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ABSTRACT

The multi~-beam aerial array is studied with emphasis

on the processing network required for multi-beam operation.

The general properties of the rotationally symmetric
network (RSN) are investigated. A well known example of the
RSN is the Luneburg Lens used in conjunction with a proposed
feeding arrangement. The outputs from the lens are fed to
radiators in an array of the same lens size (in wavelength) to
obtain the far-field array pattern. Three types of radiators
arz used for the array -~ omni-directional, cardioid (l + cosine),
and beverage aerial radiators. The use of a lumped equivalent
circuit lens in place of the continuously varied dielectric lens
is considered. The effects on the arrav performancé of varying
numbers of radial lines and numbers of elements per radial line
used in the equivaleni lens are considered. Also considered is
the effect of finite Q values for the inductors used in the cir-

cuit.

A synthesis technique to obtain the equivalent network
for an 'optimum' Luneburg type lens is proposed. This network ;
is built by interconnecting 2 port transmission line networks

between the N feeds of the lens.
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CHAPTER 1

1. INTRODUCTION

This thesis deals.with the study and design of a compact
wide band high frequency (3-20 Mhz) multibeam aerial array. The
emphasis in this investigation is on the vrocessing network
required for multibeam operation.

This chapter briefly surveys some nultiple beam array systens.
It also éerves as an introduction to the following chavters.
Section 1.1 surveys some existing H.F. multibeam aerial systenms.

In section 1.2 some processing networks for multiple beam operation
are reviewed. Some ideas for a multiple b:am system are considered
briefly in.section 1.3,

Chapter 2 will deal with the general properties of the
combining networks used for multibeam operation - the Butler Matrix
for linear arrays and the Rotationally Symmetric Network for
circular arrays. In chapter 3 the use of a Luneburg Lens in
conjunction with N surrounding feeds and circulators or directional
coaplers to obtain a 2N port rotationally symmetric network is
proposed. Chapter L investigates the behaviour of thé equivalent
sircuit Luneburg Lens. Chapter 5 dealskwith the synthesis of a

Luneburg-type combining network for multibeam operation.



1.1 Survey of Some Existing H.F'. Multibeam Aerizal System

1.1.1 Rhombic Aerials.

A widely used aerial is a fgrm of two or three nested or
interleaved Rhombic aerials, each covéring a 2:1 frequency range
Each he§t of Rhombic aerials is directional and can receive fronm
only two opposite directions. Tor multiple beam'reception several
nests of Rhombics are positioned so that all directions in
aziruth are co&ered. The Rhombics have to be spaced sufficiently
apart to minimise.coupling. Because of this a large ground area is
required (approximately 240 acres for a system covering the
frequency range 3 MHz to 30 MHz). This is one of the disadvantages
of this system. The other drawback of this systeh is the relatively

high side-lobe of between -7db to -10db.

1.1.2

Systems dec.ribed under this sub-secticn have each output in
the array divided, generally, into as many outputs zs the number
of beams required at any one time. Each sub-divided output from

all or some of the aerials are phase so that for any particular

direction of reception, the signal adds up in phase.

2,3

1.1.2(a) Medusa System

In this system *+he aerial. are omni-directional inverted

41

cones, pocitioned randomly in an array of scveral wavelength

dimensions. The outputs <re phased for any combinaticn of frequency



and direction using a high speed computer. This system provides

a number of independent outlets each of which can bg steered by the
direction control equipment. This system though flexible in design
and cgeration is expensive due mainly to the high cost of the high

speed'coﬁputer which makes up the direction-controlgequipment. The

area occ-pied by such a system (5-25MHz) would occupy about 6L acres.

1.1.2(b) Pusher Systemh

AERIAT TN '
ARRAY Y . Y

POWER ‘ -
DIVIDERS J | ! ]
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HaAaiay/

DEIAY LTES

—

OUTPUT FOR ONE
BEAM

E Fig. 1.1 TYPICAL ARRANGEMENT FOR THE PUSHER SYSTEM

The aerials (monopoles) are arranged in a circulz» array in



the Pusher system. Typically each output from the aerials is
di-ided into eight parts. There are eight »hasing networks so that
the array can receive simultaaeously from any eight (of the total

of 24 directions - there are 2l radiators equally'spaced around the

array).

Al hough the actual area occupied by the array itself is
small (about 5 acres for a 150m diameter array for the 1.5 to 10MHz
Eand) the performance of the system is poor. The side lobe ratio
is high - about -k.2db at iz and -6.6db at 8MHz. The gain is

alsc poor.

5

1.4.2(c) Array of Beverage Aerials

BEVERAGE AERIALS

TERMIVATED TN ITS Ao b / /
CHARACTTRISTIC |
_ \;::::::::\\\x

ILPEDANCE

Fig. 1.2 CIRCUIAR ARRAY CF BEVERAGE AERIALT




A system under study.in conjunction with the work reported
here uses Beverage aerials arra:ged radially to form an array. The
outputs are combined as in the Pusher system. The advaﬁtage oi this
system is the simplicity and the wide bandwidth of the individual

Beverage aerials.

Because of the need for power division at the outout of each
of the aerials, amplification may be required to give an acceptable

signal to noise ratio.

1.1.% The Luneburg Lens6

The Luneburg Lens was first proposed as an optical lens. It
has been used at microwave frequencies ana lately at the H.F. band.
The Luneburg Lens is a cylindrical or spherical struciure, with
refractive index which varies with distance from the centre of the
lens.

Owing to the variation of refractive index a plane wave
arriving in any direction is focﬁssed onto a point on the other side
of the lens. As long.as there are feeds at the focal point, the
lens can receivé from any direction (due to rotational symmetry) .

Such lenses are used at microwave frequencies. At such
frequencies dielectric materials are used. 1In optics the dimensions
of .the lens are assumed to be large compared with the wavelength.

In chapter 2 tﬁe electromagneiic solution to the Luneburg Lens is
given for the case.vhere h. = € =+/2-r2, r = normalised radius.

r

This and other solutions (er =(2-r2), M= 1) suggest that a minimum



diameter of about 1.5 wavelength is required for the lens to behave

properlye.

WAV A-FRONT

REFRACTIVE INDEX
n(r) = 2-r2

/ "
. T _ '
ﬁ- » | . r = normalised radius
s ’

i

Fig. 1.3 THE LUNEBURG LENS

The Luneburg Lens has so far been used as part of the radiating
structure_ih an aerial system. Bﬁt the "Lens"’can be thought of as
a processing networz - used in conjunction with ?eeds'connecting the
lens to radiators as fully described in Chapter 3. The H.F. Wire
Grid lens (described in the following paragraph) could be looked upon
as a processing network, directly connected via feeds to the radiator
(extended horns). It is probably more economical at H.F. to use a
network to simﬁlate this lens type behaviour (e.g. the equivalent

circuit lens nroposed in section 1.3.3).

S

O~



1.1.%3(a) The H.F., Wire Grid Iuncburg Lens

7,8

The variation of dielectric constant can be achieved by using

two wire meshes, one above the .ther. 3By varying the spacing

betweeu the grids (as a function of radius) the equivalent refractive

index can be varied as required in a Luneburg Lens. Such a lens with

horns extonding from the edges has produced quite satisfactory

results (9).

One of the major draw-
backs of the H,F, Wirg-Grid
antenna is its high cost -
moét probably due to the close
tolerances involved in the
construction of the lens. - For
a 600 ft. diameter lens the
spacing between the mesh at
the centre of the lens is 7";
at the edge of the lenc the
spacing is 12'. The other
disadvantage of this aerial . is
~the low efficiency of the
system due to blocking by the

feeds around the lens.

{ LENS
.‘\\
\ N
N, NG )
\\\\ L

PLAN VIEY

BLEVATION

Fig. 1.L K.F. WIRE GRID LUNEBURG

LENS ANTFNNA




This section looks at processing networks for multibeam
~aeration, which do not involve power division. The Butler Matrix
(for linear arrays) and a rotaticnally symmetrié network (for
circular arrays) will be examineq briefly. This subject will be
studied in detail in Chapter 2.

1.2.1 The Butler Hatrixqo (for Linear Array)

The Butler Matrix is a
network obtained by inter~
connecting 3db directional

couplers and phase shifters in

: AERTAL IN A
a matrix to obtain N output LINEAR ARRAY
and N input ports. The ports OUTPUT
; _ 5 N

are uncoupled. For the

transmission mode, the N out~ BUTIER MATRIX

puts are connected by equal

length transmission lines to 1 lzl 3[ [}JI THPgT
equally spaced aerials in a

linear array. N independent
Fig. 1.5 THE BUTIER ARRAY

beams can be obtained by

exciting the corresponding input ports. Eecause the array is linear,
the effective aperture of the array decreases cosinusoidally with
the angie of the beam from broalside. A circular array will avoid
this drawback. The limitations of the Tinear Buvler Array in ternms

of output amplitude distribution has been obtained by Shelton (11)



for a lossless matched feed network.

1.2.2.Rotationa11y Symmetric Network

The main property of such a network is its rotational symmetry.
fAlso the 6utputs from the network must be such that vhen connected
to radiators in a circular array, a directive beam is obtained in
the far-field. The network has N iﬁpuﬁ and N output ports. By
changing the excitation from one‘input'port to éhe next the signals
at the N-output ports would be unchangesd excépt for a rotation of

the signals by one port.

EQUAL IENGTH vy ¢ AERIAL
TRANSMISSION <2\ ______ ?/V’ ARRAY
LINE e 0 B /
~
A S
A}

Vo o |
Voo 7| ROTATIONALLY

V3o e syinmoRIC
NETWORK.

v7 (¥-y)

. Fig. 1.6  ROTATIONALLY SYMMETRIC ARRAY

For V. = 1 'only

t . (. . ' . ' - s U
Vi=a 5 Vi=b o Viec 5 .eeeew Vy =0 5 Vp=b



= a H V' =Db H sssecs ‘II:I—1 =d H VI?I:C,

etc.

One way of achieving this characteristic is by the use of twe

linear Butler type matrices. The limitations involved are considered .

in Chaptrr 2. A Luneburg type lens or its equivalent used in
conjunction with N surrounding feeds satisfies the necessary

properties requir<d for a multibeam circulax array.

Some icdeas derived from the concent discussed in the preceding
paragraph will be considered briefly in this section, and in detail
in Chapter 3 and following chapters.

1.3.1 Scaled Lens (with Frequency Translation)

At the High Frequency band a full scale dielectric Luneburg
Lens ié not practicable because of the 1afge diameters (some
hundred metres) involved. However, a mgch smaliar lens could be
used if signals arriving at the periphery of the "lens'" are picked
up at a discrete number of feed points and translafed to U.H.F. band
(amplification is obtained in this up-conversion process). The
signals are then processed using the much scaled down 1éns and the
frequency is down—converted to produce the original H.F. sipgr-l.
| The Lureburg Lens is basically a wideband device bui with the

introduction of frequency tranzlation the system becomes Irequency
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dependent. Calculations for a H.F. system {3-20MHz) suggest that
for a 200 metre array a scaled-down lens has a bandwidth of only
1.5 MHz. Therefore over the whole H.F. range 18 scaled-down lenses

_ use of

will be needed, together with extercive filtersand other components.
The cost of this system became excessive due to the large numbers of
filters needed plus mixers, circulators and local oscillators.
Therefore, over such a wide frequency band this system is not

practicable.

1.%.2 Eguivalent Circuit Lens

The close tolerances
required in the construction
of the H.,F. Wire Grid lens was
one of the reasons for tﬁe high
cost of the system. It(was
thought that there could be a
trade-off between mechanical
and electrical tolerances if an

equivalent circuit Luneburg

Lens were used. The equivalent’

network is made up of an inter-

connection of inductors and Fig. 1.7 EQUIVALENT CIRCUIT LENS
capacitérs -~ their values
derending on the '"distance! of the equivalent element away from the

centre of *he lens..

The equivalent circuit will be used in conjunction with
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circulators and radiating structures (typically, doublets; beverage
aerials and monopole) using the arrangement described in Chapter 3.
The equivalent circuit is studi-a in Chapter 4. Among the problenms
studicd are: the minimum number of elements required to simulate a
dielectric lens, coupling between feeds, types of radiators used

and the effect of finite Q of the inductors used in the circuit.
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CHAPTER 2

2. NETWORKS FOR MULTIPLE BEAM ARRAYS

2.1 Introduction

This chapter studies the general properties of the network used
for feeding an array to facilitate multiple beam opération.

In a linear array the Butler Matrix1o is already well knovn.
Tor a circular array a rotationally symmetric network will be studied
as a 2N port network with N outputs feeding the N radiators and N
inputs, for each of the N beams (for the transmitting case).

A special type of the rotationally symmetric networl, designated
the "Rotationally Symmetric Coupler" (RSC) can be transformed into a
Butier Matrix HNetwork by connecting th sets of N appropriate phase
shifters to the N-input and ﬁ—output ports. The transformation is

reversible.



2.2 For Linear Array (Butler Matrix)10

—
:' BUTLER
3] MATRTX
| © Thwsumsston  LIVEAR ARRAY
ol
CHel—— [B] - LINLS . OF RADIATORS
H
-
i oUT-
INPUT PUT

Fig. 2.1 BUTLER ARRAY

The Butler Matrix can be descrived as a 2NxN matrix, i.e. a
network with N input ports and N output ports. The N ouiput ports
are connected to a linear array of radiators via equal length

transmission lines. The scattering matrix can be written as:-

B = Ve (1)

o i t = =
The input and output ports are decoupled so that [P11] = [PZZ] = [O].

Owing to reciprocity P21 =P, =[P]

i-e. B - e e . (2)

=l
o

14



where P = [{p,i‘} s {pa\l csena {pm:l] ) (3

{p1} = {p} represents the outpuss from the matrix network when input
1 is excited, i.e. the current distribution of the array. TFor
multibeam operation {pa} will be similar to {pq} and {pE} , {palj ,
etc., excopt for a progressive phase difference. Therefore for N

equally spaced beanms
- - 3
{pa} =D {ry} =D {rj
and more generally (4)

(B} =0 {py

where D = diag. (1, ejg, ceves ej(N~1)¢) : (5)
é.nd ¢ = —%E

Rewriting P from eqn. (3)

~ N .
(P]= [{p} » PP} eeeen D {p]}] (6)
Substituting for D in (6) on rearranging the K.H.S.
P, al
Ll

1
Q
IR
oY)
G3
.
——
g
St
—
°s
*
—

15



16

1 1 1 e e - o 1
1 e-3¢ e-32¢ . e e eﬁJ(N-q)g
o " es
e jof Sk e (-1 og
where X = — (8)
JI‘I L] - - L3 L ] * L] L

» .-. _ .-. _ - .-. - )

. . jN-1g . jn-12¢ L. . j-12g
The rth column of [X] is the eigenvector corresponding to the eigen-
value, e3§r”1)¢, of the symmetrical operator, [R] (Appendix A2.1).

For a lossless network P P* = I
B, +
*
| i.e. B, p* = 1 for all r (9)
_ Rewriting (1) for a lossless network,
0 X*
[B] = ' (10)
T+ 0
2.3 Rotationally Symmetric Network for Circular Array
CIRCUTAR
<'§ O ARRAY
EQUAL LENGTH - e
TOTJ' ) . ,, \\
) ) Y

t . 7 .
[ 4:&_— ‘l A\'l/ \ A
{

-t
o e I

b R-‘o-—-:——-;- [C] . i . ' /
e - g ~ I~

- -
e N

- Fig. 2.2  ROTATIONALLY SYMMETRIC ARRAY

¥ implying orthogonal beams, Shelton, Allen, etc. (11, 29, 30)



17

2.3.1
As in the case for linear array we can write C as
o T ‘
el=|_ . — (11)
T 0O
with T T = [1, (12)

for a lossless network . Using scattering matrix formulations

NENEN

Let 7 [{t,]} R AT {tN” , (14)

where {td} . {tz} s sease aﬁd {tN} represent the current distributions

"

on the array when the respective input ports 1, 2, «ee.. ; N, are

excited. {tq} and {tz} . {tz} and {t3} . {tr} . and.{t r+% differ

from one another only in a rotation of the ports positions, i.e.

Too ({8, R{t} eeeee B {11) (15)

[0 0. ..17]
where [R] =/ 0 1 . . .0 | =X D X* (Appendix A2.1) (16)

0 0..10

R . S
iee T = X [X*{t},DX*{t], «euuu, 21 xx (6]

N-1
= X [{p'} » D[P} 5 eeree s D {p'}]

Le€a T = ) ' * . 1
i.e T X [p'] 4 X (17)
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where {p'} = X*{ t} (18)
and [p']4 = dag ({»'})
For lossless network
i (L
3 ] t * '
' 42 -1, forr=1toN (15)
|x r‘ - TT 7
from (1) .
N
- - ._,\ .
i=1
ices D' [ =1, from (19)
ie. p'_ = e, A - (21)

r=1%0N~
(20) gives N equations, with 2N unknowns (ti is complex). If either
the phases or the amplitudes of t; is specified the other unknowns
can be obtained.
We will see in the next section that p'r is in fact the eigen-

!

value corresponding to the rth mode.

2.%.2 BEigenvalue Solution

For a rotationally symmetric system of N ports, using the

tollowing matrix notation:-



ey
SDP

b

o

2]

Crd

ROTATION

i

the reflected fields

19

Fig., 2.3 ROTATIONAL SYMMETRY

. |, the incident field (22)

scattering matrix of the Rotationally Symmetric network

—

O -~ O

¢« e O
* e o O
0

, the rotational operator,



v ]

(v = (510" (25)
Ouing to rotational symmetry fR] operating on the input signals will
give an output

{p} ' = [silr}{a"} | (21)
this output should be the same as that obtained by [R] operating on
{t} in equation (23)

. |.
ice. R{b} = {v} N (25)

Substituting for {b} from eqn.(23) and for { b}' from equation 24,

i

(R1is] {a’) = [s] [R] {a"}
i.e. [R][s)= [S[R]

{R] and [S] commutes, therefore they snare the same eigen solutions

]

(obtained in Appendix A2.1)

1
ejmﬂ ] is the mth eigenvector for
ioen {am = . e . o
lR] and 3
o Jm(N-1)g _2n
o - N

or {am} is the.éolution for the mth mode

Since {am} is the mth eigenvector for the‘system, a siénél {am}
applied to the N ports of che structure will give rise to a reflected
signal {b] which is similar in form to {am} except for the constant
am which is the reflection coefficient of the mth mode.

r

Am {a™) A (28

H

*

)

.
e

o
At

]

but {v} = [ s]{a"} | (23)

1

20



Eguating (23) and (26)

- (8] {2"} = am{a"y, @
so that Am is the mth eigenvalue corresponding to the mth eigenvector
or mode. |

Extending equ.(27) to take intc account all the eigenvector
{am} sy m =11t N |

Pslix]= 1x]ia 1, | (28)

where [x]= [{a1} s {az} e {aN’J] (Appendix A2.1)
and ‘;}"“}d-: diag (}\1 cenes A.N)
and A, = reflection coefficient of rth mode
hence s= [x][a], x
' d
s = X[a], x* (29)
or FS = ZN Am ej(m-’l)(r-s)¢ ‘ (20)
rs ~1
For a .symm'etrical current distribution
S, = 8. » giving from eqn.(30) -
Ak = AN-k (k =1 to N-"])' ’ (31)
Nl
. 2
i.e. 8. = > (7&0 + A, cos(m=-1)(r-s)g )
m=1
(+ Mye_yN/2 , if VW is even) - (32)
2

g-'- 1, for N, even

o] 2
1}

where
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\ g
='£El , for N, oda

2.%.% Relationshiv between Butler Matrix and Rotationally Symmetric Metwork.

for Butler Matrix

o Xx]
B = ,:~. [ (10)
X ol

for Rotationally Symmetric Network

0 IX[A]gx* :
cC = |- (33)
*alzx o (from (11) and (17))

The form of equation (33) suggests that a rotationally
syimmetric network can be consiructed by cascading two Butler type
matrix via suitable phase shifters corresponding to the phase'of the

elgenvalues. One of the two Butler type mutrix corresponding to [B]

— . ] .
—I0  a ) 0 b"l ) ”o o] — _. o abe] [
' ' ' J ! —_— ' '
1 i t e H t

: , ba O
a0 : b 0 : e o) | v|Leba 0 ]
S tta— -'—-—‘. ‘-——-‘ -—-—a‘

Fig. 2.4 CASCADE OF THREE 2-N NETWORKS

:5 obtained by interchanging the input port 1 and N, 2 and N-1, etc.,
" of the matrix network [B]*. Similar results have been obtained by

Davis (12).

It is significant that the phase delays required corresponds to
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—] —0 S

S [B] = )Z( . [B*J =

o] {5_ X g o xx [
'Efc 0 X* oJ

Fig, 2.5 ROTATIONALLY SYMMETRIC MATRIX FROM TWO BUTIZER IMATRICES

the exponents of reflection coefficierts of the network. Therefore
by varying the reflection coefficients for the various modes the
outputs from a RSN can be controlled. A network, with the required

mode reflection coefficient values can then be synthesised.

2.4 Rotationally Symmetric Coupler - Butler Matrix Transform

‘In the preceding section a rotationally symmetric network for
circular array waé obtained from two Butler type matrices and a
series of phase shifters. In a special case it will be showm that
the Butler matrix can be transformed into a special rofatiqnally
symmetric network to be called Rotationally Symmetric Coupier (RSC)
which has equal amplitude outputs. It is thought that the reverse

transform is more significant.



