$ $0.176$ $2.22$ $0.471$ $2.09$ $0.664$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       | TABLE 3 | -3-9 RUN 2. | UC/UG= 0.553 RC= | 1970. PG4. AIR | INJECTION |
| ETA $0.69$ $0.46$ $0.35$ $0.30$ Y/YCC/CSY/YCC/CSY/YCC/CS $000$ $1.000$ $0.00$ $1.000$ $0.00$ $1.000$ $0.10$ $1.000$ $0.00$ $1.000$ $0.00$ $1.000$ $0.10$ $1.001$ $0.10$ $0.9999$ $0.10$ $1.000$ $0.0944$ $0.16$ $0.9933$ $0.16$ $0.9941$ $0.16$ $0.9957$ $0.16$ $0.9943$ $0.22$ $0.970$ $0.28$ $0.927$ $0.28$ $0.956$ $0.28$ $1.008$ $.34$ $0.903$ $0.41$ $0.892$ $0.41$ $0.930$ $0.41$ $0.9599$ $.47$ $0.812$ $0.53$ $0.8870$ $0.653$ $0.8888$ $0.53$ $0.8990$ $.59$ $0.712$ $0.66$ $0.793$ $0.66$ $0.8851$ $0.666$ $0.8893$ $.72$ $0.674$ $0.78$ $0.768$ $0.858$ $0.78$ $0.8993$ $.84$ $0.5388$ $0.91$ $0.9718$ $0.977$ $0.820$ $0.911$ $1.09$ $0.459$ $1.09$ $0.630$ $1.22$ $0.770$ $1.09$ $0.840$ $1.34$ $0.332$ $1.34$ $0.514$ $1.477$ $0.724$ $1.34$ $0.872$ $1.659$ $0.247$ $1.659$ $0.222$ $0.471$ $1.97$ $0.974$ $2.09$ $0.087$ $2.22$ $0.176$ $2.22$ $0.471$ $2.99$ $0.664$ $2.34$ $0.901$ $2.72$ $0.176$ $2.22$ $0.471$ $2.99$ <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |         |             |                  |                |           |
| Y/YCC/CSY/YCC/CSY/YCC/CS $*00$ $1.000$ $0.00$ $1.000$ $0.00$ $1.000$ $0.00$ $1.000$ $*10$ $1.001$ $0.10$ $0.999$ $0.10$ $1.000$ $0.10$ $0.9944$ $*16$ $0.953$ $0.16$ $0.9941$ $0.16$ $0.957$ $0.16$ $0.993$ $*22$ $0.970$ $0.28$ $0.927$ $0.28$ $0.956$ $0.28$ $1.008$ $*34$ $0.993$ $0.41$ $0.892$ $0.41$ $0.930$ $0.41$ $0.959$ $*47$ $0.812$ $0.53$ $0.870$ $0.53$ $0.888$ $0.53$ $0.890$ $*59$ $0.712$ $0.66$ $0.793$ $0.66$ $0.851$ $0.66$ $0.889$ $*72$ $0.674$ $0.78$ $0.78$ $0.820$ $0.911$ $0.901$ $1.09$ $0.459$ $1.09$ $0.630$ $1.22$ $0.770$ $1.09$ $0.840$ $1.34$ $0.514$ $1.47$ $0.724$ $1.34$ $0.872$ $1.59$ $0.247$ $1.59$ $0.434$ $1.72$ $0.664$ $1.99$ $1.99$ $0.987$ $2.22$ $0.176$ $2.22$ $0.471$ $2.09$ $0.987$ $2.22$ $0.176$ $2.22$ $0.471$ $2.09$ $0.664$ $2.34$ $0.9041$ $2.72$ $0.9313$ $2.59$ $0.525$ $2.59$ $0.018$ $3.22$ $0.025$ $3.22$ $0.170$ $3.09$ $0.403$ $2.84$ $0.908$ $3.72$ $0.003$ $3.72$ <t< td=""><td>X/YC</td><td>24.0</td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X/YC  | 24.0    |             |                  |                |           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ETA   | 0.69    | 0.46        | 0,35             | 030            |           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Y/YC  | C/CS    | Y/YC C/CS   | Y/YC C/CS        | Y/YC C/CS      |           |
| $\cdot 16$ $0 \cdot 953$ $0 \cdot 16$ $0 \cdot 941$ $0 \cdot 16$ $0 \cdot 957$ $0 \cdot 16$ $0 \cdot 993$ $\cdot 22$ $0 \cdot 970$ $0 \cdot 28$ $0 \cdot 927$ $0 \cdot 28$ $0 \cdot 956$ $0 \cdot 28$ $1 \cdot 008$ $\cdot 34$ $0 \cdot 903$ $0 \cdot 41$ $0 \cdot 892$ $0 \cdot 41$ $0 \cdot 930$ $0 \cdot 41$ $0 \cdot 959$ $\cdot 47$ $0 \cdot 812$ $0 \cdot 53$ $0 \cdot 870$ $0 \cdot 53$ $0 \cdot 888$ $0 \cdot 53$ $0 \cdot 890$ $\cdot 59$ $0 \cdot 712$ $0 \cdot 66$ $0 \cdot 793$ $0 \cdot 66$ $0 \cdot 851$ $0 \cdot 66$ $0 \cdot 8893$ $\cdot 72$ $0 \cdot 674$ $0 \cdot 78$ $0 \cdot 768$ $0 \cdot 78$ $0 \cdot 820$ $0 \cdot 911$ $0 \cdot 901$ $\cdot 84$ $0 \cdot 588$ $0 \cdot 911$ $0 \cdot 977$ $0 \cdot 820$ $0 \cdot 911$ $0 \cdot 901$ $1 \cdot 09$ $0 \cdot 459$ $1 \cdot 09$ $0 \cdot 630$ $1 \cdot 22$ $0 \cdot 770$ $1 \cdot 09$ $0 \cdot 840$ $1 \cdot 34$ $0 \cdot 332$ $1 \cdot 34$ $0 \cdot 514$ $1 \cdot 47$ $0 \cdot 724$ $1 \cdot 34$ $0 \cdot 872$ $1 \cdot 59$ $0 \cdot 247$ $1 \cdot 59$ $0 \cdot 434$ $1 \cdot 72$ $0 \cdot 6411$ $1 \cdot 59$ $0 \cdot 788$ $1 \cdot 84$ $0 \cdot 155$ $1 \cdot 97$ $0 \cdot 270$ $1 \cdot 97$ $0 \cdot 549$ $1 \cdot 84$ $0 \cdot 704$ $2 \cdot 09$ $0 \cdot 087$ $2 \cdot 22$ $0 \cdot 176$ $2 \cdot 22$ $0 \cdot 471$ $2 \cdot 09$ $0 \cdot 664$ $2 \cdot 34$ $0 \cdot 0411$ $2 \cdot 72$ $0 \cdot 3133$ $2 \cdot 59$ $0 \cdot 525$ $2 \cdot 59$ $0 \cdot 018$ $3 \cdot 22$ $0 \cdot 025$ $3 \cdot 22$ $0 \cdot 170$ $3 \cdot 09$ $0 \cdot 403$ $2$ | •00   | 1.000   | 0.00 1.000  | 0.00 1.000       | 0.00 1.000     |           |
| $\bullet$ 22 $0.970$ $0.28$ $0.927$ $0.28$ $0.956$ $0.28$ $1.008$ $\bullet$ 34 $0.903$ $0.41$ $0.892$ $0.41$ $0.930$ $0.41$ $0.959$ $\bullet$ 47 $0.812$ $0.53$ $0.870$ $0.53$ $0.888$ $0.53$ $0.890$ $\bullet$ 59 $0.712$ $0.66$ $0.793$ $0.666$ $0.851$ $0.666$ $0.8890$ $\bullet$ 72 $0.674$ $0.78$ $0.768$ $0.78$ $0.858$ $0.78$ $0.893$ $\bullet$ 84 $0.588$ $0.91$ $0.718$ $0.97$ $0.820$ $0.911$ $0.901$ $1.09$ $0.459$ $1.09$ $0.630$ $1.22$ $0.770$ $1.09$ $0.840$ $1.34$ $0.332$ $1.34$ $0.514$ $1.47$ $0.724$ $1.34$ $0.872$ $1.59$ $0.247$ $1.59$ $0.434$ $1.72$ $0.6641$ $1.59$ $0.788$ $1.84$ $0.155$ $1.97$ $0.270$ $1.97$ $0.549$ $1.844$ $0.704$ $2.09$ $0.087$ $2.22$ $0.176$ $2.22$ $0.471$ $2.09$ $0.6644$ $2.34$ $0.041$ $2.72$ $0.084$ $2.72$ $0.313$ $2.59$ $0.525$ $2.59$ $0.018$ $3.22$ $0.025$ $3.22$ $0.170$ $3.09$ $0.403$ $2.84$ $0.008$ $3.72$ $0.003$ $3.72$ $0.066$ $4.09$ $0.167$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •10   | 1.001   | 0.10 0.999  | 0.10 1.000       | 0•10 0•944     |           |
| $\bullet34$ $0\bullet903$ $0\bullet41$ $0\bullet892$ $0\bullet41$ $0\bullet930$ $0\bullet41$ $0\bullet959$ $\bullet47$ $0\bullet812$ $0\bullet53$ $0\bullet870$ $0\bullet53$ $0\bullet888$ $0\bullet53$ $0\bullet890$ $\bullet59$ $0\bullet712$ $0\bullet66$ $0\bullet793$ $0\bullet66$ $0\bullet851$ $0\bullet66$ $0\bullet885$ $\bullet72$ $0\bullet674$ $0\bullet78$ $0\bullet768$ $0\bullet78$ $0\bullet858$ $0\bullet78$ $0\bullet893$ $\bullet84$ $0\bullet588$ $0\bullet91$ $0\bullet718$ $0\bullet97$ $0\bullet820$ $0\bullet91$ $0\bullet901$ $1\bullet09$ $0\bullet459$ $1\bullet09$ $0\bullet630$ $1\bullet22$ $0\bullet770$ $1\bullet09$ $0\bullet840$ $1\bullet34$ $0\bullet332$ $1\bullet34$ $0\bullet514$ $1\bullet47$ $0\bullet724$ $1\bullet34$ $0\bullet872$ $1\bullet59$ $0\bullet247$ $1\bullet59$ $0\bullet434$ $1\bullet72$ $0\bullet641$ $1\bullet59$ $0\bullet788$ $1\bullet84$ $0\bullet155$ $1\bullet97$ $0\bullet270$ $1\bullet97$ $0\bullet549$ $1\bullet84$ $0\bullet704$ $2\bullet09$ $0\bullet087$ $2\bullet22$ $0\bullet176$ $2\bullet22$ $0\bullet471$ $2\bullet09$ $0\bullet664$ $2\bullet34$ $0\bullet041$ $2\bullet72$ $0\bullet313$ $2\bullet59$ $0\bullet525$ $2\bullet59$ $2\bullet59$ $0\bullet018$ $3\bullet22$ $0\bullet025$ $3\bullet22$ $0\bullet170$ $3\bullet09$ $0\bullet403$ $2\bullet84$ $0\bullet098$ $3\bullet72$ $0\bullet03$ $3\bullet72$ $0\bullet066$ $4\bullet09$ $0\bullet167$                                                                                      | •1.5  | 0.953   | 0.16 0.941  | 0.16 0.957       | 0.16 0.993     |           |
| 47 $0.812$ $0.53$ $0.870$ $0.53$ $0.888$ $0.53$ $0.890$ $59$ $0.712$ $0.66$ $0.793$ $0.66$ $0.851$ $0.66$ $0.885$ $72$ $0.674$ $0.78$ $0.768$ $0.78$ $0.858$ $0.78$ $0.893$ $84$ $0.588$ $0.91$ $0.718$ $0.97$ $0.820$ $0.91$ $0.901$ $1.09$ $0.459$ $1.09$ $0.630$ $1.22$ $0.770$ $1.09$ $0.840$ $1.34$ $0.332$ $1.34$ $0.514$ $1.477$ $0.724$ $1.34$ $0.872$ $1.59$ $0.247$ $1.59$ $0.434$ $1.72$ $0.641$ $1.59$ $0.788$ $1.84$ $0.155$ $1.977$ $0.270$ $1.97$ $0.549$ $1.84$ $0.704$ $2.09$ $0.087$ $2.22$ $0.176$ $2.22$ $0.471$ $2.09$ $0.664$ $2.34$ $0.041$ $2.72$ $0.084$ $2.72$ $0.313$ $2.59$ $0.525$ $2.59$ $0.018$ $3.22$ $0.025$ $3.22$ $0.170$ $3.09$ $0.403$ $2.84$ $0.008$ $3.72$ $0.003$ $3.72$ $0.0666$ $4.09$ $0.167$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •22   | 0.970   | 0.28 0.927  | 0.28 0.956       | 0.28 1.008     |           |
| $\bullet59$ $0_{\bullet}712$ $0_{\bullet}66$ $0_{\bullet}793$ $0_{\bullet}66$ $0_{\bullet}851$ $0_{\bullet}66$ $0_{\bullet}885$ $\bullet72$ $0_{\bullet}674$ $0_{\bullet}78$ $0_{\bullet}768$ $0_{\bullet}78$ $0_{\bullet}858$ $0_{\bullet}78$ $0_{\bullet}893$ $\bullet84$ $0_{\bullet}588$ $0_{\bullet}91$ $0_{\bullet}718$ $0_{\bullet}97$ $0_{\bullet}820$ $0_{\bullet}91$ $0_{\bullet}901$ $1 \bullet 09$ $0_{\bullet}459$ $1_{\bullet}09$ $0_{\bullet}630$ $1_{\bullet}22$ $0_{\bullet}770$ $1_{\bullet}09$ $0_{\bullet}840$ $1_{\bullet}34$ $0_{\bullet}332$ $1_{\bullet}34$ $0_{\bullet}514$ $1_{\bullet}47$ $0_{\bullet}724$ $1_{\bullet}34$ $0_{\bullet}872$ $1_{\bullet}59$ $0_{\bullet}247$ $1_{\bullet}59$ $0_{\bullet}434$ $1_{\bullet}72$ $0_{\bullet}641$ $1_{\bullet}59$ $0_{\bullet}788$ $1_{\bullet}84$ $0_{\bullet}155$ $1_{\bullet}97$ $0_{\bullet}270$ $1_{\bullet}97$ $0_{\bullet}549$ $1_{\bullet}84$ $0_{\bullet}704$ $2.09$ $0_{\bullet}087$ $2_{\bullet}22$ $0_{\bullet}176$ $2_{\bullet}22$ $0_{\bullet}471$ $2_{\bullet}09$ $0_{\bullet}664$ $2_{\bullet}34$ $0_{\bullet}041$ $2_{\bullet}72$ $0_{\bullet}084$ $2_{\bullet}72$ $0_{\bullet}313$ $2_{\bullet}59$ $0_{\bullet}525$ $2_{\bullet}59$ $0_{\bullet}018$ $3_{\bullet}22$ $0_{\bullet}025$ $3_{\bullet}22$ $0_{\bullet}170$ $3_{\bullet}09$ $0_{\bullet}403$ $2_{\bullet}84$ $0_{\bullet}008$ $3_{\bullet}72$ $0_{\bullet}003$ $3_{\bullet}72$ $0_{\bullet}066$ $4_{\bullet}09$ $0_{\bullet}167$                                        | .34   | 0.903   | 0.41 0.892  | 0.41 0.930       | 0.41 0.959     |           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •47   | 0.812   | 0.53 0.870  | 0.53 0.888       | 0.53 0.890     |           |
| $\bullet 84$ $0 \bullet 588$ $0 \bullet 91$ $0 \bullet 718$ $0 \bullet 97$ $0 \bullet 820$ $0 \bullet 91$ $0 \bullet 901$ $1 \bullet 09$ $0 \bullet 459$ $1 \bullet 09$ $0 \bullet 630$ $1 \bullet 22$ $0 \bullet 770$ $1 \bullet 09$ $0 \bullet 840$ $1 \bullet 34$ $0 \bullet 332$ $1 \bullet 34$ $0 \bullet 514$ $1 \bullet 47$ $0 \bullet 724$ $1 \bullet 34$ $0 \bullet 872$ $1 \bullet 59$ $0 \bullet 247$ $1 \bullet 59$ $0 \bullet 434$ $1 \bullet 72$ $0 \bullet 641$ $1 \bullet 59$ $0 \bullet 788$ $1 \bullet 84$ $0 \bullet 155$ $1 \bullet 97$ $0 \bullet 270$ $1 \bullet 97$ $0 \bullet 549$ $1 \bullet 84$ $0 \bullet 704$ $2 \bullet 09$ $0 \bullet 087$ $2 \bullet 22$ $0 \bullet 176$ $2 \bullet 22$ $0 \bullet 471$ $2 \bullet 09$ $0 \bullet 664$ $2 \bullet 34$ $0 \bullet 041$ $2 \bullet 72$ $0 \bullet 313$ $2 \bullet 59$ $0 \bullet 525$ $2 \bullet 59$ $0 \bullet 018$ $3 \bullet 22$ $0 \bullet 025$ $3 \bullet 22$ $0 \bullet 170$ $3 \bullet 09$ $0 \bullet 403$ $2 \bullet 84$ $0 \bullet 008$ $3 \bullet 72$ $0 \bullet 003$ $3 \bullet 72$ $0 \bullet 066$ $4 \bullet 09$ $0 \bullet 167$                                                                                                                                                                                                                                                                                                                                                                                                   | •59   | 0.712   | 0.66 0.793  | 0.66 0.851       | 0.66 0.885     |           |
| 1.09       0.459       1.09       0.630       1.22       0.770       1.09       0.840         1.34       0.332       1.34       0.514       1.47       0.724       1.34       0.872         1.59       0.247       1.59       0.434       1.72       0.6641       1.59       0.788         1.84       0.155       1.97       0.270       1.97       0.549       1.844       0.704         2.09       0.087       2.22       0.176       2.22       0.471       2.09       0.664         2.34       0.041       2.72       0.084       2.72       0.313       2.59       0.525         2.59       0.018       3.22       0.025       3.22       0.170       3.09       0.403         2.84       0.008       3.72       0.003       3.72       0.066       4.09       0.167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •72   | 0.674   | 0.78 0.768  | 0.78 0.858       | 0.78 0.893     |           |
| 1•34       0•332       1•34       0•514       1•47       0•724       1•34       0•872         1•59       0•247       1•59       0•434       1•72       0•641       1•59       0•788         1•84       0•155       1•97       0•270       1•97       0•549       1•84       0•704         2•09       0•087       2•22       0•176       2•22       0•471       2•09       0•664         2•34       0•041       2•72       0•084       2•72       0•313       2•59       0•525         2•59       0•018       3•22       0•025       3•22       0•170       3•09       0•403         2•84       0•008       3•72       0•003       3•72       0•066       4•09       0•167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •84   | 0.588   | 0,91 0,718  | 0.97 0.820       | 0.91 0.901     |           |
| 1.659       0.247       1.659       0.434       1.672       0.6641       1.659       0.788         1.84       0.155       1.97       0.270       1.97       0.549       1.84       0.704         2.09       0.087       2.22       0.176       2.22       0.471       2.09       0.664         2.34       0.041       2.72       0.084       2.72       0.313       2.59       0.525         2.59       0.018       3.22       0.025       3.22       0.170       3.09       0.403         2.84       0.008       3.72       0.003       3.72       0.066       4.09       0.167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.09  | 0.459   | 1.09 0.630  | 1.22 0.770       | 1.09 0.840     |           |
| 1.84       0.155       1.97       0.270       1.97       0.549       1.84       0.704         2.09       0.087       2.22       0.176       2.22       0.471       2.09       0.664         2.34       0.041       2.72       0.084       2.72       0.313       2.59       0.525         2.59       0.018       3.22       0.025       3.22       0.170       3.09       0.403         2.84       0.008       3.72       0.003       3.72       0.066       4.09       0.167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1+34  | 0.332   | 1.34 0.514  | 1.47 0.724       | 1.34 0.872     |           |
| 2.09 0.087 2.22 0.176 2.22 0.471 2.09 0.664<br>2.34 0.041 2.72 0.084 2.72 0.313 2.59 0.525<br>2.59 0.018 3.22 0.025 3.22 0.170 3.09 0.403<br>2.84 0.008 3.72 0.003 3.72 0.066 4.09 0.167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.59  | 0.247   | 1.59 0.434  | 1.72 0.641       | 1•59 0•788     |           |
| 2•34 0•041 2•72 0•084 2•72 0•313 2•59 0•525<br>2•59 0•018 3•22 0•025 3•22 0•170 3•09 0•403<br>2•84 0•008 3•72 0•003 3•72 0•066 4•09 0•167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.84  | 0.155   | 1.97 0.270  | 1+97 0+549       | 1.84 0.704     |           |
| 2•59 0•018 3•22 0•025 3•22 0•170 3•09 0•403<br>2•84 0•008 3•72 0•003 3•72 0•066 4•09 0•167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.09  | 0.087   | 2.22 0.176  | 2.22 0.471       | 2.09 0.664     |           |
| 2+84 0+008 3+72 0+003 3+72 0+066 4+09 0+167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.34  | 0.041   | 2.72 0.084  | 2.72 0.313       | 2.59 0.525     |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.59  | 0.018   | 3.22 0.025  | 3.22 0.170       | 3.09 0.403     |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.84  | 0.008   | 3,72 0,003  | 3.72 0.066       | 4.09 0.167     |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |         |             |                  |                | · · · ·   |
| <u>****** ***** ***** ***** ***** ***** 6.09 0.000</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ***** | *****   | ***** ***** | *****            | 6.09 0.000     |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |         |             |                  |                |           |

-

ŀ,

A 3311

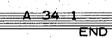
END

243

۰.

TABLE 3.3-10 RUN 1. UC/UG= 1.853 RC= 6330.. PG4. AIR INJECTION

|      | 24.0  | 43.3       | 68+5       | 93.5       |  |
|------|-------|------------|------------|------------|--|
| ETA  | 0.92  | 0.77       | 0.64       | 0.58       |  |
| Y/YC | c/cs  | Y/YC C/CS  | Y/YC C/CS  | Y/YC C/CS  |  |
| •00  | 1.000 | 0.00 1.000 | 0.00 1.000 | 0.00 1.000 |  |
| •10  | 1.018 | 0.10 0.993 | 0.10 1.005 | 0.10 0.995 |  |
| •16  | 0.968 | 0.16 1.004 | 0.16 0.997 | 0.16 1.000 |  |
| •22  | 0.959 | 0.22 0.960 | 0.28 0.990 | 0.28 0.999 |  |
| •28  | 0,942 | 0.34 0.960 | 0-41-0-964 | 0.41 0.969 |  |
| •34  | 0.899 | 0.47 0.938 | 0.53 0.935 | 0.53 0.971 |  |
| •41  | 0.839 | 0.59 0.830 | 0.66 0.856 | 0.66 0.913 |  |
| •53  | 0.829 | 0.72 0.820 | 0.78 0.867 | 0.78 0.898 |  |
| •66  | 0.767 | 0.84 0.625 | 0.91 0.828 | 0.91 0.894 |  |
| •78  | 0.705 | 0.97 0.625 | 1.03 0.781 | 1.09 0.845 |  |
| •91  | 0.693 | 1.09 0.625 | 1.16 0.740 | 1.34 0.784 |  |
| 1.03 | 0.629 | 1.34 0.628 | 1.41 0.701 | 1.59 0.722 |  |
| 1.16 | 0.576 | 1.59 0.557 | 1.66 0.590 | 1.84 0.692 |  |
| 1•28 | 0.544 | 1.97 0.479 | 1.91 0.574 | 2.09 0.625 |  |
| 1.53 | 0,454 | 2.47 0.307 | 2+41 0+483 | 2.59 0.536 |  |
| 1•78 | 0.340 | 2.97 0.173 | 2.91 0.383 | 3.09 0.463 |  |
| 2.03 | 0.225 | 3.47_0.058 | 3.66 0.139 | 3.59 0.378 |  |
| 2.53 | 0.076 | 3.97 0.017 | 4.66 0.064 | 4.59 0.261 |  |
| 3.03 | 0.010 | *****      | 5+65 ***** | 5.60 0.115 |  |
|      |       |            |            |            |  |


A 3312 END

|       | TABLE | 3•4  | WALL SHE |      | S                                     |             |      |       |
|-------|-------|------|----------|------|---------------------------------------|-------------|------|-------|
|       | PGO   |      | PGO      |      | PG                                    | <b>&gt;</b> | PG   | 0     |
| RUN   | 9     |      | 10       |      | 15                                    |             | 19   |       |
| UC/UG | 0.5   | 55   | 1•       | 85   | 0.5                                   | 583         | 2.   | 21    |
| RC    | 19'   | 70.  | 63       | 30.  | 96                                    | 5.          | 34   | 70.   |
|       | UTAU  | CF72 | UTAU     | CF/2 | UTAU                                  | CF/2        | UTAU | CF/2  |
| X/YC  |       |      |          |      |                                       |             |      |       |
| 12.5  | 0.675 | 1.05 | 1.73     | 7.32 | 0.425                                 | 1.80        | 1.09 | 13.30 |
| 32.5  | 0.700 | 1.1  | 1.90     | 8.88 | 0.410                                 | 1.68        | 1+16 | 15.30 |
| 52.5  | 0.888 | 1.79 | 1.77     | 7.68 | 0.475                                 | 2.23        | 1.00 | 11.20 |
| 72.5  | 0.815 | 1.47 | 1.38     | 4.63 | 0.525                                 | 2.66        | 0.91 | 9.26  |
| 92.5  | 0.888 | 1.74 | 1.37     | 4.54 | 0.510                                 | 2.45        | 0.82 | 7.27  |
| 112.5 | 0.855 | 1.59 | 1•31     | 4.07 | 0.520                                 | 2.60        | 0.80 | 6.97  |
| 132.5 | 0.886 | 1.71 | 1+26     | 3.78 | 0.505                                 | 2.41        | 0.74 | 5.86  |
| 152.5 | 0.865 | 1.62 | 1•18     | 3.26 | 0.512                                 | 2-44        | 0.71 | 5.38  |
| 192.5 |       |      |          |      | 0.520                                 | 2.45        | 0.68 | 4.93  |
|       |       |      |          |      | · · · · · · · · · · · · · · · · · · · |             |      |       |

NOTE UTAU (M/S)

÷

CF/2=CF/2\*10\*\*3



245

.

......

| ÷ | _ |                                       |      | <br> |
|---|---|---------------------------------------|------|------|
|   |   |                                       | <br> | <br> |
|   |   | ·                                     |      |      |
|   |   | · · · · · · · · · · · · · · · · · · · |      |      |

|       |       |      | ······ |        |       |       |       |                                       |
|-------|-------|------|--------|--------|-------|-------|-------|---------------------------------------|
|       | PG    | PG1  |        | PG1    |       | 2     | PG2   |                                       |
| RUN   |       |      |        |        | 1     |       | 5     |                                       |
| UC/UG | 0.    | 583  | 2.2    | 2•21   |       | 0.583 |       | 21                                    |
| RC    |       | 5    | 34'    | 70.    | 965.  |       | 3470. |                                       |
|       | UTAU  | CF/2 | UTAU   | CF72   | UTAU  | CF72  | UTAU  | CF/2                                  |
| X/YC  |       |      |        |        |       |       |       |                                       |
| 12.5  | 0.402 | 1.50 | 0.91   | 10.70  | 0.402 | 1.53  | 1.06  | 11.70                                 |
| 32.5  | 0.455 | 1•81 | 1 • 18 | 14.30  | 0.426 | 1.52  | 1.24  | 14.10                                 |
| 52.5  | 0.582 | 2.73 | 1.05   | 10.50  | 0.570 | 2+36  | 1.07  | 9.30                                  |
| 72+5  | 0.668 | 3.34 | 0.99   | 8.54   | 0.670 | 2.82  | 1.015 | 7.14                                  |
| 92.5  | 0.635 | 2.77 | 0.885  | 6.24   | 0.700 | 2.65  | 0.94  | 5.21                                  |
| 112.5 | 0+685 | 3.00 | 0.885  | 5.72   | 0.792 | 2.88  | 0.965 | 4.62                                  |
| 132.5 | 0.695 | 2.84 | 0.852  | 4.86   | 0.840 | 2.70  | 0+98  | 3.94                                  |
| 152+5 | 0.729 | 2.88 | 0.825  | 4 • 18 | 0.940 | 2•74  | 1+03  | 3.49                                  |
| 192.5 | 0.790 | 2+81 | 0.880  | 3.89   | 1.220 | 2.90  | 1.27  | 3+30                                  |
|       |       |      |        | - 1. f |       |       |       | · · · · · · · · · · · · · · · · · · · |

2

•

۶.,

246

NOTE UTAU (M/S)

z

\_\_\_\_\_CF/2=CF/2\*10\*\*3-\_\_\_

A 34 2 END

\_\_\_\_\_

| TABLE | 3.4 | (CONTD) | WALL | SHEAR | STRESS |
|-------|-----|---------|------|-------|--------|
|-------|-----|---------|------|-------|--------|

|                                       |         |      |      |       |       |      |        | and the second sec |
|---------------------------------------|---------|------|------|-------|-------|------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                       | PG3 PG3 |      |      | PG4   |       | PG4  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| RUN                                   |         |      | 5    |       | 1     |      | 5      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| UC/UG                                 | 0.583   |      | 2•21 |       | 0.    | 0.55 |        | 85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| RC                                    | 965.    |      | 34   | 70.   | 1970. |      | 6330.  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                       | UTAU    | CF/2 | UTAU | CF/2  | UTAU  | CF/2 | UTAU   | CF/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| X/YC                                  |         |      |      |       |       |      |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 12.5                                  | 0.368   | 1.19 | 1.08 | 11.40 | 0.482 | 0.58 | 1.60   | 6.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 32.5                                  | 0.568   | 2.22 | 1•21 | 11.40 | 0,595 | 1.00 | 1.90   | 10,90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 52.5                                  | 0.700   | 2.59 | 1.10 | 7.17  | 0.615 | 1.19 | 1.72   | 10.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 72.5                                  | 0.830   | 2.58 | 1•12 | 5.31  | 0.536 | 1.01 | 1.29   | 6.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 92.5                                  | 1.03    | 2.73 | 1.20 | 4.00  | 0.580 | 1.30 | 1.25   | 6.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 112.5                                 | 1+28    | 2,58 | 1•41 | 3,37  | 0,495 | 1.00 | 1 • 14 | 6.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 132.5                                 | 1.73    | 2.47 | 1.82 | 2.98  | 0.462 | 0.96 | 1.06   | 5.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 152.5                                 | 2.37    | 1.74 | 2+48 | 2.05  | 0.450 | 0.95 | 0.97   | 5.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| · · · · · · · · · · · · · · · · · · · |         |      |      |       |       |      |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

NOTE UTAU (M/S) CF/2=CF/2\*10\*\*3

å,

247

.

A 343 END

## TABLE 4.1 ADIABATIC-WALL EFFECTIVENESS AND HEAT TRANSFER COEFFICIENT

\_\_\_\_\_

#### APPARATUS B. YC = 4.75 (MM) T/YC = 0.35

|       |        |       |        |       | · · ·  | • .   |          |       |
|-------|--------|-------|--------|-------|--------|-------|----------|-------|
| RUN   |        |       | 2      |       | 3      |       | 4        |       |
| UC/UG | 0.379  |       | 0.616  |       | 0.824  |       | 1.04     |       |
| M     | 0,348  |       | 0.571  |       | 0.766  |       | 0.969    |       |
| RC    | 1862.  |       | 3077.  |       | 4172.  |       | 5306.    |       |
|       | ETA    | NUC   | ETA    | NUC   | ETA    | NUC   | ЕТА      | NUC   |
| X/YC  |        |       |        |       |        |       | · · · ·  |       |
| 1.0   | 1.033  | 8.8   | 1.036  | 13.6  | 1.021  | 15.10 | 1.020    | 19.40 |
| 3.1   | 1.002  | 10.10 | 1.066  | 10.40 | 1.036  | 12.60 | 1.014    | 16.80 |
| 4.1   | 1.002  | 10+40 | 1.051  | 11-40 | 1.040  | 12.20 | 1.018    | 16.10 |
| 6•2   | 0.964  | 8.77  | 1.010  | 11.30 | ······ | -     |          |       |
| 8.3   | 0,905  | 9.67  | 0.985- | 11.50 |        | 12.80 | 0.979    | 14.70 |
| 12.4  | 0.620- | 13.00 | 0.940  | 9.98  | 0.887  | 11.80 | 0.936    | 12.80 |
| 16.5  | 0.508  | 13.10 | 0.883  | 9•53  | 0.841  | 10.70 | 0.891    | 12.20 |
| 24+8  | 0.407  | 9.80  | 0.786  | 8.52  | 0.802  | 8.50  | 0.841    | 9.50  |
| 33•1  | 0.341  | 9.07  | 0.689  | 9.06  | 0.757  | 8.41  | 0.807    | 9.58  |
| 41+3  | 0.297  | 8.62  | 0.617  | 8.91  | 0.716  | 8+26  | 0.771    | 8.97  |
| 49.5  | 0.253  | 8.07  | 0.562  | 8.52  | 0.676  | 8.11  | 0.745    | 8.78  |
| 57•8  | 0.230  | 7.89  | -0.522 | 8.06  | 0.636  | 7.97  | 0.707    | 8.42  |
|       |        |       |        |       |        |       | <u> </u> |       |

\_\_\_\_

i

A 41 1

END

248

V

# TABLE 4.1 (CONTD) ADIABATIC-WALL EFFECTIVENESS AND HEAT TRANSFER COEFFICIEN

\_\_\_\_\_

| /C= 4•75 (MM) + 1/YC = 0 |  |
|--------------------------|--|
|                          |  |
|                          |  |
|                          |  |
|                          |  |

|       |       | · ·  |        |       | · .                                    |       |  |
|-------|-------|------|--------|-------|----------------------------------------|-------|--|
| RUN   | 5     |      | 6      |       | 7                                      |       |  |
| UCZUG | 1•2   | 278  | 2.2    | 2.285 |                                        | 3.546 |  |
| M     | 1.    | 179  | 2.0    | 98    | 3•:                                    | 362   |  |
| RC    | 630   | 51.  | 10535. |       | 16206.                                 |       |  |
|       | ETA   | NUC  | ΕΤΑ    | NUC   | ETA                                    | NUC   |  |
| X/YC  |       |      |        |       | ······································ |       |  |
| 1.0   | 0.998 | 20.2 | 1.034  | 33.1  | 0.996                                  | 40.6  |  |
| 3.1   | 0,988 | 21.0 | 1.034  | 26.1  | 1.011                                  | 28.6  |  |
| 4•1   |       | 19.2 | 1.032  | 27.1  | 1.006                                  | 31+1  |  |
| 6.2   |       |      | 1.025  | 27.6  |                                        |       |  |
| 8.3   | 0,981 | 16.9 | 1+036  | 30+1  | 0.979                                  |       |  |
| 12.4  | 0.953 | 15.3 | 0.989  | 26.0  | 0.957                                  | 30.4  |  |
| 16.5  | 0,919 | 14.9 | 0.959  | 24.4  | 0.927                                  | 31.7  |  |
| 24.8  | 0.879 | 11.4 | 0.901  | 19.8  | 0.837                                  | 21.2  |  |
| 33.1  | 0.834 | 10.7 | 0.847  | 18+9  | 0.766                                  | 22.0  |  |
| 41.3  | 0.791 | 10.3 | 0.790  | 15.9  | 0.702                                  | 20.3  |  |
| 49.5  | 0.759 | 9.9  | 0.741  | 14.3  | 0.666                                  | 18.3  |  |
| 57.8  | 0.726 | 9.6  | 0.691  | 12.7  | 0.641                                  | 17.0  |  |
|       |       |      |        |       |                                        |       |  |

-

# A 41 2

END

## TABLE 4.2 ADIABATIC-WALL EFFECTIVENESS AND HEAT TRANSFER COEFFICIENT

|       |       | RATUS B. | YC= 4.75 | 5 (MM) • | T/YC= 1                                | •0      |
|-------|-------|----------|----------|----------|----------------------------------------|---------|
| RUN   | 8     |          | 9        |          |                                        |         |
| UC/UG | 0,0   | 529      | 2.0      | 7        |                                        |         |
| M     | 0.586 |          | 1        | 705      |                                        |         |
| RC    | 31    | 4.       | 101      | 40.      |                                        |         |
|       | ETA   | NUC      | ETA      | NUC      |                                        |         |
| Х/ҮС  |       |          | ·        |          |                                        |         |
| 1.0   | 1.022 | 13.9     | 0.989    | 28.6     |                                        |         |
| 3.1   | 1.03  | 13.4     | 1.010    | -19.5-   |                                        |         |
| 4•1   | 1.030 | 13.4     | 1.003    | 21.4     |                                        |         |
| 6.2   | 0,970 | 12.9     | 0.979    | 23.6     |                                        |         |
| 8.3   | 0,928 | 12.2     | 0.955    | 23+1     |                                        | • •     |
| 12.4  | 0.825 | 10.0     | 0.890    | 20.6     |                                        |         |
| 16.5  | 0.716 | 9.7      | 0.819    | 20.2     |                                        |         |
| 24.8  | 0.581 | 8.7      | 0,739    | 15.3     |                                        |         |
| 33•1  | 0.504 | 9.3      | 0.710    | 14.0     |                                        | · · · · |
| 41.3  | 0.455 | 8.4      | 0.673    | 12.7     |                                        |         |
| 49.5  | 0.416 | 7.9      | 0.647    | 11.6     | ······································ |         |
| 57•8  | 0,403 | 7.6      | 0.629    | 10.8     |                                        |         |
|       |       |          |          |          |                                        |         |

## A 42 1

----

END

250

### APPENDIX A. 5.

Computer programme for the prediction of the adiabatic-wall effectiveness and the heat-transfer coefficient downstream of a two dimensional film cooling slot.

