NOTE ADDED IN PROOF

When the work.for this thesis was completed, and it was in the
process of being submitted, two papers appeared in the Physical Review the
content of which overlapped in part with the work of Chapters III and IV.

G. Toulouse (Phys. Rev. 2 , 270 (July 15,1970) ) independently obtained
formulae of the type 3.19 and 3.23 for the U infinity limit of the Anderson
Hamiltonian. H. Keiter and J.C. Kimball , Phys. Rev. letters 25 , 672(Sept. 7,
1970) , derived a time independent expression for the partition function Z in
the Anderson modél which is essentially equivalent to the results obtained in
Chapter III of the present work. In particular they also succeeded in
identifying the graphs which lead to the most divergent contributions to the
static susceptibility x(T) and obtained the same expression as derived in

Chapter IV and given by 4.16 in the U infinity limit.
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ABSTRACT

The Anderson model of magnetic impurities in simple metals
is treated by perturbat.ron theory from two different directions. In both
cases, the expansion is carried out in powers of the mixing interaciion
and the Coulomb repulsion on the impurity is treated exactly. The problem
is first approached by using a Green'’s function method and it is found
that the characteristic logarithmic divergence associated with the Kondo
effect, cancels in the fourth order, but remains in the sixth order of
perturvation theory. Computational difficulties however, seriously restrict
the scope of the method, although it does throw some light on some of the
more general problems encountered in perturbaticn treatments of the
Anderson model., In the second stage, a time independent expansion is
obtained for the Grand Partition Function Z and the Free eaergy F whicﬁ
siﬁplifies enormously the perturbational calculation of the thermodynamic
properties of the systems It is found that by including a certain class
of contributions to all orders, a formula is obtained for Z zad F which
is exac®t 2oxcept for contributions of O(1/N) and less. In this way the
calculation of Z and F is reduced to solving a self-consistency relation
which in the zero temperature limit corresponds to the Brillouin—Wigner
formula for the groﬁnd state energy shift. Various graphical representa-
tions are put forward for the calculation of Z and F by perturbation
theory; the limit of an infinitely strong Coulomb coupling leads in
particular to a great simplification. With this technique, it has been
possible to Qerify Scalapino’s(39) prediction that the dominant contribue-
tions to the sfatic.su5cepfibility can be represeﬂted by a geometric
series. The low temperature limit of the static susceptibility is
considered in some detail, both perturbationally and using an 'exact?®

relation. It is found that in some situations, the two approaches can

lead to qualitatively different results,-



ACKLHOWLEDGEMENTS

I would like to take this opportunity to
exXpress my gratifude to Dr. A.C.Hewson for his
advi.c.e'and guidance as well as for suggesting
_the problem, My thanks are also due to Professor’

' E.P.Wohlfarth,



COLTENTS
CHAPTER i.,- INTRODUCTION .

a) Theoretical Models
b) Hartiree-Fock approximation
.¢) The effects of Correlations

d) The Kondo effect

CHAPTER 11,- TIME DEPENDENT PERTURBATION THEORIES
A) TEE SPIN FLUCTUATION MODEL
B) EXACT TREATMENT OF THE COULOMB REPULSION
a) Fourier Transform .
b) Zero temperature

¢) Vinite temperatures

CHAPTER III.- TIME INDEPENDENT PERTURBATION THEORY FOR THE
GRAND PARTITION FUNCTION Z, AND THE FREE ENERGY F

a) The transformation for Z

L) .Elinination of the & integration

¢) The limit U~——> 0O

d) Elimination of the non overlapping graphs
e) Perturbation expansion for F

£ Graphs for AEa in the limit J—> 9O

CHAPTER IV,- RESULTS AND DISCUSSION

a) Some perturbation theory results for F and the statiec
susceptibility

b) Analysis of the dashed line comnected graphs
c) The limit T—> O for the Free energy

d) The Llimit T—0 for X(T) in y— 00

e) Discussion |

f) The significance of contributicns of 0(1/N) and less to F

11
16
18

29
29
38

68

68
76
81
81
89
95

29
29

119
123
128
133
136



CHAPTER V. - SUMMARY AND CONCLUSIONS
APPENDICES (1)

(2)

(3)

REFERENCES

141

148

150
151

153



o

CHAPTER T

INTRODUCTION

Kagnetic impurities in metals represent systems of great
ﬂinterest both for their own sake and as a possible means oftunderstanding
the magnetism of metals in general, Theoretical work in this direction
has been mainly focused on studying the physical properties of a
single transition element impurify in a simple metal,that is,a metal
in which the electron—eléctron interactions can to a good approximation
be neglected, A typical example of this is afforded by systems
corresponding to iron group impurities in noble metals, |

VExperimental observations on magnetic impurities in
différeﬁt metallic hosts have produced a variety of behaviours for
the physical parameters such as the magnetic susceptibility,re;istivity
eeesetec, In particular it has been known for some time that 34 transition_
metal impurities in some cases give rise to susceptibilities with
a Curie like behaviour in simple metallic hésts. This was interpreted
by Mattkias et al.(1>, who performed some of the first experiments
that- showed this behaviour, as being due to the formation of a localized
moment in the region of the impurity. The interesting feature of
a metallic ho#t as opposed to an insulator is the itinerant character
of the electrons in a metal. Under these circumstances,one expects
the interaction between the cohduction electrons of the host and
£he impurity atom to play a significanf part in determining the
magnetic behaviour of the impurity; The study of such systems will

_ also lead,one hopes,to a better understanding of the processes
responsible for ferromagnetism in metals.,

To introduce a magnetic impurity i.e an atom which,

when isolated,has by Hund's rule-a finite spin and orbital angular

momentum,into a metallic host is to produce a coupling between the
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electrons on the impurity and those of the metél, thereforg the
existence of a non—vanishing spiﬂ in the region around the impurity
becomes in practice a cooperative phenomenon, The first summary of

the evidence for local moments in simple metals was given by Friedel(a).
Experimentally, by the existence of a local moment one usually

means a strongly temperature dependent susceptibility in the form

of a Curie law; temperature independent behaviour is taken to signify
.no magnetic moment., Both these behaviours have been observed(a)for_'
different impurities in a given host, as well as for a given impurity

-

in different hosts.

In practice of course, one never has a single impurity,
but a finite even though small concentration, in ; given host. One
couldnexpect that impurity-impurity interactions should play a
significant part. 'It'turns out however that this is not so because
" though the susceptibility can in many cases be described by a

Curie-Weiss law of the form c

0+T

the Curie-Weiss constant O is independent of impurity concentration

and cannot‘therefore be é result of impurity-impurity interactions.
ﬁxPerimentally 0 is élways finite and the magnetic behaviour ié never
of the free spin type (O =0), The data in the magnetic cases such és
CuFe (ref.3) and CuMn can be made to fit a law of the type (1.1)
| .wi.th9=-'32°K fpr the high temperature susceptibility. Measurements
carried out down to very low femperatures have however establishéd'
that thé magnetic susceptibility never diverges; this is true for
all systems studied so faf(B).

Anothef aspect of the impurity problem which has tu;;ed
out to be very fruitful in the conceptual understénding of.the

physical effects that are involved, was the observation of the now

well known resistivity winimum in dilute alloys (réf.3). It has been
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_established that this resistance minimum occurs when the impurity
atom is magnetic' (i.e. a strongly T dependent susceptibility). It

ON

was shown by Sarachik et al. hat there exists‘a complete correspon-
dence between a strongly temperature dependent susceptibility and the
appearance of a resistivity minimum., The weak concentration dependence
of the effect indicated that, like the susceptibility, it cannot be

due to impurity-impurity interactions, but must be a result of the
coupling between the impurity electréns and conduction electrons

(5)

of the host metal. Kondo's explanation of the resistance minimum

in dilute alloys using a model of g magpetic impurity intéracting

via an s-~d exchange mechanisﬁ with the c;nduction electrons of the

' host, opened up a whole new area for theoretical and experimental
activity. Kondo showed by using ferturbétiohtheory and- going beyond
the first Born approximation that the existence of a term p?oportional
to log(T) seemed to lead to good agreement with the experimental behaviour
'of a vériety of systems over a wide témfefature range. However the
logarithmic term found by Kondo was itself a problem, for it meant

" the 6currence of a contribution which would diverge in the limit T-»o0.
_In fact it indicated a breakdown in perturbation theory for an
aqtiferromagnetic coupling J at temperatures below a characteristic

temperature given by

kT Wexp(—l7]JlN(o) )

K

where W is the band width, k is the Boltzmann constant and N(o) is

i}

the densgity of states at the Fermi level, and whére Jd is < O,

This breakdown in perturbation theory was itself a new
and interesting phenomenon which had to be explained. Later theoretical
work(§) suggesfed that this divergence was to be associated_with
thevformatiOn of a “quasi boﬁnd”rstate between the locéliéed spin

(6)

and the conduction electron spin for J<lo. Nagaoka argued that

this spin compensated state appearéd to come about gradually as
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_the temperature was lowered,in other words there was to be no

(7 n (8)

phase transition, Mgssbauer and N.M, studies at sufficiently
low temperatures have provided some evidence in support of the
concept of such extended épin cérrelations. Nevertheless in general
the theoretical picture is inconclusive; many questions have £o

be answered‘with more authority before it can be claimed that

we have a complete understanding of the wide range of observed

behaviour.

THEORETICAL MODELS : -

. Many properties of dilute alloys have been explained
in the past by using the model that an additional potential is
produced when an impurity is introduced in the metallic host,
Thus the problem was reduced to that of the scattering of the

conduction electrons by a single atom in a metal, This was lthe

(9)

basis of the approach of Friedel et al, who first introduced

. the conéept of a virtual bound state in a metal,i.e a state resomnantly

built up from the continuum states and which has a finite lifetime,
This concept followed from the observation that the impurity energy

levels would.in general lie within the conduction band of the host

and that therefore these states would not really be localized,

because they would acquire a finite lifetime as a result of admixture
with tﬁe,cbntinuum states, The way the qﬁéétion was put with ;egard
to the existence of a local moment was to ask under what conditions
is it possible to have. an uneéual population of ‘up?! and 'down’
spins,oh the‘average, occupying the virtual level, .

The theoretical models that have been proposed tob
describe magnetic impurities in simple metals and on which most

(10)

attention has been focused in recent times are those of Anderson

{(11)

and Wolff e In the Anderson model one thinks of the impurity as



w10-

-a localized extra orbital representing the d'level of a transition
metal atom in an otherwise noniﬁteracting 'electron gas®, This
is particularly applicabie when the impurity atom has an unfilled or
partly filled d shell and the conduction band states of the matrix .
are s-like., In the case where there is dnly one unfilled d shell
with two possible spin orientations,the Anderson Hamiltonian can
be written in the second quantized representation

Hp=D Era™ea * 9 Faotas * UhapTay ) Yy (opeag + %ag0g) (1)

ke 6 , . ké

The first term represents the kinetic energy of the band states
the second is just the unperturbeé energy of the d state on an"
impurity atom, The third termAcorresponds to the Coulomb repulsion
between the up and down spin electrons in the d state. This repulsion
is generaliy assumed to be the most important contribution respomnsible
for the formation of magnetic moments,Clearly it favours occupétion
of the d level by elecirons of either up or down spin. Thelast term
is the so called mixing term,it represents the transfer of electrons
from the Bloch states of the conductior band to the impurity state
and vice versa, de is normally assumed to be independent of

k 4 which means that only the s waves are affected by the potential,

In which case one can write
de =\[§ = v
The Wolff model treats the scattering of the conduction
electrons from the impurity by a zero range b function type potential
of the form .
' +
_ Hps B vkzklakoak'c
[
and‘the Coulomb repulsion is represented as a repulsion betwegn
two electrons of opposite spin which occupy simultaneously the

Wannier function located at the impurity site., The Wolff Hamiltonian

may be written



-1]-

B, =Z €roks  * Vzakoak'c + -Uno*no& | (1.2)
ko : kk'

where

s By = UZ k,r B Py Py

The Wolff model appears-to be more applicable when the states of

the impurity are similar to those of the host metal,but despite

the formél.difference between the Anderson and the w°lffrHamiltonian,
the physical situation they describe are the same, Within the
framework of approximate theories hovwever,one may in practice turn
out to be more convenient than the otﬁer. Both models neglect éil
interactions in the matrix,this seems to be quite Justifiable

in simple metals such as the noble metals for‘instanée.

The fgrmal simplicity of the Anderson model for example
is misleading,thé Hamiltonian still represents a many body problem.
The Coulomb interaction on the impurity is transferred to the
host via the mixing inéeraction,and the'tendeﬁdy to equal up and

down occupation is counteracted by the Coulomb repulsion,-

THE HARTREE FOCK APPROXIMATION

The Hartree Fock approximation to the Anderson model

(10)

was orginally carried out by Anderson +it is a helpful step
conceptually to posing the problem. A very'direct way of obtaining
Anderson’s solution as well as solving the problem in some limiting

situations is to use the Retarded Green's function method of Zubarev(la)

‘The retarded Green’s function of two operators A and B in the

'Helsenberg representatlon is defined by .

ap(t=t= A(t): B(t)>>
= -i0(t-t) <[A(t),B(t')]>

. . 4= .
where the inner bracket represents either a commutator or anticommutator
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~and the average is taken over an ensemble..
After taking the Fourier transform with respect to time

the equation of motion of the Gréen’s function can be written

 E&A: B>> =1/2n¢ [ 4(0), B(O)J) <<E H] B (1.3)

where ((A: 3}> g is the Fourier transform of <g%(t) B(té? with
respect to (t-t),
The equal time correlation functions (AB);are expressed in terms

 of the Green's function by the formula

-l
{BA) =2jf-1m<<AlB>>ng(E)dE (1)
where F(E)= 1 and Im denotes the 'imaginary part of?
eBE + 1

For the Anderson Hamiltonian 6ne can immediatély_set

up the following equations of motion, starting with

(1/21:)Gkk s = <<ckoici:rd>>E | (1.5)
CE- i = B 4 vay, | (1.6)
(B-e)Cas = Vaa,o o - .7

from which we obtain the exact relation
2
(B) = & s + VGdd,o(E) (1.8)

E-g, (B-e, ) (B, )

kk'

+ 7 :
cdc>>E(21t)

equation (1.8 ) shows that_Gdé s acts as the conduction electron
- '

t matrix, a knowledge of Gdd s is sufficient to solve the problem
9

where Vg has been taken as V and Gy, (E) = ((cdc

completely, - .

e{) U=0

In this limit the pfoblem can be solved exactly, from



(B-ey )Gy, - V}é?kdo =1 (1.9)
(E—eko)deo = VG4, (1,10)
giving
1
Ggy0(E) = T o 1 (1.11)
do 'Eir:—z—
v _ ko
. The sum-over k in the self energy of Gddo can be evaluated as
follows
. 172 - - 3 -—
limeg .o Z y _PZ v 1nV2g(.§)
E =g + ib kE - €

where g(E)= EZQ(E - ek) and P denotes principal part of?.

The first term on the R.H.S can be treated as an inconsequential
energy shift and can be absorbed by redefining €., g(E) corresponds
to the density of states in the conduction band. Assuming g(E)V?n

can be treated as a constant [X sthen (1.11) becomes

1
Gyqq¢(E) = p . A (1,12)
do

The system can be seen to behave as if there were a virtual state

at E = ¢ - il&. The resonant nature of the virtual state may

do
be seen ffom the density of states now given by
N (E) = =1/nIm G,, (E) (1.13
= 1/n A

(E - sdo)i f,LSL

A is identified as the 4 electron lifetime

’
b)Y V=20

Another limiting situation which is of interest specially
with reference to Chapter II is the case V =0, In this case we have

the two equations

. . ; y - +
(E - Sdo) Gddo‘ = 1/21'[ -0 %do ndfol cd(})E(lolLl‘)
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(E ~€35™ U) <<°dond-c\ cgd)]ﬁ = 1/2n &ng_ Y (1.15)

The solution is:

Caao'®) = -j 1 =4ng 1% <£P3-g7 (1.16)

E-edc E-sdc—U

In this limit therefore there are two levels corresponding to
E = €ig * and E =€44

are measured relative to the Fermi level sf) the impurity is singly

+ U, when Zado + U 1is 7 0 (wherve the energies

occupied by either an 'up ' or 'down’ spin electron at T = O,

CHH.F approximation
The Hartree Fock approximation can be obtained by

writing the Coulomb term in the form

1/2 UEdcnd_c——7EI:/2 (fndc? ng_, * <nd_05nd4>

3
where the averages <Ny 05 are to be determined self consistently.

In this form,the Coulomb term can be absorbed in Hz where HZ is

equal to Edcndc and by writing instead Z,Cadd + U nd-cﬂ Dyg
. . - N _ . _
The 4 electron Green function then simply becomes

1
G (E) = (1.17)
ddo E - €35 = U<nd-c7 - VZZ 1
. : E - ¢
: ko
' K
(-
where 4ng5 | _3/g ImiGddc(E)’f(E)dE (1.18)
ith =-1/nIm G (E) = "p—-lllt——a——- and E. = € + Usn
v M Ysdo - ! do~ “do (g g7

2 2

Equations (1.,17) and (1.18) must be solved selfconsistently, at

T =.0, we have
Q
{PaeT = 1/n D de ' (1.19)
B ey |
P
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- giving
@y = U cot™ (e g + U(ndl?)A-l] (1.20)
. - i . -
n = 1/n cot™F }e + Wn )[fl (1.21)
(10)

The details of the selfconsistent solutions are given by Anderson

The regions of magnetic and non magnetic behaviour are shown in

fig.1),vhere non magnetic means (nd?7 = <nd»7

Fig.l. Shaded area

represents the region of

magnetic .behaviour.
Ref.(10).