For the R.S.N.

o wm R
[c) =[~ ()
T 0 .

t1 2 L T L] tN
iz iyt
vhere (T = t3 t, . s implying circulant
* : properties and
| N "t t'l symmetry of outputs.
for Butler Matrix
0 X*
1Bl =] _ _ (10)
X* 0
o ; . _
* - e - —
where X*. = = exp [ 3(r=1)(s-1)g] | (34)

We shall first assume that

[T'] =D Xx*D (sincé [T'] , symustrical)  (35)

i.e. (x*] =" 1 p~" . - (36)

where D diag (1, ¢™9%2, 7923, ... 74N (37)

p~ diag (1, 'ejaz, %3, viis &) (28)

Owing to its circulant properties and symmetry

SR | s ' :
Trs = = eXp[J‘I’s-H’!] ()

(for squal amplitude outputs and for s >r)

from (36), (33), and (29) \

* - :!. . “ B .
X rs A exp [Jar MR YR B ‘]as]

2



but i
rs

exp [ 3(r=1)(s=1)¢] (34)

i.e. (r-1)(s—1)¢»= a ta v b +.k.2n (Lo)
for r =1, saees N
s2r
Let s =r
i.e. (r-1)2¢ =20, + y, + 2nk
put \I',' =0
i.e. o= Sg:jlzﬁ - 2nk _ (1)

T 2
Substituting (41) in (50)

-1)2 -1)2
(r-1)(s-1)¢ —(—1:21) g+ (591) g+ v

.2 S=1+1

+ Ars.2r
where Ars is au integer const.

i.e. N = =2z (x-1) - (s-1) ] 2§ + Ars.2n

S+

N7 -2 (r-s)?ﬁ + Ars.2n (12)

s-r+1
The multiples of 21 in equations (L1) and (42) may be conveniently

dropped since o, and Yoooh

4 are phase values; hence equation (41)

and (42) becomes:~

. 2
_‘&r-1)
ar = Jof . (41a)
i 2. .
Woriq = " ? (r-s)°¢ ‘ | (h2a)

Hence equation (35) is proved

[T'] =D Xx*D (35)
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o
i 1%

e

'\'-'here ED] = diag (1, e—.:] [ es oo 9 e < 9 s e

PRV~
2%

Therefore the rotationally'symmetric network defined by | C'] can be
constructed from a Buplér Matrix with two sets of N delay lines
connected to its input and output ports. The phase delays are given
by:~

2
0, = ﬁf%ll @  for the rth and (N+r)th ports.

. 1 ‘ Nl
0O D or—] E— 0O D
AN S  mmm—r
4 | AN
D 0 / 0 X*] \ D 0
/ r i et
/———-‘——— ———————, .
Pd X* O [} \\
// el | - I \\\:
- N 2 -~

Tig. 2.6 ROTATIONALLY SYMMETRIC COUPLER FROM BUTLER MATRIX

Conversely a rotationally symmetric coupler (RSC) can be converted
into a Butler matrix with a different set of delay lines as can bé
“seen from equation (36j. |

If the outvuts from a RSC are fed into omni-directional radiators
in a circﬁlar.array of aprropriate dimensions, a radiation pattern with
o sidelobe level of about -10db is obtained. With the use of (1+Cosine)
radiator. or beverage aerials. no uéeful patterns were obtained. This

suggests that the RSC should be used to produce Butler matrices rather



than the converse.

2.5  Summary

In section 1.3.1 it has been shown that once either the N
amplitudes of the outputs or the N phase of the outputs of a lossless
rotationally symmetric network are specified, the other unspecified
parameters are fixed.

In section 1.3.1 and 1.3.2 we see that a rotationally symmetric
network can be realised by cascading twe Butler type matrices via N
phase-shifters. .The values of thesc phase shifters correspond to
the exponents of the eigenvalues of the scattering matrix vhich
describes tlhie outputs from the network. The eigenvalues are in fact
the reflection coefficients of the corresponding mode. Therefore the
output from a ro£ationélly symmetric network can be altered by
confrolling the values of the eigenvalues or phase shifter; As an
alternative to the use of Butler matfices a network with the required
mode reflection coeffiéient may be synthesized. One obvious exadple
of this type of network is a Luneburé Lens or its equivalent structure
with N feeds around the cifcumference (Ch. 3).

If the outputs of a kSN are equal a rotationally symmetric
coupler (RSC) is obtained,‘ This network can be transformed from a
Butler matrix network by connecting two sets of N phase-shifters to
the N-input and N-output ports. Conversely the RSC could be transformed
into a Butler matrix using a complementary set of phase-shifters. It

is thought that this transformation is more significant.
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APPENDIX A2.1

ROTATIONAT SYMMETRY OPERATOR, [R]

If the fields in each of

. . hv'.
the N-ports of a rotationally 4 :
’ \
. . i a2 \
symmetric structure were rotated b e
!
in say, the clockwise direction, %F—*l :
. b t
the behaviour of the structure a&—"” K
. 5 . O '
will be unchanged owing to by .
[ \
. an-a '{' \ pa
rotational symmetry. {R] is the i N P
) H
ay
rotationally symmetric operator l

vhich will effect this covering W

operation.
Fig. A2.1 ' ROTATION SYMMETRY

[R] = (A2.1)

O . L] . . . 1 0

- -

Fields at port 1 replace fields at port 2, port 2, at port 3, etc.

Eigenvalue Solution

[R]{a%} =g (a} - (A2.2)
where {al} is the ith eigenvector or sclution which satisfies

the boundary condition,



and gi is the corresponding eigenvalue of [R}.
i.e. ({R] = gi[I]){ai} = 10}, yielding N simultaneous equalions
which determines {ai} in terms of the coefficient of the matrix
(Ir} - gi[I}). The eigenvectors have non-vanishing solutions only
if the determinant is zero,

i.e. F(g) = |IR] = gi.[IH =0 : _(A2.3)

(The Characteristic Equation)

Vlhen exgpanded fhe characteristic equations result in a . polynomial of
degree N, whose roots, g1, gz, vesee gN are the N eigenvalues of R .
Owing to symmetry [R]N = [I]. It can be shown that the eigenvalue

of {R] are the roots of 1 ({(13) - Altman, pp.82).
. 2 T N T on{r-1) .
Lefa g Y g g oevase g ".....g = ex‘pl J—ﬁ- ] (.H.Zo’-{')
(I‘ = 1 to N)
The eigenvector, {al}, corresponding to gl is determined within a

constant by

S
-
i
.
N
|
N
L)
|

1

N
= — (A2.5)
ApN : 4

(Cramer's Rule)
where Apn is the co-factor of the (p,q) element of |[R] - glll]|

and p may be any row.

-gi o . 0
i
1 =g« ..0 .
|[®] - g'[z1]= o 1-g" . . (A2.6)
0 « o 1 -gi
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it can be shown that:-

aii ai ai a‘I:i.
2 r { P
T T G2 Tt T LA T E a2
i.e. a;‘ = (gi).’l_r (A2.8)
1 2 M,
iece [{a 19} {a }., ..... , {a }]
r -
1) (1 ) (1
| | it
-j2g P ~ja(N-1)g
= J * },4 € L g ssses ,<1 © ’ ! (A2.9)
\ 1 ) le-‘j(ﬂn'l)'@/ \ e_j(N-’l)E”J _l :

1 1 2 N ' '
X - [{a} e T {2 }] (A2.10)
so that er ="\-/% e—j(r-’l)(s-’l)@' ) . (A2.11)
From (A2.2)

[R] {2} = &* {a") (42.2)
or [R] %] =[x][ Gy . : (r2.12)
where [Gd] = diag (gi, 52, cscae gN) (A2.13)

-1
i.e. [R] = X 6y x
but X1 =% - x» (X symmetrical)

H
.
[1+]
.
—
w
—
I

xlegd x* (A2.14)



CHAPTER 3

D THE MULTIBEAM LUNEBURG LENS FED CIKCUIAR ARRAY

3.1 INTRODUCTION
_ N

The general properties of a 2N-port network for multibeam
operation were studied in Chapter 2. The use of a Luneburg Lens
in conjunction with N surrounding fields as a 2N-port network will
be studied in detail in this chapter.

Two schemes are proposed to facilitate multiple beam operation
using eithﬁr one or two lenses. In one arrangement one lens is used
together with N three ?ort circulators. In the other two identical
lenses are used together with N 3-db (quadrature) directional
couplers. |

To verify the feasibility of the proposal, the electromagnetic
solution of the iuneburg Lens (with g =t ) is obtained. The
refleétion coefficient is calculated fdr each mode and the values
used to obtain the scattering matrix (i.e. the output Qistribution
at the outputs of the Luneburg Lens).

The outputs from the lens are fed to (1 + cosine) pattern

radiators in an array of the same size (in wavelength) as that of

thé lens, to obtain the far-field radiation pattern of the array.
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The use of omni-directional radiators and beverage aerials in the

array is also considered.

3.2  ARRANGEMENT FOR MﬁLTIBEAM IENS FED CIRCULAR ARRAY

Two feeding arrangements are proposed for obtaining multiple
directional beams using Luneburg Lens type corbining networks. The
first arrangement uses one lens with its feeds connected to radiators
and to the transmitters or receivers via three port circulators. . In
the other arrangement two identical lenses are used. Two outputs
from the two lenses -~ one each from the two feeds in the same
position for the two lenses, are connected to the radiators and the
transmitters or receivers via 3db quadraturz directional couplers.
Theoretically the two arrangements can be used for simultaneous
transmission and reception. Both systems can be used for scanning

if each beam output is fed into a scanning network.

3.2.1 Multiple Beam Lens Fed Circular Array (One Lens)

The main feature of this arrangement is the Luneburg Lens type
combining network, L. This could be a full-scale dielec*ric lens,
a scaled Luneburg Lens (if frequency translation is uséd), a lumped
rircuit equivalent circuit lens or any rotationally symmetric structure
with focussing properties. Ine circumference of the lens is totally
surrounded by N feeds so that ideally no loss of power occurs in.the

lens and feed arrangement. Horns could be used as feeds in microwave



lenses. The feeds are connected by equal length transmission lines

to the radiators and the transmitters or icceivers via three port

L - LENS
F - FEED oo
A -~ AERTAL A

C - CIRCULATOR

R - RECEIVER/TRANSMITTER

Tig. 3.1 MULTIPLE BEAM LENS-FED ARRAY (ONE IENS -~ FOR RECEIVE MODE)

circulators. A 2N port network with rotationally symmetric properties

is thus obtained. The radiators are arranged in a circular array of



in i
the same dimensions (electrically) as that-of the combing lens.

The arrangement may be used either for transmission or
reception. To 1llustrate the mode of operation, the recelving mode
will be considered. The radiators in the array vpick up signalé from
a plane wave arriving from the direction shown in fig. 3.1. The -
signals travel down the transmission lines to the circulators, C,
where they are directed into the lens, L, through the feeds, F. 1In
the lens the signals are focussed on to a point at the circumference,
on the other side of the lens. This focussed signal is picked up at

feed, F,, travels to the circulator and is directed into the receiver,

1,

RY. Signals arriving from any of the N directions are similarly

combined.
A A
Rx . _ R"
o . &
@ =\ LENS, L . /F %JJ
C . .

Fig. 3.2(a) RECEIVE MODE

For transmission the positions of the radiators and the feed

ports are reversed. However, if common TR mode is required two of

' the lens-fed syshem already described will be needed - one for

transmission and the other for reception. The output ports from two

feeds in identical positions from each of the two structures are



L, (RECEPTION)

L, (TRASMISSION)

Tx

Fig. 3.2(b)

COMMON TR MODE (With Three 3-Port Circulators

or a 5-Port Circulaior)

) F/ \ F r>
@ L / \:)
E
© > O
T /e, Tx /R«
Fig. 3.% TRANSMIT/RECEIVE MODE (Using L-Port Circulators)

(Marston (19))
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connected to the radiators in the array via %-port circulator as
illustrated in fig. 3.2(b). *Th1e vorts numbered 1 to 5 then
constitutes a 5 port circulator.

A similar arrangement proposed by Marston (19) is illustrated

in fig. 3.3.

3.2.2 Multiple Beam Lens Fed Array (Two Lenses)

An arrangement which permits simultaneous reception and

transmission is illustrated in fig. 3.4. Two identical lenses, L1
and L2 together with feeds are employed. The outputs from two feeds
in identical positions from each of the two lenses are fed into two
ports of a Adb-directional coupler. The other two ports of the
coupler are connected to the radiator and the receiver or transmitter
as indicated in fig. 3.4(a). |

For transmission in the direction B1, a signal V1 is applied
to the lower input branch of the directional couplers by the
transmitter qu, giving outputis 2%1 and E% at the upper and lower
ports respectively, i.e. at feeds F1 and F% respectively. Because
of the lens action, the signals are distributed to the other ports
and picked up by the feeds. The outputs at the upper and lower
lenses are in phase quadrature. Hence at any two identical feed
points, the signal travelling into the direction coupler ( , Ds 5 say)
;re in phase quédrature. .Therefére ﬁo éuéﬁutvié obtained at the

receiver/transmitter port, but a signal jV135 appears at the radiator,



A
j“’l /,IZ jV‘Ss/E
— i
F‘ = V,s
o —lrews. o P w7
1 =, _
a >< >\ ~» O
—F “ LTINS |y
VG ~+vs5/iz
Tx, T
' (b) EIEVATION
/
]
1
1
]
i
1
i
\
1
1
T, - LENS
A - ATRIAL -
D - DIRECTIONAL COUPLER ~~._ _
T_ - TRANSMITTER/RECEIVER

-

(b) PIAN VIEW

Fig. 3.4 MULTIPLE BEAM LENS FED ARRAY (TWO LENSES)
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A5 (Sn is a constant depending on the position of the port with

respect to tane transmitting port). Since the distributed signals

are ﬁearly co?ﬁaéal dﬁe to the property'of the'iens a directional
. beam is obtained in the direction, Bq.

The array behaves . similarly for reception. In such a case,
the signals are received at the radiators, transmitted via the
directional couplers to the lens wherc the signals are focussed on
to a feed-point on the other side of the two lenses. Since the two
signals are equal but in phase quadrature the signals are transmitted
only to the receiver port.

These arrangements can therefore belused for simultaneous
transmission to or reception from as many directions as there are
aerial radialors. For the common TR mode operation each output from

the array is connected to a transmitter and a receiver via a 3-port

circulator.

In both arrangements (sec. 2.2.1 and 3.2.2) a 2N-port network
is obtaired from an N-Port structure (tﬁe lens witﬁ.its N feeds).
Whereas there is no coﬁpling between output ports in a Butler Array
there is some coupling between output feeds of the Luneburg tﬁpe
network. It can be shown (Lippendix 3.1) that the scatfering natrix
- of the ZN-port network work resulting from the use of twe sets of

lenses with direction couplers is

C =3 (3.1)

5
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where [S] = scattering matrix of the N-port Lens Structure.

3.3 BEHAVIOUR OF THE MULTIBEAM LENS CTIRCULAR ARRAY

Equation 2.3.2 suggests that the reflection coefficient of the
various modes are required to obtain the distribution at.thc output
feeds of the lens network. The electromagnetic solution for the
Luneburg Lens is worked out in section 3.3.1. It is thought that a
Luneburg Lens with i, = €, may prove nore useful than the ordinary
Luneburg Lens (with By = 1) since there is one extra parameter, K
(especially in relation to the equivalent circuit lens in Chapter 4).
The electromagnetic solution of the ordinary two-dimensional Luneburg

Lens has already been obtained by Jasik (14).

3.%.1(a) Electromagnetic Solution of the Luneburg Lens (ur =<5rl

For the Luneburg Lens, refractive index is given by

3 ]
n(r) = V2 -r2 = VYulr) e(r) (3.2)
where r = distance from centre of lens
a = radius of lens
u(r) = relative permeability

€(r) = relative permitivity and the centre of the lens
corresponds to the origin of the cylindrical co-ordinate system.

For p(r) = e(r)

eir) =4v2- r2/a2 (3.3)

p(r)
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For a lens of height less than half a wavelength only the
Transverse Electric Mode exist.

Transverse Electric Hode Es’ o, Hr only

From Maxwell's equations,

1 BEZ . aBr
T T T (3.4)
ok oB
z (%) _
Ei | (3:5)
oH oD
1 8 1 T Z
i T (3-6)

differentiating 3.4 w.r.t. g aad 3.5. w.r.t. r and rearranging,

2

aHr 1 1 ? Ez (
F " jwuoqu) T 6,3"2 (3.5(2))
an(r)u 0B ,
il 3°E °-_%
TR e R 9z (3.5(2))
or JOR AT ar‘2 jo [ poplr) ]
0
3H¢ aHr
substituting for T and 5 in 3.6,. '
!
Bpoay 2% Py (5.6)
or r r of ~ a8t ‘ 5
- { ; aaEZ 8fu n(r)] | . 6E7}' q oE
leCa q L4 - - - » +
Jun_plr) - ) Sornonln)
BN e or am[uou(r)]2 0T J JWTHoMT r
+ 1 aZEZ = jwe €(r) E
2 Jo)uou(r) aga o z
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8°E ’ oE
. 2 " Tz 0 ) 18 2 "z 02 2
i.e. T ar? + <r - or . u(r)>r ™ + W B ET e(r)u(r)Ez
o°E,_
- - (3.6(1))
of ‘
Putting E_ = R(r) &), (3.7)
"t
%‘ = -.-m2 : (3"8)
2
2 R" o dule) r° 7R 222
and r® 5 + [1 - ”(;)J = + k7 (r)
= m° (3.9)
where k2 = w2u €
0o
Solution of equation 3.8
"
% - —m2 ' ) (308)
& = Ae}'“"” | (3.10)

Solution of equation 3.9

- e
r°R" 4+ [r - EM}C)-‘—%—T] R' + k2r2n?(r)R - n°R

or A
=0 (309)
2
Substituting for ey =2-7 /;2
: 2
u(r) = e(r) :afa -2
ang ' a”gi)'z - = in egn. 3.9
' 2a " =-r
2 2r2 ' 2 V
r2R" + a2 5 R' - [m2 - k2r2(2-r a2)] R

2a -r
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=0 ' (3.11) |

Using the transformation obtained in Appendix A3.2.1

m .
- a
R = 722 (22a-2)* e"z’/2 Um(Z) (3.12)
where m = mode number
2
k r -
=~ (3.13)
Za = ka, (3-'”4-)
equation 3.11 becomes
a 2a 2a.a
v 1 2 273 ]
ISIRL ST v o — -
- +[z 1] Y [z. * {5575 " a2z ! Un
=0 (3.15)
where ¥ = m+1
a. = %(m+’1—Za+—-j—-)
1 : LZa
1 .
a_, = = 2
2~ T 6LZa
a2 = 27a

The function Um which satisfies equation 3.15 is similar to the
equation obtained by C.T. Tai (15) for the T.M. solutiqn of the
spherical Luneburg Lens. Tbe constants v, «, a2, a3 differ slightly.
The series soiution to equation 3.15 (derived in appendix A3.2.2) is
given by |

U =S Ap gB (3.17)
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where 1-\-:- - 71 . (3.78(1))
A o, Co_+1) (o _+c.)
2 117 273 a(ss
i’; SR 7= I a,($+1) (3.18(31))
ﬁé 1 u1(a1+1)(a1+2) 11 (a1+2)(a2+u3)
A3 (1) (X+2) T 3 (§+2) (s+1)a2

2a1(u2+u3) . 2(a2+2u3)

3(52) a22-

(3.1244i11)V)

for n 2 3, the coefficients are related by the followinpg expression:-
2 N
a 2(n+1)(n+6) An+1 - a [ aa(n+a1)+2n(n+x—1)] A

+2d2)] An-2

az*m 2 73 1

+ [(o-1(n+y-2)4+2, (a oot +n=1) ]+ An-1 ~ [(n-2ta
=0 (3.18(iv))

The series is absolutely convergent for 2 < 2Za.

Hence from equetions 3.7, 3.8, and 3.12,

2

. a
E = A o0 g2 (27a-2)" & /2 v (2) (3.19)
m .

vhere A is a constant

From equation 3.5,

ok
H = 1 . 2
g~ Jopplr) © dr
oB
1 Y zil -
le2e H¢m = jwpop,m . ar . H'Z (30¢ 1)
1
_ g 2kr [ m 1 1, fﬁg}:E
= jmuou(r) ‘a "} 2%a " L(2%Za-7) T u 47z



At the edge of the lens, r = a, Z = ka = Za

. 2k (2m-1)
LeCa H¢ = jwu - I_-_k_a —
m o] '

Nl

E, (3.22)
. m

+
nalPE
= =

Looking into the lens, the characteristic impedance,.

A
Znm = -—Hl
g
m
4 t
_dey W { (2n-1) 0.5 + Eg}]
2 “k LZa T 7° ij
m
. Ul
_ 3 (2m-1) __r_r_lj
Zm = 5, [—-——-——-—L*Za - 0.5 + T (3.23)

where 1, = free space characteristic impedance Um’ U& and
Zm are computed using the subroutines described in appendix A3.3.2(b)

and A3.3.3-

3.3.1(b) Elcctromagnetic Solution of the Ordinary Lunchurpy Lens

with €(r) = nz(r) :‘(2—r2)

The solution has been obtained by Jacik (14) for the cylindrical
lens and Tai (15) for the spherical lens. The relevant transverse

electric mode solution is given by

E, = A g2 -B/2 Fq (@Y, B) (3.24)
o )
where a = {(m+1-ka)/2
X = m+1 (3-25)
2
7 - kr

a

Iy



and 1F1(a, Y, %) is the confluent Hypergeometric function

116, 17, 18]

Fla,¥,2) =1+372+ a(ar1)2
el 8, 4) = X (5=1)28

aot1) eeee(atr=1) _gi
Foeeees TR e aa () TE

The series is absolutely convergent.
From equatior 3.19,

1 O

m
Hﬁm - jwuou(rj “or ° 3%

. L [Jﬁ.- ' Falay ¥, 2 .
€. ¢ = GJop p(r) |22 F '(a,t , 2) %
m o 171 m
and hence at the edge of the lens
. ' F (a,¥, 2)
Z =4 5, |2 - 0.5+ )
m - 2 To| 2%Za 1F,'](oc, ¥, Z)

The subroutine used to compute

1 Y

in Appendix 3.3.2(a).