A listing of the computer programme referred to in chapter 6 is provided in this section, along with a listing of the source programme and specimen inputs and outputs. The present programme is a version of the computer programme of reference (49), modified on the lines described in chapter 6, to predict the flow development, adiabatic- or impervious- wall effectiveness and the heat-transfer coefficient downstream of a film cooling slot.

A list of the subroutines in the present programme and brief particulars of the modifications in each subroutine are given below.

|             | ·   | · · ·      |       |   | •    |        |
|-------------|-----|------------|-------|---|------|--------|
| <u>List</u> | of  | Subrout    | ines. |   |      |        |
| 4           |     | እ// እ ግጉእ፣ |       | • | 10   |        |
| 1           | •   | MAIN       |       |   | 13.  | POLYFT |
| 2           | •   | BEGIN1     |       |   | 14.  | PRE .  |
| 3           | •   | BEGIN2     |       |   | 15.  | RAD    |
| 4           | •   | CHOP       | •     | • | .16. | READY  |
| 5           | •   | COEFF      | • • • | • | 17.  | SLIP   |
| 6           | •   | CONST      |       | ¥ | 18.  | SOLVE  |
| 7           | • . | DENSTY     | • .   |   | 19.  | SOURCE |
| 8           | •   | ENTRN      |       |   | 20.  | VEFF   |
| 9           | •   | FBC        |       |   | 21.  | VISCO  |
| 10          | •   | LENGTH     | •     |   | 22.  | WALL   |
| 11          | •   | MASS       |       |   | 23.  | WF1    |
| 12          | •   | OUTPUT     | •     |   | 24.  | WF2    |
|             |     |            |       |   |      |        |

Brief particulars of subroutines.

#### 1. MAIN.

<u>a. Step Length</u> is selected as explained in chapter 6 (p.98). <u>b. The wall value</u> of the conserved property  $\varphi$  is computed from a new expression for the slip coefficients, which is based on the integrated form of the partial differential equation and satisfies the integral conservation equations.(69).

<u>c.</u> The free stream velocity is computed from a modified formulation which ensures compatibility of the pressure

gradient term at the outer edge of the layer and the adjacent grid points.

<u>d.</u> <u>The termination condition.</u> Integration is normally stopped after 151 integrations and the next set of data is then processed. Integration can be stopped at any intermediate stage, by setting the index KSTOP to 1 (for instance if the velocity should become negative).

<u>e.</u> <u>Subroutines START and ENPLOT</u> are of relevance only when the output is to be plotted on a CALCOMP plotter. If such a facility is not available, dummy subroutines of the above names should be introduced.

#### 2. BEGIN1.

<u>a.</u> <u>Input options.</u> Three options are provided, depending
on the value of the index KSP (= 0,1,2). The implications of these options are as follows:

<u>KSP= 0</u> This signifies that (i) the mass fraction of the slot fluid is taken as the conserved property  $\varphi$ , and that the flow is isothermal; (ii) the velocity profile at the slot exit is composed of three power-law profiles, as sketched in Fig.6.1.1; the (dimensional) values of the velocities are computed from the value of the velocity ratio, the slot Reynolds number and the slot-height.

<u>KSP=1.</u> signifies that the velocity profile at slot exit is selected from a set of experimental profiles which is stored within the subroutine, in an array named VSCK; the values of the variable KVR determines the profile which is used for the calculation.

<u>KSP=2.</u> signifies that (i) the temperature is taken as the conserved property (ie. the specific heat  $C_p$  is assumed to be constant and equal to 0.24 kcal/kg deg K; (ii) the heat flux at the wall is to be specified: if zero, an adiabatic wall is assumed; and (iii) if the heat flux at the wall is not equal to zero, the values of the Nusselt number (NUC) are printed out; a data set specifying a non-zero heat flux must be preceded by a data set with identical initial conditions and an adiabatic wall, so that adiabatic wall temperatures on which the Nusselt number is based , may be calulated and stored.

The conserved-property profile at slot exit is

assumed to be of a top-hat shape (ie. unity in the slot and zero outside it.)

Typical inputs corresponding to the three values of KSP are listed at the end of the computer programme.

<u>b.</u> <u>Lip thickness ratio,  $t/y_{C}$  (TYC) is read in and a values of the coefficient  $\xi$  (eq. 6.2.1) is calculated on the basis of equation 6.2.2.</u>

<u>c.</u> <u>MU</u>. This index controls the nature of the eddy viscosity and diffusivity. When MU is set to 0, the eddy viscosity and diffusivity are computed from the Prandtlmixinglength hypothesis (eq.5.0.1). If MU is given a value of 1, the eddy diffusivity is bridged across the zero-diffusivity region(s) by a straight lines) (see Fig.5.2.2) and if MU is set to 2, both the eddy viscosity and diffusivity are bridged.

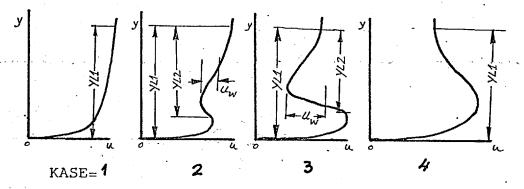
<u>d</u>. Experimental data such as profiles of velocity and mass fraction and effectiveness, for comparison can be read into the programme. These may later be plotted (as described in OUTPUT subroutine), along with the predictions.

3. BEGIN2. This is a portion of the subroutine BEGIN of reference (49), in which the  $\omega$ -values at grid points and slip-values for the initial profiles are computed.

<u>4. CHOP.</u> This subroutine is used only in connection with the plotting of profiles on a CALCOMP plotter. Its function is to select data points which lie within the limits TMAX and TMIN, which are arguments of this subroutine.

5. COEFF. This subroutine has been modified for the bridging of the eddy viscosity and diffusivity profiles and for augmenting the eddy diffusivity as a function of the lip thickness ratio (seeFig.6.2.1).

<u>6. CONST.</u> The requisite constants are set in this subroutine. The laminar viscosity and density of air are computed at  $25^{\circ}$ C and 30 in. of mercury.


7. DENSTY. For a binary gas mixture, the density is calculated assuming ideal gas relations. When temperature is the conserved property, the density is taken to be inversely

proportional to the temperature (KSP= 2).

8. ENTRN. This subroutine is unaltered from the version in reference (49).

<u>9. FBC.</u> The appropriate heat flux at the wall is set in this subroutine: for an impervious or adiabatic wall, AJFS is set to 0. For a non-zero (constant) heat-flux, AJFS is set to correspond to the value of Q.

<u>10. LENGTH.</u> This subroutine has been re-written to perform the following operations: (i) to classify the velocity profile being calculated; and (ii) to select the characteristic lengths and velocity, as indicated in the sketch below.



11. MASS. The mass flux through the wall is set to zero.

<u>12.</u> OUTPUT. This subroutine prepares the quantities which are printed out, such as profiles of velocity, mass fraction, integral quantities, effeftiveness, Nusselt number etc. It also prepares profile data for plotting on a CALCOMP plotter.

<u>a.</u> <u>Profiles</u> of velocity and conserved property are printed out, if the the index KPROF is set to 1, at the values of  $x/y_{C}$  correponding to the experimental profiles, or those stored in the array named ZX.

<u>b.</u> Other information is stored after every ten integrations and printed out after completion of the desired number of integrations (151 in this case).

<u>c.</u> <u>Plotting</u> predicted and experimental profiles. This involves the use of a CALCOMP plotter and related subroutines are used only when the index KDRAW is set to 1. If the compiler does not have provision for such a plotter, the following dummy subroutines should be inroduced, which merely return control to the calling subroutines:

PLØT, SCALE, AXIS, LINE, NUMBER, SYMBØL, START and ENPLØT.

<u>d</u>. The subroutine OUTPUT has an argument ISEP, which causes a print out if ISEP assumes a value of 1. ISEP can be set to 1 for example, if separation occurs (TAUI = 0.).

<u>13. POLYFT.</u> This subroutine is for fitting least-squares polynomials through a set of points. In the lisitng, a dummy subroutine is shown, since the example illustrated does not require the use of this subroutine.

<u>14.</u> PRE. The pressure gradient DPDX is computed, corresponding to the value of  $K_n$ , which is read in as input.

<u>15.</u> RAD. The present examples are for a plane twodimensional case (KRAD=0) and R1 is set to unity.

<u>16. READY.</u> The expression used for calculating normal distances is slightly different (and more accurate) from that in the book. The resulting difference in the values of y is small.

<u>17. SLIP.</u> The slip value at a wall, for the conserved property and velocity is now obtained by a new formulation, which involves the partial defferential equations. The original version used a one-dimensional solution near the wall.

18. SOLVE. This subroutine remains unaltered.

<u>19.-</u> SOURCE. The source term for the conserved property (mass fraction ) is set to zero, since the substances are chemically inert.

20. VEFF. This subroutine is unaltered.

21. VISCO, The laminar viscosity is determined through the 'square root' formula for binary mixtures and a power law in the case of the non-isothermal case.

# 22. WALL.

WT

FPG .

<u>a</u>. Provision is made to stop integration if the velocity near the wall goes negative, for instance in adverse pressure gradients.

<u>b.</u> Two additional quantities are computed in this subroutine: BVI and PCI. The former is a non-dimensional eddy viscosoty and the latter is a non-dimensional stream function, at  $W_{2.5}$ . These quantities are needed in the computation of slip values of velocity and conserved property.

c. The computation of BETA has been deleted.

23. WF1. For large positive pressure gradients, TERM can go negative and since a negative number cannot be raised to a power, TERM is set to a small positive value, when this occurs.

22. WF2. This subroutine is unaltered.

A list and explanations of the FORTRAN symbols used in the input and output sections of the programme are given below.

| EXPLANAT | TION OF NAMES USED IN THE INPUT AND OUTPUT.                                                        |       |
|----------|----------------------------------------------------------------------------------------------------|-------|
| INPUT.   |                                                                                                    |       |
| NAME     | MEANING                                                                                            | UNITS |
|          |                                                                                                    |       |
| KDRAW    | Plotting subroutines are called if KDRAW =1,<br>but not if KDRAW = 0.                              | •     |
| NSETS    | Number of sets of data to be processed.                                                            |       |
| TITLE    | Title in alpha-numeric form: one card.                                                             |       |
| KSP      | Values of KSP specify the input options.<br>(See example at the end of the programme-<br>lisitng). |       |
| UCG      | Slot to mainstream velocity ratio.                                                                 |       |
| RC       | Slot Reynolds number.                                                                              |       |
| YC       | Slot height.                                                                                       | mm .  |
| TYC      | Lip-thickness to slot height ratio.                                                                |       |

Molecular weight of secondary gas.

Pressure gradient parameter,  $K_{\rm p} \times 10^6$ .

|          | •        |                                                                                                           | 257                      |
|----------|----------|-----------------------------------------------------------------------------------------------------------|--------------------------|
|          | NAME     | MEANING                                                                                                   | UNITS                    |
|          | KPROF    | KPROF of 1 produces a print out of computed<br>profiles; while no profiles are printed for<br>KPROF of 0. |                          |
|          | KVR      | The value of this index selects the velocit<br>profile stored in subroutine BEGIN1 (for KS                |                          |
|          | TCG      | Slot to mainstream temperature ratio.                                                                     |                          |
|          | TC       | Temperature of coolant at slot exit.                                                                      | °C.                      |
| •        | Q        | Heat flux at the wall.                                                                                    | W/m <sup>2</sup> .       |
| ·<br>. · | F        | Mass fraction (or temperature), normalised with the wall-value.                                           | •                        |
|          | NVEL N   | umber of experimental velocity profiles to h<br>read in.                                                  | e                        |
|          | NPHI     | Number of experimental conserved-property profiles to be read in.                                         |                          |
|          | NETA     | Non-zero value implies effectiveness data<br>(experimental) to be read in.                                |                          |
|          | - XV     | Value of $x/y_{C}$ for an experimental velocity                                                           | profile.                 |
|          | XFI      | Value of $x/y_{C}$ for an experimental $\varphi$ profile                                                  |                          |
|          | IN -     | Number of data-points in an experimental pr                                                               | ofile.                   |
|          | NRUN     | Run designation.                                                                                          | المحمد والمراجع والمراجع |
| ۰.       | NEF      | Number of data points for effectiveness.                                                                  |                          |
|          | PAT(1,1) | Value of x/y <sub>C</sub>                                                                                 |                          |
|          | PAT(2,1) | Value of experimental effectiveness corresp                                                               | onding                   |
|          |          | to PAT(1,I).                                                                                              | •<br>:                   |
|          | OUTPUT.  |                                                                                                           |                          |
|          | KCOUNT   | Data-set number.                                                                                          |                          |
|          | XYC      | $x/y_{C}$ , the non dimensional distance from the                                                         | slot.                    |
|          | INTG     | number of integrations performed.                                                                         |                          |
| •        | U/UG     | non-dimensional velocity.                                                                                 | - · · ·                  |
|          | Y/YC     | y-values, normalised with the slot height.                                                                |                          |
|          | FI/FIW   | conserved-property profiles, normalised wit the wall values.                                              | h · ·                    |
|          | ETA      | effectiveness, or non-dimensional wall temp                                                               | erature.                 |
|          | R2       | momentum-thickness Reynolds number.                                                                       |                          |
|          | RPHI2    | R <sub>q</sub>                                                                                            |                          |
| •        | SS*E3    | Wall-shear stress coefficient, multiplied b                                                               | y 500.                   |
|          | H12      | Shape factor of the velocity profile (H).                                                                 |                          |
|          | UMAX     | maximum velocity                                                                                          | m/s                      |
| •        | YMAX     | value of y at which velocity is a maximum, normalised with the slot height.                               |                          |
|          | UHALF    | (UMAX + UG) / 2                                                                                           | m/s                      |
|          | YHALF    | Value of y at which $u = UHALF$ .                                                                         |                          |
|          | UG       | Free stream velocity                                                                                      | m/s                      |
|          | <b>`</b> |                                                                                                           |                          |

| NAME | MEANING                                                          | UNITS |
|------|------------------------------------------------------------------|-------|
| NUC  | Nusselt number $Nu_{C}$ for KSP=2 and $Q \neq 0$ .               |       |
| AMG  | Entrainment rate, $m_E^n/g_G u_G$ ( for KSP = 0,1, and 2 (Q=0)). |       |
| UTAU | Friction velocity $\sqrt{2_{S}/9_{G}}$                           | m/s.  |

-'

259 \$ I EFTC MANE 0001 (\*\*\*\*\* APPENDIX 5 <u> 1967</u> FREDICTION OF EFFECTIVENESS AND HEAT TRANSFER COEFFICIENT 1:003 CCHNSTREAM CF A THE DIMENSIENAL FILM CCCLLING SLCT. CCC4 (\*\*\*\*\*\* nnrs COMMEN /GEN/HE1,/MI, AME, DPDX, PREF(2), PR(2), P(2), CEN, AMU, XU, XD, XP, 0006 1XL DX. INTG. GSALFA 6667 1/1/N, NF1, NP2, MP3, NEC, NPF, KEX, KIN, KASE, KRAG 1:1:1 8 1/P/BEIA, GAMA(2), TAUL, TAUE, AJI(2), AJE(2), INCI(2), INCE(2) cocs 17V/U(4:),F(2,43),R(43),FHC(43),CM(43),Y(43) 6616 1/C/SC(43),AU(43),BU(43),CU(43),A(2,43),P(2,43),C(2,43) 0.011(CAMEN /L/AK,ALNC 0012 COMMEN /STOP/ KSTOP <u>CC13</u> CCMMCN/S/ SELR, EVIS(SC), EN(SC) 1:0-14 COMMEN/COLNT/KCCUNT <u> 15</u> CCMMCN /J/Y/ JCCMF, KCR/W, NSETS, KSP 1115 CCMMCN/SH/PE/ LCCK, YL1, YL2, YDIV, UK, XI (:(17 COMMENTEDNT LG, LCC, YC, XYC, FPC, FAT(2.) **∓**;18 COMMEN/ABC/SF, S, EV1, PC1, A2, E2, C2 ((19 JCCMP == 0 12:21 READ (5,200) KORAK, NSETS 4021 209 [OPM/1(11,12) **CC 22** IF (KORAW . EC. 1) CALL START 0623 LCCK=G 1.1.24 DIMENSION YS(90), US(90) 0025 KCCUNT=C 1.1.25 16 CONTINUE 0027 KCCUNTERCENTEL 128 INTG=C 0029 \*STOP=C 11:30 SEAR=C. 0031 ISEP=C 0032 XL=20. 0033 CALL CENSE £E34 CALL BEGINI 0035 141=0. 61.26 AME=0. 0037 CD TO 75 - : **2**9 15 CALL READY 0039 25 CONTINUE 1.1:4:1 INTG = INTG + 1641 1=1 1:142 CO 50 1=1,NP3 0043 1.44 YS(L) = Y(L)0045 **US(L)=U(T)** 4£46 L=L+1<u>nn 47</u> SC CONTINUE **- 4**9 KOLD=LCCK <u>nr 49</u> CALL LING IN (YS, US, NPL, ell, LLCK, YL1, YL2, YDIV, UW) 1. F () IE(LCOK.EC.0) WRITE(6,53) XU, INIG, (U(I), Y(I), I=1, NP3) <u>0051</u> 33 FERMATCR2F UNKLUCCONTSAFLE VELICITY PROFILE/2H XU, FIG. 3, 5H INTC, 13, CF2 12X/(2X,E10.3,5X,E10.3)) 0053 1154 IE(KOLD.EC.LCOK) GC TO 51 0055 51 CENTINCE 1156

\$ECF

| • <u>26</u> 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| CALL ENTRN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         |
| C CHUICE OF FORWARD STEP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - 0 <b>058</b>                          |
| ER A= 0.025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                       |
| CX=FRA*PL1/(H(1)*/P1=R(NP3)*AN()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0(6)                                    |
| IF(DX.CT.C.3*Y(NP2)) CX=0.3*(Y(NP3))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |
| If (DX.(!.), I**Y(NP3], /ND, XU/YC.[1,2(,) DX=,15*Y(NP3]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11162                                   |
| = IE(DX,GT,M5*Y(NP3),ANC,XU/YC,IT,1C,) DX=M5*Y(NP3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |
| XC=XU+CX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0(64                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.7.65                                  |
| CALL PRICAU, XD, CPCX)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.066                                   |
| JE (KASE-EC-2) GE TE 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0067                                    |
| !F(KIN.EQ.1)CALL #ASS(XL,XC,AN])                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |
| IF (KEX-EQ-1) CALL MASS (XL, XC, AME)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |
| (ALL W/LL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | r (* 7 (*                               |
| 26 CALL DUTPUT(ISEP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |
| 4444 FORMATION 11151,14/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |
| CALL CCEFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 073                                     |
| C SETTING UP VELOCITIES AT 7 FREE ECUNEARY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (;; 74                                  |
| <u>C***** AS FROM FIDEO 20 30.10.68</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0(75                                    |
| EUC=(-1.)*(XC=XU)*CFDX/(R+C(AF3)*U(NP3)*U(NP3))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | r ( †                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |
| IF (KEX.EQ.2) U(AP3)=U(AP3)+ U(C*U(AP3))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (18                                     |
| <u>IE(KIN-EQ.2)U(1)=SCRT(U(1)*U(1)-2.*()C-XU)*CPCX/R+C(1))</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0(79                                    |
| (ALE SELVE(AU, EU, (U, U, NP3)))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | c Cre                                   |
| CO_250_I=3,NP2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u> </u>                                |
| 1F(U(1), LT, C, FKSTCP=1<br>260 IF(V(1), LT, V(1, 1)) #CTCC :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ui;82                                   |
| $\frac{250 \text{ IF}(Y(1),L7,Y(1-1)) \text{ KSICP} = 1}{16(V(1),L7,Y(1-1)) \text{ KSICP} = 1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |
| IF(KSTCF.EC.J) HPITE(C.251) INTG,XU,(I,U(I),YU),AU(I),EU(I),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | r.(.£4                                  |
| - 1CU(1), 1=2, NP2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u> </u>                                |
| 1F (KSTEP-EC-1) CALL CLIFUT(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,66                                    |
| 251 FORMAT(26H NEGATIVE VELCCITIES OR DY/2X,13,5X,FE.5/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C_C_E7                                  |
| $\frac{1(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)}{(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3)(2\lambda_{1}+3$ | - e - e - e - e - e - e - e - e - e - e |
| C SETTING UP VELOCITIES AT A SYMMETRY LINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 00.60                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | i, çı                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u> </u>                                |
| $\frac{11}{15} \frac{(KRAC_{2}C_{2})}{(1122)} = \frac{15}{2} \frac{(12)}{(21+225)} = \frac{11}{2} \frac{15}{2} \frac{(KRAC_{2}C_{2})}{(12)} = \frac{11}{2} \frac{15}{2} \frac{(KRAC_{2}C_{2})}{(12)} = \frac{11}{2} \frac{15}{2} \frac{(KRAC_{2}C_{2})}{(12)} = \frac{11}{2} \frac{(KRAC_{2}C_{2})}{(12)} = \frac{11}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u>t.</u> ;\$2                          |
| $\frac{71 \text{ JF}(\text{KEX}_{EQ}_{2}) \cup (\text{NP3}) = .75 \pm U(\text{NP2}) + .25 \pm U(\text{NP1})}{72 \text{ F}(\text{NP2}) + .25 \pm U(\text{NP1})}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |
| 72 CONTINCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| IF (NEQ.EQ.1) GO TO 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |
| CC 45 J=1,NPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -(,¢\$5                                 |
| $\frac{\text{DO} 46 \text{ I=2,NP2}}{\text{MATTALACTOR}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |
| $\{\bigcup_{i=1}^{j} \neq \{\bigcup_{i=1}^{j} \}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u>, ÷¢</u> ∂                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0059                                    |
| 46 (U(1)=((J,1))<br>F0 (J, 1-1) ND2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 <b>1</b> 00                           |
| <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u></u>                                 |
| 47  S(1)=(J,1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | = ¢1/;2                                 |
| CALL SCLVE(AU, BU, CL, SC, NP3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u></u>                                 |
| $\begin{array}{c} F(1, T) = F(1, T) \\ F(1, T) = F(1, T) $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0164                                    |
| $\frac{48 + (J_{+}I) = SC(I)}{1677455} = \frac{16}{16} + 16$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0105                                    |
| IF (KASE SEC. 2) CC IC 81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>\$1</b> ;6                           |
| C SETTING UP WALL VALUES OF F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0107                                    |
| C##### THIS EXPRESSION FOR FUL, 1) INSERTED FROM FISEC12,55 31.12.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>1</b> 10                             |
| $= \frac{IF(K IN \cdot EQ \cdot 1 \cdot AND \cdot INDI(J) \cdot EQ \cdot 2)F(J, 1) = (F(J, 2) - A2 * F(J, 3) - C2)/P2}{IE AVE TO THE AND $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u>(109</u>                             |
| IF (KtX.[Q.].AND.] NCE(J).Et.2)F(J,NP3)=((].+PLT/+CAMA(J))*F(J,AP2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                       |
| $- 1(1_{\bullet} + EETA - CAMA(J)) * F(J_{\bullet} NP1)) * \cdot F/GAMA(J)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u></u>                                 |
| C SETTING UF SYMMETRY-LINE VALUES CF F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.112                                   |
| <u>\$ECF</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |

-

( Telson

| • 261                                                                                                                              |                |
|------------------------------------------------------------------------------------------------------------------------------------|----------------|
| 61 IF (KIN-NF-3) GD TC E2                                                                                                          | <u> </u>       |
| f (Ja])≠i (Ja2)                                                                                                                    | 0114           |
| IF (KRAC.EC.1)F(J+1)=.75*F(J+2)+.25*F(J+3)                                                                                         | <u> </u>       |
| <u> </u>                                                                                                                           | ¢116-          |
| 45 CONTINUE                                                                                                                        | <u> </u>       |
| <u>∃t xb=xfi</u>                                                                                                                   | 119            |
| <u>×u=xc</u>                                                                                                                       | <u> </u>       |
| ₽ <u><u></u>[]=₽E]+D<u>X</u>*(k(])*<u>A</u>?]-₽(<u>A</u>P3)*<u>A</u>NE)</u>                                                        |                |
| C THE TERMINATION CONCITION                                                                                                        | 6121           |
| IF(KSTCP.EC.I) CC TC 16                                                                                                            | (122           |
| IF(INTC+LT+151)_GC_TC_15                                                                                                           | (122           |
| IF (KCCLAT-LI-NSLIS) CL TO IC                                                                                                      | (124           |
|                                                                                                                                    | <u></u>        |
| site                                                                                                                               | (125           |
|                                                                                                                                    | C127           |
| \$10°1C 01G1 C.CK                                                                                                                  | 128            |
| SUBROUTINE_BEGIN1                                                                                                                  |                |
| COMMEN /GEN/FEI,/MI,ANE,DFDX,FREF(2),FR(2),F(2),DEN,AMU,XU,XD,                                                                     |                |
| 1XL,DX,INTC,CSALFA                                                                                                                 | <u> </u>       |
| 17I/N→NFI→NP2→NP3→NEG→NFF→KEX→KIN→KASE→KŔAD                                                                                        | 1132           |
| 1/B/BETA, GAMA(2), TAUL, TAUE, AJI(2), AJF(2), INDI(2), INDF(2)                                                                    | C <u>133</u>   |
| 1/V/U(43),F(2,43),*(43),AHC(43),CM(43),Y(43)                                                                                       | (134           |
|                                                                                                                                    | 0125           |
| <b>CCMMCA/CUN/UC,UCC,YC,XYC,FPG,FAT(20)</b>                                                                                        | r 136          |
| COMMON /JAY/ JCCMP, KDRAW, NSETS, KSP                                                                                              | °137           |
| (OMMCN / X / IIILE(I2), XV(I)), YX(I), T(I), UX(I), T(I), FIX(I), T(I), VEL                                                        |                |
| 11, NETA, NUM(10), PAT(2, 100), XC, NEUN, NEI(10), NEE, YXE(10, 70), XEI(10)                                                       |                |
| CCMMEN/CCUNT/KCCUNT                                                                                                                |                |
| COMMON/GROWTH/LCCAT,YI(50),YE(50)                                                                                                  | 0141           |
| COMMEN /MUCCEE/ MU                                                                                                                 | 142            |
| COMMON/BYIS/EMU                                                                                                                    |                |
| CCMMCN/COCL/IG,ICC,FC,FCG                                                                                                          |                |
| COMMON/KCAL/KETA, KHGW, KHGZW, KHEAL, KEECE, C, EC, TYC                                                                            | 0145           |
| CCMMCK/SHAPL/ LCCK,YLL,YLZ,YCLV,UW,X1                                                                                              | 145            |
| LIMENSION_VSCK(5,40)                                                                                                               |                |
| C*****                                                                                                                             |                |
| C******* SLOT VELOCITY PROFILES EROM REF (30)                                                                                      | (2140          |
| C*****                                                                                                                             | 1150           |
| EATA (VSCK(1,1), I=1,37)/0.,0.,.52,.58,.62,.67,.72,.76,.79,.82,.                                                                   | <u>84.01F1</u> |
| ▌▖ᢄᡩᢧᢛᢄᡧᠫᢧᢛᢄᡷᢖᢃᡮᢛᢄᠫᢧᢛᢄᠱᢧᢛᢄᠱᢧᢛᢄᠿᢧᢛ᠋ᡗᡬᢧᢛᢗᢗᢖᢛᢗ᠘ᡀᡚᢛ᠘ᡜᡀᢛᢕᢩᢔᢛᢕᡀ᠖ᠿᢧ᠖᠘᠘<br>▋ ᢌᢄᡩᢧᢛᢄᡧᠫᢧᢛᢄᡷᢖᢃᡮᢛᢄᠫᢧᢛᢄᠱᢧᢛᢄᠱᢧᢛᢄᠿᢧᢛ᠋ᠯᡬᢧᢑ᠖ᡀᢧᢛᠱᡀᡚᢛᢕᡁᢕᢛᢕᡁᢕᢛᢢᢧᢛᡬᡀᢛ᠋ᢓ | 152            |
| 2.78, £2, £6, \$0, \$2, \$6, \$6, \$6, \$6, \$6, \$6, \$6, \$6, \$6, \$6                                                           | 0153           |
| LATA (VSCK(2,1),1=1,37) /(=(),=(),=(),=(),=(),=(),=(),=(),=(),=()                                                                  | (152)<br>(154) |
| 1.94, 58, 58, 985, 99, 1.0, 1.0, 59, 58, 58, 56, 52, 82, 40,                                                                       | 0155           |
| 22*(**********************************                                                                                             |                |
| KETA=C                                                                                                                             | 0157           |
| KHCM+C                                                                                                                             |                |
| NU=1                                                                                                                               |                |
| KR AD-Q                                                                                                                            | 1129<br>160    |
| C***** INPUT                                                                                                                       | <u> </u>       |
| READ(5760) 1111                                                                                                                    | 0161<br>0162   |
| C INITIAL VELOCITY PROFILE                                                                                                         | 0163           |
| NPHI-C                                                                                                                             | 1163           |
| NVEL =0                                                                                                                            |                |
| NFE=U                                                                                                                              | 11162<br>0176  |
|                                                                                                                                    |                |
| NETA=0                                                                                                                             | 0167           |
| NETA=0.                                                                                                                            |                |
| NETA=0<br>C =0<br>\$ECF                                                                                                            | 0167           |

|                                              | $\gamma_{A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                                      |
|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| •                                            | TCG=1+(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ۲<br>۱٬۱۴۶                             |
|                                              | 1(=25.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.174-                                 |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0171_                                  |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ······································ |
|                                              | - EP C= 0 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u></u>                                |
|                                              | * FPG \$1AND\$ FOX K*1(**6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |
|                                              | READ(5,106) KSP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u> </u>                               |
|                                              | IF (KSP+EQ+) KEAL (5+6) UCC+KC+YC+TYC+KT+FPC+KPFCF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |
|                                              | JE(KSP.EQ.1) REAL(5.7) UCC.PC.YC.TYC.NT.FPG.KPRCE.KVR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u> </u>                               |
|                                              | IF (KSP . I.C. 2) KE/E (3,8) UCC, KC, YC, TYC, KT, FPC, KFRTF, TCG, TC,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ç (178                                 |
| <u>    (                                </u> | * INPUT OF EXPERIMENTAL DATA FOR COMPARISON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u>c 179</u>                           |
|                                              | ₽ĽAD(5,5)) NVEL,NFHI,NÉTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (:15(:                                 |
|                                              | IF (NVEL EC. 6) GC IC 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | / 18]                                  |
|                                              | -CC-52-J=L9NVLL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (1)                                    |
|                                              | $\frac{READ(5,51)}{XV(J),IN}(YX(J,I),IN)(X(J,I),I=1,IN)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                        |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ( ) 96                                 |
| F 3                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        |
|                                              | - CONTINUE<br>- If (NPHI-1-1 C) GC TU 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u>() 195</u>                          |
|                                              | $-11 \cdot (NPHI - L \cdot \cdot \cdot \cdot J) \cdot (L - 1L - 3) = -11 \cdot (NPHI - L \cdot \cdot$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        |
|                                              | PEAD(5-55) XFI(J)+[N-, (YXF(J+1)+FIX(J+1)+]=1+1N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 109                                    |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        |
|                                              | -CONTINCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        |
| 53                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u>1</u> 61                            |
|                                              | IF(NE1#.LE.U) GC 1C 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ¢192                                   |
|                                              | <u>READ(5,57) NRUN, NEF, (PAT(1,1), PAT(2,1), I=1, NEF)</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u> </u>                               |
| Şe                                           | CONTINCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (194                                   |
| <u> </u>                                     | <u>1C=TC+ 460.</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0195                                   |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | L164                                   |
| C***                                         | MCLECULAR VISCOSITY FOR ARGON, ARCTON -12 AND FYDROGEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |
|                                              | KE ASI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (C)                                    |
|                                              | KHGW=0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |
|                                              | IF (0.NF.C.) KET/×C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ∊∊∊∊∊∊∊∊<br>⋳∊⋳∊∊∊∊∊∊                  |
| · ·                                          | IF (Q+NE+0+) KHCh=1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u> </u>                               |
|                                              | $\frac{1}{1} \left( \frac{1}{1} + \frac{1}{2} + 1$ | £2:2                                   |
|                                              | IF (WT.FC.39.94) BMU=AMU*(2125./1716.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0203                                   |
| <del></del>                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        |
|                                              | <u>JF(WI.EQ.2.)</u> <u>BMU=AMU*(841.1/1716.)</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.20.5                                 |
|                                              | IF(K\$P.€Q.2) BMU≈ AKU*(10,7485.]**3.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.217                                  |
|                                              | X0=0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u> </u>                               |
|                                              | <b>№=34</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.9                                    |
|                                              | <u>1=1YC*YC</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0209                                   |
|                                              | YC=YC/12./25.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0210                                   |
|                                              | 1=1/12+/25+4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                        |
|                                              | UC=8FU*FC/(CEN*F728.C6*YC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -212                                   |
|                                              | IF(KSP.E0.2) $U(= RC* EMU/(DEN*TG/TC*YC)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6213                                   |
|                                              | U€≈UC/LCG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1:214                                  |
| C***                                         | $\Delta SSUMPTION UC/UCMAX = 0.9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
|                                              | ASSCHPTICK UC/UCHAA = 0.5<br>IF(KSP.EQ.0.CP.KSP.EQ.2) UC=UC/U.S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0215                                   |
| C * * *                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        |
| <u>1737</u>                                  | XI FRCM EQ. 6.2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>^217</u>                            |
| C 4. 4. 1                                    | XI≡0.28*1YC**2.(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0218                                   |
| <u>C***</u>                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        |
|                                              | λυ=0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.220                                  |
|                                              | NEC=2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C221                                   |
|                                              | NPH=NEC-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 222                                  |
|                                              | <u>NPJ=N+1</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                        |
|                                              | APZ=N+Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ::224                                  |
| \$ECF                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        |

