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ABSTRACT 

The multi-beam aerial array is studied with emphasis 

on the processing network required for multi-beam operation. 

The general properties of the rotationally symmetric 

network (RSN) are investigated. A well known example of the 

RSN is the Luneburg Lens used in conjunction with a proposed 

feeding arrangement. The outputs from the lens are fed to 

radiators in an array of the same lens size (in wavelength) to 

obtain the far-field array pattern. Three types of radiators 

are used for the array - omni-directional, cardioid (I + cosine), 

and beverage aerial radiators. The use of a lumped equivalent 

circuit lens in place of the continuously varied dielectric lens 

is considered. The effects on the array performance of varying 

numbers of radial lines and numbers of elements per radial line 

used in the equivalent lens are considered. Also considered is 

the effect of finite Q values for the inductors used in the cir-

cuit. 

A synthesis technique to obtain the equivalent network 

for an 'optimum' Luneburg type lens is proposed. This network 

is built by interconnecting 2 port transmission line networks 

between the N feeds of the lens. 
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CHAPTER 1 

1. 	INTRODUCTION  

This thesis deals with the study and design of a compact 

wide band high frequency (3-30 Mhz) multibeam aerial array. The 

emphasis in this investigation is on the processing network 

required for multibeam operation. 

This chapter briefly surveys some multiple beam array systems. 

It also serves as an introduction to the following chapters. 

Section 1.1 surveys some exisUng H.F. multibeam aerial systems. 

In section 1.2 some processing networks for multiple beam operation 

are reviewed. Some ideas for a multiple bam system are considered 

briefly in section 1.3. 

Chapter 2 will deal with the general properties of the 

combining networks used for multibeam operation - the Butler Matrix 

for linear arrays and the Rotationally Symmetric Network for 

circular arrays. In chapter 3 the use of a Luneburg Lens in 

conjunction with N surrounding feeds and circulators or directional 

couplers to obtain a 2N port rotationally symmetric network is 

proposed. Chapter 4 investigates the behaviour of the equivalent 

z!ircuit Luneburg Lens. Chanter 5 deals with the synthesis of a 

Luneburg-type combining network for multibeam operation. 



1.1 Survey of Some Existing H.F. Multibeam Aerial System 

1.1.1 Rhombic Aerials1  

A widely used aerial is a fqrm of two or three nested or 

interleaved Rhombic aerials, each covering a 2:1 frequency range 

Each nest of Rhombic aerials is directional and can receive from 

only two opposite directions. For multiple beam reception several 

nests of Rhombics are positioned so that all directions in 

azimuth are covered. The Rhombics have to be spaced sufficiently 

apart to minimise coupling. Because of this a large ground area is 

required (approximately 240 acres for a system covering the 

frequency range 3 MHz to 30 MHz). This is one of the disadvantages 

of this system. The other drawback of this system is the relatively 

high side-lobe of between -7db to -10db. 

1.1.2 

Systems de::-ribed under this sub-section have each output in 

the array divided, generally, into as mary outputs as the number 

of. beams required at ally one time. Each sub-divided output from 

all or some of the aerials are phase so that for any particular 

direction of reception, the signal adds up in phase. 

1.1.2(a) Medusa System2,3 

In this system he aerial._ are omni-directional inverted 

cones, pocitioned randomly iil an array of several wavelength 

dimensions. The outputs 6re phased for any combinaticn of frequency 

2 



and direction using a high speed computer. This system provides 

a number of independent outlets each of which can be steered by the 

direction control equipment. This system though flexible in design 

and cl:oration is expensive due mainly to the high cost of the high 

speed computer which makes up the direction-control-equipment. The 

area occ-pied by such a system (5-25MHz) would occupy about 64 acres. 

1.1.2(b) Pusher System4  

AERIAL IN 
ARRAY 

POER. 
DIVIDERS 

PHASING 
NETWORK/ 
DELAY LINES 

 

OUTPUT FOR ONE 
BEAM 

Fig. 1.1 TYPICAL ARRANGEIMIT FOR TiE PUSHER SYSTEM 

The aerials (monopoles) are arrantzed in a circul,r array in 

3 



the Pusher system. Typically each output from the aerials is 

di-ided into eight parts. There are eight phasing networks so that 

the array can receive simultaneously from any eight (of the total 

of 2k directions - there are 24 radiators equally spaced around the 

array). 

Ali,hough the actual area occupied by the array itself is 

small (about 5 acres for a 150m diameter array for the 1.5 to 10MHz 

band) the perforrance of the system is poor. The side lobe ratio 

is high - about -4.2db at 2MHz and -6.6db at 8MHz. The gain is 

also poor. 

• 1.1.2(c) Array of Beverage Aerials5  

BEVERAGE AERIALS 

TERMINATED fl ITS 
CHARACTERISTIC 
IMPEDANCE 

    

. 1.2 CIRCULAR ARRAY OF TEVERAGE AERIALS. 

4 



A system under study in conjunction with the work reported 

here uses Beverage aerials arra-:ged radially to form an array. The 

outputs are combined as in the Pusher system. The advantage of this 

system is the simplicity and the wide bandwidth of the individual 

Beverage aerials. 

Because of the need for power division at the output of each 

of the aerials, amplification may be required to give an acceptable 

signal to noise ratio. 

1.1.3 The Luneburg Lens6 

The Luneburg Lens was first proposed as an optical lens. It 

has been used at microwave frequencies and lately at the H.F. band. 

The Luneburg Lens is a cylindrical or spherical structure, with 

refractive index which varies with distance from the centre of the 

lens. 

Owing to the variation of refractive index a plane wave 

arriving inany direCtion is focussed onto a point on the other side 

of the lens. As long.as there are feeds at the focal point, the 

lens can receive from any direction (due to rotational symmetry). 

Such lenses are used at microwave frequencies. At such 

frequencies dielectric materials are used. In optics the dimensions 

of.the lens are assumed to be large compared with the wavelength. 

1r chapter 2 the electromagnetic solution to the Luneburg Lens is 

given for the case.where µr = 6r 
=,)2-r2, r = normalised radius. 

This and other solutions (Er =(2-r2), µr
= 1) suggest that a minimum 

5 



diameter of about 1.5 wavelength is required for the lens to behave 

properly. 

WA v, -FRONT 

0 

REFRACTIVE INDEX 

n(r) = 2-r2 

r = normalised radius 

Fig. 1.3 TEE LUNEBURG LENS 

The Luneburg Lens has so far been used as part of the radiating 

structure in an aerial system. But the "Lens" can be thought of as 

a processing network - used in conjunction with feeds connecting the 

lens to radiators as fully described in Chapter 3. The H.F. Wire 

Grid lens (described in the following paragraph) could be looked upon 

as a processing network, directly connected via feeds to the radiators 

(extended horns). It is probably more economical at H.F. to use a 

network to simulate this lens type behaviour (e.g. tfie equivant 

circuit lens proposed in section 1.3.3). 



PLAN VIEW HORN 

LENS 

ELEVATION 

1.1.3(a) The H.F. Wire Grid Luneburg Lens7'8  

The variation of dielectric constant can be achieved by using 

two wire meshes, one above the ..ther. By varying the spacing 

betweeu the grids (as a function of radius) the equivalent refractive 

index can be varied as required in a Luneburg Lens. Such a lens with 

horns extonding from the edges has produced quite satisfactory 

results (9). 

One of the major draw-

backs of the H.F. Wire-Grid 

antenna is its high cost - 

most probably due to the close 

tolerances involved in the 

construction of the lens. For 

a 600 ft. diameter lens the, 

8-pacing between the mesh at 

the centre of the lens is 7"; 

at the edge of the lens the 

spacing is 12'. The other 

disadvantage of this aerial is 

tha low efficiency of the 

system due to blocking by the 

feeds around the lens. 

Fig. 1.4 H.F. WIRE GRID LUTIEBURG 

LENS'ANTITTINA 



1 .2 

This section looks at processing networks for multibeam 

c.eration, which do not involve power division. The Butler Matrix 

(for linear arrays) and a rotationally symmetric network (for 

circular arrays) will be examined briefly. This subject will be 

studied in detail in Chapter 2. 

1.2.1 The Butler Matrixl°  (for Linear Array)  

The Butler Matrix is a 

network obtained by inter-

connecting 3db directional 

couplers and phase shifters in 
AERIAL fl A 

a matrix to obtain N output 	1 	LINEAR ARRAY 
o 

and N input ports. The ports 	 OUTPUT 

are uncoupled. For the 

transmission mode, the N out-

puts are connected by equal 

length transmission lines to 	 INPUT 

equally spaced aerials in a 

linear array. N independent.  

beams can be obtained by 

exciting the corresponding input ports. Because the array is linear, 

the effective aperture of the array decreases cosinusoidally with 

the angle of the beam from broa2.3ide. A circular array will avoid 

this drawback. The limitations of the 13_near Butler Array in terms 

of output amplitude distribution has been obtained by Shelton (11) 

8 

Fig. 1.5 THE BUTLER ARRAY 



AERIAL 
ARRAY 

EQUAL LENGTH 	V; 
TRANSMISSION </ 
LINE 

V1 

V2 

v3 

- vrr 

ROTATIONALLY 

SYn'T,TRIC 

NETWORK 

I 
Ved.1" ‘• • 

( 	• • 

Vr ( g 
Ye 

for a lossless matched feed network. 

1,2.2 Rotationally Symmetric Network  

The main property of such a network is its rotational symmetry. 

Also the outputs from the network. must be such that when connected 

to radiators in a circular array, a directive beam is obtained in 

the far-field. The network has N input and N output ports. By 

changing the excitation from one input port to the next the signals 

at the N-output ports would be unchanged except for a rotation of 

the signals by one port. 

. Fig. 1.6 ROTATIONALLY SYMMETRIC ARRAY 

For V1  = 1'only  

V; = a ;V2=b ; 	= c ; 	=
e ; VA = b 

9 



For V, = 1 only 

etc. 

V' = b ; = a t 7 	V; = b ; • • • • • • V 	= d ; V
N
' = c 

N-1 	' 

One way of achieving this characteristic is by the use of two 

linear Butler type matrices. The limitations involved are considered 

in Chapt-r 2. A Luneburg type lens or its equivalent used in 

conjunction with N surrounding feeds satisfies the necessary 

properties required for a multibeam circular array. 

1.3 

Some ideas derived from the concept discussed in the preceding 

paragraph will be considered briefly in this section, and in detail 

in Chapter •3 and following chapters. 

1.3.1 Scaled Lens (with Freouency Translation) 

At the High Frequency band a full scale dielectric Luneburg 

Lens is not practicab3P because of the large diameters (some 

hundred metres) involved. However, a much smaller lens could be 

used if signals arriving at the periphery of the "lens" are picked 

up at a discrete number of feed points and translated to U.H.F. band 

(amplification is obtained in this up-conversion process). The 

signals are then processed using the much scaled down lens and the 

frequency is down-converted to produce the original H.F. sign  1. 

The Luneburg Lens is basically a wideband device bu'L; with the 

introduction of frequency translation the system becomes frequency 

10 



1 

dependent. Calculations for a H.F. system (3-30MHz) suggest that 

for a 200 metre array a scaled-down lens has a bandwidth of only 

1.5 MHz. Therefore over the whole H.F. range 18 scaled-down lenses 
use of 

will be needed, together with extensiveijiltersand other components. 

The cost of this system became excessive due to the large numbers of 

filters needed plus mixers, circulatorr,  and local oscillators. 

Therefore, over such a wide frequency band this system is not 

practicable. 

1.3;2 Equivalent Circuit Lens 

The close tolerances 

required in the construction 

of the H.F. Wire Grid lens was • . 

one of the reasons for the high 

.1.='Y cost of the system. It was 	61..2._ _:-  

, thought that there could be a 	er.‘  , ,,/ j•,' ir  , 
,fes.. 	, , 1 

trade-off between mechanical 	 / 1 _.' 7..,..  
i 	I 	e 	/ 

and electrical tolerances if an 	 , 	.- 	, / 

)----- 

Lens were used. The equivalent' 

network is made up of an inter-

connection of inductors and 

Capacitors - their values 

derending on the "distance" of the equivalent element away from the 

centre of the lens.. 

The equivalent circuit will be used in conjunction with 

equivalent circuit Luneburg 

Fig. 1.7 EQUIVALENT CIRCUIT LENS 



circulators and radiating structures (typically, doublets, beverage 

aerials and monopole) using the arrangement described in Chapter 3. 

The equivalent circuit is studd in Chapter 4. Among the problems 

studicd are: the minimum number of elements required to simulate a 

dielectric lens, coupling between feeds, types of radiators used 

and the effect of finite Q of the inductors used in the circuit. 

12 



CHAPTER 2 

2. 	NETWORKS FOR MULTIPLE BEAM ARRAYS 

2.1 Introduction  

This chapter studies the general properties of the network used 

for feeding an array to facilitate multiple beam operation. 

In a linear array the Butler Matrix
10  is already well known. 

For a circular array a rotationally symmetric network will be studied 

as a 2N port network with N outputs feeding the N radiators and N 

inputs, for each of the N beams (for the transmitting case). 

A special type of the rotationally symmetric network, designated 

the "Rotationally Symmetric Coupler" (RSC) can be transformed into a 

Butler Matrix Network by connecting two sets of N aprro-priate phase 

shifters to the N-input and N-output ports. The transformation is 

reversible. 

13 



BUTLER 

MATRIX 
1- • 	 

EQUAL LENGTH 
TRANSMISSION 
LINLS 

LINEAR ARRAY 
OF RADIATORS 

H I. 	 

INPUT 
OUT-
PUT 

• 

2.2 For Linear Array (Butler Matrix)10  

Fig. 2.1 BUTTER ARRAY  

The Butler Matrix can be described as a 2Nx2N matrix, i.e. a 

network with N input ports and N output ports. The N output ports 

awe connected to a linear array of radiators via equal length 

transmission lines. The scattering matrix can be written as:- 

[P
11 	P12  

The input and output ports are decoupled so that 

Owing to reciprocity P21 74 T12 [1.]  

i.e. 
0 

IP11, f P22] = [ 01 . 

(2) 

    

     

P21 	P22 

(1) 

111 
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where 	= [{13, } 	kl)21  	"ij 
	 (3) 

ipll = 1p} represents the outputs from the matrix network when input 

1 is excited, i.e. the current distribution of the array. For 

multibeam operation 1p2) will be similar to {p1} and [IDA , ip21 , 

etc., except Tor a progressive phase difference. Therefore for N 

equally spaced beams 

{ P2} = D  { pi} _ D i p  

and more generally 

{Pr} = Dr  1 0 

where 	D = diag. (1, 0' 	 ej(N-1)0. 

and 0 = 

Rewriting P from eqn. (3) 

I )] = 	{P}   DN-1  

Substituting for D in (6)- on rearranging the R.H.S. 

••• 

P2 

(4)  

(5)  

(G) 

P = (7) 

PI_ 

= diag. pl 1 X1 



1 	1 	1 	 . . . . 1 
1 e-i0 	e-j20 e-j(N-1)0 • • • • 

1 	e-j20 -j(N-1)20 
ej40 e . 	. .  

• • • • 

16 

(8) where X = 1 
JN 

• • 

1 e-j(N-1)0 e-j(N-1)20 	e-j(N-1)20 

The rth column of [X1 is the eigenvector corresponding to the eigen-

value, e-i(r-1)0  , of the symmetrical operator, IR] (Appendix A2.1). 

For a lossless network P P* = I 

i.e. 	n p * = 1 	for all r+ -r r 
Rewriting (1) for a lossless network, 

0 	X:1 
[B] = 

{5r:* 	0 

2.3 	Rotationally Symmetric Network for Circular Array 

CIRCULAR" 
ARRAY 

(9)  

(10)  

a 

EQUAL LENGTH 
T.L. 

a' 1 
Hte  

2N b. 

Fig. 2.2 ROTATIONALLY SYMMETRIC ARRAY 

+ implying orthogonal beams, Shelton, Allen, etc. (11, 29, 30) 



2.3.1  

As in the case for linear array we can write C as 

0 	T 
[C1 = 	— 	 (11) 

T 	0_ 

with 
	

T .-t'* = [I], 	 (12) 

for a lossless network . Using scattering matrix formulations 

b [0 T] a 

Let 	T = {t1} , t21 

where {t1) 	It21   and {tN} represent the current distributions 

on the array when the respective input ports 1, 2, 	 , N, are 

excited. itil and ft21 , It21 and {t3} , {trl , and { t r+1}  differ 

from one another only in a rotation of the ports pocitions, i.e. 

= 	{tt} RN-1 tt}1 , R {t} 	 

0 0 . 	. 	. 1 

1 0 . 	. 	. 0 

where [R] = 0 1 . 	. 	. 0 = X D X* (Appendix A2.1) 

0 0 . 	. 	1 0 

i.e. 	± = X [ X* it) , D X* N , 	, D11*.-1  X* tl 1 

N-1  i p'1)- 1  = X t W D .i I , D {Pt} , 	 , 	j 

i.e. 	T= X[ p' i a  x*, 

17 

b' 	T 	0 	a' 
(13) 

tIT 
	(14) 

(15)  

(16)  

(17)  



where 	= X* { t 

and 	[pl]d 	diag ( 	) 

For lossless network 

TT* =I 

i.e. 	d P = 

Ptrl2 = 
	for r = 1 to N 
	

(19) 

from (1S) 

r  = Lt.
1  e

j(r-1)(i-1  
i=1 

i.e. Ip'rl = 1 , frsAl (19) 

i.e. 	pir 
= ejOr 

' 

r= 1 to N 

(20) gives N equations, with 2N unknowns (ti  is complex). If either 

the phases or the amplitudes of ti  is specified the other unknowns 

can be obtained. 

We Will see in the next section that p'r  is in fact the eigen- 

value corresponding to the rth 

2.3.2 Eigenvalue Solution 

For a rotationally oymmetric system of N ports, using the 

following matrix notation:- 

p,  (20)  

(21)  



1 1 
2 

0 

0 
a 

N-1 

Fig. 2.3 ROTATIONAL SYMMETRY 

ai 
1 

19 

a
2 

, the incident field 	 (22) 

aN 

= the reflected fields 

= scattering matrix of the Rotationally 6ymmetric network 

0 0 . . . 0 1 
1 0 . . . 0 0 
0 1 	 . • 

• • • 

• . 0 • 

0 . • • e 1 0 

, the rotational operator, 



tb = [S Hu} 	 (23) 

Owing to rotational symmetry .  121 operating on the input signals will 

give an output 

= 	 (24) 

this output should•be the same as that obtained by [R] operating on 

{b} in equation (23) 

i.e. R 031 
	• I 	

(25) 

Substituting for {b} from eqn.(23) and for 
	from equation 24, 

P/1S1 kail = [S] [R] 

i.e. IRRS1= [S]_ [R] 

[R] and [S1 commutes, therefore they snare the same eigen solutions 

(obtained in Appendix A2.1) 

20 

i.e. 	{a.n1). 

is the mth eigenvector for 

R 	and S 

 

 

or {am} is the.solution for the mth mode' 

Since {am} is the mth eigenvector for the system, a signal tam} 

applied to the N ports of the structure will give rise to a reflected 

signal {b} which is similar in form to lam} except for the constant 

?gym which is the reflection coefficient of the mth mode. 

i.e. 	= A,m {am} 
	

(26) 

but 	1bl = [Sltaml 
	

(23) 



Equating (23) and (26) 

[S Ham }= Xm l am) , 	 (27) 

so that Xm is the mth eigenvalue corresponding to the mth eigenvector 

or mode. 

Extending equ.(27) to take into account all the eigenvector 

{ am } , m = 1 to N 

11.X = 	1 x 1d 	 (28) 

where 	[ x]....., I  { a11  , i a2}  
. . • • { aNli1 (Appendix A2.1) 

and 	I X. 	= diag (Xi 	 XN) 

and 	XT = reflectionsoefficient of rth mode 

hence 	S = [X] ['X Li  X-1  

= 	X 	X id  X* 	 (29) 

or 	S 	= .:E 	Xm ei(m-1)(r-5)0 	 (30) rs m=1 

For a .symmetrical current distribution 

S rs = S sr  , giving from eqn.(30) - 

Xk  - X N-k  (k = 1 to N-1) 
	

(31) 

N' 
2 

i.e. 	S 
rs 

= 	(X
o 
 + X cos(m-1)(r-s)0) 

m=1 

XN(.1)N/2 , if N is even) 	(32) 
2 

where N' N 
2 = - , for N, even 
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N-1 , for N, odd 
2, 

2.3.3 Relationship between Butler Matrix and Rotationally Symmetric Network. 

for Butler Matrix 

0 	Xi 

= [— X of 

0 	fX[X]dX*] 
c = 

[x*[x]dx o 
) 

for Rotationally Symmetric Network  

(io) 

(33) 
(from (11) and (17)) 

The form of equation (33) suggests that a rotationally 

symmetric network can be cons'Gructed by cascading two Butler type 

matrix via suitable phase shifters correpponding to the phase of the 

eigenvalues. One of the two Butler type matrix corresponding to 1B1 

10 abc1 

cba 0 

Fig. 2.L CASCADE OF THREE 2-N NETWORKS  

fs obtained by interchanging the input port 1 and N, 2 and N-1, etc., 

of the matrix network [B]'. Similar results have been obtained by 

Davis (12). 

It is significant that the phase delays required corresponds to 



[B* 

X* 

X* 0 

x

LX 0  
I 

[ B 	= 

.•••••••••••••=111:1 

Fig. 2.5 ROTATIONALLY SYMILETRIC-  MATRIX FROM TWO BUTLER MATRICES  

the exponents of reflection coefficients of the network. Therefore 

by varying the reflection coefficients for the various modes the 

outputs from a RSN can be controlled. A network, with the required 

mode reflection coefficient values can then be synthesised. 

2.4 Rotationally Symmetric Coupler - Butler Matrix Transform  

In the prededing section a rotationally symmetric network for 

circular array was obtained from two Butler type matrices and a 

series of phase shifters. In a special case it will be shown that 

the Butler matrix can be transformed into a special rotationally 

symmetric network to be called Rotationally Symmetric Coupler (RSC) 

which has equal amplitude outputs. It is thought that the reverse 

transform is more significant. 
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where 

for Butler Matrix 

where 

0 

t
1 

t
2 

t
2 

t
1 

c'3 
t
2 

tN 

• • 

. 	. 