3.%.1(c) The Series Um(Z ) and 1}5_‘,](&,2{ , Z2)

(3.26)

(3.20)

(3.27)

(3.28)

F,](a, ¥, Z), ,F!', and %z are described

When the electromagnetic solution of the Luneburg Lens with

b = € =V2-r"/,2 was sought it was thought that there will be no

difference between this and the solution for the ordinary Luncburg

Lens (p = 1, € = 2-r2/,2) for large ka since both approach the

45

geometric optics solution. In fact the series U  approack:s 1}?1(0(, 5, Z)

for large values of Z.
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U =3 Anz ' (3.17)

from equations 3.18(i) to 3.18(iv) if Za = ka > 1

o4 2+(Z 9

3 _
230 428 7 (s41)

<« 1 in egn. 3.18(ii)

1 1 2% . o aafsss
{- R CTe)) TN t + ¥ in eqn. 3.18(iii)
) 2 2 2,

(a+2)(a2+a3) 2a1(a ) 2(a2+2a3)} 21

and in equation 3.18(iv) the terms not containing Za = ka can be
neglected so that

(n+1)(n+¥) An+1

(a1 + 1) An

Ant] (a1+n) i as in the hypergeometiric
An 7 (g+n) ° (n+1)! '

i.e.

function, 1F,](oc,x', 7) where - o since-E%; << 1, Therefore for

large ka the two solutions are the same. For convenience only the
hypergeometric series is used for the higher %a values (ka ¥ 10).

2m-"1 m

e ™ s in the expression for Zm in

Also for ka >» 1 ,
equation 3.23. |

The behaviour of the two series Um and are very similar.

F
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If ¢ = (m+1-ka) or a, = (m+1-ka+2%£)<.0, the terms in the series

1 .
alternate in sign until approximately the nth term {n >~ ka-1).
Alter the nth term (n ~ ka) the value of the nth term falls
monotonically as n increases. Near the nth term (n =~ ka-1), the

value of the term is approximately equal but opposite in sign to

the series so far. Because of this the accuracy of the series is



suspect especially if the number ol digits the computer can handle
is low. The problem is not serious with the CDC 6600 which can
handle approximately 14 significant digits.

In the case of the series 1F1(a,8', Z), if ka is an integer
the series terminates at the 1lth term, 1 = (ka+1).

If a, or ¢ > O the terms in the series decrease monotonically.

1

U(Z) is absolutely convergent for % < as i.ce T £ 2a and

1F1(a, ¥, Z) is absolutely convergent.

%.%.2 The Output Distribution of the Lens «t the Feeds

The scattering matrix for the feed system was calculated from

expressions obtained in Chapter 2 - equations 2.29, 2.30, 2.31 and

2.32
[s]=1[x1[al Ix] - (2.29)
' N | j(m=1)(r-s)g
S..=2 A e (2.30)
m="1 '
where A=Ay, (k=1 toN-1) (2.31)
Ec
2
= %é% (AO + Ay cos(m—1)(r—s)¢)

(+ AN/2 (—1)N/2, only if N is eveny ‘ (2.32)

N!

2

where '% - 1 for N even

1\1—51 for N odd

2n/N

_Q
1

47
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The first three rows of the matrix [ S] have bren computed from
the expression for SrS to verify the circulant ?roperties of [SJ.
ter programs only compute the firét rov of the matrix to give the
output distribution at the feeds of the lens. Details of the
subroutine, SCATHMX, written to compute a row of the scattering
matrix [S] is giveﬁ in Appendix 3.3.L.
The outputs at the feeds on the forward half of the lens are

very nearly cophasal as is to be expected from a Iuneburg Lens.

3.3.2(a) Effects of Spacing between Feeds =

For a lens of fixed diam.ter (in wavelengih) the taper on the
output distribution from the N feeds of the array varies with the
number of feeds used (i.e. the spacing between feeds).

With a spacing between | BACKWARD  w— _ FORWARD HALF

HALF OF LENS
feeds of about one wavelength

. ' . Ul FEED
there is a strong taper in the ////r”i POINTS

-output for the forward

direction, and very small out- 7”.v‘INPUT - _ _
o\
puts at the back half of the-
1
lens. As the spacing is
decreased (no. of feeds ‘ 6 - AZIMUTHAL
) ) ANGLE
increased) there is a weakur -

taper in the forward direction.
Fig. 3.3 FEED ARRANGEMENT

At the same time the outputs

adjacent to the input feed increase. Typical output distributions are
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shown for various spacings for 2.0A. 4.0\ and 6.0A diameters in
fig. 3.4, 3.5 and 3.6. |

We suggest that the stronger taper vhen spacing is large
(greater than approximately 1.0A) is due to the larger effective
feed aperture. Although feed directivity is not considered in the
analysis its effect seems apparent. In a lens fed by horns it is
apparent that the feed would have greater directivity if its aperture
is larger ( 3 1.0A), but in an equivalent circuit lens the effect
is less obvious. For smaller spacing between feeds the radiation
pattefn of the feed can be assumed to be approximately (1+cosine),
giving rise to a weaker fielc in the forward direction and also a
comparatively strong field at the feeds around the input port. The
high fields at oufput ports adjacent to th~ input feeds suggest high
coupling within the lens bétween feeds. The behaviour of [ S) in
relation to the reflection coefficients of the various modes is

explained in the following section.

%2.3%.2(b) Effects of Mode Reflection Coefficients on Output Distribution

The modulus of the reflection coefficient for all modes is unity
for a lossless structure. Only the phase (ﬁn) varies with the mode
number, m. Fig. 3.7 shows the relationship between Om = (Pm—pb) and
the mode number, m, for 2.0A, L4.OA and 6.0A diameter lenses.

Each of the three curves may be divided into two parts. The
first region covers those values of Gm which increases with the mode

number (mode £ ka). In the second region, the value em is



P N U )
S

PSR - S ) D - SO < W o, W/ SR o ¥
>

el

6.0\ DIAMETER
{
i
|
REFIECTTON COFFTICIENT

oo
A
. H
H
i
. - [
Ty
: |
i
I
;
H
o »
i
j
i
\
i
|
1
i
1
i
-
19
i
!
'
i
i

T }OD

O DIAMETER
|
|
1

i
|
|
i .
!
i
i
i

' NORMALISED PHASE O

- — s e e ol - e e

Tig. 3-7

t

2.0\ DIAMETER.

200G
2000
0

Lo

MODE NO., m.

20

10



5k

approximately constant (increasing very slowly with mode number).
In the extreme, the curves in the tuo regiéns may be represented by
two lines, em = m x 180° in rcgion one and em = constant in region
two.

An N-port (N even)-lens system which has only eigenvalues (or
reflections coefficient) represented by the line em =1m X 1800, in
region 1 will have all its input signal out at the output feed directly
opposite the input feed. On the other hand, a lens system with only
eigenvalues representedvby em = constant will have all its input
signals reflected back at the inputAfeed. These results may be

eacily obtained from eguations 3.29 to 3.32.

INPUT
DO et
—lo _
00—
(2) EIGENVALUES, 6 = m x 180° (b) EIGENVALUBS, 6 = const.
Kd (in Region 1) (in Region 2)

Fig. 3.7 (a)

_ o ) o
The two curves for em, em =m x 180" and em = constant represents



two extreme cases for output distribution for an N-port lens

systerl. In a normal system, if most of the eigénvalues lie in

region 1 a stronger taper will be obtained for. the output distribution
whilst, if the eigenvalues lie mainly in region 2 there is likely to
be greater coupling between feeds. Fig. 3.7, together with figures
3.4, 3.5 and 3.6 supports this theory. Vith a decreasing number of
feeds, the number of modes used decreases (number of modes used is
about half the number of feeds - equation %.32), and hence the number
of eigenvalues in region 2 decreases, giving rise to a stronger taper
in the output distribution.

MODE NC.

i (]

¢ﬂ, PHASE

OF REFL.
COETF.
NORMALISE]
TO VALUE
FOR
HIGHEST
MODE

INCREASING
LENS
DIAMETER

(a) (bs

Fig, 3.8 WAVE PENETRATION INTO IENS FOR DIFFERENT MODES

The behaviour of the argument of the mode reflection coefficient

suggests that a lower mode wave penetrates further into the lens



than one of a higher order. For high mode numbers (m:}ika) the waves
are practically reflected at the lens circumference. The relative
depth of the mode penetration can be estimated by looking at the
argunents of the mode reflection coefficients, all normalised to

the value of the highest mode, so that the arguments are ncgative

and increasing with mode number to zero as illustrated in fig. 3.6(a).
As in a reactively terminated line the phase of the reflection
coefificient so normalised represents the electrical distance covered
by the wave travelling into the lens and back. This discussion is
varticularly relevant to the equivalent circuit lens which is studied

in Chapter L.

2e3.5 Par-field Radiation Pattern

In an optical Luneburg Lens, the fields emerging from the lens
are radiated with the aperture acting as the radiator. A lens system
which feeds cardiod radiators [ (1+cosine) pattern] will give a good
approximation to this aperture for vertical polarisation. (The E-
field contributes to the 5 term and the H-field, the cosine term).

To obtain the far-field pattern for the array the outputs from
the lens feed system are fed into cardiod radiators. The subroutine,
FARF1, programmed to cbmpute the far-field pattern is describgd in
appendix A3.2.6. The effect of coupling between radialors is not
taken into account in this couwputation.

Thebperformance of the lens system is studied under the

following headings:~

56



(a) Behaviour for small lens diameters for the twé tyve of

- lenses.

(b) Effect of feed spacing and lens diameter

(c) Use of omni-directional and beverage aecrials as radiators

in the array.

3.35.3{a) Behaviour of the Lens System fdr Small Lens Diameters

It has been suggested early in the chapter that, for large
lens diameters, the behaviour of the two types of lenses .

(p = ¢ =\/E:;§.and L =11 ¢ = 2-r2) will practically be the sane.
This has been confirmed by the radiation patterns obtainedé¢. Down

to about 1.5\ diameter there is very little difference between
radiation patterns obtained for the two types of lens. Fig. 3.9 and
3.10 show the radiation pattern obtained for the two types.of lens .
for feed/radiator spacing of approximately A/2 for lens diameters

of 0.5A, 0.75A, 1.0A and 1.5A. The (p = ¢) lens avpears to have a
marginally broader beam and slightly higher first side lobe. However
the "ordinary" Luneburg lens (g = 1, ¢ = 2—r2) has a slightly higher
directivity ranging from 0.5db at 0.5\ to about 0.1db at 2.0A
diameter,

The beamwidth of the array has been plotted in figure 3.12 for
various values of lens diameters. At the low valued end Qf‘the
diameter scale the beamwidth is practically inversely pregortional
to the diameter. For small lens diameters there is a maximum value

for the side lobe level (fig. 3.11). Becausc of this a minimum lens
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diameter of zbout 2.CA is necessary for multibeam operation. Besides,
the overlap between beams will be too great if the lens diameter is

too small.

3.%.5(b) Effect of Feed Svacing and Lens Diameter

The side lobe level relative.to the main beam is plotted in
fig. 3.11 for lens diamcter between 0.75\ and 10.0A. The beamwidth
is also plotted over the same range of diameter values in fig. 3.12.

For an N-feed circular array, N-far field modes are excited.
The excitation of each of the modes is equivalent to that for each
radiator of an N element linear array. This topic will be Aiscussed
in greater detail in Chapter 5. However, the results obtained in
Chapter 5 (fig. 3.13) will be referred to in discussion in this
chapter. TFig. 3.13 gives the plot of the amplitude of the far-field
mode against the mode number for various values of iens diameter.
This applies only to an array using cardiod (1+cosine) radiators.

.There is a maximum value forvthé side lobe level at about 1.25A
diameter., This is bééause below 1.25\ diameter the amplitude
distribution for the far field mode is very strongly tapered, giving
rise to very low side lobe levels. Above 1.25\ diameter, the mode
amplitude distribution approaches a uniform distribution, the side
lobe ratio approaching -?3.§db for high values of diameters.

for N large (N > ka; spacing between feeds < A/2)

Fig. 3.13 indicates that the far field mode amplitude is negligible

if the mode number is slightly greaterithan ka. Therefore if the
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nurber of feeds/radiators used in an array is greater than ka the

far field pattern is quite independent of the number of feed/radiator
used. This can be seen from the radiation patterns given in fig. 3.1%4,
3.15 and 3.16 for array diameters of 2.0\, L4.OA and 6.0\ respecctively.
The far field patterns of arrays with feed/radiator spacing of 0.196A,
0.262\, 0.393\ and 0.523\ are practically identical excepnt for the
last one which has a slightly higher side lobe.

for feed spacing less than A/2

\I TN
The radiation pattern is made up of mode O to in or-g- , if N

even) where —1;- < ka. If no grating lobes aré excited (greiting lobes
are caused by too large spacings between radiators), then from
fig. 3.13 the far field mode amplitude diztribution will be nearly
uniform particularly if the array diameter is large. The radiation
péttern obtained will then approach a sin u/W pattern more closely
than the case with N > 2ka. But from results obtained for cardidd
radiators, grating lobes begin to appear if spacings between radiators
approach approximately 0.6\M. The problem with grating lobes can be
alleviated by connecting more than one radiator in parallel to eaéh
feed. Radiation patterns for arrays with spacings greater than A/2
are given in fig. 3.17. Fig. 3.18 shows the effect of cunnecting
each feed to two adjacent radiators in the array.

The result of changing feed numbers in an array is tabulated
in table 3.2 for a 6.0\ diameter lens. The effects on the beamwidth,
sidellobes and directivity of the array can be seen. The beamwidth

increases as Tewer feeds are used. This is due to the use of fewer
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far field mode. In fact this is equivalent to a smaller Yaperture!.

The beamwidth and side lobe levels for arrays of various

dieameters are tabulated in table 3.1.

usea is such that N > 2ka.

The number of feeds/radiators

il R Wi RO ety
’ degrees) main beam) already tabulated)

0.5 84.9° | 0.092(-19.24db) 0.084 - '
0.75 | 66.3 0.217(-13.3db) 0.0L -

1.0 52.5 0.296(-10.6db) 0.052 0.068

1.5 35.2 0.315(-10.0db) 0.008 0.229

2.0 26.2 0.285(~10.9db) 0.051 0.242

2.5' 20.8 0.265(-11.5db) 0.047 0.226

3.0 17.2 0.250(-12.0db) 0.041 0.20%

4.0 12.9 0.23%(=12.7db) 0.C:5 0.189

6.0 8.6 0.220(-13.15db) 0.0k, 0.171

8.0 6.2 0.216(~13.3db) + 0,03l 0.143

10.0 5.0 0.217(-13.3%db) 0.033 0.117

Table 3.1 Beamwidth and‘side lobe levels (for N > ZKa)
: \ S | BEAMWIDTH S R- | OTHE i
I e R e b

L8 1 8.6 0.219 0.155 3.389
36" 1 8.8 0.213 0.167 3.282
32 1 9.4 0.106 0.256 3.000
28 1 11.1 0.220 0.290 2.6%1
2l 1 13.4 0.238 0.421 2.205
24 2 14.0 0.185 0.220 3.982/2
16 1 18.0 0.295 0.876 1.680
18 2 18.8 0.27%9 0.167 3.017/2

Table 3.2

wffects of varving feed No. for 6.0A dismeter array




3.%.3(c) Use of Omni-directional ana Beverage Aerial Radiators

Omni~directional Radiators

If omni~directional are used in the array, the far-fiecld mnode
amplitude due to a near field excitation cf unit amplitude is Jm(ka)
for the mth mode. The far field mode distribution corresponding to
fig. 3.13 for cardiod radiators will then be given by Ay, = Ip(ka)
(fig. 3.13(a)). This means that the zuplitude distribution changes
rapidly with frequency. Fig. 3.19 shows the radiation pattern for a
6.0A diameter lens array with spacing between feeds/radiators of
0.26A, 0.292\, 0.522\ and 0.783). fhe grating lobe is particularly
significant in the last pattern. The side iobe is of the order of
-8db which is too high for our application. However, the beamsidth
of this array is narrower than that using cardiod radiators. -Tyvical

beamwidth values are tabulated below in table 3..4.

BEAMWIDTH (in degrees)
ST R
D&IE;?R Noﬂggﬁggzs/ OMNIDIRECTIONS | CARDIOD (1+COSINE) | BEVERAGE
n B RADIATORS RADIATORS RADTATORS
L}-O;\. 36 * 1&-2 : 17'1 1800
6.0M 72 ' 8.0 8.8 14.3

Table 3.4  Bearwidth Comparison of Array with Omni-directional,

Cardiod ahd Beverage Aerial Radiators

Beverage Aerial Radiators
In conjunction with this project dos Santos (5 ) has studied the

beverage aerial and the phase compensatzd circular array of radially
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arranged Beverage elements.
The Luneburg Lens feed system offers a good phase compensating
network for use with radial array of Beverage elements. The

arrangement is illustrated in fig. 3.20.

internal array radius

H
1

external radius

H
|

effective radius

H
1

(r1+r2)/2

1 - length of beverage

element = (r2—r1)

Fig. 3,20 RADIAL ARRANGEMENT OF BEVERAGE AERTALS

!
The beverage elements are fed at the internal radius of the array.

A typical value for ra/r1 is 1.5 i.e. the length of the beverage
aerial radiator is equal to the effective radius of the array. The
array of the lens fed system has the same radius as the effec?ive
radius of the array.

The radiation pattern Ior the beverage element is computed
assuming that attenvation élong the length of the element is negligible

(5, sec. 3.2)



i.e. far Tield

H

ap(g) = S2n X : 3.3%

where X :4% (1 - Cos 6 sin @)

(o]
1l

azimuthal angle

o}

=
i

elevation angle = 90

length of element
The proragation constant along the beverare element is assumed to be
egqual to the free space value. The far-field arc computed in
subroutine BVFF (Appendix 3.2.7).

The radiation patterns shown on Fig. 3.21 ére for arrays with
48, 36 and 18 feeds, one radiator per feed and for 18 feeds with two
radiators per feed. The beamwidth of the afray Broadens with
decreasing number ofifeea, as to be expscted, since there is stronger
taper in the amplitudé distribution from the feed. [aas discussed in
sec. 3.2(a) ]. Grating lobes are apparent in the pattern for the
. array with 18 feeds/radiators. In this case the spacing between
phase centres of adjacent beverage elements is 1.05A. The closest
distance between adjaéent veverage element is 0.52\, at the internal
rédius of the array. However, with the use of two beverage elements.
per feed the side lobe is reduced.

Table 3.5 shows the.variation nf side lobe levels, beamwidth
and directivity of a Eh-feed/radiator array for diameters zanging
from 2.0A to 10.0A. The beamwidth is fairly constant over the range

of array diameters, but the side lobe levels increase with increase



in diemeter value. The patterns are reproduced in fig. 3.22 and
5.23.

Although coupling between radiators is neglected in the
computation of far-field patterns as in previous computatiouns,
coupling effects with beverage aerial radiators is likely to be-
smaller then with cardidd radiators. This is mainly due to the larger
acceptable spacing between radiators and also due to the behaviour of
the beverage aerial. Work done by dos Santos in a project parallel

to this work suggests that coupling is small.

_ g | FLRST SIDE LOBE I
D%{LI—ETER BEAMJIDTH (relative to OTI_IERﬁd}CHL‘ST DIRECTTVITY
in A) | (degrees) L SIDE IOBE
main beam)
2.0 20.8 0.098(~-20.2db) [0.172(-15.3db) 1.526
4.0 17.8 0.099(-20.1db) {0.085 1.831
6.0 | 5.2 0.127(-17.9db) {0.124 1.821
8.0 13.9 0.185(-14.7ab) 10.186 1.714
10.0 12.3 0.270(~11.83b) {0.240 1.620

Table 3.5 Performance of a Lens fed Array of

2l Feed/Beverage Elements

The log-periodic array with its wide bandwidth céuldlalso be
used with the lens fed érray. Since the log-periodic aerial is a
backfire array a circular ariay of log-periodic zerials arranged to
fire outwards will have an increasing effective array diameter with

increasing frequency. This is not desirable as we required a wider
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beanwidth for the higher frequency. Problems of coupling and
blockages occur if the log-periodic aerials were arranged to fire

toward the centre of the array.

SUMHARY

Two arrangements have been suggested to obtain a rotationally
symmetric network for multibeam operation using the Luneburg Lens or
its equivaleat together with feeds and circulators or directional
couvplers.

From ccnsiderations of symmetry and by using the electromagnetic
solution of the Luneburg Lens, the output from the feeds of the lens-
fed system have been obtained. The taper in this output distribution
becomes stronger if the number of feeds is reduced (provided that the
spacing beiween adjacent feeds is greater than A/2).

The behaviour of the (p =¢ ) Luneburg Lens is not very different
from the Yordinary" Luneburg Lens (p = 1), particularly for ka > 10.

For the array using cardiod radiators the side lobec level of the
array has a maximum value for an array diameter of 1.25A following
to ~13.36b as array diameter.increases. ‘The beamyidth is practically
inversely proportional to the diameter of the array (as in a broad-
side array).