The cfitical value for moment formation can be expressed by the

instability condition

A gy (1.22)
d <nd$7 ' |
which leads to | i
U Ny(0) =1 i (1.23)

(13)

(1.23) has the same form as the Stoner criterion for ferromagnetism

‘The favourable situation for magnetism is
A+ €4 & O . (1.2.4)
g+t Uy A ' (1.25)

this may be seen from a simple physical argument: for a magnetic .
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?étuation (<ﬁdQ>% {ndi}) one expects that thé virtual level must
iﬂ one case lie wéll»beneath thé Fermi level,while in the other
case it must lie well abéve it,thus one level is almost full and
the other almost empty.

The Hartree Fock approximation has serious shortcomings,
it fails to take into accqunt the d-d correlations on the impurity:
it does not treat adequately the correlation in time between the
up and down spins on the'impurity and thefefore tends to overestiméte
the tendency to moment formation. For the Anderson mecdel,cne can
phyéically think of a parameter U/Z&such that when.E£3>]_one expects
the system to develop a.moment and UAC&(}.to signify the non magnetic
situation. The reason for this can be seen if oné notes that [l
the virtual le§e1 width is a measure of the inverse of the time
a d-electron spends on the impurity,then the longer the electron
spends on the impqrity (on the average ) the more the Coulomb interaction
plays a part‘and thus U/A large is favourable to magnetism and vice
versa.lt is easy to see that the Hartree Fock approximation can
only be valid,if at all,in the region U/A<1, i.e when the time
spent on the average by a d-electron on the impurity is short compared
to U in which case it'is conceivable that a self consistent field
approach may be adequate. Another serious defect of the H-F scluticn
with regard to the problem of magnetism is the fact that it breaks the
fotational invariance of the originai Bamiltonian,a manifestation
of which is éhe appearaﬁce of a shérp critical boundary between
magnetic and non magnetic behaviour (fig.3).This implies a sharp
phase transition,a concept which is not expected to be valid for

. L% .
a system consisting of a single impurity in an 'infinite sea of electrons

c) THE EFFECTS OF CORRELATIONS
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Various attempts have been made to include in some
measure the effects of correlations in the Anderson Hamiltonian,

Both perturbational and non perturbational solﬁtions have been

(14)

proposed, In particular one should mention the work of Hewson

and Schrieffer and Mattis(l5).
Hewson used a non perturbational approach based on the

(12). He solved the

equations of motion method for the Green'’s function
equations using a decoupling scheme which is such that the solution

is exact in both limiting situations U= O and V= O. Ve note that

in the Hartree Fock approximation .the limit V-0 of Gddo(E) gives

l .
Gddo(E) = - 5 (1.26)
= &g = U<hy o7

(1.26) is in contrast to the correct solution which is given by (1.16)

Hewson concluded that in general the impurity would be nonmagnetic,

(z5)

A similar conclusion was reached by Schrieffer and Mattis using

a perturbation theory based on summing the ladder diagrams in

(16)

the zero temperature linked diagram technique :

In the ladder approximation,the vertex part‘T(El + EZ)
(15)

can be written

T(E, + E) = S (1.27)
1 +0°7T (E1+E2)

the approximation is exact for'thé two body problem,one presumes
therefore that it is valid in the limi£ of low density.Even then,

to evaluate the self energy in a simple way, Schrieffer and Mattis

had to make an approximation of the Hartreé Fock type by assuming that
the densit& of states given by (1.13) could be represented by a
'Lorentzian. In the Schrieffér Mattis solution,the criterion for

magnetism can be written

Uefde(O),; 1 (1.28)
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_where U _..= T(0) , and T°(0) is given by

d)

ef
. o ' -
) 3 . ) o (_
T°(0) = l/2n1/j;s Gyée)ay_ (-€) (1.29)
-o®
Ggo(e) corresponds to the result given by (l.ll),équation (1.28)

follows if one assumes T(E) can be approximated by T(0),in which

case the self energy E;(E) simply becomes
20(0) = T(OXng_ S (1.30)

With (1,30) we are simply back to the H,F type self energy with

U replaced by Ueff’ ) (O) turns out to be generally less than

efde
1 and Schrieffer and Mattis concluded that in the low density limit
the ground state of the Anderson ﬁamiltonian was probably nonmagnetic,
Conceptually the Schrieffer Mattis approach may perhaps
be thought of as having contributed to the theory, the picture'
first introduced by Kannamori(17)for the theory of magnetiem in
metals, that the effect of correlations in some situations is to
prqduce'an effective reduced Coulomb in‘eraction on the impurity,

But this is only directly useful within the framework of an'’effective

field approach?,

THE KONDO EFFECT

A conceptual breazkthrough was made by Kondo’s(5)discovery
of the anomalous logarithmic term in the perturbation expansion

of the scattering amplitude of the conduction electrons from the

-impurity using the so called s-d model, The s-d model was first used

(18)

by Zener to describe magnetism in metals. It was subsequently

used to describe a magnetic impurity in a simple metal and interacting

" with the conduction electrons of the host via a spin-spin interaction

The model makes the a priori assumbtion that there is a fixed spin



on the impurity, and in this respect is more phenomenological than

the Anderson model. The s-d Hamiltonian is usually written

H 4 = E{anko - Ekk'fz(c; clé-c;; ,clé) + S+c;‘ 6kl + S—c; Ckll (1.31)
" i S S T | 4 I

SI and Sz are the components of the spin operator associated

with the impurity. Jkklis usually taken as independent of k and gl

‘and is simply replaced by J/2N , For J)0 the s-d interaction isr

ferromagnetic and for J<O it is antiferromagnetic,

Kondo showed, using the s-d model that there are processes
in higher orders of perturbation theofy (veyond the first Bofn
approximationj which give rise to difergent contributions to the
scatteriné amplitude. The divergenée is a logarithmic one, at zero
temperature and to order J2 it behaves as logle| as € tends to O.

He showed that the resistance minimum found experimentally in dilute
alloys could be explained with an antiferromagnetic J. It is well

‘known from scattering theory(lg)that divergences in the scattering

amplitude are usually associated with the existence of a bound "state ™.

(20’21)perturbational

(23,24,25,26)

Subsequent theoretical work using variational

(22)

Green's function and non perturbational techniques,

suggested that the logarithmic divergence was associated with
the formation of a spin compensated singlet state with extended

spin correlations in the region of the impurity.

Kondo(s) showed that the matrix element Tk kl for the
1-

)
4
scattering of an electqon from k to k in the s-d model is given

-

in lowest order by
-J/UN S
/i s,
In second order there is a scattering that consists of two successive
"

events, First, electron <E? goes to Eq\or gl’and in the second

event gg‘or gﬁ‘is changed to .5} . There is also an analogous
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process in second order. The sum of the matrix elements for the

two processes and for elastic scattering i.e € = Ept o CaD be

written
2 . 2 + - - l
(J/4N) 5+ 1/2(s™s”™ + §7587) Z____.s —
' k "k
: k'
+ (3/8m)° |(s7s* - s*s’) I 172 _ (1.32)
i ekll- Ek
g :

The second term is the one leading to the logarithmic divergence
and does not vanish because of the noncommutativity of the local

spin operators,in fact if we put

fy =12 ge) - (1.33)
Ex = %k

then q(e) behaves as N(0)log(e/W) at T=0 ,'which diverges in the
limit as £—0 (i.e as it approaches the Fermi level) . It has been
"assumed that-thé density,of states in the conduction band N(eg)

can be taken as

N(e)

N(O) -WLe W
(1.34)

N{e) 0 outside

At finite temperatures and € = O the divergence in £ is replaced

(5)

by a divergence in T, q(e€) is then proportional to

N(O)log(kT/¥W) + (terms of lower order)

The resistivity may be easily calculated i§”£his order, the result
can be written .

R = oy, [1 R N(O)Jlog(kt[!/w)] (1.35)
where ¢ is the~concentration,7m is the first Born scattering term.
The légarithmié term is a many body effect associated with the
additional internal degree of freedom of the localized spin.

The Pauli exclusion principle comes into play in the intermediate
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because of the noncommutativity of the 1ocalizéd spin operators.,
Sﬁch an effect does not occﬁr for ordinary potenﬁial scattering
with a many body sea of electrons in the 1imit of infinite impurity.
mass. This point has been considered in detail by’Silverstein(27).
Similar logarithmic divergences have.been found in the other physical
parameters such as the magnetic susceptibility(282using the s-~d
model, |
Kondé’s treatment, despite its success in expléining

the resistance minimum effect,revealed that perturbation solutions
for the physical parameters were not valid below a characteristic

temperature (or Kondo temperaturgj TK given by

| kTK = Wexp(-1/[J]|N(0)) - (1.36)
The physical significaﬁce of this divergence was in part elucidated
by Nagaoka's work( )

Nagaoka,using the retarded Green’s function method of Zubarev,

was able to obtain a non~perturbational solution by decoupling at
some stage the infinite chain of double %ime Green's functions. He
obtained a set of‘equatiqns which had to be‘solved selfconsistently.
Nagaoka's épproximate solution of these equations showed that the
Kondo divergence could be interpreted as a quasi bound state between
the conduction electron spin and the localized impurity spin for J<LO
Subsequent theoretical work based on the 1dea of a'local zed?
singlet state fpr'Jl(O, was carried ouf'ﬁsing the variational

(29,30)

technique of minimization of the ground state eﬁergy sy they
have found ground State enefgies lower than the 'normal state °*

by a condensation energy éssociated with the guasi bound state.

In the simplest approximation the condensation energy just corr;sponds
to kT, given by (1.36).

Nagaoka® = succeeded in removing the unphysical singularity

in the resistivity at T = O, however his solution failed in the region
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T = TK’ below which the conduction electron states become unstable
near the Fermi surface . His solution is therefore restricted to

the domain T TK. Abrikosov(aa)

made an attempt_to describe the
situation when T-<TK, he developed a special technique to overcorne
the non commutativity of the spin operators and used the Feynman
graph technique for the Green’s funcinn. Abrikosov'’s summation

~of the most divergent terms in each order although here too succeeded
in reméving the T=0 singularity,nevertheless did give a resistivity 

diverging at T:TK (for J€0) which also meant that the equations

become unphysical in the region TQTK R

(31)

Hamann and Bloomfield

(6)

set up an integral equation
using Nagaoka’s equations and by making simplifications that zre
valid as far as the logarithmic divergence ié concerned, they succeeded
in solving Nagaoké’s equations exactly. Their solution removes the

singularity associated with the Kondo effect at 'I‘:TK for all the

physicalvparameters,which were found to be well behaved for both

J?0 and.- J {0 at all temperatures (T finite). Furthermore Hamann(32)

showed that the susceptibility is well behaved in T<ZTK and that

in the 1limit as T—0 aﬁd for a spiﬁ 1/2,the local spin is almost
compehsated by the éntiparallel conduction electron spin polarization,
The good behaviour of the phyéicalbparameters4in T{TK is in qualitative

(3)

agreement with experiment P but the precisé temperature dependence

of the ‘physical parameters is not,in the limit of low temperaturessz)
Suhl(25)and Suhl and WOng(26)used a non perturbational
' (2.9)

method for the s-d model based on Chew-Low scattering theory
they too were able to remove the divergepces associated with the
Kondo effect. Their solution shows strong similarity with thaf of
(31Q3}). |

Hamann and Bloomfield

The theories of Suhl and Nagaoka-Haménn-Bloomfield (NHB)
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are important in that they show what one woﬁld expect on physical
grounds,namely that the di;ergences éssociated with the Kondo effect
caﬁ be removed in a treatment that keeps more than simply the 1eading
order logarithmic terms. To Qhat extent the other terms are kept

is however not clear for ‘it has been noted (Ss)that in the s-d

r.odel apart from the leading order terms behaving as e.g (Jn+l)(long/w)n
in the variéus expansions for the physical parameters,therg will

in general be lower order terms behaving as (Jn+l)(long/W)s where

n and s are integers and ny s, These ’lower order' terms are clearly

not negligeable as T tends to O. The tﬁeories of Suhl and Nagaoﬁé-ﬂamann;
Bloomfield must certainly have included these lower order terms
partially to yield results in the region TT,, and T;vTK , but to what

K
extend they have done so is difficult to tell , Recently,Zittartz(Bh)

(35)

and Zittartz and Muller-Hartmann have shown that the exact solution

of Nggaoka'’s equations at T=0 yield results which violate the Mattis

' (36)

singlet gfound state theorem , Mattis having proved rigorously
that the ground state of the s-d Hamiltonian must be a singlet.
Clearly'therefore the theories of N-H-B are not correct in the region

T&T, . Zittartz(sk) has also shown that in this theory,tﬁe cancellation

K
of the local moment is not exact and obtains a susceptibilityhﬁhich
eventually diverges as T-* 0., This shows thgt in this limit,the terms
not included in the N-H-B theory must play an important part imn
determining the behaviour of the physiééi pérameters. In any case
the Nagaoka equations are based on an equation of motion decoupling
écheme the physical meaning of which is difficult to interpret. This
is a &isadvantage often associated with approximate non perturéative
treafments.

The s-d model together with all its implications becomes
particularly relevant in the light of the Schrieffer-Wolff canonical
(37)

transformation of the Anderson Hamiltonian They showed by
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eliminating the mixing term in (1.1) to fifst order in de using a
suitably chosen generating function,that the transformed Hamiltonian
can be written when (1.24) and (1.25) are satisfied,as

H =H + H
o

S-W 2

where H2 is well approximated by

H2 = Hex * Hdi

r
Ho"is the unperturbed Hamiltonian,Hdir is just a potential scattering
part and is sometimes included in the s-d Hamiltonian as given by

(1.31), and'Hex can be written

: + oot + »
B = = ) 90V I S0 8 v (1.37)
kK
where . .
Y, =(?kq Yy =(°dj s = g/2
Cxi a .
and 9/2 are the Pauli spin matrices. The s-d coupling Jkﬁ is given
by
' 1 1 . 1
J r = V..V + - —————
kk dk "kd ,ak - &4 - U €t~ Eq ~ U g~ B3
R a.38)
' k ~ fa

for k , g close to kp J,,. can ode taken as JkaF

2 : ’
. 2uv- ,
J = = J (1.39)
kpkp egleq +U) 7 , :

clearly for e, <0 and g;+ >0 ,J<0 and the  interaction is
antiferromaénetic. ..

. It éppears therefore that in (1.2%) and (1.25) the
Anderson Haﬁiltonian is equivalent to the s-d Hamiltonian. This is

certainly true if there are no new physical effects associated



with the terms that have been neglected. But even though this
'equivalence'must be tested in greatér detail by future work,one
can say immediately that the Anderson model must contain partly
the picture predicted by the s-d model. In the light of the
Schrieffer-Wolff canonical transformation,both the s-d model and
the Anderson model become very interesting indeed , it implies
that the An&erson model which is more realistic contains physical
effects verified experimentally in the framework of the s-d model.
But it also poses the problem of how close the contact is between
these models specially in relation_to the results and coﬁcepts
arrived at through the investigation of the s-~d model e.g Kondo
ﬁemperature,localized-spin compénsated by conduction électron spin
polarization,singlet ground state ...etc .-

Kondo type divergences in the physical parameters have
been found using the Anderson model and mazking and expansion in V
while keeping U exactly,£his is of.course what one should expect.

)

Hamann(3840und a logarithmic term in the resistivity in order V

and in the U infinity limit. The coefficient was found to be in

agreement with the result of the s-d model when J is identified via.

(39)

(1.38). Scalapino made an expansion of the Free energy in powers

of V and obtained the susceptibility to order Vh ip which order he

found a logarithmic term in agreement with the s-d model calculations(%g)
However in the techniques used so far;tgé>ma£hematical difficulties
associated with an expansiop in powers of V have made it impractical
to go beyohd the’fifst feﬁ orders in perturbation theory. Dworin(uo)
attempted to devise a technique which would be able to deal with.this
diffiéulty,and allow higher order termsvto be analyzed. He developed

a method based on tne equations of motion techmique for the double time

(12)

Green’s function yhis method is however far too complicated for practical

_ purposes.
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Perturbation thecries for the Andersoﬁ Hamiltonian
in powers-of U and keeping the mixing term exact are easier to carry
out to high orders and also have the advantage that one can describe
directly the dynamical properties of the impurity spinrsystem,this
is because one can employ the usual diagrammatic mefhods of Field

(16) (41)

_theory . The dynamic susceptibility theories of Lederer and Mills
.for the Wolff model and Suhl(hz)for the Andérson model have made
it possible to incorporate in the theory,the concept developed for
homogeneous metals by Berk and Schrieffer(QB)and Doniach and Engelsberg(hh)
namely that of 'Spin fluctuatiqns’. The physical picture that h;s
emerged from this approach is that one can think of the impurity
as having a moment on a certain time scale,in other words the localized
spin moment has a fiﬁite lifetime, This is also connected with the
" more general consideration that the question of whether the impﬁrity
is ’magﬁetic’ or’noﬁ magnetic’ is itself not well defined, If by
magnetic one means that the time average»of the occupation nﬁmber
of the iﬁpurity states has an unequal porulation of 'up’ and 'down’
spins,then this is not really satisfactory because it omits all
onsideration of the dynamics of the situation. The definitions of
magnetic and non magnetic should be related to what one observeé
experimentally, Then it is much more satisfactory to talk of magnetic
as.meaning that the lifetime of the moment is sufficiently long so
‘that it is detectable by experiment , but this in turn also depends
on whether the particular experiment is'measuring the static or dynamical
aspects of the localized moment (45>. These ideas héfe found in the
spin fluetuation theory some theoretical basié. | )

The localized Paramagnon propogator 7Ka(w) or d-electron
(41)

dynamic susceptibility is generally assumed to be of the form

2 (1.40)

-)Cd(w)= 1/x -iT%—f/—T;f
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where Tof is the spin fluctuation lifetime and w is the ‘frequency’ .
"In the limit tsf-eco,7%(w) acquires the simple form corresponding
to the dynamic susceptibility of a localized free spin.