• 

. 

tN 
t
N-1 

• 
t
l  

(ii) 

implying circulant 

properties and 

symmetry of outputs. 

] 
X 	

(10) 
* 0  

1 X*rs = 	exp 	j(f•-1)(s-1)95] AffT  

24 

For the R.S.N.  

[TT 

(34) 

We shall first assume that 

1.T1 = D X* D 	(since [T1 , synnetrical) 	(35) 

i.e. 	[X*] . D-1  T' D-1 (36) 

where 	D = diag (1, e-ja2, e-ja3 	 e-jaN) 	(37) 

D 1  = diag (1, 'eja2, eja3, 	 ejaM) 	(38) 

Owing to its circulant properties and symmetry 

2  Trs  = - 	exp [j\frs_r4.11 (39) 

(for ,3qual amplitude outputs and for s >r) 

from (36), (38), and (39) 

X*rs  = 	exp [la 	Ts-r+1 has 



but rs = 1 exp[j(r-i)(s-1)0] 

i.e. 	r-1)(6-1)0 = ar f as + 4s-r+1 + k.2n 

for r = 1, 	 

s> r 

Let s r 

i.e. 	(r-1)20 = 2ar  + 	+ 2nk 

Put 4'I 0 

(r-1)20  i.e. 	ar 	2 	- 2nk 

Substituting (41) in (40) 

2  

	

(r-1)(5-1)0 = 	+ 
Cs 	-1)2 (r-1) 	

+ s-r+1 + Ars.27c . 2 

where Ars is ail integer const. 

i.e. 	`'s-r+1+1 	- 1 [(r-1) - (s-1)] 2  0 + Ars.2n 

1 

	

= 	(r-s)20 + Ars.2n 

The multiples of 2n in equations (41) and (42) may be conveniently 

dropped since ar and 4,r-s+1   are phase values;hence equation (41) .  

and (42) becomes:- 

(r-1)2 0 a 
- 

	

r 	2 	 (41a) 

Irs-r+1 = - z (r-s)21! 	(42a) 

Hence equation (35) is proved 

[T1 = D X* D 	 (35) 
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(34) 

(40) 

(0) 

(42) 



-j(r-1)2d  
D 	diag (1, e  where   , e 

e
(F-1)2  

) 

Therefore  the rotationally symmetric network defined by I CI can be 

constructed from a Butler Matrix with two sets of N delay lines 

connected to its input and output ports. The phase delays are given 

by: 

o 
r - 

(r-1)20  for the rth and (N+r)th ports. 
2 

Fig. 2.6 ROTATIONALLY SYI1ETRIC COUPLER FROM BUTLER MATRIX 

Conversely a rotationally symmetric coupler (RSC) can be converted 

into a Butler matrix with a different set of delay lines as can be 

seen from equation (36). 

If the outputs from a RSC are fed into omni-directional radiators 

in a circular array of appropriate dimensions, a radiation pattern with 

a sidelobe level of about -10db is obtained. With the use of (1+Cosine) 

radiator or beverage aerials. no useful patterns were obtained. This 

suggests that the RSC should be used to produce Butler matrices rather 
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than the converse. 

2.5 Summary  

In section 1.3.1 it has been shown that once either the N 

amplitudes of the outputs or the N phase of the outputs of a lossless 

rotationally symmetric network aro specified, the other unspecified 

parameters are fixed. 

In section 1.3.1 and 1.3.2 we see that a rotationally symmetr_c 

network can be realised by cascading two Butler type matrices via N 

phase-shifters. The values of these phase shifters correspond to 

the exponents of the eigenvalues of the scattering matrix which 

describes the outputs from the network. The eigenvalues are in fact 

the reflection coefficients of the corresponding mode. Therefore the 

output from a rotationally symmetric network can be altered by 

controlling the values of the eigenvalues or phase shifter. As an 

alternative to the use of Butler matrices a network with the required 

mode reflection coefficient may be synthesized. One obvious example 

of this type of network is a Luneburg Lens or its equivalent structure 

with N feeds around the circumference (Ch. 3). 

If the outputs of a IISN are equal a rotationally symmetric 

coupler (RSC) is obtained. This network can be transformed from a 

Butler matrix network by - connecting two sets of N phase-shifters to 

the N-input and N-output ports. Conversely the RSC could be transformed 

into a Butler matrix using a complementary set of phase-shifters. It 

is thought that this transformation is more significant. 
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APPENDIX A2.1 

ROTATIORA,L SY/1/.ETRY OPERATOR, [ R  

   

If the fields in each of 

the N-ports of a rotationally 

symmetric structure were rotated 

in say, the clockwise direction, 

the behaviour of the structure 

will be unchanged owing to 

rotational symmetry. [R] is the 

rotationally symmetric operator 

which will effect this covering 

operation. 

 

  

Fig. A2.1 ROTATION SYMI•ETRY 

 

     

0 0 	 

1 0 . 
. 1 0 

[R] = 

0 • 

(A2.1) 

Fields at port 1 replace fields at port 2, port 2, at port 3, etc. 

Eigenvalue Solution 

[R] la) = gi  [ai] 	 (A2.2) 

where {al} is the ith eigenvector or solution which satisfies 

the boundary condition, 



and gi  is the corresponding eigenvalue of [R1. 

i.e. ([R) - 	10'1, yielding N simultaneous equations 

which determines {a1} in } 	terms of the coefficient of the matrix 

(IR] - giII1). The eigenvectors have non-vanishing solutions only 

if the determinant is zero, 

i.e. 	F(g) = IIR1 - 	= 0 	(A2.3) 

(The Characteristic Equation) 

When exjnded the characteristic equations result in a polynomial of 

degree N, whose roots, g
1
, g

2
, 	 g

N are'the N eigenvalues of R . 

Owing to symmetry [R]
N 

= II]. It can be shown that the eigenvalue 

of [R] are the roots of 1 ((13) - Altman, pp.82). 

i.e. g1, g2, 	 r 
g 9 

 

. 2n(r-1) g = exp 3 TR, 	I (A2.4) 

 

(r = 1 to N)- 

The eigenvector, iail corresponding to g1 is determined within a 

constant by 
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i i 
a1 
	

a2  
Apt = Ap2  

 

aN  

A- .p.-N  (A2.5) 

 

(Cramer's Rule) 

where Ann is the co-factor of the (p,q) element of RR) - gifIll- 

and p may be any row. 

I ER] - 	1 

-g 0 . 0 1 
I 	-g . 	. _ 0 

O 1 -g1  . 
• • 	. 	• 

O ▪ . 1 -g1  

(A2.6) 

   



i.e. 

a
N11 ] 

t
kal 	a21  i•e• 

where 0 Zn  

1 

(A2.9) 

( 1 
e-gri-1)0 
e-j2(N-1)0 

e_j(N-1)2 o 

(A2.8) 

I • 

1 e-j(N•1)O 

It can be shown that:- 

ai . a l  
2 	 ar 	aN  

+(si)N-1 	+(gi)N-2 	+(gi)N-r 	+1 (A2.7) 
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Normalising A2.9 

X 1  [-VN  
 {aN}] 

so that X rs = 1 	e-j(r-1)(6-1)0 

From (A2.2) 

[in (aii.= g1  ai 	 (A2.2) 

or 	IR]tXj =[X][Gd] 	 (A2.12) 

where 	1.C4 di = diag (gi, r.-,2, 	 g ) 	 (A2.13) 

i.e. 	[R] = X [Gd] X-1  

but 	X-1   = X* = X* 	(X symmetrical) 

i.e. 1121 = X 1Gd] X* 	 (A2.14) 



CHAPTER 3 

3- 	THE MULTIBEAM LUNEBURG LENS FED CIRCULAR ARRAY 

3.1 INTRODUCTION 

The general properties of a 2N-loort network for multibeam 

operation were studied in Chapter 2. The use of a Luneburg Lens 

in conjunction with N surrounding fields as a 2N-port network will 

be studied in detail in this chapter. 

Two schemes are proposed to facilitate multiple beam operation 

using either one or two lenses. In one arrangement one lens is used 

together with N three port circulators. In the other two identical 

lenses are used together with N 3-db (quadrature) directional 

couplers. 

To verify the feasibility of the proposal, the electromagnetic 

solution of the Luneburg Lens (with ti =c ) is obtained. The 

reflection coefficient is calculated for each mode and the values 

used to obtain the scattering matrix (i.e. the output distribution 

at the outputs of the Luneburg Lens). 

The outputs from the lens are fed to (1 4- cosine) pattern 

radiators in an array of the same size (in wavelength) as that of 

the lens, to obtain the far-field radiation pattern of the array. 
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The use of omni-directional radiators and beverage aerials in the 

array is also considered. 

3.2 ARRANGEMENT FOR MULTIBEAM LENS FED CIRCULAR ARRAY 

Two feeding arrangements are proposed for obtaining multiple 

directional beams using Luneburg Lens type combining networks. The 

first arrangement uses one lens with its feeds connected to radiators 

and to the transmitters or receivers via three port circulators.. In 

the other arrangement two identical lenses are used. Two outputs 

from the two lenses - one each from the two feeds in the same 

position for the two lenses, are connected to the radiators and the 

transmitters or receivers via 3db quadrature directional couplers. 

Theoretically the two arrangements can be used for simultaneous 

transmission and reception. Both systems can be used for scanning 

if each beam output is fed into a scanning network. 

3.2.1 Multiple Beam Lens Fed Circular Array (One Lens)  

The main feature of this arrangement is the Luneburg Lens type 

colaining network, L. This could be a full-scale dielec'-ric lens, 

a scaled Luneburg Lens (if frequency translation is used), a lumped 

r.ircuit equivalent circuit lens or any rotationally symmetric structure 

with focussing properties. 'me circumference of the lens is totally 

surrounded by N feeds so that ideally no loss of power occurs in the 

lens and feed arrangement. Horns could be used as feeds in microwave 
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► 

L - LENS 
F - FEhD 
A - AERIAL 
C CIRCULATOR 
R
x 
- RECEIVER/TRANSMITTER 

V 

lenses. The feeds are connected by equal length transmission lines 

to the radiators and the transmitters or 2-.:ceivers via three port 

rig. 3.1 MULTIPLE BEAM LENS-FED ARRAY (ONE LENS - FOR RECEIVE MODE)  

circulators. A 2N port network with rotationally symmetric properties 

is thus obtained. The radiators are arranged in a circular array of 
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LENS, L 

in 
the same dimensions (electrically) as that. of the combing lens. 

The arrangement may be used either for transmission or 

reception. To illustrate the mode of operation, the receiving mode 

will be considered. The radiators in the array pick up signals from 

a plane wave arriving from the direction shown in fig. 3.1. 'The • 

signals travel down the transmission lines to the circulators, C, 

where they are directed into the lens, L, through the feeds, F. In 

the lens the signals are focussed on to a point at the circumference, 

on the other side of the lens. This focussed signal is picked up at 

feed, Fl, travels to the circulator and is directed into the receiver, 

R. Signals arriving from any of the N directions are similarly 

combined. 

Fig. 3.2(a) RECEIVE MODE 

For transmission the positions of the radiators and the feed 

ports are reversed. However, if common TR mode is required two of 

the lens-fed system already described will be needed - one for 

transmission and the other for reception. The output ports from two 

feeds in identical positions from each of the two structures are 

34 



Rx 

L, 	(11c E15-1-101-4) 

T, I 

35 

(TP,ASMISSION) 

A V 
F 

Li 

Fig. 3.2(b) COMMON TR MODE (With Three 3-Port Circulators 

or a 5-Port Circulator)  

Fig. 3.3 TRANSMIT/RECEIVE MODE (Using 4-Port Circulators) 

(P•iarston (19))  

 

    



connected to the radiators in thu array via 3-port circulator as 

illustrated in fig. 3.2(b). 'Lie ports numbered 1 to 5 then 

constitutes a 5 port circulator. 

A similar arrangement proposed by Marston (19) is illustrated 

in fig. 3.3. 

3.2.2 Multiple Beam Lens Fed Array (Two Lenses) 

An arrangement which permits simultaneous reception and 

transmission is illustrated in fig. 3.4. Two identical lenses, Li  

and L
2 
together with feeds are employed. The outputs from two feeds 

in identical positions from each of the two lenses are fed into two 

ports of a ?;db-directional coupler. The other two ports of the 

coupler are connected to the radiator and the receiver or transmitter 

as indicated in fig. 34(a). 

For transmission in the direction B1, a signal V1  is applied 

to the lower input branch of the directional couplers by the 

transmitter Tx giving outputs jVi 
2 

ports.  respectively, i.e. at feeds F 

1 
and V2 — at the upper and lower 

and Ft1  respectively. Because 

of the lens action, the signals are distributed to the other ports 

and picked up by the feeds. The outputs at the upper and lower 

lenses are in phase quadrature. Hence at any two identical feed 

points the signal travelling into the direction coupler ( ,D5, say) 

are in phase quadrature. Therefore no output is obtained at the 

receiver/transmitter port, but a signal 
g.1S5 

appears at the radiator, 

36 



•••• 

L - TJqiS 
A - AERIAL 

(b) ELEVATION 

tr> 

D 	DIRECTIONAL COUPTER 	- 
T TRANSMITTER/RECEIVER 
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(b) PLAN VIEW 

Fig. 3.4 MULTIPLE BEAM LENS khD ARRAY (TWO LENSES)  



A_ (S
n  is a constant depending on the position of the port with. 

respect to tne transmitting port). Since the distributed signals 

are nearly cophasal due to the property of the lens a directional 

beam is obtained in the direction, B1. 

The array behaves similarly for reception. In such a case, 

the signals are received at the radiators, transmitted via the 

directional couplers to the lens where the signals are focussed on 

to a feed-point on the other side of the two lenses. Since the two 

signals are equal but in phase quadrature the signals are transmitted 

only to the receiver port. 

These arrangements can therefore be used for simultaneous 

transmission to or reception from as many directions as there are 

aerial radiators. For the common TR mode operation each output from 

the array is connected-to a transmitter and a receiver via a 3-port 

circulator. 

In both arrangements (sec. 3.2.1 and 3.2.2) a 2N-port network 

is obtained from an N-port structure (the lens with its N feeds). 

Whereas there is no coupling between output ports in a Butler Array 

there is some coupling between output feeds of the Luneburg type 

network. It can be shown (Appendix 3.1) that the scattering matrix 

of the. 2N-port network work resulting from the use of two sets of 

lenses with direction couplers is 

C =j 

	

10 	Si 

	

S 	0 
(3.1) 
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where [S] = scattering matrix of the N-port Lens Structure. 

3.3 BEHAVIOUR OF THE MULTIBEAM LENS CIRCULAR ARRAY  

Equation 2.3.2 suggests that the reflection coefficient of the 

various modes are required to obtain the distribution at the output 

feeds of the lens network. The electromagnetic solution for the 

Luneburg Lenr is worked out in section 3.3.1. It is thought that a 

Luneburg Lens with pr  =er  may prove riure useful than the ordinary 

Luneburg Lens (with gr  = 1) since there is one extra parameter, gr  

(especially in relation to the.equivalent circuit lens in C1apter 4). 

The electromagnetic solution of the ordinary two-dimensional Luneburg 

Lens has already been obtained by Jasik (14). 

3.3.1(a) Electromagnetic Solution of the Luneburg Lens (g 	 e ) 

For the Luneburg Lens, refractive index is given by 

n(r) 	\12 - r2.42'  = Nigr) e (r) (3.2) 

where 	r = distance from centre of lens 

a = radius of lens 

g(r) = relative permeability 

E(r) = relative permitivity and the centre of the lens 

corresponds to the origin of the cylindrical co-ordinate system. 

For 	g(r) = E(r) 

µ(r) = E (r) 	- 1242' 
	

(3.3) 
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3.6, 
aH 

O

, 	aH
r  substituting for — and ao in 

82E • 

art 
poll(r)3  2 

1 
a[µ0µ(r)] 

ar 
i.e. 	1  

J(. 1011(r) • 
1 	 . aEz 	aEz 

ar jwIllogr)  ar 

For a lens of height less than half a wavelength only the 

Transverse Electric Mode exist. 

Transverse Electric Mode Es, p   HH, Hr  only 

From Maxwell's equations, 

1 aEz 	bBr 
r ao 	- at 

aE
z 
	aB0  

ar - at 

apz ) ax  
r ar 0 r a0 	at 

differentiating 3.4 w.r.t. 0 and 3.5 w.r.t. r and rearranging, 

2 aHr 	1 	. 1 . 	Ez 
a - jwilogr)  

ag(r)p.0  aE z aH„ 	a2E 
P 	1 	- _ 	ar 	ar  

ar 	- jwµo/1(r) 	art 	
jco [ µoµ(r)  j 2  

aH 
1  - 24 apz  er r 	r of 	at (3.6) 

a2E 
+ 
r2  • j 	

— jo)  oe(r) Ez  
wIloll(r) 	80' 
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(3.4(i)) 

(3.5(:)) 



Substituting for 

and 

2 2r2 

r2R" + a  
2 

2a -r
2  

a2E 
i.e. r2 	0µ(r) 	1 11  2 aEz 	2 

Br 	
ar 	Tt777r 	110E0r2  e(r)µ.(r)Ez 

Putting 

and r2 R — " + R 

Solution of equation 

ffi" 

ag(r) 

a 	.2,z 
(3.6(i)) 

(3.7) 

(3.8) 

(3.9) 

(3.8) 

(3.10) 

(3.9) 

302 

= R(r) 6(0), 

2 = -m 

r2 1 R'2 r2 2,N -1-knk) 

2 2 2 r n (r)R - m2R 

[r 	
ar 

where k2 

3.8 

. gr)JR  

=in2 

= w2µ o o 

2 -m 

Aejnl°  

k 

=0 

6" 

6  = 

Solution of equation 3.9 

r2 R" + agr); r2  [r - 
Br 	g(r) 

/ 
n2(r) = 2 - r 2'a' 

2 	2 2 r2/ R' 	[m - k r (2- a )j R 

=-E(r) 

aµ(r)  
ar 	2 2 

	

   in eqn. 3.9 — 	 1  2a -r 



(3.11) =0 

Using the transformation obtained in Appendix A3.2.1 

1 
R = Z (2Za-Z)4 e-Z/2 U111  (Z) 

where m = mode number 

Z- kr
2 

a 

Za = ka, 

equation 3.11 becomes 

r
a1 2a2 	2a

2
a
3 n Um" + 	- 1 	rn ] U' L 	7:2Za ) 	(Z-2Za)] -m 

=0 

where = m+1 

a
1 

= , „ I 
4Za 

1  
16Za 
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(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

a _ - 5  474a 

a2 
= 2Za 

The function U
m which satisfies equation 3.15 is similar to the 

equation obtained by C.T. Tai (15) for the T.M. solution of the 

spherical Luneburg Lens. The constants 7, a, a2, a3  differ slightly. 

The series solution to equation 3.15 (derived in appendix A3.2.2) is 

given by 

- Um  = f An Zn 
n=0 

(3.17) 
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where 
A
l a

l 
A 	1 
0  

A
2 	

a
1(a1+1) 	(a2-1-a3) 

A
o 	'6 0+1) - a2

(5+1) 

(3.18(i)) 

(3.18(ii)) 

A
3 	1 

a1(r.14.1)(a1 	1 	1 +2) 	(a1+2)(0:2+a3) 
A 	= 	 t'+1)0+2) 	3 747 	(Is +1 ) a

2 

2a1(a2+a3) 	2(a
2  +Pa3  ) 

a 2- 2 Ca2)  

for n > 3, the coefficients are related by the following ex-oression:-

a22(n+1)(n+10 An+1 - a a2(n+a1)+2n(n+6-1)] An 

+ 	[(n-1)(n+Y-2)+2a2(al+a2+a3+n-1) .1. An-1 — [(n-21-y2a2)] An-2 

= 0 

The series is absolutely convergent for Z < 2Za, 

Hence from equations 3.7, 3.8, and 3.12, 

Ez = A ejm/ Zm/2 (2Ea-Z)4 e-Z/2  Um(z) m 
 

(3.18(iv)) 

(3.19) 

where A is a constant 

From equation 3.5, 

aEz H, 	 - jwgog(r) • ar 

az 	a  Ezm i.e. 	H, _ 	r-r • — • 	-- 
pm joioAr) ar a% 

(3.26) 

Um 2kr 	

m 	

1 	m _ . 	 
oµ(r) • a 	2Za 4(2Za-Z) 	U *"Zm 

(3.21) 



At the edge of the lens, r = a, Z = ka = Za 
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i.e. 
U' 

2k 	(2m-1) m H, 	- + 
Pmo 4ka 	U Z 

m . m 
(3.22) 

Looking into the lens, the characteristic impedance, 

Zm 

E
Zm 
H 
Pm 

Ut 
= j /lo 	w r (2m-1) m 1 
2 ' I 4Za 	

n 
-"" U rn  

Zm = 	[ (2m-1) 	0. + Um 
1 2 'o 4Za 	U

m 
(3.23) 

where no  = free space characteristic impedance Um, U1'11  and 

Zm are computed using the subroutines described in appendix A3.3.2(b) 

and A3.3.3. 

3.3.1(b) Electromagnetic Solution of the Ordinary Luneburg Lens 

with E(r) 	n2(r) ..(2-r2)  

The solution has been obtained by Jaclk (14) for the cylindrical 

lens and Tai (15) for the spherical lens. The relevant transverse 

electric mode solution is given by 

E
Z 

= A Zm/2 e-Z/2 
1E1(a, , Z) 	(3.24) 

m 
 

where 	a = (m+1-ka)/2 

= m+1 	 (3.25) 

Z 
kr2 

a 



and iFi(a,Y, Z) is the confluent Hypergeometric function 

1.16, 17, 18] 

1F1(a, 	 Z) = 1 + 7  a , + a(a+1)Z
2 

(6+1)2: 

  

	

a(a+1) 	(a+r-1) Z
r 

	

(s+1) 	(6+r-1) • TT (3.26) 

  

The series is absolutely convergent. 