-----

. Janu

| •                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                       | ND 3-NH 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                       | NP3=N+3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| - C                                                                   | IN IT TAL PROFILE STARTING FROM THE WALL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0226                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                       | KASE=1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                       | ×⊑ ×<br>×E ×=2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 228                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| · · ·                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                       | Υ(1)=(,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                       | <u>-U(1)=0.</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                       | F(1,1)=1.(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (232                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <u>(****</u> *                                                        | $** ASSLVPTION Y_G_C_/ YC = 2.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                       | ** ASSCRPTITUR 19919/ 16 ∽ 2+3<br>€kZ=2+1*¥€                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6234                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                       | Y(NP3)=YC+Ck2+T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                       | U(NP3)≥UG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 236                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                       | <u>F(1,NP2)=C.</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1:227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                       | [¥]=]./ <sup>†</sup> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 238                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                       | EX2=().5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - 0239                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                       | L A Z = 1 + 2<br>E X 3 = 1 + E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6249                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                       | <u>11=6</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u>(:241</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | = t <u>242</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                       | <u>13=1</u> \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.243                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                       | ]4≖24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11244                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                       | <u>CO 955 I=3,12</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <u> 22</u> 2                                                          | <u>10 333 1-3,12</u><br>Y(1)=Y(1)+YC*U,5*FLCAT(1-2)/1C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                       | Y(3) = Y(3) *1 + 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                       | <u>Y(I)=Y(12)+YC*0.5*FLCAT(I-12)/12.</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                       | IF(KSP+EQ+1) GO TC 1((1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (;25()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| · · · · · · · · · · · · · · · · · · ·                                 | <u>EN 998 I=3,12</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <u></u>                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0252                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                       | $\frac{1F(1,G1,I1)}{U(1)=U(1)+(UC-U(1))} / (Y(12)-Y(1)) * (Y(1)-Y(1))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ) (253                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <u> </u>                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0254                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <b>\$</b> \$\$                                                        | F(1,1)≥1.<br>CD 996 I=13,24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | )254<br>(255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <b>\$\$</b> \$                                                        | F(1,1)=1.<br>CO_956_I=13,24<br>IF(1.LF.T3)_U(1)=U(12)+(UC=:.\$\$*UC)7(Y(12)-Y(13))*(Y(1)=Y(12))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0254                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 322                                                                   | F(1,1)=1.<br>CO_956_I=13,24<br>IF(1.LF.T3)_U(1)=U(12)+(UC=:.\$\$*UC)7(Y(12)-Y(13))*(Y(1)=Y(12))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0254<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                       | F(1,1)≥1.<br>CD 996 I=13,24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | )254<br>(255<br>(256<br>(257)<br>(257)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <b>.</b>                                                              | F(1,1)=1.<br>EO_996_I=13,24<br>IF(1.LF.13)_U(1)=U(12)+(UC=(.\$\$\$*UC)/(Y(12)-Y(13))*(Y(1)-Y(12))<br>IF(1.GT.12)_U(1)=U(13)*((Y(1)-Y(14))/(Y(13)-Y(14)))_**EX2<br>F(1,1)_*1.U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | )294<br>(255<br>(256<br>(256<br>(257<br>(257<br>0258                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                       | <pre>F(1,1)&gt;1.:<br/>CD 996 I=13,24<br/>IF(1.LF.13) U(1)=U(12)+(UC=0.\$\$\$*UC)/(Y(12)-Y(13))*(Y(1)-Y(12))<br/>IF(1.GT.12) U(1)=U(13)*((Y(1)-Y(14))/(Y(13)-Y(14))) **EX2<br/>IF(1,1) =1.0<br/>CONTINUE</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | )254<br>(255<br>(256<br>(256<br>(258<br>0258<br>()259                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <b>.</b>                                                              | <pre>F(1,1)=1.<br/>C0_956_I=13,24<br/>IF(1.LT.13)_U(1)=U(12)+(UC-:.\$\$\$*UC)/(Y(12)-Y(13))*(Y(1)-Y(12))<br/>IF(1.61.13)_U(1)=U(13)*((Y(1)-Y(14))/(Y(13)-Y(14)))_**EX2<br/>F(1,1)_=1.0<br/>CONTINUE<br/>Y(25)=Y(24)+1/2.</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | )254<br>(255<br>)256<br>(257<br>0258<br>0258<br>(0259<br>(220)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 555<br>1001                                                           | <pre>F(1,1)=1.:<br/>E0 996 I=13,24<br/>I+(1.LF.13) U(1)=U(12)+(UC-:.\$\$\$*UC)/(Y(12)-Y(13))*(Y(1)-Y(12))<br/>IF(1.G1.I2) U(1)=U(13)*((Y(1)-Y(14))/(Y(13)-Y(14))) **EX2<br/>F(1,1) *1.U<br/>CONTINUE<br/>Y(25)=Y(24)+T/2.<br/>Y(26)=Y(25)+T/2.</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ) 254<br>(255<br>(255<br>(257<br>0258<br>(259<br>(259<br>(260<br>(261                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 555<br>1001                                                           | <pre>F(1,1)=1.:<br/>E0_996_I=13,24<br/>IF(1.LF.13)_U(1)=U(12)+(UC-:.\$\$\$*UC)/(Y(12)-Y(13))*(Y(1)-Y(12))<br/>IF(1.G1.13)_U(1)=U(13)*((Y(1)-Y(14))/(Y(13)-Y(14)))_**EX2<br/>IF(1,1)_=1.0<br/>CONTINUE<br/>Y(25)=Y(24)+1/2.<br/>Y(25)=Y(25)+1/2.<br/>F(1,25)=0.</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | )254<br>(255<br>)256<br>(257<br>0258<br>0258<br>(0259<br>(220)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 555<br>1001                                                           | <pre>F(1,1)=1.:<br/>E0 996 I=13,24<br/>I+(1.LF.13) U(1)=U(12)+(UC-:.\$\$\$*UC)/(Y(12)-Y(13))*(Y(1)-Y(12))<br/>IF(1.G1.I2) U(1)=U(13)*((Y(1)-Y(14))/(Y(13)-Y(14))) **EX2<br/>F(1,1) *1.U<br/>CONTINUE<br/>Y(25)=Y(24)+T/2.<br/>Y(26)=Y(25)+T/2.</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ) 254<br>(255<br>(256<br>(257<br>0258<br>() 259<br>() 259<br>() 260<br>() 261<br>() 262                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 55E<br>1001                                                           | <pre>F(1,1)=1.:<br/>E0_996_I=13,24<br/>IF(1.LF.13)_U(1)=U(12)+(UC-:.\$\$\$*UC)/(Y(12)-Y(13))*(Y(1)-Y(12))<br/>IF(I.G1.I3)_U(1)=U(13)*((Y(1)-Y(14))/(Y(13)-Y(14)))_**EX2<br/>F(1,1)_=1.0<br/>CONTINUE<br/>Y(25)=Y(24)+1/2.<br/>Y(26)=Y(25)+1/2.<br/>F(1,25)=0.</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | () 254<br>() 255<br>() 256<br>() 257<br>() 258<br>() 259<br>() 259<br>() 261<br>() 261<br>() 262<br>() 263                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 556<br>1001                                                           | <pre>F(1,1)&gt;1.:<br/>C0_956_I=13,24<br/>IF(1.LF.13)_U(1)=U(12)*(UC-0.\$5\$*UC)/(Y(12)-Y(13))*(Y(1)=Y(12))<br/>IF(1.G1.12)_U(1)=U(13)*((Y(1)-Y(14))/(Y(13)-Y(14)))_**EX2<br/>F(1,1)_*1.0<br/>CONTINUE<br/>Y(25)=Y(24)+1/2.<br/>Y(26)=Y(25)+1/2.<br/>F(1,25)=0.<br/>E(1,26)=0.<br/>E0_955_I=27,25</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | () 254<br>() 255<br>() 256<br>() 256<br>() 258<br>() 259<br>() 260<br>() 261<br>() 262<br>() 263<br>() 263<br>() 264                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| \$\$6<br>1001                                                         | <pre>F(1,1)&gt;1.:<br/>C0_996_I=13,24<br/>IF(1.LF.13)_U(1)=U(12)+(UC-0.\$5\$U(2)/(Y(12)-Y(13))*(Y(1)=Y(12))<br/>IF(1.G1.12)_U(1)=U(13)*((Y(1)-Y(14))/(Y(13)-Y(14)))_**EX2<br/>F(1,1)_=1.0<br/>CONTINUE<br/>Y(25)=Y(24)+1/2.<br/>Y(26)=Y(25)+1/2.<br/>F(1,25)=0.<br/>F(1,26)=0.<br/>C0_995_I=27,25<br/>Y(1)=Y(26)+FLCAI(I-26)/10.*6W2</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | () 2 9 4<br>() 2 5 5<br>() 2 5 6<br>() 2 5 7<br>() 2 5 9<br>() 2 5 9<br>() 2 6 1<br>() 2 6 2<br>() 2 6 3<br>() 2 6 3<br>() 2 6 4<br>() 2 6 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| \$\$6<br>1001                                                         | <pre>F(1,1)&gt;1.:<br/>C0 996 J=13,24<br/>IF(1.LF+I3) U(1)=U(12)+(UC=0.\$5\$*UC)/(Y(12)-Y(13))*(Y(1)=Y(12))<br/>IF(1.67+I2) U(1)=U(13)*((Y(1)-Y(14))/(Y(13)-Y(14))) **EX2<br/>F(1,1) *1.U<br/>CONTINUE<br/>Y(25)=Y(24)+1/2.<br/>Y(25)=Y(24)+1/2.<br/>F(1,25)=0.<br/>E(1,26)=0.<br/>E0 995 J=27,25<br/>Y(1)=Y(26)+FLCA1(J=26)/10.*GW2<br/>JF(KSF+EQ+1) GU TC 1:(2</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | )254<br>(255<br>)256<br>(257<br>)258<br>()259<br>(260<br>()261<br>()262<br>()263<br>()263<br>()264<br>()265<br>()265<br>()265                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 5¢£<br>1001<br>*<br>\$95                                              | <pre>F(1,1)*1.{ CD 996 I=13,24 IF(1.LT.13) U(1)=U(12)*(UC-0.\$5\$UC)/(Y(12)-Y(13))*(Y(1)-Y(12)) IF(1.61.13) U(1)=U(13)*((Y(1)-Y(14))/(Y(13)-Y(14))) **EX2 F(1,1) =1.U CONTINUE Y(25)=Y(24)+1/2. Y(26)=Y(25)+1/2. F(1,25)=0. E0 995 I=27,25 Y(1)=Y(26)+FLCA1(I-26)/10.*GW2 IF(KSF.EQ.1) G0 TC 142 E0 994 I=27,35</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | () 254<br>() 255<br>() 255<br>() 257<br>() 258<br>() 259<br>() 260<br>() 261<br>() 262<br>() 263<br>() 264<br>() 265<br>() 265<br>() 265<br>() 265<br>() 265                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 556<br>1001<br>595                                                    | <pre>F(1,1)*1.<br/>CD 996 I=13,24<br/>IF(1.IF*I3) U(1)=U(12)*(UC-0.\$5\$*UC)/(Y(12)-Y(13))*(Y(1)-Y(12))<br/>IF(1.61.I3) U(1)=U(13)*((Y(1)-Y(14))/(Y(13)-Y(14))) **EX2<br/>F(1,1) *1.U<br/>CONTINUE<br/>Y(25)=Y(24)+1/2.<br/>Y(26)=Y(25)+1/2.<br/>F(1,25)*0.<br/>E(1,26)=0.<br/>E0 995 I=27,25<br/>Y(1)=Y(26)+FLOA1(I=26)/10.*GW2<br/>IF(KSF.EQ.I) GU TC 1((2)<br/>E0 994 I=27,35<br/>EX2=1.77.</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | )254<br>(255<br>)256<br>(257<br>)258<br>()259<br>(260<br>()261<br>()262<br>()263<br>()263<br>()264<br>()265<br>()265<br>()265                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 556<br>1001<br>595                                                    | <pre>F(1,1)*1.{ CD 996 I=13,24 IF(1.LT.13) U(1)=U(12)*(UC-0.\$5\$UC)/(Y(12)-Y(13))*(Y(1)-Y(12)) IF(1.61.13) U(1)=U(13)*((Y(1)-Y(14))/(Y(13)-Y(14))) **EX2 F(1,1) =1.U CONTINUE Y(25)=Y(24)+1/2. Y(26)=Y(25)+1/2. F(1,25)=0. E0 995 I=27,25 Y(1)=Y(26)+FLCA1(I-26)/10.*GW2 IF(KSF.EQ.1) G0 TC 142 E0 994 I=27,35</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | () 254<br>() 255<br>() 256<br>() 257<br>() 259<br>() 259<br>() 260<br>() 261<br>() 262<br>() 263<br>() 264<br>() 265<br>() 265<br>() 265<br>() 265<br>() 265<br>() 265<br>() 267<br>() 269                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 556<br>1001<br>1001<br>595                                            | <pre>F(1,1)*1.<br/>CD 996 I=13,24<br/>IF(1.IF*I3) U(1)=U(12)*(UC-0.\$5\$*UC)/(Y(12)-Y(13))*(Y(1)-Y(12))<br/>IF(1.61.I3) U(1)=U(13)*((Y(1)-Y(14))/(Y(13)-Y(14))) **EX2<br/>F(1,1) *1.U<br/>CONTINUE<br/>Y(25)=Y(24)+1/2.<br/>Y(26)=Y(25)+1/2.<br/>F(1,25)*0.<br/>E(1,26)=0.<br/>E0 995 I=27,25<br/>Y(1)=Y(26)+FLOA1(I=26)/10.*GW2<br/>IF(KSF.EQ.I) GU TC 1((2)<br/>E0 994 I=27,35<br/>EX2=1.77.</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | () 254<br>() 255<br>() 256<br>() 257<br>() 258<br>() 259<br>() 260<br>() 261<br>() 262<br>() 263<br>() 264<br>() 265<br>() 265<br>() 266<br>() 265<br>() 266<br>() 265<br>() 265<br>() 265<br>() 265                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| \$\$6<br>1001<br>1001<br>\$95<br>\$95                                 | <pre>F(1,1)*1.( E0 996 I=13,24 IF(1.1*I*)*1.()(1)=U(12)*(UC-0.\$5\$*UC)/(Y(12)-Y(13))*(Y(1)-Y(12)) IF(1.61*I*)U(1)=U(13)*((Y(1)-Y(14))/(Y(13)-Y(14))) **EX2 F(1.1*I)*1.**EX2 F(1.1*I)*1.**EX (ONTINUE Y(25)=Y(24)*1/2.* Y(26)=Y(25)*1/2.* F(1.25)*0.* F(1.25)*0.* F(1.25)*0.* F(1.25)*0.* F(1.26)=0.* E0 995 I=27,25 Y(I)=Y(26)*F(CA1(I-26)/10.*GW2 IF(KSF*EQ*I) G0 TC I((2) E0 994 I=27,25 EX2=1.77* U(I)=U(5*((Y(I)-Y(26)) / (Y(NP3)-Y(26))) ** EX3 F(1.1*E)*0.*</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | () 294<br>(.255<br>() 256<br>(.257<br>() 258<br>() 259<br>() 260<br>() 261<br>() 262<br>() 263<br>() 263<br>() 263<br>() 264<br>() 265<br>() 266<br>() 266<br>() 256<br>() 266<br>() 2 |
| \$\$6<br>1001<br>\$95<br>\$95<br>\$95<br>\$95                         | <pre>F(1,1)≈1.<br/>C0 996 I=13,24<br/>IF(1.LF.13) U(1)=U(12)+(UC-0.99*UC)/(Y(12)-Y(13))*(Y(1)-Y(12))<br/>IF(1.61.13) U(1)=U(13)*((Y(1)-Y(14))/(Y(13)-Y(14))) **EX2<br/>F(1,1)≈1.U<br/>CONTINUE<br/>Y(25)=Y(24)+T/2.<br/>Y(26)=Y(25)+T/2.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*</pre>                                                                                                                                                                                                                                                                                                         | () 294<br>(.255<br>() 256<br>(.257<br>() 258<br>() 259<br>() 260<br>() 261<br>() 262<br>() 263<br>() 263<br>() 263<br>() 263<br>() 263<br>() 265<br>() 267<br>() 267<br>() 267<br>() 267<br>() 267<br>() 267<br>() 268<br>() 266<br>() 258<br>() 268<br>() 266<br>() 268<br>() 266<br>() 267<br>() 267<br>() 267<br>() 267<br>() 276<br>() 2 |
| \$\$6<br>1001<br>\$95<br>\$95<br>\$95<br>\$95<br>\$95                 | <pre>F(1,1)=1.( C0 996 I=13,24 IF(1.1=13) U(1)=U(12)*(UC-(95*UC)/(Y(12)-Y(13))*(Y(1)-Y(12)) IE(1.61.13) U(1)=U(13)*((Y(1)-Y(14))/(Y(13)-Y(14))) **EX2 F(1,1) *1.U CONTINUE Y(25)=Y(24)+T/2. Y(26)=Y(25)+T/2. F(1,25)=0. E(0 995 I=27,25 Y(1)=Y(26)+F(CAT(1-26)/10.*GW2 IF(KSP.EQ+1) GU TC 1((2 C0 994 I=27,35 EX3=1./7. U(1)= UG*((Y(1)-Y(26)) / (Y(NP3)-Y(26))) ** EX3 F(1,1)=C.( CONTINUE GE TC 1G03</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | () 2 9 4<br>() 2 9 5<br>() 2 5 5<br>() 2 5 6<br>() 2 5 9<br>() 2 5 9<br>() 2 5 9<br>() 2 6 1<br>() 2 6 2<br>() 2 6 3<br>() 2 6 3<br>() 2 6 3<br>() 2 6 5<br>() 2 7 1<br>() 2 7 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| \$\$6<br>1001<br>\$95<br>\$95<br>\$95<br>\$95<br>1000<br>1002         | <pre>F(1,1)&gt;1.<br/>C0 956 I=13,24<br/>IF(1.IF.12) U(1)=U(12)*(UC=0.55*UC)/(Y(12)-Y(13))*(Y(1)-Y(12))<br/>IE(I.61.I2) U(1)=U(13)*((Y(1)-Y(14))/(Y(13)-Y(14))) **EX2<br/>F(1,1) *1.0<br/>CONTINUE<br/>Y(25)=Y(24)+1/2.<br/>F(1,1)=Y(24)+1/2.<br/>F(1,25)=0.<br/>F(1,25)=0.<br/>F(1,25)=0.<br/>F(1,25)=0.<br/>F(1,25)=0.<br/>F(1,25)=0.<br/>F(1,25)=0.<br/>F(1,25)=0.<br/>F(1,25)=0.<br/>F(1,25)=0.<br/>F(1,25)=0.<br/>F(1,25)=0.<br/>F(1,25)=0.<br/>F(1,25)=0.<br/>F(1,25)=0.<br/>F(1,25)=0.<br/>F(1,25)=0.<br/>F(1,25)=0.<br/>F(1,25)=0.<br/>F(1,25)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.<br/>F(1,2)=0.</pre>                 | () 2 9 4<br>() 2 5 5<br>() 2 5 5<br>() 2 5 7<br>() 2 5 8<br>() 2 5 9<br>() 2 5 9<br>() 2 6 1<br>() 2 6 2<br>() 2 6 3<br>() 2 6 4<br>() 2 6 5<br>() 2 6 3<br>() 2 6 4<br>() 2 6 5<br>() 2 6 3<br>() 2 6 4<br>() 2 6 5<br>() 2 6 3<br>() 2 6 4<br>() 2 6 5<br>() 2 7 6<br>() 2 7 1<br>() 2 7 2<br>() 2 7 2<br>() 2 7 2<br>() 2 7 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 556<br>1001<br>595<br>595<br>\$95<br>\$95<br>1000<br>1002             | <pre>F(1,1)*1.<br/>C0 996 1=13,24<br/>IF(1+LF+12) U(1)=U(12)*(UC-0+99*UC)/(Y(12)-Y(13))*(Y(1)-Y(12))<br/>IE(1.61+12) U(1)=U(13)*((Y(1)-Y(14))/(Y(13)-Y(14))) **EX2<br/>F(1,1) *1.0<br/>CONTINUE<br/>Y(25)=Y(24)+1/2.<br/>Y(26)=Y(25)+1/2.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,1)*C.<br/>CONTINUE<br/>F(1,0)*C.<br/>CONTINUE<br/>F(1,0)*C.<br/>CONTINUE<br/>F(1,0)*C.<br/>CONTINUE<br/>F(1,0)*C.<br/>CONTINUE<br/>F(1,0)*C.<br/>CONTINUE<br/>F(1,0)*C.<br/>CONTINUE<br/>F(1,0)*C.<br/>CONTINUE<br/>F(1,0)*C.<br/>CONTINUE<br/>F(1,0)*C.<br/>CONTINUE<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>CONTINUE<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.</pre>                                                                                                                                                                                                                                                                  | () 2 9 4<br>() 2 9 5<br>() 2 5 5<br>() 2 5 6<br>() 2 5 9<br>() 2 5 9<br>() 2 5 9<br>() 2 6 1<br>() 2 6 2<br>() 2 6 3<br>() 2 6 3<br>() 2 6 3<br>() 2 6 5<br>() 2 7 1<br>() 2 7 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 556<br>1001<br>595<br>595<br>\$95<br>\$95<br>1000<br>1002             | <pre>F(1,1)&gt;1.<br/>C0 956 I=13,24<br/>IF(1.IF.12) U(1)=U(12)*(UC=0.55*UC)/(Y(12)-Y(13))*(Y(1)-Y(12))<br/>IE(I.61.I2) U(1)=U(13)*((Y(1)-Y(14))/(Y(13)-Y(14))) **EX2<br/>F(1,1) *1.0<br/>CONTINUE<br/>Y(25)=Y(24)+1/2.<br/>F(1,1)=Y(24)+1/2.<br/>F(1,25)=0.<br/>F(1,25)=0.<br/>F(1,25)=0.<br/>F(1,25)=0.<br/>F(1,25)=0.<br/>F(1,25)=0.<br/>F(1,25)=0.<br/>F(1,25)=0.<br/>F(1,25)=0.<br/>F(1,25)=0.<br/>F(1,25)=0.<br/>F(1,25)=0.<br/>F(1,25)=0.<br/>F(1,25)=0.<br/>F(1,25)=0.<br/>F(1,25)=0.<br/>F(1,25)=0.<br/>F(1,25)=0.<br/>F(1,25)=0.<br/>F(1,25)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.</pre>                 | () 2 9 4<br>() 2 5 5<br>() 2 5 5<br>() 2 5 7<br>() 2 5 8<br>() 2 5 9<br>() 2 5 9<br>() 2 6 1<br>() 2 6 2<br>() 2 6 3<br>() 2 6 4<br>() 2 6 5<br>() 2 6 3<br>() 2 6 4<br>() 2 6 5<br>() 2 6 3<br>() 2 6 4<br>() 2 6 5<br>() 2 6 3<br>() 2 6 4<br>() 2 6 5<br>() 2 7 6<br>() 2 7 1<br>() 2 7 2<br>() 2 7 2<br>() 2 7 2<br>() 2 7 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| \$\$6<br>1001<br>\$95<br>\$95<br>\$95<br>\$95<br>1002                 | <pre>F(1,1)*1.<br/>C0 996 1=13,24<br/>IF(1+LF+12) U(1)=U(12)*(UC-0+99*UC)/(Y(12)-Y(13))*(Y(1)-Y(12))<br/>IE(1.61+12) U(1)=U(13)*((Y(1)-Y(14))/(Y(13)-Y(14))) **EX2<br/>F(1,1) *1.0<br/>CONTINUE<br/>Y(25)=Y(24)+1/2.<br/>Y(26)=Y(25)+1/2.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,1)*C.<br/>CONTINUE<br/>F(1,0)*C.<br/>CONTINUE<br/>F(1,0)*C.<br/>CONTINUE<br/>F(1,0)*C.<br/>CONTINUE<br/>F(1,0)*C.<br/>CONTINUE<br/>F(1,0)*C.<br/>CONTINUE<br/>F(1,0)*C.<br/>CONTINUE<br/>F(1,0)*C.<br/>CONTINUE<br/>F(1,0)*C.<br/>CONTINUE<br/>F(1,0)*C.<br/>CONTINUE<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>CONTINUE<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.<br/>F(1,0)*C.</pre>                                                                                                                                                                                                                                                                  | () 294<br>() 255<br>() 256<br>() 258<br>() 259<br>() 260<br>() 261<br>() 262<br>() 263<br>() 264<br>() 265<br>() 265<br>() 266<br>() 265<br>() 266<br>() 265<br>() 265<br>() 265<br>() 265<br>() 265<br>() 270<br>() 271<br>() 272<br>() 273<br>() 274<br>() 275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| \$\$6<br>1001<br>\$95<br>\$95<br>\$95<br>1000<br>1002                 | <pre>F(1,1)*1.<br/>ED 996 I=13,24<br/>IF(1.LF.T3) U(1)=U(12)*(UC=0.\$5\$*UC)/(Y(12)-Y(13))*(Y(1)=Y(12))<br/>IF(1.GT.T2) U(1)=U(T3)*((Y(1)=Y(T4))/(Y(T3)=Y(14))) **EX2<br/>f(1,1) *1.0<br/>CONTINUE<br/>Y(25)=Y(24)=T/2.<br/>Y(26)=Y(25)=T/2.<br/>Y(26)=Y(25)=T/2.<br/>F(1,25)=0.<br/>ED 955 I=27,25<br/>Y(1)=Y(26)=FUCAT(I=26)/10.*GW2<br/>IF(KSF.EQ.T] G0 TC 1((2<br/>ED 954 I=27,35<br/>IX2=1./7.<br/>U(1)=UG*((Y(I)=Y(26)) / (Y(NP3)=Y(26))) ** FX3<br/>F(1,1)=C.t<br/>CONTINUE<br/>GC TC 1003<br/>CONTINUE<br/>EC 1004 I=1,NP3<br/>U(1)=VSCK(KWF,T)*UC<br/>IF(1.LF.24) F(1,1)=1.(</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | () 294<br>(.255<br>() 256<br>(.257<br>() 258<br>() 259<br>() 260<br>() 261<br>() 262<br>() 263<br>() 263<br>() 265<br>() 265<br>() 265<br>() 265<br>() 265<br>() 265<br>() 265<br>() 276<br>() 271<br>() 272<br>() 273<br>() 274<br>() 275<br>() 276<br>() 275<br>() 276                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| \$\$6<br>1001<br>\$95<br>\$95<br>\$95<br>1000<br>1002<br>1002         | <pre>F(1,1)*1+:<br/>CD 996 [=13,24<br/>IF (1,1+12) U(1)=U(12)+(UC=0.\$\$\$*UC)/(Y(12)-Y(13))*(Y(1)=Y(12))<br/>IF (1,1) *1.U<br/>CONTINUE<br/>Y(25)=Y(24)+1/2.<br/>Y(26)=Y(25)+1/2.<br/>F(1,25)=0.<br/>F(1,25)=0.<br/>F(1,25)=0.<br/>F(1,25)=0.<br/>F(1,25)=0.<br/>F(1,25)=0.<br/>F(1,25)=0.<br/>F(1,25)=0.<br/>F(1,25)=0.<br/>F(1,25)=0.<br/>F(1,25)=0.<br/>F(1,25)=0.<br/>F(1,25)=0.<br/>F(1,25)=0.<br/>F(1,25)=0.<br/>F(1,25)=0.<br/>F(1,25)=0.<br/>F(1,25)=0.<br/>F(1,25)=0.<br/>F(1,25)=0.<br/>F(1,25)=0.<br/>F(1,25)=0.<br/>F(1,25)=0.<br/>F(1,25)=0.<br/>F(1,25)=0.<br/>F(1,25)=0.<br/>F(1,25)=0.<br/>F(1,25)=0.<br/>F(1,25)=0.<br/>F(1,25)=0.<br/>F(1,25)=0.<br/>F(1,25)=0.<br/>F(1,25)=0.<br/>F(1,25)=0.<br/>F(1,25)=0.<br/>F(1,25)=0.<br/>F(1,25)=0.<br/>F(1,25)=0.<br/>F(1,25)=0.<br/>F(1,25)=0.<br/>F(1,25)=0.<br/>F(1,25)=0.<br/>F(1,1)=0.<br/>F(1,25)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F(1,1)=0.<br/>F</pre>     | () 2 9 4<br>(. 2 5 5<br>() 2 5 6<br>(. 2 5 7<br>() 2 5 9<br>() 2 6 0<br>() 2 6 1<br>() 2 6 2<br>() 2 6 3<br>() 2 7 3<br>() 2 7 3<br>() 2 7 3<br>() 2 7 4<br>() 2 7 2<br>() 2 7 3<br>() 2 7 4<br>() 2 7 7<br>() 2 7 6<br>() 2 7 3<br>() 2 7 6<br>() 2 7 7<br>()                                                                                                                                                                                                     |
| \$\$6<br>1001<br>\$95<br>\$95<br>\$95<br>1002<br>1002<br>1004<br>1603 | <pre>F(1,1)*1.<br/>C0 956 I=13,24<br/>IF(1.[F.12]) U(1)=U(12)*(UC-:.\$\$\$*UC)/(Y(12)-Y(12))*(Y(1)-Y(12))<br/>IF(1.[1]) *1.U<br/>CONTINUE<br/>Y(25)=Y(24)+1/2.<br/>Y(26)=Y(25)+1/2.<br/>Y(26)=Y(25)+1/2.<br/>Y(26)=Y(25)+1/2.<br/>F(1,25)+0.<br/>F(1,25)+0.<br/>F(1,25)+0.<br/>F(1,25)+0.<br/>F(1,25)+0.<br/>F(1,25)+0.<br/>F(1,25)+0.<br/>F(1,25)+0.<br/>F(1,25)+0.<br/>F(1,25)+0.<br/>F(1,25)+0.<br/>F(1,25)+0.<br/>F(1,25)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)</pre> | () 2 5 4<br>(. 2 5 5<br>() 2 5 6<br>(. 2 5 7<br>() 2 5 8<br>() 2 5 9<br>() 2 6 1<br>() 2 6 2<br>() 2 6 2<br>() 2 6 3<br>() 2 7 3<br>() 2 7 4<br>() 2 7 7<br>() 2 7 8<br>() 2 7 7<br>() 2 7 8<br>() 2 7 7<br>() 2 7 8<br>() 2 7 7<br>() 2 7 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| \$\$6<br>1001<br>\$95<br>\$95<br>1000<br>1002<br>1002<br>1004<br>1603 | <pre>F(1,1)*1.<br/>C0 956 I=13,24<br/>H (1.(F,12) U(1)=U(12)*(UC-:.\$5\$*UC)/(Y(12)-Y(12))*(Y(1)=Y(12))<br/>IF (I.6].12) U(1)=U(13)*((Y(1)-Y(14))/(Y(13)-Y(14))) **Ex2<br/>(0.11) *1.0<br/>CONTINUE<br/>Y(25)=Y(24)+1/2.<br/>Y(26)=Y(25)+1/2.<br/>Y(26)=Y(25)+1/2.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)=0.<br/>C0 955 I=27,25<br/>Y(1)=Y(26)+F(CAT(I-26)/10.*6W2<br/>IF(KSF.EQ.1) GU TC 1(*(2))<br/>C0 954 I=27,35<br/>Y(1)=Y(26)+F(CAT(I-26)/10.*6W2<br/>IF(KSF.EQ.1) GU TC 1(*(2))<br/>C0 954 I=27,35<br/>Y(1)=Y(26)+F(1)=Y(26)) / (Y(NP3)=Y(26))) ** FX3<br/>F(1,1)=U6*((Y(1)-Y(26)) / (Y(NP3)=Y(26))) ** FX3<br/>F(1,1)=U6*((Y(NP3)=Y(26)) ** FX3<br/>F(1,1)=U6*((Y(NP3)=Y(26)) ** FX3<br/>F(1,1)=U6*((Y(NP3)=Y(26))) ** FX3<br/>F(1,1)=U6*((Y(NP3)=Y(26))) ** FX3<br/>F(1,1)=U6*((Y(NP3)=Y(26))) ** FX3<br/>F(1,1)=U6*((Y(NP3)=Y(26))) ** FX3<br/>F(1,1)=U6*((Y(NP3)=Y(26))) ** FX3<br/>F(1,1)=U6*((Y(NP3)=Y(26))) ** FX3<br/>F(1,1)=U6*((</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | () 2 5 4<br>() 2 5 5<br>() 2 5 5<br>() 2 5 7<br>() 2 5 8<br>() 2 5 9<br>() 2 6 1<br>() 2 6 2<br>() 2 6 2<br>() 2 6 3<br>() 2 7 6<br>() 2 7 3<br>() 2 7 4<br>() 2 7 7<br>() 2 7 3<br>() 2 7 7<br>() 2 7 8<br>() 2 7 9<br>() 2 7 7<br>() 2 7 8<br>() 2 7 9<br>() 2 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| \$\$6<br>1001<br>\$95<br>\$95<br>1000<br>1002<br>1002<br>1004<br>1603 | <pre>F(1,1)*1.<br/>C0 956 I=13,24<br/>IF(1.[F.12]) U(1)=U(12)*(UC-:.\$\$\$*UC)/(Y(12)-Y(12))*(Y(1)-Y(12))<br/>IF(1.[1]) *1.U<br/>CONTINUE<br/>Y(25)=Y(24)+1/2.<br/>Y(26)=Y(25)+1/2.<br/>Y(26)=Y(25)+1/2.<br/>Y(26)=Y(25)+1/2.<br/>F(1,25)+0.<br/>F(1,25)+0.<br/>F(1,25)+0.<br/>F(1,25)+0.<br/>F(1,25)+0.<br/>F(1,25)+0.<br/>F(1,25)+0.<br/>F(1,25)+0.<br/>F(1,25)+0.<br/>F(1,25)+0.<br/>F(1,25)+0.<br/>F(1,25)+0.<br/>F(1,25)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)+0.<br/>F(1,1)</pre> | () 254<br>(.255<br>(.257<br>(.257<br>(.257<br>(.257)<br>(.259<br>(.263)<br>(.265<br>(.265<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.265)<br>(.271)<br>(.272)<br>(.275)<br>(.275)<br>(.275)<br>(.275)<br>(.275)<br>(.275)<br>(.275)<br>(.277)<br>(.275)<br>(.277)<br>(.277)<br>(.277)<br>(.277)<br>(.277)<br>(.277)<br>(.277)<br>(.277)<br>(.277)<br>(.277)<br>(.277)<br>(.277)<br>(.277)<br>(.277)<br>(.277)<br>(.277)<br>(.277)<br>(.277)<br>(.277)<br>(.277)<br>(.277)<br>(.277)<br>(.277)<br>(.277)<br>(.277)<br>(.277)<br>(.277)<br>(.277)<br>(.277)<br>(.277)<br>(.277)<br>(.277)<br>(.277)<br>(.277)<br>(.277)<br>(.277)<br>(.277)<br>(.277)<br>(.277)<br>(.277)<br>(.277)<br>(.277)<br>(.277)<br>(.277)<br>(.277)<br>(.277)<br>(.277)<br>(.277)<br>(.277)<br>(.277)<br>(.277)<br>(.277)<br>(.277)<br>(.277)<br>(.277)<br>(.277)<br>(.277)<br>(.277)<br>(.277)<br>(.277)<br>(.277)<br>(.277)<br>(.277)<br>(.277)<br>(.277)<br>(.277)<br>(.277)<br>(.277)<br>(.277)<br>(.277)<br>(.277)<br>(.277)<br>(.277)<br>(.277)<br>(.277)<br>(.277)<br>(.277)<br>(.277)<br>(.277)<br>(.277)<br>(.277)<br>(.277)<br>(.277)<br>(.277)<br>(.277)<br>(.277)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| \$\$6<br>1001<br>\$95<br>\$95<br>1000<br>1002<br>1002<br>1004<br>1603 | <pre>F(1,1)*1.<br/>C0 956 I=13,24<br/>H (1.(F,12) U(1)=U(12)*(UC-:.\$5\$*UC)/(Y(12)-Y(12))*(Y(1)=Y(12))<br/>IF (I.6].12) U(1)=U(13)*((Y(1)-Y(14))/(Y(13)-Y(14))) **Ex2<br/>(0.11) *1.0<br/>CONTINUE<br/>Y(25)=Y(24)+1/2.<br/>Y(26)=Y(25)+1/2.<br/>Y(26)=Y(25)+1/2.<br/>F(1,25)*0.<br/>F(1,25)*0.<br/>F(1,25)=0.<br/>C0 955 I=27,25<br/>Y(1)=Y(26)+F(CAT(I-26)/10.*6W2<br/>IF(KSF.EQ.1) GU TC 1(*(2))<br/>C0 954 I=27,35<br/>Y(1)=Y(26)+F(CAT(I-26)/10.*6W2<br/>IF(KSF.EQ.1) GU TC 1(*(2))<br/>C0 954 I=27,35<br/>Y(1)=Y(26)+F(1)=Y(26)) / (Y(NP3)=Y(26))) ** FX3<br/>F(1,1)=U6*((Y(1)-Y(26)) / (Y(NP3)=Y(26))) ** FX3<br/>F(1,1)=U6*((Y(NP3)=Y(26)) ** FX3<br/>F(1,1)=U6*((Y(NP3)=Y(26)) ** FX3<br/>F(1,1)=U6*((Y(NP3)=Y(26))) ** FX3<br/>F(1,1)=U6*((Y(NP3)=Y(26))) ** FX3<br/>F(1,1)=U6*((Y(NP3)=Y(26))) ** FX3<br/>F(1,1)=U6*((Y(NP3)=Y(26))) ** FX3<br/>F(1,1)=U6*((Y(NP3)=Y(26))) ** FX3<br/>F(1,1)=U6*((Y(NP3)=Y(26))) ** FX3<br/>F(1,1)=U6*((</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | () 2 5 4<br>() 2 5 5<br>() 2 5 5<br>() 2 5 7<br>() 2 5 8<br>() 2 5 9<br>() 2 6 1<br>() 2 6 2<br>() 2 6 2<br>() 2 6 3<br>() 2 7 6<br>() 2 7 3<br>() 2 7 4<br>() 2 7 7<br>() 2 7 3<br>() 2 7 7<br>() 2 7 8<br>() 2 7 9<br>() 2 7 7<br>() 2 7 8<br>() 2 7 9<br>() 2 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