The use of omni-directional aerials as radiators in the array
gives rise to high side lobe sevels (about -8db) but the beamwidth
obtained is narrower than that obtained using either the cardiod or

beverage aerial radiators.



The pattern obtained using beverage aerial radiators proved
very encouraging. Low side lobe levels Lave been obtained (apvrox.
-13.0db). A 24 feed/radiator array gives beamwidths which vary

trom 30.8° at 2.0A diameter to 12.3° at 10.0A diameter.
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APPENDIX 3

A%.1 Scattering Matrix of a 2-Port Formed from Two N-Port Luncburg

Lens Tyve Structures

We have shown in Chapter 2 that the required matrix for the

2ll-port network is of the form:-

0 T]
N I A

T O—l

where T is the Nxll scattering matrix of the N-port Luneburg Lens

structure and

=N

T T* =F 7 =[1]
The arrangement for .the network is illustrated in fig. 3.4 and

A%.1.1 below.

. Ls]

b, -
b’\ ——————( UPPER LENS, L )’————"
| ==
4_?'.1 a
I e N | 3 3 1 |——e
D ' D
2 A _3”_ ¢ 4 2 >
bz i — _‘2,. )',,. I <
\ Lowe~ LENS, L, '

Fig.p3.1.1 USE OF DIRECTIONAL COUPLERS WITH TWO N-PORT

LUNEBURG LINS TYPZ STRUCTURES

The usual scattering matrix notations are used and shown in fig. A3.1.1.
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Subscript 1 refers to fields in the upper ports and subscript 2, to
the lower ports. The outer ports (1 and é} of the directional
couplers are numbered circumferentially 1 to N for the upper port and
N+1 to 28 for the lower ports. The inner ports (3 and 4) of the |
directional couplers are similarly numbered, 1' to N' for the upper
ports and ﬁ'+’| to 2N' for the lower ports. Port 1' to N' are
connected to the N ports of the Lens, L, while ports N'+1 to 2I' are

connected to Lens 2.

The scattering matrix for each of the directional coudlers, D,

ist—~
o 0 1 i
1o 0 3 1
1 j 0 ol
J 1 0 0

At the lens feed, directional coupler junction,
=3} = %)
{22} = {3}

1

S {a‘,;} | A3.3(i)

s {ag\] A3.3(11)

!

wvhere S = scattering matrix of the N-port lens structure.
1 L ‘ .
{al} ={P1} = > ({ay +3fa}) A3.5(3)
o) =} Chagy ke ERIEE
%11 Py
22 PN
where {aq} = ¢ - ; {bzﬁ =4 . ,

2y Do
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similarly for al, b%; aé, etc.

At the outer ports of the directional couplers (1 and 2)
1 J - .
bl = = 1o+ al Az.5(1
{1 = 5 121 5 {72Y 3-5(1)

b A3.5(ii)

_ 2 o J
2 '-Jg {a2} + [é{a{}
Substituting for-{a%} and {aé& from equations A3.2(i) and (ii) in

equations A3.5(i) and (ii)

1 3 1t
b, . §{aj} + 35 {af}
" 3 b
b, 5 {aa} + 38 _{aqy
Substituting for aq and ag in equation A3.5
sb,l {2832,
i~
o) =
b2 25 3 a,
: 0 .[O S] 24
le€Ce = J
b2 S 0 ay

Since 8 is symmetrical



85

A%,2.1 Solution of Fzuation %.11

2 .2

2 ~
ZP”(r) f_2T_ [ma - kcr2(2 - r%/a2)] R=0 3.10
(2a“-r :

The solutions of similar differential equation by Tai (15)and

Jasik (14) suggest a transformation of the form

vy oo
R(r) = 28 (22a - 2) e z/2 u(2) A3.7
where p=kr
p, = ka
2
7 = L
Pa,
da = P, and B and Y are constants to be chosen
1. put = kr in eqn. 3.10
_2P2
il.e. R"(p) + -—?2‘—-2—-—-2—)“ R'(!O) - [-“‘ - (2 - —"‘)] R(,O)
i
=0 Az.8
2
20 Put Z = ‘fi"‘
a

2
i.e. L7 RM(Z) + %ﬁi"—%l R'(Z) - F‘Z— - (2%a - z)} R(%)
=0 | Az.9

5. out R(2) = 28 s(z)

iee. LZSM(Z)+ 18(23’”22;;5(“8”)7‘] 5'(2)

(L5°—n 23
+ X Jz * T * (ZZa—Z)] s(z) =0 A3.10
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L. put 5(Z2) = e—Z/Z {z)

fe. U2 TU(Z) ¢ | 8(23+12§;azz§(46+1)z - Az;] 1 (2)

2 2 :
+ I (hséma) £ 28 = 4(2%522%3)‘ (43+1)2 + 2Za] (%)

=0 A3.11

5. put T(Z) = (2Za-zf' U(Zz)

8(28+1)%a - (88+8Y+2)7 _ 1] 0z

ice. UM(Z) + 1 L7 2757

+ [ v{y—u _{8(28+1)%a - 2(48+1)%}Y o
(ZZa—Z)2 bZ(ZZa-Z)Z (2Za-Z)

. LpPn® | 28 - {W(26+1)%a - (18+1)7) gg_] .

152 L7 27a"7) 37

i.e. UMZ) +[ = - orazs -

4
172 (2Za-2)

1 (vz--gv ) . (143%-5°) . O =zb {-29(28+1)+8 ¥ /4Za )
(2Za_z)2

-(28+1)/2 + Za/2 + {-2Y(28+1) + B ¥ /LZ%a | W(z)

Z
To simplify equation A3.13
S (2Y - 3) 2 2
put Gaaz) = 0O  and L2 -m~ =0
i.e. vy - % - and B :-% , taking positive sign.

Hence equation A3.13 becomes
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< a1 2a2 2a2 a5
IH &) o . it . — - .
R R RO R == T
where Y = m+1
= 2(m+1-Zat-)
O(,l = 2\M+"T- am
' 1
I 7 AZ.15
A = - 2 )
3~ T BLZa
a2 = 2Za
a
i.eR(r) = 22 (22a-2)" &%/ u(2) A%.16

The function U(Z) which satisfies equation 3.14 is similar in
form to that obtained by Tai (15) for the transverse magnetic
~ solution of the spherical Luneburg Lens. The constants¥ , Cas Oos a3
differ slightly. The equation has a regular singularity at Z2=0 with
exponent 0, and 1-%¥ . It also has an irregular singularity at oo
and a regular singularity at Z = a,.

The solution of ;nterest must be finite at the origin. The

following series solution is assumed:-
o0
n
U, = > A 2 ‘ A3.17
n=0

The constants are obtained in the following section.
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A3.2.2 Series Solution for UF(Z)

_—

U(Z) =S &n 2" A3.17
m n=0 '

Substituting for Um,

> n-1
2. nAn Z s

U =
T n=0
- n-2
and U = > n(n-1) An 2 in equation 3.1k,
n=0 ’

> { Z"% An [ag n(n+¥-1)]
0

-Z An aa[a2 (n+ o, + 2n (n+¥-1) )
+ " An] n(o+¥-1) + 2a,(n + o, + a, + o )]
2 1 2 3
n-1 -
-7 Anin *oa, 20(2'1} =0 A3.18

Coeff. of 7~

2 .
A2 (¥ A,\ - oca(oc,! a2) Ao =0

=l

(04
-
_ . A%.19
- _ 3

(¢]

- o
Coeff. of 2

2
¥ = 1 - ER
2a2 ( +‘1)A2 = [2‘( + (7 ac,])aa] A,] 2((11+oc2 cc3) Ao

_f_&g ) a,](ocqa-’l) (a2+oc3) 13.20
AT 2keaA) T oa (e ) )




Coeff of 7

502 (5:2) Ay - a, [ KO+ + (20) 2y ] A,

[y 2a2(’\+oc +o +zx3)] A, - (oc,|+a2) A =0

172

Substituting for A1 and A

2
fﬁ 4 a(a1+1)(a1+2) o (a1+2)(a2+a3)
AT 3t ¥ (C+1)(F+2) 3(¢+2) (X+’l)a2
2a (o +o.) 2(a_+200.)
2 2 3 A3.21
¥ a2 a2
2
oo ~ o1=1 )
Coeff. of 7 , N 23
from ‘equation A3.8,
2 N
. ¥ _ o
az.(n/l)(n+ YAn+1 az[az(n+a1) + 2n(n+y 1)] An
+ K(n-1)(n+X-2) + 2a2(q1+a2+a3+n—1)} An-1
- {(n-2+a1+2a2)] An-2 =0 A3.22

There appears to be an error in Tai's equation corresponding

to equation A3.2.2. The series is absolutely convergent for Z < 2%Za.

89
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AZ.3 Deecription of Program and Subroutines

The Tollowing programs and subroutines are described with the
aid of Flow charts where necessary:-

%.3.1 Hain Progran

The main program reads in the relevant data and calls the other
subroutines to calculate the oﬁtput from the NN feeds of the Luneburg
Lens Feed system. The far-field pattern can also be computed
(put IFF = 1) for the array using either omni-directional, cardiod
(1 + cosine), or beverage aerial radiators.

The parameters read into the program are:-

N no. of feed used
DIAM - diameter of lens array in wavelength
LPATDR - this parameter defines type of radiator used

p no, of far-field point in azimuth per radiator

L no. of radiator per feed.

The flow chart is illustrated in fig. 3.2.1.

3.3.2(a) Subroutine IEU(ZA, U, DF1U, NCT, VMODE, NCOEFT)
This subroutine sums the confluent hypergeometric function
series U(I1) = 1F1 (a,¥, Z) and its derivative, DF4iG(M1) for the

(41-1) mode

R R e R
= U(M’l)
where o = (m+ 1.0 - Za)/2 = XALPHA
X = (m+1) = XGAMMA
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node (M1=1)

m

72 = Za = ka = ZA
The "accuracy" (ACC) is defined as ANZ/U, U being the series up to
the Nth term., If ACC is less than 10-4 the series is tverminated.
Otherwise if the number of terms in a series reaches NCOEFT, an error
nessage 1is printed. The flow chart for this subroutine is given in
fig. 3.2.2(a).

3.3.2(b) Subroutine NCFU2(ZA, NCOEFF, U, MODE, ALPHA3, ALPHA2, A,

NCT, DFAU)

This subroutine sums the series, U(M1) = SE An 7™ and its
derivative, DF1U(¥1) (see apvendix 3.1) The firsz three terms of the
series are calculated separately. The other terms in the series are
calculated using the four term recurrence series:-

CANP1 * A(Ii+1) — GANO * A(N) + CANL2 * A(i1-1) — CANL2 * A(N-2)

=0

In the program

[t}

A A(n)

Z = ZA

M1 = mode number + 1
The accuracy of the series is tested after the addition of every
tern as in subroutine IEU. The flow chart is given in fig. 3.2.2(b).

3.3.3 Subroutine ETATAM(AIAMCA, IAMDA, ETA, ETAQ, MODE, ZA, U, DF4U)

The characteristic impedance, ETA(M1) for the (11-1) mode and
the reflection coefficient, LAMDA(MY) is computed from expression

given in eqn. 3.23 and 3.20.
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5.3.I Subroutine SCATHX(IANDA, S, N, ETAO, ATAMDA, ARG, ANMP)

This subroutine calculates the KP1 row (nbrmally = 1) of the
scattering matrix S(KP1, LP1) of a circularly symmetric struciure
given the eigenvalues (or the mode reflection coefficients), LAMDA(I).
S(XP1, LP1) is complex but S(LP1) is converted to its amplitude
AVP(LP1) and its phase ARG(LP1), in radians.

The expression for S is given in equation 3.31 and 3.3%2. The
flow chart for this subroutine is illustrated in Fig. 3.2.4.

3.3.5 Subroutine ID1S(NN, I, AMP, ARG)

This subroutine reads NN outputs (amplitude, AMP(I), and
argument, ARG(I)) into a new array with L radiators fed in parallel
to each of the NN feeds.

3.%.6 Subroutine FARF1(NN, L, LPATDR, DIAM, AMP, ARG, FF1, LP, IX, KP)

The far-field pattern for the array is computed and plotted on
"calcomp" paver by this routine. Instead of computing cosines for
angles which are multiples of 2n/(NN*L*LP*2) several times in the
routine, the cosines are stored in array CS(I). The function
exp { jka cos(e—eo)} is also computed and stored as BJKACS(I) for |
values of (6—60> which are multiples of 2rn/(NN*L*LpP*2).

If beverage aerial radiators are used for the array subroutine
BVFF is called to calcula*e the beverage aerial pattern.

FEach far-field value for a particular azimuth angle is calculated
in the subroutine SUMFF.

Where the radiation pattern plots are required suoroutine

GRPLT1/2 is called. The "calcomp" packet is used for plotting on



calcomn paper. The flow chart for this subroutine is given in

£ig. 3.2.6.

%.%.7 Subroutine BVFF(NN, LP, GP, ALY, C3, FF1)

The radiation vattern of a beverage aerial of length, AIYM, is
computed using this subroutine. The pattern is stored in array GP(I).
The abs§lute value of GP(I) is stored in FF1(I) and plotted. The
expression used for the far-field value is given by equation 3.33.

The flow chart for BVFF is shown in-fig. 3.2.7.

3.3.0 Subroutine SUMFF1(MM, L, DIAM, LPATDR, AP, ARG, TAZFC, IAZ, GP,

F¥2, EXPARG, LP, EJKACS, C3)

This subroutine sums up the far-field strength for a particular
angle in azimuth. The subroutine sums up the field contributions
from all the radiators (WN*L). The routince could be used for omni-
directional, cardiod (1 + cosine) or beverage aerial radiators.

3.%.9 Subroutine GRPLT1/2(¥F1, NP, KP, LPATDR, NN, DIAMWL, NELR,

FFIMAX)

The flcw chart fﬁr the subroutine is shown in fig. 3.2.9. This
subroutine uses the "calcohp” package. It plots the radiation pa%terns
on a quarto size frame. Four graphs can be plotted on each quarto

. . 1 .
frame. Fach graph frame has dimensions 22" by 4. Some details of

the array are also written on the plot.



START . 9l

READ THFUT DATA I =
I, DIAM, LFATDR,LP, L

[ ‘ Call subroutine CKUNIT to
\\ check unitary vrovervies
of scattering matrix

// OUTPUT DATA

r - ' J

Call subroutine LEU/NCFU

- to calculate series U and
its derivative for each
mode

Call subroutine FARF1 to
- compute far-field
pattern

f {
" 3 : - 1
Call subroutine ETAIAM/ Call FARF1 agein if |
to ccmpute mode

. . A . pattern with differen*
impedance and reflection = X .

Y ee o radiator required
coeff. for each mode

Y

A

\\\ Read new set of data ///

To normalise phase of
reflection coeff. with
resvect to zero mode
valug

DIAI"i = 0.0

Output mode impedance
phase of refl. coeff. etc.

DIAM changed

Call subroutine SCATHX to
compute scattering Matrix

?

A

# N

[ [} //{ Qutput new set dataﬁ\\\

Read NN outputs into a v
new array with L - .
radiators fed in parallel '
with subroutine IDIS

Y

3.2.1 FLOW CEART OF MAIN PROGRAM




START

4

XALPHA = (HODE + 1 - ZA/2)
XGAIMA = (MODE + 1)

[

Initialise U, DFIU, ANZ
u(i1) = 1.0
DFIU(M1) = 0.0
ANZ = 1.0

- <( DO N = 1, NCOEFF

XALPHA = XALPHA + (N-1)
XGAMMA = XGAMMA + (N-1)
_ XALPHA , ZA
ANZ = Yeim® T N
U(M1) = U(M1) + ANZ

DFIU(M1) = DFIU(H1) + ANZ*N
ACC = ANZ/U(M1)

ABS(ACC)

I

95

A

’ cont
~( CONTTNUE

Y

WRITE ACCURACY HNOT
OBTATNED

Comoute derivative of U

DFIU(M1) = DFIU(M1)/z4

i

| .
N

-

Vrite no. of terms
required for series
and accuracy

(:' RETURN f

3.2;2(a)

1OV CHART OF SUBROUTIHE IEU

to sum Hyvergeometric function and its derivative., m=NODE)




Y

Cornipute constants
RZA& = 1.0/ZA
GAMMA = MODE + 1
ALPHA1 = (MODE+1-ZA+1/LZA)2

Y

Compute A(1), 1st Coeff. of
. series
U(ti1) = 1.0 + A(1)
FIU(1) = A(1)

{

Compute A(2), 2nd coeff. of
series
A(2) = A(2)*ZA*zZA
U@1) = v(1) + A(2)
DFTU(M1) = DFIU(H1) + 2*A{2)

IH

Y

Compute A(3), 3rd coeff. of
series
A(3) = A(3)*ZA%*3

96

To compute A(M) Ffronm L
term recurrence series,
+CANPA*A (3141 -CANO*A(T1)
+CATTL2*A (1N-1) -CAIL2*A (11-2)

D0 I = L, NCOEFT

Y

Compute Mth contribution to
series A(H)*(Z4**1)

1

Add contribution to serics
U(1) = Uu(H1) + AQH)
DFIU(M1) = DFIU(H1) + w*A(ir)

i

Calculate accuracy
ACC = A(N)/U(H1)
ACCDU = A1) *N/DFIU(}1)

U(H1) = UG11) + A(3)
DFIU(M1). = DFIU(M1) + 2*A(3)

a

ACC.ILE.1.0E-3
AND.

4'

Compute DFIU(M1)

DFIU(M1) = DFIU(M1)/7A

_///Output no. of terms use

accuracy obtained

Y

ACCDU.IE.1.0E~3

CONTTHIE  ——tm—]

T

d ?
\\ //> Write "accuracy not \

obtained" \

(____j’
RETURI

3.2.2(b) FLOW CHART OF SUBROUTINE NCFU2




K = KP1~i
H

r
AN

DO LP1 = N, NN
{

L = LP1-1
S(1LP1) = IAMDA(1)
NNHLF = (NM+1)/2

¥

DO I = 2, NNHLF ‘>>_\ -

‘r

1CS = ILAMDA(14)*c0S{(11=1)*(K=1)*2xn/lN)
S(LP1) = S(LP1) + 2.0*1CS

f
CONTINUE > >

d

NN EVEN

97

?

~.

S(1.P1)
TAMDA (NNHLI--2)

f

S(LP1) = S(LP1)+LAMDA(NNHLF+1)}—=

5(1LP1) = s(Lp1)/mmi

[

Y

-1

-
N

AVP(IP1),

CONTINUE Convert S(LP1) to

Output one row of
scattering matrix

Y
‘ RETURN )

3.2.0

FLOW CHART OF SUBROUTIIIE SCATMX

ARG(TP1)



Convert ANP(ARG) to EXPARG

Compute and store cosine of
rwltiple of 0=2n/NN*L*LP*2
in CS(I)

Comnute and store
BIKACS = exv(ka cosd)

TPATDR.IE.3 Y
? !

N

ALY = DIAM/2 ‘
Call BVFF to compute
radiation pattern for
veverage aerial radiator
of length DIAM/2.0

93

v

To vary agzimuthal angle

Y

\
u—
DO TAZPC = 1, NILPD2 //

Correct azimuthal angle to
TAZ if L 1

v

Call subroutine IUMIFF to
sum far-field due to

NH*L radiators

Y

CONTINTAE

Y

P

Normelise FF1(I) to its

maximum value FFP1MAX

(

A L  —. |

Write FFPIMAX
Output far-field FF1(I)

with azimuthal angle

Reverse array FF1(I) for

convenience for plotting

Y

Call plottaing subroutine,

~ GRPLTM

e

{ RETORY )

%.2.6  FLOW CHART OF SUBROUTINE FARF1/2




NLLP = NN*L*LP*2
NLLPD2 = NLLP/2+1

BF = PI*ALW
GP(1) = 1.00

—————$—~——<<~4b0 T = 2, NLLPD?

Y

I ARG = BF*(1.0-CS(1))
GP(I) = SIH(ARG)/ARG*CS(I)

{

< *{i CONTINUE
Y

Write aeriali length
and array pattern if
required

o
Y

Stored absolute value of
GP(I) in FF1(I)

Y

( RETURN )

3.2.7 FLOY CEART OF SUBROUTINE BVFF
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R 100
{ SBTART

NXL = NI*L
FLLP = NAL*LP*2
Initialise Far-field, ¥IZLD1 = 0.0

1

!

<DO M = 1, NXL
Y

Conmute array number for angle (9-—90) LW
for cosine, CS and BJKACS, already ?

svored in FARF

TAM = TAZ - (M-1)*LP*2

JAM = NLLP - TAM + 2 TAM > NULPD2

‘ ¥
I = ANP(M)*BXPARG(M) EJI\AC‘CS(_AM)
. .r
[ GO TO ( ), LPATDR
— FIELD1 = FIELDT + M 4
LPATDR = 1, 3
omni-direction radiators used
FIELD = FIELDA _/ TPATIR = 2
+ Fi*(1 + CS(IALK)) (’I+r‘os:v.ne\ radiators used
_ - / IPATDR = 4, 5, 6
FIELD] = FIELD1 h \ Beverage aerial radiators used
+ FM*GP(IAM) :
i -

— FFP1(IAZPC) = ABS(FIELD1)

i Q

/ 5.2.0  TIOW CEART OF

RN CONTINUE -
SUBROUTINE SUMRTF

( RETURN )
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( START )

¥

To establish frame number

To fix origin for the frame

Draw guarto frame

Establish origin for each

— -

radiation pattern franme

Draw grid and label axes

for each pattern frame

Plot radiation pattern

Write data at top right-hand

corner of each pattern frame

Y

TN
‘ RETURN )

3.2.9 FLOW CHART CF SUBROUTINE CGRPLT1/2
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CHAPTER 4

L, THE EQUIVALENT CIRCUIT JUNEBURG LENS

In chapter 3 we showed the feasibility of using the Luneburg
Lens to feed én array. At H.F'., however, the physical size of the
lens is "arge and therefore the cost is high. A lumped element
equivalent cirquit for the lens is envisaged. If the number of
clements used in the circuit is unlimited the performance of the
lumped circuit is expected to be no different from an ideal lens.
It is obviously desirable‘to determine the minimum number of elements
that can be used to simulate the performence of the lens;withoutA
significant deterioration in its behaviour. Towards.this end the
values of the lumped elements of the equivalent circuit are computed.