 

From equatio:- 3.19, 

   

	

az 	oL Zm H - 	 
Ora 	it0404(r) • Tr 	az (3.20) 

1.5 

i.e. 	Hd  
2k  

jwgol/(r)  [ 

	

1F1(a, 	 Z) 
- 2 + 

1 1 

	

F '(a 	, Z) m 
(3.27) 

and hence at the edge of the lens 

m 1F1(a, , Z) - 	 3. Z 	77 m - 2 4 2Za 	
, 	

Z) ( 28) 
1 F1 

The subroutine used to compute 1F1(a, Y, Z), 1F;, and Zm are described 

in Appendix 3.3.2(a). 

3.3.1(c) The Series Um(Za) and  F (a 6Z ) 1-1 ' , a— 

When the electromagnetic solution of the Luneburg Lens with 

µ = E =1/2-r2/a,2 was sought it was thought that there will be no 

difference between this and the solution for the ordinary Luneburg 

Lens (p = 1, 6= 2-r2/a2) for large ka since both approach the 

geometric optics solution. In fact the series U
m approachss 1F1(aos, Z) 

for large values of Z. 



00 

Um = 	
An "11  

n=0 
(3.17) 
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from equations 3.18(i) to 3.18(iv):iT Za = ka %>1 

a2+a3 	9  
a
2
(r+1) 	128 Za 2(s+1) 

1 in eqn. 3.18(ii) 

1 1 (a+2)(a2+a3) 2a1(a2+a3) 

3 	(5-0)a2 	a2 

2(a2+2a3)) 

a2
2  

1 
in eqn. 3.18(iii) 

and in equation 3.16(iv) the terms not containing Za = ka can be 

neglected so that 

(n+1)(n+I) An+1 = (a
1 
+ n) An 

(a +n) An+1 	1 	1  
i,e. An 	(X+n) • (n+1): 

1 
a function, 

1  F1 " 
(a X Z) where a

1
— 	

4k 
a since — 4.4 1. Therefore for 

large ka the two solutions are the same. For convenience only the 

hypergeometric series is used for the higher ka values (ka 7 10). 

2m- Also fo: ka >> 1 , 4Za1 	2Za in the expression for Zm in 

equation 3.23. 

The behaviour of the two series Um and IF1  are very similar. 

If a = (m+1-ka) or a1  = (m+1-ka.)<0, the terms in the series 

alternate in sign until approximately the nth term (n = ka-1). 

After the nth term (n ka) the value of the nth term falls 

monotonically as n increases. Near the nth term (nce. ka-1), the 

value of the term is approximately equal but opposite in sign to 

the series so far. Because of this the accuracy of the series is 

as in the hypergeometric 



suspect especially if the number of digits the computer can handle 

is low. The problem is not serious with the CDC 6600 which can 

handle approximately 14 significant digits. 

In the case of the series iFi(a,/C, Z), if ka is an integer 

the series terminates at the lth term, 1 = (ka+1). 

If a
1 
or a > 0 the terms in the series decrease monotonically. 

U(Z) is absolutely convergent for Z < a2  i.e. r < 2a and 

iFi(a, 	Z) is absolutely convergent. 

3.3.2 The Output Distribution of the Lens at the Feeds 

The scattering matrix for the feed system was calculated from 

expressions obtained in Chapter 2 - equations 2.29, 2.30, 2.31 and 

2.32 

[s] 	[xl [x]a  

S 	X ej(m-1)(r-s)0 rs 	m 
m=1 

(2.29) 

(2.30) 

where 	A,k  = AN_k  (k = 1 to N-1) 	 (2.31) 

N' 
2 

= z 	+ xn  cos(m-1)(r-s)9) 
m=1 

(+ Xmi (-1)N/2  , only if N is even) 
"/2 

N' N 
where 	-2- = -2- - 1 for N even 

N-
2
1 for N odd 

0 = 2TVN 

(2.32) 
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The first three rows of the matrix [S] have ben computed from 

the expression for S
rs 

 to verify the circuiant properties of [S]. 

Later programs only compute the first row of the matrix to give the 

output distribution at the feeds of the lens. Details of the 

subroutine, SCATMX, written to compute a row of the scattering 

matrix [S] is given in Appendix 3.3.4. 

The outputs at the feeds on the forward half of the lens are 

very nearly cophasal as is to be expected from a Luneburg Lens. 

3.3.2(a) Effects of Spacing between Feeds 

For a lens of fixed diam.,ter (in wavelength) the taper on the 

output distribution from the N feeds of the array varies with the 

number of feeds used (i.e. the spacing between feeds). 

With a spacing between 

feeds of about one wavelength 

there is a strong taper in the 

output for the forward 

direction, and very small out-

puts at the back half of the' 

lens. As the spacing is 

decreased (no. of feeds 

increased) there is a weak,:,r 

taper in the forward direction. 

At the same time the outputs 

adjacent to the input feed increase. Typical output distributions are 
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shown for various spacings for 2.0X, 4.0X and 6.0X diameters in 

fig. 3.4, 3.5 and 3.6. 

We suggest that the stronger taper when spacing is large 

(greater than approximately 1.0X) is due to the larger effective 

feed aperture. Although feed directivity is not considered in the 

analysis its effect seems apparent. In a lens fed by horns it is 

apparent that the feed would have greater directivity if its aperture 

is larger (> 1.0X), but in an equivalent circuit lens the effect 

is less obvious. For smaller spacing between feeds the radiation 

pattern of the feed can be assumed to be approximately (1i-cosine), 

giving rise to a weaker field in the forward direction and also a 

comparatively strong field at the feeds around the input port. The 

high fields at output pOrts adjacent to th':,  input feeds suggest high 

coupling within the lens between feeds. The behaviour of [S] in 

relation to the reflection coefficients of the various modes is 

explained in the following section. 

3.3.2(b) Effects of Mode Reflection Coefficients on  Output Distribution 

The modulus of the reflection coefficient for all modes is unity 

for a lossless structure. Only the phase (Pm) varies with the mode 

number, m. Fig. 3.7 shows the relationship between Om  = (Pm- Po)and 

the mode number, m, for 2.0X 4.0X and 6.0% diameter lenses. 

Each of the three curves may be divided into two parts. The 

first region covers those values of Om  which increases with the mode 

number (mode 	ka). In the second region, the value Om  is 
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approximately constant (increasing very slowly with mode number). 

In the extreme, the curves in the two regions may be represented by 

two lines, O
m 
= m x 180o in region one and 0

m = constant in region 

two. 

An N-port (N even) lens system which has only eigenvalues (or 

reflections coefficient) represented by the line 0m  = m x 180°, in 

region 1 will have all its input signal out at the output feed directly 

opposite the input feed. On the other hand, a lens system with only 

eigenvalues represented by 0m  = constant will have all its input 

signals reflected back at the input feed. These results may be 

easily obtained from equationl, 3.29 to 3.32. 

0 
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(a) EIGENVALUES, Om  = m x 180°  

(in Region 1)  

(b) EIGENVALUES, 0 = const. 

(in Region  2) 

    

Fig. 3.7  (a) 

The two curves for 0 
m 
 , 0

m 
 = m x 180

o and 0
m 
= constant represents 



(a) (b) 

INCREASING 
LENS 

DIAMETER 

two extreme cases for output distribution for an N-port lens 

system. In a normal system, if most of the eigenvalues lie in 

region 1 a stronger taper will be obtained for the output distribution 

whilst, if the eigenvalues lie mainly in region 2 there is likely to 

be greater coupling between feeds. Fig. 3.7, together with figures 

3.4, 3.5 and 3.6 supports this theory. With a decreasing number of 

feeds, the number of modes used decreases (number of modes used is 

about half the number of feeds - equation 3.32), and hence the number 

of eigenvalues in region 2 decreases, giving rise to a stronger taper 

in the output distribution. 

MODE NO. 
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The behaviour of the argument of the mode reflection coefficient 

suggests that a lower mode wave penetrates further into the lens 



than one of a higher order. For high mode numbers (m>. ka) the waves 

practically reflected at the lens circumference. The relative 

depth of the mode penetration can be estimated by looking at the 

arguments of the mode reflection coefficients, all normalised to 

the value of the highest mode, so that the arguments are m:gative 

and increasing with mode number to zero as illustrated in fig. 3.8(a). 

As in a reactively terminated line the phase of the reflection 

coefficient so normalised represents the electrical distance covered 

by the wave travelling into the lens and back. This discussion is 

particularly relevant to the equivalent circuit lens which is studied 

in Chapter 4. 

3.3.3 Far-field Radiation Pattern  

In an optical Luneburg Lens, the fields emerging from the lens 

are radiated with the aperture acting as the radiator. A lens system 

which feeds cardiold radiators t (1+cosine) pattern] will give a good 

approximation to this aperture for vertical polarisation. (The E-

field contributes to the 1 term and the H-field, the cosine term). 

To obtain the far-field pattern for the array the outputs from 

the lens feed system are fed into cardioid radiators. The subroutine, 

FARF1, programmed to compute the far-field pattern is described in 

appendix A3.2.6. The effect of coupling between radiators is not 

taken into account in this co,aputation. 

The performance of the lens system is studied under the 

following headings:- 
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(a) Behaviour for small lens diameters for the two type of 

• lenses. 

(b) Effect of feed spacing and lens diameter 

(c) Use of omni-directional and beverage aerials as radiators 

in the array. 

3.3.3(a) Behaviour of the Lens System for Small Lens Diameters  

It has been suggested early in the chapter that, for large 

lens diameters, the.behaviour of the two types of lenses 

(µ = E =,12-r2~and g = 1; e = 2-r2) will practically be the same. 

This has been confirmed by the radiation patterns obtained- Down 

to about 1.5X diameter there is very little difference be'tween 

radiation patterns obtained for the two types of lens. Fig. 3.9 and 

3.10 show the radiation pattern obtained for the two types of lens. 

for feed/radiator spacing of approximately X/2 for lens diameters 

of 0.5X, 0.75X, 1.0X and 1.5X. The (g = E) lens appears to have a 

marginally broader beam and slightly higher first side lobe. However 

the "ordinary" Luneburg lens (g = 1, 8 = 2-r2) has a slightly higher 

directivity ranging from 0.5db at 0.5X to about 0.1db at 2.0X 

diameter. 

The beamwidth of the array has been plotted in figure 3.12 for 

various values of lens diameters. At the low valued end of the 

diameter scale the beamwidth is practically inversely prolLortional 

to the diameter. For small lens diameters there is a maximum value 

for the side lobe level (fig. 3.11). Because of this a minimum lens 
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diameter of about 2.0% is necessary for multibeam operation. Besides, 

the overlap between beams will be too great if the lens diameter is 

too small. 

3.3.3(b) Effect of Feed Spacing and Lens Diameter  

The side lobe level relative to the main beam is plotted in 

fig. 3.11 for lens diameter between 0.75% and 10.0k. The beamwidth 

is also plotted over the same range of diameter values in fig. 3.12. 

For an N-feed circular array, N .far field modes are excited. 

The excitation of each of the modes is equivalent to that for each 

radiator of an N element linear array. This topic will be r',iscussed 

in greater detail in Chapter 5. However, the results obtained in 

Chapter 5 (fig. 3.13) will be referred to in discussion in this 

chapter. Fig. 3.13 gives the plot of the amplitude of the far-field 

mode against the mode number for various values of lens diameter. 

This applies only to an array using cardiod (14-cosine) radiators. 

There is a maximum value for the side lobe level at about 1.25% 

diameter. This is because below 1.257E diameter the amplitude 

distribution for the far field mode is very, strongly tapered, giving 

rise to very low side lobe levels. Above 1.25% diameter, the mode 

amplitude distribution approaches a uniform distribution, the side 

lobe ratio approaching -13.3db for high values of diameters. 

for N large 	> ha; spacing between feeds < %/2)  

Fig. 3.13 indicates that the far field mode amplitude is negligible 

if the mode number is slightly greater than ka. Therefore if the 
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number of feeds/radiators used in an array is greater than ha the 

far field pattern is quite independent of the number of feed/radiator 

used. This can be seen from the radiation patterns given in fig. 3.14, 

3.15 and 3.16 for array diameters of 2.0X, 4.0X and 6.0X respectively. 

The far field patterns of arrays with feed/radiator spacing of 0.196X, 

0.262X, 0.393X and 0.523X are practically identical except for the 

last one which has a slightly higher side lobe. 

for feed spacing less than X/2  

- The radiation pattern is made up of mode 0 to N2
1  -- (or •• , if N 

even) where 
2 
--< ka. If no grating lobes are excited (grating lobes 

are caused by too large spacings between radiators), then from 

fig. 3.13 the far field mode amplitude distribution will be nearly 

uniform particularly if the array diameter is large. The radiation 

pattern obtained will then approach a sin u/u pattern more closely 

than the case with N > 2ka. But from results obtained for cardidd 

radiators, grating lobes begin to appear if spacings between radiators 

approach approximately 0.6X. The problem with grating lobes can be 

alleviated by connecting more than one radiator in parallel to each 

feed. Radiation patterns for arrays with spacings greater than X/2 

are given in fig. 3.17. Fig. 3.18 shows the effect of connecting 

each feed to two adjacent radiators in the array. 

The result of changing feed numbers in an array is tabulated 

in table 3.2 for a 6.ox diameter lens. The effects on the beamwidth, 

side lobes and directivity of the array can be seen. The beamwidth 

increases as fewer feeds are used. This is due to the use of fewer 
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far field mode. In fact this is equivalent to a smaller "aperture". 

The beamwidth and side lobe levels for arrays of various 

diameters are tabulated in table 3.1. The number of feeds/radiators 

used is such that N > 2ka. 

DIAMETER 
(in 	) 7. 

BEAMWIDTH 
(in 
degrees) 

FIRST SIDE LOBE 
(relative to 

main_ beam) 
BACK LOBE 

HIGHEST SIDE LOBE 
(beside the two 
already tabulated) 

0.5 84.9°  0.092(-19.2db) 0.084 - 

0.75 66.8 0.217(-13.3a) 0.04 - 

1.0 52.5 0.296(-10.6a) 0.052 0.068 

1.5 35.2 0.315(-10.0a) 0.008 0.229 

2.0 26.2 0.285(-10.9db) 0.051 0.242 

2.5 20.8 0.265(-11.5db) 0.047 0.226 

3.0 17.2 0.250(-12.0a) 0.041 0.203 

4.0 12.9 0.233(-12.7a) 0.0.-).5 . 	0.189 

6.0 8.6 0.220(-13.15a) 0.04 0.171 

8.0 6.2 0.216(-13.3a) .0.034 0.148 

10.0 5.0 0.217(-13.3a) 0.038 0.117 

Table 3..1 Beamwidth and side lobe levels (for N > 2ka)  

NO. OF 
FEEDS 

NO. RADIATORS 
PER FEED 

BEAMWIDTH 
(degrees) 

FIRST SIDE- 
LOBE 

OTHER HIGHEST 
SIDE LOBE DIRECTIVITY 

43 1 8.6 0.219 0.155 3.389 	• 

36.  1 8.8 0.213 0.167 3.282 

32 1 9.4 0.106 0.256 3.000 

28 1 11.1 0.220 0.290 2.631 

24 1 13.4 0.238 0.421 2.205 

24 2 14.0 0.185 0.220 3.932/2 

18 1 18.0 0.295 0.876 1.680 

18 2 18.8 0.239 0.167 3.017/2 

Table 3.2 Effects of varying feed No. for 6.0X diameter array  
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3.3.3(c) Use of Omni-directional and Beverage Aerial Radiators 

Omni-directional Radiators  

If omni-directional are used in the array, the far-field mode 

amplitude due to a near field excitation cf unit amplitude is Jm(ka) 

for the mth mode. The far field mode distribution corresponding to 

fig. 3.13 for cardiod radiators will then be given by Am  = Jm(ka) 

(fig. 3.13(a)). This means that the alflplitude distribution changes 

rapidly with frequency. Fig. 3.19 shows the radiation pattern for a 

6.0X diameter lens array with spacing between feeds/radiators of 

0.26X, 0.392X, 0.523X and 0.783X. The grating lobe is particularly 

significant in the last pattern. The side lobe is of the order of 

-8db which is too high for our application. However, the beamwidth 

of this array is narrower than that using cardiod radiators. Typical 

beamwidth values are tabulated below in table 3.4. 

DIAMETER 
(in X) 

BEAMWIDTH (in degrees) 

NO. OF FFRDS/ 
RADIATORS 

OMNIDIRECTIONS 
RADIATORS 

CARDIOD (1+COSINE) 
RADIATORS 

BEVERAGE 
RADIATORS 

4.0X 36 14.2 17.1 13.o 

6.ox 72 -8.0 8.8 14.3 

Table 3.4 Beamwidth Comparison of Array with Omni-directional, 

Cardiod and Beverage Aerial Radiators 

Beverage Aerial Radiators  

In conjunction with this project dos Santos (5 ) has studied the 

beverage aerial and the phase compensated circular array of radially 
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arranged Beverage elements. 

The Luneburg Lens feed system offerb a good phase compensating 

network for use with radial array of Beverage elements. The 

arrangement is illustrated in fig. 3.20. 
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r
1 
- internal array radius 

ra  - external radius 
r
e 
- effective radius 

(r1+r2)/2 

1 - length of beverage. 

element = (r
2
-r

1
) 

Fig. 3-.20 RADIAL ARRANGEMENT OF BEVERAGE AERIALS 

The beverage elements are fed at the internal radius of the array. 

A typical value for r2/r1  is 1.5 i.e. the length of the beverage 

aerial radiator is equal to the effective radius of the array. The 

array of the lens fed sys.cem has the same radius as the effective 

radius of the array. 

The radiation pattern .or the beverage element is computed 

assuming that attenuation along the length of the element is negligible 

(5 , sec. 3.2) 



i.e. lar field 

GP(0) = 
Sir,  X 

 

1 where X = X — (1 - Cos A sin 0) 

0 = azimuthal angle 

= elevation angle = 900  

1 = length of element 

The propagation constant along the beverage element is assumed to be 

equal to the free space value. The far-field arc computed in 

subroutine BVFF (Appendix 3.2.7). 

The radiation patterns shown on Fig. 3.21 are for arrays with 

48, 36 and 18 feeds, one radiator per feed and for 18 feeds with two 

radiators per feed. The beamwidth of the array broackinswith 

decreasing number of feed, as to be expected, since there is stronger 

taper in the amplitude distribution from the feed. Las discUssed in 

sec. 3.2(a) J . Grating lobes are apparent in the pattern for the 

array with 18 feeds/radiators. In this case the spacing between 

phase centres 'of adjacent beverage elements is 1.05X. The closest 

distance between adjacent beverage element is 0.52X, at the internal 

radius of the array. However, with the use of two beverage elements 

per feed the side lobe is reduced. 

Table 3.5 shows the'variation of side lobe levels, beamwidth 

and directivity of a 24 feed/radiator array for diameters lunging 

from 2.0X to 10.0X. The beamwidth is fairly constant over the range 

of array diameters, but the side lobe levels increase with increase 
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in diameter value. The patterns are reproduced in fig. 3.22 and 

3.23. 

Although coupling between radiators is neglected in the 

computation of far-field patterns as in previous computations, 

coupling effects with beyerage.aerial radiators is likely to be-

smaller than with cardicid radiators. This is mainly due to the larger 

acceptable spacing between radiators and also due to the behaviour cf 

the beverage aerial. Work done by dos Santos in a project parallel 

to this work suggests that coupling is small. 

DIA1=ER 
(n. X) 

BEAT WIDTH 
(degrees) 

FIRST SIDE LOBE 
(relatiye to 
main beam) 

OTHER HIGHEST 
SIDE LOBE DIRECTIVITY 

2.0 30.8 0.098(-20.2db) 0.172(-15.3db) 1.526 

4.o 17.8 0.099(-20.1a) 0.085 1.831 

6.o 15.2 0,127(-17.9db) 0.124 1.824 

8.0 13.9 0.185(-14.7(m) 0.186 1.714 

10.0 12.3 0.270(-11.8a) 0.240 1.620 

Table 3.5 Performance of a Lens fed Array of 

24 Feed/Beverage Elements  

The log-periodic array with its wide bandwidth could also be 

used with the lens fed array. -Since the log-periodic aerial is a 

loackfire array a circular ariciy of log-periodic aerials arranged to 

fire outwards will have an increasing effective array diameter with 

increasing frequency. This is not desirable as we required a wider 
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beamwidth for the higher-frequency. Problems of coupling and 

blockages occur if the log-periodic aerials were arranged to fire 

toward the centre of the array. 

&MARY  

Two arrangements have been suggested to obtain a rotationally 

symmetric network for multibeam operation using the Luneburg Lens or 

its equivalent together with feeds and circulators or directional 

couplers. 

From ccnsiderations of symmetry and by using the electromagnetic 

solution of the Luneburg Lens, the output from the feeds of the lens-

fed system have been obtained. The taper in this output distribution 

becomes stronger if the number of feeds is reduced (provided that the 

spacing between adjacent feeds is greater than X/2). 

The behaviour of the (g =E) Luneburg Lens is not very different 

from the "ordinary" Luneburg Lens (g = 1), particularly for ka > 10. 

For the array using cardiod radiators the side lobe level of the 

array has a maximum value for an array diameter of 1.25, following 

to -13.3db as array diameter increases. The beamwidth is practically 

inversely proportional to the diameter of the array (as in a broad-

side array). 

The' use of omnirdirectional aerials as radiators in the array 

gives rise to high side lobe _Levels (about -8db) but the beamwidth 

obtained is narrower than that obtained using either the cardiod or 

beverage aerial radiators. 

So 



The pattern obtained using beverage aerial radiators proved 

very encouraging. Low side lobe levels have been obtained (approx. 

-18.0db). A 24 feed/radiator array gives beamwidths which vary 

from 30.8°  at 2.0. diameter to 12.3°  at 10.011 diameter. 
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APPENDIX 3 

A3.1 Scattering Matrix of a 2N-Port Formed from Two N-Port Luneburg 

Lens Tyne Structures  

We have shown in Chapter 2 that the required matrix for the 

211-port network is of the form:- 

[0 Ti 

° I 
where T is thi! NxN scattering matrix of the N-port Luneburg Lens 

structure and 

T 114  = i T* =[I] 

The arrangement for .the network is illustrated in fig. 3.4 and 

A3.1.1 below. 