(46)

Zﬁckermann and Rivier have evaluated the self energy
of the one particle Green’s function using a ,Xh(w)ras given by (1.40)
and have claimed to have found the Kondo effect in the limit Top— 0.
This question together with some of the other theoretical questions
associated with the Spin fluctuation model are discussed in Chapter II,
Despite its success in clarifying some of the physical
concepts involved in the magnetic impurity problem,the spin flucguation
model doeé'not at the present time rest on solid theoretical foundations,
it provides mainly an intuitive description. Neither has it been
really able to make contact with the predictions of the s-d model which
in many cases seem to be in good agreement with experiment,and which
one knows must be a-fairly good description of the Anderson model in
some limiting situation .

Rcaghly one can think of three differept regions for the

ratio U/A :

1) U/AZ41  in which case the simple Hatree Fock picture may be

a good enough description in many situations

2) U/A~1 here the spin fluctuation description (in its present

form ) is more appropriate.

.3) U/Ej?l in this region the s-d model is probably correctf

(45)

Experimentaily one finds for Iron group impurities in noble metals
an estimate for .U/p ~10 which is well within region (3); for Iron

group impurities in Aluminium one finds U/A~ 2 again in regior (3)
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'in this case it has been suggested (47)that the non magnetism
observed is as a result of the Kondo effect with a higthondo temperature.
It appears that for many,if not most cases of interest the region
(3) seems to'be.appropriate,i.e the s-d picture is applicable.
Certainly there seems to be a need to treat the Anderson model from an
s-d point of view , this is most directly achie§ed in the framework
of perturbation theory by expanding the mixing term V and keeping the
Coulomb term exactly . The techpiques that have been used up to now '
are unsuitable to analyze the higher order effects. However approaching
the problem from this direction will undoubtably be able to thro; some
light on the relationship between the Anderson and the s-d model,

In Chapter 111 a time independent method is proposed for
the expansion of the Grand Partition Function 2 and the Free energy
F which is capable of going beyond the usual low order approximations
in a»considerably eésier manner tanan the usual techniques used, A graph
representation is derived for F and the results , together with those
for the susceptibility are discussed in Chapter IV .

In Chapter II , time dependent perturbation theory for the

Anderson model is examined. In particular it is shown how Nagaoka-

(6,22)

Abrikosov type self energies may be obtained from a Green's
-function technigue for the Anderson model , this is also discussed
with reference to the usual exﬁansions in powers of U and 3pin fluctuation

theory.



CHAPTER, I1

TIME DErOHRDELT FPERTURBATION THEORIES

A) THE SPIN FLUCTUATICH lODEL

For the Anderson model the two quantities of great
interest are usually the one particle 'time Temperature’ Green's
function and the dynamic susceptibility. The 'time Temperature’

Green'’s function G;éT(w) is the Fourier transform of GE;T(t)

(16) -

where )
t,T e i/ + ‘
Gag (1) = =i {Tieq (t)ef (O (2.1)
The operators are in the Heisenberg representation, T is the usual

time ordering operator and the average is over the 'perturbed’ensembie.

t,T
do

at finite temperature. The scattering cross secfion of the conduction

The poles of G (w) give the spectrum of one particle excitations
. . . N ' t,T
electrons from the impurity is proportiocnal to .ImGdo (w) , and
from this it is possible to calculate the resistivity. The dynamic
‘ properties of the impurity spin are contained in the response function

)CR(W) (41) which is the Fourier transform of ?<R(t) vhere

. . .+ -
.The sqare bracket denotes acommutator, st et e v s, = ¢t e and
. : d d1 d d d‘ dT

1

‘Q(t) is the usual @ function . In the 'imaginary time ' technique

?CR(W) is calculated by considering the guantity )Cd(t) given by

m_A" troye™ b
X, (1) = <rfsi(nsToP
The function )CR(W) describes the.responze of the local spin to

an external magnetic fiéld of frequency w . The techniques most often

used to calculate )Cd(r) and G U(t) are based on the Feynman diagram

d
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or Field theory approach .

The expansion of a general two time Green's function

in the imaginary time technique is written(l6){
=2 Y Yr
TQA(OBOD = 1 E(- J IJ aty-+seeeerdn, {2A(0B(0)
n=o - )
1nt(Tl)H (1 2)-H (t )?> (2.4)
where H, can either be taken as
int
1) H, 4 = Mix.ing + Coulomp term
s
2) Hint = h1x1ng term

In case (1) the average <>"is over a noninteracting ensemble , whereas
in case (2) it is with réspect to the Kinetic energy and the Coulémb
term in (1.1) . The advantage in the first case is that one may use
the usual thermodynamic Wibk’s theorem and the expansion reduces to
~summing over all topologically distinct connected graphs. Furthermore
it is easy to show that the expansion reduces to one in powers of U
only be;ause V may be exactly inciuded in evefy order By taking the
'bare’ propagator in the Fourier transform version of the £heory as
the Green's function given by (1.11) . In the second case the problem
is much more difficult because one cénnot apply Wick’s theorem for

the d-states and as a result tﬁe problem ggquires considerable
complexity . Neveftheless it is of great inﬁerest as it represents a
vefy different physical situatiﬁn to (1). This problem is treated in
'ucﬁapter 1T sectioh B.

One of the simplest appr011watlons for )(d(w) is to.«consider

the sum of the so called pirtlcle hole ladder d;agrars slven Oj

E ] | /,,a-\
Xy = Q >+ \‘\'\4__—/

try
b
G
.
no
o+,
.
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(42)

The sum can be written

(2.5)

where Y _.{(w) which corresponds to the particle hole bubble is given by
B » :

CX:B(W) = =7 Gggw + iwnl)Gg-G(iwnl) (2.6)

"

We have written Ggo_for the temperature Green’s function in the
imaginary time technique. The approximation corresgonding to (2.5)
is refered to as the R.P.,A or time dependent Hartree Fock approximation.
It represents the'repeated scattering of a particle énd a ﬁole pair
at the impurity.

The ’zero order’ bubble )CB(W) may be evaluated by the
(16) -

standard methods of changing the sums over frequencies into integrals

and is written as

o2 .
' i _ <. t,T ~t,T LTS R I
:XLB(W) = -1/2n |de tanhe/2T ImGdR (s)l}dR (s+w).+ GdA (e=w) \Zt
. , /00
In (2.7), G;ATR denote the advanced and retarded time Temperature Green's
9 . .

functions respectively.

We note that

ReGA(w) ReGR(w) = Re(w) (2.8)

{]

'ImGA(w) -imGR(w) = nNd(w) (2.9)

where Re and Im denote the real and imaginary pafts of respectively. .

It follows that . ’

, oo _ —

Re X (w) = +l/2n‘fds tanhe/2T Nd(e) Re(e+w) + Re(e~w) | (2,10
i .

00 . - -

and ) o0 . . —~
Imu%(w) = +n/2.J’ds tanhe/2T Nd(s)L?d(e+w) - Nd(s-w) (2.11

— OO0 =
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Ciearly Im7<B(w)-e» 0 as w—>0

further: Re;K:B(w) at w =0 and at T =0 is given by

o
Re XB(o)-='faNd(s) R(e) de . (2.12)
-0
If Gg in ;<B(w) is taken as the Hartree Fock renormalized propoagator

and written
1

_ - (2.13)
*¥n T 4o T U.<nd-c>+ 1A

T ,.
Gdc(lwn) =

where the‘<ndd> have to be evaluated selfconsistently, then with.this

renormalization we arrive at the .analogous result in the Anderson model

) (41)

found for the Wolff model by Lederer and Mills using an equation of

motion approach . The static susceptibility )(afo) simply becomes

Y.(0) = GH,F (2418

The static susceptibility develops a pole at 1 = UNg, F(0) and
perturbation theory breaks down for UNdH F(O)z}l,, this is simply
the Hartree-Fock condition for a local moment to appear (eqn. 1.23 ).

If Uc is is taken as the critical value of U for moment formation in

Hatree-Fock theory then for U} Uc XB H F(O) becomes

P 0o
G (ie_ ) - G (ie_ )
nl ‘ nl

s ﬁ.F(O) = "TT !
| Q((ndf - <nd¢7 )

1/U (2.15)

Now going back to the more general situation represented by (2.2),
ve gssume, following Lederer and Mills,that for small w the numerator

and denominator of (2.5) may be expanded. in powers of W as

. - 7/
X§l0) + v Xg{0) (2.16)

Xd(\‘f) b p
EL - UXB(O)]- UwXB(o)
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where XB(O) denotes %;(»XB(V:) ) ~and only the terms to power w

have been kept,

wW=0

In the non-magnetic situation, it follows easily from (2.7)

that Re XB(O) = 0 and that Im X_B(O) is given by:

. m A 2
Im X (0)= l/anfds _@_Eanh 5/2’1‘] [Im ud(e):, (2.17)
- . de ) :

. - 00

which is well approximated by its T=0 limit, m‘iz(o) °

Neglecting the second term in the numerator of (2,16),

p

A3(w) becomes : _ .
' _ X 5(0)/TxN5(0)

X (w) = .
et 1 - UX._(0) (2.18)
iw + B :
Um0
_ ih :
T w s AT (2.19)
. X .(0) 1 - X (0)
where A is real and = — e and "T = B
| URK;(0) | U 15(0)

'Tcan be put = l/Tsf, where Top is interpreted as the spin fl‘uctuati.on

f-"*” i.e, the moment on

the impurity becomes infinitely long lived and the system is magnetic

lifetime. 1In the limit U XB(O)—PI » T

in t‘he sense <ndf>#<nd4> . This situation is a?.lovzed to occur in the
H.F approximation <described above .
: ' 1~ Und(o)

In the region 'UNd(O)Nl ’ 'r;% pay be written —m—m—
nl,;(0)

Equation (2.,19) almost sums up spin fluctuvation theory. It is the
'mathematical‘formulation of the concert that the moment on the impurity

must be thought of as existing for a certain ! time ' and is much mere
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satisfactory than the static 'either'® ‘or’ way of putting the question.
On the other hand it may be seen that the form (2,19) is essentially
an assumption. It is assumed that thé ladder apéroximation is a good
enough description of the response and that furthermore the small
frequency limit of the numerator and‘the denominator of (2.5) is
sufficient to describe the dynamical properties of the localized spine.
The physical picture that the form (2f19) is designed to give is
probably good in the region U~ A where one can conceive that the
low frequency fluctuations of the local moment will be one-of the
dominant physical effects in determining the behaviour of the physical
parameters . The approximatién (2.19) having cut out much of the
information contained in the dynamic response‘functian’.

N.Rivier and M.J.Zuckerman(46)cglculated the self-energy

contribution to the Green's function Gg(iwn) due to the particle-

hole ladder for which the vertex part(T;h(w) is given by the graphs

Y
Y

'I";h(»:)'__

I
+
lubate

A

]
1 - UXB(W) ‘ '

The self-energy éidc(w) =
Excluding the first term in the ladder which is simply the H.F term

theself-energy can be writtén as:
p 2 . /¢
Zido(s) = TU ziédfc(s'lwni>€flwn) (2.209
. Ty , .

- o
+Rivier and M.J.Zuckerman took ><;(w) as given by (2,19) and Gac as the
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Hatree-Fock renormalized propagator (egn. 2.13). They obtained a self
energy the real part of which is proportional to lo(4kT/xn + Tgi)

and argued that in the limit 1354-00, the self energy acquires the -

logarithmic behaviour associated with the Kondo effect. We note that

in this limit }C(iwn) becomes %% " and
: n
. iA '
ZXIdA’R(w) = v (2.21)

"which is similar to the dynamic susceptibility for a free spin,but whereas
for a free spin we have ' . - -

F o o(w) = bi-nt  (2.22)

AR W o+ i

in vhich case the logarithmic self energy cancels in this order because
nT = n¢ in zero external field,(2.21) can only be interpreted as a

localized spin susceptibility.in the region.'(s 1};@0 but this

zloca
would be in contradiction to the assumption made in deriving the form
(2.19),.and if seems @oubtful that the logarithmic self energy found

in (46) is correctly describing the Kondo effect in the limit Tsf—g-oé .
This limit corresponds to the situation where the sfatic susceptibility
haéva pole and therefore the system eihibits a sharp transition

between magﬁetic and non magnetic béﬁaviour as in H.F theory. Physicallly
however, one would not expect the notion of a sharp phase transition

to be>applicable to a small system such as an imburity, the fluctuations

in such a system should be able to smoothen oﬁt the sharp critical
“boundary between magnetic and non magnetic behaviour and the susceptibility
should never eihibit a pole, This has been the basis of the approach

(42) (48) ho have argued that the

due to Suhl and Levine and Suhl
partiéle-hole ladder gives the dominant contribution to the dynamic

susceptibility and that selfconsistent renormalization of the propogators



in the ladder should remove the pole in the susceptibility which is
obtained by the use of unmodified (or H.F modified ) propagators.
In Suhl’s treatment , the equations (2.5) , (2.6) , (2.20) and (2.23)

where (2.23) is given by

L - (2.23)
1

T
G, (iw_ ) =
do' " 'n 2 - Ugny_ > - Zd(iwn)

iw_ - € -V
n do :
ivw_-¢

n

E ko

must be solved selfconsisfently « This is in general very difficult

(48)

and Levine and Suhl further assumed that the low frequency response
as described by (2.19) gives the essential features of ZQ(iwn) e Thus
in fact what is determined selfconsistently is A, and T_g. The
physical bicture that they assumed corresponds therefore to saying

that the susceptibility is always close to a pole but that the localized
spin fluctuations will always prevent the moment from actually forming

(49)

in the static sense . Hamann obtained a self-consistent solution
to these equations in which the logarithmic effecté in the self energy,
‘as in (46) for example, are treated correctly . He also considered
the problem in. the situation in whiﬁh these logarithmic effects would
be interpreted as the Kondo éffect aﬁa foundvthat for large U,xthe
characferistic or Kondo temperatufevTK in this treatment differs by an
enormous factor from the TK obtained via an s-d treatment-of the
.Anderson model., He concluded tﬁét the repormalized ﬁ.P.A treatment is
_not cbrrectly'including the Kondo effect. levine and Suhl(48)also

showed that when modified Green’s functions are used in the particle-hole
ladder, the theory is no longer spin conservingand one has to include

a much larger class of diagrams for thersﬁsceptibilifj in order to satisfy
the symmetry requirements.

It can be seen that the spin fluctuation picture has not

been able to go beyond the’non magnetic® situation into the s-d type
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situation, probably because it has so drastically reduced the‘physical
'mechanisms’ through which this could takerplace. Howe#er the failure
- to go beyond the small U limit into fhe large U_iimit dharacteristic
"of the s-d model seems to be rooted in-the perturbation-method itself,
It is very difficult to see how the ferturbation expansion in powers of
U in its present form céuld achieve this, to illustrate this point one
hay consider the expansion when V = 0. (Ff%‘ﬁ%
When V = O, we know that the exact result for the Green’s
function is given by (1.16).-If this result were to be obtained using
the connected graphical expansion for V = 0, the task wouid a hopeless

one. ‘ ’ ’ -6

T ,. Wi 5 67 Wns6° | Wnig’
Gdo(lwn) = > -+ "5 . > —+
-c~.

O-e - o>

h Y A ; ]
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Clearly any partiai summation of the above graphs is likely to give

a misleading representation for ch(iwn). The reason for £his‘is not
difficult to see; if a direct expansion of (1.16) was made in pﬁwers of
U and compared with the result of tﬁe graphical method, one would note
that the latter contains in high orders gq‘enbrmous class of terms which
actually cancel wﬁen grouped together in each order and only then does
one obtain the contributions of the former. Thisris of course associated
with the application of the thermodynamic Wick's theorem to this proﬁlem
where all the operators are refering to the same site. As an example

of hbw Wick's theorem works in this case one cén consider the average
‘<°do¢;andond-§>o= Q= L M 40Tqg = O = T aTag = ©

wiich gives the correct result wihen both terms are summed as it should do .



In high orders the number of terms on the rigﬁt hand side will increase
considerably, each representing a graph, whereas in fact a tremenduous

self cancellation would take place if -they were all grouped together.