The values of the equivalent lumped elements for the equivalent
circuit for a TE Mode Lunebﬁrg Lens are obtéined by converting thg
TE solution of Maxwell's eqﬁations to finite difference equations:
By reulacing electric field by volfaées and magnetic fields by currents,
ve obtain three equations which satisfy Kirchoff voltage and current
laws. From these equations the expressions for the lumped elements
are CGeduced.’ |

' The equivalent circuit structure (with its circular symmetry -

see fig. L4.5) ma& be decomposed into a ladder network for each mode;

For mode, m, the reflection coefficient, Pm, looking'into the ladder



network is calculated. Each of these reflection coefficients

corresponds to the reflection cczfficients or eigenvalues wdrked

out in chapter 3. The scattering matrix of the structure is computed

as is done in chapter 3. The far-field pattern is similarly obtained.
The far-field pattern obtained is compared with that for the

continuously-varied-refractive-index lens to defermine the

acceptability of the equivalent lens circuit.

4.2  Equivalent Circuit for the TE Mode Luneburg Lens (Hore Generzily

21, 31

for TE Mode in Cylindrical Co-ordinatszs)

laxwell's Equations for the TE mode in cylindrical co-crdinates
are written doﬁn as differential equations, and are then converted
into finite ¢ifference equations. If the electric field, E, and ile
magnetic field, H are expressed in terms of voltage, V and current,
I, respectively, a set of equations which satisfy Kirchoffs current
and voltage laws, are obtained. The values of the equivalent lumped

components, L's and C's can then be deduced from Kirchoff's equations.

Maxwell's Equation (TE Mode — H,» H., Hy only)

1 BEZ aBr
—\ 73 =" %% (4.1)
= 0B
Curl E = -«EE
B 0B
~z___28
T dr at (l*.2_,)\
— oH oD
_ {1_6_ 1% T
Cu?l H = 3t T or (rH¢) - r'?ﬁf = 3T (4.3)

Equations (4.1) to (L4.3) are converted to finite difference
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equations using the following relationships. In converting these
equations tc finite difference lorm it is convenient to treat ng as

a variable rather than Hy. et Hy = i (Kron [21])

3L - 1 |
F | rpeagre = |Bo | v pag = e w7 | /88 (L.1(1))
oE _
or | r+Ar/2,8 T B l rrar,g = By l r,ﬂ] /br (4.4(ii))
3H! ) ]
AT R L AP e PO R R (b-4(iii))
oH - - |
and .—5‘5‘ I"g = Hr l r’g.}.Ag/z - Hr r’g_Ag/z /Ag (Ll’cli'(]-V))
. VWe get
i . _ |
| v ER N } /(xog) = —Jomt | L geagy (4.1)
[ L JwpH; !r+Ar/2,¢
5, e~ Bl eg | o it (1.2
-H' - ]/(r/)r)- rH ! - H |
g l r+dr/2,8 = f I r-At/2,9| | Tl r,+Ag/2 rl r,g-Ag/2

/(xt@) = ju € E, g (L.3)

Multiplying the equations above by A@ Ar and rearranging

_EZ l r,¢+A¢‘- B l o ].Ar = ~joprAg H_ | o Gedd)> (4.1)
jEz l AT, T E, ir,ﬁ‘ ].Ar = jwl”'é—rz H;ZI ,r+Ar/2,¢ (4.2)
| B | ean/2,0 " b | eeaerog [0 = [%e | wupoastro = B | = e |

Ar = jwe rArAg E, | ¢ (4.3)
9
Replacing Ar H,, by —I¢

AQI H;ZI by Ir and
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Az EZ by VZ in equations L.1 to 4.3

pam

r,G+0F " Vzlr,;z} Jo |

—

Jw

r+Ar,@ Vz l r,Qf}

L

r+Ar/2,8 ~ Ir Ir—Ar/Z,ﬁ }

= Jjw [er

(r+Ar ,, ¢

. AQ’AZ
B Ar

] IQ, ' _r,¢+A¢/2 (4.5)

ATA
Z

] Irl r+Ar/2,%

{5 [ geagsa = Ty | - p-00/2 |

AgAT

AZ (’-l--?)

] Vo g

7’

___AT8-8)

Ylog-sp o —= T
Ce

%elr,g-a9
Lg '

ld
rd

A L-ps, )

L~

Thlnmq¢

VX))

’ ]
)
© s

ld
4

G

Ly

Fig, 4.1

)’ Uilorsrnng o)

Ls |‘3¢+A¢/é :

T-Av/2, ¢
L.

Y »
Ivz |"r¢

’

G

e
e
-

EQUIVALENT CIRCUIT FOR TE (ODE

The three eguations above satisfy Kirchoff's \}oltage and current -

laws for the network shown in fig. L.1.

square brackets in equations 4.5 to

The gquantities within the

4.7 represent respectively the

inductance L, Lr and the capacitance CZ.
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Hence Pﬁ =l . T . Af?z H - - (4.8)
ArAz
TAPAT

Cz = . -—Agz— F (L.10)

CZ represents the capacitance of a parallei plate of area rAgAr,
separation, Aé, filled with material of dielectric constant € .

Lr is tlic inductance associated with two conductors of wiath rAg,
length Ar and separation AZ,.filled with material of permeability p.
L¢ is the inductance aésociated with two conductors of width Ar,

length rAf and separation, AZ, filled with material of permeability, u.

The equivalent circuit for a lens has been obtained. To
compute the scattering matrix for the equivalent circuit the
reflection coefficient for each of the N modes is required. The
circular network can be deécmposed to a ladder network for each mode
by replacing the circumferential currents by currents flowing through

an adnittance to ground.

L,2.1 Decomposition of Circular Network into a ladder Network for

Tach Mode

If all the N feeds of the structure are excited with equal
amplitude and phase we describe this as the zero mode excitation.
The mth mode is excited if there is a phase progression between

adjacent feeds of 2n m /N radians
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N

No. of feeds along

circumference
Vf.| a = 21tm/N
m = mode
v
V-f gl
Iea,e Tv,

4

Fig. 4.2 DECOMPOSITION INTO IADDER NETWORK

The voltage distribution along the radial lines on the lens

is shown in fig. 4.2. For the rth line,

Vo - ej(r:l)ly ity e'j(r-%)‘!f(e’j %_ e+jy?f)
i.e.. Vir = —jaej(r"%)wsin %’ (4.11)
s V- STV iy gj(“%)w (o’ % R lla{)
feee Vo g = ~jéej(r+%)vf§i;1 ¥ | (4.12)

« « circumferential currents for radial line, r at mode 1 are:-
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—
i

o= {2 ¥ e [3eD] ) Jany (4.13)

i

ot i W R AN I G -
Ir,r+1 = { 2j sin 5 . exp | J(r.a)J A g (L.14)
replacing these two currents by a current flowing into an inductance,

L; for radial line, r, at mode 1.

Izr = Ir,r+’1 - Ir-’l,r

= =2 sing { exp [j(r+%)q¥’] - exp {j(r-%‘)‘/f]}/ij;

Izr = - exp(ry) . (2] sinigfz/ij; | (4.15)
Iz
. r _ L2V 21
i.e. E;g(};ﬁ;y = (4 sin 2)/3wu¢ = Yle (&.16)

Hence the circumferential'inductancen, L’1 can be replaced by an
@

-

inductance u; in a ladder network. The analysis can be repeated for

other nodes so that L; can be replaced by I in é ladder network where

Z
. o
S (4.17)
Z .2y
L sin
2
L U v - Lv
T TE p—— -~ - = - TEE
e )
e o
L‘ P N | L R N -l s Mt 1 . .
e

- o = e ==

Fig. 4.3 EQUIVALINT LADDER NETWORK FOR MODE, m
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The network is terminated by ZO the characteristic at the edge

of the lens.

Characteristic Impedance, Zo’ at Edge of Lens

‘ ‘ pA*‘A z , e.TAZAY Q
) rA¢ Az

(from equations 4.8, 4.9 and 4.10)

[
i

- _ b B
leEeW ZO = I'A¢ € (1-}018)

Mode Reflection Coefficient,f,m

If Zm is the input impedance of the ladder network for mode; m

the reflection coefficient for the mth mode is
2. - ZO _

= e L.19)

Pu = Z_ + 72 (4197
m [

4,2.2 Behaviour of the Equivalent Iadder Network for Different MHodes

Figure L.4 shows the phase of the reflection coefficient for
the various modes for different lens diameters. These reflection .
coefficients are those ohtained for the ideal lens studied in
chapter 4. All phases are normalised to the value of the highest
mode value so that the phases are negative and decrease numerically
with mode number. In chapter L we suggest that the higher modes do
not peretrate the lens as ruch as the lower modes. This supposition
is confirmed by the equivalent transmission line type equivalent

ladder network obtained for each mode.
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Fig. 4.4 NORMALISED PHASE OrF MODE REFLECTION COEFFICIENT

(for Luneburg Lens)

Each of the shunt elements of the ladder network in fig. 4.3
consist of the éapacitance, CZ in parallel with the inductance,
| LZ = Ly; 4 sinz'l}tf. Si>nce both CZ and L?f are directly proportioned
to r, (the distance from the centre of the lens), the inductance,
LZ and capacitance, CZ decreaces towards the centre of the lens.
Thus the reactance of the shunt inductor, Lz’ decreases towards the

centre of the lens while the capacitive reactance increases. Therefore

the reactance of the shunt elements is capacitive at the feed end of



the ladder network, decreasing in value toward the lens eentre.' At
a point distance, 1 from the feed, the reactance becomes zero and
beyond 1 the reactance is inductive. Since the series elenents in
the ladder network is inductive, beyond 1 the mode does not
propagate appreciably further into the lens.

Bach section of the ladder network can be viewed as a filter.
Where the shunt element is inductive, this corresponds to the stop
band. In fact thece filters have a high-pass behaviour. t a higher
frequency the reactance of the shunt etements could be capacitive, so
that for the same mode number the waves penetrate further into the
lens.

With a higher mode number, the value of the shunt inductance,
(Lz = Iwr/h sinzyr) decreases so that the stop band region in the
ladder network moves towards the feed away from the centre of the
lens. We sce in figure L.L that the higher wodes barely penetrate

the lens.

L.3 Minimam Number of Elements Required for the Fquivalent Circuit

. Lens

The criteria for judging the acceptability of an equivalent
circuit is the far-field pattern obtained by feeding its outputs to
a ring array of cardidd (1+cosine) radiators. The radiation pattern

obtained is compared with that obtained using the continuously varied

dielectric lens.
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There is a capacitance,
CZ down to earth at

every node

Fig., 4.5 THE EQUIVALENT CIRCUIT LUNEBURG LENS

The relative phase of the various mode reflection coefficients
also gives a good indication of the behaviour of the fargfield
radiation pattern. The phase values obtained for the idezl lens’(in
chapter 3) is used as the standard reference values.

The radiation patterns for the array and the relationship
hetween reflection coefficients of different modes are investigated
tor equivalent circuit lenses Qith varying number of components.

The two important varameters are:-

(a) the number of elements used per radial line for the

equivalent circuit. In this context cne element revresents one
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scction of the lens,viz, one shunt capacitor, CZ, one fadial
inductor, Lr and one circuiiferential inductor, Lﬂ'

(b) N, the number of radial lines used for the circuit. ZEach
radial line corresponds to a feed point at the circumfersesnce of the
lens. The maximum order mode excited is N/2 if N is even { (N-1)/2,
if N, odd). / ‘

A computer program has been written to calculate the values of
the components of the equivalent circuit lens (subroutine EQCCT,
described in Appendix AL.1). The moce reflection coefficient is
computed frou the equivalent ladder network by the subroutine RTICCT
(Appendix Ah.ﬁ). The scattering matrix for the structure and the
far-field pattern for the array'is calculated using the subroutines
already descfibed in A@pendix A3.3 1n chapter 3.

The program was run principally for three values of lens
diameters - 2.0X, L.OA and 6.0\, i.e. 200.0 metres at 3.0, 6.0 and

9.0 MHz. The number of radial lines were varied. Side lobe levels

are given in tables 4.5, L.6 and L.7.

Lt.3.1 Component Values for Equivalent Circuit Lens

Some typical values_of the components used in the equivalent
circuit is tabulated in table4.18<4.2 for a 200.0 metre diameter lens.

Table L.1shows the component values fof a lens with 24 radial lines

and 8 elements per radial lin. (i.e. N = 24, ﬁELR =.8). Tuo types

of lenses are indicated — the p = 1, €= (2-r2) ordinary lens and the

p =€ =\}2-r lens.



200.0 Metre Lens ; 24 Radial Lines ; £, = 14.39 Q@
g = 1 ORDINARY LENS go= 1S
Ho. | Lﬂ nH CZ nl’ Lr uH lo. L¢ uH Cz.nF Lr pH
1 2.467 | 3.045 | 0.300 1 2.612 | 2.876 | 0.300
2 2.138 | 3.154 | 0.686 2 2.475 | 2.725 | 0.762
3 1.809 | 3.042 | 0.800 3 2.236 | 2.452 | 0.959
L 1.480 |} 2.7, | 0.9€0 L 1.921 | 2.115 | 1.218
5 1.151 | 2.283 | 1.200 5 1.548 | 1.705 | 1.567
& 0.822 | 1.722 | 1.600 6 1.134 | 1.249 | 2.182
7 0.493 | 1.067 | 2.400 7 0.692 | 0.762 | 3.341
8 0.164 | 0.361 | 4.9C0 8 0.2%2 | 0.256 | 6.762

Table 4.1 Component Values for Lens Type Indicated

200.0 Metre Lens

.
)

60 Radial Lines ; 244 = 35.93 Q

No.| Ly pH { C_oF | L yH No. Ly wH | C uf | L pH
1 | 2.203 | 5.282 | 0.333 10 1.119 | 4.322 | 1.333
2 | 2.171 | 5.476 ] 0.7059 | 11 | 0.987 | 3.920 | 1.500
3 | 2.040 | 5.582 | 0.750 12 | 0.855 | 3.478 | 1.7k
L | 1.908 | 5.606 | 0.300 43 | 0.724 | 3.001 | 2.C00
5 | 1.776 | 5.555 | 0.857 | 0.592 | 2.495 | 2.400
6 | 1.605 | 5.429 | 0.923 -] 15 | 0.460 | 1.965 | 3.000
7 { 1.513 | 5.239 { 1.000 16 | 0.329 | 1.517 | L.00OO
8 1.382 | L4.987 | 1.091 17 0.197 | 0.856 | 6.000
9 1.25C | 4.680 1.200 18 0.0658} 0.286 }12.000

Table 4.2 Component Values for Ordinary Lens -

1y
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Table L.2 shows the component values for a lens capable of
vorking below 61z (i.e. a maximum lens diameter of L4.OA) with 60
radial lines and 18 elements per radial line.

The height of the equivalent lens is one metre. This value
can be varied to match the aerial or to vary component values, as
long as the lens height is less fhan A/2 at the highest frequency of
operation. Otherwise higher order TE modes and TM modes can also
exist in the lens. The values of the components of the equivalent
circuit iens will vary in accordance with the expression given in
equations 4.8, 4.9 and 4.10.

The radiation patterns obtained using the ordinary lens (p = 1)
and the p = ¢ lens do differ significantly, particularly for the
larger lens. The p = e lens tend to have a very slightly high side
lobe.

A1l following results and discussions apply to the ordinary

p=1, e= (2-r2) lems.

4.3.2 Equivalent Circuit Lens Behaviour ;

In the next two sections the behaviour of the phases of the
mode reflection coefficient is studied. The two parameter, NELR, the
number of elements per radial line and N, the number of radial lines

are varied separately.

: of ;
L.3.2 (a) Effect Variation of NELR on the Behaviour of Mode Reflection
[A) )

Cocfficient

]

The lens diameter (in wavelength) and N, the number of radial
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lines are fixed while the number of elements per line, NELR is -
varied. The phase of the mode reflection coefficient is plotted
against N, the number of elements per line used for mode 0 to 1é in
fig. 4.6 and L,7 for a 2.0\ diameter lens.. Similar results for a
L.0M diameter lens are tabulated in table 4.3 for the more cignificant
modes., The corresponding phases for the ideal lenses are also shown.
It is clear that the higher modes are unaffected by the change in
the number of radial elements, NELR, used. For low order modes the
phase changes rapidly with an increase in NELR, reaching an asymptotic
value below that of the ideal lens. As the mode number increases the
deviation of the asymptotic wvalue from the ideal lens value increases.
However, if I, the number of radial lines used is larger the phasé
deviation decreases. This can be seen in the next section.

4.3.2 (b) Effect of Variation of N(, Number of Radial Lines) on the

Phase Behaviour of Mode Reflection Coefficient

The phaées of the mode reflection coefficients are plotted
against N in fig. 4.9 and 4.10 for a 2.0A Cdiameter lens. (200.0 metres
at #MHz). The same parameters are tabulated in table k.4 for a
representative selection of mode numbers for a L4.OA diameter lens
(200.0 metres at 6.0MHz). The corresponding phases of the modes
reflection coefficients fér the ideal lens (discuésed in.chapter 3)
are also shown in fig. 4.8 and hf9 and table L.4,

We see that the lower order modes are unaffected by the change
in the number of radial lines nsed. In fig. 4.8 the phase of the

mode reflection coefficient for mode 0, 1 and 2 are practicaily
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HODE PHASE OF MODE REFIECTION COZFFICIENT FOR VARYING NO. OF ELEMENTS FER RADIUS
NO. 12 n 16 18 2l 32 43 64 | IDEAL TFNS
0 |-156.3 | =97.9 | -61.3 | -z7.5 | -2.2 15.6 27.4 3.4 37.7
1 69.5 116.3 141.3 157.2 | =177.6 | =163.7 | -153.9 | =150.5 ~144.,8
2 | -105.6 | -64.0 | -39.0 | -23.2 0.3 12.2 20.1 22.8 28.1
3 103.2 120.2 | 145.9 156.3 | 173.0 | =177.8 | -171.3 | -169.0 -162.7
yo| -86.5 | -61.0 | -45.9 | -%6.3 | -21.7 | -2 | 9.1 | 7wy 0.5
5 95.7 110.6 119.6 125.6 1%35.2 140.5 1443 145.6 1581
6 =104 .4 -90.L -81.8 =76 .1 ~67.3 -62.7 -59 .4 -58.3 41,7
7 45,8 52.9 57.0 59.8 6L .1 66.4 65.0 68.5 92.5
8 -165.7 | =-158.9 | ~154.6 | =151.6 | -146.8 | 1441 | -142.2 | -141.5 -101.1
9 ~29.2 -25.7 ~23.5 -22.71 -19.9 ~18.7 -17.9 -17.6 16.1
20 76.3 78.0 78.8 79.3 80.3 80.8 81.2 81.3 102.3
21 79.7 | 81.0 81.9 82.6 83.7 | 8.3 | 8.7 | 8u.9 106.6
22 82.1 83.6 84.6 85.3 86.5 87.2 87.7 87.9 110.4
28 89.1 91.1 92.4 93.4 95.0 96.0 96.5 96.9 126.7
29 89.4 91.4 92.8 93.7 5.4 96.4 97.1 97.3 - 128.7
20 89.5 91.5 92.9 93.9 95.5 96.5 97.2 97.5 120.5

Table 4.3 Phase of Reflection Coefficient for Varying No. c¢f Elements ver Radius

(for 60 radial lines - 4.0\ diameter)

6LL
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OF RADIAL LINES

MODE PHASE OF MODE REFLECTION COEFFICIENT ¥OR DIFFERENT NO.

‘NO‘ L0 Ll L8 52 L 56 60 an 72 96 IENS
0 15.6 - 15.6 15.6 15.6 15.6 15.6 15.6 15.6 15.6 37.7
1 -16%.8 | =163.8 | =163.7 | =163.7 | =163.7 | -163.7 | =163.7 | -163.7 { -163.7 | -144.8
2 114 11.6 11.8 12.0 12.1 12.2 12.2 2.4 12.6 28.1
3 175.6 | =179.6 | =179.0 | =178.5 | =178.1 | =177.8 | =177.5 | -177.2 | =176.5 | =162.7
9 -66.2 ~50.3 -38.9 ~30.4 ~2%.8 -18.7 -14.5 8.3 1.7 16.1

10 L7 3141 L1 ,0 54.6 6%.5 71.0 77.5 88.1 107.5 139.1

11 87.6 120.3% 150.7 177.5 | =160.3 | -142.5 | -128.4 | -103.3 ~79.7 -50.2

18 27.3 45.6 56.1 63.0 67.6 | 71.5 7.2 78.2 84.0 91.7

20 31.2 52.5 6L.2 71.7 76.9 80.8 83.7 87.9 93.9 102.3

22 54.5 68.4 77.0 82.9 87.2 | 90.4 9L.9 101.3 110.4

2l 69.8 80.0 86.7 91.5 95.1 100.0 107.0 116.9

26 80.9 88.8 oL L 98.4 103.9 111.5 122.2

28 89.5 96.0 100.6 106.8 115.1 126.7

20 96.5 101.9 108.8 118.0 120.5

32 102.3 110.3 120.4 133.8

3L 111.8 122.3 136.6

" Mable L4 Phase of Mode Reflection Coefficient for Different Nc. of Radial Lines

(32 elements per radial line - 4.0\ diametsr)

cch



constant. The same applies to mode O, 1, 2 and 3 in taﬁle L, b for
the 4.0\ lens.