Fig.A3.1.1 USE OF DIRECTIONAL COUPTERS WITH TWO N-PORT  

LULEBURG LENS TYPE STRUCTURES 

82 

C A3.1 

The usual scattering matrix notations are used and shown in fig. A3.1.1. 



where 

= ) 

Subscript 1 refers to fields in the upper ports and subscript 2, to 

the lower ports. The outer ports (1 and 2; of the directional 

couplers are numbered circumferentially 1 to N for the upper port and 

N-4-1 to 2N for the lower ports. The inner ports (3 and 4) of the 

directional couplers are similarly numbered, 1' to N' for the upper 

ports and NI+1 to 2N' for the lower ports. Port 1' to NI are 

connected to the N ports of the Lens, L, while ports N'+1 to 2N' are 

connected to Lens 2. 

The scattering matrix for each of the directional couplers, 

is: 
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0 0 

0 0 

1 0 0 

J 0 0 

At the lens feed, directional coupler junction, 

.p.6 = 113"1 
t 17 

= 	S l ag T 

where S = scattering matrix Of the N-port lens structure. 

{all} =b11 = 	( 	+ j fa2  ) 

A3.2 

A3.3(i) 

A3.3(ii) 

A3.4(i) 

A3.4(ii) 



= 	a-,"r 
12 

+ 	(a'l A 21 

+ 	1 a 1. 
F2-  1 

b
2 

b2 

similarly for a'' ' bi- 
' 2 
a'
' 
 etc. 

1  

At the outer ports of the directional couplers (1 and 2) 
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Substituting for 1a!1)1  and .ta. 	from equations A3.3(i) and (ii) in 

equations A3.5(i) and (ii) 

+ S  laD 
S 	+ j S 

Substituting for a"
1 
 and a"

2 
 in equation A3.5 

2 S j a2  

= 2 

	

b2 	 25,ja1 l 

	

b1 	0 	S -1 = j  

	

2 	 Oi a2 

Since S is symmetrical 

i.e. 

A3.5 

A3.6 



A3.2.1 Solution of Eauation 3.11 

r2R"(r) + 2a2  2
r
2 	

r 2 	2 2(2 - r 242) .1 a' - Lm - k r 	i R = 0 
t2a -r ,  

The solutions of similar differential equation by Tai (15)and 

Jasik (14) suggest a transformation of the form 

R(r) = Z3  (2Za - Z)V -Z/2 u(z) 
	

A3.7 

where 	P = kr 

Pa = ka 

2 
= 7 P  
Pa 

Za = pa  and p and y are constants to be chosen 

1. put 	= kr in eqn. 3.10 

2 

i.e. R"(p) + 	 
20a  

( 2 2, Rt(P)  - [m2 
210a- to 

(2 -)R(p) 
P: 

0 	A3.8 

p2 
2. 7 =— 

Pa 

8z  i.e. 4z Ru(z) + ( 2Z) 	m2 

(2Za-z) Rt(Z)  - 
, 
	- (2Za 	z) R(Z) 

= 0 	A3.9 

3. put R(z) = Za s(z) 

i.e. -4ZS"(Z)+ p(23+1)Za -  2(43+1)Z  I  
(2Za-Z) st(z) 

(432-m2) 	23 1_2_27.7. (2Za-Z)] S(Z) = 0 	A3.10 
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4. rut S(Z) = e-Z/2 l(z) 

i.e. 4Z T"(Z) + L  
8(2(3+1)Za 	2(L5,:1)Z  

(2Za-Z) T"(Z) 

  

(432_m2)  
L 	z 

• 23 - 4(29+1)Za - (43+1)Z  • 2Za] T(Z) (2Za-Z) 

= 0 	 A3.11 

5. mit T(Z) = (2Za-Z) U(Z)  

i.e. U"(Z) + .. 8(23+1)Za - (83+81/4-2)Z  _ 1] U" (Z) 4Z(2Za-Z) 

r  V(9-0 	_ 18(29+1)Za - 2(43+1)Z}V  .1. 	V  
L (2Za-Z)2 	4Z(2Za-Z)2 	(2Za-Z)  

4f32-m2  + 23 - 14(23+1)Za - (45+1)Z 	Za 1 U(Z) 
4Z2 4a2Za-Z) 	+ 2Z 

0 	 A3.12 

i.e. U"(Z) (23+1) (2Y-4)  
Z 	(2Za-Z) 1] U1 (Z) 

 

(„))24v  ) 4.  (432..m2)  

, l2Za-Z)2 	4Z2 
 

(V -11,7+. -1 -2Y ( 23+1)+3 /4Za )  
(2Za-Z) 

-(23+1)/2 + Za/2 + {-21;(213+1) + .}/4Za  u(z) 

A3.13 = 0 

 

To simplify equation A3.13 

.1._ (2Y - 	0 put (2Za-Z) 	. 
2  and 	43-  -m2  = 0 

i.e. 	V = 	and 	p = 2 , taking positive sign. 

Hence equation A3.13 becomes 
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a1  2a
2 	

2a a_ 
U11(z) + (.1 - 	1 ) U.,(Z) + 	2 	u(z) 

	

Z (Z-2Za) 	,2 (Z-2Za) 

	

= o 	 A3.14 

where Y = m+1 

.1 
a
1 
 = 

4Za 

 

 

1  
a2 	16Za A3.15 

a 	5  3  _ 	64,„  

a2  = 2Za 

i.e.R(r) = Zm/2  (2Za-Z)41 A3.16 e-Z/2 u(z)  

The function U(Z) which satisfies equation 3.14 is similar in 

form to that obtained by.Tai (15) for the transverse magnetic 

solution of the spherical Luneburg Lens. The constants',, a
l' 
 a2,  a

3 

differ slightly. The equation has a regular singularity at Z=0 with 

exponent 0, and 1-X . It also has an irregular singularity at 00 

and a regular singularity at Z = a2. 

The solution of interest must be finite at the origin. The 

following series solution is assumed:- 

00 
Um = Y, A Zn  

n=0 n  

The constants are obtained in the following section. 

A3.17 
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A3.2.2 Series Solution for Um(Z) 

88 

Um(Z) 5: An Zn  
n=0 

Substituting for Um, 

U' = 	n An Zn-1  , 
n=0 

and uum  = 	n(n-1) An Zn-2 in equation 3.14, - n=0 

1 Zn-2  An [a2  n(n4-1)] 2 

- Zn-1  An a2 [ a2 (n + a1 + 2n (n+X-1)] 

+ Zn Ant n(n+T-.1) + 2a2(n + al + a2 + a3)]  

Zn-1  Ann + a1 + 2a2] 	= 0 

Coeff. of Z-1  

A22  (1)1i Al 	a2(a1 
	= 0 

i.e. 	A = y 
Al  a1 

Coeff. of Z0  

A3.17 

A3.18 

A3.19 

2a2 (Y+1)A2 	L = 21 + 	2] 
	a +a2+a3) Ao 

i.e. 
A2 	a1  (a1  +I) 	(a2  +a

3 
 ) 

Ao 2C5477 a2747 A3.20 



Coeff of Z 

3a2 05+2) A
3 

- a
2 4-(1-1) + (2+o:) a 

Ly 2a2(1+a1+a2+a3)] 

Substituting for Al  and A2  

A7  
1 	a(a1  +1)(a1+2) 

	

1 	
(a1+2)(a2+0:3) 

A
o 	

3: 	w (‘C +1 )( +2) 	3(e+2) 	(Y+1)a
2 

	

2a1(a2+a ) 	2(a
2  +2a7) 

x a
2 	a2 

2 

Coeff. of Zn-1, n 	3  • 
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Al 
- (a

1
+a
2
) A

o = 0 

A3.21 

from 'equation A3.8, 

a2
2(n+1)(n+X)An+1 - a2 a2(n+a1

) + 2n(n+Y-1)1 An 

+ 1.(n-1)(m4-2) + 2a
2
(a

1
+a
2
+a3+n- )] An-1 

- 1(n-2+a1
+2a

2
)1 An-2 = 0 
	

A3.22 

There appears to be an error in Tai's equation corresponding 

to equation A3.2.2. The series is absolutely convergent for Z < 2Za. 



A3.3 Description of Program and Subroutines  

The following programs and subroutines are described with the 

aid of flow charts where necessary:- 

3.3.1 Main Program  

The main program reads in the relevant data and calls the other 

subroutines to calculate the output from the NN feeds of the Luneburg 

Lens Feed system. The far-field pattern can also be computed 

(put IFF = 1) for the array using either omni-directional, cardiod 

(1 + cosine), or beverage aerial radiators. 

The parameters read into the program are:- 

UN 	- no. of feed used 

DIAM - diameter of lens array in wavelength 

LPATD1 - this parameter defines type of radiator used 

LP. 	- no. of far-field point in azimuth per radiator 

L 	- no. of radiator per feed. 

The flow chart is illustrated in fig. 3.2.1. 

3.3.2(a) Subroutine LEU(ZA, U, DF1U, PACT, MODE, NCOEFF)  

This subroutine sums the confluent hypergeometric function 

series U(M1) = 1F1  (a, 	z) and its derivative, DF1U(M1) for the 

(M1-1) mode 

	

z) a 	 a(a+1)  z2 	a(a+1)(a+2) 3  
( + 1 ) 2 	W(15+-0(i+2)3L- 

= U(M1) 

where 	a = (m + 	Za)/2 = XALPHA 

	

= (m+1) 	= XGAMMA 
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m = mode 	= (M1-1) 

Z = Za = ka 	= ZA 

The "accuracy" (ACC) is defined as ANZ/U, U being the series up to 

the Nth term. If ACC is less than 10-4 the series is terminated. 

Otherwise if the number of terms in a series reaches NCOEFF, an error 

message is printed. The flow chart for this subroutine is given in 

fig. 3.2.2(a). 

3.3.2(b) Subroutine NCFU2(ZA, NCOEFF, U, MODE, ALPHA3, ALPHA2, A,  

NCT, DF1U)  

This subroutine sums the series, U(M1) = 1: An Zn and its 

derivative,DF1U(M1) (see appendix 3.1) The first three terms of the 

series are calculated separately. The other terms in the series are 

calculated using the four term recurrence series:- 

CANP1 * A(N+1) - CANO * A(N) + CANL2 * A(N-1) - CANL2 * A(N-2) 

= 0 

In the program 

A
n 
= A(n) 

Z = ZA 

M1 = mode number + 1 

The accuracy of the series is tested after the addition of every 

term as in subroutine LEU. The flow chart is given in fig. 3,2.2(b). 

3.3.3 Subroutine ETALAM(AIAMDA, LANDA, ETA, ETAO, MODE, ZA, U, DF1U)  

The characteristic impedance, ETA(M1) for the (M1-1) mode and 

the reflection coefficient, LAMDA(M1) is computed from expression 

given in eqn. 3.23 and 3.28. 
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3.3.1+ Subroutine SCATMX(LANDA, S, MN, ETAO, ALAMDA, ARG, AMP)  

This subroutine calculates the KP1 row (normally = 1) of the 

scattering matrix S(KP1, LP1) of a circularly symmetric structure 

given the eigenvalues (or the mode reflection coefficients), LIMA (I) . 

S(KP1, LP1) is complex but S(LP1) is converted to its amplitude 

AMP(LP1) and its phase ARG(LP1), in radians. 

The expression for S is given in equation 3.31 and 3.32. The 

flow chart for this subroutine is illustrated in Fig. 3.2.4. 

3.3.5 Subroutine IDIS(NN, L, AMP, ARG)  

This subroutine reads NN outputs (amplitude, AMP(I), and 

argument, ARG(I)) into a new array with L radiators fed in parallel 

to each of the NN feeds. 

3.3.6 Subroutine FARF1(NN, L, LPATDR, DIAM, AMP, ARG, 	LP 2  LX, KP)  

The far-field pattern for the array is computed and plotted on 

"calcomp" paper by this routine. Instead of computing cosines for 

angles which are multiples of 27c/(NN*L*LP*2) several times in the 

routine, the cosines are stored in array CS(I). The fUnction 

exp {jka cos(0-00)1 is also computed and stored as EJKACS(I) for 

values of (0-00) which are multiples of 2n/(NN*L*LP*2). 

If beverage aerial radiators are used for the array subroutine 

BVFF is called to calculate the beverage aerial pattern. 

Each far-field value for a particular azimuth angle is calculated 

in the subroutine SUMFF. 

Where the radiation pattern plots are required subroutine 

GRPLTI/2 is called. The "calcomp" packet is used for plotting on 
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calcomp paper. The flow chart for this subroutine is given in 

fig. 3.2.6. 

3.3.7 Subroutine BUFF(NN, LP, GP, ALW, CS, FF1)  

The radiation pattern of a beverage aerial of length, ALW, is 

computed using this subroutine. The pattern is stored in array GP(I). 

The absolute value of GP(I) is stored in 1''r1(I) and plotted. The 

expression used for the far-field value is given by equation 3.33. 

The flow chart for BUFF is shown in -fig. 3.2.7. 

3.3.8 Subroutine SUEFF1(1,1N, L, DIAN, LPATDR, AJIP, ARG, IAZFC, IAZ, GP, 

FF2, EXPARG, LP, EJKACS, CS)  

This subroutine sums up the far-field strength for a particular 

angle in azimuth. The subroutine sums up.the field contributions 

from all the radiators (NN*L). The routine could be used for omni- 

directional, cardiod (1 + cosine) or beverage aerial radiators. 

3.3.9 Subroutine GRPLT1/2(FF1,  NP, KP, LPATDR, NN, DIA?1dL, NELR, 

FF1MAX)  

The flow chart for the subroutine is shown in fig. 3.2.9. This 

subroutine uses the "calcomp" package. It plots the radiation patterns 

on a quarto size frame. Four:graphs can be plotted on each quarto 

frame. Each graph frame has dimensions all by 
	

Some details of 

the array are also written on the plot. 
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START  ) 

\\\ READ INPUT DATA 
d1,LPATDR,LP,L 

/ 	OUTPUT DATA 

Call subroutine LEU/ITFU 
to calculate series U and 
its derivative for each 
mode 

Call subroutine ETALAM/ 
to compute mode 

impedance and reflection 
coeff. for each mode 

To normalise phase of 
reflection coeff. with 
respect to zero mode 
value 

i

f-- Output mode impedance 
phase of refl, coeff. etc. 

Call subroutine SCATMX to 
compute scattering Matrix 

I 

Read NN outputs into a 
new array with L -
radiators fed in parallel 
with subroutine IDIS 

3.2.1 FLOW CHART OF MAIN PROGRAM 
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Call subroutine CKUNIT to 
check unitary -oroporties 
of scattering matrix 

Call subroutine FARF1 to 
comnute far-field 
pattern 

Call FARF1 again if 
pattern with different 
radiator required 

Read new set of data / 

DIAM changed 



ABS(ACC) 
. LE . 
1.0 E-4 

9 

	 CONTINUE 

START 

XALPHA = (MODE + - ZA/2) 
XGAISIA = (NODE + 1) 

Initialise U, DFIU, ANZ 
U(M1) = 1.0 
DFIU(M1) = 0.0 
ANZ = 1.0 

	< DO N = 1, NCOEFF 
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XALPHA = 
XGAI,ZIA = 

ANZ - 

U(M1) = 
DFIU(M1) = 

ACC =  

XALPHA 	(N-1) 
XGAITA+ (N-1) 
XALPHA  
XGANNA 1R 
U(M1) + ANZ 
DFIU(M1) ANZ*N 
ANZ/U(M1) 

WRITE ACCURACY NOT 
OBTAINED 

Compute derivative of U 

DFIU(M1) = DFIU(111)/ZA 

Write no. of 

required for 
and accuracy 

terms 
series 

         

( RETURN 

      

      

         

3.2.2(a) FLOW ClaRT OF SUBROUTINE LEU  

(to sum Hypergeometric function and its derivativq,21=MODE)  

• 



V 

ACC.LE.1.0E-3 
.AND. 

ACCDU.I2.1.073 

Compute A(1), 1st Coeff. of 
series 

U(M1) = 1.0 	A(1) 
DFIU(141) = A(1) 

7 

Compute constants 
RZA = 1.0/ZA 

LAMA = NODE + 1 
ALPHA1 = (IODE+1-ZA+1/Li-ZA ) 2 

Coma-be A(2), 2nd coeff. of 
series 

A(2) = A(2)*ZA*ZA 
U(M1) = U(M1) + A(2) 

DFIU(M1) = DFIU(M1) + 2*A(2) 

Compute A(3), 3rd coeff. of 
series 

A(3) = A(3)*ZA**3 
U(M1) = U(M1) + A(3) 
DFIU(M1). = DFIU(M1) + 3*A(3) 

To compute A(N).  from 4 
term recurrence series, 

+CANP1*A(N+1)-CANO*A(N) 

4CANL2*A(N-1)-CANL2*A(N-Z) 
=9 

DO N = 4, NCOEFF 

Comoute Nth contribution to 

series A(14)*(ZA**N) 

Add contribution to series I 

U(M1) = U(M1) + A(N) 

DFIU(M1) = DFIU(M1) + N*A(N) 

Calculate accuracy 
ACC = A(N)/U(M1) 

ACCDU = A(N)*N/DFIU(M1) 

N 

CONTINUE 
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Compute DFIU(M1) 

DFIU(141) = DFIU(M1)/ZA 

Output no. of terms used 

accuracy obtained 
/ Write "accuracy not\ 

obtained"  

7.  

	 RETURT 

3.2.2(b) FLOW CHART OF SUBROUTINE NCFU2 



CONTINUE 
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K = KP1-17 

3 

DO LP1 = N, NN 

L = LP1-1 

S(LP1) = LAMDA(1) 
NNHLF = (NN+1)/2 

I DO N = 2, NNHLF 7),_ 

Les = LANDA0q)cos((m_1)*(K_1)*2.0N) 
mpl) = S(LP1) + 2.0*LCS 
	 1 

S(LP1) = S(LP1) 
- LAMDA(NITHTP+2) 

S(LP1) = S(LP1)+LAMDA(NNHLF+1) s(LPI) = s(LP1)/NN 

Convert S(LP1) to 
ANP(LP1), ARG(LP1) 

	< 	CONTINUE 

Output one row of 
scattering matrix 

3.2.4 FLOW CHART OF SUBROUTINE SCATNX 



IConvert At P(ARG) to EXPARG 
To vary azimuthal angle 
DO INZFC = 1, NNLPD2 

Correct azimuthal angle to 
IAZ if L 1 

Compute and store cosine of 
multiple of 0=2n/NN*L*LP*2 

in CS(I) 
Call subroutine IUMFF to 

sum far-field due to 

HN*L radiators 

Compute and store 

EJKACS = exp(ka cosO) 

Normalise FF1(I) to its 

maximum value FF1MAX 

T 

Write FF1MAX 

Output far-field FF1(I) 

with azimuthal angle 

Reverse array toki(I) for 

convenience for plotting 

3.2.6 FLOW CHART OF SUBROUTINE FARF1/2 

IX = 1 

CONTINTili; 
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AL'1 = DIAM/2 

Call BVEF to compute 
radiation pattern for 
beverage aerial radiator 
of length - DIAM/2.0 



NLLP = NN*L*LP*2 
NLLPD2 = NLLP/2+1 

BF = PI*ALW 
GP(1) = 1.00 

DO I = 2, NLLPD2 

ARG = BF*(1.0-CS(I)) 

GP(I) = SIN(ARG)/ARG*CS(I) 

CONTINUE 

Write aerial length 
and array pattern if 

required 

Stored absolute value of 

GP(I) in FF1(I) 
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3.2.7 FLU/ CHART OF SUBROUTINE BVFF  



	<DO M = 1, NXL 

Compute array number for angle (0-90) 
for cosine, CS and EJKACS, already 
stored in FARF1 

IAM.LE.0 

'4( 
IAII = IAZ - (M-1)*LP*2 

FE = AEP(M)*EXPARG(M)*EJKACS(IAM) 

NXL = .ii *L 

NLLP = NXL*LP*2 
Initialise Far-field, FIELD1 = 0.0 

TAM = IAES(IAN) + 

IAM = NLLP - IAM + 2 

FF1(IAZPC = ABS(FIELD1) 

FIELD1 = FIELD1 + FM 

FIELDI = FIELDI 

+ FE* (1 + CS(IAM)) 

FTE 	E LD1 = FIELDI 	• ---**-- 

+ FM*GP(IAM) 

CONTINUE 

.1•U;TURN 

 

100 
TAUT 

1 
	GO TO ( 	), LPATDR 

L?ATDR = 1, 3 
omni-direction radiators used 

LPATDR = 2 
(1+cosine) radiators used 

LPATDR, 4, 5, 6 
Beverage aerial radiators used 

3.2.3 FLOW CHART OF 

SUBROUTINE SUMFF 



Plot radiation pattern 

I 

To establish frame number 

To fix origin for the frame 

Draw quarto frame 

Establish origin for each 
radiation pattern frame 

Draw grid and label axes 

for each pattern frame 

Write data at top right-hand 

corner of each pattern frame 

RETURN 

3.2.9 FLOW CHART OF SUBROUTINE GEPLT1/2 
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CHAPTER 4 

4. 	THE EQUIVALENT CIRCUIT LUNEBURG LENS  

In chapter 3 we showed the feasibility of using the Luneburg 

Lens to feed an array. At H.F., however, the physical size of the 

lens is Thrge and therefore the cost is high. A lumped element 

equivalent circuit for the lens is envisaged. If the number of 

elements used in the circuit is unlimited the performance of the 

lumped circuit is expected to be no different from an ideal lens. 

It is obviously desirable to determine the minimum number of elements 

that can be used to simulate the performance of the lens without 

significant deterioration in its behaviour. Towards this end the 

values of the lumped elements of the equivalent circuit are computed. 