IP this way it is easy fo see that if only a partial summation is made

oi these graphs one may obtain a totally irrelevant result, in particular
for large U. The difficulty expresses itself in this way that in each
individual graph the electrons interact on the d-level as if there were

‘no restriction on the occupation numbe£ of the d-level, giving a probabilit
£y and (1 - fd) for the d-state to be occupied or unoccupied, i.e the

Pauli principle is disobeyed in each individual graph. The result (1.16)
is trivially simple to derive from perturbation theory if the contributions
are evaluated directly and Wick's theorem is not ﬁsed (see end of section B
This difficult¥::z associated with Wick's theorem in-.conjunction with
partial-sunmations appear less serious when the mixing term is included
and the propogators are replaced by those 5f (1.11) . In this case

the impurity level acquires a width A and is no longer well localized,

but nevertheless it is still there and it is difficult to see how this
approach will ‘ever be able to describe the Kondo effect properly and

. L
yield the presumably two pole structure of the exact Green's function(*oz

because in both these cases the correct treatment of the exclusion
principle on the d-level is,it seems,essential to produce this structure.
These conclusions are supported by the perturbation theory devasloped in

“the next section in which U is kept exactly while the expansion is carried

out in powers of V,

B) EXACT TREATHENT OF U

In this case  H. ' is taken as
int

v et o) - (2.24)



and Hint(t) = exp(hof uh)t-Hint exp-(uo-ph)T (2.25)

where Ho is now given by

bs = - 2. 6
H Eskonko + Eedondo + UnQTnd¢ | (2.26)

k¢ g
To calculate GT {(t.-7.) which is defined as —1J<T{C ()t (= )S)
do” "1 2 do 17 7do" 2

we substitute (2.25) into (2.%) and expand in powers of the mixing

interaction, Keeping the terms of order VZfrom the numerator and

denominator of (2.%) we have for example:

T oT 2 . + '
.GdU(Tl-TZ) = qu(rl-ta) + %z(—l) E dtydr, <T§cklﬂi(rl)ckaﬁa(ra)}>

+ + : + + :
<T§°do(11)°dc“2)°do (t)egq (Ta)§> * <T§Cdo(Tl)cdo(Tz)cdol(Tl)cdoa(“fz»

+ ; oT> N oyt
<T€cklcl(11)ck202(12)§> v Gg(TymTy) <T{cdcl( Tl)cdoz(TE) 2>

< T%c;l('rlz)ck ('r].‘)%)' | | (2.27)

2
The localized and band states are non-interacting and can be decoupled

(as shown) in every order, the band states are non-interacting among
themselves in Ho and can be expanded by the usual thermodynamic Wick’s
tﬁeorem for 'imaginary times'. The whole difficulty here,is of course
that the d-electron many particle Green’s functions cannot be expanded
by Wick's thecorem because E° includes the Coulomb interaction, but
at the same time we do not get into the difficulties mentioned earlief.

One can devise a graphical'representafion for the tefms

appearing in fhe expansion of ch(Tl-Tz) « Ve represent the l1,24,8c0e n
paricle Green's functions refering to the impurity site merel& by a full
circle vwhich is the junction of 2ytyeeeees2n lines carrying the
appropriate time, spin indices. The convention ﬁsed'is 4 for an

. . . : + . .
ingoing line and_cd for an outgoing line.
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e.g (-1)2<Ticd(J (tl)cgcz('ca)c ('c )c l;-(Tl* f} is represented as ( Fig- 5)
1 .
t,;q; z&)ﬁ{
. ez
LS
1765

The contribution in each order of the numerator of the expansion for
GT(Tl—Ta) can then be represented graphically by joining together in all
possible ways the internal lines of the n-particle Green’s functions

by open circles in such a way that an ingoing line is joined to an outgoing

line.,
" e.g to order Vathe numerator gives
' , 7 ?
4 e A\Tys 6 _ - T267/O\T1 » 6
7176  Tse T1,6° T € g1,6° T,
——> + > 5 + > 5
Fie.6

An open circle connecting an ingoing line of index 7% to an outgoing

fy
&,

line of index Tn,dn contributes

T

0 —> (._1><T§cknomum>cknon<1n>f> e o ko (™ ) (2:28)

Ve sum over all momentum labels internal spin labels and integrate

over all internal time labels. Clearly the two terms of order V graphed(?Q
above give identical contributions, they differ merely by a permutation

of the labels. In general to order V2" we have a (h+l)-particlé d-Green’s
function, we join together the 2n intgrnal lines by open circles in all
possible ways, there is a symmetry factor (l/n!)afor each contribution
furthermore all the contriButioné obtained by joining the‘intefnal lines

in all possible ways are equivalent , there are u! df these. Thué to

order V?n there is a singlé graph in:the expansion of the numerator

composed of an ingoing and outgoing line into a full circle with n bubbles,
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together with a symmetry factor 1/n!,

eeg to order Vu there is a single graph (Fig.7):

Ra
Y 63
% Y]
> >
% Y
1
?6)62 1'5,65
Fi
ks g.?

with a symmetry factor 1/2!.

If we choose the convention of writing all the n-particle

d-Green's functions as:

T n + + +
Can(TysTaaTgs eeenty) = (1) <:Ticd<Tl)cd(¢2>cd(fs>cd(14>....cd(12n2>

i.c where an annihilation operator is always followed by a creation
operator, and so on, then to 2 diagram of order VZn there correspcnds a
factor (-1)n and a symmetry factor 1/n! where n is the number of bubbles.
Clearly GT may be written GE 6k K 6 s, and thus each bubble has

k k o o
mn nn nnm man

a single spin and momentum index.

Thus to order Vk for example, the contribution of the numerator

gfaph can be written:

' 2.4 E T
(5%) v ’55;13d14d15d16 G;d(Tld,120,1303,1h03,1505,1605)
R3; Rs '

T
Gk303(13-14)qud (15-16)

-

The sum to all orders of the above type graphs, constituted in order
VZn of an incoming line and an outgoing liune joined to n bubbles, then
gives the numerator of the expansion of Gic(rl-Ta).

The grphs corresponding to the expansion of the denominator i.e .{S;zrl

in powers of V will give rise to the same kind of diagrams, except that
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these will be 'unlinked! , e,ge ,

00~

(b)

Fig.s 8 ease see ekC.

To a disconnected diagram consisting of a graph with two

external lines joined to m bubbles, n, vacuum graphs with oy bubbles

n, vacuum graphs with m, bubblesS,eees n_ vacuum graphs with m bubbles
s!

1 n 1y 1)

m«(ml!) 1 (ma.) 2 oao(ms-) S

factor (~1)8(-1)® where g is the total number of bubblesje.g. the

there is a symmetry factor and a sign

graph (a) of fig. 8 has a factor (-1)2(-1)I%TT_

a) Fourier transform

It is simpler to work in the Fourier transform version cf

(16

the theory . For the imaginary time technique, we write in the usual way

)e-i(w, TeW Tae

QRIS DHCRTMOR IR M E ng'(iwnliwn
h

2...iw 2 n’i nzz
goe=e- nm n
. This relation may be inverted to give:
ke
T . . . _ ) T -i(W TA=W_T coo)
Gdn(l?nl,lwna,...anan)— J;tl... dt, Gdn(Tl,Ta,...Tan)e "n,2 'n1
o

(2.30)
where wn;(i)°l(2n+l)nT, n is an integer and kT has been taken as T
throughout, The transform of GE(Tl-Ta) with respect to the two time

variables is easily calculated and is equal to Gith jwn ) where
' : 1 2



L . 1 5 1 (2.31)
G (l\'." W ) = o . W A4 m
k nl n2v 1“nl- ek nl n2 T

Carrying out the appropriate Fourier transformations in the original
expansion , the contributions to Gg(iwn) is now evaluated as follows

from the graphs: e.g the order qucontribution to the wmumerator (fig.?)

becomes

and gives:

L 2 5 T . . . .

V(-1)" T EG (iw_ _,iw_ _,iw yiw yiw yiv ) X
51 D d3 no ng nlol nlol n202 n202
R, :

Q’Ga
&6 T T,
Gk . (iw )Gk o (1wn )

The problem ’reduces® therefore to evaluating the n-particle Green's
functions for the d-electrons in frequency space. This has to be done
from first principles by using the definition of the Green's fupctions
and turns out to be impossibly tedipus beyond the 2~particle case which
is itself very difficult to calculate. In addition to thisuthere is

also the difficulty associated with the non-cancellation of thé unlinked..
graphs. This particulgr difficulty is overcome in the 'cumulant’ method

4(50)

or the method de?eloped by Hubbar and which was in particular
designed to treat the model often used to describe magnetism in metals.
It can equally well be applied to the present perturbation expansion
for the Anderson model.

In Hubbard’s technique as applied to the Anderson model,ithe

advantage is that one can have a linked cluster theorem. The graphs are
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drawn in the same way as before except that .the vertices (or full circles)

can now be repeated e.g as in the following diagrams

Q. 0

M c ’ c

PURPYSP E ,eEC.

a__
e

o

©
C
Fig,1l0
The Gﬁ?n’s function is then given by the sum of all topologically distinct
connected diagrams, where the vertices can be repeated. In this
representation , the full circles no longer denote n-particle Green's
functions but the n-particle cumulants defined as follows:
If A 48 Leeee.A refer to Fermi-Dirac operators (in this case
*1 % %n
they will simply refer to the creation and annihilation operators of the

impurity state) , then the cumulant average

KA A eeens.A iy is defined as
% %2 . %n
. _ MT
5 o . I log exp ngl (t)a (&) (2.32)

6ﬂa(tl) 51]‘1 (ta) 0000 6T]a (tn) . o O.d'é .

1 2 n A
o 1, (£)=0

. ’ ¢
where né(t)na(t) =’-na(t)n5(t)

The rules for calculating the sign and symmetry factors are given by
Hubbard and are pafticularly complicated. The cumulant method makes
it-easier to draw all the possiﬁle contributions in each order and to
méke partial summations of diagrams, but the main difficulty associated
with the calculation of the d-Green's functions still remains.

As a comparison it is useful to consider the contribution

to the Green’é function from the direct method and the cumulant method

to order Va.
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In the cunmulant method there are two graphs in this order:

' . W, 5657 Wy » 67
Wn 267 6 Wn 26 Wn 2 67 . Wh ;67
> o > o > e >+ > >
[ [ <

Fig.ll

In the direct method we have:

k.

ﬁ o | WHIO Wn
oo (b

Wn ;6 Yn 56 ‘ Wn s 87 Naialdal
[ Ll - r 4 7
(a) Fig.12

where the index ¢ on the‘full circle is to distinguish between the
cumulant and the Green's fuactionvertices.

The contribution to (}({fig 12 is written:

2 2 E oo . T .
Vo(=1)T Gd(lwnalwnc*wn A o)Gk o (1wn ) +
171 717 1Ty 1
Noes
y T, T |
2, \2,0T,. oT,. T . 1
ve(-1)6, (dw ) Gdc(lwn )6 (v ) (2.33)
f 1 1 1 :
neseys
. . &
for fig. 41 we obtain:
[ Sy, .
oT,. 2 : 2.2 . . .
G, (iw ?] v G, (iw_ ) + VT G (iw_ )X(iw__,iw__,iw iv_ N
do n 'kc n klcl ni ¢ ndg no nlol ni}
Where ) n,,e7, (2.34)

&,
. + ,.,-.
. Xc(Tl’Ta’TB’Th) = =1 <:Ticd(11)cd(12)cd<TB)Cd(Th)?> -
< rfea (et} Krfegleeie > = K rfeglrehn}> x
: . < rfeilr,)e (x0h>  (2.35)

It is easy to see that when the Fourier transform of (2.35) is
substituted back into (2.34), we are back to the expression corresponding

to the direct expamsion (2.33) as we should expect.
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’ 2
The term 'Vzlégi(iwnﬂ YI(;kc(iwn) having actually cancelled when
grouped together with the 2-particle cumulant graph.
In the cumulant expansion it is already possible at this
-stage to obtgin an approximate expression for ng(iwn) based on the

summation of the graphs

e

b
>—o—> + > ———> ° > +
[~

_é—e__%__o__}‘_@'_%“—"o%—*_“*— +¢oo-oet0
< c Cc

Figel3
The sum is written
oT, .
T Gdd(lwn) .
Gdd(lwn) ) 1 - V2G°T(iw y SYal (iw_) (2.36)
do n ka n
) R 4 ,
. ol . . . . T ,.
where Gdc is given by (1.19) with E replaced by iw andinc(lwn)
is simply 7;——%—2—— from (2.31) . This approximation gives the
¥n ko ' : i
correct result in both limits U—>0 and V=—-0 ., In fact (2.36) is
similar to the result obtained by Hewson(IQ) via an equation of motion

method , the difference being that in this case the averages <:nd+c>'in

ol :
Gdc-are zero order , whereas in Hewson’s scheme they are to be evalunated

self-consistently. Therefore there isno direct connection bet&éen the
two results .

It was pointed out that the term corresponding to the
first expression in (2.34) and to the orqéf”VZ diagram in (2.36)
cancelled when tle complete contribution was considered,.this is
acfﬁally true in all orders for the diagrams of fig|3. In fact these
contributions do not exist when the éxpansion is written out in full,
one has merely added them in one place and substracted them in another.

The question that still remains is whether such contributions exist

in the direct term corresponding to the first term in (2.33). -
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' . . ) S, T, R . L.
ITf so it must arise when o, = 0. Calculating Gd(lwnla’lwnzo’1hn30’1wn40)
from first principles, we obtain
o
GT(iw siW giw yiw ) = (<1) - Tr e-BHd o 6 -
a nlo nZU n30 nqa _BHO wn W wn v
Tr e T d 172 7374
5 o ;) e 3_g 1 -1 B9 |
Yo, "n, Yn_Yn iw,_ - € T iw - e, - ivw - &,  iw_=g, - C
17 7372 n, do n = “do ng do ng do
(2.37)
where § = 1/T , 6 is the Kronecker & and the n:o in the square

w /
n - .

brackets are operators.

The result (2.37) is the same as would be obtained by
applying'Wick3s theorem, the difference being however that in this

case the n are operators and the Trace must be evaluated for the

d+g

whole product. This result is quite general, the n-paricle Green's

functions with all the spins parallel may be expanded by 'Wick's theorem’

keeping the Nso

to the complete product. If the contribﬁtion is now evaluated using

as operators and evaluating the Trace with respect

the Green's function (2.37) we have the two graphs 6’
6 6 .
. (o)
: o op
op k op op
—_—— > —— O ——— . >—0 >
vnre s t L2 <
¢a) .
Fig.1lh

i.e the graph from figilewith 0, =0 has broken up into a linked and
unlinked graph. The ‘op’ label signifies that the Trace must be

evaluated for the whole procduct., The linked part contributes:

a .
2 m m '
VA [ e ] > )l 2.22)
R
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(2.38) can be rewritten

1 - @ g7 | <nd-67 ve GEc(iwn) (2.39)
)2 (iwn - €44” U)2 | &

(iw ~ €4
For o=0, there is in this order another contribution, coming from the

expansion of the denominator e.g the second term in (2.33) for 0=0; "

Combining this with the contribution due to fig.(49, we have

ve Eic(iwn) szg(iwn)Ggg(i\-:ni - Ggg’op(iwn)ng"op(i\-:nl)J - (2.50)
R s |

The analogous term to the first term éf (2.34) is clearly (2.38) and
is obviously very different from it. Thus it can be seen that the
advantage in form gained by the cumulant expansion may be lost in practice
when oné wishes to carry out partial summations: the above example shows
how‘one could be summing effects which do not actually exist in the
complete expansion. The difficulty is similar to the one mentioned
in connec#ion with the linked graphical expansion in powers of U at the
end of gection A,

| Working with the direct expansion it can be seen that one
can think of two kinds of 'unlinked graphs’, fhose appeafing in the
expansion of the numerator and those coming from the denominator. The
characteristic feature of these unlinked graphs is that they will give
'rise to contributions having fac%ors of 1/T, l/TZ...étc and must —¥ b
‘as T-20. There is good reason to believe that they can be included
‘as renormalizations of the tempergture averages, this point is discussed
further at the end of this section.

" The analogous series to (2.36) in the direct expansion

is:




giving )
l - <:n > : <:n - > :
6L (iw ) = d-07 F d-g (2.41)
do n iw - g, = V2 1 ivw - g, - U = V2 1
n do E‘i\-v-L £ ' n do - Ziw -£
‘n” ko n ko
R : k

(2.41) describes two resonances arbgnd €4 and ed+U with a width &

This result can also be obtained from an equation of motion approach,
the difference here too is that in the latter the averages are self-
consistenf whereas here they are zero order. In (2.41) , Ggo retains
its zero order th pole structure , a result strongly suggested for the
exact Green’s funétion from an equation of motion analysis and in
sharp contrast to Hartree-Fock and renofmalized R.P.A type results(492
To be able to,go‘further with this perturbation approach,

P .
one needs to know G iw_ .yiw yiw
= ‘ (1 n,é* 'n_g’

2d 1 5
higher order Green’s functions, These are.in general very difficult

gV _0) as well as the.
3

to compute and it is worthwile to look at some zero temperature results
to get an insight into the structure of the higher order Green’s functions

for finite temperature.

Zero temperature

‘ )
At T=0 we define the one particle Green'’s function GZo(t-t)
6 () = ) (et ()
qglt-t) = (~i <bIT,cdo tley, (t Iw)
where the average is taken over the exact ground state |w>-of the
perturbed system and will be simply denoted by'l7.