As the mode order increases the mode reflection coefficient
becomes increasingly dependent on N, the number of radial lines
used in the equivalent circuit lens; the phase approaching the ideal
lens values as the‘number of radial lines used is increased.

- However, the phase does not approach the ideal lens values. An
asymptotic value below the ideal lens value is reached. TFor the
lower order modes where the phases arc practically indevendent of N,
the constant values may also be conside?ed as the asymptotic value.
Other results obtained indicate that this asymptotic value apvroaches
the ideal lens value as the number of elements used per line, NELR,

is increased.

Results obtained in section L.3.2(a) and (b) thus indicate that
if N and NELR are sufficiently large the equivalent lens circuit will
behave exactly like the ideal lens as is to be expected.

The unchanged behaviour of the higher order modes in section
4.%.2(a) and of the lower order modes in section L4.3.2(b) is
consistent with the equivalent ladder network discussed in section
L,2.2. Where the numbgr of elements per radial line is fixed, the
shunt inductive elements are large for the lower order mode
(L; = ;ﬁ 48 sinayr, Y= (2n = Mode)/N) and hence mode beraviour is

fairly independent of N, the number of radial lines used.
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L.3.3 Far-Field Pattern from the Eouivalent Circuit Lens (Using

Cardioid (1+cosine) Radiators)

Vle have suggested that the criteria for judging the acceptabiligy

of the equivalent circuit lens is the radiation pattern obtained by
feeding the outputs from the lens to radiating elements in an array.
As in chapter 3 caraioid (1+cosine) radiators are used. The use of
Beverage Aerial radiators will be discussed in a later section.

A representative selection of radiation patterns obtained using
equivalent circuit lens of varying N, and NELR are shown in fig. 4.710
for a 2.0\ lems and fig. 4.11 and 4.12 for a L.OA lens.

The radiation patterns obtained indicate that in most cases
the first or second side lobes are higher than that obtained using
the ideal lens. In extreme cases the main beam is bifurcated. In
table 4.5, 4.6 and 4.7 we show the side lobe levels obtained for 3
lens, 2.0A, 4.0A and 6.0\ diameters (i.e. at 3.0, 6.0 and 9.0MHz for
a 200.0 metre lens) for different values of N and NELR.

We see that for a fixed numbeerf N (, the number of radial
lines used) or a fixed value of NELR (, the number of elements used
per radial line) there is an optimum side lobe level, For examplé,
in table 4.6, for NELR = 16, the minimum side lobe level is obtained
for N = 56 (side lobe level of 0.260). The correSponding-value for
NELR = i8 is for N = 60 {0.247 side lobe level).v As NEIR is increased
the value of N redaired to give a minimum side lobe level 1ncreases
so that the miniﬁum side Jobe level in tableé will be roughly along

the non-leading diagonal. As both NN and NELR become large the side
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NN 43 36 28 26 2L 22 20
NELR
5 0.593
6 0.358
7 0.304
8 0.329 0.298 | 0.294 | 0.291 0.207
10 0.295
12 0.290 0.290 0.306
14 0.215 | 0.329 | 0.386
16 0.285 | 0.286 | 0.297 | 0.306 | 0.321 }0.348 | 0.398
2k 0.285 | 0.288 | 0.304 | 0.33k 0.420
32 0.285 | 0.289 | 0.339
48 0.285
IDEAL IENS | 0.235 0.285

Table 4.5 Highest Side Lobe Level for 2.0\ Diameter Eguivalent

Circuit Lens (Cardioid Radiators)
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Table 4.6 Highest Side Lobe Level for L.OA Diameter Equivalent Circuit Lens

. (Cardicid Radiators)
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Table 4.7 Highest Side Lobe Levels for 6.0A Diameter

Equivalent Circuit Lens

(Cardioid Radiators)
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lobes level tend towards the value obtained using the idéal lené.

We see that the equivalent circuit does not work properly if
one of the parameters, N or NELR is too small even though the other
parameter is large.

Tyoical combined optimum values for N and NELR are given below:-
For a 2.0\ lens, N = 24 and NEIR = & gives a side lobe level of 0.291
compared with the ideal lens value of 0.285.
For a 4.0A lens, N = 60 and NELR = 18 gives a side lobe of 0.241
compared with the ideal lens value of C.233.
With a 6.0A lens N = 108 and NELR = 28 produces a side lobe level of
0.25. The corresponding side lobe leyel for an ideal lens is 0.220.
The radiation patterns for the examples quoted are given in fig. 4.16
and 4.19 for the 2.0A and 4.0A lenses. The radiation patterns obtained
using the 6.0A lens circuit is shown in fig. 4.15 for 9.0, 7.5, 6.0

- and 3.0 MHz (corresponding to 6.0A, 5.0A, 4.0\ and 2.0A diameters).

It is evident that the relative value of the phase of the mode
reflection coefficient is more important than each individuval value.
In fig. Le13 and Lk.14 the relative phases of the mode reflection
coefficients are plotted against the mode nunmber, m, for different
values of N and NELR. The phases have been normalised %o the zero
order value. The cdrresponding curve for the ideal lens is also shovn.
We see that if the normalised phase of mode reflecticn coefficient
deviates from the ideal lens value by greater than appfoximately 500

we get high side lobes appearing in the radiation pattern. In the
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eoguivalent lens with ¥ = 20, NEIR = 24, the maximum deviation from
the idéal lens value occurs for mode 6. The deterioration in the
radiation pattern will be worst if the large deviation occurs fér
modes which have high far-field mode aplitudes (fig. 3.713) in
chapter 3). On the other hand, if the far-ficld mode amplitude is
negligible large phase deviation from the ideal lens figure is
unimportant since the particular nmode does not contribute sipgnificantly
to the far-field.

In general if NEIR is large, thc relative phases of the mode
refléction coefficients for the low modes closely follow the behaviour
of the ideal lens. However, for the higherlmodes, the vhases tend to be
lower than the ideal lens value, e.g. N = 20, NELR = 24 for the 2.0A
lens and N = 40, NELR = %2 for the 4.0\ lens. As N increases the
equi&alent lens behaviour approaches that of the ideal lens. On the
other hand, if NELR is small (less than about six elements per wave-
length of radial line), tﬂe relative phase values for the mode
reflection coefficient tend to be higher than the ideal lens value,
e.g. for N = 2L and NELR = 5 for the 2.0A lens in fig. 4.13 and for
N = 60 and NELR = 12 for the 4.0\ Jens in fig. L.14. But as NELR
increases the phase behaviour of the equivalent lens approaches that
of the ideal lens.

These results seem to suggest that a minimum value for N of 24
in a 2.0A lems, 60 in a 4.0A lens and 108 in a 6.0A lens. The
spacings between feeds at the circumference are for the three lenses

respectively 0.262\, 0.21A and 0.174A. The corresponding values for
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IIELR, for the three lenses are &, 18 and 28 respectively; equivalent
to about 9 elements per'wavelength of radial line.

The behaviour of a 200.0 metre lens with N = 108 and NEIR = 23
is shown in fig. L.15 for 3.0, 6.0, 7.5 and 9.0 MHz, (i.e. lens
diameters of 2.0, 4.0, 5.0 and 6.0\ respectively). The raciation
pattern obtained for the lower frequencies is practically the same

as that obtainable using the ideal lens.

L.3.L The Lffect of Losses in the Fovivalent Circuit due to Losses

in the Inductors

All inductors uéed in the equivalent circuit are assuried to
| gave the same Q value. The effect of finite Q values for the
inductors is not significant as far as the radiation patterns are
concerned. This can be seen from the radiation pattefns in fig. L.16
and 4,17 where patterns using circuits with Q@ = e, 200, 100 and 50
are used.

The effect of finite @ for the circuit is a decrease in the
amnlitude of the mode phase reflection coefficient. In a lossless
circuit the amplitudes of the reflection coefficients are all unity.
With Q = 200, the amplitude of the reflection coefficient could fall
to about 0.9 for a L4.OA diameter lens (N = 60, NEIR = 18). For
Q = 10C the mode amplitude fall to approximately 0.85. At Q = 50
the figure is apovroximately 0.7. However, the phases of the mode
reflection coefficients are quite incdependent of @ values, explaining

the practically unchanged radiation patterns for different values for Q.
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The result of the lower value for the amplitude reflection
coefficients is é loss in gain for the array. This is discusscd in
the following paragraphs. |

The far-field in the maximum direction is caléulated using _
equivalent circuits. of ﬁarying Q valugs and varying values of H and

NELR,

N

We - find that losses due to finite Q values are indevendent of
the value of N or NELR. Thé results are summarised in tables 4.8(a)
to 4.8(d). The losses are also independent of the physical size of ilie
lens but are proportional to the size of the lens in wavelength.
For @ = 100, for example, the lésses are ;6.69db, -1.358b and -2.0db
‘for a 2.0A, L4.OA and 6.0\ diameter lens, respectively. The losses
in ab are al=o roughly inversely proportional to the @ value. Tox
the 6.0A diameter lens for example the losses for Q = 200, 100 and
50 are ~1.04db, -2.0db and ~4.0db respectively.

Since the loss in an equivalent circuit lens is proportional
to the frequency of operation, the effect of losses is not expected

to be serigus, since the gain of the array increases with Irequency.

i;.,_).;

In section 4.3 we assume that‘at the circumférence of the lens
each radigl line cbrresponds to a feed. Further, we assume that each
feed is connected to a radiator. A maximum spacing of between 0.175\

and 0.25\ at the circumference between radial lines has been suggested.



Table L4.8(a) 2.00 LENS

24 RADIAL LINES

Ho. of | FARFIELD IN MAXTIMUM DIRECTION FOR Q =
elements }
per radius 200 100 50
8 2.044(0db) | 1.964€0.34db) |1.883(0.69db) 1.745(1i37d6)
16 1.972(0db) | 1.899(0.33db) |1.822(0.69db) | 1.695(1.36db)
| 2L 1.954(Cdb) |1.881(0.33db) |1.812(0.664b) | 1.681(1.374b)
Table L4.8(b) q.ox LENS 60 RADIAL LINES
lo. of FARFIELD IN MAXTHUM DIRECTION FOR Q =
elenents
ver radius 200 100 50
18 2.658(0.0db) [2.641(0.684b) | 2.440(1.37db) | 2.085(2.74db)
2L 2.794(0.04db) |2.585(0.68adb) | 2.391(1.358b) | 2.043(2.704b)
22 2.728(0.0db) {2.525(0.68db) | 2.337(1.34db) | 2.004(2.68db)
- i6 ELEMENTS PER PADIUS

Table 4.8(c) 2.0A LENS

No. of FARFTELD TN MAXTMUM DIRECTION FOR Q =

radial .

lines 200 100 50
2L 1.972(0db) 1.889(0.33db) 1.322(0.694db) | 1.695(1.26db)
36 2.025(0db) | 1.953(0.32db) | 1.8683(0.63db) | 1.751(1.26db)
56 | 2.028(0db) | 1.956(0.31db) |1.837(0.63ab) | 1.757(1.2kdb)

Table 4.8(d) 4.0\ IENS 2L ELEMENTS PER RADIUS

No. of FARFIFLD IN MAXIMUM DIRECTION FOR Q =

radial

lines 200 100 50
52 2.627(0.0db) {2.427(0.69db) | 2.24%(1.37db) | 1.916(2.743b)
60 2.794(0.0db) {2.585(0.68db) | 2.391(1.354db) | 2.048(2.70adb)
72 2.845(0.0ab) |2.637(0.664db) |2.u44(1.32db) | 2.100(2.6%ab)

140
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This condition is rather restricting. It hac already been shown in~
chapter 3 tlat if feed spacing is small outpgts from feeds adjacent
to the input port is large. Also 2 tapering in the output distribution
is desirable to redﬁce beamwvidth at the high frequency end of the
scale. A tapered output can only be achieved if spacing between
feeds is greater than A/e.

It is therefore desirable to reduce the number of feed by half
or a third. One solution was briefly studied: Only every sccond,
third or kth feed is connected to a radiator. The other feeds are -
left open~circuited. This is equivalent tu a reduction in the numbef

of modes used.

L.L.1 Reduction of Mode

| If only one out'of'every k radiator is fed to a radiator while
the other feeds are left open—circuitea the .number of modes used will
be reduced by k. The equivalent circuit léns has been analysed using
as many modes as there are radial lines. If every feed except the kth are
left open~circuited the impedance of each mode and therefore the
reflection coefficient has to be recalculated. This is done in
‘Appendix AL.2,
The impedance of the Mth mode (new) is given by: =~

Xﬂ 1 k=1 © o ‘ ’

M S % SEO M+(N.s)/k (4.20)

?

where fh -~ impedance for the.new mode, M

%, - impedance for the old mode, r
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The new reilection coefficient fi is calculated accordingly. This
is done by the subroutine RNCDE descfibed\in Appvendix 4.1.

Fig. 4.13 shows the radiation pattern obtained for tie equivalent
circuits with modes reduced by 2, % and 4. The values of N and NEIR
used are 48 and 24 respectiveiy. The effect of reducing the modes
is an increase in the back lobe of the radiation pattern.

The relative phase of the new and 0ld mode reflection coefficients
are shown in fig. 4.19. This is a fairly large oscillation of the
relativc phase values about those of the original mode values.

Because of the undesirable.high §ide lobe levels obtained if
some radial lines at the lens circumference are short circuited, this

nmethod of reducing the feed number is not suitable.

L4.4.2 Other Methods of Reducing Feed Numbers

Essentially, a matching type network is needed to cowbine 2 or
more adjacentvradial lines near the circumference to form each feed
.point. |

A technigue used by Spangenberg, Walter or Schott (22) on phe
solution of electromagnetic field problems using electrical anal;gue
networks is briefly discussed. In their work the fields at sonme
points are required more accurately than for other points. To obtain
the better accuracy required for the analogue network, the number of
elements used at the particular par£ of the network is increased.

The transition between the two regions of fine and coarse meshes is

shown in fig. 4.20.
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Fig. 4.20 ARRANGEMENT FOR HALVING NO. OF RADIAL LINE

NFAR THE LENS CIRCUMFERENCE

4.5 Use of the Equivalent Circuit Lens with Beverage Aerial Radiators

It was thought that an equivalent lens which was judged to be
acceptable for use with cardioid radiators would be suitable for use
with beverage aerial radiators. This was not the case at the higher
frequencies, when the length of the béverage radiating elements in
wavelength is large so that the radiators are more directive.

Compare the far-field puttern obtained using the circuit with
N = 408 and NELR = 28 for cardioid radiator in fig. 4.15 aund that

obtained with beverage radiators in fig. 4.21 for operation at 9.0
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and 7.5 MHz. The side lobe level for the beverage array'is
unscceptably high compared with that obtained using the ideal lens.
On the other hand, with a smaller lens L4.OA diameter, N = 60,

NEIR = 16 and 2.0\ diameter, N = 24, NEIR = 3 the patterns obtained
using beverage radiators is quite acceptable (fig. 4.21). However,
for the 4.0\ diameter lens the side lobe level is high compared with
the level that can be achieved with an ideal lens.

We found in chapter 3 that witﬁ the use of beverage acrial
elements in the lens fed array the sile lobes are lower and the
beamwidth, wider. This tends to suggest that the far-field mode
amplitude distribu?ion (equivalent to amplitude distributica for a
linear array) is taperéd;vthe taper is more marked if the radiator
becomes more directive. If this is *the case the behaviour of the
lower order modes of the equivalent circuit lens becomes mucﬁ more
important.

We observed in section 4.3.2(a) that the behaviour of the lower
order modes is mainly dependent on NELR, the number of elements used
per radial line in the lens circuit. If NELR is sufficiently large
the relative phases of the mode reflection coefficient approach very
closely that of the ideal lens. 1In table 4.9 the deviation for various
equivaient lenses from the relative phase of the mode reflection
_ coefficient of the ideal lems is tabulated for a 6.0A lens (see also
fig. L4.13 and L.1L for 2.0A and L.0A diameter lenses). We see that
for fairly low values of N, the behaviour of the relative phases

between mode reflection coefficients is similar to that of the ideal



DEVIATION OF RELATTVE PHASE FROM IDEAL
HODE | 1pizz VALUE FOR THE FOLLOWING N/NELR VALUES
o 108/2% | 60/L8 | L8/u3 | 48/36 | 60/326 | 72/3%
0 0.0 0.0 0.0 0.0 0.0 0.0
1 L.5 - 1.5 2.4 3.2 3.3 3.3
2 21.2 6.0 5.6 10.6 M4 11.2
3 k.7 7.5 5.7 13.9 12.0 10.5
L 37.9 6.9 4.7 21.4 | - 17.6 19.1
5 Lo.b, 7.5 -0.1 Lo 16.1 19.0
¢ 50.2 5.2 -7.5 -3.7 15.7 20.7
7 49.5 | 1.5 | -20.4 | -23.8 8.2 | 16.0
8 ' 58.0 -6.2 | =31.5 | -37.9 5.1 15.8
9 51.0 -33.,3 | -6L.,2 | -82.6 | -15.8 1.1
10 60.5 -33.h | -68.8 | -97.0 | -14.0 4.9
11 L6, L =714 1=116.1 | -147.6 | =50.4 | -23,7
12 53.2 -36.6 |-158.0 | -213.7 | -54.3 | -25.2
13 51.4 -32.8 |-154.5 [ -241.7 | -60.7 | -27.1
10 7.4 | ~170.0 [-243.5 |-329.6 | -147.9 | -99.9
15 51.1 | =168.3 |-286.0 | -372.0 | -145.8 | -63.2
16 31.5 | -146.0 |-312.5 | -425.5 | -92.9 | -64.0
17 -41.8 | =271.5 |-L20.5 | -588.4 | -2L7.5 |-195.7
18 LE.5 | -202.6 |-1415.8 | -632.8 | -26L.3 | -168.9
19 714 | -252.2 |-398.2 | -645.9 | -227.8 | -51.2
20 77.9 | -150.5 |-386.7 | -657.5 | -136.5 -5.8
21 80.4 | =87.1 |-379.7 - -62.8 9.0
22 81.7 | =57.7 |-376.1| - ~33.2 ] 5.4

Table 4.9 Relative Phase Behaviour of Eguivalent .

Circuit Lenses (6.0A Diameter Lens)
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2.0\

I 48 36 2Lk 20 16

NEIR '

12 0.176 0174 0177 0.215 O.312

1 0.175 '

16 0.173 0.171 0.173 0.213 0.311

2k 0.120 0.169 0.171 0.210 0.311

L .0\

N 72 60 48 Ll L0 26
NELR

24 0.195% 0.215 c.2u2 0.246 0.258 0.266
28 0.179 0.200 0.231 0.235 0.250 0.26C
72 0.170 0.192 0.225 0.232 0.2L6 0.255
6.0A

NN 96 - 72 60 Sk L3 Lo
NELR .

32 0.299 | 0.304 | 0.258 | 0.295 | 0.263

26 0.266 0.280 0.240 0.281 0.248 0.238
L8 0.225 .0.250 0.223 0.266 0.279

Table L.10 Side

Lobe Levels for Array of Beverage Aerials
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lens. Hence an equivalent circuit lems used with directive radiators
will need a lower value for Il but a slightly higher value for NELR
as.compared to values for the lens used in conjunction with cagdioid
radiators.

Whereas a 6.0A equivalent lens used in conjunction with
cardioid radiators requires a mininum of about 108 radial lines and
NEIR of about 28 a corresponding lens for use with beverage radiators
' need an N value of about 60 or even fewer (48). The value for NELR
need is, however, higher.

The sicde lobe levels obtained from an equivalent lens with
different N and NELR values for beverage radiators are showun in table
L.10. A representative selection of radiation patterms is shown in
fig. L.22. ' .

In fig. 4.23 the radiation patterns of a suitable equivalent

lens (N = 60, NELR = 356) for 9.0, 7.5, 6.0 and 3.0 MHz are shown.

L.6  Summary

The equivalent circuit for the Luneburg Lens has been obtained.

From the eguivalent ladder network obtained from each mode and from
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the results obtained we conclude that the higher modes do not penetrate

the lens as much as the lower modes. We find that the lower order mode

behaviour.is largely dependent on the number of elements used per
radial line, while the higher order modes are dependent mrinly on the
nurber of radial lines used. The behaviour of the equivalent lens

circuit is influenced by the relationship between phases of the mode



reflection coefficients and not by individuval phase values.

Used in conjunction with cardioid radiators the equivalent

circuit will need a larger value oF N as compared with one to be used ’

with more directive radiators. We suggest that with the use of more
directive radiators in the array, the far-field mode amplitude
distribution (equivalent to amplitude distribution in a linear array)
is more tapered. This effect is an advantage in a multibeam systen
where a fairly constant bheamwidth is desirable.