The values of the equivalent lumped elements for the equivalent 

circuit for a TE Mode Luneburg Lens are obtained by converting the 

TE solution of Maxwell's equations to finite difference equations. 

By replacing electric field by voltages and magnetic fields by currents, 

we obtain three equations which satisfy Kirchoff voltage and current 

laws. From these equations the expressions for the lumped elements 

are deduced.- 

The equivalent circuit structure (with its circular symmetry - 

see fig. 4.5) may be decomposed into a ladder network for each mode. 

For mode, m, the reflection coefficient, pm, looking into the ladder 
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network is calculated. Each of these reflection coefficients 

corresponds to the reflection ccafficients or eigenvalues worked 

out in chapter 3. The scattering matrix of the structure is computed 

as is done in chapter 3. The far-field pattern is similarly obtained. 

The far-field pattern obtained is compared with that for the 

continuously-varied-refractive-index lens to determine the 

acceptability of the equivalent lens circuit. 

4.2 Equivalent Circuit for the TE Mode Luneburg Lens (More Generally 

for TE Mode in Cylindrical Co-ordinates)21'31  

Maxwell's Equations for the TE mode in cylindrical co-ordinates 

are written down as differential equations, and are then converted 

into finite 6ifference equations. If the electric field,.E, and the 

magnetic field, H are expressed in terms of voltage, V and current, 

I, respectively, a set of equations which satisfy Kirchoffs current 

and voltage laws, are obtained. The values of the equivalent lumped 

components, L's and C's can then be deduced from Kirchoff's equations. 

Maxwell's Equation (TE Mode—Hz, Hr, Ho  only) 

 

1 aEz 
	all

y 
at 

aEz 	aso  
_ 

ar 
_ 	

at 

 

curl 	at _ — at 

(4.1) 

(4.2) 

 

all 	al) 

	

Curl 171 = OT5 	{ -1 Or 	r 5 (rH ) - 	
r 	z 

	

at 	r 	0 	-7 — at (4.3) 

Equations (4. ) t (4.3) are converted to finite difference 
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r,9460 Ez 

aE 

ar r+Ar/2,0 = 

r+Ar/2,0 11  

Ez I z r+Ar,0 Ez 

[11,!, I 

6Ez 

[ 
r,04-A0/2 7 Ez  

1  /AO rai 

r,0  /Dr 

r-Ar/2,0 

(4.1) 

(4.2) 

 

H 

 

equations using the following relationships. In converting these 

equations to finite difference form it is convenient to treat rll0  as 

a variable rather than 11. Let 11;(  = rIi0  (Kron [21]) 
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axr  
and 	

ard 

We get 

[ Ez 

[ Ez  

[ 

(4.2) 

r,0—DO/2 

( 4. 3) 

[ - 	
r,9-DO/2-A0/2 I /a  ra 	Fir  ( ral-A0/2 Hr 

r,O+A0 Ez I r,0 ArA0) = _j
cagi/ "r I r,0÷A0/2 

jwPli   I r+Ar/2,0 
I r+Ar,0 Ez I. r,0  Ar 	- 

Ir+Ar/2,0 H6 1r -Ar/2,01ftrAr) 	[Hid r,04-A0/2 
Hr 

ArA0) = jw E  Ez  

Multiplying the equations above by A0 Ar and rearranging 

[Ez I ra+Agf Ez I ra ].Ar = -jritrA0 Hy, I ra-FA0/2 

Ar [ Ez I r+Ara - Ez Ir,0 Ar = j641-7.- Hc's r+Ar/2,0 

[ 11;5 r+Ar/2,0 1116 I r-Ar/2,0 	- [Hr I  r,0+A0/2 - 

Ar = jw E rArA95 
Ez I ra 

Replacing Ar Hr  by -10  

A
0 
 IP
0 
 by Ir and 



I 	, sb 
L0  

1c6 11-10+&56/2  

/fc, 9s+ Ac6)  

[F r - KEA°Ar  Vz  = jw (4.7) 

JO) 

To, 

(^(4-Air , 0) e' IT I -r4-tsr/7. " 1-46,412.,0 ,/(r/—.11'•  ) 

Lr 

Az Ez 
by V

z 
in equations 4.1 to 4.3 

z I  r,O-FAX Vz 

r 	A0Az  ] 

ra 1 ' jci)  L µr—Ai= 
I0  I 0 I r,O+AcZ5/2 	(4.5) 

[ ArA z T r,01 = it') 	4  rA0 	-r I r+Ar/2,0 	(4.6) Vz  

 

r+Ar,0 - Vz  

   

{1r r÷Ar/2,0 	I r-Ar/2,0 	{ 10 I ra+.6,0/2 - 	r,0-60/2} I  

Fig. 4.1 EQUIVALENT CIRCUIT FOR TE MODE  

The three equations above satisfy Kirchoff's voltage and current 

laws for the network shown in fig. 4.1. The quantities within the 

square brackets in equations 4.5 to 4.7 represent respectively the 

inductance IT  Lr  and the caylcitance Cz. 
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Hence
AOAz  

=p.r. 	H 
P 	Ar 

ArAz 
L 	

rA0 
H 

rAAr  
z 	Az F 
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C represents the capacitance of a parallel plate of area rA0Ar, 
z - 

separation, AZ, filled with material of dielectric constant 6 . 

Lr 
is th inductance associated with two conductors of width ra, 

length Ar and separation Az, filled with material of permeability p. 

L0  is the-inductance associated with two conductors of width Ar, 

length rA0 and separation, Az, filled with material of permeability, p. 

The equivalent circuit for a lens has been obtained. To 

compute the scattering matrix for the equivalent circuit the 

reflection coefficient for each of the N modes is required. The 

circular network can be decomposed to a ladder network for each mode 

by replacing the circumferential currents by currents flowing through 

an admittance to ground. 

4.2.1 Decomposition of Circular Network into a Ladder Network for 

Each Mode 

If all the N feeds of the structure are excited with equal 

amplitude and phase we describe this as the zero mode excitation. 

The mth mode is excited if there is a phase progression between 

adjacent feeds of 2n m/N radians 
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N = No. of feeds along 
circumference 

= 27cm/N 

m = mode 

I 

Fig. 4.2' DECOMPOSITION INTO LADDER NETWORK 

The voltage distribution along the radial lines on the lens 

is shown in fig. 4.2. For the rth line, 

V 	. e j(r-1)1r - jr.lr = ei(r4)1Y' (e-j f _ e+j1) r-1,r  

= -j2ej(r-bir  sin 
 i.e. Vr-1,r 	2 

	

Nf 	lE 
= 	- (

j(r+1)11r = ej(r+-1)1Y (e-" 2 	e" 2)  and Vr,r+1 

i.e. rr+i = -j2e
gr44)-tir  sin r 

, 2 

(4.11) 

(4.12) 

. . circumferential currents for radial line, r at mode 1 are:- 
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Ir1,r 
= {-2j sin 	▪ exp t j(r-if)1 	ho;I 	(4.13) 

. 	1 
i-2j sin 2-  • exp f j(r+) 	/y4L0 	(4.14) Ir,r+1  

replacing these two currents by a current flowing into an inductance, 

Lz1  for radial line, r, at mode 1. 

Izr = Ir,r+1 
- I

r-1,r 

-2j sin I exp [j(r-fl)ifi - exp 	r )N1 / joqf 

Iz  = - exp(jr1r) . (2j sin 2' "w a 
r 

(4.15) 

I 
 

i.e. 	- (4 sin2Y-)/jc...)L 	= 
expOr

r  
r) 	2 	

Y
zl 

Hence the circumferential inductance5, Lo  can be replaced by an 

_1  inductance 1., in a ladder network. The analysis can be repeated for 

other nodes so that L,
W 
 can be replaced by L

n in a ladder network where 

L, 
LZ 

 n _ 	 
4 sing 2 

C; 

(4.17) 

ot 
L 

(4.16) 

Fig. 4.3 EQUIVALENT LADDER NETWORK FOR MODE, in 



Zo CZ 

L
r 

The network is terminated by Zo  the characteristic at the edge 

of the lens. 

Characteristic Impedance, Zo, at Edge of Lens 

tArAz /  e.rAOArl 
li{ rA 	Az 

(from equations 4.8, 4.9 and 4.10) 
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i.e. 
Az 

Zo = rA0 II  

Mode Reflection Coefficient, 
Pm 

(4.18) 

If Z
m 

Li the input impedance of the ladder network for mode; m 

the reflection coefficient for the mth mode is 

Z Z 
m o 

f)TTI  Z
m 

Z
o 

(4.19) 

4.2.2 Behaviour of the Equivalent Ladder Network for Different Modes 

Figure 4.4 shows the phase of the reflection coefficient for 

the various modes for different lens diameters. These reflection. 

coefficients are those obtained for the ideal lens studied in 

chapter 4. All phases are normalised to the value of the highest 

mode 'value so that the phases are negative and decrease numerically 

with mode number. In chapter 4 we suggest that the higher modes do 

not penetrate the lens as much as the lower modes. This supposition 

is confirmed by the equivalent transmission line type equ-ralent 

ladder network obtained for each mode. 



N
O

R
M

A
LI

SE
 

".:50C1C 

0 

C) 

L.) 

—2000 
Ui 
c 

0 
w 

a-100 

0  

10 	20 
	J0 

110 

M ODE N0. 

rig. 4.4 NORMALISED PHASE OF MODE REFLECTION COEFFICIENT 

(for Luneburg Lens) 

Each of the shunt elements of the ladder network in fig. 4.3 

consist of the capacitance, C7  in parallel with the inductance, 

L
z 

	L0  /4 sin2y. Since both C
Z  
and L0  are directly proportioned 

to r, (the distance from the centre of the lens), the inductance, 

L
z 
and capacitance, C decreanPs towards the centre of the lens. 

Thus the reactance of the shunt inductor, Lz, decreases toaards the 

centre of the lens while the capacitive reactance increases. Therefore 

the reactance of the shunt elements is capacitive at the feed end of 



the ladder network, decreasing in value toward the lens centre. At 

a point distance, 1 from the feed, the reactance becomes zero and 

beyond 1 the reactance is inductive. Since the series elements in 

the ladder network is inductive, beyond 1 the mode does not 

propagate appreciably further into the lens. 

Each section of the ladder network can be viewed as a filter. 

Where the shunt element is inductive, this corresponds to the stop 

band. In fact these filters have a high-pass behaviour. At a higher 

frequency the reactance of the shunt elements could be capacitive, so 

that for the bane mode number the waves penetrate further into the 

lens. 

With a higher mode number, the value of the shunt inductance, 

z 
= L /4 sin2y) 
0 	

decreases so that the stop band region in the 

ladder network moves towards the feed away from the centre of the 

lens. We see in figure 4.4 that the higher modes barely penetrate 

the lens. 

4.3 	Minimum Number of Elements Required for the Equivalent Circuit  

Lens 

The criteria for judging the acceptability of an equivalent 

circuit is the far-field pattern obtained by feeding its outputs to 

a ring array of cardidd (I-I-co-61'1e) radiators. The radiation pattern 

obtained is compared with that obtained using the continuously varied 

dielectric lens. 

111 



112 

There is a capacitance, 

C
z 

down to earth at 

every node 

Fig. 4.5 THE EQUIVALENT CIRCUIT LUNEBURG LENS  

The relative phase of the various mode reflection coefficients 

also gives a good indication of the behaviour of the far-field 

radiation pattern. The phase values obtained for the ideal lens (in 

chaptar 3) is used as the standard reference values. 

The radiation patterns for the array and the relationship 

between reflection coeffi.Aents of different modes are investigated 

for equivalent circuit lenses with varying number of components. 

The two important parameters are:- 

(a) the number of elements used per radial line for the 

equivalent circuit. In this context one element represents one 



section of the lens,viz, one shunt capacitor, Cz, one radial 

inductor, L
r 
and one circumferential inductor, L0. 

(b) N, the number of radial lines used for the circuit. Each  

radial line corresponds to a feed point at the circumference of the 

lens. The maximum order mode excited is N/2 if N is even ( (N-1)/2, 

if N, odd). 

A computer program has been written to calculate the values of 

the components of the equivalent circuit lens (subroutine EQCCT, 

described in Appendix A4.1). The moae reflection coefficient is 

computed frou the equivalent ladder network by the subroutine RTLCCT 

(Appendix A4.1). The scattering matrix for the structure and the 

far-field pattern for the array is calculated using the subroutines 

already described in Appendix A3.3 in chapter 3. 

The program was run principally for three values of lens 

diameters - 2.0X, 4.0X and 6.0X, i.e. 200.0 metres at 3.0, 6.0 and 

9.0 MHz. The number of radial lines were varied. Side lobe levels 

are given in tables 4.5, 4.6 and 4.7. 

4.3.1 Component Values for Equivalent Circuit Lens  

Some typical values of the components used in the equivalent 

circuit is tabulated in table4.1&4.2 for a 200.0 metre diameter lens. 

Table 4.1shows the component values for a lens with 24 radial lines 

and 8 elements per radial lin.. (i.e. N = 24, NELR = 8). Two types 

of lenses are indicated -.the µ = 1, E= (2-r2) ordinary lens and the 

µ = E 42-1-2  lens. 
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200.0 Metre Lens 	; 	24 Radial Lines 	; 	Zo  = 14.39 0 

p = 1 	ORDINARY LENS p = 	LENS 

No. 0  pH Cz  nF Lr  pH No. 0  uH Cz  nF Lr  pH 

1 2.467 3.045 0.300 1 2.612 2.876 0.300 

2 2.138 3.154 0.686 2 2.475 2.725 0.762 

3 1.809 3.042 0.800 3 2.236 2.462 0.959 

4 1.480 2.744 0.960 4 1.921 2.115 1.218 

5 1.151 2.293 1.200 5 1.548 1.705 1.587 

6 0.822 1.722 1.600 6 1.134 1.249 2.182 

7 0.493 1.067 2.400 7 0.692 0.762 3.341 

8 0.164 0.361 4300 8 0.232 0.256 6.762 

Table 4.1 Component Values for Lens Type Indicated 

200.0 Metre Lens 	; 	60 Radial Lines 	; 	Zo  = 35.98 0 

No. L
0 

Cz  nF Lr  pH No. 0  C 	nF L.,,, 	pH ,. 

1 2.303 5.282 0.333 10 1.119 4.322 1.333 

2 2.171 5.476 0.7059 11 0.987 3.920 1.500 

3 2.040 5.582 0.750 12 0.855 3.478 1.714; 

4 1.908 5.606 0.800 13 0.724 3.001 2.000 

5 1.776 5.555 0.857 14 0.592 2.495 2.400 

6 1.645 5.429 0.923 - 15 0.460 1.965 3.000 

7 1.513 5.239 1.000 16 0.329 1.417 4.000 

8 1.382 4.987 1.091 17 0.197 0.856 6.000 

9 1.250 4.680 1.200 18 0.0658 0.286 12.000 

Table 4.2 Component Values for Ordinary Lens  
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Table 4.2 shows the component values for a lenF capable of 

working below 61,11.1z (i.e. a maximum lens diameter of 4.0X) with 60 

radial lines and 18 elements per radial line. 

The height of the equivalent lens is one metre. This value 

can be varied to match the aerial or to vary component values, as 

long as the lens height is less than X/2 at the highest frequency of 

operation. Otherwise higher order TE modes and TM modes can also 

exist in the lens. The values of the components of the equivalent 

circuit iens will vary in accordance with the expression given in 

equations 4.8, 4.9 and 4.10. 

The radiation patterns obtained using the ordinary lens (g = 1) 

and the p. = e lens do differ significantly, particularly for the 

larger lens. The g = e lens tend to have a very slightly high side 

lobe. 

All following results and discussions apply to the ordinary 

g = 1, e. (2-r2) lens. 

4.3.2 Equivalent Circuit Lens Behaviour 

In the next two sections the behaviour of the phases of the 

mode reflection coefficient is studied. The two parameter, NELR, the 

number of elements per radial line and N, the number of radial lines 

are varied separately. 

of 
27.3.2 (a) Effect Variation of NELR on the Behaviour of Mode Reflection 

Coefficient  

The lens diameter (in wavelength) and N, the number of radial 

115 



lines are fixed while the number of elements per line, NELR is 

varied. The phase of the mode reflection coefficient is plotted 

against N, the number of elements per line used for mode 0 to 12 in 

fig. 4.6 and 4.7 for a 2.0X diameter lens.. Similar results for a 

4.0X diameter lens are tabulated in table 4.3 for the more significant 

modes. The corresponding phases for the ideal lenses are also shown. 

It is clear that the higher modes are unaffected by the change in 

the number of radial elements, NELR, used. For low order modes the 

phase changes rapidly with an increase in NELR, reaching an asymptotic 

value below tl!at of the ideal lens. As the mode number increases the• 

deviation of the asymptotic value from the ideal lens value increases. 

However, if N, the number of radial lines used is larger the phase 

deviation decreases. This can be seen in the next section. 

4.3.2 (b) Effect of Variation of N(, Number of Radial Lines) on the  

Phase Behaviour of Mode Reflection Coefficient 

The phases of the mode reflection coefficients are plotted 

against N in fig. 4.9 and 4.10 for a 2.01 diameter lens. (200.0 metres 

at 3MHz). The same parameters are tabulated in table 4.4 for a 

representative selection of mode numbers for a 4.01 diameter lens 

(200.0 metres at 6.0MHz). The corresponding phases of the modes 

reflection coefficients for the ideal lens (discussed in chapter 3) 

are also shown in fig. 4.8 ane 4.9 and table 4.4. 

We see that the lower order modes are unaffected by the change 

in the number of radial lines used. In fig. 4.8 the phase of the 

mode reflection coefficient for mode 0, 1 and 2 are practically 
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Fig. 4.6 BEHAVIOUR OF MODE REFLECTION COEFFICIENT FOR  

VARYING VALUE FOR NELR (2.0X Lens) 
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NODE 
NO. 

PHASE OF MODE REFLECTION COalICIENT FOR VARYING NO. OF ELEID:1TS PER RADIUS 

12 14 16 18 24 32 48 64 IDEAL LENS 

0 -156.3 -97.9 -61.3 -37.5 -2.2 15.6 27.4 31.4 37.7 
1 69.5 116.3 141.3 157.2 -177.6 -163.7 -153.9 -150.5 -144.8 
2 -105.6 -64.0 -39.0 -23.2 0.3 12.2 20.1 22.3 23.1 
3 103.2 130.2 145.9 156.3 173.o -177.8 -171.3 -169.0 -162.7 
4 -86.5 -61.0 -45.9 -36.3 -21.7 -14.2 -9.1 -7.4 -0.5 
5 95.7 110.6 119.6 125.6 135.2 140.5 144.3 145.6 158.1 
6 -104.4 -90.4 -81.8 -76.1 -67.3 -62.7 -59.4 -58.3 -41.7 
7 45.8 52.9 57.o 59.8 64.1 66.4 68.o 68.5 92.5 
8 -165.7 -158.9 -154.6 -151.6 -146.8 -144.1 -142.2 -141.5 -101.1 
9 -29.2 -25.7 -23.5 -22.1 -19.9 -13.7 -17.9 -17.6 16.1 
- - - - - 
20 76.8 78.0 78.8 79.3 80.3 80.8 81.2 81.3 102.3 
21 79.7 81.0 81.9 82.6 83.7 84.3 84.7 84.9 106.6 
22 82.1 83.6 84.6 85.3 86.5 87.2 87.7 87.9 110.4 

28 89.1 91.1 92.4 93.4 95.0 96.o 96.5 96.9 126.7 
29 89.4 91.4 92.8 93.7 95.4 96.4 97.1 97.3 128.7 
3o 89.5 91.5 92.9 93.9 95.5 96.5 97.2 97.5 130.5 

Table 4.3  Phase of Reflection Coefficient for Varying No. of Elements per Radius  
(for 60 radial lines - 4.0% diameter) 
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MODE PHASE OF MODE REFLECTION COEFFICIENT NO. OF RADIAL LINES FOR D.LbERENT 

N0. 40 44 48 52 56 60 64 72 96 LENS 

0 15.6 15.6 15.6 15.6 15.6 15.6 15.6 15.6 15.6 37.7 

1 -163.8 -163.8 -163.7 -163.7 -163.7 -163.7 -163.7 -163.7 -163.7 -144.8 

2 11.4 11.6 11.8 12.0 12.1 12.2 12.2 12.4 12.6 28.1 

3 179.6 -179.6 -179.0 -178.5 -178.1 -177.8 -177.5 -177.2 -176.5 -162.7 
- - 

9 -66.2 -50.3 -38.9 -30.4 -23.3 -18.7 -14.5 -8.3 1.7 16.1 

10 14.7 31.1 44.0 54.6 63.5 71.0 77.5 88.1 107.5 139.1 

11 87.6 120.3 150.7 177.5 -160.3 -142.5 -123.4 -108.3 -79.7 -50.2 

- - _ - - - - 

18 27.3 45.6 56.1 63.0 67.6 71.5 74.2 73.2 84.0 91.7 

20 31.2 52.5 64.2 71.7 76.9 80.8 83.7 87.9 93.9 132.3 

22 54.5 68.4 77.0 82.9 87.2 90.4 94.9 101.3 110.4 

24 69.8 80.0 86.7 91.5 95.1 100.0 107.0 116.9 

26 80.9 88.8 94.4 98.4 103.9 111.5 122.2 

28 89.5 96.0 100.6 106.8 115.1 126.7 

30 96.5 101.9 108.8 118.0 130.5 

32 102.3 110.3 120.4 133.8 

34 111.8 122.3 136.6 

Table 4.4 Phase of Mode Reflection Coefficient for Different Nc. of Radial Lines  

(32 elements per radial line - 4.0% diamet:r) 



constant. The Game applies to mode 0, 1, 2 and 3 in table 4.4 for 

the 4.01 lens. 

As the mode order increases the mode reflection coefficient 

becomes increasingly dependent on N, the number of radial lines 

used in the equivalent circuit lens; the phase approaching the ideal 

lens values as the number of radial lines used is increased. 

However, the phase does not approach the ideal lens values. An 

asymptotic value below the ideal lens value is reached. For the 

lower order modes where the phases aie practically independent of N, 

the constant values may also be considered as the asymptotic value. 