The Fourier transform with respect to t,f‘may be written

(==
r a4
t - 2ot g, dwt-iut
| Gdo(“fw) = dt dt Gdo(t’t) e
and =~ —®

o> o .
. ‘ ’ ’s
’ /o3 3 .
%;ﬂt,t) = (1/2n)2‘f' dw dw’Gzo(w,w) glwttiut
o —00
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In general we define the n-particle Green's function at zero temperature

as

(t

ceenty ) = (CDP LT gcd(tlnd(tz)....c (e, Nie> (2.4

112!31

' ) +
where as before a ¢ always follows a ¢ and so on .

o oo -3
(t=t) = (~i) (=i3" f----- Aty dtjeeeenes.odt
<5@nx>§£: a£; 4{ n

o < 1o f(t)ch (tmint(tl).....Hint(tn>§>°)a (2.43)

Where t}Qﬂﬁenotes one of the 4 possible unperturbed “ground states"

r
given by N . -

[0 0p —>= o3
ldfo > (pF —_— O’.a
IO O> (pF > %y

_|>9,a —

AN
where Pp denotes the unperturbed Fermi sphere,

The contributions to Gséa may be graphed in the same way

as.before. For the numerator graphs the contributions are changed accordin

to:
GT (iw ) — Gt (w'; )
d\/ n“'. d:/ ’ L )
1Z o g oy
m+ . .
T 3 1 S...-:Sawl....dwm
V TV (2n)m+l ~co =09 .
i '“m .
1
and G (w) —
wo- g+ 1ﬁslng(€kg
e.g in.order V° the graph : £
6‘{:&)1 wl;G‘{.
w6’/ w6~ .
contributes:
(-1)v° (1/2::) Gt(w Wy GE  (w.)
1 d o' o? l lcl kcl 1

FEL3



To obtain the full order V2 result at T=C,one has to evaluate the

. . t,o . o
2-particle Green’s function Gd’ (w, 4w ) where a refers

lo 20’w3-o’w4-0

) . t
to the 4 possible ground states . The G '*  can be found by taking
" the limit T—»0 of the 'time Temperature ' Green'’s functions defined
in the same way except that the averages are taken over the !ensemblef
3

of states at finite temperatures, An explicit calculation of G; T gives

(Appendix 1)

: 2
. -,:0 - ) - ¥ e W - [
GE,T(wlo’w2o’w3-o’w4_g) - (-1)2 Ty {e PH, (1 ng /(1 nd-o)é(h# ws)é(ul wz)lty
(wl - €45 * iﬁ)(w3 - £4_g* 10 )
. ndo(l-nd_o)é(wl-wa)6(w5-w#) N ndond_oé(w4-w3) 6(w1-w2) _
(w2 - E46 -i&)(w5 S U +ib) (w1 - €35 U ~i65(k5 - €35~ Y -ié)l
. nd_a(l-ndo)b(wl-wa)é(w55w#) .
(wl - £45” U + i())(w3 ~ €ag” i6) ‘
(l-ndo)(l-nd_o) 6(w1+w3-w2-w4) (w2 +owy, - 28d) U
Cw) = g4+ 18)(w, - £, + 16)(wg = e+ 1000wy - £, + 10)
(1/-2ni)
(w2 vy - 2€d - U + %6)
. NP deg _5(W2+W4'W5“V1) U(w2 W) - 2g; - 2U)
(wl - 45" U -~ ié)(wa - €44 U - i())(w3 f €qug™ U - id6)
(1/-2ni) +

.(wq - €45~ U - 10)Cw, + w, - 2e, - U - 10)

ndo(l_nd-o) é(w2 towy =W - w3)
- U + i&)(w# ~ Eaog” U + 16)

(wl - sd0->i6)(w2 - g, = 18)(w, - €.

do 3 d-o

U(wl+ - Wy - U) (1/-2ni)

(wl1L - Wy + Ego- Eq 0+ id)
nd_o(l-ndo) é(w2 Wy =Wy - WB) D(w2 - Vg - U) (1/-2%ni) '
(wl - st—U+16)(w2'- edc~-U+1b)(w5 - Ed—o-lé)(w4 7 sd_0~16)(w2~w5+sd_o-sdo+1c



x| _C2mi)® | ' | , (2.44)
Tr e-BHd '

The result for GE’T given by (2.44) is easy to interpret im the limit

T—0. In this limit and in the region sd>O ’ asd + U>0 (all the

energies are measured relative to the Fermi level) G;’T becomes

G;‘a‘ which is given by

Gt’a(w s1¥s ,u3 oYL G) = (2n)? 6(w v, )6(w wl{’)Gt %1 (w )thui(w )

+ g al(w ). G %1 (w ) Gt a*(v ) G ’a1(w4) T (w2+w4) (2mn)d(w 5y, =Wy -V )

where
t a 1 L i0(w + i‘rl—st)

iw) = - and T  (w+w,) = - - -
dd Wwo- g, + 10 PP 1 (v + wl-st-U+16)
(2.45)

Gt$a1

2 can be represented

. w1567 Fig.1l7

a

G ' = A -+

.————-—-).___

Tpp(E) is just the vertex part for the particle-particle ladder. This
result could of course have been anticipated because in the region
sd>0 s asd + U>0, the only nonvanishing graphs are the ladder graphs

“and the propogator remains the bare propdgator

1 - v
. . - Ll .
wo-egt 1os1ng(ed) W= g+ 10

in a perturbation calculation of G;’a' in powers of U,

Similarly, for ed<QO . Zed + UL0 we have

—_— K . (3

t,a
Gaa q_ ‘ _ +
—
§ o < . r a3 T - =
where T . = I A : i 4. -ele.

ki)
}_l

c3
[
[}
[@9)
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: 1 .
the propagators are L U -id and II‘hh B Wy ot v13-2£d- U-id

representé the hole-hole ladder, The propdgators are renormalized
O
U
which in T=0 and £,40 , 24 + {0 just gives U,

with the Hartree-Fock bubble

In the region £,{0 , 25, + U>0 the ground state is
doubly degenerate , if oneé takes either !d1.0> Py or ld¢0> Pp
to be the ground state (in which case one has to think of a small

magnetic field 1ifting the degeneracy), then we have

Gz'a: Wy, Vo Vg ’w"rl.) = ~+- @
T Ld _ —_— .
Fige.l9
t,a 1
tyaq -1 and G;' 2 (w) = - .
where@d‘t (w) = o, T 16 dy we-egs -U+1d
1 l——‘—)‘——(. . I > : > 1
. i . I I !
_ i ! 1 ] I }
Tph(wbr—wl) = ! -+ E ! -+ ! ! I:
' ]
I A - L——*———-—l L < 1 < |
.Fig.ao + e @& 9 o .ekc'

= 1 . | (2.46)

Similarly of course if ld¢0> Pp is takeén to be the ground state

except for the changes 1 to )} and wl—)-w3 ) wé—*wb, .

‘The graphs for Gg(;a(w) can now be brofken up in this order
into the more conventional type of representation by identification
with the results of a U and V-expansion (note that the Green's function

to be calculated now also carries a label“a"denoting the unperturbded
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. state with respect to which the expansion is carried out) .
Thus for _Gg’ai(w) the order VZ'graph for opposite spins splits up

according to

U LT
(:)
> > Tpp—
Fig.21
—_—
where the w line represent 1
avy 21 p S w~¢€_ _ + iosing(e, )
. ko ko

The result to order V2 for Gzéaiand Gzéakis now simply evaluated

and only the linked graphs in the usual representation {fig.21) need
be considered, the unlinked graphs from the numerator exactly cancel
those from the expansion of the denominator in (2.43). The result
shows no Kondo type anomaly in this order. |

The region of greatest interest is ed<0 ,Esd + U> 0, as one
should expect, The scattering propertieé_of the conduction electrons

in this region are actually described by G;;az + G;;a3 as a result

2

of the degeneracy of the ground state. This is easy to see if one
imagines taking the 1limit T—+0 in the finitelcase .

The contribution to. Gz;?z(w) from the. graph

2
is = G;;a’ (w)] Zd(W) | where- Z;i&) is given by:



.. ‘ 5
. o .
zd(w) =V2(1/21I )Z[iﬂ’ Tph(w-w’)%gl’lz_ (w')] G; ‘L(w') (2.47)
U(w + U =-¢) £,
= VZZE:*'- v i 5 (2.48)
3 k (ek - €4 - U)

in the limit U-—>e0 (2,.48) becomes

2\ e _ (2.49)

Zd(wa i

P ZJ(W) is proportional to lbg,w, and is divergent as w—3»0 .

Similarly for Gg‘;‘aS(w) ‘we have

£

%<
Fig.23
2
which gives . 2, (w} Gg’a:‘ (w)| = L 5 2 (w)
4 + (w - €q = U + i6) d
| ‘ | t z 2 1- f.k -
and in U—oo ZJ(W)[Gd,}% (w)] =V > (2.50)
(ek - ed) (w = ek)
(2.50) is also anomalous in the limit w—0 .
The total contribution to (G1%% 4 Gr1%3) to order
. a4 as

2

V2 may then be written:

t,oz

(643 San?) - 1 va-zg: 1 v _(/2). 4

2 | (w - sd)z | ﬁﬁ'“ €y L T
v2 (i/2)(1 - £.) e W2 (1/2)(1 - £,) (2.51)
| ﬁ(w - ed)(sk - ed)2 _ -/ (w - ed)a(ek - &4)

Trus to this order. the anomalous logarithmic terms cancel, but it is
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already possible at this stage to draw some interesting conclusions.

First one may note the similarity between the particle-hole vertices

(2.46) 1 . with that of the spin fluctuation
['4 .
w - w+ EdT- dei id
theory in the limit Té§—>°°(2.21) il . This result

w - w't id

suggests that the limit Tsf—?'°° describes a similar situation and one
should expect the anomaly to cancel in this order as shown by (2.51) .
Secondly one can see through the identification of these vertices for
the 4 possible ’ground states’ with the perturbation expansion if powers .
of U, that the zero energy transfer particle-hole vertices (2.46) only
occur in the region sd<0 ’ 2sd + U>O0 in the general n-particle
Green’s functions . It is also clear that in sd>0 ) 2sd +U>0

@r gsd<<0 ' 2§d + UL0 ) the only vertices are 6f the pgrticle—ﬁarticle
type (2.45) (or hole-hole ), for which no anomalous béhaviour occurs

in any order of perturbation theory when the contribﬁtions are evaluated,
‘ ‘ The‘Kond; anomalies are to be expected in order V6 for
G;g»(w) (or V4 for GZ’a (w) ) . For this in general a knowledge of

the 3-particle Green's function is required., From a knowledge of G;
however, it is possible to generate higher ordef graphs. To see this

in a general way and also to show that the unlinked graphs ih the expansién
-of the numerator and denominatér exacfly canéel in every order in the

T=0 method, it is simplest to go back to the cumulant expansion. At

T=0 , the temperature averages simply become averages over the ’ground’
state’, furthermore the éumulants (2.32) are in this limit simply
identifiable as the completly connected part of the n-particle Green'’s
functions when the latter have been evaiuated and graphed as in-;.g

(2.45),fig ]

In.G; for example, we know that there will be terms with
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1,2,3 eﬁergy conservation. factors 6(w.....) . G; can be drawn

, BN

. —_——— .
Gg'?_‘. =- —— 4
_ .

Fig.2h

‘The last term represents the completely cnnected term and has only

one energy conservation factor namely 6(w1+w3+w5-w2-w4-w6) this term
is actually equivalent to the 3-particle cumulant crresponding to G;‘q
and calculated by (2.32). Thus at T=0 it is possible and convenient
to use the cumulant method, in which case the cumulants are simply

the 1,24¢....n particle connected parts as illustrated above, and they

‘"may be repeated in all topclogically non-equivalent ways. From a

t.a t,a
1 5%

following higher order graphs

2 ' N

*® , X X

knowledge of G it is possible for example to construct the

Ik

a

T- AAAAAAY: 'T

Fig.25 T - Kfvvvv%x

The previous conclusion is really quite obvious, the only reason one
needs to use the cumulant argument at all is to generalize it in a simple
manner., An additional simplification which may be obtained in a simple
way without having to evaluéte'the higher order Green's functions |
explicitly, is to deduce the Higher order vertices on the basis of a
knowiedge of the 2-particle ones and by using the relationship between
these results and the pérturbation expdnsion in powers of U. For example

it is easy to see that for a=a, there will be a 3-particle vertex.

1

of the type:
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Fig.26

vhere Tpp is given by (2.45) . Thus we may write:

.
-1
4
Y

Fig.27

Where ng refers to the complete 3~particle vertex and T3A refers to
those not included in the one which was generated. Unfortunately it
is not possible it seems to deduce in this way the complete higher

order Green's functions, but nevertheless a considerable number of

vertices may be deduced in this ways An explicit calculation of-Gg’ai
gives: ' -
Gg’al(wlo’WZG'WB-o'-wl#;a'WS—o’wé-o) = (2m)° Gzéal(wl)Gglgi(""B;Gglgi(‘”5) '
E(wl-wa)é(ws-wh)6(w5-Vf6) - 6(w1"w2)6("'3""6)_6("’5"“25] oy
Gzéai(Ql)Gzéa‘(wé)Gzlz*CwB)Gslgt(wq)ézlzi(WB)G§:§i<w6). Tpp(wl+w3)Tpp(w2+w

oy s igowpmumg) (/2007w (1/2m) el i) X e

U

. ‘ (-1 permutations . . ..
(wl + w3 - 25d- U»+10)(w2 + vy - 2sd7U + io

b
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e o s ey

4‘—-a-w5 y Wp—> VW "(P= number of permutations):!

3

t, | t t, tya t,a | | _
+ G aﬂ(wl)Gdéai(wa)Gd_gi(WB)G Ui(wll-)Gd-,-ci(w5) [(1/21t) 6(\«15 w6)Tpp(wl+ws)

do d-
6(wl+w3-w2-w4) + (—l)Ppermutations Vs> Vg wh—e»wé]
- (2.52)
Thus G;’ai = —_—
—_— 4 +

Fig.28

The general 3=-particle Green'’s function has broken up as expected

and where everything but the last graph (second part of second term in

2.52 ) was generated from Gz’ai . Similarly for the other regions

corresponding to the 3 other values of « and for the higher order

Green's functions.

With (2.52), it is straightforward to evaluate the contribution

to Gt;ad in order V4 exactly, it is nof difficult to see that there

d

- will be no anomalies in this or higher orders as mentioned before. The
- singlet symmefry of the ground state does not allow the spin flip processes
in the intermediate states responsible for the Kondo effect. (similarly

taoy for which Gt’a4 may be deduced by simple permutations)

1 3
. . . o ) t,az . . "
In €d<0, Zed + U?O ) and. for Gd.‘\ we may write ‘down

for G

immediatelyion the basis of the previous discussion, the following

set of graphs
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+ » e« e ehh

- Fig.29

involving the anomalous self energy (2.48) , the above series can be

summed to give in U— ©O :

Gt (w) = ; (2.53)
1 £
W gy - Vv k
_V'" €y
k6~
including in addition the self energy KAarrnnnnisnmaX
(2.53) becomes
tyag, \ _ 1 |
GM (w) = — 5 ) (2.54)
W - ed -V k .
. _ W - €

k
. E )
at finite U we can simply use (2,48).

There is an analogous series for Gz;a3 giving

t,a E l- :
G '3 (w) = . . = .
a1 Wy -V E R E (-2 ) Gu-e, 0Ty
W - € - e = 2
- - koo A (w sk)(ek sd)
(2.55)
(2.55) tends to zero as U—»oo0 .
. s 2 : t'az t,o.3 .
However it is really (Gd$ o+ G.h )  one is

~interested in. The exact result in ordér V4 may be found by using the

3-particle Green's function , in U—> 0O



‘b1

t,a T _ i ~ s ane v v e ) oba
G3' B(Wlf’WZT,WBT,qujwsb,“éb) = (2n)[}(u1+m3+w5 W, =Wy w6) Gdtb (w6)
t,x t,a 1
G'7 (w.) GV (w_+w_-w.) - . - —
gy, 57 Tay, 573 "2 | (hl - g + €d¥- €d$+ 16)(w2 - g+ ed&f Ed*+15)
+ (-1)Ppermut§tions wl—f w3 ’ "’2—”’4] (2.56)
Gt’az(w Wo GW., W Wo SW, ) = (Zn)2 ;(-i) 6w +w_~w, =w, ) 6(w_ —w_)
d 14°72,773," 4*’ 54 64, - 3775 4776 172
t,a t au- t,a 1 -
Gd; (w3) Gd;. (wl) Gd;. (wh) TR ed?_ Ed&+ T5 +
S:}?g permutétions Wy wz-—ywhg - {(l/zn)b(wl+w3+w5-w2::4)
6
t,a t,a y -t 1
G:!? G]? ) G2 -w.) -
dn (w3) an (v, an Gy Y3 We = Wy ed’- eyt id
L + (—l)P permuations f - §(1/2n)

w5 - wg + Ed - Ed + 1ib

6(wi+w3+w5-w2-wh_-w6) Gg;a (wz) G;;a (wh_) Gg’:’ (wl) GE::’ (wl++w2-—w§)

1
w5 -wh + Ed?' ed&f id

P L. .
+ (.—1) pernutations Wyt wz_pwqq

(2.57)

The general finite U result could have been obtained by making appropriate
transformations in (2.52) .
The particular spin arrangements chosen in (2;57) are
actually sufficient to obtain all fhe_felevant possibilities iﬂ the
‘general fourth order term, In this order the anomalous terms dé not

cancel and in fact make a corntrbution to. Im(ng?z + 'Ggéq%




)

jg:l- 2t :
proportional to k which behaves as log'w, as w—>0 .