The idea of leaving somwe radial lines open-circuited to reduce
the number of radiators needed to be used kas not proved to be a good
one; A higher side lobe level is obtained for the radiation pattern
if this were done. We suggest a form of matching network could be
designed to combine every two or three adjacent radial lines to form
a. feed poiﬁt. |

Although only two types of Luneburg Lenses were studies, the
‘technique of obtaining equivalent circuits could be applied for other
tynes of lenses. In particular the constant beamwidth ILuneburg Lens

(De Size and Woodward, 20) is probably worth studying.
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APPENDIX AL.1

Description of Program Subroutines

In addition to the programs described in the appendix of
chapter 3 the following additional subroutines are used in the program

for the equivalent circuit lens:-

AL.1.1 Subroutine EQCCT(XIO,XLR,C%,NELR,DIAM,F,DR,DO,Z0)

This subroutine calculates the values of the components L, Lr’
and Cz for the equivalent circuit Luneburg Lene and also for the
characteristic impedance, Z0 for the space outside the lens. By
changing the value of-U1; U2 and E the program can be converted to

calculate the component values for the g = € Luneburg Lens.

EO = free space permilivity
o = free'space permeability
DIAM = diameter of lens in metres
DR = elemént spacing in r-direction = DIAM/(2*NELR)
DO = element spacing in O-direction = 2r/N
XILO - = Lﬁ
XIR =1
r
CZ =2¢
Z

Elements values are numbered 4 to NELR starting at the lens

circumference.

15k



The flow chart for this subroutine is given in fig. AL.1.1.

Al.1.2 Svbroutine RTLCCT(XIZ,X1R,CZ,¥T,NELR,H1,Z0,CXRH0,Q,Y,ARGRHIO,ZTT)

This subroutine calculates the  reflection coefficient of a ladder
network termirated by an impedance, ZT for the (141-1) node. The Q of
"the coils used in the network can be specified.

The subroutine starts at the end of the line, calculating the

input impedamce as it moves toward the feed point

CYXRHO(}1) =Complex reflection cuefficient of (111-1) the mode

ARGRHO(H1) = its arpument
ABSRIO(11) = its modulus
2 e -
LZ = Hﬁ / 4 sin"y, where Y = 2r * Mode/N,

is computed in the main program. Thc subroutine prints the values
of the phase reflection coefficient normalised to the zero value so
that the phase angle increases with mode number. The normalised

input impedance for each equivalent circuit is also printed.

Ali.1.3 Subroutine RMODE(ZTT,ZTH,NN,CXRHO,AKGRHO,HM)

This subroutine is programmed to calculate the New mode
reflection coefficients for an N line equivalent lens but with all
but every Mth ports are open circuited. Hence the number of new modes

is reduced from the number of old modes by M

Sa

1

Sw

ZT7m(M1) normalised old mode input impedance

1)
it

ZTH (1) new mode input impedance

The expression obtained in Appendii L.2 is used for the computation
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AN SU s WL s/

New M

0 O

There are M terms in this summation.
In the computation the 0ld modes are arranged so that Hode

Z07(I) is the same for I = O to MV/2 and mode NN to NN/2 + 1.
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RAD = DIAN/2.0
RN = RAD + DR

Y

'——-“"‘—<DO I = 1, NEIR

1

N = NEIR + I-1
RNHLF = RN-DR/2.0
E = (2.0-(RNHLF/RAD)**2)

Y For p = ¢ Luneburg Lens

(For "Ordinary" Luneburg Lens) B = 59RT (B)
U1 = 1.0 - U1 =E
\ U2 = 1.0 U2 = SQRT(2.0-(RI/RAD) **Z)
A
X10(I) = UO*U1*RNHLIF*DO/DR
XLR(I) = UO*U2*DR/(RN*DC) -
Ccz(I) = EO*E*DO*RNHLF*DR

|
< < CONTINUE
1
XLR(1) = XLr(1)/2.0
|

/ OUTPUT XLO, XLR, sz

y

Z0 = SQRT(UO/Z0)*2.0/(DIANM*DO)

/ OUTPUT %20 \
/

T

( RETURN

Fig, AL.1.1 FIOW CHART FOR SUBROUTINE EGCCT




START

t

Calculate last shunt impedance

T

1

Calculate last series impedance

L \ 72T = 1.0/YT
f

75 = 7SH ZT = ZT in parallel with ZSH
i — i

_ i

-——*———<<5o K = 1, NELR1
] )
Colculate ZSER L

Calculate ZSH Y

' A [T = 2T in parallel with ZSH

7 Calculate Reflection Coefficient,
7T = 77 + ZSER RHO, its argument, '
A ARGREO and modulus,
\

ABSREO
e
{

71T = Z7/70 >

Y

Output ARGRHO in degrees
with incrzasing value for

increasing mode number

( RETUzd ,

¥ige AL,1.2  FLOW CHART OF SUBROUTINE RTICCT

>




- 20 I =1, MDHHLE

| TATT )

1

Read 7ZTT(I) into the rest oi

array so that Zi(I) is

symmetrical aboub I = Ni/2

Y

NNDH = NH/M
NDVHLF = NNDH/2+1

¥

+

¥
1940DE = T-1
7Zmi(I) = zTP(1)

——<DO J = 1, ML

Y

IND = (I+J*INDH)
ZTH(I) = 21%(1)+Z27( IND)

{

--‘—-< CONTINUE
Z0H(1) = ZTM(T) M :
<

/ WRITE I, ZTM(I) \

}

—r < CONTTHUE

v

ﬁutput Phase of Reflection Coeff\

] ,
( RETURN )
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liode Recduction by a Factor, k

For an equivalent circuit structure of N radial lines if all

except every kth radiator is left open circuited then current only

flows out from every kth line.

new modes uill be reduced by a factor k.

mode is calculated below,

For the 01d liodes, m

Instead of N modes the number of

The impedance for each new

Zero order
(o] 2 o . - _ (o)
11 =_I1+1{_I1+21{_ esssscsev s —I
and IC =0, forr £1+kq; q=0, 1, 2, eeeas Ab.1(a)
(o] (o] (o] (o]
V1 "-Y’I-*-l{— 1+2k — >0 832000 —V
First'Mode
1) exp(—s onk/N) = I exp(~j gnk/N) = eeea =10
1 1k 142k~ R : )
and I; =0, for T £1+ K9 53 =0, 1, 2y coees AL .1(b)
Vo v! | exp(ej 2nk/M) = V) . exp(ej 2nk/H) = eeee =V
o1 1+k TF ] 142k 7 ‘

rore generally for the mth mode (m = ’I--N/2 te N/2’ N even)
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mom s I ol el _ o
Iy= T exp(~j 2nkm/M) = ook exp(~j 2nkm/MN) = seee = I
ID=0forr£1+kg; q=0, 1, 2, eveus Ak.(e)
A
yE 1 m . s T iy _ i _ Ty _ gt
Vio= Vi exp(~j 2nkn/N) = Lo exp(-j 2nkm/H) = vove = V
For the liev Mode, M (= 1-H/2k to N/2k)
11 .
I; = Z P, €XP (jrma) : i : AL.2
)
vhere p = constant for each mode
m = 0id mode
r = feed position number
. o = 2n/N
¥ .
Also V _ = zm D, §, &P (jroa - AL.3
where \\)Dm = 0ld mode impedance
Replacing r by r+k in equation AL.2
M -
Lok = Zm p, exp (§m (rek) a) | Al L
But for new mode, M
1 = Thexp (5 2mat/n)
r+k r
fﬂ
= r exp (J k M (X)
substituting for I]: from equation AL4.2
1 L . ' |
L > p,oexp (Jruwa) . exp (JkHa - AL.5

Bquating AL.2 to AL.S



EE_ D, &P (3 m (r+k) @)

w

i.e.

-

i

p, exp (jmka) P, €¥D (3 k ¥ o)

exp (j (m49)k ) = exp (j 25 s),

S=O, 1’ 2, ce v
m =M + Ns/k

~but for m L N

. « from equation AL.2

. M
Taking Ir
M 1
I = 12 -

M
I2 =0 =
IEI =0 =
k

]
[¢]
o]

exp

exp

I = P, exp (3 rna)
s

wvhere n = M + Ns/k

and |n| <N

k consecutive values of r (r = 1 to k, say)
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jg:pm exp (Jrmoa) exp (k¥ a)

ALLG

AL.7

(1 o) [_p}_w.o/k * B 0 (3 2810 + e ]

(3 2t [?H+N.o/k * P, O R ]

exp (j k 1 o) [pM+N.O/k * D1k OFP (72 )/l + eua ]

Rearranging in matrix form

0
M
I1
iO.:
lO

exp( jiilca) IIRES .
exp( jiia) 1 exp( 3g)
excp( §2Mar) | . .
exp( §lk~1)ta) 1 exp(j(k-1)p)
. |

-
1

exn( j(k-1)8)

exp(5(1=1)28) j

cont’d



i.e- .

vhere f :‘2n/k

_2
=X
PN (r-1) /¢
s
-
l 1
1 exp(~-3jp)
a
k| ¢
1 exp(~-j(k-1)p)

P/

PiCk=-1) /1 J

-
[

1 exp(-3jB) . .

1 exp(-j(k-1)8) .

r-e:f:p(--‘]'kmct)

exp(=jta)

exp(-j(k-1)Ea)

-

1

exp(~j{k-1)5)

o

eXp(-j(k—1)28)

exp(=~]

exp(-j(k-1)28)

_
( -
o
M
I’I
£ 9 )
0
. )

( )
0
IEexp(~jMa)

{ O )
0

J

1

(k-1)B)




01
M ezpl - 3B)
1'1
g . " exp(=jha)
k
exp(-j(k-1)B)J
IM
1ees Dyine/k =T:' exp(-jMa) . exp(-;]éﬂ) . AL.8 '

‘From equation AL.3
V}I = p exp (jrmo)
r :%; By &XP A ' Tn

1
V1

Sy e Gn e s,

Substituting for p, o, from equation AL.8
. +Ns,

M '
M T . . N
v, = 2 3. 12 exp(-jta) . exp(-jsg) . exp(qha+JNsa/k)

=

Tt

-g- E :30 M+Ns/k

R
i.€. 2§H’ the new mode impedance

<"‘:‘
- A

l

A

—
3

H

1
i C l,
& SZ M+Ns/k Al.3

-

. ! 1
ileca SM =T Z S vhere [m| ¢ NN
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CHAFPTER 5

S TaE OPTIMUY LilS AND ITS DESTGN

5.1 Introduction

Although the behaviour of the Luneburg Lens is fairly optimum
we feel that there may be other rotationally symmetrical networks
(R3N) which have characteristics better than that of the Luneburg Lens.
In obtaining the equivalent circuit Luneburg Lens we have no control
over its characteristics. ‘In this chapter we explore the possibilities
of obtaining a tecknique for the design of an optimum Luneburg type lens.

In chapter 2 we showed that a RIN can be builtvby cascading two
Butler type networks via N phase shifters. The only parametiers involved
in such é network are the values of the !N phase-ghifters (whose phase
values corresgond to the vhases of the mode reflection coefficients or
eigenvalues of the RSN structufe). Therefore, in any design tech;ique
the values of the N phase shifters need to be known,

Chadwick and Glass (23), Davis (12) and Sheleg (24) have
established the equivilence between the lineaf and circuler array. In
the two-~Butler-type matrix network one of the matrix network acts as
the mode forming network and the other, as the beam forming netwofk,

much like the network used to feed N radiators in a linear array. -



There is a relationship betiween the node ip the nezr field (the
output from the network) snd the mode in tne far-field. This trans-
formation factor depends on the radiation pattern of the radiators
used in the array. The correcspondence between linear and circular
array and the relationship beiween modes in the near and far-field

will be treated in section 5.2.

In the design of the optimum lens we maximise the field in the
direction of the main beam. This is done by choosiné the appropriate
values for the N phase shifter (i.e. phases of the mode reflection
coefficients), so that the phase of all the modes in the far-field is
equal.

Ve proposed to construct the RSH by interconnecting 2-port
networks between the N feeds points of the RSN structure as shown in
fig., 5.9, The expression for the Yqz‘parameter for the two ports is
derived in section 5.k.

In section 5.5 we explore the possibility of realising the 2-port

network from the Y12 parameters already obtained.

5.2 Eguivalences Between Linear end Circulsar Arrays

. The equivclence between the circular and linear array vas
established by Chadwick zud Glass (23), Davis (12) and later by Sheleg
(2h). |

- We have shown this eguivalence purely from consideration of
rotational symmetry. Figure 5.1 shows the equivalent circuit for a

rotationally symmetric network for multibeam operation obtained in
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chapter 2. The seccnd Eutler Matrix [B*] acts as the mode forming
networx, while the first mairix nelwork [B} acts as the bean forming
network rmuch like the Butler Matrix use in a linear array for multi-

beanm oneration.

e

f——————e
CORNECTED

A\ d
To RADIATORS
|N. A CIRCULAR
h————— ¥
ARRAY

nSdASH
*S oN § -

it

r—
o
%

[
*

3. Iw
|
E3
I
2
o

|
xilo
O | X
&
[N
XJ}_(E
O
¥

b~y

»

X A=
g

i

Fig. 5.1 ROTATTONALLY SYRMETRIC INETWORK FROF TWO BUTLZR-TYPE NETWORKS

If the rth input poft of the beam-forming network is excited the
outputs from the N output ports (inputs to the radiators) are equal in
amplitude but have a phase progression between adjacent ports of 2ar/N
radians. This excitation corresponds to the rth mode. For clari£y in
this discussion we assume that this is equiQalent to a continuous
current distribution, exp (j r8) where 8 = array azimuthal angle.
This assumption is justified if the spacing between radiators is less
+han A/2. The rth mode in the near field gives rise to radiation in

the far-field (Appendix A5.1), given by

» nl ‘ 13 '
1r(e_) = B_ exp (3 1'9-) 5.1



where 9 ' azimuthal angle in far-field

B

- constant (depcadent of the pattern of the

radiator used in the array.
Hence the excitation of the rth input port of the second matrix network,
[B*] gives rise to a far-field mode, r. Taking into account the phase

shift, ¢  the far-field becomes

- _ 3 » . t -
F.(8)=3_ exx (J ¢r) exp (jre6) | 5.2

Compare this with the expression for the far-field contribution of the

rth element in a linear array

Fi,.(0') =L exp (§rw
where u = (k@/l) sin 9'
d = spacing between radiaters
L. = excitation at the rth radiator.

VWhereas Flr(G') is a function of (kd/A\) siﬁ 6' in a-linear array,
F?(G') is a function 9'.only. We see, therefore, that the first Butler
Matrix Networl, [B] acts as the uéual beam forming network in a linear
array ([11],[29] , 3. Consequently, the restrictions applicable;for

a lossless Butler-Matrix used with the linear array applies, l.e. the
output amplitudes from the beam forming network must all be equal.,
Therefore, the mode amplitude for a lossless RSN (in'tﬁe near field)
ust be equal. Hence, in the near field the total field in direction, -
6 is given by

®) = 5 fmexp (jm6) : , 5.3
m

F
near

Am 1 for lossless network considered
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In the far field

7o) =y B, oxp (3 ¢;Q exo (3 mo") 5.4
bl ! . '

The constants Bm exp (+3 ¢m) corresponds to current excitalion for
the mth radiator for a corresponding linear array. Bm (a complex

value) is investigated in the next section,

™

5.2.17 Relationship Between Hear and Far-field ldode Bxcitations

It has been shown (Longstaff , Chow and Davis [25] Knudsen [26])
that for the mth mode the far-field Fm(O') has the same form as the
current distribution along the circumference of the array but

modified by anr mth order Bessel function and (j)m for omni-directional

radiators.
i.e. Tor IZ(e) = I, exp (im0 5.5
Fm(e') = (" Jm(ka) exp (j-m»e') 5.6

where a = radius of the array
For certain value of a Jm(ka) = 0 so that rome modes are not excited,
suggesting that the system is frequency sensitive. The mode amplitude
distribution (IBml = bm) is plotted in fig. 5.2 for omni-directional
radiators for a 2.0A, L4.0A and 8.0A diameter array. We can neglect
the effects of the higher order modes which are also eécited if the
spacing between feeds is lezs *han about A/2. Otherwise equation 5.6

becoues
o0 N
1y oL m=Ng . i o
Fm(e ) = 5 (3) un_Nq(ka) exp j(n-lq)0 5.7

q='°°
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cordioid (1+cosine) radiators are used (Appendix 5.1)
’ 2

1 m
_ =1 sy aY 5 . _
B =7 {.3) Jm(k1, j [Jm+1(ka) Jm+1(ka5]/2}

-1
Fh

= 2(H" [Jr(ka) - J;(ka)] , neglecting the

effects of grating lobes.

Bm = meCyzg-is calculated using a digital computer by the
subroutine AMPARG (described in Appendix 5.2). For the cardioid
radiators the far-field mode amplitude distribution is plotted in
fig. 5.% for 1.0A, 2.0A,.4.0A, 6.0\ and 3.0A diameter arrays.

Vhereas the far-field mode amplitude changes rapidly with mode
mumber for an array of oﬁni-directional radiators, that for cardioid
radiators is fairly constant, increasing in &dlue, reaching a peak
value vhen m = ka. For m > ka the mode amplitude falls off rapidly
to a very‘lbw value. The effect of the far~field mode amplitude
distributioﬁ of the far-field pattern has already been discussed in
chapter 3 for the Luneburg Lens. For cardioid radiators if all the
significant modes are used the side lobe level obtained approaches
-13.3db ~ a figure very close to that for‘an array with uniform
amplitude.

Judging from the radiation patterns obtained using beverage
aerial radiators we are ied to believe that far-field ﬁode armplitude
distribution is more tapered if more directive radiators are used in
the array. BFBquation A5.7 in appendix A5.1 supports this theory. A
riore directive radiator will contain a higher number of cosine harmonics

in the expression for its radiation pattern.
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The phase,1y%, of B_1 has been computed for the (1+cosine)
il [})

radiator array.

5.3 The Optimum Lens

We define the optimum lens as one which has maximum gain in the
forward direction of the array (8' = n for feed at 8 = 0). To maximise

. . 1 )
gain we maximise F(O ).

5.3.1 Bebhaviour of NMode Reflection Coefficient

From equation 5.4 the far-field excited by the RSN is given by

F(o'") :E: B exp (] ¢ﬁ) exp (jmo") 5.4
m

. . ¥
:;:.bm exp J(ﬁﬁ +'me) exp (jmo)

To maximise F(8') we put the phase of all the terms in the summation

equal to a constant, zzro for convenience, i.e.
?
+ + m @ =0
¢m lrﬁ max
t
= - -me .
¢m Vi = @ Oy 2

We had established that ¢ﬁ is the phase of the mode reflection

o

- . . '
coefficient for the RSN. Tor optimum lens design emax = 180°

i.e. ¢§ =~Y -mx : 5.6
The relative value of ¢a has been plotted in fig. 5.4 for the 2.0A,
- 4,0\ and 6.0\ diameter lense<. The corresponding curves for the

Luneburg Lens are also shown.

Like the Luneburg Lens the phasc of the mode reflection coefficient
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increases at a rate of less than 130° per mode, for mode numbers less
than ka. ¥Fsr modes greater than ks the phase increases at a rate of
nearly 900 per woce. The phases are fairly constant for the
'corresponding modes for the Luneburg Lens. Since the far-field mode
amplitudes for m greater than ka are not very significant the behaviour
of the two lenses should be similar as far as the far-field patterns
are concerned, particulars for low values for feed numbers. Since the
relative phase of the mode reflection coefficient curve deviates
slightly from the @(m) = m x 180° line for m less than ka, we have
rlotted the difference between the two curves_in fig. 5.5 for both

type of lenses.

5.3%.2 Feed Outnut Distribution

The output disfribution from the feeds of the optimum lens is
shovn in fig. 5.6 for.a l4,0n diameter lens for 48, 24 and 12 feeds.
The corresponding distribution for the Luneburg Lens is given in
fig. 3.5 (sec. 3.2.2(a) of chapter 3). The significant differences
between the two output distributions are:-

(1) the iower amplitude of outputs at feeds édjacent to input port
especially if feed numbers are small, for the optimum lens.
(ii) for high number feeds used the amplitude output is high at the

side of. the array (around 8 = 90O and 270°) for the optimun lens.

5.3%3.35 Far-field Patterns

The radiation pattern for the array fed by the optimum lens is

shown in fig. 5.7 and 5.8 for a 2.0A and 4.0A diameter lens, for
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various numbers of modes (or feeds) used. The corresponding
patterns for the Iuneburg Lens, sheoun in fig. 3.14 and 3.15 have
already been dismissed in sec. 3.3.3 in chavter 3.

On the whole, whcre the spacing between feeds is large (lower
number of feeds) the patterns obtained for the two lenses are nearly
the same. But for higher feed numbers tﬁe side lobe levels in the ‘
optimum lens array tend to fall away from the wain lobe, so that
ba;k lobe levels are very low. The higher side lobe levels for

arrays with feed spacing of about A/2 is mainly to grating lobes

which are also excited. The optimum lens array has narrower beamiidth.

If the RSH is viewed as a lens fed at & = 0, with maximum field
in 8'= n, this corresponds to radiation in the forward direction.
Such a lens belongs to the class to which the Luneburg Lens belongs.
If, however, we maximise the far-field in the direction =0
instead of 7 we obtain a lens which radiates in the backward direction.

Such a lens belongs to the class referred to as Baton-Lippman Lenses

(Key [27])

For rmax(n) = ﬁh ==Y, -mx (forward direction) 5.6
For F = = - irection) .
For rmax(o) = ¢m = yfm (backward direction 5.7

9.4  Synthesis of the Ontimum Lens Network

The phase of the mode reflection for the optimum lens network
has been obtained in the previous section. - We propose to construct

the lens network by connecting 2-port networks between the I output
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fecd points as ghown in fig. 5.9. Let § = 2i+1.