Other results obtained indicate that this asymptotic value approaches 

the ideal lens value as the number of elements used per line, NELR, 

is increased. 

Results obtained in section 4.3.2(a) and (b) thus indicate that 

if N and NELR are sufficiently large the equivalent lens circuit will 

behave exactly like the ideal lens as is to be expected. 

The unchanged behaviour of the higher order modes in section 

4.3.2(a) and of the lower order modes in section 4.3.2(b) is 

consistent with the equivalent ladder network discussed in section 

4.2.2. Where the number of elements per radial line is fixed, the 

shunt inductive elements are large for the lower order mode 

(L
z 
= L0  /4 sin2yr, Ir. (2n * Mode)/N) and hence mode behaviour is 

fairly independent of N, the number of radial lines used. 
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4.3.3 Far-Field Pattern from the Eouivalent Circuit Lens (U sin; 

Cardioid (14-cosine) Radiators)  

We have suggested that the criteria for judging the acceptabilisy 

of the equivalent circuit lens is the radiation pattern obtained by 

feeding the outputs from the lens to radiating elements in an array. 

As in chapter 3 cardioid (1-1-cosine) radiators are used. The use of 

Beverage Aerial radiators will be discussed in a later section. 

A representative selection of radiation patterns obtained using 

equivalent circuit lens of varying N, coad NELR are shown in fig. 4.10 

for a 2.0X lcr.s and fig. 4.11 and 4.12 for a 4.0X lens. 

The radiation patterns obtained indicate that in most cases 

the first or second side lobes are higher than that obtained using 

the ideal lens. In extreme cases tilt:: main beam is bifurcated. In 

table 4.5, 4.6 and 4.7 we show the side lobe levels obtained for 3 

lens, 2.0X, 4.07 and 6.0X diameters (i.e. at 3.0, 6.0 and 9.0MHz for 

a 200.0 metre lens) for different values of N and NELR. 

We see that for a fixed number of N (, the number of radial 

lines used) or a fixed value of NELR (, the number of elements used 

per radial line) there is an optimum side lobe level. For example, 

in table 4.6, for NELR = 16, the minimum side lobe level is obtained 

for N = 56 (side lobe level of 0.260). The corresponding value for 

NELR = 18 is for N = 60 (0.241  side lobe level). As NELR is increased 

the value of N required to give a minimum side lobe level increases 

so that the minimum side lobe level in tables will be roughly along 

the non-leading diagonal. As both NN and NELR become large the side 
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NN 48 36 23 26 24 22 20 

NELR 

5 0.593 

6 0.358 

7 0.304 

8 0.329 0.298 0.294 0.291 0.307 

10 0.295 

12 0.290 0.290 0.306 

14 0.315 0.339 0.386 

16 0.285 0.286 0.297 0.306 0.321 0.348 0.398 

24 0.285 0.288 0.304 0.334 0.420 

32 0.285 0.289 0.339 

48 0.235 

IDEAL LENS 0.285 0.285 

Table 4.5  Highest Side Lobe Level for 2.0X Diameter Eauivalent 

Circuit Lens (Cardioid Radiators) 
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NN 72 68 64 60 56 52 48 44 40 

NELR 

0.532 
0.538 

0.262 

0.312 

0.248/0.260 

0.244 / 0.263 
0.260, 

/0.263 
0.303 

0.360/0.258 

0.243/0. 301 

0.264. 
/ . 	0.299 

__ 

0.456, 
/0.297 

0.334 
0.356 

0.267, 
/o.355  

0'476/
0 .349  

52 7, 0. 	
/0.551 

0.561, 
/ 0.357 

0.624/ 
/ 0.364 

0.646 
/0.367 

0.398, 
/0.45 

._. 

o. 
0.453 

0.778, 
/0.474 

12 
14 

0.277 16 0.305 0.291 0.74, 
/ 0.597 

... 	 ______ 

Bifurcated 

Bifurcated 
main beam 

18 

20 

24 

28 

0.242 

0.253 

0.245 

0.24.5 

0.245 

0.252 

0.283 

0.241 

0.268 

0.29 

0.314 32 

48 

0.254 

0.353 

. 64 

IDEAL 
LENS 10.233 0.234 

Table 4.6  Highest-Side Lobe Level for 4.0X. Diameter Equivalent Circuit Lens 

(Cardicid Radiators) 



NN 108 104 100 
---i 

98 96.  92 88 84 78 72 66 

NELR 

0.534 0.503 

0.354 

0.354 

0.341 

. 

0.465 0.62 

0.596 

0.776 

20 

22 

24 
0.287 
0.241 

0.331 

0.225 
0.259 	 
0.241 
0.259 

0.231 
0.277 

0.230 
0.283 

0.245 
0.281 

o.263 
0.280  

0.295 
0.299 

0.222 

0.255 
0.289 

0.236 
0.292 

_ 
 

0.370 
0.283 

0.334 

0.258 
0.313 

__ 

0.297  

0.392 

_ 

_ 

0.474 

__ 	. 

. 

______.  

0.534 

0.582 

0.603 

0.642 

26 

‘-th 0.250 

3o 

32 

0.229 
0.244 

0.225 
0.259 

0.224 
0.258 

0.226 
0.243 

34 

. 
. 

36 
 

40 

43 

IDEAL 
LENS 

0.220 • 0.220 

Table 4.77 Highest Side Lobe Levels for 6.0X Diameter Equivalent Circuit Lens  
(Cardioid Radiators) 



lobes level tend towards the value obtained using the ideal lens. 

We see that the equivalent circuit does not work properly if 

one of the parameters, N or NELR is too small even though the other 

parameter is large. 

Typical combined optimum values for N and NELR are given below:-

For a 2.OX lens, N = 24 and NELR = 8 gives a side lobe level of 0.291 

compared with the ideal lens value of 0.285. 

For a 4.0X lens, N = 60 and NELR = 18 gives a side lobe of 0.241 

compared with the ideal lens value of C,.233. 

With a 6.0% lens N = 108 and NELR = 28 produces a side lobe level of 

0.25. The corresponding side lobe level for an ideal lens is 0.220. 

The radiation patterns for the examples quoted are given in fig. 4.16 

and 4.19 for the 2.OX and 4.0X lenses. The radiation patterns obtained 

using the 6.0% lens circuit is shown in fig. 4.15 for 9.0, 7.5, 6.0 

and 3.0 Iiz (corresponding to 6.0X, 5.0X 4.0X and 2.OX diameters). 

It is evident that the relative value of the phase of the mode 

reflection coefficient is more important than each individual value. 

In fig. 4.13 and 4.14 the relative phases of the mode reflection 

coefficients are plotted against the mode number, m, for different 

values of N and NELR. The phases have been normalised to the zero 

order value. The corresponding curve for the ideal lens is also shown., 

We see that. if the normalised phase of mode reflection coefficient 

deviates from the ideal lens value by greater than approximately 500  

we get high side lobes appearing in the radiation pattern. In the 
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equivalent lens with N = 20, NELR = 24, the maximum deviation from 

the ideal lens value occurs for mode 6. The deterioration in the 

radiation pattern will be worst if the large deviation occurs for 

modes which have high far-field mode aplitudes (fig. 3.13) in 

chapter 3). On the other hand, if the far-field mode amplitude is 

negligible large phase deviation from the ideal lens figure is 

unimportant since the particular mode does not contribute significantly 

to the far-field. 

In general if NELR is large, th.7. relative phases of the mode 

reflection coefficients for the low modes closely follow the behaviour 

of the ideal lens. However, for the higher modes, the ?phases tend to be 

lower than the ideal lens value, e.g. N = 20, NELR = 24 for the 2.OX 

lens and N = 40, NELR = 32 for the 4.0% lens. As N increases the 

equivalent lens behaviour approaches that of the ideal lens. On the 

other hand, if NELR is small (less than about six elements per wave-

length of radial line), the relative phase values for the mode 

reflection coefficient tend to be higher than the ideal lens value, 

e.g. for N = 24 and NELR = 5 for the 2.OX lens in fig. 4.13 and for 

N = 60 and NELR = 12 for the 4.0% Jens in fig. 4.14. But as NELR 

increases the phase behaviour of the equivalent lens approaches that 

of the ideal lens. 

These results seem to suggest that a minimum value for N of 24 

in a 2.OX lens, 60 in a 4.0X lens and 108 in a 6.011 lens. The 

spacings between feeds at the circumference are for the three lenses 

respectively 0.262X, 0.21X and 0.174X. The corresponding values for 
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NELR, for the three lenses are 8, 18 and 28 respectively, equivalent 

to about 9 elements per wavelength of radial line. 

The behaviour of a 200.0 metre lens with N = 108 and NELR = 28 

is shown in fig. 4.15 for 3.0, 6.0, 7,3 and 9.0 MHz, (i.e. lens 

diameters of 2.0, 4.0, 5.0 and 6.0X respectively). The radiation 

pattern obtained for the lower frequencies is practically the same 

as that obtainable using the ideal lens. 

4.3.4 The Effect of Losses in the Fouivalent Circuit due to Losses 

in the inductors  

All inductors used in the equivalent circuit are assumed to 

have the same Q value. The effect of finite Q values for the 

inductors is not significant as far as the radiation patterns are 

concerned. This can be seen from the radiation patterns in fig. 4.16 

and 4.17 where patterns using circuits with Q = 0e, 200, 100 and 50 

are used. 

The effect of finite Q for the circuit is a decrease in the 

amplitude of the mode phase reflection coefficient. In a lossless 

circuit the amplitudes of the reflection coefficients are all unity. 

With Q = 200, the amplitude of the reflection coefficient could fall 

to about 0.9 for a 4.0X diameter lens (N = 60, NELR = 18). For 

Q = 100 the mode amplitude fall to approximately 0.85. At Q = 50 

the figure is approximately 0.7. However, the phases of the mode 

reflection coefficients are quite independent of Q values, explaining 

the practically unchanged radiation patterns for different values for Q• 
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The result of the lower cralue for the amplitude reflection 

coefficients is a loss in gain for the array. This is discussed in 

the following paragraphs.. 

The far-field in the maximum direction is calculated using 

equivalent circuits, of varying Q values and varying values of N and 

NELR. 

We find that losses due td finite Q values are independent of 

the value of N or NELR. The results are summarised in tables 4.8(a) 

to 4.8(d). The losses are also independent of the physical size of tl,e 

lens but are proportional to the size of the lens in wavelength. 

For Q = 100, for example, the losses are -0.69db, -1.35db and -2.0db 

for a 2.011, 4.0X and 6.0X diameter lens, respectively. The losses 

in db are also roughly inversely proportional to the Q value. For 

the 6.01 diameter lens. for example the losses for Q = 200, 100 and 

50 are -1.04db, -2.0db and -4.0db respectively. 

Since the loss in an equivalent circuit lens is proportional 

to the frequency of operation, the effect of losses is not expected 

to be serious, since• the gain of the array increases with frequency. 

4.4 

In section 4.3 we assume that at the circumference of the lens 

each radial line corresponds to a feed. Further, we assume that each 

feed is connected to a radiator. A maximum spacing of between 0.175X 

and 0.25X at the circumference between radial lines has been suggested. 
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Table 4.8(a) 2.0X LENS 
	

24 RADIAL LINES 

No. of 
elements 

FARFIELD IN MAXIMUM DIRECTION FOR Q = 

per radius 200 	• 100 50 

8 2.044(0db) 1.964(0.34db) 1.888(0.69db) 1.745(1.37db) 

16 1.972(0db) 1.899(0.33db) 1.822(0.69db) 1.695(1.36db) 

24 1.954(0db) 1.881(0.33db) 1.812(0.66db) 1.681(1.37db) 

Table 4.8(b) 4.0X LENS 	60 RADIAL LINES 

No. of 
elements 

FARFIELD IN MAXIMUM DIRECTION FOR 0Q  = 

per radius 200 100 50 

18 2.858(0.0db) 2.641(0.68db) 2.440(1.37db) 2.085(2.74db) 

24 2.794(0.0db) 2.585(0.68db) 2.391(1.35db) 2.048(2.70db) 

32 2.728(0.0db) 2.525(0.68db) 2.337(1.34db) 2.004(2.68db) 

Table 4.8(c) 2.0X LENS 	16 ELEMENTS PER RADIUS 

No. of 
radial 

FARFTELD IN MAXIMUM DIRECTION FOR Q = 

lines 200 100 50 

24 1.972(odb) 1.889(0.33db) 1.822(0.69db) 1.695(1.36db) 

36 2.025(0db) 1.953(0.32db) 1.883(0.63db) 1.751(1.26db) 

48  2.028(0db) 1.956(0.31db) 1.887(0.63db) 1.757(1.24db) 

Table 4.8(d) 4.0X LENS 24 ETP,PIENTS PER RADIUS 

No. of 
radial 

FARFIELD IN MAXIMUM DIRECTION FOR Q = 

lines 200 100 50 

52 2.627(0.0db) 2.427(0.69db) 2.243(1.37db) 1.916(2.74db) 

60 2.794(0.0db) 2.585(0.68db) 2.391(1.35db) 2.048(2.70db) 

72 2.845(0.0db) 2.637(0.66db) 2.444(1.32db) 2.100(2.63db) 
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This condition is rather restricting. It has already been shown in 

chapter 3 teat if feed spacing is small outputs from feeds adjacent 

to the input port is large. Also a tapering in the output distribution 

is desirable to reduce beamwidth at the high frequency end of the 

scale. A tapered output can only be achieved if spacing between 

feeds is greater than X/2. 

It is therefore desirable to reduce the number of feed by half 

or a third. One solution was briefly studied. Only every second, 

third or kth feed is connected to a radiator. The other feeds are 

left open-circuited. This is equivalent ti a reduction in the number 

of modes used. 

4.4.1 Reduction of Mode  

If only one out'of every k radiator is fed to a radiator while 

the other feeds are left open-circuited the.number of modes used will 

be reduced by k. The equivalent circuit lenS has been analysed using 

as many modes as there are radial lines. If every feed except the kth are 

left open-circuited the impedance of each mode and therefore the . 

reflection coefficient has to be recalculated. This is done in 

Appendix A4.2. 

The impedance of the Mth mode (new) is given by:- 

k-1 
1 

= IT 2 	sNm-1-01.$)/k 
s=o 

(4.2o) 

where 3'14 - impedance for the.mew mode, M 

impedance for the old mode, r 
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The new reflection coefficient r)11 is calculated accordingly. This 

is done by the subroutine RODE described in Appendix 4.1. 

Fig. 4.13 shows the radiation pattern obtained for the equivalent 

circuits with modes reduced by 2, 3 and 4. The values of N and NELR 

used are 48 and 24 respectively. The effect of reducing the modes 

is an increase in the back lobe of the radiation pattern. 

The relative phase of the new and old mode reflection coefficients 

are shown in fig. 4.19. This is a fairly large oscillation of the 

relative phase values about those of the original mode values. 

Because of the undesirable high side lobe levels obtained if 

some radial lines at the lens circumference are short circuited, this 

method of reducing the feed number is not suitable. 

4.4.2 Other Methods of Reducing Feed Numbers  

Essentially, a matching type network is needed to combine 2 or 

more adjacent radial lines near the circumference to form each feed 

point. 

A technique used by Spangenberg, Walter or Schott (22) on the 

solution of electromagnetic field problems using electrical analogue 

networks is briefly di-;cussed. In their work the fields at some 

points are required more accurately than for other points. To obtain 

the better accuracy required for the analogue network, the number Of 

elements used at the particular part of the network is increased. 

The transition between the two regions of fine and coarse meshes is 

shown in fig. 4.20. 



Fig. 4.20 ARRANGEMENT FOR HALVING NO. OF RADIAL LINES  

NEAR THE LENS CIRCUMFERENCE  

4.5 Use of the Equivalent Circuit Lens with Beverage Aerial Radiators  

It was thought that an equivalent lens which was judged to be 

acceptable for use with cardioid radiators would be suitable for use 

with beverage aerial radiators. This was not the case at the higher 

frequencies, when the length of the beverage radiating elements in 

wavelength is large so that the radiators are more directive. 

Compare the far-field pattern obtained using the circuit with 

N = 108 and NELR = 28 for cardioid radiator in fig. 4.15 and that 

obtained with beverage radiators in fig. 4.21 for operation at 9.0 
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and 7.5 MHz. The side lobe level for the beverage array is 

unncceptably high compared with that obtained using the ideal lens. 

On the other hand, with a smaller lens 4.0X diameter, N = 60, 

NELR 18 and 2.0X diameter, N = 24, NELR . 8 the patterns obtained 

using beverage radiators is quite acceptable (fig. 4.21). However, 

for the 4.0X diameter lens the side lobe level is high compared with 

the level that can be achieved with an ideal lens. 

We found in chapter 3 that with the use of beverage aerial 

elements in the lens fed array the side lobes are lower and the 

beamwidth, wider. This tends to suggest that the far-field mode 

amplitude distribution (equivalent to amplitude distribution for a 

linear array) is tapered; the taper is more marked if the radiator 

becomes more directive. If this is the case the behaviour of the 

lower order modes of the equivalent circuit lens becomes much more 

important. 

We observed in section 4.3.2(a) that the behaviour of the lower 

order modes is mainly dependent on NELR, the number of elements used 

per radial line in the lens circuit. If NELR is sufficiently large 

the relative phases of the mode reflection coefficient approach very 

closely that of the ideal lens. In table 4.9 the deviation for various 

equivalent lenses from the relative phase of the mode reflection 

coefficient of the ideal lens is tabulated for a 6.0X lens (see also 

fig. 4.13 and 4.14 for 2.0h and 4.0h diameter lenses). We see that 

for fairly low values of N, the behaviour of the relative phases 

between mode reflection coefficients is similar to that of the ideal 



NODE 

NO. 

DEVIATION OF RELATIVE PHASE FROM IDEAL 

LENS VALUE FOR THE FOLLOWING N/NELR VALUES 

108/23 60/48 48/43 43/36 60/36 72/36 

o 0.0 0.0 0.0 0.0 0.0 0.0 

1 4.5 1.5 2.4 3.2 3.3 3.3 

2 21.2 6.0 5.6 10.6 11.4 11.2 
3 24.7 7.5 5.7 13.9 12.0 10.5 

4 37.9 6.9 4.7 21.4 17.6 19.1 

9  40.4 7.5 -0.1 4.1 16.1 19.0 

u  50.2 5.2 -7.5 -3.7 15.7 20.7 

7 49.5 1.5 -20.4 -23.8 3.2 16.0 

8 58.o -6.2 -31.5 -37.9 5.1 15.8 

9 51.o -33.3 -64.2 -82.6 -15.8 1.1 

10 60.5 -33.4 -68.8 -97.0 -14.o 4.9 

11 46.4 -71.4 -116.1 -147.6 -50.4  -23.7 

12 53.2 -36.6 -158.0 -213.7 -54.3 -25.2 

13 51.4 -32.8 -154.5 -241.7 -60.7 -27.1 

14 17.4 -170.o -243.5 -329.6 -147.9 -99.9 

15 51.1 -168.3 -286.0 -372.0 -145.8 -63.2 

16 31.5 -146.0 -312.5 -425.5 -92.9 -64.0 

17 -41.8 -271.5 -420.5 -588.4 -247.5 -195.7 

18 48.5 -282.6 -415.8 -632.8 -264.3 -168.9 

19 71.4 -252.2 -398.2 -645.9 -227.8 -51.2 

20 77.9 -160.5 -386.7 -657.5 -136.5 -5.8 

21 30,4 -87.1 -379.7 - -62.8 9.o 

22 81.7 -57.7 -376.1 -33.2 15.4 

Table 4.9 Relative Phase Behaviour of Equivalent  

Circuit Lenses (6.0X Diameter Lens)  
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2.0X 

NN 

,. 

48 36 24 20' 16 

NELR 

12 0.176 0.174 0.177 0.215 0.312 

14 0.175 

16 0.173 0.171 0.173 0.213 0.311 

24 0.120 0.169 0.171 0.210 0.311 

4.0X 

NN 72 60 48 44 40 36 

NELR 

24' 0.195 0.215 0.242 0.246 0.258 0.266 

28 0.179 0.200 0.231 0.235 0.250 0.260 

32 0.170 0.192 0.225 0.232 0.246 0.258 

6 .ox 

NN 96 72 6o 54 48 40 

NELR 

32 0.299 0.304 0.258 0.295 0.263 

36 0.266 0.280 0.240 0.281 0.248 0.288 

48 0.225 0.250 0.223 0.266 0.239 
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lens. Hence an equivalent circuit lens used with directive radiators 

will need a lower value for N but a slightly higher value for NELR 

as compared to values for the lens used in conjunction with cardioid ' 

radiators. 

Whereas a 6.07 equivalent lens used in conjunction with 

cardioid radiators requires a minimum of about 108 radial lines and 

NELR of about 28 a corresponding lens for use with beverage radiators 

need an N value of about 60 or even fewer (48). The value for NELR 

need is, however, higher. 

The sic'.:: lobe levels obtained from an equivalent lens with 

different N and NELR values for beverage radiators are shown in table 

4.10. A representative selection of radiation patterns is shown in 

fig. 4.22. 

In fig. 4.23 the radiation patterns of a suitable equivalent 

lens (N = 60, NELR = 36) for 9.0, 7.5 6.0 and 3.0 MHz are shown. 

4.6 Summary  

The equivalent circuit for the Luneburg Lens has been obtained. 

From the equivalent ladder network obtained from each mode and from 

the results obtained we conclude that the higher modes do not penetrate 

the lens as much as the lower modes. We find that the lower order mode 

behaviour.is largely dependent on the number of elements used per 

radial line, while the higher order modes are dependent mainly on the 

number of radial lines used. The behaviour of the equivalent lens 

circuit is influenced by the relationship between phases of the mode 
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reflection coefficients and not by individual phase values. 

Used in conjunction with cardioid radiators the equivalent 

circuit will need a larger value of N as compared with one to be used 

with more directive radiators. We suggest that with the use of more 

directive radiators in the .array, the far-field mode amplitude 

distribution (equivalent to amplitude distribution in a linear array) 

is more tapered. This effect is an advantage in a multibeam system 

where a fairly constant beamwidth is desirable. 