ť

| C EEGIN SUBROUTINE SPLIT HERE ON S.10.67(PRP) INTO BEGINI AND                                                                   | BEGIN20281    |
|---------------------------------------------------------------------------------------------------------------------------------|---------------|
|                                                                                                                                 | ÷282          |
| _6FORMAT(6F6.3,11,FX)                                                                                                           |               |
|                                                                                                                                 |               |
| 7 FCFM/T(6F6.3,11,5X,11,5X)                                                                                                     |               |
| <u>E FORMAT ( 6F6.3, 11, 5X, 3F6.3)</u>                                                                                         | <u></u>       |
| 50 FCFM #1 (312)                                                                                                                | (286          |
| 51_EORNAT(E6.3.12/(12E6.2))                                                                                                     | <u> </u>      |
| 55 FCKMAT(F6+3+12/(12F++31)                                                                                                     |               |
|                                                                                                                                 |               |
| <u>57 FORMAT(212,1X/(12F6,2))</u>                                                                                               | <u></u>       |
| EV FCRMAT(1240)                                                                                                                 | 1-250         |
| <u> </u>                                                                                                                        | 0.201         |
| 106 FCRM4T(6X,12)                                                                                                               | (292          |
| RETURN                                                                                                                          |               |
|                                                                                                                                 | <u>°253</u>   |
| ENC                                                                                                                             |               |
| \$IEFTC PEG2                                                                                                                    | 0295          |
| SUERCUTINE ELGINZ                                                                                                               | ( 25/         |
| CONMON /GEN/PEI, ANI, ANE, DPDX, PREF (2), PR(2), P(2), DEN, AMU, XU,                                                           | 57 mar 15 st  |
| 1)L,DX,1ATC,(SALF7                                                                                                              |               |
|                                                                                                                                 | (258          |
| <u> </u>                                                                                                                        | [299          |
| 1/6/667/76AM//2), 1AU, 1AUE, AJ1(2), AJE(2), INCI(2), INCU(2)                                                                   | r3(n          |
| 1/V/U(43), F(2,43), P(43), PHC(43), (M(43), Y(43)                                                                               | <u></u>       |
| (CMM(N/AME/h1,PC,TC                                                                                                             | (?(2          |
| COMMEN/CON/UG, UCG, YC, XYC, FPG, FAT(20)                                                                                       |               |
|                                                                                                                                 | 03 <u>C</u> 3 |
| CCMMCN /JAY/ JCCMP#KCRA##KSETS#KSP                                                                                              |               |
| COMMEN /X/TITLE(12),XV(10),YX(10,70),(X(10,70),FIX(10,70),A)                                                                    | EL, NPHO205   |
| ▌▋▖ŇEĬ₼ぅŇŮ╨(ユ:)ᢖ₽₼Ĩ(ᢓ;ĬŮ᠅)ずX(うŇŖŮŇぅŇŀĨ(ĺŮ・うŇĔĔゥĂXŀ(ĺŮ;テネリ)ずXŀ                                                                   | (1)) (2)(     |
| COMMEN/COUNT/KCEUNT                                                                                                             | 02(7_         |
| CCNMCN/AUTOCOV,                                                                                                                 |               |
|                                                                                                                                 |               |
| COMMENZEVISZ BMU                                                                                                                | <u>0310</u>   |
| COMMUN/COUL/ IC,ICC,HC,HCC                                                                                                      |               |
| <u>C***** CONTINUATION OF BEGIN1</u>                                                                                            | 0311          |
| C CALCULATION OF SLIP VELOCITIES AND DISTANCES                                                                                  | <u> </u>      |
| EETA= . 143                                                                                                                     | 0313          |
|                                                                                                                                 |               |
| CC 10 (71,72,73),KIN                                                                                                            | 314           |
| 71 U(2)=U(3)/(1+2+2+#EFTA)                                                                                                      | 0315          |
| Y(2)=Y(3) ×8ETA7(2.+EETA)                                                                                                       | 1316          |
| <u> </u>                                                                                                                        | 0317          |
|                                                                                                                                 | (216          |
|                                                                                                                                 |               |
| <u> </u>                                                                                                                        | 0319          |
| <b>L32=L(2)</b> *L(2)                                                                                                           | (132/)        |
| <u>\$0=84.*U11-12.*U13+5.*U33</u>                                                                                               |               |
| U(2)=(16.*U11=4.*U13+U33)7(2.*(U(1)+U(3))+SCX7(SC))                                                                             | 1322          |
| $- \frac{Y(2) = Y(3) \times (U(2) + U(3) - 2 \times U(1)) \times (5/(U(2) + U(3) + U(1))}{Y(2) \times (5/(U(2) + U(3) + U(1))}$ | 0323          |
|                                                                                                                                 |               |
|                                                                                                                                 | : 324         |
| 73 IF (KRAC+NE+U) GC TO ES                                                                                                      | 0.325         |
| U(2)=(4,×U())=U(3))/3.                                                                                                          | 0326          |
| Y(2)=0.                                                                                                                         |               |
| G 16 14                                                                                                                         | 1328          |
|                                                                                                                                 |               |
| 89 U(2)=U(1)                                                                                                                    | 0329          |
| <b>¥(2)=¥(3)/3.</b>                                                                                                             | (;330         |
| 74 GO TO (75,76,77), KEX                                                                                                        | 0331          |
| 75 L(NP2)=U(NP1)/(1++2+*E(TA)                                                                                                   | (332          |
| Y(NP2)=Y(NP3)-(Y(NP3)-Y(NP1))*EETA/(2.+BETA)                                                                                    | 0333          |
|                                                                                                                                 |               |
| <b>CC</b> 10 78                                                                                                                 |               |
| 74 1013-101 (101) +101 (101)                                                                                                    | 0000          |

CG TC 78 76 U11=U(NP1)\*U(NP1) U13=U(NP1)\*U(NP3)

C335 1335

\$ECF

| 🔶 1                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                         | SQ=84.*U33=12.*U13+5.*U11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 238                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| · · · · ·                                                                                                                                                               | $\frac{U(NP2) = (16 + \pi U33 - 4 + \pi U13 + U11) / (2 + \pi (U(NP1) + U(NP3)) + SQRT(SQ))}{U(NP3) + SQRT(SQ)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0239                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                         | <u>└(NP2)=\ !=`NU35=`4</u> *\U13+U117/\2+*\\U1NP1)+U(NP3)+F3&K \3&  <br><b>\(NP2)=\(NP3)+(\(NP3)+\(NP1))*(U(NP2)+U(NP1)=2</b> **U( <del>NP3))*</del> 5/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                         | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -6341                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u>C242</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                         | U(NP2)=(4.*U(NP3)-U(NF1))/3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u>- 6343</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0344                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0345                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                         | JF (NEQEQ1) 60 10 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                         | J=1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| C CAI                                                                                                                                                                   | LCULATION OF CORRESPONDING SLIP VALUES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>€34</b> 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                         | - CAMA(J)=-143                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0349-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                         | CO TO (81,82,83),KIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 81                                                                                                                                                                      | F(J,2)=F(J,1)+(F(J,3)-F(J,1))*(1.+EFT/-GAMA(J))/(1.+PETA+GAMA(J))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u> 6351</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                         | CC TC E4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0352-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <u> </u>                                                                                                                                                                | F(J,2)=F(J,1)+(F(J,3)=F(J,1))*(U(2)+U(3)=8-*U(1))/(5-*(U(2)+U(3))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u>. 6353 -</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                         | ]-16•*U(1))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4:354                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <u> </u>                                                                                                                                                                | GO TO 84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0355                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 83                                                                                                                                                                      | ↑{J;2}={{J;1}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4356                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                         | IF(KRAC.EO.0)F(J.2)=(4.*F(J.1)-F(J.3))/3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 84                                                                                                                                                                      | CO 1C (85,86,07),KEX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.358                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                         | $= F(J_{1} \times P_{2}) = F(J_{1} \times P_{2}) + (F(J_{1} \times P_{1}) - F(J_{1} \times P_{2})) + (I_{1} + FETA - CA \times A(J)) / (I_{1} + FETA - CA \times $                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                         | [(A*A(j)]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | : 36:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0361                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                         | CC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -4:46-1<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                         | 1(5•×(U(NP2)+U(NP1))+8•*U(NP3))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -(363-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                         | CC TC 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <br>C 7                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <u></u>                                                                                                                                                                 | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0265                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 45                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - <del>03(6</del> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 45                                                                                                                                                                      | CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u>7367</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                         | CONTINUE<br>CALL DENSTY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 367<br>368                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                         | CONTINUE<br>CALL DENSIY<br>CULATION OF RADII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0367<br>_0368<br>_036°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                         | CONTINUE<br>CALL DENSIY<br>CULATION OF RADII<br>CALL RADIXU,RTIJ,CSALFA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0367<br>0368<br>0369<br>4370                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                         | CONTINUE<br>CALL DENSTY<br>CULATION_CE_RADII<br>CALL R7D(XU,R11),CSALF4)<br>JF(CSALFA.EC.0CR.KRAC.EC.C)_CC_TC_27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (367<br>0368<br>0369<br>(370<br>(371                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <u> </u>                                                                                                                                                                | CONTINUE<br>CALL DENSTY<br>CULATION OF RADIJ<br>CALL RADIXU,RTIJ,CSALFA)<br>JF(CSALFA,EC.0+,CR+KRAC+EC+C)_GC_TC_27<br>LC 28 J=2,NP2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (367<br>0368<br>0369<br>370<br>(371<br>0372                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <u> </u>                                                                                                                                                                | CONTINUE<br>CALL DENSIY<br>CULATION OF RADII<br>CALL RADIXU,R(1),CSALFA)<br>JF(CSALFA.EC.DCR.KRAC.EC.C) GC TC 27<br>CC 28 I=2,NP2<br>R(1)=R(1)+Y(1)*CSALFA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (367)<br>(368)<br>(376)<br>(371)<br>(371)<br>(372)<br>(373)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <u>с</u> сац<br>28                                                                                                                                                      | CONTINUE<br>(ALL DENSIY<br>CULATION OF RADII<br>(ALL RAD(XU,R(1),CSALFA)<br>IF(CSALFA.EC.0CR.KRAC.EC.C) GC TC 27<br>LC 28 I=2,NP2<br>R(1)=R(1)+Y(1)*CSALFA<br>CC TC 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (367<br>0368<br>0369<br>(370<br>(371<br>0372<br>(373<br>(374                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| C CAL<br>28<br>27                                                                                                                                                       | CONTINUE<br>CALL DENSIY<br>CULATION OF RADIJ<br>CALL RAD(XU,R(1),CSALFA)<br>IF(CSALFA.EC.0CR.KRAC.EC.C) GC_TC_27<br>CC_28_T=2,NP2<br>R(1)=R(1)+Y(1)*CSALFA<br>CC_TC_29<br>CC_30_T=2,NP3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (367<br>0369<br>0369<br>(370<br>(371<br>0372<br>0373<br>(374<br>0375                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| С САL<br>28<br>27<br>30                                                                                                                                                 | CONTINUE<br>CALL DENSIY<br>CULATION_CE_RADIJ<br>CALL RAD(XU,R(1),CSALFA)<br>IF(CSALFA,EC,0,.CR.KRAC.EC.C)_CC_TC_27<br>CC_28_T=2,NP2<br>R(1)=R(1)+Y(1)*CSALFA<br>CC_TC_25<br>CC_30_T=2,NP3<br>F(1)=R(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (367<br>0368<br>0369<br>(370<br>0372<br>0372<br>0373<br>0374<br>0375<br>0375<br>0375                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| C CAL<br>28<br>27<br>20<br>25                                                                                                                                           | CONTINUE<br>CALL DENSIY<br>CULATION_CE_RADIJ<br>(ALL RADIXU,RTIJ,CSALFA)<br>JF(CSALFA.EC.0CR.KRAC.EC.C) CC_TC_27<br>CC_28_T=2,NP2<br>R(J)=R(1)+Y(J)*CSALFA<br>CC_TC_25<br>CC_30_I=2,NP3<br>F(I)=R(1)<br>CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (367<br>0368<br>0369<br>(370<br>0372<br>0373<br>0374<br>0374<br>0375<br>0375<br>0376<br>(377                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| C CAL<br>28<br>27<br>20<br>25                                                                                                                                           | CONTINUE<br>CALL DENSIY<br>CULATION OF OMEGA WALUES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (367<br>0368<br>0369<br>(370<br>(371<br>0372<br>(373<br>(374<br>0375<br>(375)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| C CAL<br>28<br>27<br>20<br>25                                                                                                                                           | CONTINUE<br>CALL DENSIY<br>CULATION_CE_RADIJ<br>(ALL RADIXU,RTIJ,CSALFA)<br>JF(CSALFA.EC.0CR.KRAC.EC.C) CC_TC_27<br>CC_28_T=2,NP2<br>R(J)=R(1)+Y(J)*CSALFA<br>CC_TC_25<br>CC_30_I=2,NP3<br>F(I)=R(1)<br>CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (367<br>03(8<br>0369<br>(37)<br>(37)<br>0372<br>(373<br>(374<br>0375<br>(374<br>0375<br>(376<br>(377)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| C CAL<br>28<br>27<br>20<br>25                                                                                                                                           | CONTINUE<br>CALL DENSIY<br>CULATION OF OMEGA WALUES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (367<br>0368<br>0369<br>(371<br>0372<br>(373<br>0374<br>0374<br>0375<br>0376<br>0376<br>0377<br>0378                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| C CAL<br>28<br>27<br>20<br>25                                                                                                                                           | CONTINUE<br>(ALL DENSIY<br>.CULATION OF OMEGA VALUES<br>(ULATION OF OMEGA VALUES<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (367<br>0368<br>0369<br>(370<br>(371<br>0372<br>(373<br>(374<br>0375<br>(375<br>(377<br>(378<br>0379                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| C CAL<br>28<br>27<br>30<br>29<br>C CA                                                                                                                                   | CONTINUE<br>CALL DENSTY<br>.CULATION OF RADII<br>CALL PAD(XU,R(1),CSALFA)<br>IF(CSALFA.EC.0CR.KRAC.EC.C) CC TC 27<br>EC 28 T=2,NP2<br>R(1)=R(1)+Y(1)*CSALFA<br>CC TC 25<br>EC 30 T=2,NP3<br>F(T)=R(1)<br>CONTINUE<br>ALCULATION OF OMEGA VALUES<br>CM(1)=0.<br>CM(2)=U.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (367<br>0368<br>0369<br>370<br>0372<br>0373<br>0373<br>0374<br>0375<br>0376<br>0375<br>0378<br>0379<br>0379<br>0379                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| C CAL<br>28<br>27<br>20<br>29<br>C CA<br>49                                                                                                                             | CONTINUE<br>CALL DENSTY<br>CULATION OF RADII<br>CALL R7D(XU,RTI),CSALFA)<br>IF(CSALFA.EG.0CR.KRAC.EG.C) GC IC 27<br>EC 28 I=2,NP2<br>R(I)=R(1)+Y(I)*CSALFA<br>CC TC 29<br>EC 30 I=2,NP3<br>F(J)=R(I)<br>CONTINUE<br>CONTINUE<br>VICULATION OF OMEGA VALUES<br>CM(1)=0.<br>ED 49 I=3,NP2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} -3.67 \\ -0.368 \\ -0.369 \\ -0.371 \\ -0.372 \\ -0.372 \\ -0.373 \\ -0.374 \\ -0.375 \\ -0.375 \\ -0.376 \\ -0.377 \\ +0.378 \\ -0.379 \\ -0.379 \\ -0.361 \\ -0.361 \\ -0.361 \\ -0.361 \\ -0.362 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| C CAL<br>28<br>27<br>20<br>29<br>C CA<br>49                                                                                                                             | CONTINUE<br>CALL DENSIX<br>CULATION OF RADII<br>CALL RADIXU,RIIJ,CSALFA)<br>IF(CSALFA.EC.DCR.KRAC.EC.C) GC TC 27<br>CC 28 I=2,NP3<br>R(I)=R(I)+Y(I)*CSALFA<br>CC TC 29<br>CO 30 I=2,NP3<br>F(I)=R(I)<br>CONTINUE<br>CONTINUE<br>ALCULATION OF OMEGA VALUES<br>CM(1)=0.<br>(M(2)=U.<br>CD 45 J=3,NP2<br>[M(I)=CN(I=1)+.5*(REC(I)*U(I)*R(I)+REC(I-1)*U(I-1)*R(I-1))*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (367<br>0368<br>0369<br>(370<br>0372<br>0373<br>0374<br>0375<br>0374<br>0375<br>0376<br>(377<br>0378<br>0379<br>0379<br>0379<br>0381<br>0381<br>0383                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| C CAL<br>28<br>27<br>20<br>29<br>C CA<br>49                                                                                                                             | CONTINUE<br>CALL DENSTY<br>CULATION OF RADIJ<br>CALL PAD(XU,R(1),CSALFA)<br>IF(CSALFA.EC.0CR.KRAC.EC.C) GC IC 27<br>EC 28 I=2,NP2<br>R(I)=R(1)+Y(I)*CSALFA<br>CC TC 29<br>CC 30 I=2,NP2<br>F(I)=R(1)<br>CONTINUE<br>ACCULATION OF OMEGA VALUES<br>CM(1)=0.<br>CM(1)=0.<br>CM(2)=U.<br>ED 45 I=3,NP2<br>CM(1)=V(I=1)+.5% (REC(1)*V(1)*R((1)+REC(1=1)*U(1=1)*R(1=1))*<br>L(Y(1)-Y(1=1))<br>FEI=CM(NP2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (367<br>(368<br>(37)<br>(371<br>(372<br>(373<br>(374<br>(374<br>(375<br>(375<br>(375<br>(375<br>(377<br>(377<br>(378<br>(377)<br>(377<br>(378<br>(379)<br>(379<br>(379)<br>(381<br>(381)<br>(381<br>(383)<br>(383)<br>(383)<br>(383)<br>(383)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| C CAL<br>28<br>27<br>30<br>29<br>C CA<br>30<br>29<br>C CA<br>30<br>29<br>29<br>C CA<br>30<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29 | CONTINUE<br>CALL DENSIY<br>CULATION CF RADII<br>(ALL P/D(XU,RT1),CSALF/)<br>IF(CSALFA,EC,D+,CR,KRAC,EC,C) GC TC 27<br>EC 28 I=2,NP2<br>R(I)=R(1)+Y(I)*CSALFA<br>CC TC 29<br>CC 30 I=2,NP2<br>F(I)=R(1)<br>CONTINUE<br>ACCULATION OF CMEGA VALUES<br>CM(1)=0,<br>(M(2)=0,<br>(M(2)=0,<br>(M(1)=1)+,5*(REC(1)*U(1)*R(1)+REC(1-1)*U(1-1)*R(1-1))*<br>L(Y(1)-Y(1-1))<br>FEI=CM(NP2)<br>DC 59 I=3,NP1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (367<br>(368<br>(374<br>(371<br>(372<br>(373<br>(374<br>(375<br>(375<br>(375<br>(375<br>(377<br>(378<br>(379<br>(379<br>(379)<br>(379<br>(379)<br>(379<br>(379)<br>(379<br>(379)<br>(381<br>(381)<br>(383)<br>(384<br>(385)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| C CAL<br>28<br>27<br>30<br>29<br>C CA<br>30<br>29<br>C CA<br>30<br>29<br>29<br>C CA<br>30<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29 | CONTINUE<br>CALL DENSIY<br>CULATION OF RADII<br>CALL RADIXUAR(1],CSALFA)<br>IF(CSALFA,EC.0.+.CR.KRAC.EC.C) GC TC 27<br>EC 28 T=2,NP2<br>R(1)=R(1)+Y(1)*CSALFA<br>CC TC 29<br>CC 30 I=2,NP2<br>F(1)=R(1)<br>CONTINUE<br>ACCULATION OF OMEGA VALUES<br>CM(1)=C,<br>CM(2)=C,<br>CM(2)=C,<br>CM(2)=C,<br>CM(1)=CN(1=1)+.5*(REC(1)*R(1)*REC(1=1)*U(1=1)*R(1=1))*<br>L(Y(1)-Y(1=1))<br>FEI=CM(NP2)<br>DC 59 I=3,NP1<br>CM(1)=CM(1)/PEI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (367<br>(368<br>(374<br>(372<br>(373<br>(373<br>(374<br>(375<br>(375<br>(375<br>(375<br>(375<br>(375<br>(377<br>(378<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(379)<br>(378)<br>(379)<br>(378)<br>(379)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(378)<br>(3 |
| C CAL<br>28<br>27<br>30<br>29<br>C CA<br>30<br>29<br>C CA<br>30<br>29<br>29<br>C CA<br>30<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29 | CONTINUE<br>CAUL DENSIY<br>CULATION OF RADII<br>CALL RADIXU,R(1),CSALFA)<br>IF(CSALFA,EC,0)CR.KRAC.EC.C) GC TC 27<br>EC 28 [=2,NP2<br>R(1)=R(1)+Y(1)*CSALFA<br>(C TC 25<br>CC 30 I=2,NP2<br>P(1)=R(1)<br>CONTINUE<br>ACCULATION OF OMEGA VALUES<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=CN(I=1)*.5*(REC(1)*U(1)*R(I)+RHC(I=1)*U(1=1)*R(I=1))*<br>L(Y(1)-Y(1=1))<br>FCI=CM(NP2)<br>DC 59 I=3,NP1<br>CM(1)=CM(I)/PC1<br>CM(NP2)=1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (367<br>0368<br>0369<br>(371<br>0372<br>(373<br>(374<br>0375<br>(374<br>0375<br>(375<br>0375<br>0379<br>(377<br>0378<br>0379<br>0379<br>0379<br>0379<br>0379<br>0379<br>0379<br>0379                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| C CAL<br>28<br>27<br>30<br>29<br>C CA<br>30<br>29<br>C CA<br>30<br>29<br>29<br>C CA<br>30<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29 | CONTINUE<br>CALL DENSIY<br>CULATION OF RADII<br>CALL RADIAU,RTIJ,CSALFA)<br>IF(CSALFA.EC.DCR.KRAC.EC.C) GC TC 27<br>EC 28 T=2,NP2<br>R(I)=R(I)+Y(I)*CSALFA<br>GC TC 25<br>CC 30 T=2,NP3<br>F(T)=R(I)<br>CONTINUE<br>ACCULATION OF ONEGA VALUES<br>CM(1)=C.<br>CM(1)=C.<br>CM(1)=C.<br>CM(1)=C.<br>CM(1)=C.<br>CM(1)=C.<br>CM(1)=C.<br>CM(1)=C.<br>CM(1)=C.<br>CM(1)=C.<br>CM(1)=C.<br>CM(1)=C.<br>CM(1)=C.<br>CM(1)=C.<br>CM(1)=C.<br>CM(1)=C.<br>CM(1)=C.<br>CM(1)=C.<br>CM(1)=C.<br>CM(1)=C.<br>CM(1)=C.<br>CM(1)=C.<br>CM(1)=C.<br>CM(1)=C.<br>CM(1)=C.<br>CM(1)=C.<br>CM(1)=C.<br>CM(NP2)=1.<br>CM(NP2)=1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (367<br>0368<br>0369<br>(371<br>0372<br>(373<br>0374<br>0375<br>0375<br>0375<br>0375<br>0379<br>0379<br>0379<br>0379<br>0379<br>0379<br>0379<br>0379                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| C CAL<br>28<br>27<br>30<br>29<br>C CA<br>30<br>29<br>C CA<br>30<br>29<br>29<br>C CA<br>30<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29 | CONTINUE<br>CALL DENSIY<br>CULATION OF RADII<br>CALL RADIXU,R(I),CSALFA)<br>IF(CSALFA,EC,0).CC.KRAC.EC.C) GC TC 27<br>EC 28 [=2,NP2<br>R(I)=R(I)+Y(I)*CSALFA<br>CC TC 25<br>EC 30 [=2,NP2<br>F(I)=R(I)<br>CONTINUE<br>CONTINUE<br>VEULATION OF CMECA VALUES<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0   | <pre>(367<br/>0368<br/>0369<br/>(371<br/>0372<br/>(373<br/>0374<br/>0375<br/>(374<br/>0375<br/>376<br/>(375<br/>376<br/>(375<br/>376<br/>0379<br/>1360<br/>0379<br/>1360<br/>0379<br/>1361<br/>0381<br/>0383<br/>0384<br/>0385<br/>0384<br/>0385<br/>0364<br/>0385<br/>0364<br/>0385<br/>0364<br/>0385<br/>0365<br/>0368<br/>0369</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| C CAL<br>28<br>27<br>30<br>29<br>C CA<br>30<br>29<br>C CA<br>30<br>29<br>29<br>C CA<br>30<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29 | CONTINUE<br>CALL DENSTY<br>CULATION OF RADII<br>CALL RADIX, R(1), CSALFA)<br>IF (CSALFA, EC.0, +.CR, KRAC.EC.C) GC TC 27<br>EC 28 [=2,NP2<br>R(1)=R(1)+Y(1)*CSALFA<br>CC TC 28<br>CO 30 [=2,NP3<br>F(1)=R(1)<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CULATION OF CMECA VALUES<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=C+([=1)+.5*(REC(1)*U(1)*R(1)+REC(1-1)*U(1-1)*R(1-1))*<br>LY(1)=CP([=1)+.5*(REC(1)*U(1)*R(1)+REC(1-1)*U(1-1)*R(1-1))*<br>LY(1)=CP([1)/PE(1)<br>CM(NP2)=1.<br>CM(NP2)=1.<br>IF (NEC,EO,1) FETURN<br>EC 65 J=1,NPH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <pre>(367<br/>0368<br/>0368<br/>0369<br/>(37)<br/>0372<br/>0373<br/>0374<br/>0374<br/>0375<br/>0376<br/>(377<br/>0378<br/>0379<br/>0379<br/>0379<br/>0381<br/>0381<br/>0381<br/>0383<br/>0383<br/>0383<br/>0383<br/>0384<br/>0385<br/>0385<br/>0389<br/>0389<br/>0380</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| C CAL<br>28<br>27<br>30<br>29<br>C CA<br>30<br>29<br>C CA<br>30<br>29<br>C 49<br>1                                                                                      | CONTINUE<br>CALL DENSIY<br>CULATION CF RADII<br>(ALL PAD(XU,R(1),CSALFA)<br>IF(CSALFA.EC.0CR.KRAC.EC.C) CC TC 27<br>CC 26 [=2,NP2<br>F(1)=P(1)+Y(1)*CSALFA<br>CC TC 29<br>CC 3G [=2,NP3<br>F(1)=P(1)<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CONT | (367<br>(368<br>(37)<br>(371<br>(372<br>(374<br>(374<br>(374<br>(375<br>(376<br>(375<br>(376<br>(377<br>(376<br>(377<br>(377<br>(378<br>(377)<br>(378<br>(379<br>(379<br>(379)<br>(381)<br>(381<br>(385)<br>(389)<br>(39)<br>(39)<br>(39)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| C CAL<br>28<br>27<br>30<br>29<br>C CA<br>30<br>29<br>C CA<br>30<br>29<br>C 49<br>1                                                                                      | CONTINUE<br>CALL DENSTY<br>CULATION OF RADII<br>CALL RADIX, R(1), CSALFA)<br>IF (CSALFA, EC.0, +.CR, KRAC.EC.C) GC TC 27<br>EC 28 [=2,NP2<br>R(1)=R(1)+Y(1)*CSALFA<br>CC TC 28<br>CO 30 [=2,NP3<br>F(1)=R(1)<br>CONTINUE<br>CONTINUE<br>CONTINUE<br>CULATION OF CMECA VALUES<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=0.<br>CM(1)=C+([=1)+.5*(REC(1)*U(1)*R(1)+REC(1-1)*U(1-1)*R(1-1))*<br>LY(1)=CP([=1)+.5*(REC(1)*U(1)*R(1)+REC(1-1)*U(1-1)*R(1-1))*<br>LY(1)=CP([1)/PE(1)<br>CM(NP2)=1.<br>CM(NP2)=1.<br>IF (NEC,EO,1) FETURN<br>EC 65 J=1,NPH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (367<br>0368<br>0369<br>(37)<br>0372<br>0373<br>0374<br>0374<br>0375<br>0374<br>0375<br>0376<br>(377<br>0378<br>0379<br>0379<br>0379<br>0379<br>0381<br>0381<br>0383<br>0383<br>0383<br>0383<br>0384<br>0385<br>0389<br>0389<br>0390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| 266                                                                         |                |
|-----------------------------------------------------------------------------|----------------|
| 65 CONTINUE                                                                 | 0393           |
|                                                                             | 1.264          |
| END END                                                                     |                |
|                                                                             |                |
|                                                                             |                |
| SUBROUTINE CHOP (TAU, ETA, NUK, TKAX, TKIN, NEWN)                           | <u>- r:357</u> |
| CINENSIGN TAU(1),ETA(1),TS(\$0),ES(\$0)                                     |                |
| NEWN=C                                                                      |                |
|                                                                             | 6400           |
|                                                                             |                |
| CC 11 I=1, NUN                                                              | <u> </u>       |
| IF (TAU(1) LE TMAX ANE TAU(1) GE TMIN) GE TE 15                             |                |
| <u>60 TC 11</u>                                                             |                |
| 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1                                    | (4(4           |
| ES(J) = ETA(I)                                                              |                |
|                                                                             |                |
|                                                                             |                |
| J=J+1                                                                       | 0467           |
| 11 CENTINUE                                                                 |                |
| CC12 I=1+NEWN                                                               | -04(9-         |
|                                                                             | 6411           |
| = 12  ETA(1)=ES(1)                                                          |                |
|                                                                             |                |
|                                                                             |                |
| END /                                                                       |                |
| \$18FTC CCFF CECK                                                           | - (414 -       |
| SUBROUTINE_COEFE                                                            | -0415          |
| COMMEN /GEN/PE1, AMI, AME, DPCX, PREF12), FR(2), P12), DEN, AMU, XU, XD, XP |                |
| 1XL_DX · INTG · CSAL FA                                                     |                |
|                                                                             |                |
| 1/1/NgAFlgAF2gXP3gAEGgAFFgKEXgKINgK#SEgKRAD                                 |                |
| 1/E/BET/, GAMA(2), TAUI, TAUE, AJI(2), AJE(2), INDI(2), INCE(2)             |                |
| 1/V/U(43),F(2,43),F(43),FHC(43),CM(43),Y(43)                                | - (°420)       |
| 1/C/SC(43),AU(43),BU(43),CU(43),A(2,43),E(2,43),C(2,43)                     |                |
| ΟΛΑΚΑΛΑΙΑΥΑ                                                                 |                |
|                                                                             | -1,422         |
| COMMEN /MUCODE/MU                                                           | <u> </u>       |
| EIMENSION G1(43),62(43),63(43),6(2,43),51(43),52(43),53(43)                 |                |
| COMMON/S/ SEAR, EVIS(SC), EN(SO)                                            |                |
| CVM(N/ABC/SF,S,UVI,PCI,A2,82,02                                             | 426            |
| COMMON/SHAPE/ LCCK, YL1, YL2, YDIV, UK, XI                                  | 0427           |
| LINENSION PK(90), IK(90), AJ(90), AJ(90), AJ(90)                            |                |
|                                                                             |                |
| KOLNI=û                                                                     | 1.429          |
| IFIKCUNT.LQ.VI CC TC 100                                                    | - (.430)       |
| 101 CO 2 J=2,NP1                                                            | - 0431         |
| 2 (ALL VETT (1, 1, 1, (M(1-1))                                              | 1,432          |
| IF(MU.FQ.0) GO TO 100                                                       | <u>A433</u>    |
|                                                                             |                |
|                                                                             | - 434 -        |
| C####BRIDGING_PROCEDURE                                                     | 0435           |
| <b>Ç</b> * * * * *                                                          | - 436 -        |
| $\underline{FKI} = \underline{FM(2)}$                                       | 0437           |
|                                                                             | 5.428          |
| C**** GAMA ADD FROM EQ 6.2.1                                                | 0439           |
|                                                                             |                |
|                                                                             | 5440           |
| IF(EM(I).GE.EM(I-1))CC TO 10                                                | 0441           |
| IF (CM(I−I)→CL→CM(I−2)) CO 1C 1                                             | 1.442          |
| IF(J_FC.1) GC TC E                                                          | 0443           |
|                                                                             | .444           |
| FKC= EN(I-1)+ENUAC                                                          | • • •          |
|                                                                             | <u> </u>       |
|                                                                             | 446            |
| <u>CC 9 K=I1,IC</u>                                                         | 0.447          |
| <pre>\$ [₩(K]= FK] + (PKC-PK[)*(Y(K)-Y]) /(YC-Y])</pre>                     | C448           |
| \$ECF                                                                       |                |
|                                                                             |                |
|                                                                             |                |

.