Finite temperatures
r

The two particle temperature Green's function Gg nmust
be closely related to the 2-particle time temperature Green's function
given by equation (2.4%4). There are in prinéiple generél relations
connectiné these functions similar to those for the omne particle case(lez

however these can be very complicated and it is more convenient to

evaluate it directly (Appendix 2 ). Thus -we have in U—>0o;

T ; ( 1)
G (wn 6'""no6'"n,-o""n -c) - [Tr d Q- 2 oW )
1 2 3 4 Tr e n,''n
1
. /) c(l - ndc) - ndo(l - nd-c)
W WGV (wn -..edc)(wn W gy - ed_o)(wn - edc)
1 3 72 & 1 4 1 2
+.  (=1) b (1/T) : -840
Vp, ¥ ¥y Y (w - €, )(w -€. )(w_ - € )
1 3 T2 4 n do' ' n de’*'n d-o
1 2 4
* 6wn W W (1/T) 1 - D4,
1 73 2 (w w =~ ¢ (w - €. )
nh n3 2 do
AR (-1) 6w W W +W 6w W (l/ZTZ) ndd(l - nd—o) - nd-c(l-nécs
By Bz Dy o, 0y N4 (w -€, Jw_-¢€., ) 3
n do n d-o ’
1 3
(2.58)

by iy . . . R . .
wnére for simplicity we use L instead of,lwn and

where in the first term the factor (1 - 6w iy ) excludes the
B 3

I11+ nl'

possibility wooEW and as a result of the degeneracy of the singly
Sl 1

occupied level such that € This possibility reappeafé

do~ fd-0 *

in the last term and apart from this the above result could have

been obtained from (2.44) by making the changes w—w and 2n6$ y—>---
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«ee o (1/7) 6w' in the limit U—>o0. In general, the temperature

yoee
Green's functions in higher orders will'have the same structure as

the time temperature ones, apart from the effects described above
associated with the ’'particle-hole vertex’ , the advantage of the latter
‘being that tﬁey are much easier to calculate. It is easy to deduce

in general that in this perturbation theory, the two pole structure of
the Green’s function -will remain and it can be séen to be the result

of the exclusion principle on the d-level being ”correctly"treated .

The interesting self energy for finite T occurs as a result

of the first term in (2.58)

Wn1 )ﬁ‘ )
Wn.“ w,\1
> U 7
Fig.30
where TQT) = ———-iL————— (w §£,w )
- ph w - W n n
ny n, 1% 4

The self energy contribution can be written:

Zd(wn) = (-1)v2T2 (ndT - ’-‘d-l) (2.59)
T(wn - v )(wn - ek)
nidn 1 1
Of course to this order (2.59) simply vanishes because n, = n,

QT G.J'

but it is instructive to evaluate (2.59) nevertheless.

The sum - E may be transformed intc an integral which . :

becomes Ny
1 f(e) de (2.60)
27i (wn - e)(e - Sk)
c
wvhere f(g) = 1 and the contour.encircles the poles of
ee/T+ 1
f(e) which are at ¢ = LA =(2n + 1)%T  except the one at € = w_ (fiz.31
. . n et

1
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Closing the contour on the right hand side and left hand side by"infinite

semi circles , the contour C can be deformed into C which encloses

i

the poles at € = & and €

at'e = g_to (2.60) is equal to

f‘ek)
>

The double pole at e = wo o gives ‘ (-1/2) together with a term

w_ - €
n k

which vanishes at T=0 . The contribution of interest to the self energy

LA The contribution due to the pole

»w

then becomes

i

VEE (£(e, ) -1/2)(ng}- ny) (2.61) .
- LA '
Apart from the factor (ndT- nd‘), the above self energy can be

(6,22)

~_type self energy obtained for

Zj(wn)

identified as the Nagaoka-Abrikosov
the s-d model. it vanﬁshes in this order but will remain inhigher

orders. One couid‘proceed to make partial summations, renormalizations,
.seetc and obtain varidus approximate results for ch(wn) , but this

is not the object of this section neither would it be particularly
revealing in the presenf.form. The object was to derive the self energies
‘characteristic of the s-d model from a Green's function approach using

the Anderson model, and to see what possible conclusions can be drawn
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from such an approach in relation to thé.pertﬁrbation treatment in
powers of U outlined in sectionaA.

The perturbation treatment presented in this section cannot,
unfortunately, in its present forﬁ supply an alternative to the method
of section A, It is difficult to make it self-consistent. However
it does provide some important support to the arguments presented at the
end of the previous section. It suggests that a proper treatment of the
- exclusion principle on thg d-level will maintain the 2-pole structure
of the zero order Green's function as:has been suggested by equation

(40)

of métion analysis and that‘this_is also closely connected with

the appearance of the zero energy transfer vertices which eventually are
responsible for the Kondo anomalies (equa. 2.46). The non-cancellation

of the 'unlinked® diagrams at finite temperatures is a serious disadvantag
of this method, but on the other hand it provides a 'clue’ as to what

an aiternative to the expansion of section A could be based on in the
framework of the present theory. There is very good reason to believe
that a large class of graphs including allAthe unlinked graphs of the

numerator and denominator simply go to renormalize the bare distribution

functions. As an example consider the derivation of the result (1.16)

- n..
T 1 <nd-c> < d-o >
G (w ) = P . +
do' n Ww_ - C W =g, =10
n do n d j

~ from perturbation theory using a direct or non-Wick's theorem approach,
~ Inguch an expansion,(2.4), it may be seen that from the numerator

one has the following contributions to G§ (Tl—TZ)

D .
G'(T-’C)= ——_'}—— + Fz} -t-
d 1l "2 ‘ () {)
‘ > E > 5 ; +....-ek¢o




together with unlinked graphs which may be represented

+7’.“ e.ECo

..I.
Y

Fige33

The propogator lines are taken as (-1) [(l-ndc) 0(1_:1-1:2) - ndoe(Ta'Tl)jl X
e—lsdo(Tl T2) where the N are operators as opposed to the Wickgs

theorem case where they represent zero order temperature averages,

although the diagrams can be drawn in the same way. The contribution

to the numerator of the expansion arising from the connected graphs

may be written down immediately and gives

Tofes faro (2.62)
Yh ~ f4g Wy " €gg = VU
1 .

vwhere f -~
d oBeg o1

(2.62) already has the basic structure of (1.16). The contributions

to the numerator from the unlinked graphs are

. 21242 3.3
fdd d-o [k -B)U + (fga U- + ( ) U7 o+ .‘.eté] — 1

38 n PP U

. o -pU
= fddfd—d (e -l)

Yn " fae T U

Combining this with (2.62) and noting that the denominator <S5 X%, by

definition is just Ir e d we arrive back at (1.16).
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This example goes to illustrate iﬁ a very typical way
the above érgument. Future work.in this direction may be able to
identify exactly graphs that renormalize the distribution functions
and those that determine directly the analytic structure of the Green's
function. 1In this way a self-consistent result along the line of those
found by equations of motion techniques(lZ) may be obtained with the
advantage that the physical processes included would be simply
'identifiable. Such an approach , it seems, will ultimately make it 
possible to bridge the gap between the spin fluctuation picture and
the s-d picture in the description of the dynamical properties of the
magnetic impurity system. The technique developed in the next Chapter
overcomes many.of the difficulties associated with an expansion in powers

of the mixing interaction. It is a time independent method and gives

a description of the physical parameters in the static limit,
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CHAPTER 111

TIME INDEPERDENT PERTURBATION THEORY FOR THE GRAND PARTITION FUNCTICH

Z _4hD THE FREE ENERGY F.

The transformation for Z

The time dependent approach, in particular to calculate
the Green’s function andvthe dynamic susceptibility was presented
in the last Chapter. Section B was devoted to an investigation into
the possibilities of a Green's function theory in which the expansion
is carried out in powers of the mixing interaction and the Coulomb
interaction is treated exsctly. In this Chapter the same problem is
tackled from arother direction and a perturbstion method is developed
for the partition function Z and the Free energy F in which the Coulomb
term is again treated exactly. From-a'knowledge'of the Free energy

it is possible to calculate the thermodynamic properties of the system

_€.8 Entropy, static susceptibility,...etc. The Free energy F is related

to Z according to the formula

F = -(3)" 1og 2 | . (3.1)

where Z is given by ) -
Z = Tr expEuN-_’.H)B] , . (3,2)

H is the Hamiltonian, £ = 1/kT , and 1 is the chemical potential

B = oF ' (3.3)
: N ) T W .

and W is the volume.

determined fronm

If the Hamiltonian is split up into

H=1H + H

o I
.where HI is the perturbation, the expansion for Z then reads
21, 2) Z‘” | b |
FASTPED n ' . L lH (3.5
Z, = r(l-l-l) drl....drn<T§hI(xl) coo. HI(rn)§>o 3e&)
! o . ‘
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vhere < ;6 denotes the thermodynamic avergge over the unperturbed
ensemble, Z_  is the partition function corresponding to H  and HI(T)

is given by

HoT H e—HoT

I

An alternative way of writing the ekpansion for Z{u,B) is

HI(T) = e

o0

Z(u,p) = H(-1)" ATy dTyeeeeeesdr TrZexp(pN-Ho)B HI(Tl)...HI(Tn)g

= STUPT « - + +Tydo
R=0 g ny (3.5)

Expansion (3.4) is more convenient when: Wick's theorem applies for
the unperturbed averages, in which case the time ordered averages
may be expanded in tefms of the usual connected and disconnected
vacuum-vacuum graphs of field theory. The Free energ& is then given
by the sum of all the connected‘graphs.

For the Anderson Hamiltonian with ]
By = Zeddndd * Zekonko * Ung, g
& & ('
+ +
iy = V } (46%ka * CkoCdo’
ks

Wick's theorem cannot be used and it is easier to work with (3.5)

1]

in.which the time integrals may be evaluated directly. This has been

(39)

tﬁe approach used by Scalapino for the Anderson model , and Kondo
for the s-d model(BB). It can be séen that ‘the computational pfoblem-
involved is so enormous that it is very tedious to obtain even the
order Vu result, let alone higher order contribufions. The alternative

method presented here reroves this difficulty by transforming (3.5)

into a time independent form using the technigue developed by C.Bloch

(51)

and C, de Dominicis These authors obtzined a time independent
expansion for the Free energy in terms of connected diagrams i.e
when Wick's theorem applies, the technique they devised is however

egually applicable to the problem of eliminating the time integrations
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in the above expansion for Z(u,g).

Thus following Bloch(DZ), we consider the function

S HER): N RN HEIE b (3.6)

T means that the operators must be put in the same order as TyrToreeeT,

on the circle of time, Fi%- 34 .

for this particular ordering.i.e B )'rl> 1:2> ........tn>0 s (3.6)

can be written

N

Tr {exp(uNﬁ) exp (rl--cn-ﬁ)ﬂo Hy exp (TZ—TI)HO Hi evesedHy
o] ) . ’ ]
exp (t-t, H B f (3.7

This quantity depends only on the successive time differences and
is invariant when all the times are rotated by the same angle on the
circle of time. If some points cross the origin (0,B), it can be
seen that the only change occuring in (3.7) is a circular permutation
of the factors which leaves the trace unchanged. |

The expression given for Z(u,B) by (3.5) may be rewritten

00
Z(p,B) = 1 + (-1)" Jdrl.......dt <T€H ('c ....HI(‘cn)g>o
° =1 D ' (3.8)

where D is now the sum of the following domains of integration

f}3>T1>T2>o,ooo.vou.-o.-o.‘.fn>0
B>TZ>T5> o’ooooooo--,ooooovtl>o

ﬁ>7n>'-fl o‘oon-noou-"oqt-o-Tn-l>o
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The integrals corresponding to each of the individual domains of D in

(3.8) are equivalent since tﬁey differ only by.a permutation of the

time vatiables and thus there is a factor 1/n outside the integrals.

This kind of transformation is quite standard in the theory, it is

for instance in a ‘similar way that (3;4) can ge obtained from (3.5).
The transformation of variables

T, = u., + T =u, + T ’ T = u + T
LT 2 n n-1 - Yn-1

cnanges the domain D into.a new domain of integration given by
p>1'n>0 B>u1>u2> ............un_l>0
-The T, integration in (3.8) may now be carried out immediately and we

are left with

w .
= p ~
Zé}*’ﬁ) = 1 + B (I-)l) du, .....dup__1<§HI(ul) ....HI(up_l)H(O)§>
0 P=1 p>UsSUz- - - 'UP_1>O

(3.9) -

" This expression can be further reduced by making the change of variablés

V, = u,; - u v, = u -u3 ceaensoe v =u

1 1 2 2 2

which changes the domain of integration in (3.9) into

.Vl>o b ] v2>o [} ..........'-..-...,Vp_l>0

where vl+V2+............Vp_l<B

The last resﬁfction can be satisfied by multiplying the integrand with

~foo- .
l d_E exp[&:(v . + Vv + esesesseV -B)]
2mi J £ e p-1
[X-- TN L}

Clearly the integrations over Vi1 Voo .....vp_l may be carried out

immediately and the final result is written

[e0] {oo—-a

2(u,8) =1 + (PN -1 \de e—58<(-HI( 1 __HI)p'1;>o (3.10)
% 2wip J e e ~§

o F=1 too~-Q
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.The - correspond to the excitation energies , = Ho - EN ;e
k]
The contour in (3.10) cain be closed by an infinite semi circle in the
right hand plane (fig?3h, so that it surrounds all the poles of the

integrand (a can be chosen accordingly).
{oo-a

Fig.35 -

_t.m -
In this form, the expansion for Z{(nu,B) is already considerably simpler
for computational purposes than (3.5). It is similar to the result
-obtained by Bioch and de Dominicis for log % except that in the latter
only the.connected graphs are to be summed over. The reason why the
time independent transformation is valid for %(p,p) is because the
only property that was needed to obtain it was the cyclic invariance
of the trace in thevintegrand.

If Ho is written

o B - d
where . } Hd = ;EEdondo + Undfndl
Hp = D&rofke
. Rst”
then 2 _ = 2. % and 2. =1 + e PSdg + e PEag & o P(BEgl)

where all the energies are measured relative to the Fermi level n,.

The simplest way to evaluate the contributions in (3.10), is to represent



the quantity Zp(s) by diagrams wheére Zp(s) is defined as

1:
i

Zp(e) =

The contributions to Zp(s) nay be

bubbles, where time increases clo

!HI’

left. Each bubble consists of a

drawn in the order it appear

an annihv¢lation and creation oper
with an even number of bubbles co

there is a graph

corresponding to V2

2? °;oa°k

. ‘l)@f” k?‘

To be able to evaluate the excita
into 4 cétegories corresponding t

e.g (3.12) is revwritten

N .
1 <@|c c
Z Z do, k0,
d =3

AJJSL' '

where o again refers to the imp

1

—

e-&

£, and the label B denotes that

taken for the band states only.

_( 1 H
c -& 7,

\Y4
bed }6.ey
&,GZ 51)62 )
.- Fig.36

. Py (3.11)

represented by simple time ordered
ckwise and eacn Eubble represents

s in the trace going from right to
n outgoing and ingoing line specifying
| Orly graphs

ator respectively,

ntribute., To order V2 for example
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1 C C '(3112)
klcl dcl:ZO
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tion energies, we divide the graphs

o the 4 possible eigenstates of Hy

+

S

~Bg
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urity states with corresponding energy

the thermodynamic average is to be

The graphs may now be drawn to have in

$

addition a label o specifying the state of the impurity over which

the 'average'is to be evaluated a

)/Z

q 1 where

n
[ed

11

00 l/Zd

1

nd have a factor n equal fo

da
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e P<“Ec1”u)/zd

n =n = .
The excitation energies are then simﬁly evaluated by keeping track
of the oc¢cupation numbef of the d-level afier each bubble, The
thermodynamic averages over the band states are evaluated by Wick’s
theorems The effect of the exclusion principle on the d-level will
eliminate a great many possibilities and in general it is obvious
‘there can be no more than 2 consecutive ingoing (or outgoing) d-iines
of opposite spin (one of the same spin). Further restrictions are
~imposed of course according to the label of the particular graph. |

As an exauple ccnsider the following graph in order Vl1t and

contributing to al\

.
which gives
<:c+ c N
VLI' n kLl_‘—O' k3-0 k20' k10>°<
oo (e —= e, + € M e - ¢ + € y(e -« + € - € + € )
do k.o k.g k.o ko k.o d-g k-0
g B, bmif -1 2 1 2 1 3
1> 2_7§5> W
(_;%4 denotes that the thermodynamic average is to be taken over the
W 14 .
band states and that the impurity state is a s we shall be using this

notation throughout. Thus we have
-+ + ' . . o~
C, c,. C, C > o= . fl' ) X I, o 1 6k
<: A4—0 ns—o xao klo - ( x-.3-0) ( KiG) k3&4 lk2



the contribution to 2(p,8) is obtained by multirlying by E:Es (-B/Zni)na
4 en
o _

and integrating over the contour C, wnich reduces to summing over the

residues of the poles of Z a(s)e—ps (-p) n, .
—Pa&* {

Y

An alternative graphical representation may be used for the
Zp(e) which is sometimes more convenient. 1In this , the graphs are
drawn in the usual way, i.e as if Wick’s theorem applied in terms of

connected and disconnected diagrams e.g

(&)

R A S S

(h)

- e o ——-— L TR S QR

- e e - - -_.—-----X---c.

the wavy lines correspond to the YEO lines and give rise to a factor
(l-fka) going up and  fka going-down. The occupation state of the
impurity must here too be specified for each graph and thus forAé graph
corresponding to a , the do-lines give a factor (l-fdo,a) going up

- and fda;a going down, where fdd,a = <g|ndcla> and is either O or 1.
The complefe contribution is then multiplied by n, . The crosses
denote the interaction times and give a factor V.v The excitation
energies aré evaluated in £he usual way where of course the occupafion
number of the d-state mﬁst be watched‘at each stage so that the Couloﬁb
interaction ié'properly iﬁcluded. in this representation it is easy

to see fhat there are two types of graphs , those overlapping in time

and non overlapping ones , For example hyb)fig.Ss is overlapping in time



b)

Pl

whereas we could also have

(c<) x—-—-; -----

Fig.39
) .
and it is obvious that all the possible graphs may be generated from
the set of all overlapping graphs by simply repeating them in all
possible non equivalent ways and where a non overlapping graph
consisting of e.g 2, 3, ....n parts gives rise to an additional

factor 1/, 1/82, vees l/s:n"l .