The idea of leaving some radial lines open-circuited to reduce 

the number of radiators needed to be used has not proved to be a good 

one. A higher side lobe level is obtained for the radiation pattern 

if this were done. We suggest a form of matching network could be 

designed to t'ombine every two or three adjacent radial lines to form 
• 

a feed point. 

Although only two types of Luneburg Lenses were studies, the 

technique of obtaining equivalent circuits could be applied for other 

types of lenses. In particular the constant beamwidth Luneburg Lens 

(De Size and Woodward, 20) is probably worth studying. 
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APPENDIX A4.1  

Description of Program Subroutines 

In addition to the programs described in the appendix of 

chapter 3 the following additional subroutines are used in the program 

for the equivalent circuit lens:- 

A4.1.1 Subroutine EOCCT(XLO,XLR,CZ,NELR,DIAM,F,DR,DO,Z0)  

This subroutine calculates the values of the components L0, Lr
, 

and C
z 

for the equivalent circuit Luneburg Lens and'also for the 

characteristic impedance, ZO for the space outside the lens. By 

changing the value of U1, U2 and E the program can be converted to 

calculate the component values for the µ = E Luneburg Lens. 

EO = free space permitivity 

U0 = free space permeability 

DIAN = diameter of lens in metres 

DR = element spacing in r-direction = DIAM/(2*NELR) 

DO = element spacing in 0-direction = 21t/N 

XL0. = 

XLR = Lr 

CZ = C
z  

Elements values are numbered 1 to NELR starting at the lens 

circumference. 
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The flow chart for this subroutine is given in fig. A4.1.1. 

A4.1.2 Subroutine RTLCCT(XLZ,XLR,CZ,YT,NELR,N1,ZO,CXRHO,Q,W,ARGRHO ZTT) 

This subroutine calculates the-reflection coefficient of a ladder 

network terminated by an impedance, ZT for the (M1-1) mode. The Q of 

the coils used in the network can be specified. 

The subroutine starts at the end of the line, calculating the 

input impedance asit moves toward the feed point 

CXRHO(N1) =Complex reflection „;6efficient of (M1-1) the mode 

ARGREO(N1) = its argument 

ABSRHO(N1) = its modulus 

L
z 
= L0  / 4 sin2y, where lir = 2n * Mode/N, 

is computed in the main program. Th.c subroutine prints the values 

of the phase reflection coefficient normalised to the zero value so 

that the phase angle increases with mode number. The normalised 

input impedance for each equivalent circuit is also printed. 

A4.1.3 Subroutine RtIODE(ZTT,ZTM,NN,CXRHO,ARGRHO,M)  

This subroutine is programmed to calculate the New mode 

reflection coefficients for an N line equivalent lens but with all 

but every Nth ports are open circuited. Hence the number of new modes 

is reduced from the number of old modes by M 

ZTT(M1) =113n  = normalised old mode input impedance 

ZTM(M1) = 	= new mode input impedance 

The expression obtained in Appendix 4.2 is used for the computation 

1 _5 5 
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New - M 
z \SI)! 	.s/I, 

There are M terms in this summation. 

In the computation the old modes are arranged so that Mode 

ZTT(I) is the same for I = 0 to NN/2 and mode NN to NN/2 + 1. 



For µ = E Luneburg Lens 

E = SQRT (E) 
Ul = E 
U2 = SQRT(2.0-(RN/RAD)**2) 

XLR(1) = XLR(1)/2.0 

CST 
TART 157 

RAD = DIAM/2.0 
RN = RAD + DR 

N = NELR + I-1 
RNHLF = RN-DR/2.0 
E = (2.0-(RNEWRAD)**2) 

(For "Ordinary" Luneburg Lens) 
Ul = 1.0 
U2= 1.0 

XL0(I) = UO*U1*flNHLF*DO/DR 
XLR(I) = UO*U2*DR/(RN*D0) • 
CZ(I) = E0*E*DO*RNHLF*DR 

CONTINUE 

OUTPUT XLO, XLR, CZ 

ZO = SQRT(UO/E0)*2.0/(DIAM*D0) 

OUTPUT ZO 

RETURN 

Fig. A4.1.1 FLOW CHART FOR SUBROUTINE EOCCT 



Calculate last shunt impedance 

Calculate last series impedance 

ZT = 1.0/YT 

Y y 

Z = ZSH 

\Bo K 1, NELR1 

Calculate ZSER 

Calculate ZSH 

ZT = ZT in parallel with ZSH 

ZT = ZT in parallel with ZSH 

Calculate Reflection Coefficient, 

RHO, its argument, 

ARGRHO and modulus, 

ABSRHO 

ZT = ZT + ZSER 

CONTINUE 

r
--zTT.zT,zo 

Output ARGRHO in decrees 

with increasing value for 

increasing mode number 

CrR.ETUTtN 

158 

START 

Fir. A4.1.2 FLOW CHART OF SUBROUTINE RTLCCT  



ML1 = M-1 

DO J = 1, ML1 

IND = (i+J*UNDM) 
ZTI1(I) = ZTM(I)-1-ZTT(IND) 

ZTM(I) = ZTM(I)/M 

WRITE I, ZTM(I) 

MMODE = I-1 

ZTI1(I) = ZTT(I) 

CONTINUE 

Output Phase of Reflection Coeff. 
Pig. 	A4.1.3 

FLOW CHART 7  
RETURN ) 	SUBROUTINE  MODE 
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Read ZTT(I) into the rest of 

array so that ZW(I) is 

synnetrical about I = NU/2 

NNDM = NN/I:̀ 
NDMHLF = NNDM/2+1 

DO I = 1, NDMHLF 

CONTINUE 

.<• 



APPENDIX A4.2 

Mode Reduction by a Factor, k 

For an equivalent circuit structure of N radial lines if all 

except every kth radiator is left open circuited then current only 

flows out from every kth line. Instead of N modes the number of 

new modes will be reduced by a factor k. The impedance for each new 

mode is calculated below. 

For the Old Modes, m 

Zero order  

150 

Io =O 	 = io   - I
o 

1 	. I1+k 	1+2k 

and 	I°  = 0, for r 	1 + kq ; q = 0, 1, 2, 	 

=V°  =V°  
- 
	 =V° 

1+k 1+2k  

A4.1(a) 

First Mode  

1+k 
1 = I1 	ex (-j 2 N) = 1+2k exp(-j 2nk/N)
1l 

 = 	= Il  l  

and 	I1 = 0, for r / 1 + kg ; q = 0, 1, 2, 

  

A4.1(b) 

  

1 	1 V
1 
= V

1+k 
exp(-j 2nk/N) = V1 

+2k exp(-j 2nkAT) = 	= V1 

more generally for the mth mode (m = 1-N/2  to N
/2' 

N even) 

 



m _m 
I
1 
= 1+k - exo(-j 21-Lkm/D) = II+2k 03:12(-j 27ckmAT) = 	= 
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Ii =0  for r / 1 + kg ; g = 0, 1, 2, 	 

V -  = e 	j 1m 	=  1+k exT(- 2k/N) I 1+2k exp(-j 2nkm/N) =  

For the New Mode, M (= 1-N/2k to N/2k)  

exp (j r m a) 

A4.1(c) 

ri 

Alt .2 

where pm = constant for each mode 

m = old mode 

Also V
11
r 

= 

r = feed position number 
a = 2n/N 

ss° exp 	r m a) 	 A4.3 
-m m 

where Sul  = old mode impedance 

Replacing r by r+k in equation A4.2 

I
M 
r+k = G.  n exp 

(j m (r+k) a) 
m 

But for new mode, M 

I +k 	r = IM-exp (j 2mkM/N) r  

A4.4 

= Ir exp (j k M a) 

substituting for Ir from equation A4.2 

IM 	= 	pm  exp (j r m a) 	XD j k M a) 	A4.5 

Equating A4.2 to A4.5 



pm  exp (j m (r+k) a) = 	
M 

exr 	r m a) exp (j k N a) 

i.e. 	pm  exp (j m k a) = pm  exp (j k M a) 

i.e. 	exp (j (m-N)k a) = exp (j 2n 6), 

• • 
	 m = N + Ns/k 	 - A6.6 

but for m <N 

. . from equation A4.2 

= r p exp (j r n a) n  A 4 . 7 

where n = M + Ns/k 

and fin` < N 

Taking IIS 
r 

for k consecutive values of r (r = 1 to k, say) 

• 
IM  = exp 	M a) 

I 	1 	[-M+11.0/k 
+ p

M+N.1/k 

 

exp (j 2t.1/k) + 

  

IM = 0 = exp (j 2M a)Fr 2 	 C.M+N.O/k PM+N.1/k exp (j 11.".1/)  

Ik  = 0 = exp (j k M a) [-M D 	 p. +N.O/k 	-M+N.'1,/k exp (j 2 (k).1/k + L... 

Rearranging in-matrix form 
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exp(jMka) 

exp( jNa) 

exp(j2Ma) 

oxp(j(k-1)Ma)  

1 	1 	• • 	1 

1 	exp(jt3) 	exp(j(k-1)0 

• • 	 0 

1 exp(j(k-1)113) 	. exp(j(k-1)20 

0 

0 	r = 

0 

r 

cont'd. 
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Pm  

'14.1.-N/k 

x 

PM+N(k -1)/k 

 

where p = 2n/k 

 

    

    

i•e• 

 

_ 1 
k 

1 	1 	. 	1 

1 exel(-jp) 	. exp(-j(k-1)0 

. 	. 	• 	. 	. 

. 	. 	• 	• 	. 

1 exp(-j(k-1)() 	. exp(-j(k-1)20 

  

- M-FIN(k-1)//k 

 

     

     

exp(-jkma) 

exp(-ina) 

x 	• 

exp(-j(k-1)11a) 
I  

0 

_ 1 
k 

1 	. . 	1 

1 exp(-jp) 	. . exp(-j(k-1)3) 

. 	• 

0 

IMexp(-jMa) 1 - 
0 

exp(-j(k-1)p) .  exp(-j(k-1)2p) 0 



16i, 

exp(-jMa) 

exp(-j3) 

• 

exp(-j(k-1)p) 

1 

i.e. 
14 

PM+Ms/k = — 1 exp(-jMa) . exp(-jsP) 	 A4.8 

•From equation A4..3 

VM 	exp (j r m a) -m 	-e* rn 

V
i

•  

= 	pm  exp (j ma) Sm 

	

> 	PM+Ns/k 	exp (j (M+N s/k) cz) 

Substituting 
forPM+Ns/k  from equation A4.8 

M 	 V = 	i1 exp(-jNa) . exp(-js3) . exp(jMa+jNsa/k) 1 rr k 

	

= k 	)cM+Ns/k 

,„r 
i.e. 3M'  the new mode impedance 

	

V"1 	1 
- k 2_, mA-Ms/k 

1 

-e,  i.e.. om  = 	'Sri, where 1m I < NN 

A4.9 



CHAPTER 5 

5. 	TEL OPTIFai LENS AND ITS DESIGN 

5.1 Introduction 

Although the behaviour of the Luneburg Lens is fairly optimum 

we feel that there may be other rotationally symmetrical networks 

(RSN) which have characteristics better than that of the Luneburg Lens. 

In obtaining the equivalent circuit Luneburg Lens we have no control 

over its characteristics. In this chapter we explore the possibilities 

of obtaining a technique for the design of an ontimum Luneburg type lens. 

In chapter 2 we showed that a RCN can be built by cascading two 

Butler type networks via N phase shifters. The only parameters involved 

in such a network are the values of the N phase-shifters (whose phase 

values correspond to the phases of the mode reflection coefficients or 

eigenvalues of the RSN structure). Therefore, in any design technique 

the values of the N phase shifters need to be known. 

Chadwick and Glass (23), Davis (12) and Sheleg (24) have 

established the equivalence between the linear and circular array. In 

the two-Butler-type matrix network one of the matrix network acts as 

the mode forming network and the other, as the beam forming network, 

much like the network used to feed N radiators in a linear array. 
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There is a relationship between the code in the near field (the 

output from the network) and the mode in the 'far.-field. This trans-

formation factor depends on the radiation pattern of the radiators 

used in the array. The correspondence between linear end circular 

array and the relationship between modes in the near and far-field 

will be treated in section 5.2. 

In the design of the optimum lens we maximise the field in the 

direction of the main beam. This is done by choosing the appropriate 

values for the N phase shifter (i.e. phases of the mode reflection 

coefficients), so that the phase of all the modes in the far-field is 

equal. 

We proposed to construct the RSN by interconnecting 2-port 

networks between the N feeds points of the RSN structure as shown in 

fig. 5.9. The expression for the Y
12 

parameter for the two ports is 

derived in section 5.4. 

In section 5.5 we explore the possibility of realising the 2-port 

network from the Y12 parameters already obtained. 

5.2 Equivalences Between Linear and Circular Arrays  

. The equivalence between the circular and linear array was 

established. by Chadwick aid Glass (23), Davis (12) and later by Sheleg 

(24)• 

-We have shown this equivalence purely from consideration of 

rotational symmetry. Figure 5.1 shows the equivalent circuit for a 

rotationally symmetric network for multibeam operation obtained in 
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chapter 2. The second Butler Matrix M acts as the mode forming 

network, while the first matrix network [:] acts as the beam forming 

network much like the Butler Matrix use in a linear array for multi-

beam operation. 

FiQ. 5.1 ROTATIONALLY SYLMETRIC NETLORK FROL TWO BUTLER-TYPE NET01,,KS 

If the rth input port of the beam-forming network is excited the 

outputs from the N output ports (inputs to the radiators) are equal in 

amplitude but have a phase progression between adjacent ports of 2R-r/N 

radians. This excitation corresponds to the rth mode. For clarity in 

this discussion we assume that this is equivalent to a continuous 

current distribution, exp (j 1'0 ) where 0 = array azimuthal angle. 

This assumption is justified if the spacing between radiators is less 

than .%/2. The rth mode in the near field gives rise to radiation in 

the far-field (Appendix A5.1), given by 

Fr(0') = Br exp (j r 0') 
	5.1 



where 9 = azimuthal angle in far-field 

B
r 

= constant (dependent of the pattern of the 

radiator used in the array. 

Hence the excitation of the rth input port of the second matrix network, 

(B*1 gives rise to a far-field mode, r. Taking into account the phase 

shift, or  the far-field becomes 

Fr(9') = Br  exp (1 
0r)  exp (j r 9 t) 	5.2 

Compare this with the expression for the far-field contribution of the 

rth element in a linear array 

Flr(et) = r 
exp (j r u) 

where u = (kdA) sin 0' 

d = spacing between radiators 

L 
r 

= excitation at the rth radiator. 

Vhereas F1r
(9') is a functiOn of (kdA) sin 9 in a -linear array, 

F
r
(0') is a function 0'.only. We see, therefore, that the first Butler 

Matrix Networ1:1, [B] acts as the usual beam forming network in a linear 

array ([11],[29] , n. Consequently, the restriction's applicable' for
a lossless Butler-Matrix used with the linear array applies, i.e. the 

output amplitudes from the beam forming network must all be equal. 

Therefore, the mode amplitude for a lossless RSN (in the near field) 

must be equal. Hence, in the near field the total field in direction, 

0 is given by 

F
near

(0) = 	Am exp (j m 0) 
m 

5.3 

Am = 1 for lossless network considered 
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In the far field 

F(0') = 	B exi (j 	) exp (j m -01) 
trt 

The constants B exp (+j 0 ) corresponds to current excitation for 
m 

the mth radiator for a corresponding linear array. Bra  (a complex 

value) is investigated in the next section, 

5.2.1  Relationship Between Near and Far-field Mode Excitations  

It has been shown (Longstaff , 0'1ow and Davis [25] Knudsen [26]) 

that for the mth mode the far-field F (0') has the same form as the 
m 

current distribution along the circumference of the array but 

modified by an mth order Bessel function and (j)m  for omni-directional 

radiators. 

i.e. for I2(0) = Ir  exp 	m 0) 	 5.5 

F
m
(0') = (j)in  Jm(ka) exp (j-m 0') 	

5.6 

where a = radius of the array 

For certain value of a J
m
(ka) = 0 so that some modes are not excited, 

suggesting that the system is frequency sensitive. The mode amplitude 

distribution .(1Brj = bld is plotted in fig. 5.2 for smni-directional 

radiators for a 2.0X, 4.0X and 8.0X diameter array. We can neglect 

the effects of the higher order modes which are also excited if the 

spacing between feeds is less than about X/2. Otherwise equation 5.6 • 

becomes 

Fm(0f ) F 	(j)M-Nq  jn_wo(ka) exp j(n-liq)0 
	5-7 
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if cardioid (1+cosine) radiators are used (Appendix 5.1) 
2 

Brri = 	(j)-n1  Jm(ka) 
	

J [Jm+1( ka ) - Jm+1(  Ica)] 	} 

= i(j)rn  [Jr(ka) - J'I(ka)] , neglecting the 

effects of grating lobes. 

B
IT1 	Tr = b / 	is calculated using a digital computer by the 

subroutine AMPARG (described in Appendix 5.2). For the cardioid 

radiators the far-field mode amplitude distribution is plotted in 

fig. 5.3 for 1.0X, 2.07 ,.4.0%, 6.0% and 3.0% diameter arrays. 

Whereas the far-field mode amplitude changes rapidly with mode 

number for an array of omnidirectional radiators, that for cardioid 

radiators is fairly constant, increasing in value, reaching a peak 

value when m r..eka. For a > ka the mode amplitude falls off rapidly 

to a very low value. The effect of the far-field mode amplitude 

distribution of the far-field pattern has already been discussed in 

chapter 3 for the Luneburg Lens. For cardioid radiators if all the 

significant modes are used the side lobe level obtained approaches 

-13.3db - a figure very close to that for an array with uniform 

amplitude. 

Judging from the radiation patterns obtained using beverage 

aerial radiators we are led to believe that far-field mode amplitude 

distribution is more tapered if more directive radiators arr used in 

the array. Equation A5.7 in appendix A5.1 supports this theory. A 

more directive radiator will contain a higher number of cosine harmonics 

in the expression for its radiation pattern. 
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The phase,11Y , of B has been computed for the (1+cosine) rm 

radiator array. 

5.3 The Optimum Lens 

We define the optimum lens as one which has maximum gain in the 

forward direction of the array (0 = n for feed at e = 0). To maximise 

I 	- 
gain we maximise F(0 ). 

5.3.1 Behaviour of Mode Reflection Coefficient  

From equation 5.4 the far-field excited by the RSN is given by 

F(0') . 	Bm  exp (j 0m) exp (j m 0') 	5.4 
m 

= 	bm  exp j(0Mm exp (j m 0 ) 
m 

To maximise F(0') we put the phase of all the terms in the summation 

equal to a constant, zero for convenience, i.e. 

+ 	+ m 	=0 m 	m 	max 

Cem = -1"
m 
 - m 0max 
	 5.5 

We had established that 0  is the phase of the mode reflection 

coefficient for the RSN. For optimum lens design 011max  = 180°  

i.e. 	= 
	 5.6 

The relative value of cm has been plotted in fig. 5.4 for the 2.0?, 

4.0X and 6.0X diameter tense--. The corresponding curves for the 

Luneburg Lens are also shown. 

Like the Luneburg Lens the phase of the mode reflection coefficient 
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increases at a rate of less than 180°  per mode, for mode numbers less 

than ka. For modes greater than ka the phase increases at a rate of 

nearly 90°  per mode. The phases are fairly constant for the 

corresponding modes for the Luneburg Lens. Since the far-field mode 

amplitudes for m greater than ka are not very significant the behaviour 

of the two lenses should be similar as far as the far-field Patterns 

are concerned, particulars for low values for feed numbers. Since the 

relative phase of the mode reflection coefficient curve deviates 

slightly from the 0(m) = m x 180°  line for m less than ha, we have 

plotted the difference between the two curves in fig. 5.5 for both 

type of lenses. 

5.3.2 Feed Output Distribution  

The output distribution from the feeds of the optimum lens is 

shown in fig. 5.6 for a 4.0X diameter lens for 48, 24 and 12 feeds. 

The corresponding distribution for the Luneburg Lens is given in 

fig.-  3.5 (sec. 3.2.2(a) of chapter 3). The significant differences 

between the two output distributions are:- 

(i) the lower amplitude of outputs at feeds adjacent to input port 

especially if feed numbers are small, for the optimum lens. 

(ii) for high number feeds used the amplitude output is high at the 

side of the array (around = 90
o and 270o) for the optimum lens. 

5.3.3 Far-field Patterns  

The radiation pattern for the array fed by the optimum lens is 

shown in fig. 5.7 and 5.8 for a 2.0% and 4.0X diameter lens, for 
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various numbers of modes (or feeds) used. The corresponding 

patterns for the Luneburg Lens, shown in fig. 3.14 and 3.15 have 

already been dismissed in sec. 3.3.3 in chapter 3. 

On the whole, where the spacing between feeds is large (lower 

number of feeds) the patterns obtained for the two lenses are nearly 

the same. But for higher feed numbers the side lobe levels in the 

optimum lens array tend to fall away from the main lobe, so that 

back lobe levels are very low. The higher side lobe levels for 

arrays with feed spacing of about %/2 is mainly to grating lobes 

which are also excited. The optimum lens array has narrower beamwidth. 

If the RS1'I is viewed as a lens fed at 0 = 0, with maximum field 

in 0'= n, this corresponds to radiation in the forward direction. 

Such a lens belongs to the class to which the Luneburg Lens belongs. 

If, however, we maximise the far-field in the direction 0'. 0 

instead of n we obtain a lens which radiates in the backward direction. 

Such a lens belongs to the class referred to as Eaton-Lippman Lenses 

(Kay M) 

For max(n) 
 

0m = 	m n (forward direction) 	5.6 

For 7max(0)  . 0 = 
	

(backward direction) 	5.7 

Synthesis of the Optimum Lens  Network  

The phase of the mode reflection for the optimum lens network 

has been obtained in the previous section. We propose to construct 

the lens network by connecting 2-port networks between the N output 



feed points as shown in fig. 5.9. Let N = 214+1. 
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In the following paragraphs we obtain the relationship between 

the Y
r 

parameters for the rth 2-port network and the reflection 
12  

coefficients obtained in section 5.3. 