| 257                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 11=10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0449        |
| fK[=pKC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (450        |
| <u>YI=YC</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u>C451</u> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (452        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 453         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (454        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| PKI = F(I-1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| J=J+]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0458        |
| C CALCULATION-OF-SMALL C 'S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u></u>     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (46)        |
| <u>CO 98 1-2,NP1</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.461       |
| ₩ <u>A</u> = <u>,</u> <u></u> ; <u>*</u> { <u>R</u> ( <u>1+1)+</u> <u>R</u> ( <u>1</u> )}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |
| RH=.5*(RHC(I+1)+RHC(I))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |
| <b>\M=_5*(((]+])</b> +U(1))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (464        |
| EMU=EM(I-1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0465        |
| IF(KEUNT.EC.C) CALL VEFF (1.1+1+1.EMU)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ÷4€€        |
| $= \frac{CSEAR = E^{N}U + (U(1+1) - U(1)) + (U(1+1) - U(1)) / (Y(1+1) - Y(1)) / U(NP3) / U(NP3)}{U(NP3)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | P3) (467    |
| 17U(NP3)/DEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |
| IF(KCUNT.EQ.()_EVIS(I-1)=EMU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u> </u>    |
| SE #R= SEAR +D SEAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (47)        |
| <u>SB SC(I)=R4*RA*RH*UM*EMU/(PE-I*PEI)</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
| CALJUSIMENT OF EMU AT 2.5 AND N+1.5 MAY 1968 .(CES)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (472        |
| $\frac{1}{1} \frac{1}{1} \frac{1}$ |             |
| C**** ADJUSTMENT AS PER VAN DRIEST FYPCTHESES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u> </u>    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (475_       |
| $= \frac{(All Vlff (2,3, lWl))}{(2,2,3, lWl)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (:476       |
| <u>SC(2) = SC(2)*EMU2/EMU</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.477       |
| 255 IF (KEX.NE.1) GO 1C 30(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (478        |
| 1= TAUE+ CPDX*(Y(NP3)-0.5*(Y(NP1) + Y(NP2)))-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u>°479</u> |
| 1 AME*.5*(((AF1)+((AP2))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b></b>     |
| EMUNF1=T*(Y(NP3)5*(Y(NP1)+Y(NP2)))/(BETA*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |
| 1 = (U(NF1) + U(NP2))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (482)       |
| CALL_VEFE(NP1,NP2,EMU)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |
| <b>{C { N P I } =</b> SC { N P I <b>} =</b> EMUNP 1 / EMU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 484         |
| 300 CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0485        |
| C THE CONVECTION TERM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (486        |
| SA=R(1)*AMI/PEI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6497        |
| \$B=(R(NP3)*//E=P(1)*//P11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (488        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| IF (KCUMT.NE.1) GC /C 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ()4 S()     |
| 111111111111111111111111111111111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |
| CC 102 1=27NP1<br>CMD=CM(1+1)~(M(1-1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0451        |
| 人名德尔尔 法法律法律 化二乙基苯基乙基乙基乙基乙基乙基乙基乙基乙基乙基乙基乙基乙基乙基乙基乙基乙基乙基乙                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u>;492</u> |
| P2=-25/DX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0453_       |
| F3=P2/CMD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ÷494        |
| <u>P1=(CM(I+1)-CM(I))*P3</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |
| <b>₽3=((//([)-(/(I-1))</b> *₽3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1496        |
| <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u></u>     |
| AJ[]]=2./0MD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1:498-      |
| $EJ(I) = SC(I-1) \times AJ(I) / (CM(I) - CM(I-1))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0499        |
| /J(1)=\$C(1)*/J(1)/(CM(1+1)=CM(1))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | £ 51.0      |
| <u>CO_34_J=1+NPH</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0501        |
| <pre>((, , ]) == P ]* ( (, , [+]) = P 2* F( , , ]) = F 2* F( , , ] = ])</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 05(2        |
| CALL SCURCE (J, I, CS, D(J, I))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6562        |
| <pre>((j,1)=-C((j,1)+(&lt;-f((j,1)))))</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u> </u>    |
| \$ECF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |

| $\bullet$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| (J, I) = AJ(I) / PPEF(J)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u> </u>       |
| E(J, I) = BJ(I)/PR(I, (J))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (;5);6         |
| <u>34 CONTINUE</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.507          |
| IG3 CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u>. 568</u>   |
| <u>IF (KCUNT-FQ-1) CC TC 104</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u></u>        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |
| $\frac{\text{CO} - 71 \text{ I} = 2 \text{ , NP1}}{\text{CO} - 71 \text{ I} = 2 \text{ , NP1}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0511           |
| (₩D=CM(1+1)-(m(1-1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |
| P2=+25/DX<br>F3=P2/CMD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u></u>        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u> </u>       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0516           |
| <u>F2=3_*F2</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0517           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (518           |
| R2=-SE#.25<br>R3=R2/(MD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | £519           |
| R1=-(0/(1+1)+3.*C/(1))*R3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6529           |
| K1=={U  {1 +1 +3-*(K1 )}*S<br>K2={(K([=])+2,*(K([))}*K3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u> </u>       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u></u>        |
| 62(1)=P2+K1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0525_          |
| (U(1)==P1%U(1+1)=P2%U(1)=P3%U(1=1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |
| -C THE CIEFUSION TERM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |
| $\frac{1}{1} = \frac{1}{2} \cdot \frac{1}{1} = \frac{1}{2} \cdot \frac{1}$ | 0528           |
| = EU(I) = SC(I-I) * AU(I) / (CV(I) - CV(I-I))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |
| $A \cup (1) = \{C(1) \neq A \cup (1) \neq (C \land (1+1) = (N(1))\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.525<br>US30  |
| $IF(NEQ \cdot EQ \cdot 1)  GQ  TC  33$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |
| L SCUPCE TEPM FOR VELOCITY EQUATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0533           |
| \$2(1)=F2*\$1(1)7(R(C(1)*U(1))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ر بر ا<br>۲۵۶۲ |
| $\frac{53(1) = P_3 \times S1(1) / (R + C(1 - 1) \times U(1 - 1))}{S3(1) = P_3 \times S1(1) / (R + C(1 - 1) \times U(1 - 1))}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0525           |
| $\{1,1\} = \{1,2\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1\} = \{1,1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.536          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6537           |
| S(1) = S(1)/1(1+1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | rf 36          |
| S2(I) = S2(I) / U(I)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1539           |
| \$3(1)=\$3(1)/U(1-1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ••••<br>የዩር    |
| 71 CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.541          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.542          |
| IF (NEC.GT.1)GC_TO_101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.543_         |
| 164 CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ÷ 64           |
| C CCEFFICIENTS IN THE FINAL FORM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0'545          |
| [C 9] [≈3,NP]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.546          |
| $\frac{RL=1./(G2(I)+AU(I)+BU(I)-S2(I))}{S2(I)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |
| ΛU(I)=(ΛU(I)+SI(I)=GI(I))*Ω                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ( 548          |
| EU(I) = (BU(I) + S2(I) - G2(I)) * RL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |
| 51 CU(1)≠CU(1)*RL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ('FF')         |
| IF (NEC.EQ.1) GC TC 76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0551           |
| [0 92 J≈1,KP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | r 552          |
| <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0553           |
| $RL = 1 \cdot / (G2(1) \cdot A (J_2) \cdot C (J_2) - C (J_2))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |
| $\Lambda(J,I) = (\Lambda(J,I) - GI(I)) * RI$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0555           |
| <b>↓{∫, i)</b> ={B( <b>∫, i)</b> -(?{1)}×µ[                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C 5 5 6        |
| <u>92 C(J, 1)=C(J, 1)*R1</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0557           |
| 76 CALL SLIP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (550           |
| RETURN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u> </u>       |
| END                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ( 5en          |
| <u>\$ECF</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |

| 269                                                                                       |                     |
|-------------------------------------------------------------------------------------------|---------------------|
| \$IEFTC CCN1                                                                              | -6561               |
| SUBRCUTINE CONST                                                                          | 4.562               |
| COMMON /GEN/PE L, ANI, ANE, DPDX, PREF (2), PR(2), P(2), DEN, AMU, XU, XD, XP,            | _0563_              |
| I>L,UX,INTC,CSALFA                                                                        | <u> </u>            |
|                                                                                           |                     |
| 1/L1/YL,UMAX,UM1N,FR,Y1F,YEM                                                              | 0566                |
| COMMON/AME/HI, PC, 10                                                                     | <u>7567</u><br>0570 |
| <u> </u>                                                                                  | -0569-<br>-0569-    |
| <i>μ</i> K≅ (418 <i>ι</i><br>μμβ=ξ                                                        | -4:565<br>          |
|                                                                                           | -6571-              |
| FR = (1)                                                                                  | ÷ 572               |
| PREF(1)=1.0                                                                               |                     |
|                                                                                           | - 574 -             |
| F(.1) = -2                                                                                | 0575                |
| $\frac{PR(1)=,71}{C}$                                                                     | 0576                |
| C REFERENCE AMPLENT CONCITION                                                             | 6.577               |
| <u> </u>                                                                                  | 0.578               |
| IU=Z⊅.<br>]0=I0*1.3+492.                                                                  | -0.579-<br>-0580    |
|                                                                                           | -0581               |
| LLN=1+29*FD710<br>AMU=1+285710+***5+*(1C75+0+)**+7+8                                      | 0582                |
| FETURN                                                                                    | 0583                |
|                                                                                           |                     |
| \$IBFTC_DEN1                                                                              | 0585                |
| SUBREUTINE CENSTY                                                                         | 0586                |
| CCMMCN /GEN/PEI,/VI,AME,DPDX,PREF(2),PR(2),P(2),DEN,AMU,XU,XD,XP,                         |                     |
| 1/1/11/43) - E(2-/3) - D(/3) - DHC(/3) - CM(/3) - V(/3)                                   | 0586                |
| 1/V/U(43),F(2,43),R(43),RHC(43),CM(43),Y(43)<br>1/V,NF1,NP2,NP3,NEC,NFF,KEX,KIN,K/SE,KR/C | 0589                |
| COMMON /AME/ NT,PC,TC                                                                     | -0591               |
| CCPTICK /APC/ SLIPCI)<br>CCPMEN/JAY/JCOMF, KEFAN, NSETS, KSP                              | <u>(551</u><br>(552 |
| CCMMCN /CCCL/ TG,TCG,FG,HCG                                                               | 0553                |
| IF (KSP . TQ . 2) GO TC 50                                                                | ( 5 5 4             |
| <u>FHF1=1.34*PC/TO*WT/28.96</u>                                                           | 0595                |
| CO 45 I=1,AP3                                                                             | - 556               |
| <u>45 RHO(1)=1./ (F(1,1)/RHF1+(1F(1,1))/DEN)</u>                                          | <u>557</u>          |
| RETURN<br>CANADA CASE CE SUCT ENTRALDY FOUNDS UNITY                                       | (558                |
| C**** CASE OF SLOT ENTHALPY FQUALS UNITY<br>50 EC 51 I=1,NP3                              | 0599                |
| - 56 - 20 51 1=2,NP3<br>- 51 - RHC(1)=CEN/(1++F(1+1)*(TCG-1+))                            |                     |
| -21 KPU(1)=DEN/(1+*F(1+1)*(106=1+))<br>FETURN                                             | 0602                |
| END                                                                                       | 0603                |
| \$ICFIC CNT                                                                               | (6:4                |
| SUBROUTINE ENTRN                                                                          |                     |
| COMMON/SH/PE/ LCCK,YL1,YL2,YD1V,UW,XI                                                     | CE(6                |
| COMMON /GEN/FEI, ANI, ANE, DPDX, PREF(2), FR(2), F(2), DEN, AMU, XU, XD, XP,              | 1.6(7               |
| 1)L,DX,INTG,CSALFA                                                                        | 673                 |
| $\frac{COMMON / L / AK + ALMG}{L / A / A / A / A / A / A / A / A / A / $                  | _0609               |
| 1/V/U(43),F(2,43),R(43),RHC(43),CM(43),Y(43)                                              | C6](                |
| <u> </u>                                                                                  | <u> </u>            |
| C THIS SUBREUTINE USES THE MIXING-LENGTH HYPOTHESIS                                       | €€12<br>€€13        |
| YE YE I                                                                                   | _1 € 13<br>≕ (14    |
| <u>GO TO (71,72,73),KIN</u>                                                               | <u> </u>            |
| 71 60 10 74                                                                               | re15                |
| \$ECF                                                                                     |                     |
|                                                                                           |                     |

| - 270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| • <u>72_AMI=8.*RHO(1)*((ALMG*Y1)/(Y(2)+Y(3)))**2*AES(U(2)+U(3)=2.*U(1))</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0617         |
| <u>(C TC 74</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7618         |
| <u>73 /// I=0.</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0615         |
| 74 CC TC {81,82,83),KEX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | r.62i -      |
| El FETURN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0621        |
| &2 AME8.*RHC(NP3)*((~LMC*YL)/(Y(NP1)+Y(NP2)-2.*Y(NP3)))**2*ABS(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.622        |
| 1U(NP1)+U(NP2)-2.*U(NP2))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0623         |
| <b>FETURN</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ÷{24         |
| 83 /ME=0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _C625_       |
| RETURN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.626        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C628         |
| SUBROUTINE FEC(X, IPH, IND, AJES)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u>C629</u>  |
| CCMMEN/KCAL/KETA,KHGN,KHG2N,KHBAL,KFRCF,G,RC,TYC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -6634        |
| COMMEN /JAY/ JCEMP, KORAW, NSETS, KSP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u> 631</u>  |
| CEMMEN /CEN/FEI, ANI, ANE, DEEX, PREF(2), PR(2), F(2), DEN, AMU, XU, XD, XP,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 632        |
| <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0633         |
| COMMEN /CCCL/ TC,TCG,HG,HCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ₹€24-        |
| COMMCN/COUNT/KCCUNI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0635         |
| INC=2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6636-        |
| AJFS=().                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - 627        |
| C**** Q 1K K/K2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.638        |
| IF [KSP • EQ • 2 • /ND • KHGW • EC • 1 ) AJES= Q/(3600 • *0 • 24*3 • 16*TG*(TCG=1 • ) )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u>C639</u>  |
| Γ. C. L. C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ( ( 4:)      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u>C641</u>  |
| THEFT INTP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <i></i>      |
| SUBRCUTINE_INTPCL (U,Y,N,UD,YD,ND)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u>CE43</u>  |
| $C^{+++++} = L INFAD = INFEDEELATION$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <del></del>  |
| C***** LINEAR INTERPOLATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6645         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ₹€46=        |
| <u>     CO 5 IC=1,ND     IF (YC(ID).GC 3Y(N)) GC 1C S     IF (YC(ID).GC 3Y(N)) GC 1C S </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u>: £47</u> |
| $= \frac{11}{8} \frac{110}{10} \frac{10}{6} \frac{110}{10} \frac{10}{10} $ | 648          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0649         |
| $\frac{10}{10} = \frac{10}{10} = \frac{10}{10} + \frac{10}{10} = 10$                                                                                                                                         |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u>CE51</u>  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1652<br>0452 |
| E CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CE53<br>CE54 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0655         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4656 -       |
| 5 CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | £657         |
| F E TURIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (1458        |
| <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0659         |
| LO 11 1C=J+NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ÷660         |
| $\frac{11 \text{UD}(\text{ID}) = U(N-1) + (U(N) - U(N-1)) / (Y(N) - Y(N-1)) * (YD(\text{IC}) - Y(N-1))}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0661         |
| <b>ΓΕΊ</b> ΟΛΝ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | : ( ( 2      |
| END                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0463         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.664        |
| SUBROUTINE LENGTE (Y, U, N, FR, KASE, YLL, YL2, YDI, UW)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0665         |
| LINENSION Y(20),U(20),FK(5),IK(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.6.66       |
| J=1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u>0667</u>  |
| γL]=t <sub>e</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0668         |
| YL 2= 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0669         |
| ¥∁ĮV≚(;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | :67          |
| KASE=C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CE71         |
| ( <b>k</b> ≭Ú•                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0672         |
| tene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |

· •,

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0673                                                                                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1F(U(1)+GE+ U(1-1)) GE TO 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u> </u>                                                                                                                                                                                          |
| <b>1F</b> (U( <b>1+</b> 1),GE,U( <b>1-</b> 2)) J≃J+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C676                                                                                                                                                                                              |
| <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u> </u>                                                                                                                                                                                          |
| 5 FK(J)=U(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1678                                                                                                                                                                                              |
| IK(J)=1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u>0675</u>                                                                                                                                                                                       |
| IF(J.GE.2) KASE=2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                   |
| 10 CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0681                                                                                                                                                                                              |
| J1=IK(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6682                                                                                                                                                                                              |
| $IK(1) = \frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                   |
| J2=1K(2)<br>IK(2)=0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0695                                                                                                                                                                                              |
| IK (2) = Ω<br>J3=1K (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0685                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                   |
| JK (-3 J = 4)<br>J4 = 1 K (-4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u> </u>                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                   |
| IF(PK(1).GT.U(N).ANE.Y(J1).LT.Y(N).ANE.J.GE.2} KASE-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                   |
| IF(KASE NE 4) GE TE 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C651                                                                                                                                                                                              |
| CC 25 1=J1→N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ¢¢\$2                                                                                                                                                                                             |
| JF(U(I).I.T.(IFR)*U(N)) KASE=3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                   |
| 25 CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <i>٢                                    </i>                                                                                                                                                      |
| 11 CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0655                                                                                                                                                                                              |
| $\frac{1}{10} = \frac{1}{10} = \frac{1}{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                   |
| $\frac{\text{UDIV}=PK(1)}{\text{UCIV}} = \frac{VDIV}{V} + \frac$ | 0657                                                                                                                                                                                              |
| IF (UCIV-EC.U(N)) KASE=1<br>C***** II WAKE TAKEN AS DIEEEDENCE BETWEEN ININ AND NEAN DE UNAY AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C658                                                                                                                                                                                              |
| C***** U WAKE TAKEN AS CIFFERENCE BETWEEN LMIN AND MEAN OF UMAX AND<br>IF (KASI.E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                   |
| - C SEARCH NEAR E ECUNCARY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                   |
| - C SEARCE NEAR-E-ELURLARY<br>€IF≈FR*L(N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u> </u>                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                   |
| 13 J=J=1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (71,4                                                                                                                                                                                             |
| U_1=U(J)=U(N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0705                                                                                                                                                                                              |
| IF (AES(UJ1).CL.CIF) GC TC 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                   |
| IF (AES (UJ1) • GE • D IF ) = GE TE 14<br>GO TE 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | u7ce<br>                                                                                                                                                                                          |
| IF (AES (UJ1) • GE • D IF) = GE TE 14<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0706<br>0707<br>0709                                                                                                                                                                              |
| IF(AES(UJ1).CE.CIF) GC TC 14<br><u>CO TC 13</u><br>14 A1=1.<br>IF(UJ1.LT.0.) A1=-1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0706<br>0707<br>0709<br>0709                                                                                                                                                                      |
| IF (AES (UJ1).CE.CIF) G( TC 14<br>GO TC 13<br>14 A1=1.<br>IF (UJ1.LT.O.) A1=-1.<br>YEM=Y(J+1)+(Y(J)-Y(J+1)) * (U(N)+A1*C1F=U(J+1))/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0707<br>0707<br>709<br>0709<br>719<br>71                                                                                                                                                          |
| IF (AES (UJI) • GE • D IF) GC TC 14<br>GC TC 13<br>14 AI=1.<br>IF (UJI•LT•C•) AI==1.<br>YEM=Y(J+1)+(Y(J)-Y(J+1)) * (U(N)+A1*C1F=U(J+1))/<br>L(U(J)-U(J+1))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0707<br>0707<br>0709<br>0709<br>71<br>0711                                                                                                                                                        |
| IF (AES (UJI) • CE • DIF) G( TC 14<br>CO TC 13<br>14 AI=1•<br>IF (UJ1•LT•O•) A1==1•<br>YEM=Y(J•L)+(Y(J)=Y(J+L)) * (U(A)+A1*C1F=U(J+1))/<br>L(U(J)=U(J+L))<br>YL1=YEM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0707<br>0707<br>0709<br>0709<br>71<br>0711<br>5712                                                                                                                                                |
| IF (AES (UJI) • GE • D IF) GC TC 14<br>GC TC 13<br>14 AI=1.<br>IF (UJI•LT•C•) AI==1.<br>YEM=Y(J+1)+(Y(J)-Y(J+1)) * (U(N)+A1*C1F=U(J+1))/<br>L(U(J)-U(J+1))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0707<br>0707<br>0709<br>0709<br>712<br>0711<br>5712<br>6713                                                                                                                                       |
| <pre>IF (AES(UJ1).CE.CIF) G( TC 14<br/>GO TC 13<br/>14 A1=1.</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0707<br>0707<br>709<br>0709<br>71<br>0711<br>0712<br>0713<br>0713<br>0714                                                                                                                         |
| <pre>IF (AES (UJ1) • CE • C IF) G( TC 14<br/>GO TC 13<br/>14 A1=1•</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0707<br>0707<br>0709<br>0709<br>712<br>0711<br>5712<br>6713                                                                                                                                       |
| <pre>IF (AES (UJ1) * CE * CIF) G( TC 14<br/>GO TC 13<br/>14 A1=1*<br/>IF (UJ1*LT*O*) A1==1*<br/>YEM=Y(J*1)*(Y(J)=Y(J*1)) * (U(N)*A1*CIF=U(J*1))/<br/>1 (U(J)=U(J*1))<br/>YL1=YEM<br/>IF (KASE*EC*1*OP*KASE*EC*4) GO TO 20<br/>C SEARCE FOF YEN<br/>CIF = FR*PK(1)</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0706<br>0707<br>709<br>0709<br>071<br>0711<br>5712<br>0713<br>0713<br>0714<br>0715                                                                                                                |
| <pre> IF (AES(UJ)).CE.CIF) G( TC 14 G( TO 13 I4 AI=1.</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0766<br>0767<br>779<br>6709<br>715<br>0711<br>6712<br>6713<br>0714<br>6714<br>6715<br>9716                                                                                                        |
| <pre>IF (AES(UJ1).CE.CIF) G( TC 14<br/>GO TC 13<br/>14 A1=1.</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0706<br>0707<br>709<br>0709<br>71<br>0711<br>0711<br>0712<br>0713<br>0714<br>0715<br>0715<br>0716<br>0717<br>0718<br>0719                                                                         |
| <pre>IF (AES(UJ1).CL.DIF) G( TC 14<br/>GO TO 13<br/>I4 AI=J.<br/>IF (UJ1.LT.O.) A1==1.<br/>YEM=Y(J+1)+(Y(J)=Y(J+1)) * (U(N)+A1*CIF=U(J+1))/<br/>I(U(J)=U(J+1))<br/>YL1=YEM<br/>IF (KASE.EC.1.OP.KASE.EC.4) GO TO 20<br/>C StARCE FOF YEN<br/>CIF = FR*PK(1)<br/>J=J1<br/>15 J=J+1<br/>UJ=U(J)=U(JI)<br/>IF (ABS(UJ1).CE.DIF) GC TO 16<br/>GO TC 15</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0709<br>0709<br>0709<br>0709<br>710<br>0711<br>0712<br>0713<br>0714<br>0715<br>0714<br>0715<br>0716<br>0717<br>0718<br>0719<br>0719                                                               |
| <pre>IF (AES(UJ)).CE.DIF) G( TC 14<br/>CO TO 13<br/>If AI=I.<br/>IE(UJ1.LT.O.) AI==1.<br/>YEM=Y(J+I)+(Y(J)-Y(J+I)) * (U(N)+AI*EIF=U(J+I))/<br/>L(U(J)-U(J+I))<br/>YLI=YEM<br/>IF(KASE.EC.L.OP.KASE.EC.4) GO TO 20<br/>C StARCH FOF YEN<br/>CIF =FR*PK(1)<br/>J=JI<br/>I5 J=J+1<br/>UJI=U(J)=U(JI)<br/>IF(ABS(UJ1).CE.DIF) GC TO 16<br/>CO TO 15<br/>L6 YEN=Y(J)+(Y(J)-Y(J-I)) / (U(J)-U(J-I)) * (U(J1)-DIF-U(J))</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0709<br>0709<br>0709<br>0709<br>0710<br>0711<br>0711<br>0712<br>0713<br>0714<br>0713<br>0714<br>0715<br>0716<br>0719<br>0719<br>0719<br>0719<br>0719<br>0719<br>0719                              |
| <pre>IF (AES(UJ1).CU.DIF) G( TC 14<br/>CO TO 13<br/>14 A1=1.</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0706<br>0707<br>709<br>0709<br>0710<br>0711<br>0711<br>0712<br>0713<br>0714<br>0713<br>0714<br>0715<br>0716<br>0719<br>0719<br>0719<br>0719<br>0719<br>0721<br>0721<br>0722                       |
| <pre>IF (AES (UJ1).CF.CIF) G( TC 14<br/>CO TC 13<br/>14 A1=1.</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0706<br>0707<br>709<br>0709<br>71<br>0711<br>5712<br>0713<br>0714<br>0715<br>5716<br>0715<br>5716<br>0717<br>0718<br>0719<br>720<br>0721<br>0722<br>0723                                          |
| <pre> if (AES(UJ1).CL.+ClF) G( TC 14</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0706<br>0707<br>709<br>0709<br>71<br>0711<br>5712<br>0711<br>5712<br>0714<br>0714<br>0715<br>5716<br>0715<br>5716<br>0717<br>0718<br>0719<br>572<br>0721<br>0722<br>0723<br>0724                  |
| <pre>If (AES(UJ1).CE.CIF) G( TC 14<br/>GO TO 13<br/>I4 AI=1.<br/>IE(UJ1.LT.O.) AI==1.<br/>YEM=Y(J)I)+(Y(J)=Y(J+1)) * (U(N)+AI*CIF=U(J+1))/<br/>I(U(J)=U(J+1))<br/>YL1=YEM<br/>IE(KASE.ECC.1.OP.KASE.EC.4) GO TO 20<br/>C StAPCH FOF YEN<br/>CIF =FR*PK(1)<br/>J=JI<br/>I5 J=J+1<br/>UJI=U(J)=U(JI)<br/>IE(ABS(UJ1).CE.DIF) GC TO 16<br/>CO TC I5<br/>IC YEN=Y(J)+(Y(J)=Y(J=1)) / (U(J)=U(J=1)) * (U(J1)=CIF=U(J))<br/>YL2=YEM=YEN<br/>C SEARCH FOR YED<br/>LIF =FR*PK(1)<br/>J=J1</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0709<br>0709<br>0709<br>711<br>0711<br>0711<br>0712<br>0712<br>0713<br>0714<br>0715<br>0714<br>0715<br>0716<br>0717<br>0718<br>0719<br>0719<br>0721<br>0722<br>0723<br>0724<br>0725               |
| <pre>IF (AES(UJ)).CE.CIF) G( TC 14<br/>GO TO 13<br/>I4 AI=I.<br/>IE(UJ).LI.G.) AI==1.<br/>YEM=Y(J))+(Y(J)=Y(J+1)) * (U(N)*AI*EIF=U(J+1))/<br/>I(U(J)-U(J+1))<br/>YEI=YEM<br/>IE(KASE.EC.1.OP.*KASE.EC.4) GO TO 20<br/>C STAPCE FOF YEN<br/>CIF =FR*PK(1)<br/>J=J1<br/>I5 J=J+1<br/>UJ=U(J)=U(J)<br/>IF(ABS(UJ)).CE.CIF) G( TO 16<br/>CO TC 15<br/>I6 YEN=Y(J)+(Y(J)-Y(J-1)) / (U(J)-U(J-1)) * (U(J1)-CIF=U(J))<br/>YE2=YEM=YEN<br/>C SEARCH FOR YEO<br/>EIF =FR*PK(1)<br/>J=J1<br/>I7 J=J-1</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0709<br>0707<br>709<br>0709<br>711<br>0711<br>0712<br>0713<br>0714<br>0715<br>0714<br>0715<br>0716<br>0717<br>0718<br>0719<br>072<br>0721<br>0722<br>0721<br>0724<br>0725<br>0724<br>0725<br>0725 |
| <pre>IF (AES (UJ1).CL.+ClF) G( TC 14<br/>GO TQ 13<br/>I4 AI = J.<br/>JE (UJ1+LT+O+) A1==1.<br/>YEM=Y1 J+1)+(Y(J)=Y(J+1)) * (U(N)+A1*ClF=U(J+1))/<br/>I(U(J)=U(J+1))<br/>YL1=YEM<br/>IF (KASE+EC+1+OF+KASE+EC+4) GO TC 20<br/>C StARCE FOF YEM<br/>CIF = FR*PK(1)<br/>J=J1<br/>15 J=J+1<br/>UJ1=U(J)=U(J1)<br/>IF (ABS(UJ1)+CE+DIF) GC TO 16<br/>CO TC 15<br/>IE (ABS(UJ1)+CE+DIF) GC TO 16<br/>CO TC 15<br/>IE (YEN=Y(J)+(Y(J)=Y(J=1)) / (U(J)=U(J=1)) * (U(J1)=ClF=U(J))<br/>YL2=YEM=YEA<br/>C SEARCH FOR YED<br/>LIF = FR*PK(1)<br/>J=J1<br/>I7 J=J=1<br/>UJ1=U(J)=U(J1)</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0706<br>0707<br>709<br>0709<br>711<br>0711<br>0711<br>0712<br>0713<br>0714<br>0715<br>0716<br>0715<br>0716<br>0719<br>72<br>0721<br>0722<br>0723<br>0724<br>0725<br>0725<br>0726<br>0727          |
| <pre>IF (AES(UJ)).CE.CIF) G( TC 14<br/>GO TO 13<br/>I4 AI=I.<br/>IE(UJ).LI.G.) AI==1.<br/>YEM=Y(J))+(Y(J)=Y(J+1)) * (U(N)*AI*EIF=U(J+1))/<br/>I(U(J)-U(J+1))<br/>YEI=YEM<br/>IE(KASE.EC.1.OP.*KASE.EC.4) GO TO 20<br/>C STAPCE FOF YEN<br/>CIF =FR*PK(1)<br/>J=J1<br/>I5 J=J+1<br/>UJ=U(J)=U(J)<br/>IF(ABS(UJ)).CE.CIF) G( TO 16<br/>CO TC 15<br/>I6 YEN=Y(J)+(Y(J)-Y(J-1)) / (U(J)-U(J-1)) * (U(J1)-CIF=U(J))<br/>YE2=YEM=YEN<br/>C SEARCH FOR YEO<br/>EIF =FR*PK(1)<br/>J=J1<br/>I7 J=J-1</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0709<br>0707<br>709<br>0709<br>711<br>0711<br>0712<br>0713<br>0714<br>0715<br>0714<br>0715<br>0716<br>0717<br>0718<br>0719<br>072<br>0721<br>0722<br>0721<br>0724<br>0725<br>0724<br>0725<br>0725 |

•

| 77.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| - <u>CO TO 17</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | · 730           |
| $IF(U_{1}, 1, T_{0}, A) = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0731            |
| <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n 732           |
| 20 CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0723            |
| <u>FETURN</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0735            |
| FIEFIC MASI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u> </u>        |
| SUERCUTINE MASS (XU, XD, AN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (:737           |
| <i>p</i> ×=0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6738            |
| <u>FETURN</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0741-          |
| SUBREUTINE CUTPUT(ISEF)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <del>1742</del> |
| C MODIFIED ON 2014 JUNE, 1967                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |
| CCMMEN /GEN/FE1,/M1,AME,DFDX,PREF(2),FR(2),F(2),CEN,AMU,XU,XD,X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1745            |
| 1 XL 9DX 9 INT ( 9 CSAL F 2<br>1/C/SC(43) 9 AU (43) 9 EU (43) 9 CU (43) 9 A (2943) 9 E (2943) 9 C (2943)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0746            |
| $= \frac{1}{\sqrt{1431}} + \frac{1}{143$ | <u> </u>        |
| CCMMCN/L//K,/LVC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (748            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0749            |
| 1/1/N,NF1,NPZ,NP3,NEG,NFF,KEX,KIN,KASE,KRAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 750             |
| 1/E/BET/, GANA(2), TAUI, TAUE, AJI(2), AJE(2), INDI(2), INCE(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |
| COMMEN /CEN/ UG, UG, YG, XYC, FPG, FAT (20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | :152            |
| COMMON /JAY/ JCCMP, KDFAW, NSETS, KSP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 753             |
| CIMENSION UMS(60), CLTICO, APG(70), DCL2(50), PC2(50), CPF12(50), PP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 126754          |
| 1(50), H12(50), ERPF(50), YPR(70), YS(70), SS(50), T(70), CR(2,20), ZX(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·) <u>0755</u>  |
| 1UM(5), ), YM(5), ), UF(5), J, YF(3), AMG(5), J, UTAU(5), J, UTAC(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1756            |
| 1,ETAX(50),XETA(50),CEX(5),SMCCTH(50)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0757            |
| CCMMCN /AMB/ WT,PC,1C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.158           |
| CCMMCN_/STOP/_KSTCP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0759            |
| COMMON75/SEAR, EV 15 (90 )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n 76¢           |
| COMMCN/COUNT/KCCUNT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0761            |
| CCMMCN /X/TITLE(12),XV(1,),YX(1,,70),UX(10,70),FTX(10,70),KVE,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |
| 1], NETA, NUM (10), PAT (2, 100), XC, NRUN, NFJ (10), NEF, YXF (10, 70), XEI (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |
| COMMCN/GROWTH/LCCAT, Y1(50), YE(50)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0765            |
| COMMON/SHAPE/ LOCK, YEI, YEZ, YDIV, UK, XI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0766            |
| COMMON/KCAL/KETA,KHGW,KHG2W,KHBAL,KPRCF,C,RC,TYC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0767<br>0768    |
| COMMON/FLUX/CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |
| $= \begin{bmatrix} corrector + bc/7 + b \\ corrector + bc/7 + bc/7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ::77:)          |
| 13.0,3.0,1.0,0.0,0.0,9.67,0.0,0.0,9.67,0.0,0.0/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0771            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ÷772            |
| NO =1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 773             |
| JF (KPF(F.FC.I) NC=U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0774            |
| IF(INTG.NE.1) GC TC 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0775            |
| C L.S. CURIC FILLIC EXPERIMENTAL EFFECTIVENESS CATA 8.4.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 716             |
| JE(NETA-LE-0) GC TC 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |
| CFVSC=C+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$778           |
| DEVL=F(1,1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0779            |
| ]F_(KSP+CQ+7) DEVL=(F(1+1)-F(1+NR3))/(F(1+NP3)→(TCC+1+))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0780            |
| <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |
| IRC(1)=PAT(2,1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | :782            |
| 701 ELT(I)=PAT(1,1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7.63            |
| <b>↓↓</b> 7,2 <b>↓</b> =1,50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |
| +ECF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |

|                                       |                                                                                                              | -2/3                                                                                                             |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| <b>7</b> 02                           |                                                                                                              |                                                                                                                  |
|                                       | CALL FCLYFI(ELI, AKG, NEF, 3, CEX, CEXC, SMCCTH, STDV)                                                       | 17E6                                                                                                             |
|                                       | $\frac{CEVI - CEXC+XE*(CEX(1)) + XC*(CEX(2)+CEX(3)*XE)) - CEVI}{CEVI - CEXC+XE*(CEX(1)) + CEX(2)+CEX(3)*XE}$ |                                                                                                                  |
| 760                                   | CONTINUE                                                                                                     | (788                                                                                                             |
| 1                                     |                                                                                                              |                                                                                                                  |
|                                       | FM([1]) = (-)                                                                                                |                                                                                                                  |
| - 350                                 |                                                                                                              | <u> </u>                                                                                                         |
|                                       |                                                                                                              |                                                                                                                  |
| ·                                     | WRITE(6,942) KCCUNT                                                                                          |                                                                                                                  |
|                                       | WRITELE, YAZI KUUUN<br>WRITELE, YAZI KUUUN                                                                   | · · · · · · · · · · · · · · · · · · ·                                                                            |
| · · · · · · · · · · · · · · · · · · · | - VK11E(E,2EC) 111LC<br>- YCDUX= YC*12.*25.4                                                                 |                                                                                                                  |
|                                       |                                                                                                              | and the second of the second |
|                                       | WRITE(6,6C) KSP,UCG,FC,YCDUM,TYC,WT,FPG,TCC,TC,C                                                             | <u></u>                                                                                                          |
|                                       | <u> </u>                                                                                                     | 0.757                                                                                                            |
|                                       | kk ITE(C,49)(CM(1),1=1,NP3)                                                                                  |                                                                                                                  |
|                                       | IF (NVEL .E C . C ) CC 1C 3C2                                                                                | <u></u>                                                                                                          |
|                                       | - KRITE(7,555)                                                                                               | <u>;8</u> ;;;                                                                                                    |
|                                       | - 1F(NC.EC.C) hRITE(6,556)                                                                                   | <u>CEC1</u>                                                                                                      |
| C****                                 | **** VALUES OF X/YC AT WHICE PROFILES ARE PRINTED OUT                                                        |                                                                                                                  |
|                                       | <u>CC 2C0 I=1,NVE1</u>                                                                                       | <u>( ξ € 3</u>                                                                                                   |
|                                       | _ZX(I)≈XV(I)                                                                                                 | r 864                                                                                                            |
| 302                                   | CONTINUE                                                                                                     |                                                                                                                  |
|                                       | 2X(NVEL+1)=(.                                                                                                | 6                                                                                                                |
|                                       | 2X (NVEL+2)=1.0                                                                                              |                                                                                                                  |
|                                       | NV3=NVEL+3                                                                                                   | 0.8c.9                                                                                                           |
| i a<br>—————                          | NV12=NVEL+12                                                                                                 |                                                                                                                  |
|                                       | CC 750 1=NV3;NV12                                                                                            |                                                                                                                  |
| 750                                   | 7X(I) = 7X(I-1) + 2.                                                                                         |                                                                                                                  |
| 15                                    | CONTINCE                                                                                                     | 612                                                                                                              |
|                                       | CXYC=DX/YC                                                                                                   |                                                                                                                  |
|                                       | XYC=XU/YC+XC                                                                                                 |                                                                                                                  |
|                                       | KY≃0                                                                                                         | 0.815                                                                                                            |
|                                       |                                                                                                              | 61)<br>6816                                                                                                      |
|                                       | IF(INTG-NE-1) GC TC 75                                                                                       |                                                                                                                  |
|                                       |                                                                                                              | 6813                                                                                                             |
|                                       |                                                                                                              |                                                                                                                  |
|                                       |                                                                                                              |                                                                                                                  |
|                                       |                                                                                                              | <u> </u>                                                                                                         |
|                                       |                                                                                                              | <u> </u>                                                                                                         |
| <br>ar                                | IF (NVEL-GT-6) L=NVEL                                                                                        | 0.822                                                                                                            |
|                                       |                                                                                                              | <u> () £23</u>                                                                                                   |
|                                       | $\mathbf{L} = \mathbf{Z} \mathbf{X} \left( \mathbf{I} \right) = \mathbf{X} \mathbf{Y} \mathbf{C}$            | (1824                                                                                                            |
|                                       |                                                                                                              | 0225                                                                                                             |
|                                       | IF (ABS(D).LT.DXYC.AND.L.GE.C.) GC TU 27                                                                     | <b></b>                                                                                                          |
|                                       | CONTINUE                                                                                                     | <u> </u>                                                                                                         |
|                                       | CO TU 26                                                                                                     | (828                                                                                                             |
| 27                                    | <u>KY=1</u>                                                                                                  | 0829                                                                                                             |
|                                       | IF (INTC+EC-1) KY =0                                                                                         |                                                                                                                  |
|                                       | JPL0T=I                                                                                                      |                                                                                                                  |
|                                       | . If P=u                                                                                                     | 0.832                                                                                                            |
|                                       | IF (NPHI.EC.G) GC TO 26                                                                                      | 0833                                                                                                             |
|                                       | CC 220 1=1,NPHI                                                                                              | (834                                                                                                             |
| 230                                   | IF (ABS(ZX(JPLOT)-XFI(I)).LE.C.5*YC)1FP=1                                                                    | 0835                                                                                                             |
|                                       |                                                                                                              |                                                                                                                  |
|                                       | IE (KY.EQ. 1. AND. INTG.NE.IT) CC TO 25                                                                      | 0£37                                                                                                             |
|                                       |                                                                                                              |                                                                                                                  |
|                                       | $\Pi = \Pi + 10$                                                                                             | (1836)                                                                                                           |
|                                       |                                                                                                              |                                                                                                                  |
| \$ECF                                 | CONTINUE                                                                                                     |                                                                                                                  |
| <u> </u>                              |                                                                                                              |                                                                                                                  |