Elimination of the & integration

In the expansion (3.10) for Z{(p,B), it turns out that the
£ ‘integration may in fact be completely eliminated which leadé to
an even greater reduction in the amount of work reguired to calculate
the contributions. Consider in general the contribution to Zp(s)/e

which may be written

7z (eg) = 17H, 1 H 1 H_ .e.ee.. 1 H ’ (3,13)
Zp\E Zna;<18_gls_81 E_g_I}o( 3

€

(3.13) gives rise to a set of non vanishing graphs each corresponding
to one or at most two of.the labels ‘q” . .Consider a graph contributing

to ay only, this has p bubbles and (p-l).excitation energies



Fig.40

“assume the excitation energies are labelled 81 ’ 8a ’ g3 ’ ......8,,_1. The

contribution to Z/Z_  may be written

(—B/27tip) dE_E_-BS <A1A2c.-.oo-o.-ooco Ap>°<(. nai (3.11*_)
€ (s-—gi)(e =E,) eeeeeeeole _&M?

the A_ represent the operators occuring in the successive bubbles together

C

witp the appropriate momentum summafions (the spins are taken to be fixed).
Now consider the (p-1) ofher diagrams obtaihed from this one (fig 40)

by rotation, each one is non vanishing in one of the states a and is
therefore contained in the set of all (non vanishing) graphs to order p,

Ey trace invariance, The confribution to Z/Zo from the corresponding

graph rotated by one bubble clockwise can be written

(*B/znipiféfgnﬁs Lhhy eenninnns A Ay ny (5.15)
£

) (e +8P_I81)(€ +g‘b‘1-ga)........(£ +£P‘3f

where the graph now contributes to the state aj . When VWick’s theorem
is applied to the band states, the expression (3.14) correspgnding

to the origina}.graph splits up into several terms each having a set

of excitation energies, similarly for (3,15), the rotated graph. Then

to each term from (3.14) there will correspond a term in (3.15) such
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that the excitation energies are related as shown. The corresponding
term is identified by assigning to the operators in (3.1%) a fictitious
time label-and taking in (3.15) the term given by the coniraction of the
same time labelled pairs of operators. The cornesponding' aj to a,
is obtained by noting that if (3.14) is non vanishing in a unique
state @ then each successive rotation gives a non vanishing |
contribution to a unique aj ..

Assuming'ndw'that thevexpressions (3.14) and (3.15) refer
to a pair of corresponding terms, then if all the excitation energies
are different in (3,14) , they will be different in the (ﬁ-l)
Mcorresponding terms coming from the set of (p-1l) rotated graphs.

It can be seen that the residue at e= O in (3.15) gives the same
result as the =0 residue in (3,1%). The factor e_ﬁ(gk;i) compensates
for the difference in the Fermi factors arising out of the rotation
of the band operators in the thermodynamic average, and the change‘
o —>ay in e-BEai, It would be easy to show , with a convenient :
graphical representation that the complete contribution of ) ‘

corresponding terms are identical , from which one may immediately
deduce that for the set of p corresponding terms in which all the
(p-1) excitation energies are different only the =0 residue need
be taken and the resu1£ multiplied by a factor p .+ This then gefs
rid of the‘-—%—' in (3.14), | |

The general case when some of the excitation energies
are equal , can be dealt Qith by noting that if @ of.thesg energies
are identical in (3,14) , then the pole of order 6 will appéar e,
times as the pole of £=0 in the set of all rotated graphical
contributions. Thus we need only' take the residue at poles of
e=0 and multipl& the result.by —g-. where is the order of the
pole at &=0 ,

A general nbn-vanishing graph may contribute to either

a single “&" or to two states Zai, aji; in the latter case there
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will also be two sets of excitation energies. ihen this grapn is rotated

4

. - - . . 4
it will contribute again to tvo possible cstates gai, a-;.The rotated

dJd
graph corresvonding to o may be easily identified by noting that the
first rotation can only change the occupation number of the d-level

by one particle, similarly for the second rotation ...etc. The general

result may now be written

. _ - -pe
z,é];,rs) = 1 + (-—p)z_e]_._ ResE=o % Zp(s) (3.16).
° P=j

~where @ is the order of the pole at ¢ = o . This is merely an extension
to this problem, and for Z, of the result obtained by Bloch and de

(52 for logZ when YWick'’s theorem applies. The proof is

Dominicis
on similar lines, this extension was possible because the above result

is again simply the conse@uencé of the trace invariance and is independent
of whether Wick’s theorem applies or not except that in the former

case the Free energy is given by the sum over the cqnnected gréphs only.

The simplest example of the above argument is provided

in order V2, consider for instance the graph

d,s’ Gx’e’

d)g E&'G

o>

Figell

this graph contributes to both a (|d1d¢>-) and a, (]qu>) o« The

rotated graph also appears in the expansion e.g . . -

§, 96 d,s



and contributes to a (|0q>~) and o (’d¢c>') . Clearly the ’equivalent'
rotated graph for o, is the atove gravh for a3 «  The contributicn

to Z/Zo in the first case is

(-p/2mi) e-ﬁs (1 - fk) de e-ﬁ(2€d+U)
%S;ZE £ - (Fk - &g - U 24

and in the second case

(-B/zﬁi) ge-ﬁe - £, de oBley )
. '628 £ - (ed + U - sk) Iy

clearly the total contribution of each of the above expressions is
identical to‘the other, Similarly for oy as and it is sufficient
to consider the residue at € = O in each contribution and drop the

factor 1/2 .

The expansion (3.16) represents a tremenduous simplification
over (3.5) . The contributions to every order can be evaluated without
any'difficulty and although the exciﬁation energies cannot be deduced
in the same automatic manner as for Ho non interacting , it turns out
that the non-use of Wick's theorem leads toc a considerable reduction
in the number of terms by virtue of the restriction imposed by the
exclusion priﬁciple for the‘impurity level.r A trivial example of ﬁhis

is provided whén :
Ho = Z;chndc

HI = U ndfndl

a direct evaluation of the right' hand side of (3.16) leads to the series

(Zd - ZO)‘ = (—B)<<ndfnaf% [ﬁess=b§ e-BS(U/e + U2/252 + .......Un/nen % }

Z
e}
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wnich is easily evaluated and gives

7.~ 2 ~ B2 +0) _ -B(2e))

Z - Z
o] o]

wnich is the correct result, The Free energy is then obtained from °

(3.1) , if this result were to be obtained from the formula

o0 ' -
- ~be . .
F=F_  + %Resszo e <hI< 1_H >o,c (3.17)
€ 3 -g
P=1 |
-where ¢ means that only the connected graphs are to beéincluded,

it is difficult to see how this could ever be achieved,

¢) The limit U—»00

The 1imit U—po0leads to a great reduction in the number
of graphs that have to be kept in each order. The state ldfd;?»completely
disappéars in~this iimit and only the graphs refering to al,az,q3
need be considered., Furthermore, among these graphs only those giVe‘-
non vanishing contributions, where no two creation or annih{lation
operators of a d-state appear in consecutive bubbles anywhere in the

graph.

&) Elimination of the non overlapping. graphs

In the evaluation of Zp(s}/s , where Zp(s) is given
by (3.11) , terms are encountered which lead to multiple polés at £ = 0,
It was pointed out that in the usual representation these terms
correspond to graphs which are non'overlapping'iﬁ time. In this
section we shall devise a method of taking all these terms into account
such that in the final anaiysis only the overlapping graphs need be

evaluated, i.e contrbutions (of order 1) giving rise to simple poles
1 5 = .



- T

at € = 0 , and for which the rssult may be written down immediately

using formula (3,1£). This will then lead to a general formula for Z/Z2 .
5 ~ (=)

o]
. !
Consider for instance the contribution to order vt
corresponding to oy from the following diagran
wnich can be written
b T, :
k302 x§l~0' VL" ndﬂ _:_L_ +
(e + Eklo - edc)(s + gy 02- Edca) 2
ﬁl’ﬁs,@' . 3
T (1 - £ ) Nos
V1+ Tkyo” 1»:30 i
e(e + skl- Edo)(sklo- € o " e)
Ei’&s’f 3
the additional 1/¢ factor in the first term comes about because <ck'c; >
172

:(l-i‘k)bkk

and this term may be represented as
1 172 '

X
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i.e as two non overlapping grazns. The second term of the above
expression has a single pole at e€=0 when }:lzk3 and therefore its

contribution to Z/Zo is just

£ (L -1

. k.
(-p)vh klc 30
€. o~ €4 )2(sk - &y
ﬁ_-pﬁ;’e’ k0 o’ 19 0

When kisz’ there is a double pole at €=0 ana the contribution must

ve evaluated according to (3.16)., However there is an essential
difference between the 1at£er contribution and the first term of the
mexpression which also exhibits a double pole at e=0, In the last case
it afises as a result of expanding the thermodynamic_average, and

essentlally because of momentum conservation in Ho’ it gives rise

to a contribution to Z(P,ﬁ)/Zo of order

XL* Z — 0(1)

2
N kpky
where V/VN = V ., Whereas in the former case it occurs only when klzk3

and gives a contribution of order

4 |
v i > O(1/N)
"22_ :

N 4
Thus in the limit N— 20 (or infinite volume) this contribution vanishes.

(52)

Following Bloch s we shall call these vanishing'eXCitation energies
'accidentally' vanishing, as opposed to the other case. In gencral
the accidentally vanishing excitation energies lead to contributions.
of 0(1/N) and less to Z and F. furthermore it is easy to see that the
overlapping graphs giye rise to simple poles at s:O'to 0(1) and dbuble

and higher order poles to O(1/N) and less. In the subsequent discussion

we shall assume that in the case of interest,namely p====ay vhen the
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number of particles is very large , these possibilities give rise to-
ne*llgaaule contributions to Z and therefore need not be considered.
we shall come back to this point in Chapter IV,

Now let us consider in general 22p ;(e) vhich is given by
. Y

Zop,a (e) = < 1. Hr o eeeeeenn B D> (3.18)
e~ 8§
the total number of ways 2p (e) splits up into 2,3,ee0es.D
’

non overlanplng parts (or parts disconnected in time) as a result of
Wick's theorem applied to the band states, is simply enumerated. For

instance in order Vbr there is only one way e.g giving

<< HI>>0, - <<H -E—;——:-];-g——H I))cz_

. L \
hence in V we write

R T T g T, >

E =

* <<H g I>>a. <<HI ———:L—gr-—HI»a-

where the double bracket simply means that the possibility of a
vanishing excitation energy to 0(1) in the expansion of this term
has been projected out e.g in view of the previous discussion we
could write K D = L >g#b,o<

In general it is easy to see that in the expansion of
(3.16) in terms of overlapping contributions , the coefficient of
the term constituted by the product of

S parts of type Xl'

52 sesserastr s X2



5 parts of type X

3

S esscssncrsasscsersX .

n

is just the coefficient of (xl)sl (x2)52 .......(xm)sm in the

. . q = ; .
expansion of (xl Ky b reesaelX  t ees)* where gq = (s:L + s, +.....sm),

and is equal to

q!l
s, 1! sZ! cesecesB

where = Ky 1 HI>>OL
e-§
per 1 H. 1 H 1 HY
I e - @ I PR 6 I I)CL

® 0 ® 06 00D 00O PO POLLEE e

in-1

L= <<HI<_€_T;_5__§) >,

"
1

\Y]
1

"
|

The complete expansion for Z/Zo may now be written

. ’n -
) s -1
Z -2 2. -fe »
o = (-p) 1 Res__ {e @H:[( 1 H§>>a n, (3.19)
T, [ ¢ Tn E I
. = P=i

where the factor 1/n comes about as a result of the pole of order n

at e=o, If we now define

oo, P-1

g,(e) = 2<<HI< 1 ~_§9>>a (3.20)
. £ ~ g ‘

Fsi . -

then ga(s) corresponds to the sum of all possible overlapping graphs

corresponding to a and the above result is not difficult to see,

it merely says that the overlapping graphs may be repeated ir{ all possible

ways to generate all the graphs of Z{u,B)s If the double bracket is

now taken to mean < >c(,g¢0, it must be emphasized that the above

formula does not include the possibilities g =0 ’accidentally’ jon the



vasls of the argument that they vanish in the limit of an infinite
volume. Thus by definition ga(s) has no poles at e=o ahd the residue
in the formula (3.15) may be evaluated according to the standard

formula for a pole of order n due to l/en and we have

T'n_i [}fﬁe ga(s) f] n, (3.21)"
' £=0

o] - aeg

S
ST
S
(o]
"
~~
LR
>
r*gr\v/1
5 [
fo N

The result (3.21) may be viewed as a power series in [, the implication

of which can be appreciated by considering the complete coefficient

of (-p) in (3.21). If we call this coefficient Ea n, then

AEa is given by

. w ' . : .
n
AL = Z%' d - E;a(s)]‘ (3.22)
de
Ny o €=o A /

(3.22) may in fact be identified as the iterative solution of the
self-consistency equatioh
oo
an, Z<H ( _ ) >>a (3.23)
P=1 :
about (SEQ =0, This is easy to check by iteration, and furthermore
it can also be checked that the complete series (3,21) leads to the

formﬁla.

Z_z(,,J*-zﬁ) = E exp(-BAE ) 0 ‘ (3.24)
o vl .

vhere Z&E is given by (3.23) perturcationally.
The above formulae are 1nterest1ng and not tctally unexpected
because the zero temperature limit of LSEOL can for exauple be identified

to be the ground state energy shift expansion as givenr by Brillouin-
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wigner perturvation theory. This point is investigated furtzer on.
The proof of (3.23) and (3.24) by series summation is
very tedious, to obtain these results it is easier to proceed from

another direction. Going back to (3.21) and rewriting it as

Z-Zlo = (:E)j -{‘38 gacs) + ga(s) + oesese + g;l(s) dE na (3.25)
Z 2ni - :
o : 2e : n-1

o (o ne

o

Ayl

wnere the contour C now avoids all the poles of ga(e) and therefore

~also of gi(s) ...etc, and where none of the poles of ga(s) is by

definition at e=o. Equation (3.25) can also be written

-l\J’ ( (e) = g, (s)) (g () - 8, (s)g (e)\ - +
2
€2 e

3(5) - &, (E)g (e)\ + eeeun + ga(s) - ga(s)ga (e) deln, (3.26)

4 _ 2 n+l n
€ £ € €

where g, (8) [éa(sﬂ and the series in the square bracket in (3.26) is
de

simply (-l) d [?a(si], where Ga(s) is the series in the first expression
de

(3.25), the factor (-p) outside having disappeared. The identity of (3.25)

and (3.26) can be checked by evaluating the residue of the pole at e=o

, .
for the n th term in each case e.g from (3.25) we have

(=) 4 gz(S) e Pe

and from (3.26) we obtain

-

-Be n=-1 / A n ‘ n-1 % -pE
1 4 e lng  T(elg (g) + (-Bg (e)))- 1 d (* (e)g_(ele
n! | n-l ( * * L oDt a1 \© *

de de

a——

(32.27) €ad
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clearly the first and last term in (3.,27) cancel and we are back to the

' /
previous expression. By definition ga(a) has no poles inside and on C
and from the point of view of perturbation theory we can sum the

expression in (3.26) as a geometric series which yields

- n, ePe ga(e) - gé(e) de (3.28)
Zq 2ni s . lele - ga(e)) £ - gafej
. C X

the pole at e=o in (3.28) contributes (-1) :Ena which is just equal
oK
to (-1). The pole at ¢ = ga(e) which we assume with reference to

the perturbation expansion (3,21) to be a simple pole and unique,

contributes
E n_ = exp (-Bec’a)
P
where €, o must be determined from
 J

o bt
Coq = z<<ﬁl<_ 1 ; i) D, (3.29) -
P=1 | C,a

hence we have
= E n, exp'(-Bec’a)
X

clearly €eg = ZSEa and we obtain the result for Z, put forward in
]

(3.24), It would appear that the above method leads to a more general

ST

result since it allows in principle more than one solution of the
self-consistency equation € = ga(e) to occur and thus to contribute

to Z. C;éarly the series representation of (3.28) can only give the
iterative, or perturbational solution to this equation and is no longer
valid if (3.29) has more than one solution. However this is not an
unusual situation in perturba@ion theory and it will be seen that in this
problem (Chapter IV), the correct viewpoint is obtained by looking

at (3.,29) or (3.23) as a self-consistency relation the correct solution



of which at T=0 is not neéessarily the perturbational one , because
of the Xondo effect when a =§a2,a5§.