For the rth 2-port network itself, 

Y 	
yr 

1 	12 

 

Y 	Yr 12 
 

1 

   

where Y
r 

- Y11 parameter 
1  

Y
2 = 12 

parameter 

For the Whole N-port Stricture (N = 2M+1), 

at the nth port for mth mode, 

Ii 	2m  
im = 	Fir v 	Yr  V   L 

y2M+1-r 
V
n 
+ Y21`+1

-r 
V
n+r] 	5.9 n 	L 1 n 	2 n+r] 	1 

r=i 	r=M+1 

But V
n 

= exp 	m n 0) 
	

5.10 

  

V
n 

V 
n+r 

5.8 
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where 0 = 2i/N 

It 

1 [Y 2: 	r  exp (j 	+ Yr 2 • I" = 	m n 0) 	exp j m(n+r)01] 
k r=1 

2M 

[Y 
 2M+1-r 
1 	exp (j 

r=M+1 

  

m n 0)  4M+1-r 
exp jrn(n+r)0 

  

I1 	N 
= exp(jmnO) [2 *2-.. 	2 Yr  + 	r  fexp(jmr0) - exp(-jmr0)}.] „ r=1 	r=1 

,
2  

r Ii r 1t r i.e. Im = exp(jmn0)I 2 :E Y1 + 2 T.  1 cos m r 0] L r=, 	r=1 

If a shunt element exists in the nth port 

- M 
In = exp( jmn0) i (2- Sro) Y1 + 2 	y2  cos m r 

-r=1 	r=1 

Im .1)1 
i.e.. B =—n  = A + - 2 	Yr

2 
 cos in r0 

-r=1 Vn 

	

for m = 0,.1, 2, 	 M and 

where Bm = mode admittance 

.A = Z Yr  (2-6.  ) 	5.14 and 

	

1 	ro r=0 . 

For m = 0, 1, 2, 	11,. 

Bo  = A + ' 	 + 	2Y2 	+ 	 + 	Y2 2Y
2  
1 	

M . 
5.15(a) 2 

1 B1 	 2 
= + y

2 
cos +- 2Y2 cos20 + 	 + 2Y' cosM0 	5.15(b) 

Br = A + 2Y
1  cosrO + 2Y2 cos2   + 2Y2 

cosMr0 
2 

5.15(c) 

5.11 

5.12 

5.13 



Y
2 , 

Bm  

B  }= 

B  

B1  

B2  = [ C 1 

Al 

1 Y2 

Y2 
2 

where [ r  3 =  

1 	2 	2 

1 2cos0 2cos20 

. 

1 2cosMO 2cos2M0 

   

But it can be shown that 

1 1 1 

1 cos0 cos20 

where Cl  . . 

. . 

cosM0 

. 

cos2240 

and D = 0, if m n. and m=n'0 

=(211+1)/2 if m = n 

[c ][c1] 	D 	[I ](2`l+1)/2 
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B = A + 2Y12  cosM0 + 2Y_
2  cos2V + 	 + 2Y2 cosii 
c_ 

Rewriting equations 5.15(a) to (d) in matrix form 

5.15(d) 

5.16 

. . . 	2 

• . . 	2cosM0 

. 5.17 

. 

. . . 	2cosM2,0 

• • . 	1 

. . . 	cosM0 

. 5.18 

. . 	cosM20, 

5.19 



1 1 1 	' 	. . 	. 	 1 B 
 

1 cos pr cos20 	. 	. . 	cosM0 B
1 

2 1 cos20 cos40 	. . 	. 	cos21O 

- - - 

1 cosh 'cos2W 	. . 	cosM 

From equation 5..16 

, 

I
M 
2 

= 

A 
1 

' M 
i.e. 2 A = 	B N 	r r=u  

5.21(a) 

and [ 	= [ C 	1 7 	2  \ 
k 21-14-1; 
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5.20 

5.21 

1 	2 
II 

Y2 . 	Br  cosrO  
r=u 

17 
Yn2 2 Br  cosnr0 

r=0 
6 

5.21(b) 

5.21(c) 

M 	2 '7--  Br 
cosMr0 	 521(d) 

II 

Y2 - N r.0 

Therefore the M Y
12 

parameters of the II different 2-ports are 

obtained in terms of the mode admittance (susceptance) of the optimum 

lens network. The Y
12 

parameter has been comruted for.a whole 

series of frequencies by the subroutine YY12 (described in appendix 

A5.2). This has been done for a modest size network with nine feeds 

for an array of around 1.5k diameter. The Y
2 

values have been 

computed over the frequency range 0.25 MHz to 5.75 MHz and plotted 
1 	2 	3 	4 in fig. 5.10 and 5.11 for Yo  and Y2  and Y2  and Y2  respectively. 
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D
m 
is expressed in terms of 0 , the phase of the mode reflection 

rn 

coefficient as follows:- 

- j Reflection coefficient,tm = 1 
	Bm 
1+ jBm 

phase, 0m = - 2 tan
1 Bm 

Bm  = tan(012) 	5.22 

5.5 	Possible Realisation of 2-Port Network from the Y
12 

Parameter 

Obtained  

In this section we investigate the possibility of realising a 

2-port network given the frequency characteristics of the Y12  

parameters (computed in the previous section). 

We concentrate our efforts on 2-port networks built up of 

transmission line sections with and without loading by lumped elements. 

The frequency behaviour of the Y
12 

parameter for the following simple 

transmission line networks will be briefly examined. 

(a) the single section transmission line network 

(b) a three section transmission line network 

(c) a two section transmission line network with loading in 

between. 

Since the networks involve cascading of various sections of two. 

port section, it is convenient to obtain the ABCD transfer matrix for 

the whole 2-port network. The corresponding Y12  admittance parameter 

is obtained from the relationship 

Ym12 = - 1/B 	 5.23. 
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C 	D 

cos9 	jZsin0 

j(sin&)/Z cos9 

5.5.1 A Single Section Transmission Line Network 

	 • 
i.e. Y

12 
= - 1/B 

i/Zsin0. 	5.25 
Y12 = 

The Y
12 

characteristic is plotted in fig. 5.12. The maximum and 

minimum values of Y12 
is inversely proportional to the characteristic 

im:oedance, Z. The spacing between the. asymptotic lines si  and s2  are 

equal 

5n 

Fig. 5.12 Y,2  CHARACTERISTICS (FOR A ONE SECTION T.L. NETWORK) 

e 
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5.5.2 The Three Section Transmic:sion Line Netork 

0. 
Og 

•	  

 

	a 

 

It can be shown that 

2 	(s 
1 
 z )21] =-VB = jZ /[2c 	+s { (c 

Y12 	1
c 
2
E 
1
Z 1Z 2 
	2 	1Z 2) 	1 

where 0 = electrical length of T.L. 

c
1 

= cos0
1 

s
1 
= sin0

1' 
etc. 

Z1, Z
2 
 are characteristic impedancesof the T.L. sections. 

If 91 = (32'..112 simplifies to 

Y
12 

= jZ,/p3(2Z
1
Z
2 

= j [(2Z1  

where K2 = 

+ Z2Z2)]  + 	+ Z
2
) - s (2Z1  Z2 	1 

+ Z2 
	1' 
+ Z2/z 
	% 
) s (s)j  2 	_2%1 -1 

2, (2Z
1 
+ Z

2)/(2Z1 
+ Z

2 
+ Z

1/Z2) 

5.27 

5.28 

If Z
1 
= Z

2 

Z >>Z 
1 	2 

Z
2
>>Z

1 

	

Therefore if Z1  > Z2 	4/3 > k > 0 

	

and if Z
2 
> Z

1 
	> k >4/5 
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5.26 

K = 1-13 

K = 0 

• K = 



For Z1 	Z2. 

. -1 0 = sin k 

From eauation 5.27 Y12v approaches co at c = sin0 = 0, +K 

i.e. 0 = 0, T., etc. 

-1 	-1 + sin K, 180 + sin K, etc. 

For Z
1 
= Z

2' 
 K = 4/3, the behaviour of Y

12 
is thus similar to 

that of a single section transmission line of length, 30. If Z1
> Z

2' 

the effect of the Y
12 

characteristic is a movement of the two asymptotic 

lines Si  and S2  apart. If Z2,> Z1, S1  and S2  move closer together 

(see fig. 5.13) 
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5.29 

Y
12 

= 

0+jB 

Tr 21T 

Fig. 5.13 Y12 CHARACTERISTICS (FOR A THREE SECTION T.L. NETWORK) 



The maxima and minima for the curves occur when s = sin9 = 

+AVIc./3 when 

Y12I max/min 
= j/Z, for Z1/Z2  = 1, 

increasing in value for 
Z1/Z2 

>1 and decreasing for Z
1
/Z
2
< 1. 

5.5.3 The Two Section Transmission line Network with Shunt Loading 

Y0, 

It can be shown that 

Y
12 

= 1/B = - 1/ [jscZ s2  Y
e 
Z2
] 

- (a) For capacitive loading,
e 	

(4 = j 

Y12 
= 1/B = + j/ [2Zsc - wC Z2  sin20] 

If (4 <K1 the network behaves as a two section transmission 

line network but when j(4 is appreciably 

Y12 = j/ [Z sing© -(wCZ1/2)11 

The behaviour of Y
12 

is shown in fig. 5.14. 
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5.30 

5.31 

- cos20)] ;5.32. 



yr 	_ 
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Fig. 5.14 Y
12 
 CHARACTERISTICS (FOR A TWO SECTION T.L. NETWORK WITH 

CAPACITIVE LOADING)  

(h) For  Inductive Loading, 	Y
e 

= . 1/jwL 

Y12 7: 
 j/ [2Z sine cos() + 	sin 20] 

= j/ [z sin2O + 	(1-cos20)] 
	

5.33 

The Y12 
characteristics are shown in fig. 5.15. 
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1 

1 
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Fig. 5.15 Y12  CHARACTERISTICS (FOR A TWO SECTION T.L. NETWORK WITH 

INDUCTIVE LOADING)  

(c) For Parallel Resonant Loading, Ye  = (NC + VNL) 

Ye 	NC , if cli)> 1 

= VNL, if w ‹.<1 
parallel 

The effect of 	resonant loading is the introduction of a zero 

parallel 
for Y12  at 0 = 00, corresponding to the 	resonant frequency, wo, 

so that the Y
12 

characteristics for a two section T.L. with a parallel 

resonant circuit will be of the form shown in fig. 5.15. 



Y
12 

 

0-1-jB 
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SHUNT ELEMENTS 
CAPACITIVE 

SHUNT ELE1ENTS 
!INDUCTIVE I 

Fig. 5.15 Y12  CHARACTERISTICS (FOR A TWO SECTION T.L. NETWORK WITH 

PARALLEL RESONANT LOADING)  

The sign of the slope of the Y12 curve near the resonant 

frequency, wo, can be changed by choosing the value of wo, as illustrated 

in fig. 5.16 for a different wo  value. 

Y2  We see from fig. 5.10 and 5.11 that the behaviour of Y2 
s similar 

to some-of the Y
12 

behaviours seen in figure 5.13 to 5.16. 

We suggest that by using more than one
Parallel

resonant circuit 



SHUNT E'LMEDTTI1 
INDUCTIVE 

1 
SHUNT ELEMENTSi- 
CAPACITIVE 

Y
12 

 

04-jB 

Fig. 5.16 Yi?  CHARACTERISTICS (FOR A TWO SECTION T.L. NETWORK WITH 

loadings and use of more sections of T.L., the characteristics shown 

in fig. 5.1C and 5.11 for the optimum lens can be realised. liore 

detailed work needs to be done in this direction. 

PARALLEL RESONANT LOADING, OF DII!.bERENT coo  VALUE) • 

5.6 Summary  

-We have established the parameters involved in the design of the 

rotationally symmetric network. They are the phases of the mode 
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reflection coefficient of the structure. By choosing the phases such 

that all far-field modes contribution are equal in 1phase in the forward 

direction we have obtained the design parameters for the optimum lens 

network. 

We see that the radiation pattern obtained from this lens has 

very low back lobes where grating lobes are not excited (i.e. when 

spacing between feeds is small). Unlike the Luneburg Lens, the outnuts 

from no= is adjacent to the input port is low even for small spacings 

between feeds. Instead the- outputs ar, high at feeds on the side of 

the lens. 

We envisage building the optimum lens network by interconnecting 

2-port networks between the N feed points. The relationship between 

the Y
12 
 parameter for each of the 2-port networks and the mode 

admittances for the structure has been established. Examination of 

some fairly simple transmission line networks have shown that it is 

possible to realise a network with the Y
12 

characteristics obtained for 

the 9 feed lens investigated. An all transmission line network could 

be produced if the lumped elements considered were replaced by short 

or open-circuited transmission lines. 
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APPENDIX 5.1 

5.1 Far-field Excitation due to Exponential Mode Excitation 

1, 
for zk11-cosine) radiators  

Pattern of radiators used: IF [1 + cosine (0 T-0)] 

For the mth mode, array excitation is given by: 

I(0) = I exo (j m 0) z  m 

where 0 = array azimuthal angle. 

At a point 0' in the far-field the signal is proportional to 

Iz  [14-cos(0'-0)] /2 . exp [j k a cos(0 T -0)] exo (j m 0) 

For the whole array the far-field in the 0' direction is the sum of 

contribution for the whole array 

2n 

i.e. F(0')= 	[11-cos(0'-0)] e 	[j k a cos(0 1 -0)] exp (j m 0)d9 
2 

A 5 .2 

expanding the first exponential term and cos(0'-0) 

2n 

F (0') = Im S 	[14-cos(0'-0)] exp (j m  9) 	(j)n  Jn(ka) 
2 

0 

exp n(Ot -0)] dO 

i.e. Fm(0') 

2n 

m 
2 /I  11 

(j)11  Jn(ka) exp [j(m 0 + n(0 1 -0))] dO 
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+ IMPi)
n 
Jn(ka) exp [j n(9 T -9) + j(0'-0) + m 0] de 

4 	"'"' 

+'m J7](j)n  Jn(ka) ex [j n(0'-0) - j(0I -0) + m 0] dO 
4 ' 

leaving out the factor 2n 

Fm  (0') = Im (j)m 	(ka) cxn (j m 0') 
2 - 

+ Im  (j)m+1 J
m+1  (ka) exp 	n. 0') 

4 

+ Im (j)m-1- J
m-1(ka) exp (j m 0') 

4 

F (0 ') = Ira (j)M iJm(1<a) - 	(ka) 	Jm+1(ka.)] 	exp ( j m 9 ) 2 m-1 
2 

.5.3 

. I111  . B exp 	m 01) 
	

A5.5(1) 

I_ (D
m  pm(ka) 	j J:11(ka)] 
	

A5,6 

More generally it can be shown that for the mth mode but with a more 

general symmetrical radiation pattern given by cos [p(e T -q 
	

the 

far-field is given by 

F
m
(0') = Im pm+P J 

m+p 
 (ka) + (j)m-13  J 

m-p 
 (ka/ exp (j m 

2 L 

A5.7 

It can also be shown that if N discrete radiators are usod she 

following additional higher order mode terms must be added to equation 

• A5.3 



F (01 ) = 
gm 

, .111-Na ka) t 7 	 q 
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+ Im kj)  ,.\m+1-11q j  
- (ka) m+1-vq 

+ I m k ,.j)N m-1Nq j  
(Ica)} exP [j (n-lig)] m-1-0q 

Equation A5.3 and A5.7 shows that a mode excitation in the array 

(near field) gives rise to a far-field mode excitation except for a 

transformation factor, 
m 

B = n J
m
(ka) for omnidirectional radiator 

= (Dm  FJ m(ka) - j J'(ka)] /2 for 1-(1÷cosine) radiators L  
• 

= Dm-FP  J 	(ka) + (j)m-p  J 	(ka)] / m+p 	m-p 
	/2 for [cosine 

(p O)] radiators. 

For discrete radiation the grating lobe, can be neglected if the 

.spacing between feeds is large, i.e. m..> ka, i.e. J (ka) <•<1 in 

equation A5.8. 

A5.8 



APPENDLX  5.2 

Description of Computer Program Subroutines 

Subroutines not already described in preceding chapters are:-

A5.2.1 Subroutine BESSEL(Z,NANS,NBSFN,BSFN)  

This is a library subroutine which produces Bessel functions of 

argument, Z of all orders from 0 to /TANS. NBSFN is the array which 

stores the order of the Bessel Functions and BSFN/BJ is the array 

which stores the corresponding Bessel Function values. 

A5.2.2 Subroutine AMPARG(CKRIIO,A,DIAM,NN,YETA)  

This subroutine calculates A(M1) the amplitude of the trans-

formation factor between modes in the near field and that in the far 

field for an array of diameter, DIAN ( in wavelength). A(141) 

corresponds to bm in sec. 5.2.1, m = 041-1). Themi)subroutine also ( 

calculates the mode reflection coefficient CXRII0, a complex variable. 

The corresponding mode admittance, YETA(M1) is computed from the 

reflection coefficient, The flow chart for this subroutine is shown 

in fig. A5.2.1. 

A5.2.3 Subroutine YY12(NN,YETA,Y12,IDM)  

This subroutine computes 'bile Y12  parameter; Y12 from the mode 

admittance, YETA(N1) from the expression given by equations 5.21. 

The flow chart is shown in fig. A5.2.2. 
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1.5.2.4 Subroutine W2Y12(Y12,F,III1XX)  

The subroutine writes out the different Y12 values for the 

various given frequencies. 
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Fig. A5.2.1 SUBROUTINE AMPARG 

Z = 1)1111,1*PI 

Call BESSEL to compute Bessel 

Function of argument, Z of all 

required orders. 

Output Bessel Functions 
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First Mode (zero) 

CBJ(1) = CEPLX(BJ(1), BJ(2)) 

JEXPN = CMPLX(1.0,0.0) 

JEXP1 = CPLX(0.0,-1.) 

CBJ(111) = CMPLX(BJ(111), 

(BJ(H1+2) - BJ(M1-1))/2) 

JEXPN = JEXPN*JEXP1 

aru(111) = CBJ(111)*JEXPN 

CONTINUE 

IDO I = 1, I=12 

A(I) = ABS(CBJ(I)) 
=EOM = CDJ(I)/A(I) 

Reflection Coefficient, 

CXRI10(I) 

CONJG(CXRNO(I)) 

ARGPJIO(I) = argument 

of Reflection Coeff. 

YETA(I) = 

-TAN(ARGRHO(I)/2.0) 

Output A(I) and phase 

of reflection coeff. in 

degrees and YETA(I) 

	<DO 2j.1 = 2, NNBTP  



START 

MODE = 1•I1 - 1 

CSMRO = COS ( FLOAT ( NODE*IR) *0) 

YCS = YETA (111) *CSMRO 

Y12T = YI2T f YCS 

Y12( IDI.1412) = Y12T*2.0/FLOAT(NN)  

N = NN/24-1 

NIA = I1 - 1 

e = 2 .0*PIAIN 
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CHAPTER 6  

CONCLUSION AND SUGGESTION FOR FURTHER WORK  

In chapter 2 we obtained, purely from consideration of 

rotational symmetry an equivalent circuit for the Rotationally 

Symmetric Network (RSN) in terms of two Butler--type matrices. In 

the same chapter we showed that a Butler Matrix can be derived from 

the Rotationally Symmetric Coupler (RSC) which is a special form of 

the RSN. In chapter 3 we obtained a 2N port network from an I;-port 

Luneburg Lens type structure by the use of N directional couplers or 

circulators. The technique used may be applied to a special type of 

N-port rotationally symmetric network to obtain a 2N-port Butler 

Matrix. If this can be done the number of components plus directional 

couplers required to fabricate the Butler Matrix may be less than 

the number required, using conventional techniques, especially for 

large N. The special type N-port RSN to be used needs further study. 

'All these evidences suggest a.strong relationship between the Butler 

Matrix and the Rotationally Symmetric Network (the Luneburg type 

Lens, in particular). 

We have .obtained an equivalent circuit network for the Luneburg 

type lens. The results obtained suggest that the number of elements 

required along each radial line is about 8 or 9 elements per wavelength. 
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The minimum number of radial lines needed depends on the type of 

radiator used and to a lesser extent, on the size of the lens in 

wavelength. .We find that fewer radial lines are needed if the 

radiators in the array are more directive. This is due to a stronger 

taper for the far-field mode amplitude distribution (equivalent to 

amplitude distribution for a corresponding linear array). Because 

of this a lens. used with beverage radiators gives beamwidths which do 

not change as rapidly with frequency as that obtained using (1-1-cosine) 

radiators. 

The number of components needed for an equivalent lens is about 9 000 

.(two inductors for every capacitor) for a 6.0% diameter lens, using 

(14-cosine) radiators and more than half this figure for beverage 

radiators. Nnce the number of components needed for the equivalent 

lens is roughly proportional to its area in wavelength, we think that 

the number of components required would restrict the lens size to 

about 8.0X. 

With current interest in microwave integrated circuitry this technique 

may even be used for the U.H.F. and higher frequency bands. Even at 

H.F., integrated circuit and thin film techniques could be used to 

fabricate the equivalent lens. Only one radial line need be printed. 

The equivalent circuit technique could also be applied to other.  

Luneburg type lenses described by Kay (27), Huynen (28), De Size and 

Woodward.  (20). The technique is particularly useful for lenses where 

the required relative permitivity is less than zero, or where relative 

permeability is other than unity. 
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In chapter 5 we =mined the parameters involved in the design 

of a IRSN. The optimum lens network was arrived at by maximisilic the 

gain in the forward direction of the array. Uc propose to build the 

lens network by inter-connecting 2-port networks between the N feeds 

of the structure. To realise the network we derived the expression 

relating the Y12  parameters for the 2-ports required to the mode 

admittance of the structure. Examination of some simple transmission 

line networks suggest that it is possible to realise the 2-port 

networks from the Y12 	- characteristics obtained for a modest 9-feed 

lens over the frequency range, 0.5 to 5.75 MHz. 

Further detailed work needs to be done in the design of such 

lens networks using the technique described. 
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