\_\_\_\_

| • 274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| JAV=JI+NEF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6841                |
| CX4****** STERING INFERMATION AFTER EVERY TEN INTEGRATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - £42=              |
| PAT(1, JAM)=XYC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| FAT(2, JAM) = F(1, 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (844                |
| C STORING ACIABATIC WALL TEMPERATURES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C: E 4 5            |
| ETRO(JAN)= PAT(2,JAN)<br>JE(KETA NE 1) CC TC 747                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |
| IF(KETA_NE_1)_GC_TC_74(<br>ΕΤΔΧ(J1)=ΙΤΔΓ(JΔΡ)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6847<br>6848        |
| >FIA(JI)=XYC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u> </u>            |
| ∠E 1/1(J1)-2/1.<br>NE1AX=J1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - ( 645<br>- ( 85:  |
| -740 CENTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (851                |
| C*** UMS IN M/S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 1 - 1<br>- 7 852  |
| UMS(JAN)= U(NP3)*(.3048                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u> </u>            |
| ELT(JA*)≈12.*Y(AP3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2854                |
| CSEARCH FOR MAXIMUM AND HALF VELOCITY FOINTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0855                |
| <b>(ϸͺ{ͺͿ</b> ΔϷͿ≈ζ, •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - ( 856 -           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6857                |
| $\begin{bmatrix} 0 & 1 & 3 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8230                |
| $\frac{1F(U(I)_{L}T_{U}U(JAY))}{V(IAY)_{T}} = \frac{GC}{C} = \frac{1C}{800}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 655                 |
| $\frac{U(1)}{2} = \frac{U(1)}{2} + \frac{1}{2} $ | <u>6661</u>         |
| YM (JAM)=Y (I)/YC<br>Evy CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0861                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.862               |
| UHIJA™J=[UM(JAMJ+U(NP≤])/2.<br>CC 8(1 1≠1.NF3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u> </u>            |
| <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |
| IF (UH( JAM)→LE→U( T)→ANE→UH( JAM)→CE→U( T+1) ) CC TC E( 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |
| EGI CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 5 7 7<br>- 5868   |
| $= \frac{8(2 - YH(JAM) = (Y(I) + (Y(I + 1) - Y(I)) / (U(I) - U(I + 1)) * (U(I) - UF(JAM))) * 12}{(U(I) - UF(JAM)) + 12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u></u>             |
| <b>ΥΗ (JAM]= ΥΗ (JAM)/Υ(/12.</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | · 870               |
| EC3 CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u> </u>            |
| LH{JAM}=UH{JAM}*3:48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | . 872               |
| IF (KSP.EQ.S) SS(JAM) = TAUT / (DEN*UN(JAN)*UN(JAN))*1000.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |
| AKCIJANJ# /MY. /DI.N/UM (J/M)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | . 874               |
| <u>C***** COMPUTATION OF NAELA (STORED UNDER AMG) E.4.65</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (.875               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 676                 |
| IF(JT.FG.1) GC TC 7(3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.877               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C E 7 E             |
| EEVSQ=CEVSQ+0.5*(LEV*CEV_+_DEVL*CEVL)*(PAT(1,JAN)-PAT(1,JAN-1))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 279               |
| ANGLJAN) = SCRT(EEVSC* YC 7 XU)<br>Fevi =dev                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |
| CEVL=DEV<br>703 CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0881                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0883                |
| JF(U(NP2)+EC+O+) GC 1C 5001<br>\$\${JAM}=TAU1/(DEN#U(NF2)#U(NP3))#1000+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u>0883</u><br>(884 |
| 33 (JANJ=1ACI/(DEN*U(N+3J*U(N+3J)+U(N+3J)+U(N+3J)+U(N+3J)+U(N+3J)+U(N+3J)+U(N+3J)+U(N+3J)+U(N+3J)+U(N+3J)+U(N+3J)+U(N+3J)+U(N+3J)+U(N+3J)+U(N+3J)+U(N+3J)+U(N+3J)+U(N+3J)+U(N+3J)+U(N+3J)+U(N+3J)+U(N+3J)+U(N+3J)+U(N+3J)+U(N+3J)+U(N+3J)+U(N+3J)+U(N+3J)+U(N+3J)+U(N+3J)+U(N+3J)+U(N+3J)+U(N+3J)+U(N+3J)+U(N+3J)+U(N+3J)+U(N+3J)+U(N+3J)+U(N+3J)+U(N+3J)+U(N+3J)+U(N+3J)+U(N+3J)+U(N+3J)+U(N+3J)+U(N+3J)+U(N+3J)+U(N+3J)+U(N+3J)+U(N+3J)+U(N+3J)+U(N+3J)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+U(N+3U)+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u></u>             |
| CTAULUART- SCRITTAUTZERJAG +3048<br>CAAAAAAA CALCULATION OF INTEGRAL CUANTITIES AND SHAPE FACTORS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u>- (331)</u><br>  |
| $\frac{CC}{76} = 2.0 \text{ NP2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EEE                 |
| 76 Y\$1]=])=Y(])                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 333.)               |
| UCMI=RFC(1)*(U(3)+U(2))*(U(3)+U(2))*(Y(3)+Y(2))/(U(NP3)*8.0*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |
| 1(2./PCI-1.)*PET)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C 8 S U             |
| UCMI=UCMI+(CM(3)-CM(2))*(3.*U(3)+U(2))/(8.0*U(NF3))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0891                |
| <b>CO 112 I=2,</b> №PI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C 8 9 2             |
| <u>112 UCMI=UCMI+(CM(I+1)-CM(I))*(U(I+1)+U(I))/(2,*U(NP3))</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.893               |
| C2=PLI/(DEN*U(NP3))*(],=U(MI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6894                |
| IF(KRAC.EC.1) D2=C2/R(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0855                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b></b> 896         |
| \$ECF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |

|                | 275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u> </u>     |
|                | [2=0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |
|                | EN 61 1=3, NP2<br>141=1-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - 2233       |
| E E            | 14]=1=]<br>1 C2=D2+0_5*(F(1,I)+F(1,IM1)=2.*F(1,NP3))*(CN(I)=CM(IM1))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0500         |
|                | Dz=PL1/(DEN*U(AF3)*(F(1,1)+F(1,AP2)))*D2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | . çr ź       |
|                | IF (KRAE.FG.1) D2=C2/R(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6903         |
|                | RPH12{JAM}=U{NP3}*C2*CEN/AMC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u> 6564</u> |
|                | ERPH(J/M)=RPHI2(JAM)*F(1,1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u> </u>     |
|                | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u> </u>     |
|                | 1(DEN*U(AP2)*R(1))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C C C 8      |
|                | +12(JAN)=12.*D2/CEL2(JAN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u> </u>     |
|                | CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u> </u>     |
| 149            | GONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0911         |
|                | IF (KY.EQ.1) CO TC 24<br>IF (INTC.NE.JPROF) GC TC 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0512         |
| <b>)</b>       | IFLINIC-WE-JPRUFICS IC 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0913         |
|                | IF(NC.NE.1) WRITE(6,20)XYC, INTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u> </u>     |
|                | ↓ FORMAT(//5H >YC=,FC.1,5X,5H INTG,12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ÷ 5 16       |
|                | <u>CC 56 I=1,NP2</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0917         |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.518        |
|                | $\frac{1}{1} = \frac{1}{1} = \frac{1}$ | <u> </u>     |
| 5000           | $\frac{1F(K SP - EQ - S)}{ARC(1) = U(1)/UN(JAM)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |
|                | YPK(1)*Y(1)/YC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ( 922        |
|                | IF(KSP.EQ.9) YPR(I)=Y(I)/(YH(JAM)*YC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0\$23        |
| === <u>5</u> ( |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (. 524       |
| (****          | T(NP2)=T(NP3)<br>**** PRINTING CUT PROPILE INFERMATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |
|                | JF(NC.EC.1) GO TO 508                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |
|                | <b>≱</b> R1TL( <i>C</i> ,57) (ARC(1),1=1,NP3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.928        |
| <u> </u>       | ▶R JTE(6,58) (YPR(1), I=1,NP3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u> </u>     |
| <i></i>        | $\frac{1}{1} + \frac{1}{1} + \frac{1}$ | 0936         |
| 568            | CONTINUE<br>WAXX PUTTING PREFICTED PROFILES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u> </u>     |
|                | IF(KERAW.NE.1) GC TG 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <br>         |
|                | JCCNP=JCC*P+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - \$34       |
|                | JF(JCOMP.FC.10) CALL FLOT(7.75,-20.33,-3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0935         |
|                | IF(JCCMP.EC.10) JCCMP=1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ¢3(          |
|                | CALL PICT(CR(1, JCCMP), CR(2, JCCMP), -3)<br>YMAX=5.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0537         |
|                | $\frac{1 M P A - 2 + 1}{1 F (Y P 3) + CT + Y P A X} Y P A X = Y P F (N P 3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 C 2 C      |
|                | UM#X=FLCA1(1F1X(LCC)+1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | i \$40       |
|                | <u>YPR(N+4)=YMAX</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |
|                | <b>₽₽₽€{\\++\$}=\</b> ₩AX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u> </u>     |
|                | T(N+4)=0.<br>CALL SCALE(YPH, E.D, N+4, 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0943         |
|                | -CALL - SCALE(IPR, 2.0, N+4, 1) $-CALL - SCALE(ARG, 2.0, N+4, 1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u> </u>     |
|                | CALL AXIS (C.C., 0.0, 4FY/YC, 4, 5.0, 5U.C., YFR(N+5), YPP(N+6))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0946         |
|                | CALL AXIS(0.0.0.1H , 1,3.0,0.0, ARG(N+5), ARG(N+6))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0947         |
|                | <b>YPR(N+4)=YPR(N+3)</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u> </u>     |
|                | $\frac{\text{ARG}(N+4) = \text{ARG}(N+3)}{\text{CALL} = 10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u> </u>     |
|                | CALL LINE (ARC, YFR, N+4, 1, 0, 1)<br>JF (NEC, EQ, 1) GC TC 206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0\$50        |
|                | CALL S(AL(1,3,,N+4,1))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | \$÷1         |
| \$ECF          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |

| CALL AXIS(0,5,0,6HEI/FIK                                                                                                                            |                                 | 0553             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------|
| 1(N+4)=1(N+3)                                                                                                                                       |                                 | QS54             |
| CALL_LINE(T, YPR, +4, 1, (, 1)                                                                                                                      |                                 | <u> </u>         |
| (ALL SYMBCL (1.0,4.0,00.125                                                                                                                         |                                 | 6 \$ 56          |
| (ALL_NUMBER(2.0,4.0,6.125,                                                                                                                          |                                 | <u> </u>         |
|                                                                                                                                                     | 4.ANC.JCCMF.NE.7) CC TC 840     | <u>, c 58</u>    |
| CALL SYMBCL (2-,=0-7,-125,<br>C DRAWING A4 SI7F FCEDER                                                                                              | ┨ <u>┥┨┥</u> ╘╺┑┶╼┊╻ <i>┫┎┨</i> | CEC.             |
| CALL PLCT(-1,37,-1,6,3)                                                                                                                             |                                 |                  |
| CALL PLOT (-1.37,7.5,2)                                                                                                                             |                                 | сс <u>с</u>      |
| CALL PLOT (4.505,7.5,2)                                                                                                                             |                                 |                  |
| (ALL FLCT (4.505,7.0,2)                                                                                                                             |                                 | 0964             |
| CALL PLOT (4-5-5-7-5-2)                                                                                                                             |                                 | <u></u>          |
| (ALL PLCT(15,38,7,5,2)                                                                                                                              |                                 | <u>(</u> \$66    |
| CALL_FLCT(10.38+-1.,2)                                                                                                                              |                                 | 0567             |
| CALL PLCT(1.+38;+1+(;2)                                                                                                                             |                                 | ( \$63-          |
| CALL PLCT (-1.37,-1.,2)                                                                                                                             |                                 | 0969             |
| CALL PLCY(//.,//.,3)                                                                                                                                |                                 | C \$ 70          |
|                                                                                                                                                     |                                 | <u> </u>         |
| 206 CONTINUE                                                                                                                                        |                                 | <u>- \$72</u>    |
| <u>_C******** PLOTTING EXPERIMENTAL</u>                                                                                                             | FRCFILES                        | 0973             |
| 30( If (NVLL.C.( ) GC 10 2(7                                                                                                                        |                                 | ( \$74           |
| IF (JPLCT.CT.NVEL) GO 10 20                                                                                                                         | 4                               | <u> </u>         |
| NU=NU*(JPL(T)<br>NUM1=NU+1                                                                                                                          |                                 | 0576             |
| CO 2.5 I=1,NUM1                                                                                                                                     |                                 | 0577             |
| $\frac{1}{YPR(1)=YX(JPLOT,1)/YC/12}$                                                                                                                |                                 | <u>, 575</u><br> |
| YX(JP(C1,1)=YPP(1)                                                                                                                                  |                                 |                  |
| <pre>/P.G( I ) = UX ( JPLOT • I )</pre>                                                                                                             |                                 | <u>CSE1</u>      |
| 205 IF(KSP.00.10) AFC(1)=UX(JF)                                                                                                                     | (1+1)/((\\$?)                   |                  |
| IF (KDRAW.NE.1) CE TC 726                                                                                                                           |                                 | 0.983            |
| CALL CFOPTYPR, ARG, NU, YMAX, G                                                                                                                     | •U •KV)                         |                  |
| <u>NU=KN</u>                                                                                                                                        |                                 | <u> </u>         |
| NUMI=NL+1                                                                                                                                           |                                 | (,\$86           |
| $\underline{YPR(NUM1)} = \underline{YM}X$                                                                                                           |                                 | 0987             |
| ARC(NUM1)=UMAX                                                                                                                                      |                                 | (\$88            |
| CALL SCALE(YPR, 5.0, NUM1,1)                                                                                                                        |                                 | 0585             |
| CALL SCALETARG, 3.C, NUMI, 1)                                                                                                                       |                                 | Ç \$ \$()        |
| CALL AXIS (0.0.0.0.1H                                                                                                                               |                                 | 0991             |
| CALL AXIS(C.G.C., U.J.H., 1,0)                                                                                                                      |                                 | (.552            |
| CALL L JNE (ARG, YPR, NUM1, 1, -1                                                                                                                   | <b>1</b> 41                     | <u></u>          |
| 73€IF(_IFP+EQ+Q)CCTC2C7<br>NF=NFI(_IFP)                                                                                                             |                                 | <u> (</u> çç4    |
| NF 1= NF +1                                                                                                                                         |                                 | <u>0995</u>      |
| CO 233 I=1.NF1                                                                                                                                      |                                 | (1997            |
| $\mathbf{Y}^{P}\mathbf{R}(\mathbf{I}) = \mathbf{Y}\mathbf{X}\mathbf{F}(\mathbf{I}\mathbf{P},\mathbf{I})/\mathbf{Y}\mathbf{C}/\mathbf{I}\mathbf{Z},$ |                                 | ncco             |
| YXF(IFP,I)=YPR(I)                                                                                                                                   |                                 | 0999             |
| 223 1(1)=EIX(1EP,1)                                                                                                                                 |                                 | 10/a             |
| IE (KDRAW. NE.1) GE TO 207                                                                                                                          |                                 | 1001             |
| CALL CFUP (ΥΡR, Ι, ΛΕ, ΥΜΑΧ, Ο. Ο                                                                                                                   | <b>T</b> (K)                    | 1642             |
| NF=KN                                                                                                                                               |                                 | 1003             |
| <u>₩₽J≈₩₽₽J</u>                                                                                                                                     |                                 | 1004             |
| <u>YPR(NF1)=YMAX</u>                                                                                                                                |                                 | 1005             |
| <b>I{NF1}=0.6</b>                                                                                                                                   |                                 | 10:06            |
| CALL SCALE (YPR, 5.0, NE1, 1)                                                                                                                       |                                 | 1007             |
| CALL SCALE(T,3., ,NEL, ])                                                                                                                           |                                 | 1008             |
| <u>\$ECF</u>                                                                                                                                        |                                 |                  |

•

| •                                      | $\frac{277}{277}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |
|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
|                                        | <u>CALL AXIS (U.C.C.C.1P., 1, 0.0, 90.0, YPR (NE+2), YPR (NE+3)</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u> </u>            |
| · · · · · · · · · · · · · · · · · · ·  | CALL AXIS(1,0) = 1,0,0,1(NF+2),1(NF+2)]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>            |
|                                        | $-\frac{CALL L INF (T, YPR, NF1, 1, -1, 5)}{CONTINUE}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1011                |
|                                        | TEAKY EC IN COLTE E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1:12                |
| c:                                     | - IF (KY + EC + 1) 60 TC 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1613                |
| <del>Cu</del>                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u> </u>            |
| r                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |
| -                                      | IF (INTG_NE.151) RETURN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -1017               |
| <b>(</b>                               | **** PRINTING OUT EFFECTIVENESS,INTEGRAL AND CTFER CUANTITIES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1018                |
|                                        | kRITE(6,501)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u> </u>            |
| 5.6                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1020                |
| c                                      | COMPUTING H FROM THE AND TW AND Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |
|                                        | 1F(KH6+,NE,1) GC 1C 741                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1:22                |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1023                |
|                                        | ŇH=JAM-NEF+I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1, 24               |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u> </u>            |
|                                        | <i>1</i> RC(J)≈PA1(1,1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1026                |
|                                        | $-1(\mathbf{J}) = \mathbf{F} 1 \mathbf{A} \mathbf{D} (\mathbf{I})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1027                |
| 742                                    | J=J+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1028                |
|                                        | CALL INTPOL (ETAX, XETA, NETAX, YPR, ARG, NH)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1029                |
|                                        | -[( 743 [=],N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1030                |
|                                        | _AMC(1)=36G(.*Q1/(1G*(1CC-1.)*(1(1)-YPR(1)))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1021                |
| - ( * * * *                            | ** THIS EXPRESSION VALID WICH SLCT FNIHALPY IS TAKEN AS UNITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |
|                                        | $\frac{1F(KSP_{\bullet}EQ_{\bullet}2)}{MC(1)} = \frac{3600}{4} + \frac{24}{(T(1))} + $ | 1:33                |
| - <b>L</b>                             | NUSSELT NUMBER PASES OF SUCT CONDITIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1034                |
|                                        | CCND = AMU * 0.24 / PR(1) * 36(0).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1:35                |
| 743                                    | ANC(1)=ANC(1)=YC/CCND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1(;26               |
|                                        | CONTINUE<br>CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10:37               |
| ······································ | WRITE(6,70) (PAI(1,1), FAI(2,1), RC2(1), RPF12(1), SS(1), F12(1),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1020                |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |
| 7.0                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2-111041            |
|                                        | 1MAX YMAX UFALF YHALF UG NUC CF 4KG44X45F UTAU42X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |
|                                        | 1//1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1043                |
|                                        | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |
|                                        | 1,F6.2,2X,F6.2,2X,F6.2,2X,F10.3,2X,F6.3,2X ))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1: 45               |
|                                        | ŊĹŀĸŊĹŀĸĮ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1046                |
|                                        | IF (NETA .LE. A) GC TC 3C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1047                |
|                                        | ₩₽1TE(6,71) NEUN,CEXC,(CEX(1),I=1,3),SICV,(PAT(1,1),PAT(2,1),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1:48                |
|                                        | 1_\$MCOTH(1),1=1,NEF1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1049-               |
| 301                                    | CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1050                |
|                                        | JCOMP=9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1651                |
| 71                                     | FORMAT(732H EXPERIMENTAL EFFECTIVENESS CATA77,5H RUA ,127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1652                |
|                                        | 127H COEFFICIENTS OF L.S. CUPIC/3H CO,4X,E12.5/3H C1,4X,E12.5/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u> </u>            |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  | 23  C2+4X+C12+5/3  C2+4X+C12+5//5   S1C1+2X+C12+5/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 16.54               |
|                                        | 16H X/YC , 2X, 3HE TA, 2X, 6H SMCCTH//(F6.1, 2X, F6.4, 2X, F6.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1055                |
|                                        | FORMAT(20X,12AC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1056                |
|                                        | FORMAT(/8F_KCOUNT ,12/)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>            |
| 1                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.58                |
| <u>-60</u>                             | FORMAT(9H************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,59                |
|                                        | 110H UC/UG ==,F7.3,10X, 10H AC =,F5.1/ 10H AC (MM) =,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1060                |
|                                        | 1F6.2,9X, 10H T/YC =,F5.2,12X, 10H M.WT.C =,F8.2/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\frac{1000}{1000}$ |
|                                        | 0   KP≠10★46 <b>=,F2,2,5X,</b> 10   TC/TC = <b>,F(,3,11X,10   TC DEG K=,F7</b><br> 10   ON N/N2 -ES 1//CU********                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |
|                                        | <u>ll()+ Qk k/M2 =F8,1//SH*******)</u><br>F6kM/71//(2%,4+U/UC,4%,15(F6,3,1%))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1063                |
| 57<br>\$ECF                            | <u>····································</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u> </u>            |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |

|                   | 273                                                                                                       |             |
|-------------------|-----------------------------------------------------------------------------------------------------------|-------------|
| 58                | FORMAT(/(2X,5HY/YC ,3X,15(F6.3,1X))                                                                       | 1665        |
|                   | FCRMA1(/(2X, 2.1.F1/F1k, 2X, 15(F6, 4, 1X)))                                                              | 1000        |
|                   |                                                                                                           | -1067       |
|                   | FORM£T(1:X,7(4X,1Pt1),3)                                                                                  | 1.78        |
| 505               | FCRMAI(/(2X,6HENU/NU,2X,15(F(.1,1X)))                                                                     | 1069        |
| 506               |                                                                                                           | 1079        |
| _4444             | FCRM41(/(2x,EHECIF/MU , 15(F(,1x)))                                                                       |             |
| - 4445<br>- 504   | _FCRMAT(6H_ITEST;14/)                                                                                     | 1071        |
|                   | $\frac{12F \times 7X_{2}F}{12F} = F_{2}F_{2}F_{2}F_{2}F_{2}F_{2}F_{2}F_{2}$                               |             |
|                   | <u>↓∠F Ng INg↓F=gF(+→→gCNg↓</u> ↓F=L#NCU/===gF→+Zg↓ZNg↓UF=>↓UF=>↓UF=<br>13F X1g(Xg1H=gF{{+√//SH}3x3xxxxxx | 1(73        |
|                   | FORMAT(SH************************************                                                             | 1074        |
| 49<br>555         |                                                                                                           | 1075        |
|                   | $= FCRMAT(S) + ** ** ** ** + 3 \times 3 \times 7 H CUTP(1/)$                                              | 1076        |
| 556               | FCRMAT(9H************************************                                                             | 1077        |
| 501               | FCFMAT(/SF************************************                                                            | 1079        |
|                   | RETURN                                                                                                    | 1079        |
|                   |                                                                                                           | 1080=       |
| -&1±₽Т            | C PRE1                                                                                                    | 1081        |
|                   | SUPROUTINE PRE (XU, XC, CPDX)                                                                             | 1182        |
|                   |                                                                                                           | 16.83       |
|                   | 1×L <sub>3</sub> DX <sub>3</sub> INTG,CSALF/                                                              | 11 84       |
|                   | 1/V/U(43), F(2,43), R(43), RHC(43), CM(43), Y(43)                                                         | 1.65        |
|                   | I/I/NyhflyhP2yhP3yh!GyhFlyK!XyKINyKASEyKPAD                                                               | 1686        |
|                   | COMMEN /CEN/ UG,UCG,YC,XYC,EPG,EAT(20)                                                                    | 10.67       |
| <del>(****</del>  | * FPC KEPKESEMTS K * 1;**é                                                                                | 1:66        |
|                   | <u>CPDX=(-1.)*DEN*DEN*U(NP3)*U(NP3)*U(NP3)*FPC/(AML*10.**6)</u>                                           | 1689        |
|                   | ACTURM                                                                                                    | 1490        |
|                   | END                                                                                                       | 1091        |
|                   |                                                                                                           | 11-92-      |
| <u>(****</u>      | * THIS SUBREUTINE TRANSFERRED FROM FISIOT2 55 31.12.1968                                                  | 1053        |
|                   | SUBROUTINE RADIX, RI, CSALFA)                                                                             | 10\$4       |
|                   | COMMON /GEN/PEI, AMI, AME, DEDX, PREF(2), PR(2), P(2), CEN, AMU, XU, XD, XP,                              | <u>1095</u> |
|                   | L>L ,DX , INTG,CSAL                                                                                       | 1.56        |
|                   | 1/V/U(43), E(2,43), R(43), RHC(43), CM(43), Y(43)                                                         | 1057        |
|                   | L/T/NyNF1yNP2yNP3yNECyNPFyKCXyKINyK/SEyKRAD                                                               | 1.58        |
|                   | COMMON /JAY/ JCOMP, KORAW, NSETS, KSP                                                                     | 1655        |
| C                 | LIST NAMES CHANCED IN THIS SUERCULINE                                                                     | 1160        |
|                   | CSALFA=1.                                                                                                 | 1101        |
|                   | IF (KIN.EQ.2) GO TO 17                                                                                    | 11:2        |
|                   | IF(KRAC.FC.C) CC TO 16                                                                                    | 1103        |
|                   | IF (KSP•€Q•13) CC TC 15                                                                                   | 11:4        |
|                   | IF(X.EC.0.) GO TC 15                                                                                      | 11:5        |
|                   | ₩1¥R(])*(T(1)-2.*/*I*(X-XF)/(FEC(])*U(1))                                                                 | 11(6        |
|                   | <u>IF(R1.LT.0.)R1=C.</u>                                                                                  | 1107        |
|                   | T <b>1≈SC</b> PT(R1)                                                                                      | 11-8        |
|                   | RETURN                                                                                                    | 1109        |
|                   | RI CERTUSFONES IC AFPARAIUS B                                                                             | 1110        |
| 15                | R1=1.427/12.                                                                                              | 1111        |
|                   | <b>(\$ALF4≈~].</b> ;                                                                                      | 1112        |
|                   | PETURN                                                                                                    | 1113        |
| ==-1 <del>6</del> |                                                                                                           | 1114        |
|                   | FETURN                                                                                                    | 1115        |
| 17                | R1=0.                                                                                                     | 1116        |
|                   | FETURN                                                                                                    | 1117        |
|                   | END                                                                                                       | 1118 = 1118 |
| \$ I E FTI        |                                                                                                           | 1119        |
|                   | SUBRCUTINE READY                                                                                          | 1123        |
| \$ECF_            |                                                                                                           |             |
|                   |                                                                                                           |             |
|                   |                                                                                                           |             |

, Â

...