Ta Ty

e e s | _4—‘
? Vn A"' Tvni- r

Ot —

NETJORK BETUESW n AND

(n+r) PORTS

Fier, 5,9 THE LENS CIRCUIT

In the following varagraphs we obtain the relationship between

the Yr? varameters for the rth 2-port netwerk and the reflection

coeificients obtained in section 5.3.

For the rth 2-nort network itself,

T : ’
T Y Y v
n - 1 ‘ 1? n 5.8
T, by r
“n+r 1’12 Y1 J 'Vn+r ‘
!
where r Y raneter
: 4= tqq PETE
Y. - ¥ net
> =Y, paramneter

For the Whole N-port Structure (N = 2M+1),

at the nth port for mth mode,

an

[Y2M+1—r v o+ Y2m+1-r v ] 5.9
n n+r

M
ol T LT
In - ;;% [Yﬂ Vn * Y2 Vn+;] * 1

r=M+1

But V_ = exp (j m n &) 5,10
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n

wvhere ¢

. I

. IN = ¥ [Yﬁ exp {(jnnf) + YZ exp { J m(n+r)¢}]

r=1

182

2l
+ > [Y2M+’I-r exp (Jmng) + yai-r ex | jalner)g }]

1 m2

r=ii+]

M
= exp{ jong) [2 >
r=" r=1

’ 51 M
. n . r r . by
i.e. I exp(amnﬂ)tz Z v+ 2 zq 12 cos m r ﬁ]

If a shunt element exists in the nth port

M M
mo_ .. _ r — T
I = exp(jmg) | > (2 sro) Y.+ 2 > Y2 cosmr 55]
_ =1 r=1
Iz , S
jee B ====zA+2 > Y cosnrf
m ol 2
Vn r="

fOI‘ rn=0,1, 2, s o soe I’I and

where Bn = mode admittance

M
r
Z Y1 (2- Sro)
r=0

and ‘A

FOI‘IH::O, 1, 2, -o-ooI‘I,

_ , 9 2 M
BO = A + 2Y2 ot 2Y2 + sesse F 2Y2
B = A+ 2Y) cosf + 2Y2 cos2f + anees + 27 cost
1 2 2 2
1 ' 2 14 o
B, = A+ 2y, cosrd + 2Y5 COS2Tf + eaeee + v, cosiirg

M .
Yf“ + 5 Y; {exp(jmr@') - exp(-;jmﬁ)}]

2.1

5.2

5.14

5.15(a)

I5.15(b)

5.15(c)
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. - - - .

B, = A + 2Y; coshig + 2‘[% coSZMB 4 eeves + .21’1"2I cosI'-12¢ 5.15(a8)
"4

I -

+

Reuriting equations 5.15(a) to (d) in matrix form

(g ) (4 )
o} 1
1
B1 Y2
B l={ B _[cy ¥ve 5.6
. )
M
[ By | T2 )
— -
1 2 2 v e e 2
1 2cosf 2cosf . . . 2costf
where [G ]: . . - . 517
1 2cosM@ 2coslf . . . 2cosM2¢

But it can be shown that

[¢][e.]

1l
r——

)
——

[ 1 1 1 ¢« e = . 1
1 cosf cos2f . . . coglig
where C,] = . . . . 5.18
| . 24
1 cosif cos2Md . . . cosHF
- =
and D =0, if m An and m=n#£0

Il

(2M+1)/2 if m = n

[D] = ,'I](2M+1)/2 5.19

[

L ]
.
L ]
| —
a -
[ BOS—
r—
Q
-
j S——
It
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-1 1.2 ' .
and [C ] :[C(dfm 5.20
From cquaticn 5.16
[ 3 B ] )
A 11 10 ... 1
1 0
¥5 1 cosf cos28 . . . cosld
2 =2 J
l . = ﬁm 4 COu2¢ COS’—%Q, e s . CO.\,Z‘Q’ . r
301 . e
Y 1 coslif cos2Mf . . . cosid .
2 ) | 4 )
' 5.21
> "M
i.e. A = £33 B 5.21(2)
I r
r=0
5 4
) - 25 B cosrd 5.21(b)
2 N r
r=0
n 5 M
Y, = £ 2 B_ cosnrf 5.21(c)
2 Iy T
r=0
o2
Y, = £3 B cosirf 5.24(d)
2 N o T

Therefore the M an paraneters of the M different 2-ports are
obtained in terms of the mode admittance.(susceptance) of the optimum
lens network.- The Y12 parameter has been computed for.a whole
series of frequencies by the subroutine Y¥12 (described in appendix
A5.2). This has been done for a modest size network with nine feeds
for an array of around 1.5\ diameter. The Y; values have been
computed over the frequency range 0.25 MHz to 5.75 Miz and plotted

respectively.

in fig. 5.10 and 5.1 for Y3 and Y5 and Y3 and Y3
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B is expressed in terus of ﬁm, the phase of the mode reflection

coefficient as follows:-

Reflection coefficient, O = 1-338,
ST+ 3By

phase, ¢m = - 2 tan" ) Bn

B - tan(ﬁm/z)' 5.22

m

5.5 Possible Realisation of 2-Port Network from the Y12 Parameter

Obtained

In this section we investigate the possibility of realising a
2-port network given the frequenéy characteristics of the Y12
parameters (computed in the previous section).

Ve concentrate our efforts on 2-port networks built up of
transmission line sections with and without loading by lumped elements.
The frequency hehaviour of the Y12 parameter for the following simple
transmnission line networks will be briefly examined.

(a) the single section transmission line network

(b) a three section transmission line network

(¢) a two section transmission line network with loading in
between.

Since the networks involve cascading of various sections of two.
port section, it is convenient to obtain the ABCD transfer matrix for
the'whole 2—port»network. The corre5p5nding Y12 admittance parameter

is obtained from the relationship

¥ - - 1/B , 5,23 .
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5.5.1 A Single Section Transmission Line Hetworlk
- 26 A B cos9 3Zsind
. - = 5.2k
VA cC D i(sin8)/Z  cos9

i.e. Y = -
ice. Y, 1/B

Y12 = j/Zsind- 5.25

The Y12 characteristic is plotted in fig. 5.12. The maximum and

ninimum values of ¥, is inversely proportional to the characteristic

N o

12
impnedance, Z. The spacing between the asymptotic lines 5, and s, are
equal r
) | 1
s, s,! 5 S: |
Y . = i
12 ! |
0+ B 2 ; :
: i
? . |
: |
| | %
/Z i ! |
v 2w £ 4n 5w
i ‘z

Fige 5.12 Y42 CHARACTERISTICS (FOR A ONE SECTION T.L. NEIWORK)



Lo}
H.
Q
o]
=
e
3
]
6—-
T
3
e
ry

5.5.2 The Three Section Wransonis

It can be shown that

. ' 2 2
= - = / s g : - -
Y12 1/B JZZ [2c1c2 D40y + 32.{(6152) (5121) }] 5.26
where 9 = electrical length of T.L

¢, = cosG1

s1 = sine1, etc.

Z1, Z2 are characteristic impedances of the T.L. sections.
If 91 = 82{ L5 simplifies tq

. 3 2 . 2 2
1p = 38/ [s7(28,5, + 2] +85) - (22,7, + 23)]

Y =

. 2 2 .27 -1 | -

—-J[(2Z1+Z2+A1/Z2)s(s - X% 5.27
wvhere K2 = (2Z. + 2.0/(22. + 2.+ 22/Z ) | 5.28
' (I ICE bt BT U
It %,=8, , K=UW3,

2,2, , K= 0,

= 1

Z2>2>Z1 | sy K

Therefore if 4, > 2. , L/3>k >0

and if Z.>% , 1 >k >UL/3

i

89
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Fron equation 5.27 Y12 approaches o@ = si
l.c. 0 =0, &, etc.
+ sin” K, 180 + sin = K, etc. 5.29
For Z1 = Z2’ K = 4/3, the behaviour of Y12 is thgs sinilar to
that of a single section‘transmissign line of length, 38. If Z1>> ZZ’

12 characteristic is a movement of the two asympitotic

apart. If 227 Z’l’ S

the effect of the ¥

lines S, and S 1 ahd 82

1 2
(see fig. 5.13)

move closer together

' |
| S, S,
Y, = |
0+3B | |
: |
g |
{ H
[ For Zp 74
R a— TFor Bq Ty = B
0 = sin 'k
R
|
j
i !
. |
Fie, 5.1% Y _ CHARACTERISTICS (FOR A THREE SECTION T.L. HETLWORK)

12



The maxima and minima for the curves occur vhen s = sind =
+A/K/5 when

!Iml max/min /2, for B,/4, =1,

increasing in value Tor Z,\/Z2 > 1 and decreasing for Z1/Zé< Te

553 The Two Section Transmission Line Hetwork with Zhunt Loading

-2 6 —— P e -
z Ye z
It can ve shown that ’ v
Y’IZ =~ 1/8 = - 1/[3'802 - Ye ZZ:I . 5.30
(a) For capacitive loading, Ye = 5uC -
Yo = "'1/B =+ i/ [ZZf‘:G - e 2% sinae] 5,51

If wC < 1 the network behaves as a two section transmission

line network but when JwC is appreciably

12

The behaviour of Y1 is shown in fig. 5.14.

2

Y . =3/ [Z s5in2hd —(wCZ72){1 - cosze_}]_ ;5.32'

191
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(b) For Inductive Loading, Ye =1/ jwL

Y

i/ [2z 5ingd cos® + Z°/wl sin 29]
12 = J 5

1

i/ {z £in20 + Zz/QL (1-cosae)J ' 5.3%

The Y12 characteristics are shown in fig. 5.15.
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(c) Tor Parallel Resonant Loading, Y, = (jwc + 1/ jwl)
Y= joC , if @3> 1
1/jwl, if 0 <1

parallel

The effect of resonant loading is the introduction of a zero

‘ . parallel R
for Y12 at 0 = eo, corresponding to the . resonant frequency, W
so that the Y12 characteristics for a two section T.L. with a parallel

resonant circuit will be of the form shown in fig. 5.15.
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Yig. .15 Y12 CHARACTERISTICS (FOR A TWO SECTION T.L. NETWORK WITH

PARALLIT, RESONANT LOADING)

The sign of the slope of the Y12

curve near the recomant

i

frequency, w,s can be changed by choosing the value of w, s as illustrated

in fig. 5.16 for a different w, value.

We see from fig. 5.10 and 5.11 that the behaviour of Yy

to some of the Y10 behaviours seen in figure 5.13 to S5.16.
parallel

is similar

Ve suggest that by using more than one’ resonant circuit
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leadings and use of more sections of T.L., the characteristics shown
in Tig. 5.1C and 5.11 for the opiimum lens can be realised. lore

detailed work needs to be done in this direction.
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Fig. 5.16 Y1? CHARACTERISTICS (FOR A TJO SECTION T.L. NETWORK WITI

PARALIEL RESONANT LOADING, OF DIFFERENT worVAIUE)

5.6 Summary

We have established the parameters involved in the design of the

rotationally symmetric network. They are the vhases of the mode



reflection coefficient of the structure. By choosing the'phasos such
that 2ll far-field modes cortribution are equal in vhase in the forward
direcvion we have obtained the cdesign parameters for the optimum'lens
network,

We see that the radiation pattern obtained from this lens has
very low back lobes vhere grating lobes afe not excited (i.e. when
spacing between feeds is small). Unlike the Luneburg Lens, the outvuts
from ports adjacent to the input port is low even for small spacings
between feeds. Instead the outputs ar. high at feeds on the side of

the lens.

Ve cenvisage building the optimum lens netwerk by interconnecting
2-port networks between the M feed voints. The relationship between
the Y12 éarameter f;r each of>the 2-port networks and the mode
admittances for the structure has been established. Examination of
some fairly simple transmission line networks have shown that it is

12

the 9 feed lens investigated. An all transmission line network could

possible to realise a network with the Y. characteristics obtained for

be produced if the lumped elements considered were replaced by short

or open-circuited transmission lines.
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CAPPENRDIX 5.1

5.1 Tor-field Dxcitation due to BExmonential Mode Bxcitation

a2 . .
for z(1+cosine) radiators

. A . ]
Pattern of radiators used: 2 [1 + cosine {0 —6)]
For the mth wode, array excitation is given by:

~

Iz(e) = I exp (3 m o) | A5.1

where 6 = array azimuthal angle.
t a point 6' in the far-field the signal is proportional to

IZ [1+cos(e'—6)] /2 . exp [j k a cos(@'—e)] exp (3 m o)

5 . . 1 . . . o
For the whole array the far-field in the © direction is the sum of
contribution for the whole array

27
.

i.e. F(B') = E.QJ [1+cos(e'-e)] exp [j k a cos(e'-e)] exp (j m 0)dd
o

A5.2

. . . . 1
expanding the first exvonential term and cos(6 -8)

21 . '
P (0") ‘EE—S { [1+coste’-0)] exp (Gm ) 5 (™3 ()
N=-00
o]
exp [§ n(0'-0)] | ae
an o
ie. T (0') = Ezgf{%‘ (39" 3 (ka) exp [3(n 0 + a(e'-0))] } a0

o
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+ EEJ/EZKj)n Jn(ka) exp [j 2(9'-8) + j(0'-8) + u 9] ao
L "

+ In [ 29" 9 00 e [§ n(8'-0) = §(8'-0) + m o] a0
l{_ "

leaving out the factor 2n

F(6") = ' (N T (ka) exp (jmo")
m —_ m E
2
+ (j)m+1 J_ (ka) exp (ju o)
e m+1
I
+ Eﬂ (j)m—q'Jm_q(ka) exp (3ma")
I
.l I a1 i . . - ; !
Fm(e ) = ?§ () <{Jm(ka) -3 [Jm_q(ha) - Jm+1(ha)] } ezp (jmo)
A5.3
— ' -, 1 ! 5 20 5
=TI . Bmvexp (jme") v A5.3(1)
I
= 1 .1 \ . 1 4 \
Y (i) [Jm(ka; -3 Jm(ka)] 45.6

liore generally it can be shown that for the mth mode but with a more
general symmetrical radiation pattern given by cos [p(e'-eﬂ , the

far-field is given by

F (6" =_]i2r1 [(j)“f"p Tpap (k) + (%P Jm_p(ka)] exp (3me")

AS.7
It can also be shown that if N discrete radiators arc uscd lhe

following additional higher order mode terms must be added to equation

A5a3



<M

44
_ mt =1
I il

I A M=1=N . I
+ _L}_l (yP-tha Jm_1_N(§ka)} exp[g (n-Nq)] A5.8

Dguation A5.3 and A5.7 shows that a mode excitation in the array
(near field) gives rise to a far-field mode excitation except for a

transformation factor, Bﬁ
- '

B
m

%! .. . .
(3) Jm(ka) for omni-directional radiator

1

(j)m [Jm(ka) -3 J;(ka)] /2 for Z(14cosine) radiators

i

[(j)mfp &m+ﬁ(ka) ¢ (3)™P Jm_p(ka)] /2 for [cosine
(p )] radiators.

For discrete radiation the grating lobe. can be neglected if the

spacing between feeds is large, i.e. m> ka, i.e. Jm(ka)<3<1 in

equation A5.8.
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APPENDIX 5.2

Description of Comouter Program Subroutines
Subroutines not already described in preceding chanters are:-

A5.2.1 Subroutire BESSEL(Z,NANS,NBSFN ,BSFH)

This is a liibrary subroutine which produces Bessel functions of
argunent, 2 of all orders.from 0O to MNANS. HNBSIN is the array which
stores the order of the Bessel Functions and BSFN/BJ is the array
which stores the corresponding Bessel Function values.

A5.2.2 Subroutine AMPARG(CXRIO,A ,DIAM,HN,YRTA)

is subroutine calculates A(1M1) the zmvlitude of the trans-
formation factor between modes in the near field and that in the far
field for an array of diameter, DIAM ( in wavelength). A(}1)
corresponds to bm in sec. 5.2.1, m = (M1-1). The subroutine alsq
calculates the mode reflection coefficient CXRHo; a complex variable.
The corresponding mode admittance, YETA{M1) is computed from the !
reflection coefficient. The flow chart for this subroutine is shown
in fig. AS5.2.1.

A5.2.% Subroutine YY12(I1,YETA,Y12,IDM)

This subroutine Computes the Y12 narameter; Y12 from the mode

admittance, YETA(11) from the expression given by equations 5.21.

The flow chart is shown in fig. A5.2.2.



A5.2.5 Subroutine WrV12(¥12,7,IDH,NIX)

The subroutine writes out the different ¥12 values for the

various given frequencies.

2

8}

1
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START .

Z = DIAN*PI

] DO I = 1,Iﬂﬁﬂﬁi>
] i

Call BESSEL to compute Bessel
v : A(I) = ABs(CRI(I))

Function of argument, 2 of all CXREO(I) = CBI(T)/A(T)
required orders.
y _ - Y
/ _
/ Outnut Bessel Functions \\ Reflection Coefiicient,
1 CXRHO(I) =
CONJG(CXRIO(I))

First Mode (zero)
cBd(1) = CHPIX(BJ(1), BJI(2)) . |

ARGRIO(I) = argument

JEXPH = CHPLX(1.0,0.0) of Reflection Coeff.
JEXP1 = CEPLX(0.0,-1.)

i YETA(L) =
~TAN(ARGRIIO(I)/2.0)

3

é—-—%————<<:Do M1 = 2, NNHLF

y

¥

Output A(I) and phase

CBJI(11) = CHPIX(BJI(14), /

(B3 (i11+2) -~ BI(H1=1))/2)
| . of reflection coeff. in
JEXPN = JEXPN*JEXP1

CBJ{M1) = CBJ(11)*JEXPN

degrees and YETA(I)

-——<————~<: CONTINUE Col

=

H

=
N

b~ RETYRN

Fig. A5.2.1  SUBRQUTINE AMPARG




START

’

N = HEN/2+1
HIA1 =1 - 1
g = 2.0*PI/IK

MODE = M1 - 1
CSHMRO = COS(FLOAT(MODE*IR)*Z)
YCS = YETA(141)*CSHRO

? T12T = Y127 + YCS

VT \
CONTINUE Ve
|

¥12(IDi,IR) = Y12T*2.0/FLOAT(NN)

Y

__""‘“*—""‘< CONTINUE

Fig. A5.2,2 SUBROUTIIE YY12

20
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CHAPTER 6

CONCLUSION AND SUGGESTION FOR FURTHER WORK

In chapter 2 we obtained, purely from consideration of
rotational sjmaetry an equivalent circuit for the Rotationally
Syunetric Hetwork (RSN) in terms of twc Butler-type matrices. In
the same chapter we shoﬁed that a Butler Matrix can be derived from
the Rotationally Symmetric Coupler (RSC) which is a special forn of
the RSN. In chapter 3 we obtained a 2N port network from an H-port
Luneburg Lens type structuré by the use of N directional couplers or
circulators. The'techniéue used may be applied to a special type of
H-port rotaﬁionally s#ﬁmetric network to obtain a 2N-port Butler
Matrix. If this can be done the number of com?onents plus directional
couplers required to fabricate the Butler Matrix may be less than
the number required, using conventional techniques, esvecially for
large N. The special type N-port RSN to be used necds further study.
“All these evidences suggest a,étrong felationship between the Butler
Hatrix and‘the Rotationally Symmetric Network (the Luneburg type |

Lens, in particular).

Yle have cbtained an equivalent circuit network for the Luneburg
- type lens. The results obtained suggest that the murber of elenents

required along each radial line is about 8 or 9 elements per wavelength.
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The minimun number of radial lines needed depends on the type of
radiator used and to a lesser exient, on the size of the lens in
wavelength. - We find that fewer radial lines are needed if the
radiators in the array are wmore directive. This is due to a stronger
taper for the far-field mode amplitude distribution (equivalent to
amplitude distribution for a correspondiﬁg linear array). DBecause

of this a lens used with beverage radiators gives beanwidths vhich do
not change as rapidly with frequency as that obtalned using (1+cosine)
radiators.

The number of components needed for an equivalent lens is about 9 OCO
(two inductors for every capacitor) for a 6.0\ diameter lens, using
(1+cosine) radiators and more than half this figure for beverage
radiators. {ince the number of components needed for the eguivaleant
lens is roﬁghly proportional to its area in wavelength, we think that
the numﬁer of components required would restrict the lens size to
about 5.0A. |

With current interest in microwave integrated circuitry this technique

may even be used for the U.H.F. and higher frequency bands. Even at

<

H.F., integréted circuit and thin film techniques could be used to
fabricate the-equivalent lens. Only one radial line need be printed.
The equivalent circuit technique could also be applied to other .
Luneburg tyve lenses described by Kay (27), Iiynen (28), De Size and
Woodward (20). The technique is particularly useful for lenses wﬁere

the required relative permitivity is less than zero, or vhere relative

permeability is other than unity.



In chapter 5 we examined the parameters involved in the desig
cf a RSIM. The ontimum lens network was arrived at by maximisiag the
gein in the forward direction of the array. We propose to builé the
lens network by inter-connecting 2-port networks between the N feecs
of the structure. To reglise the network we derived the erxpression
relating the Y12 parameteré for the 2—pofts requifed to the node
admittance of the structure. Examination of some simple transmission
line neiworks suggest that it is possible to realise the 2-port
network§ {fromn the Y12 characteristics obtained for a modest 9-feed
lens oﬁer the frequency range, 0.5 to 5.75 iHz,

Furthef detailed work needs to be done in the design of such

lens networks using the technique described.
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