2.4

| <ul> <li>CCAWGEN_GETA/DE 1, ANI, ANE, DECX, PERE (2), FE (2), FE (2), FE (A, ANU, XU, XU, XU, XU, XU, XU, XU, XU, XU, X</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 275                                                                     |                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------|
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | COMMON /GEN/PEI,ANI,ANE,DPDX,PREF(2), PR(2), P(2), DEN, AMU, XU, XD, XP | + 1121                                |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                         |                                       |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                         | 1123                                  |
| $ \begin{array}{c} (CFWChAPS(75)+5+V)+PC1/A2+C2+C2 & 1122 \\ (ALL PARTAULP (ALL)+C3+(F4) & 1127 \\ (ALL PARTAULP (ALL)+C3+(F4) & 1127 \\ (ALL PARTAULP (ALL)+C3+(F4) & 1127 \\ (CALL)+C3+(F4)+C3+(F4)+C3+(F4)+(F4)+(F4)+(F4)+(F4)+(F4)+(F4)+(F4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                         |                                       |
| $ \begin{array}{cccc} (ALL DENSIT = 127 \\ (ALL PACKNP(1+1, CSA(FA)) = 128 \\ (Y KEAF THE T BUINDARY = 145 \\ (U FATACATA (TARA)) = 1425 \\ (U FATACATA (TARA)) = 1425 \\ (U FATACATA (TARA)) = 1425 \\ (U FATACATA) = $ |                                                                         |                                       |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                         |                                       |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                         |                                       |
| $ \begin{array}{c} \text{CO} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                         |                                       |
| $ \begin{array}{c} 1 & \text{Fr}(2) = (-2) + (\text{Fr}(2) + (\text{Fr}(2) + (\text{Fr}(2) + (\text{Fr}(3) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + (1/2) + $                                                                       |                                                                         |                                       |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                         |                                       |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                         | 1132                                  |
| 72       Y(2)=12.*CM(3)/((2.*R+C(2)+R+C(3))*(U(2)+U(3)+4.*U(1)))       1122         73       Y(2)=.5*0P(3)/(R+C(1)*U(1))       1123         74       Y(3)=CK4(3)*(.5/F(1/FUC3)+CK(2)/TUC2*+FRC(3)*V(3))       1123         14       Y(2)=.1*(.2).+1.*(.2).+1.*(.2).+R+1E(6,7).*Y(2).*Y(3),FETA,CK(3),       1123         14       Y(2)=.5*0P(3)/(R+C(1)*U(2),ITATC,YU       144         14       Y(2)=.5*0P(3)/(R+C(1)*U(2),ITATC,YU       144         760FMA1(//6+.REACY/0(3)+E12.2).12.*J.3.*2X,FE.3)       141         14       Y       144         15       142       142         16       Y       144       142         17       Y       FOFMA1(//6+.REACY/0(3)+E12.2).12.*J.3.*2X,FE.3)       141         14       Y       Y       FOFMA1(//6+.REACY/0(3)+E12.*Z).*2X,FE.3)       144         14       Y       Y       FOFMA1(//6+.REACY/0(3)+E12.*Z).*2X,FE.3)       144         14       Y       Y       FOFMA1(//6+.REACY/0(3)+E12.*Z).*13.*ZX,FE.3)       144         14       Y       Y       FOFMA1(//6+.REACY/0(3)+E12.*Z).*X,FE.3)       144         14       Y       Y       Y       Y       Y       144         14       Y       Y       Y       Y       Y       Y </td <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                         |                                       |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                         |                                       |
| 73       YLJE       \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                         |                                       |
| 74       Y(2) = (X(3), (1, (2), (1, (2), (1, (2), (1), (2), (1), (2), (1), (2), (2), (2), (2), (2), (2), (2), (2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                         |                                       |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                         |                                       |
| 1+h(f(2);+H(f(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2);+U(2)                                                                                                                                       |                                                                         |                                       |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                         |                                       |
| $ \begin{array}{c} \mbox{C} & \mbox{II} &$                                                                                           |                                                                         |                                       |
| <pre>5. Y(I)= Y(I)= Y(I)= (P((I)=(P((I))) ((P((I)=1)) + P(P((I)=1)) + P(P((I)=1)) + P(I)) + P(I) + P</pre>                                                                                                 | C Y SFOR INTERMEDIATE ON TO PETNIS                                      | 1142                                  |
| C       Y NEAR THE E BOUNDARY       1145         Y(NP2) = Y((KP1) + (CF(NP2)-CF(NP1)) / (1,5*PHC(NP1)MU(NP1))       1146         1 - 40, F&REPO(NP2) + U(NP2))       1147         cD TC (61,62,63),KEX       1148         81 Y(NP3) = Y(NP2) + (1,+PETA)*(CP(NP2)-CF(NP1))*4,/(CPHC(NP1)+3,*PHC(NP2)146       1147         cD TC (61,62,63),KEX       1147         eD TC (61,62,63),KEX       1147         eD TC (61,62,63),KEX       1157         cD TO 64       1151         s2 Y(NP3) = Y(NP2) + 12,* (CP((NP2) = CP((NP1))/(RP0(NP3)*U(NP2)))       1153         cD TC 64       1151         s3 Y(NP3) = Y(NP2) + 12,* (CP((NP2) = CP((NP1))/(RP0(NP3)*U(NP3)))       1155         c0 TC 64       1157         c0 TC 65       1157         c1 fc 52 + 2,NP3       1157         s2 Y(NP3) = Y(NP2) + 2,* (R(1) + SQRT(APE(R(1)+2,* Y(1)*PC(*CSAUFA)))       1155         c6 TC 56       1157         c7 Y(1+2,* Y(1)*PE(1)       1160         c6 TC 56       1159         c1 54 + 12,NP2       1167         s2 Y(NP2) = 2,* Y(NP1)       1163         c6 TC 54 + 12,NP2       1163         c7 (1) + 2,NP2       1163         c6 TC 54 + 12,NP2       1163         c6 TC 54 + 2,NP2       1166                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                         |                                       |
| Y(NP2) = Y(FF1) + (CM(NP2)-CM(NP1)) / (1,5*PHC(NP1)*U(NP1))       1146         1 + C,5*RPC(NP2)*U(NP2))       1147         CO TC (61,52;63);FEX       1149         P1 Y(NP3)=Y(NP2)+(1,+ETA)*(CM(NP2)-CM(NP1))*4,*/((RHC(NP1)+3,*PHC(NP2)14C       1159         CO TC (6)       1151         CO TO 56       1151         CO TC 54       1154         S1 Y(NP3)=Y(NP2)+1;*,*,*(CM(NP2)=CM(NP1))/(RPC(NP1))*2,*REC(NP2))*(U(NP2)152       11451         CO TC 54       1151         CO TC 54       1155         CO TC 54       1154         S1 Y(NP3)=Y(NP2)+;*,*(CM(NP2)=CM(NP1))/(RPC(NP3)*U(NP2))       1155         CO TC 54       1156         CO TC 54       1156         CO TC 55       1157         Y(1)=2,*Y(1)*PC1/(F(1))*SPT(APS(R(1)+P(1)+2,*Y(1)*PC1)*CSA(FAF))       1156         CO TC 56       1159         S1 CO 57 T=2,NP3       1166         Y(1)=PE1*Y(1)/P(1)       1161         S2 Y(1)=PE1*Y(1)/P(1)       1163         S1 CONTINUE       1166         Y(MP2)=2,*X(NP2)-Y(NP1)       1163         Y(1)=PE1*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                         |                                       |
| 1 + fc, 5% RFC(NP 2) % U(NP 2))       1147         c0 TC (61, 52, 53), KX       1149         81 Y(NP3)= Y(NP2)+(1, + & EIA) * (CM(NP 2) - CM(NF1)) *4 + / (IRHC(NP1)+3. * PHC(NP2)) 145       1157         c0 TC 54       1151         c0 TC 16       1151         c0 TC 54       1151         c0 TC 54       1151         c0 TC 54       1152         1+u(NP1)+4, *U(NP2)))       1153         c0 TC 54       1154         82 Y(NP3)=Y(AP2)+ 5% (CM(NP2)-CM(NP1))/(RPC(NP3)*U(NP2))       1155         c0 TC 54       1156         c0 52 I=2,NP3       1155         52 Y(1)=2,+Y(1)=PE1/(R(1)+SQRT(APS(R(1)+2,*Y(1)*PE1*CS/UFA1))       1156         c0 TC 54       1159         51 C0 54 I=2,NP3       1157         52 Y(1)=2,+Y(1)=PE1/(R(1)+SQRT(APS(R(1)*R(1)+2,*Y(1)*PE1*CS/UFA1)))       1166         c0 TC 54       1159         51 C0 54 I=2,NP3       1167         52 Y(1)=PE1*Y(1)/P(1)       1161         54 (1)=PE1*Y(1)/P(1)       1163         c0 AU I=2,NP3       1163         c1 (0 54 I=2,NP3       1163         c1 (0 54 I=2,NP3       1163         c0 57 I=2,NP3       1163         c0 57 I=2,NP3       1165         if (KPA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                         |                                       |
| C0 TC (01+02+03)*KEX       1140         01 Y(LPD3)=x(LPD2)*(1,*EETA)*(CM(NP2)-CK(LP1))*4./((RHC(LP1))*3.*PHC(LPD2))140       1151         11)*U(LP1)+U(LP2)*1)       1151         C0 TC 64       1151         22 Y(LP3)=Y(LP2)*12.*U(CM(LP2)-CM(LP1))/((R+C(LP1))*3.*RHC(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U(LP2))*(U                                                                                                                                                                                                                                                                                  | 지수는 것 같은 것 같                              |                                       |
| 81 Y(NP3)=Y(NP2)+(1,+FETA)*(CM(NP2)-CM(NP1))*4,/((RHC(NP1)+3,*PHC(NP2))43         1)3*(U(AP1)+U(AP2))       1151         c0 T0 £4       1151         f2 Y(NP3)=Y(NP2)+12,*(CM(NP2)-CM(NP1))/((RHC(NP1)+3,*RHC(NP2))*(U(NP2)152       1153         f4 U(AP1)+14,*U(NP2))       1153         c0 T0 £4       1154         s2 Y(NP3)=Y(NP2)+,5*(CM(NP2)-CM(NP1))/(RHC(NP3)*U(NP3))       1153         c0 T0 £4       1154         s3 Y(NP3)=Y(NP2)+,5*(CM(NP2)-CM(NP1))/(RHC(NP3)*U(NP3))       1155         c4 1F(CSALFA,+CCG++CFARAL+FC+C) CC TC 51       1155         c6 T0 52 1=2,NP3       1157         52 Y(1)=2,*Y(1)*PE1//(RE(1)+SQPT(APS(R(1)+R(1)+2,*Y(1))*PE1*CSALFA)))       1158         c0 T0 56       1159         51 C0 54 1=2,NP3       1160         52 Y(1)=2,*Y(1)/PE(1)       1161         54 Y(1)=PE1*Y(1)/PE(1)       1161         56 CONTINUE       1162         Y(NP2)=2,*Y(NP2)-Y(NP1)       1163         C CALTATION CF PAD11       1164         C0 57 1=2,NP3       1165         1F(KRAC,+C,+C,+C) R(1)= R(1)+Y(1)*CSALFA       1163         1F(KRAC,+C,+C,+C) R(1)= R(1)+Y(1)*CSALFA       1166         1F(KRAC,+C,+C,+C) R(1)= R(1)+Y(1)*CSALFA       1167         SUPPCUTINE SLIP       1172 <td< td=""><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                         |                                       |
| 1))*(U(NF1)+(U(NF2))       115:         cC TC 54       115:         t2 Y(NP3)*Y(NP2)+12*((V(NF2))=CM(NP1))/(REC(NP1)+3*REC(NP2))*(U(NP2))*(U(NP3))       115:         cU TC 54       115:         cu TC 55:       115:         cu TC 56       116:         cu TC 56       116:         cu TC 56       116:         cu TC 56       116:         cu TC 57       116: <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                         |                                       |
| £2 Y(AP3)=Y(AP2)+12,*(CV(AP2)=CP((AP1))/(RPC(AP1)+3,*REC(NP2))*(U(AP2)))       1153         1)+U(AP1)+4,*U(AP2))       1153         CU TC E4       1153         83 Y(AP2)+.5*(CP(AP2)-CP((AP1))/(RPC(AP3)*U(AP3)))       1155         84 IF(CSALPA,EC.0,.CF,KRAL,EC.1) CC TC 51       1156         CO TC 54       1157         52 Y(1)=2,AP3       1157         54 IF(CSALPA,EC.0,.CF,KRAL,EC.1) CC TC 51       1156         CO TC 56       1157         52 Y(1)=2,AP3       1157         54 Y(1)=2,AP3       1157         55 Y(1)=2,AP3       1157         56 CO TC 56       1157         57 Y(1)=2,AP3       1167         58 CO TC 56       1159         59 CO TAUC       1167         50 CONTANC       1163         51 CO 54 I=2,NP3       1161         52 Y(1)=2,E1*Y(1)/P(1)       1163         54 Y(1)=2,E1*Y(1)/P(1)       1163         55 CONTANC       1163         56 CONTANC       1163         57 (CNTANC       1163         58 CONTANC       1163         59 CONTANC       1164         50 CONTANC       1165         51 CONTANC       1165         51 CONTANC       1166                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                         |                                       |
| 1)+U(NP1)+4,*U(NP2))       1153         CU IC 54       1154         83 Y(NP3)=Y(NP2)+.5*(CM(NP2)-CM(NP1))/(RP0(NP3)*U(NP3))       1155         54 IF(CSALEA,6C,0CE,KRAL,FC,0) CE TE 51       1156         CD 52 I=2,NP3       1157         52 Y(1)=2.*Y(1)=PEI/(R(1)+SQPT(APS(R(1)+2.*Y(1)+PEI*CSALEA)))       1156         c0 TC 56       1159         51 CD 54 I=2,NP3       1160         54 (1)=2.*Y(1)/PC1)       1161         55 (1) C 54 I=2,NP3       1167         54 (1)=2.*Y(1)/PC1)       1161         55 (1) C 54 I=2,NP3       1167         54 (1)=PEI*Y(1)/PC1)       1161         55 (2) C 54 I=2,NP3       1167         56 (2) CNTINUE       1162         Y(NP2)=2.*Y(NP2)-Y(NP1)       1163         C CALCULATION OF PARTI       1164         56 (2) ST I=2,NP3       1165         IF (KRAC,NE,(1)=R(1)=R(1))       1164         11 C 0 57 I=2,NP3       1165         IF (KRAC,NE,(1)=R(1)=R(1))       1164         11 C 0 57 I=2,NP3       1165         IF (KRAC,NE,(1)=R(1)=R(1))       1166         IF (KRAC,NE,(1)=R(1)=R(1))       1166         IF (KRAC,NE,(1)=R(1)=R(1))       1166         IF (KRAC,NE,(1)=R(1)=R(1))       1166                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                         |                                       |
| CU IC E4       1154         83 Y(NP3)=Y(NP2)+.5*(CM(NP2)-CM(NP1))/(RPO(NP3)*U(NP3))       1155         F4 IF(CSALFA.FC.GCF.KRAL.FC.G) CC TC 5]       1156         CO 52 I=2,NP3       1157         52 Y(I)=2.*Y(I)=PEIY(R(1)*SQRT(APS(R(1)*R(1)+2.*Y(I)*PEI*CS/UFA)))       1157         52 Y(I)=2.*Y(I)=PEI*Y(I)/R(1)       1156         CO TC 56       1157         51 CO 54 I=2,NP3       1167         54 Y(I)=PEI*Y(I)/R(1)       1161         55 Y(NP2)=2.*Y(NP2)-Y(NP1)       1161         56 CONTINUE       1162         Y(NP2)=2.*Y(NP2)-Y(NP1)       1163         57 CONTINUE       1163         57 IF(KRAC.AC,GR(I)=R(1)       1164         50 CO 57 I=2,NP3       1165         IF(KRAC.AC,GR(I)=R(1)       1166         IF(KRAC.AC,GR(I)=R(1)       1165         IF(KRAC.AC,GR(I)=R(1))       1165         IF(KRAC.AC,GR(I)=R(1))       1165         IF(KRAC.AC,GR(I))       1165         IF(KRAC.AC,GR(I))       1165         IF(KRAC.AC,GR(I))       1165         IF(KRAC.AC,GR(I))       1165         IF(KRAC.AC,GR(I))       1176         IF(KRAC.AC,GR(I))       1176         IF(KRAC.AC,GR(I))       1177         IF(KRAC.AC,G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                         | P21152                                |
| 82       Y(NP3)=Y(NP2)+.F*(CM(NP2)-CM(NP1))/(RP0(NP3)*U(NP3))       1155         54       1F(CSALFA+EC+0+CF+KRAL+EC+0) CC TC 51       1157         52       Y(1)=2.*Y(1)*PEI/(R(1)+SQRT(#PE(R(1)+2.*Y(1)*PEI*CSALFA)))       1157         52       Y(1)=2.*Y(1)*PEI/(R(1)+SQRT(#PE(R(1)+2.*Y(1)*PEI*CSALFA)))       1159         51       C0 56       1159         51       C0 54       12.5NP2         54       Y(1)=PE1*Y(1)/P(1)       1161         54       Y(1)=PE1*Y(1)/P(1)       1161         54       Y(1)=PE1*Y(1)/P(1)       1162         54       Y(1)=PE1*Y(1)/P(1)       1162         54       Y(1)=PE1*Y(1)/P(1)       1163         55       Y(NP2)=2.*Y(NP2)-Y(NP1)       1163         56       CONTINUE       1163         57       C0 57 1=2.NP2       1165         11       F(KRAC+NE+() R(1)= R(1)+Y(1)*(SALFA       1166         11       IF(KRAC+NE+() R(1)= R(1)+Y(1)*(SALFA       1166         11       IF(KRAC+NE+() R(1)= R(1)+Y(1)*(SALFA       1166         11       IF(KRAC+NE+() R(1)= R(1)+Y(1)*(SALFA       1176         11       SUBRCUTINE SUP       1176         11       SUBRCUTINE SUP       1176         11       IF(KRAC+NE+()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                         |                                       |
| E4       IF (CSALFA, EC.0(F.KRAL, EC.0) CC TC 5]       1156         C0       52       II=2, NP3       1157         52       Y(I)=2, XY(I) XPE[7/(R(I) + SQRT(APS(R(L) + R(1) + 2, *Y(I) + PE[*CSALFA]))       I156         G0       TC 56       1159         \$1       C0 54       II=2, NP3       1160         \$4       Y(I)=PE1*XY(I)/P(I)       1161       1161         \$54       Y(I)=PE1*XY(I)/P(I)       1163       1162         \$74       Y(NP2)=2.*Y(NP2)-Y(NP1)       1163       1162         \$7       CONTINUE       1163       1164         C0       57       I=2,NP3       1165         IF (KRAC+LC, C, OR (T)=R(I)       1164       1166         C0 ALCULATION OF PADIT       1164       1166         C0 ALCULATION OF PADIT       1164       1166         IF (KRAC+LC, C, OR (T)=R(I))       1165       1167         IF (KRAC+NE+L) R(I)= R(I)+Y(I)*CSALFA       1167       1166         FETURN       1166       1167       1166         FETURN       1167       1169       1169         SUBREUTINE TRANSFERRED FROM FISLOT2 55 31+12+1560       1170       1171         SUBREUTINE TRANSFERRED FROM FISLOT2 55 31+12+1560       1173       1174 <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                         |                                       |
| CC 52 I=2;NP3       1157         52 Y(1)=2;*Y(1)*PEI/(E(1)*SQRT(AES(F(1)*F(1)+2;*Y(1)*PUI*CS/UFAD))       1156         :GO IC 56       1159         :GO IC 56       1159         :S1 CO 54 I=2;NP3       1160         :S4 Y(1)=PEI*Y(1)/P(1)       1161         :S6 CONTINUE       1162         :Y(NP2)=2;*Y(NP2)-Y(NP1)       1163         :C CALCUATION OF PADII       1164         :CO 57 I=2;NP3       1165         If (KPAC+IC;+C) P(1)=P(1)*P(1)*CSALFA       1166         :IF (KRAC+NE+L) P(1)=P(1)+Y(1)*CSALFA       1167         :IF (KRAC+NE+L) P(1)= P(1)+Y(1)*CSALFA       1167         :IF (C SUP       1169         :IF (C NEP       1169         :IF (C NEP       1170         :IF (C SUP       1170         :IF (C SUP       1171         :SUBROUTINE SUP       1172         :SUBROUTINE SUP       1173         :CUMMIN / GEN/FE I, /MI; AME; DEDX; PREF (2); PR(2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                         |                                       |
| 52       Y(1)=2.*Y(1)*PEI/(P(1)*SQPT(APES(P(1)*P(1)*2.*Y(1)*PEI*CSALFAI)))       1158         60       IC       56       1159         51       E0       54       I=2,NP3       1160         54       Y(1)=PEI*Y(1)/P(1)       1161       1162         54       Y(1)=PEI*Y(1)/P(1)       1161       1162         54       Y(1)=PEI*Y(1)/P(1)       1161       1162         56       CONTINUE       1162       1162         Y(NP2)=2.*Y(NP2)=Y(NP1)       1164       1162         Y(NP2)=2.*Y(NP2)=Y(NP1)       1165       1162         Y(NP2)=2.*Y(NP2)=Y(NP1)       1166       1167         Y(NP1)=2.*PP3       1166       1166         Y(NP1)=1.*P(1)       Y(1)*CSALFA       1166         Y(NP1)       Y(1)*CSALFA       1170         Y(NP1)       Y(1)*P(1)*Y(1)*CSALFA       1172         Y(NP1)       Y(1)*P(1)*Y(1)*Y(1)*Y(1)*Y(1)*Y(1)*Y(1)*Y(1)*Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                         |                                       |
| €0 TC 56       1159         51 CU 54 I=2,NP3       1160         54 Y(I)=PEI*Y(I)/P(I)       1161         56 CENTIALE       1162         Y(NP2)=2,*Y(NP2)-Y(NP1)       1163         56 CENTIALE       1162         Y(NP2)=2,*Y(NP2)-Y(NP1)       1163         56 CENTIALE       1162         Y(NP2)=2,*Y(NP2)-Y(NP1)       1163         56 CENTIALE       1163         57 CENTIALE       1163         57 FIE2,NP3       1165         11 (KRAC+C+C+C)R(I)=R(I)=R(I)+Y(I)*CSALFA       1166         11 (KRAC+NE+() R(I)=R(I)+Y(I)*CSALFA       1167         57 CENTIALE       1166         11 (F       1166         11 (F       1166         11 (F       1167         57 CENTIALE       1167         57 CENTIALE       1166         11 (F       1166         11 (F       1167         57 CENTIALE       1170         11 (F       1170         11 (F       1171         SUBREUTIALE SLIP       1172         C***** THIS SUBROUTINE TRANSFERREC FREM FISUET2 55 31+12+1960       1173         CUMMEN JOEN/FEI,JMI,ANE,DPDDX,PREF(2),PR(2),P(2),CEN,AMU,XU,XU,XP,YP,I)       1174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                         |                                       |
| 51 C0 54 I=2;NP2       1160         54 Y(1)=PEI*Y(1)/P(1)       1161         56 C0NTIAUE       1162         Y(NP2)=2.*Y(NP2)=Y(NP1)       1163         C CALCULATION OF PADII       1163         C CALCULATION OF PADII       1164         D0 57 J=2;NP3       1165         IF (KPAC.EQ.ORCIJEP(1)       1166         IF (KPAC.EQ.ORCIJEP(1))       1166         IF (KRAC.NE.()) P(1)= P(1)+Y(1)*CSALFA       1167         IF (ONTINUE       1166         IF (KRAC.NE.()) P(1)= P(1)+Y(1)*CSALFA       1166         IF (KRAC.NE.()) P(1)= P(1)+Y(1)*CSALFA       1167         IF (ONTINUE       1166         IF (KRAC.NE.()) P(1)= P(1)+Y(1)*CSALFA       1167         IF (ONTINUE       1166         IF (CONTINUE       1167         IF (ONTINUE       1166         IF (I)= P(1)+Y(I)*CSALFA       1170         IF (I)= P(1)       1170         SUPPCUTINE SUPP       1171         SUPPCUTINE SUPP       1172         C****** THIS SUBROUTINE TRANSFERRED FROM FISUOT2 55 31.12.1568       1173         CONMEN /GEN/FET, / MI, AME, DPDX, PPEF (2), PPI(2), P(2), CEN, AMU, XU, XD, XP, I174       1175         I/I/M, NEL, MPZ, NP3, NEC, NPE, KEX, KIN, KASE, KPAC       1176 <td></td> <td>- • • • •</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                         | - • • • •                             |
| 56       CONTINUE       1162         Y(NP2)=2.*Y(NP2)-Y(NP1)       1163         C       C4(ULATION OF PADII       1163         C0       57       I=2.NP2       1165         IF (KPAC.EC.C)R(1)=P(1)       1166       1166         IF (KPAC.EC.C)R(1)=P(1)       1166       1167         ST       CONTINUE       1168       1167         FT CONTINUE       1168       1169       1168         FETURN       1169       1170       1170         SUBERCUTINE       SUBERCUTINE       TRANSFEERED       FRCM       1170         SUBERCUTINE       TRANSFEERED       FRCM       1171       1172         COMMEN       /SEN/FE1, JPF (APE, OPDX, PREF (2), PR (2), PC2), CEN, AMU, XU, XD, XP, 1174       1175       1175         I/JAN, NEL, NEL, NEL, NEL, NEL, KEN, KIN, KENE, KENEC       1175       1175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                         |                                       |
| Y(NP2)=2.*Y(NP2)-Y(NP1)       1163         C       CAL(ULATION OF PADI)       1164         D0 57 1=2,NP3       1165         IF(KRAE.EC.O)R(1)=R(1)+Y(1)*(SALFA       1167         IF(KRAE.NE.L) P(1)= R(1)+Y(1)*(SALFA       1167         IF(KRAE.NE.L) P(1)= R(1)+Y(1)*(SALFA       1167         ST CONTINUE       1168         FETURN       1169         INC       1170         SUEPCUTINE SUP       1171         SUEPCUTINE SUP       1172         C***** THIS SUBPCUTINE TRANSFERRED FROM FISIOT2 55 31.12.1968       1173         COPMON /GEN/FET.J/PI JAME.DPDX, PREF(2), PP(2), DEN, AMU, XU, XD, XP, J174       131.75         IJ/IN, NF1, NPZ, NP3, NEC, NPE, KEX, KIN, KASE, KEAC       1176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $54 Y(1) = PEI \times Y(1)/P(1)$                                        | 1161                                  |
| C       C/L(ULATION OF PADI)       1164         L0       57       I=2,NP3       1165         IF(KRAC.EC.OR(I)=P(I)       1166       1167         IF(KRAC.NE.() P(I)= P(I)+Y(I)*CSALFA       1170         IF(KRAC.NE.() P(I)= P(I)+Y(I)*CSALFA       1170         IF(KRAC.NE.() P(I)= P(I)+Y(I)+Y(I)*CSALFA       1170         SUPREUTINE_SUP       1173         CVPMEN_SUBROUTINE_TRANSFERRED_FROM FISLOT2 55 31.12.1968       1173         CVPMEN_ZERVITET, //PI, // PEF, DPDZ, PPEF(Z), PPI(2), PEF(Z), CEN, // MU, XU, XO, XP, II74       1175         I/I/N, NFI, NPZ, NP3, NEC, NPF, KEY, KIN, KZSE, KPAC       1175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                         | 1162                                  |
| CO 57 I=2,NP3       1165         IF (KRAC.EQ.C)R(I)=R(I)+Y(I)*CSALFA       1166         IF (KRAC.NE.() R(I)= R(1)+Y(I)*CSALFA       1167         57 CONTINUE       1169         FETURN       1169         ENC       1170         \$1000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                         |                                       |
| IF (K.RAC.+E.G.+C.) R (I)=R(1)       1166         IF (K.RAC.+NE.+L.) R (I)= R(1)+Y(I)*CSALFA       1167         57 CONTINUE       1168         FETURN       1169         END       1170         \$100       1170         \$100       1170         \$100       1170         \$100       1170         \$100       1170         \$100       1171         \$UBRCUTINE_SLIP       1172         \$UBROUTINE_TRANSFER RED_FROM_FISLOT2_55_31.12.1968       1173         \$C***** THIS_SUBBOUTINE_TRANSFER RED_FROM_FISLOT2_55_31.12.1968       1173         \$COFMEN_/GEN/TEI, IMI, AME, DPDX, PREF(2), PR(2), CEN, AMU, XU, XD, XP, JI74       1175         \$174       1175       1176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 지수는 것 같은 것 같                              |                                       |
| IF (KRAC.NE.() P(I)= R(1)+Y(I)*CSALFA       1167         57 CONTINUE       1169         FETURN       1169         ENC       1170         \$100 FILEFIC_SLP       1171         SUBROUTINE_SLIP       1172         C***** THIS_SUBROUTINE_TRANSFERRED_FROM_FISLOT2_55_31.12.1968       1173         COFMEN_/GEN/TE_I./PI.AME.DPDX.PREF(2).PR(2).PCEN.AMU.XU.XU.XU.XE.XP.1174       1175         I/I.DX.INTG.CSALFA       1175         I/I.M. NFI.NPZ.MP3.NEG.APE.KEX.KIN.K/SE.KPAD       1176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                         |                                       |
| \$7 CONTINUE       1169         FETURN       1169         ENC       1170         \$10FTC_SLP       1171         SUBRCUTINE_SLIP       1172         C***** THIS_SUBROUTINE_TRANSFERRED_FROM_FISLOT2_55_31.12.1968       1173         CVFMEN_ZEENZEE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 이 수 있다. 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이                           |                                       |
| FETURN       1169         ENC       1170         \$1000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                         |                                       |
| ENC       1170         \$1EFTC_SLP       1171         \$UBRCUTINE_SLIP       1172         \$UBRCUTINE_SLIP       1172         \$C***** THIS_SUBRCUTINE_TRANSFERRED_FROM_FISLOT2_55_31.12.1968       1173         \$C0PMON_ZGENZETT,PPT,PPT,PPEF(2),PE(2),CEN,AMU,XU,XD,XP,1174       1175         \$LAL,DX,INTC,CSALFA       1175         \$LJIA,NFI,NPZ,NP3,NEC,NPE,KEX,KIN,KZSE,KPAC       1176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                         |                                       |
| SUBROUTINE SLIP         1172           C***** THIS SUBROUTINE TRANSFERRED FROM FISLOT2 55 31.12.1968         1173           COMMEN /SEN/TEI,/MI,AME,DPDX,PREF(2),PR(2),P(2),CEN,AMU,XU,XD,XP, 1174         1174           L/L,DX,INTG,CSALF/         1175           L/I/N,NF1, NP2,NP3,NeG, NPE,KEX,KIN,K/SE,KPAC         1176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ENC                                                                     |                                       |
| C*****         IFLS         SUBROUTINE         TRANSFERRED         FROM         FISLOT2         55         31.12.1968         1173           COMMEN         //SEN/PEI,/MI,AME,DPDX,PREF(2),PR(2),CEN,AMU,XU,XD,XP, J174         1174         1174           LXL,DX,INTC,CSALF/         1175         1176         1176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                         | 1171                                  |
| COPMEN /GEN/FEI;//I,AME;DPDX;PREF(2);PP(2);CEN;AMU;XU;XD;XP;1174<br>1/L;DX;INTC;CSALFA<br>1/TA;NF1;NP2;NP3;NcC;NPF;KFX;KIN;K/SE;KPAC<br>1176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                         |                                       |
| 1xL,Dx,INTC,CSALF/         1175           1/1/N,NF1,NP2,NP3,NEC,NPF,KFX,KIN,K/SF,KPAC         1176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                         |                                       |
| 1/1/N, NF1, NP2, MP3, NEC, NPK, KEX, KIN, K/SE, KPAC 1176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                         | · · · · · · · · · · · · · · · · · · · |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                         |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                         |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                         |                                       |

÷

|             | 28(                                                                                                             |                     |
|-------------|-----------------------------------------------------------------------------------------------------------------|---------------------|
| •           | 1/V/U(43), F(2,43), R(43), RHC(43), CM(43), Y(43)                                                               | 1177                |
|             |                                                                                                                 | 1178                |
|             |                                                                                                                 | 1179                |
|             |                                                                                                                 | 1160                |
|             |                                                                                                                 | 1181                |
| r           |                                                                                                                 | 1182                |
| <u>6</u> 31 |                                                                                                                 | $\frac{1183}{1184}$ |
|             |                                                                                                                 | 1165                |
| (***)       | **** SLIP CCEFFICIENTS TO INCLUCE CONVECTION IN INNER-HALF INTERVAL                                             |                     |
|             |                                                                                                                 | 1187                |
| 71          |                                                                                                                 | 1188                |
|             | <u> 625=,25*(RHC(3)+R+C(2))*(U(2)+U(3))</u>                                                                     | 1189_               |
|             |                                                                                                                 | 1190                |
|             |                                                                                                                 | 1151                |
|             |                                                                                                                 | 1192                |
|             | C=1.5*YCON+S+MI*(1.+CM25)-ME*(R(NP3)/R(1))*CM25+BVI<br>                                                         | 1153                |
|             |                                                                                                                 | 1154                |
|             |                                                                                                                 | 1196                |
|             |                                                                                                                 | 1197                |
| <b>H</b>    |                                                                                                                 | 119                 |
|             |                                                                                                                 | 1159                |
|             |                                                                                                                 | 126.                |
|             |                                                                                                                 | 1201                |
|             | er selene i de selene de la complete | 1202                |
|             |                                                                                                                 | 1203                |
|             |                                                                                                                 | 1204<br>1205        |
|             |                                                                                                                 | 121.5               |
|             |                                                                                                                 | 1207                |
|             |                                                                                                                 | 1200                |
|             | <u>CU(2)==.5*AJ*AK2*AU(2)</u>                                                                                   | 1209                |
|             |                                                                                                                 | 1210                |
| 75          |                                                                                                                 | 1211                |
|             |                                                                                                                 | 1212                |
|             |                                                                                                                 | 1213                |
|             |                                                                                                                 | 1214                |
|             |                                                                                                                 | 1215<br>1216        |
|             |                                                                                                                 | 1210                |
|             |                                                                                                                 | 1218                |
| <u> </u>    | SQ=84.*U(NP3)*U(NP3)-12.*U(NP3)*U(NP1)+9.*U(NP1)*U(NP1)                                                         | 1215                |
|             |                                                                                                                 | 1220                |
|             |                                                                                                                 | 1221                |
|             |                                                                                                                 | 1222                |
| <u> </u>    |                                                                                                                 | 1223                |
|             |                                                                                                                 | 1224                |
|             |                                                                                                                 | 1225<br>1226        |
|             |                                                                                                                 | 1227                |
|             |                                                                                                                 | 1228                |
|             |                                                                                                                 | 1229                |
|             |                                                                                                                 | 1230                |
| 64          | IF (NEQ.EQ.1) FETURN                                                                                            | 1231                |
|             | IF COEFFICIENTS NEAR THE I ECUNDARY FOR CIHER EQUATIONS                                                         | 1232                |
| \$ECF_      |                                                                                                                 | <del></del>         |

| <br>  | <br> |     |   | _ |
|-------|------|-----|---|---|
| <br>  | <br> |     |   | - |
| <br>= | <br> | -0- | - | - |
| <br>  | <br> | -   |   | - |

|            | 281                                                                                                                                          |              |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| •          | CC-54 J=1,NPH                                                                                                                                | 1233         |
|            | C(J, 2)=↓                                                                                                                                    | 1234         |
|            | <u>C(J,NP2)=(.</u>                                                                                                                           | 1235         |
|            | CO TO (41,42,43), KIN                                                                                                                        | 1236         |
|            | <u>41 CALL EPC(XD, J, INDI(J), GI</u>                                                                                                        | 1237         |
|            | ====IF(INEI(J).EC.1) GO TC 61<br>VPH=PREF(J)                                                                                                 | 1238         |
|            |                                                                                                                                              | 1235         |
|            | <u> </u>                                                                                                                                     |              |
|            | 1k(1)=VFF)                                                                                                                                   | 1242         |
|            | E(J,2)=C.                                                                                                                                    | 1243         |
|            | <b>C{J;</b> 2}=(YCCN*{1.5*F{J;2}+.5*F{J;3}}+2.*GI/{.25*{RFC{2}+RHC{3}}*(U                                                                    |              |
|            | <u>12)+U(2))_))</u> /T                                                                                                                       | 1245         |
| =C=        | CALGULATION OF A2,82,02 FOR OBTAINING WALL VALUES OF F                                                                                       | 1246         |
|            | 1D=T+SF                                                                                                                                      | 1247         |
|            | #2=(A(J,2)*1 <del>×SF)/10</del><br>₽2-2 ₩*(SEAMI)/IE                                                                                         | 1248         |
|            | B2=2+0*(SF+MI)/TC<br>(2=YCCN*(1+5*F(J,2)++5*F(J,3))/TC                                                                                       | 1249         |
|            | 60 TC 44                                                                                                                                     | 1251         |
|            | (1 F(J,1)≈(1                                                                                                                                 | 1252         |
|            |                                                                                                                                              | 1253         |
|            | <b>[{J;</b> 2}=],-,,(J;2)                                                                                                                    | 1254         |
|            | <u></u>                                                                                                                                      | 1255         |
|            | <u>42 A(J+2)={U(2)+U(3)=8+*U(1)}/(5+*(U(2)+U(3))+8+*U(1))</u>                                                                                | 1256         |
|            | $= \frac{B(J,2)=1-A(J,2)}{E(J,2)}$                                                                                                           | 1257         |
|            | <u>GO TO 44</u><br><u>43 F(J,2)=0.</u>                                                                                                       | 1258         |
|            |                                                                                                                                              | 1259         |
| '          | $-\frac{2K1=1-7DX-DS}{2K1=1-7DX-DS}$                                                                                                         | 1261         |
|            |                                                                                                                                              | 1262         |
|            | AJF=AJ*PREF(J)                                                                                                                               | 1263         |
|            | 11 (KRAC.EC.C) GC 10 45                                                                                                                      | 12/4         |
|            | <u> </u>                                                                                                                                     | 1265         |
| ==         | C(J,2)===5*/J[*/K2*/(J,2)                                                                                                                    | 1265         |
|            | <u><u><u><u></u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u> | 1267         |
| <b>T</b> T | 45 ( J,2)=]./(2.1:2.*/JF*/K])<br>A(J,2)=C(J,2)*(2AJF*/K])                                                                                    | 1268         |
|            | <pre>F(J) Z J = C(J) Z J * (Z → A JF * JK)<br/>C(J, 2) ×= C(J, 2) × Z → A JF * JK2</pre>                                                     | 1269         |
| Ĉ          | SLIP COEFFICIENTS NEAR THE E BOUNDARY FOR CTHER EQUATIONS                                                                                    | 1270-        |
|            | 44 (0 TC (51,52,53),KEX                                                                                                                      | 1272         |
|            | 51 CALL FEC(XD, J, INDE(J), CE)                                                                                                              | 1273         |
|            | IF (INDE(J).(C.1) CC TC 31                                                                                                                   | 1274         |
|            | AJE(_J)=QE                                                                                                                                   | 1275         |
|            | E(J, NP2)=1.                                                                                                                                 | 1276         |
|            | - (J, NP; ) = 1.                                                                                                                             | 1277         |
|            |                                                                                                                                              | 1278         |
|            | <u> </u>                                                                                                                                     | 1279         |
|            |                                                                                                                                              | 1280<br>1281 |
|            | $C(J_{1}, V_{2}) = (I_{2} + 0E^{T}) = CAM f(J_{1}) f(I_{2} + 0E^{T}) + CAM f(J_{1})$                                                         | 1281         |
|            | $A(J, NP_2) = 1 - E(J, NP_2)$                                                                                                                | 1283         |
|            | CC 1C 54                                                                                                                                     | 1284         |
|            | <u>52 E(J,NP2)=(U(NP2)+U(NP1)-8.*U(NP3))/(5.*(U(NF2)+U(NP1))+8.*U(NP3))</u>                                                                  | 1285         |
|            | /{J,NP2]=1E(J,NP2]                                                                                                                           | 1286         |
|            | <u>CO TO 54</u>                                                                                                                              | 1287         |
|            | - <del>53</del>                                                                                                                              | 1288         |
| \$E        |                                                                                                                                              | eni energena |

÷.

-----

|               | 297                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
|               | CALL_SCURCE(J,NP3,CS,CS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1289         |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1290         |
|               | EK2=-BK1*F(J,NP3)-CS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1201         |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1252         |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1293         |
|               | £{J, KP2}=C{J, NP2}*{2, -EJF*PK1}<br>C{J, NP2}=-C{J, NP2}*4, *EJF*PK2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1254         |
| £4            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1255         |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1250         |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1258         |
| \$IEFT(       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1259         |
|               | SUBPCUTINE SCLVE(A,B,C,F,NP3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1202         |
| <u>د</u>      | THIS SCLVES EQUATIONS OF THE ECEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1201         |
| ¢             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1302         |
| <u> </u>      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1303         |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -1354        |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1365         |
| <u> </u>      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1366         |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1207         |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1302         |
| 48            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1319         |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1311         |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1312         |
| <u> </u>      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1313         |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1314         |
|               | FNC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1315         |
| <b>TELL</b>   | SCRC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1316         |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1317         |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1313         |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1319         |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1320         |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1321         |
| <del>_}</del> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1322         |
|               | SUERUCTINE VEFETI,IPI,EMUJ<br>COMMEN /GEN/FEI,/MI,AME,DPDX,PREF(2),PR(2),P(2),CEN,AMU,XU,XO,XP,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1323         |
| ]             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1324         |
|               | [/↓]μ/]], ],]],],],],],],],],],],],],],],],],                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1325         |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1327         |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1328         |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1329         |
|               | COMMEN/SHIPE/ LCEK, YL1, YL2, YD1V, UM, XI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1330         |
| C IFI         | SUBROUTINE USES THE MIXING-LENGTH HYPOTHESIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1331         |
|               | Δ[=Λ[V(~Y]]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1332         |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1333         |
|               | 이는 그렇는 그는 것이 그는 것은 것이 있는 것이 같아요. 이 가장 이 가장 이 가장 것이 가지 않는 것이 같이 같이 같이 않는 것이 않는 것이 없다. 것이 않는 것이 않는 것이 같이 않는 것이 없다. 것이 같이 않는 것이 같이 않는 것이 없다. 않는 것이 같이 않는 것이 없다. 것이 않는 것이 않는 것이 않는 것이 없다. 않는 것이 없이 않는 것이 없다. 않는 것이 않는 것이 없는 것이 않는 것이 없 않는 것이 없다. 않는 것이 않는 것이 없는 것이 않는 것이 없다. 않는 것이 않는 것이 없는 것이 없는 것이 않는 것이 없다. 않는 것이 없는 것이 없는 것이 않는 것이 없다. 않는 것이 않는 것이 없는 것이 없다. 않는 것이 없는 것이 않는 것이 없다. 않는 것이 않는 것이 없는 것이 없다. 않는 것이 없는 것이 않는 것이 없다. 않는 것이 않는 것이 없다. 않는 것이 없는 것이 않는 것이 없다. 않는 것이 않는 것이 없다. 않는 것이 않는 것이 없다. 않는 것이 없는 것이 없다. 않는 것이 없는 것이 없는 것이 없다. 않는 것이 않는 것이 않는 것이 없다. 않는 것이 없다. 않는 것이 없다. 않는 것이 않는 것이 없다. 않는 것이 않는 것이 않는 것이 않는 것이 없다. 않는 것이 않는 것이 없다. 않는 것이 없다. 않는 것이 않는 것이 않는 것이 않는 것이 않는 것이 없다. 않는 것이 없다. 않는 것이 않는 것이 없다. 않는 것이 없다. 않는 것이 없다. 않는 것이 않는 것이 없다. 않는 것이 없다. 않는 것이 없다. 않는 것이 않는 것이 없다. 않는 것이 않는 것이 않는 것이 않는 것이 없다. 않는 것이 않는 것이 없다. 않는 것이 없다. 않는 것이 없다. 않는 것이 없다. 않는 것이 않는 것이 없다. 않는 것이 않는                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1334         |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1335         |
|               | 그는 그는 그는 것은 것 같아요. 그는 것 같아요. 이 집에 가지 않는 것 같아요. 그는 것이 같아요. 그는 그는 것이 같아요. 그는 그 그는 것이 같아요. 그는 그는 것이 같아요. 그는 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 | 1336         |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1337         |
| \$IEFTC       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1338<br>1339 |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1339         |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 134          |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1341         |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1343         |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1344         |
| 4ECF          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |

-----

| 283                                                                                                        |              |
|------------------------------------------------------------------------------------------------------------|--------------|
| COMMCN/AME/WT,PC,TO                                                                                        | 1345         |
| CUMMEN/JAY/JCUMP, KURAH, NSETS, KSP                                                                        | 1346         |
| 1/I/N,NF1,NP2,NP3,NEC,NPF,KEX,KIN,KASE,KRAC                                                                | 1347         |
| LE(KSP_FQ_2)_60_1C_50                                                                                      | 1348         |
| IF TN SP + CV - Z F OU IC DC<br>C******** VISCUSITY CF D BINDRY MIXTURE SCUARE-ROCT*FCRMULA                | 1345         |
| = ENE = F(1, 1)/(F(1, 1) + N1/2E, S6*(1, -F(1, 1)))                                                        | 1251         |
| <u> </u>                                                                                                   | 1352         |
| VISCC=(ENA*AMU*SCRT(28.96)+ENE*BMU*SCRT(KT)]/                                                              | 1353         |
| 1 (EN≠×\$&x1(2{₊\${}+ENB*\$&R1(╆1)}                                                                        | 1354         |
|                                                                                                            | 1355         |
| C***** ENTHALPY AS CONSERVIE FROPERTY<br>C***** TEMP NON DIM WITH SICT VALUES                              | 1356         |
| 50 VISCE= AML*(1,+1(1,1)*(100-1,))**(76                                                                    | 1358         |
| RETURN                                                                                                     | 1359         |
| <u>ENC</u>                                                                                                 | 136          |
| \$ IEFTC WAL1                                                                                              | 1361         |
| SUPREUTINE HALL                                                                                            | 1362         |
| C THIS DECK TRANSFERRED FROM FISION 2 ON 4TH JUNE 1968                                                     | 1363         |
|                                                                                                            | 13(4         |
| LUMMEN _ZGENZPE1;;FP1;APE;DPUX;PREFUZ1;PR1Z1;PR1Z1;LEN;AMU;XU;XU;XP;<br>1XL;DX;INTG;CSAL1;                 | 1365<br>1366 |
| 1/V/U(43), F(2,43), F(43), PHC(43), CM(43), Y(43)                                                          | 1267         |
| 1/1/ΝγΝ+1γΝΡΞγΝΡΞγΝΕζγΝΕΗγΚΕΧγΚΙΝγΚΔSΕγΚΑΔΟ                                                                | 13(8         |
| 1/B/BETA, GAMA(2), TAUL, TAUE, AJL(2), AJE(2), INCI(2), INCE(2)                                            | 1369         |
| COMMEN /L/AK,ALNG                                                                                          | 131          |
| COMMEN /STOP/_KSTEP                                                                                        | 1371         |
|                                                                                                            | 1372         |
| IF(U(3).L1.0.) KSTOP=1                                                                                     | 1373         |
| IF (U(2).LT.U.) KSTCF=1<br>IF (KSTCP.EC.1) WRITE (6.5)                                                     | 1374         |
| 5 FORMATE 20F NECATIVE VELOCITIES)                                                                         | 1375<br>1376 |
| IF (KSTOP, EC. 1) RETURN                                                                                   | 1377         |
| JF (KFX.NC.1) GC 1C 15                                                                                     | 1378         |
| <u>YI=Y(NP3)5*(Y(NP1)+Y(NP2))</u>                                                                          | 1379         |
|                                                                                                            | 1360         |
| RH=.25*(3.*R+D(NP2)+R+D(NP1))                                                                              | 1361         |
| FC=RA+UIXY//VISCC(AF3)                                                                                     | 1362         |
| <u> </u>                                                                                                   | 1383         |
| CALL = KF1(RE, FP, AP, S)                                                                                  | 1384<br>1385 |
| ELTA*SCHTTAUSTS+FP+/M1)/AK                                                                                 | 1386         |
| TALE=S*RH*UI*UI                                                                                            | 1387         |
| IF (NEG. EG. 1) GO TO 36                                                                                   | 1388         |
| C CALCULATION OF GAMA 'S FOR THE E BOUNDARY                                                                | 1389         |
| CC 35 J=1,NPH                                                                                              | 139          |
| CALL NF2(PE, FP, AN, PR(J), PREF(J), P(J), SF)                                                             | 13¢1         |
| CANA(J)=(SF+AN)→FFEF(、)/(AK*AK*BETA)<br>IE(INDE(J).EC.1)AJE(J)=SF*RH*UI*(F(J,NP2)+F(J,NP1)-2.*F(J,NP3))*.5 | 1352         |
|                                                                                                            | 1353<br>1354 |
|                                                                                                            | 1394         |
| C CALCULATION OF BETA FOR THE ECONDARY                                                                     | 1396         |
|                                                                                                            | 1367         |
|                                                                                                            | 1398 -       |
|                                                                                                            | 1359         |
|                                                                                                            | 14:          |
| 1ECF                                                                                                       |              |

ľ

4

. . .

· · · · · - -

|                                       |                                         |         | 14-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1- |                       |
|---------------------------------------|-----------------------------------------|---------|-----------------------------------------|-----------------------|
| · · · · · · · · · · · · · · · · · · · | • · · · · · · · · · · · · · · · · · · · | · · · · |                                         | · · · · · · · · · · · |
|                                       |                                         |         |                                         |                       |
|                                       |                                         |         |                                         |                       |

| FP=DPDX*YI/(RH*UI>UI)                                                        | 1401                |
|------------------------------------------------------------------------------|---------------------|
| \$M=AH1/(R+*U1)                                                              | 1402                |
| <u>XYZ=VISCO(1)</u>                                                          | 1403                |
| 1F(RE.LE.U.)kRITE((;32)1N16,XU,RE,U(2),U(3),Y(2),Y(3),PHC(2),RH              |                     |
| 1), XY7                                                                      | 1405                |
| 32 FORMAT(6H WALL / 3, 3, 3, 4, F7, 4, E(2X, E1(, 3))                        | 14(6                |
| CALL WF1(RE,FP, AN,S)                                                        | 14:0                |
| 1 <u>41</u> /1=\$*\$\$\$                                                     | 1478                |
|                                                                              |                     |
|                                                                              | <u>    1469    </u> |
| <u> </u>                                                                     | 141                 |
|                                                                              | 1411                |
|                                                                              | <u> </u>            |
| C##### VAN DRIEST, S. CONSTANT A* TAKEN EGUAL TO 11                          | 1413                |
| FWK=(-1,)*KE*SQR1(11)*AK/11,                                                 |                     |
| famp=1 - famp = 1 - famp = 1                                                 | 1415                |
| VPLUS= C.5 + SQRT(25 + AK#AK#RE#RE#T1#CAMF#CAMP)                             | <u> </u>            |
| EVI= VPLUS/RE + T1                                                           |                     |
| FCI = VPLLS/(VPLUS+ T1*RE)                                                   | 1418                |
| JF(NEC.EC.1) RETURN                                                          | 1419                |
| C CALCULATION OF GAMP 15 FOR THE I POUNDARY                                  | 1427                |
|                                                                              |                     |
| CALL KF2(RE,FP,AM,PR(J),PR(J),P(J),SF)                                       |                     |
|                                                                              | 1422                |
| $\frac{(ANA(J)=(SF+AN)*PREF(J)/(AK*AK*PETA)}{(AK*AK*PETA)}$                  | 1423                |
| IF (INDI(J), EC, I) #JI(J)= \$F*F+*(I)*(2,*F(J,1)-F(J,2)-F(J,3))*,5          |                     |
| 28 CENTINUE                                                                  | 1425                |
|                                                                              | 1426                |
| ENC                                                                          | ]427                |
| FIGHTC WELS                                                                  | 1428                |
| SUEROUTINE WF1 (R, F, AN, S)                                                 | 1429                |
| COMMEN /L/AK,ALME                                                            | 143                 |
| $AKS = AK \neq AK / . 16$                                                    | 1431                |
| ₽Т≈₽≈л₭⋦                                                                     | 1432                |
| IF (RT.LE.Q.) WRITE(6,16) R.AK                                               | 1433                |
|                                                                              |                     |
| $= 11 \times 11$ | 1424                |
|                                                                              | 1435                |
| 16 FURMAT(4H NF1,2X,2010,2)                                                  | 1436                |
| <u>IF(F.EC.0.) GO_TC_15</u>                                                  | 1437                |
| FI≉F∕AK\$                                                                    | 1438                |
| TERM=125.*FT*RT/(57344.+PT**2.5)**.4                                         | 1439                |
| IF (IERM., CT. 0., ) IERM., COUL                                             | 144                 |
| <u>ST=ST*TERN**1.6</u>                                                       | 1441                |
| <u>1.1. 2=21≠4K2</u>                                                         | 1442                |
| RETURN                                                                       | 1443                |
| FMC                                                                          | 1444                |
| STEFTC WE2S                                                                  | 1445                |
| SUERDUTINE WEZTR, F, AM, PR, PRT, PFS)                                       |                     |
| C***** THIS SUBROUTINE TRANSFERRED FROM FISIOT2 55 31+12+1568                | 1446                |
| COMMEN /L/AK,ALNC                                                            | 1447                |
|                                                                              | 1448                |
| <u>∧KS=AK*AK/.16</u>                                                         |                     |
| β.  <b>=R</b> ≭AKS                                                           | 145                 |
| IF(RT.LF.O.) RETURN                                                          | 1451                |
| ₽Т≈₽¥₽₭¥₽₽€                                                                  | 1452                |
| 4=1./PR                                                                      | 1453                |
| /##H]**(-A]                                                                  | 1454                |
| $\frac{1=1./(PR \neq PT)}{1}$                                                | 1455                |
| \$2=, []]*#T**(-, [74]                                                       | 1456                |
| \$ECF                                                                        |                     |
|                                                                              |                     |

SCATA 1476 004 1477 SAMPLE DATA KSP= 0 1478 KSP 0 1479 0-15 2000- 2.54 0.50 35.54 0.00 0 1489 666600C SANPLE DATA KSP 1 1482 1483 Ĩ. 1 5850. E.30 0.128 28.96 0.00 0 1 **3 3 4** 24.85 SAMPLE DATA KSP = 2 - FA 86 02 11 27 2000 2.54 0.50 28.56 0.00 0 1.20 60.0 0.00 . 1488 000 1489 SAMPLE DATA KSP= 2 AND C NOT EQUAL TO ZERC 1493 2 00 2 15 2000. 2.54 0.50 28.96 0.00 0 1.20 60.0 600.0 1451 1492 200000 1492 TECF 1494 

حمد الجرور وأنور والتي المحمد المراجع المراجع المراجع

| 285                                            |                    |
|------------------------------------------------|--------------------|
| • <u>\$2=\$2/(PRT*(1.+FT*SCRT(S2))</u>         | 1457               |
| IF(SI_LE_UCRS2_LE_C_) FETUEN                   | 1458               |
| S=(S1**A+S2**A)**(1./A)                        | 1459               |
| 1+ (+.£C.(.) 60 7C 15                          | 146                |
| FT=F/AKS                                       | 1461               |
| \$\$EP=1.32/PRT*RT**(3333)*(+1+17.)**(-1.165)  | 1462               |
| FD=,(:1*R1                                     | 1463-              |
| FC= 23.*FT*FC/(1.+FC)                          | 1464               |
| <u>IF(FC,CT,C,)FD=FC**,E</u>                   | 1465               |
| <u>\$=\$*(1,-+FE)+FD*\$\$\$₽</u>               | 1466               |
| 15 <u>S= S* AK S</u>                           | <u>     1467  </u> |
| RETURN                                         | 1468               |
| END                                            | 1469               |
| TIEFIC PLA                                     | 147                |
| SUBRELTINE PELYFT(X,Y,N,NFCL,C,CC,SMCETH,STEV) | 1471               |
| EIMENSION X(N), Y(N), C(NPCL), SMTCTH(N)       | 1472               |
| C**** THIS IS A DUMMY                          | 1473-              |
| FE 1URN                                        | 1474 -             |
| FNC                                            | 1475               |
|                                                |                    |
| C+++++++++++++++++++++++++++++++++++++         |                    |

і. Т

-

|         |              |            |      |     |      |   |   |   |     |   |    |         |   |      |     |    |     |   |   |     |     |     |   |    |   |    |   |   |      |       |     | - |      |      |
|---------|--------------|------------|------|-----|------|---|---|---|-----|---|----|---------|---|------|-----|----|-----|---|---|-----|-----|-----|---|----|---|----|---|---|------|-------|-----|---|------|------|
|         |              |            |      |     |      |   |   |   |     |   |    |         |   |      |     |    |     |   |   |     |     |     |   |    |   |    |   |   |      |       |     | - |      |      |
| <br>• • | . <b>t</b> . | \$         | - 24 |     | - 1  | • |   |   | - 1 | - | ۲. | <br>• 5 | - | <br> | *** | ~~ | *** | - | - |     |     | r • | - | ÷. | • | 1  | - | - | <br> | <br>- | • • |   | <br> | **** |
|         | 12           | <b>T</b> . | - 2  |     | - 20 |   | r | • | 77  |   |    |         |   |      |     |    |     |   |   | - 6 | • 1 | 12  |   |    |   | ÷. |   |   |      |       |     |   |      |      |
|         | - F.         |            |      | r – | -    |   | - |   | - T |   | 17 |         |   |      |     |    |     |   |   |     | v   |     |   |    | • |    |   |   |      |       |     |   |      |      |
|         |              |            |      |     |      |   |   |   |     |   |    |         |   |      |     |    |     |   |   |     |     |     |   |    |   |    |   |   |      |       |     |   |      |      |

# SAMPLE DATA KSP= 0

| ind in the second s |          |       |    |             |   |     |     |      |          |    |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |    |      |      |       |    |   |   |        |     |    |
|----------------------------------------------------------------------------------------------------------------|----------|-------|----|-------------|---|-----|-----|------|----------|----|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|------|------|-------|----|---|---|--------|-----|----|
| K                                                                                                              | SP       |       |    | =           | 0 |     |     |      | <br>UC / | UG | =                     | Ω.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 75 | 50 |      |      | RC    |    |   | = | <br>20 | 00. | .0 |
| Y                                                                                                              | <b>C</b> | { M N | 1) | <b>≣</b> ≓≣ | 2 | .54 |     | <br> | T77      | C  | <br>=-1               | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 50 |    |      |      | N . V | T. | C | = | 39     | .94 | 1  |
| K                                                                                                              |          |       |    |             |   |     |     | <br> | <br>     |    | <br>••• • • • • • • • | <ul> <li>A state of the second se</li></ul> |    |    | <br> | <br> |       |    |   |   | <br>   | .0  |    |
| Q TETER                                                                                                        | W        | w/N   | 12 | =           |   | 0   | •0= | <br> |          |    |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |    | <br> |      |       |    |   |   | <br>   |     |    |

\*\*\*\*\* \*\*\*\*\*\*\* MIXING LENGTH CCNSTANTS

K = 0.419LAMEDA = 0.09SIGMA T = 1.00

STERXIC:0700-

\*\*\*\*\*\*\* CMEGA VALUES

```
C.0000 0.0000 0.0187 0.0263 0.0424 0.0593 0.0766 0.0939 0.1113 0.1286 0.1460 0.1634 0.1780 0.1925
0.2214 0.2358 0.2503 0.2646 0.2783 0.2903 0.3004 0.3082 0.3130 0.3261 0.3433 0.3842 0.4417 0.5037
0.6366 0.7062 0.7775 0.8503 0.9244 1.0000 1.0000
```

X/YC ETA R2 RPHI2 SS\*E3 H12 UMAX YMAX UHALE YHALE VHALE NUC OR AMG UTAU

0.00-1.0000-1361.86-2521.7-10.035-1.239-14.56-4.000-9.50-2.610-14.56-0.498E-00-1.458 C.95 0.9980 1362.98 2526.9 6.129 0.705 14.56 3.795 9.50 2.476 14.56 -0.227E 00 1.140 1,91 = 0.9841 = 1375.04 = 2562.9 = 5.416 = 0.694 = 14.56 = 3.850 = 9.50 = 2.512 = 14.56 = 0.171E 00 = 1.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.071 = 0.0713.66 0.9391 1297.42 2686.0 4.618 0.700 14.56 3.948 9.50 2.575 14.56 -0.126F 00 0.989 5.85 0.8917 1417.85 2828.9 4.114 0.712 14.56 4.031 9.50 2.630 14.56 -0.165E 00 0.934 7.88 6.8500 1436.82 2967.8 3.747 0.726 14.56 4.107 9.50 2.679 14.56 -0.929E-01 0.891 9.55 0.8144 1454.54 3097.9 3.463 0.741 14.56 4.177 9.50 2.725 14.56 - 0.858E-01 0.857 15.92 0.7351 1499.70 3432.6 2.926 0.780 14.56 4.366 9.50 2.849 14.56 -0.816E-01 0.787 24.66 0.6634 1556.31 3803.9 2.517 0.825 14.56 4.634 9.50 3.023 14.56 -0.831E-01 0.730 31.74 0.6248 1597.66 4039.7 2.347 0.851 14.56 4.843 9.50 3.159 14.56 -0.804E-01 0.705  $39.13 \pm 0.5921 \pm 1638.52 \pm 4263.6 \pm 2.244 \pm 0.871 \pm 14.56 \pm 5.048 \pm 9.50 \pm 3.294 \pm 14.56 \pm -0.760F - 01 \pm 0.689$ 54.81 0.5368 1720.97 4703.5 2.124 0.903 14.56 5.446 9.50 3.553 14.56 -0.678E-01 0.671 63.10 0.5127 1763.04 4925.1 2.084 0.916 14.56 5.639 9.50 3.679 14.56 14.56 -0.647E-01 0.664 71.67 - 0.4905 - 1605.82 - 5148.9 - 2.050 - 0.928 - 14.56 - 5.831 - 9.50 - 3.804 - 14.56 - 0.623E - 01 - 0.65989.68 0.4507 1893.70 5603.7 1.995 0.950 14.56 6.215 9.50 4.055 14.56 -0.591E-01 0.650 108.86 0.4163 1984.93 6067.8 1.950 0.969 14.56 6.607 9.50 4.311 14.56 -0.571E-01 0.643 127.13 0.3891 2070.09 6493.7 1.914 0.985 14.56 6.970 9.50 4.547 14.56 547 559E-01.559E-01.637 129.22 0.3862 2079.73 6541.6 1.910 0.987 14.56 7.011 9.50 4.574 14.56 -0.558E-01 0.636 173.69 0.3360 2280.84 7521.4 1.842 1.018 14.56 9.50 5.132 14.56 -0.538E-01 0.625

| CONTRACTOR |   |  |
|------------|---|--|
| KCOUNT     | 2 |  |

\*\*\*\*\*

### SAMPLE DATA KSP == 1

|              |           |               |                                          | •      |
|--------------|-----------|---------------|------------------------------------------|--------|
| KSP          | = 1       | UC/UG = 0.750 | RC =                                     | 5850.0 |
| YC (MM)      | = 6.30    | Τ/ΥC=== 0.13  | M.WT.C==                                 | 28.96  |
|              |           | TC/TG = 1.000 | TC DEG K=                                |        |
| (1) Li / M 3 | - Andrews |               | ۵۰٬۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰ |        |

\*\*\*\*\*\*\* \*\*\*\*\*\*\*\* MIXING LENGTH CENSTANTS

INP UT

K = 0.419 LAMEDA = 0.09 SIGMA T = 1.00

XI = 0.0046

\*\*\*\*\*\*\* \*\*\*\*\*\*\*\* CMEGA VALUES

C.OCCC 0.0C00 0.0115 0.C163 0.0270 0.0384 0.0507 0.0639 0.0776 0.0919 0.1066 0.1215 0.1339 0.1465 0.1716 0.1841 0.1966 0.2090 0.2211 0.2327 0.2432 0.2511 0.2556 0.2590 0.2639 0.3085 0.3710 0.4383 0.5837 0.6617 0.7424 0.8257 0.9117 1.0000 1.0000

\*\*\*\*\*\*\*\* WALL, INTEGRAL AND OTHER PROPERTIES

X/YC ETA R2 RFHI2 SS\*E3 H12 UMAX YMAX UHALF YHALF UG NUC DR AMG UTAU

0.00 - 1.0000 - 3913.04 - 5659.1 - 2.237 - 1.611 - 19.12 - 3.628 - 12.47 - 2.367 - 19.12 - 0.557E - 0.0 - 0.9040.90 1.0023 3912.47 5646.8 1.946 1.395 19.12 3.626 12.47 2.366 19.12 -0.261E 00 0.843 1.81 1.0017 3.525.65 5650.5 1.956 1.377 19.12 3.684 12.47 2.403 19.12 0.1988 00 0.846 2.00 1.0012 3928.42 5653.2 1.959 1.375 19.12 3.694 12.47 2.410 19.12 -0.190E 00 0.846 3.68 0.9918 3954.37 5707.2 1.966 1.366 19.12 3.781 12.47 2.467 19.12 -0.15 E 00 0.848 3.87 0.9903 3957.31 5716.1 1.964 1.365 19.12 3.790 12.47 2.473 19.12 -0.147E 00 0.847  $5.59 \quad 0.9742 = 3983.86 = 5811.3 = 1.935 = 1.363 = 19.12 = 3.866 = 12.47 = 2.522 = 19.12 = 0.128E \quad 00 = 0.841$ 7.54 0.9529 4013.18 5935.3 1.883 1.363 19.12 3.943 12.47 2.573 19.12 -0.1155 00 0.830 7.93 0.9497 4019.00 5961.2 1.871 1.363 19.12 3.958 2.582 19.12 -0.113E 00 0.827 **5.53** 0.9333 4042.10 6066.4 1.826 1.364 19.12 4.016 12.47 2.620 19.12 -0.106E 00 0.817 14.43 - 0.8875 - 4109.74 - 6380.3 - 1.698 - 1.370 - 19.12 - 4.182 - 12.47 - 2.728 - 19.12 - 0.946E - 01 - 0.78815.69 0.8770 4126.23 6456.8 1.670 1.372 19.12 4.222 12.47 2.754 19.12 -0.926E-01 0.781 21.49 - 0.8322 - 4199.73 - 6805.6 - 1.566 - 1.379 - 19.12 - 4.396 - 12.47 - 2.868 - 19.12 - 0.853E - 01 - 0.75730.96 0.7577 4312.20 7475.8 1.474 1.385 19.12 4.654 12.47 3.036 19.12 -0.762E-01 -0.734  $35 \cdot 18 = 0 \cdot 7237 = 4360 \cdot 67 = 7827 \cdot 7 = 1 \cdot 453 = 1 \cdot 385 = 19 \cdot 12 = 4 \cdot 759 = 12 \cdot 47 = 3 \cdot 105 = 19 \cdot 12 = -0 \cdot 729E - 01 = 0 \cdot 729E$ 49.52 0.6166 4526.55 5189.0 1.421 1.381 19.12 5.094 12.47 3.323 19.12 -0.639E-01 0.721 19.12 5.350 mm 12.47 m 3.490 mm 19.12 - 0.588E-01 0.718.0 65.63 0.5303 4701.10 10686.2 1.411 1.375 19.12 5.413 12.47 3,531 19.12 -0.5776-01 0.718 82.29 0.4640 ----4885.18 --- 12215.7 ---1.368 19,12. mar 5,724 mar 12,47 and 3,734 mar 19,12 as -0,536E-01 0.717 -1,406 55.88 0.4125 5078.86 13741.4 1.402 1.362 19.12 3.936 19.12 -0.508E-01 0.716 0,715 118.60 0.3717 5282,09 15253.9 1.397 1.357 19.12 6,347 12.47 4,141 19,12 -0.4000-01

|                                                | KCCUNT .        | <u>.</u>                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                              |                     |
|------------------------------------------------|-----------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
|                                                | *****           | a la la servicia a servicia de la la servicia de la |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | コーニックストレーレンション                                                                                                                                                                                                                                               | A KSP = 2           |
|                                                | KSP =           | A. A                                                                        | The second se<br>Second second s<br>Second second seco |                                                                                                                                                                                                                                                              | $RC = 2000 \cdot 0$ |
|                                                | YC (MM)         | = 2.54                                                                                                          | T/YC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | = 0.50                                                                                                                                                                                                                                                       | M.WT.C = 28.96      |
|                                                | KP+1C++6:       | = 0.00                                                                                                          | TC/TG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | = 1.200                                                                                                                                                                                                                                                      | TC DEG K= 520.0     |
|                                                | 6 N N/M2        | - · · · · ·                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                              |                     |
| maraaa ahaanaa ahaa ahaa ahaa<br>ahaa ahaa aha | ***             |                                                                                                                 | n an ann an Anna an Anna Anna an Anna a<br>An a' fhreinn ann ann an Anna an Anna an Anna an Anna an Anna anna an Anna an Anna an Anna an Anna an Anna an A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | նարին հերկան առնահատում ու ուսել է Արադին 10 տանինը 10 տես էր 10 տես է։<br>Արահին հերկան հայտների հայտների հերկան հայտներին հերկան հայտներին են հերկան հայտներին։<br>Արահին հերկան հայտներին։ |                     |
|                                                | *****           |                                                                                                                 | LENGTH CONSTAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NTS                                                                                                                                                                                                                                                          |                     |
|                                                | K               |                                                                                                                 | n men het en de sons en enterferete het en ander men en men en gespen en der het de fere en en en en en en en<br>De andere en en en en en en enterfere en                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                              | SIGMAT = 1.00       |
| General a ser a<br>an e<br>Maria a             | XI: constants a |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                              |                     |

\*\* \*\*\* CMEGA VALUES

```
C.COOC 0.0000 0.0129 0.0182 0.0294 0.0411 0.0531 0.0651 0.0771 0.0891 0.1011 0.1132 0.1233 0.1333
0.1534 = 0.1634 = 0.1733 = 0.1833 = 0.1928 = 0.2011 = 0.2081 = 0.2135 = 0.2168 = 0.2275 = 0.2472 = 0.2941 = 0.3599 = 0.4311
C.5E34 0.6632 0.7449 C.E284 C.9133 1.0000 1.0000
        ******* WALL, INTEGRAL AND OTHER FROPERTIES
```

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X/YC           | ΕΤΑ    | R 2 f                                                                                                           | RPHI2 SS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | *E3                                | H12 I          | JMAX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ΥΜΑΧ                                     | UHALF | YHAL F  | UG    | NUC OP A                   | MG                       | UTAU           |           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------|---------|-------|----------------------------|--------------------------|----------------|-----------|
| and double of the set of the first set of the set of th |                | 1.0000 | the second se | and a second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | en en el en el el directo deservar | an shi isaaaaa | and in the second number of the second network of the | and the Court States and a second second |       |         |       | and the first start of the | والمناجع المستحر التعادي |                |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _              | 0.9742 | 1576.45                                                                                                         | 2212.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.413                              | 1.782          | 20.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.865                                    | 13.38 | 2.521   | 20.51 | -0.172E                    | - <b>0</b> 0             |                |           |
| t de la constante de la consta | 5.87           | 0.8348 | 1615.72                                                                                                         | 2382.8<br>2582.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.691                              | 1.762          | 20.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.034                                    | 13.38 | 2.632   | 20.51 | -0.105E                    | 00,5,5,5,                |                |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.90           | 0.7232 | 1650.21                                                                                                         | 2790.3<br>2981.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.325                              | 1.763          | 20.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.170                                    | 13.38 | 2.720   | 20.51 | -0.851E                    | -01                      |                |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 0.5456 | 1749.54                                                                                                         | and the second s | 1.811                              | 1.777          | 20.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.574                                    | 13.38 | 2.984   | 20.51 | -0.738E                    | -01                      | 0.873          |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 31.55          | 0.4724 | 1833.85                                                                                                         | 4265.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.708                              | 1.763          | 20.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.917                                    | 13.38 | 3.208   | 20.51 | -0.672E                    | -01                      | 0.848          |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 0.3922 | 1976.02                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.672                              | 1.725          | 20.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - 5.440                                  | 13.38 | 3.549   | 20.51 | -0.576E                    | -01                      | 0.839          |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 87.27          |        | 2110.20                                                                                                         | 6316.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.657                              | 1.693          | 20.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.886                                    | 13.38 | 3.840   | 20.51 | -0.527E                    | -01                      | 0.835          | 88        |
| ī                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 05.37<br>24.44 | 0.2881 | 2317.95                                                                                                         | 6901.8<br>7491.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.634                              | 1.653          | 20.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.539 <u>m</u>                           | 13.38 | 4 • 266 | 20.51 | -0.493E                    | -01                      | 0.832          | <i>ob</i> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 26.40<br>44.51 |        |                                                                                                                 | 7550.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                    | 1.651<br>1.635 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                          | 13.38 |         |       |                            |                          | 0.829<br>0.826 | ·····     |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 65.61          | 0.2484 | 2544.66                                                                                                         | 8691.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.609                              | 1.618          | 20.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.230                                    | 13.38 | 4.717   | 20.51 | -0.4745                    | -01                      | 0.823          |           |

KCCUNT 4

# SAMPLE DATA KSP=2 AND Q NOT EQUAL TO ZERO

#### \*\*\*\*\*\*\*\* INP UT

| ÷ | зÌ |    |            | ÷  | <u>.</u> | - | -     |   |   |   |          |   |      |      |      |    |   |    |   |       |    |   |     |         |   |   |
|---|----|----|------------|----|----------|---|-------|---|---|---|----------|---|------|------|------|----|---|----|---|-------|----|---|-----|---------|---|---|
|   | K  | SI | <b>P</b> : |    |          |   |       | - | 2 |   | •••••••• |   |      | <br> | <br> | U  | 1 | 'U | G | =     |    | Ç | . 7 | 5(      | 3 |   |
|   | Y  | C  | . (        | Μ  | M        | } | : n.= |   | 2 |   | 54       |   |      |      |      | T, | 1 | (C |   | =     | -0 |   | 50  | ber     |   | - |
|   |    |    |            |    |          |   |       |   |   |   | 00       |   |      | <br> | <br> |    |   |    |   | <br>Ξ | ** |   |     | 5 18 BA |   | - |
|   | Ç  | W  | - 1        | 4/ | 'M       | 2 | : :=  | - |   | 6 | 0ú       | • | ) == | <br> |      |    |   |    |   |       |    |   |     |         |   |   |

RC = 2000.0 M.WT.C = 28.96 TC DEG K= 520.0

\*\*\*\*\*\*\* \*\*\*\*\*\*\*\* PIXING LENGTH CCNSTANTS

K = 0.415 LAMEDA = 0.09 SIGMA T = 1.00

×I == C.0700

\*\*\*\*\*\*\* \*\*\*\*\*\*\*\* CMEGA VALUES

CHECK ARECES

0.0000 0.0129 0.0182 0.0294 0.0411 0.0531 0.0651 0.0771 0.0891 0.1011 0.1132 0.1233 0.1333 0.1534 0.1634 0.1733 0.1833 0.1928 0.2011 0.2081 0.2135 0.2168 0.2275 0.2472 0.2941 0.3599 0.4311 0.5634 0.6632 0.7445 0.6284 0.9133 1.0000 1.0000

\*\*\*\*\*\*\* WALL, INTEGRAL AND OTHER PROPERTIES

X/YC \_\_\_ETA \_\_\_\_R2 \_\_\_\_RFHI2 \_\_\_\_SS\*E3 \_\_\_\_\_H12 UMAX \_\_\_\_YMAX \_\_\_\_UHALF \_\_\_\_UG \_\_\_NUC OR AMG \_\_\_\_UTAU

0.00 - 1.0000 - 1564.37 - 2154.8 - 6.485 - 2.427 - 20.51 - 4.000 - 13.38 - 2.610 - 20.51 - 0.000 - 38 - 1.652C.96 1.0664 1565.99 2022.5 3.850 1.807 20.51 3.812 13.38 2.487 20.51 0.173E 02 1.273 1.92 1.0570 1576.79 2042.2 3.417 1.783 20.51 3.865 13.38 2.522 20.51 0.146E 0.2 1.1993.87 1.0048 1597.18 2151.8 2.968 1.768 20.51 3.957 13.38 2.581 20.51 0.120F 02 1.118 5.87 0.9476 1616.15 2285.6 2.686 1.765 20.51 4.035 13.38 2.633 20.51 0.107E 02 1.063 7.50 0.8953 1633.91 2422.9 2.480 1.765 20.51 4.106 13.38 2.679 20.51 0.982F 01 1.022 **9.**97 **0.**8545 **1**650.70 **2543**.1 **2.319 1.768 20.51 4.**172 **13.38 2.722 20.51 0.918E 91 0.988** 20.51 4.346 13.38 15.92 0.7720 1694.19 2828.5 2.018 1.777 2.835 20.51 0.8076 01 0.922  $24.60 \pm 0.7125 \pm 1750.14 \pm 3085.6 \pm 1.803 \pm 1.786 \pm 20.51 \pm 4.580 \pm 13.38 \pm 2.988 \pm 20.51 \pm 0.722 \pm 01 \pm 0.871$ 31.57 0.6822 1792.15 3240.4 1.733 1.783 20.51 4.755 13.38 3.102 20.51 0.682E 01 0.854  $38.81 \quad 0.6564 = 1834.54 = 3387.3 = 1.699 = 1.776 = 20.51 = 4.927 = 13.38 = 3.214 = 20.51 = 0.655E \cdot 01 = 0.846$ 54.04 0.6134 1922.12 3667.7 1.670 1.756 20.51 5.260 13.38 3.432 20.51 0.6198 01 °0.838 63.66 - 0.5920 = 1976.82 = 3828.2 = 1.661 = 1.743 = 20.51 = 5.455 = 13.38 = 3.559 = 20.51 = 0.603E - 01 = 0.83670.26 0.5792 2014.24 3932.1 1.656 1.735 20.51 5.585 13.38 3.643 0.835 N 20.51 0.593E 01 0.832 🖏 67.45 C.5518 2111.08 4181.7 1.645 1.715 20.51 5.908 13.38 3.854 20.51 C.573E 01 105.62 0.5294 2212.65 4417.5 1.633 1.697 20.51 6.235 13.38 4.068 20.51 0.5568 01 0.829 0 124.77 0.5109 - 2318.93 - 4641.5 - 1.620 - 1.681 - 20.51 - 6.570 - 13.38 -0.5405 01 4.286 20.51 0.826 126.74 C.5092 2329.82 4663.3 - 1.619 1.679 20.51 6.604 13.38 4.308 20.51 0.539E 01 0.825 144.95 0.4955 2429.94 4855.5 1.607 1.665 20.51 6.915 13.38 4.511 20.51 0.527F 01 0.822 166.17 0.4826 2545.74 5461.3 1.593 1.651 20.51 7.272 13.38 4.744 20.51 0.514F 01 0.819