From (3.1) and (3.24) it follows that a knowledge of the
AEa,s is sufficient to determine the Free energy, in practice however
A, is calculatéd approximateiy and }t is also desirable to have
a direct perturbation expansicn for F in powers of the mixing interaction
so that the higher order terms can be analyzed in each order of the .

‘expansion for F,

e) FPerturbation theory for F

To obtain the perturbation expansion of F, it is best to

first go back to the time dependent formula for %, and write for

log(Z/Zo) the well known expanSion(BB)
log (2/2 ) = Z(-l)nfd'tl cerensdr M (7 covennt ) - (3.30)
f= n! o
where Ml =<HI(T]_)>°

My = <oy G H (r)H () %y - Lf (e PR<fE 1 () %

My = Lo e (e)E (1) % - <oy (eh <fE (e )E (D -

Lrdip (el <TfE (eE (eEy - K TE () <T.{HI(Tl)ﬁI(T2)§>o
+ 2 <t (e fy <TEH (1,0 <T§HI(13)§>°

2

's or time ordered

T is the usual time ordering operator and the Mh
semi-invariants are generated in the same way as the cumulants of
Chapter II (2.32). The transformation of the Mn’s into a time

independent form is easily accomplished using the relation



P : _
{-1)nfcir dra....drn<T§EEI(11)HI(12) ........ngrn}{% =
(o)

(-1)" d7. T ee...dT < HI(TI)HI(TZ) ......HI’(Tn)> =
P)‘FI)‘E&.---T',,_)O

('L) ’gda E""l‘;e
2ri € .

and where each product in the expansion of the semi-invariants nay

H 1 E n—l-
<I<~——-——-———s_g 1) 7o

8-

. be transformed sergrately. It is convenient to call

a =1
o

o]
o
It

11 (-p/2mi) (de "¢ LB Vo
€
[

- o S - =Pe '
a, = 2! (-3/2ni) lge & <HI 1 H'[>O

2 — ]
P oy
oy (n o -Be 4. e
a, = n! ( B/an)ﬁg e <h1< 1 Hl) >o
£ £ - g
c .
[ =]
If (3.30) is written as A‘n then it follows easily that the
"
An’s are given by - M=o
A =1
o
Al = 'al
A_ = ga. = a2
2 2 1
- _ 3
A3 = aB Baaal + Zal. «eeetc

The An’s are related to the an’s in a similar way as the semi-invariants
are related to the time ordered averages e.g -the above relations
can be ovtained directly by assigning to tlie a’s a fictitious 'time’

(1)3(2) (n)

seevsea D> in terms  of

}-d

abel and expanding the quantities <a
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the A_'s, for exzunle to third crder we can write a; = A&y R
1) (27 : 2 (1) {2 5) > ,
a, = < ( )Q( />o Ay + Ay , a,=<La‘"’a’ )a(9'>o= by + A7 42
~ kR

-

; for nigher orders. The advaniage of writing things
in tzis way is that one can obtain the expansion for log(Z/Zo) directly
in terms of the time inderendent gquantities a e
To obtain a graphical représentation for ¥, from which
the contributions in each order can be evaluated, it is best to

.consider the relation (3.24)

= Zna exp(=-B AEa)

o <

(S IS

and write it as a power series in B in the following way

)n

L

(SIS

= Zna 1 - B AEG. + (—B)a(AEa)a + eeeese *+ (-B AEG.
° X 21 n!

where the implicit dependence of AE& and n, on B is -not considered,

AEa is given by the self-consistency relation (3.23) the expansioﬁ

of which in powers of the mixing interaction can be represented by the

series
o
Star
aa,n n
n=1 n=1
The a;,n simply represent the complete contribution to order n

of the perturbational solution of (3.23) and may be graphed in the same
way as the cé%ributions to Z i.e in terms of the ’time ordered’bubble
graphs, except that each graph now in addition has a label ¢! to

distinguish it from the previous ones. The contribution corresponding

to each graph is evaluated in the same way as for Z except that the

formula (3.19) now becomes

=

V]
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. o e
¢ _;._ Ress=oz< _‘_‘I<€ _lg s >a 5:_ i (3.31)

wnere C means thét only those contributions are to be includéd which
are explicifly independent of p. The complete expansion for F can now

be given and consists of the sum of all possible single (c,a) labelled

- graphs together with all possible combinations of disjoint (c,a)vlabelled
graphs Jjoined together by dashed lines in a simply conhected,way, where
simply cpnﬁected means that th; complete graphs splits into two if cut

at a dashed 1line.

e.g

c,d

Fig.h45

is a single (c,ax) labelled graph of order v®  and

€,y ¥e-uaco-X c,dy

Fig.L46

is a dashed line connected-graph to order-Vq. In addition we have the
following rules: to a single graph labelled (¢,a) there is a factor

Ml(a) (-p)° . To a set of graphs labelled (c,a.), (c,a, ) , vevaule,a, )
1 12 1m

joined together by (m-l) dashed lines there corresponds a linking

factor M (&, ,&. yeessssya. ) and a factor (-B)m-l
m iy i, i . -

as before refer to the & possible impurity states (al,az,aB,ag). To

. The als
i

evaluate the Mq(ai 1O g eeeeeey Ty }, we associate the operators



(1 - n, )(l - ndl) . . to @
n. (1 -n.) to a - -
&4 a} 2 (3.32)
n. (1 - n, to o
al uf) 3
ndfndl to a#
and cxlculate the M _(a. , G.y eseeyc, °) in the same way as the 4,
n i iy i, . n

and where the o are contained in the set of operators (3.32), c.g

the first few } are calculatzsd as follows

Nl(al) = <.’.’.i>° = na.
_ i
'<aiaj>b = Aa(ai,aj) + Ml(ai)hl(aj)
<aiajak>o ' = X-‘;_B(ai,aj,ak) + Ma(ai,aj)hl(ak) + M2(ai’ak)hl(aj)~
ba(ak,aj)nl(ai) + hl(ai)nl(aj>“l(ak)
and Loa.a.a o_>» = Tr e_ﬁHd{a a .o a} < . :
157k *trt s T isj kTt tTstp where ot = Wl 0p
Tr e-BHd :

To obtain the.expansion for the Mn it ié necessary to give the a separate
labels even though some (or all) are necessarily identical. The order
of the operators “ai" in the linking factors is unimportant because
they commute with each other,
The correct counting‘of the dashed line connected graphs
is obtained by drawing them in a linear form, in which case non identical

graphs are immediately identified , e.g

oq“ll'} » C‘X'III'
1551 - ' C*i

_—— - ———— -
@ ——— e ———— - - - e

Fig.h7

are non identical and must both be included to obtain F, even though
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they both give the same contribution.
it is easy to see that the complete set of graphs consisting
of : single, one dashed line , itwo dashed line 4 ....., connected

graphs may be grouped together to give

4 | 4
F-F_ = g n, A% + (-B/21) E (B YAE ) Hy (e e) '
- 1 1 - 1 J
=1 A “)J:l .
212 E . o _
+ (;s;') (Ai‘aai)(AEaj)(Aﬁak) Mj(ai’aj’ak)- +
“;j?ﬁ:i ‘
eesctc | (3433)

This series can be identified to be the expansion in powers of 7 of

. ‘{_ '
—-i 1 1

=

and where n is put equal to 1 at the end of the calcﬁlation. The na.;op
refer to the operators as defined by (3.32) , and the thermodynamic *
‘average is tgken over Hj, Clearly (3.34) is identical to (3.1) with
Z given by (3.2%) when n is put.equal to 1.

The equivalenée of (3.33) with the expansion in powers of
n of (3.34) follows by comparison with a gemeral result given by
Brout(sj) for qﬁantities of the form (3.34%), it can also be obtained
from (2.32) which gives the general dgfining relation for “n in the
limit when all the ’times ' go to zero and when the Aa. are identified
as the . ,0p® When (F -Fo) is written as in (3.33), ;t is.obvious
thgt any ;raphical representation of LkEa in powers of the interaction
wvould be suitable to obtain a representation for F.- The representation-

we used for ZlEa , i.e the (ec,a) labelled graphs, is not particularly

elegant, it does however seem to be the most convenient when U is finite,
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We shall now see that in the limit U-+°°, a representation ray be uéed
for ZSLa , from which the contributions can be evaluated directly

and one does not have to go through the procedure as for .the bubble
graphs. One may note that in the expansion (3.33) of (F - Fo), all
explicit dependence on B has been grouped together in a way which

is very convenient when the limit T~»O is to be taken; this is carried

out in Chapter IV.

Graphs for AEa in the limit U—>-0,

It has already veen mentioned that A&Ea is given by the
same kind of self-consistency relation as the ground state energy

shift from Brillduin—Wigner perturbation theory, e.g we recall that

o0

-1
DE = EZ__;@HI(E -I_S—-;HI) D

The. Rayleigh-Schrodinger expansion of ZSEa will generate the same terms

as occur in the ground state energy expansion, except that the summations

are now extended over all the band states with weighting factors fk and

(l-fk) where f = _ 1 : and 1 is the chemical potential
eﬁ(sk-p)+ 1

given by (3.3) , whereas in the ground state energy expansion

fk ='l sk<(€F
fk = 0 €k> EF
vhere Ep is the Fermi energy determined by the number of particles

in the system, which is fixed. Thus the limit T—>»0 of AZ_ , except

3

for the replacement p-—)eF N cofresponds to the ground state energy
shift (E - E ) where B is the unperturbed ground state
Ea0 0,0 - 0,0

energy associated with the wave function l(po oc> and
. ) ]

= o {62
LPo,a ‘ ;>’F



nperturbed Fermi srhere.

o
o

(]

o

(

Clearly in this linmit, the double bracket in (3.22) will play the
same rcle as the projection operator P vhere P is given by
P21 - 5,0 Kooyl

in the Z.w perturbation formula. The difference between p and €p

is related to the fact that to obtain‘(B.ZB) we have been working
with an unrestricted number of particles, whereas in the ground state
energy formula , the number of particles is fixed, This quegtion
together with the limit T—>C of F is dealt with in Chapter IV and

. has some interesting conseéuences. For the present purpose hcwever,
ve merely -want to show that a graphical répresentation forAEg’a

can also be used for AEG(T) evcept that

E ” fx

F\’(EF
E —_— (1 - fk)
| E>Ef
- It is also well known that when Wick?s theorem applies,
the B.W formula reduces to the Goldstone expansion for the ground state

eﬁergy (when the system is normal), given by

p-1

E, - Eo» = Zi<%! Hy (—_é'-l{:t) I(90> :

P

where only the connected graphs in the usual representation are now
ircluded,
For the Anderson model in the limit U—>00, we may use

Wick?s theorem with the effective interaction

-~

I + + -
ap=v E (- ng5) [cdocko * Ckocdo] : (3.35)

k,6”



for the 3 possible unperturbed ground states: Iai} ¢p |a2>-wF ,la5;>@F.
The interaction (3.35) elimirates all contributions which go to zero

in the limit U—>00, and the average is taken over Ho which now simply

H, = E €acBde ¥ Eskonko ' (34326)

6 R,6

is

Thus in the limit U—3» o0 , the CBEa may be calculated perturbationally

0o -1
2 <) e
P=1

where HI is given by (3.35) and the sum is over the connected graphs only,

from the expansion

() X%f ‘ - ® (R

eu-.d-l, A Cdat et

)( - e_— - -

k4 | Koo oo

The excitation energies are evaluated in the usual way. To a ko-line

~ going up there corresponds a factor (l-fko) , going down a factor fko

~where fk = - 1 « To a db-line 'going up there corresponds
b(sk u) o+ 1

o . a
a factor (1 - f ) ’ go;ng down a factor fg . Where £ _-<:alndolq>.

It must be pointed out however, that Wick's theorem

together with the effective interaction (3.35) can only be used when

the average is taken over a specified d-state as in the above formulation.

The thermodynamic %Wick'’s theorem cannot be used because with HO given



ty (3.3£), there is in the U infinity limit always an additional

dfnﬁ;> =0 *
This in the limit (—>00 ,(F ~ FO) is given by the sum

condititon <<n

of connected and disconnected graphs of the type generated by the

Goldstone expansion , and where the disconnected graphs are joined

.togetner by dashed linss with rules which follow immediately from

the expansion of F as given by (3.3%). Once the ZSEQ‘ are known
in every ;rder, the contributions to (F — FO) can ve written down

almost immediately. The linking factors Hn(ai 10 g ey ) are

calculated as before, for exdmple ' ’

MZ(OLZL’O!'I) = <nc-;1> o <noz.l> <nal>

nOO(:L - nOO)

Mz(al,aa) = 0 - &n &2

The technique developed in this Chapter has many possibilities
in relation to the impurity problem., 1In the next Chapter, Qe present
some of the results which may bé obtained wifh this method , perturbatio -
| nally and non perturbationally. Particular attention is paid to the
static‘susceptibility and its behaviour in the limit Tf%PO. We also
‘make a brief analysis of the error associated with the neglect of the

C(1/N) and smaller contributions.



CHAFTER IV

RESCLTS AND DISCUSSIOH

a) Some perturbation theory results for F and the static suscevtibility

The method developed in Chapter III will be used here

to obtain some perturbational results fof the Free energy and the

static susceptibility.

The contributions to order V2 to F come from

A&, e £, 6
C
GJ quJ Ea}SJ
PLE W L
c
Ez’ . ﬁz,f d,e’

Fi8-49

the graphs

The result may be written down immediately and is :

2
Vv .{:fkd n00 + fkc nd-o + . (1 - fko) ndd
*ko~ %do €o " €ag = U €40 ~ fxg TV
k,6”
- ) 4,
+ (1 -1 ) n,, _ o (%.1)
Edo - Eko .
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'In order Vh , the 4 graphs :

Fig.50

(L -f J)n

do k.o’ “k,-o  d

(e, =~ ¢ e, - €, =1)
ac klc k2 -0 do




-101- .

v £ oM = £ ) ng.
1 2
(e - € + e, =-¢g, J)e - € - )2
kl—o kao do d kl-c d-g
&I’Eg!e‘ e

These 4 terms can be grcuped tozether to give
vt £ (1 -1f_ )n 2

ka- €0 do 1 ) 1

(e 6~ k.0 * 4o ~ Fd-g’ a4 T fk. et U -5y
ﬁi,ﬁa,g/ 2 1 1 : 2
(B,2)
‘The order V2 result together with the above contributions in V
correspond to the result obtained by Scalapino(Bg) by evaluating the
time integrals directly,
The susceptibility is obtained by including in the zero
order Hamiltonian a term corresponding to an external magnetic field
h so that
Ho Ho T o¥p h Sz,tot
. &
where By is the Bohr magneton and SZ tot represents the =z component
. .

of the total Spin operator. This term can be absorbed into'Ho by
redefining

pp h

1+

—> &

“kpay
“apy

The static susceptibility X (T) 1is related to to the Free energy by

—r &4 vg B

1+

: 2
X (= - 2L (4.3)

dh h=o

L

and the zero order susceptibility is calculated from Fo’ where

(-8) F = log <g + e—Bgd + e—sgd 4 e—s(2€d+Ui> log Z; (4. 4)



~102-

(the label B refers to the Eand states).

The region of interest physically, is €d<LO - and 25d+U>'0
(211 the energies are measured relative to the Fermi level 1), this
corresponds to the situation where the impurity.is singly occupied by
either an up or dewn spin at T=0, The low temperature susceptibility

the unperturbed system can be written

for
2.0
e} 6 F 2
X (D) = - —= = X +  pg (4.5)
&n° P =
' ni=o ) k¥
:X: is a temperature independent contrivution from the conduction

electrons,and ug/kT represents the Curie law for a free spin.

From (4.1), Scalapino evaluated the dominant contribution

to the susceptibility and found in this order

sx(2) - p% 5(0) J (4.6)
i
whe¥e J 1is an antiferromagnetic s-d coupling in agreement with (1.38)
and given by (1.39) in the region k = glnka ; and K(0) is the density
of states aé the fermi level . Scalapino evaluated the contribution
due to (4,2) in the lo% temperature regicn and showed that it produces
the logarithmic temperéture dependence charécteristic of the Kondo effect:

ox (") _ pg N°(0) J° log(xT/W) - (4.7)
T

k
where YW is the band width'gnd the density of states is taken to be
constant., It is instructive to tsee how this logarithmic term arises.

If in (4.2) we fut

1 B A (¥.8)



-1C2=

] 1 -
then e XM (my = (52/m) —82, kom0 " "Rqo" Tdo
: &h® 5. - g, .
e 2 A
vk | heo
The (1/T) term comes from %b (ndf!* .= (I ¥y (in low T),
- h=o 2kT
and the log(kT/%) term from -
£ (1-1, ) ' :
4 Sayra it} (4.9)
b6h © € - €
k k
&1’57' 2 - l h:o
fko expanded about h=0 gives
fkf’L= fk (I) '}J.Bhfk(l -fk) B +Vo--ooo
and  lim o fk(l - fk) B = 5(8k)

So the dominant, or most divergent contribution in T—0 from (4.9)

becomes . 00
2(;) vp Y Ik (Gany) | M) de  (4.10)
E‘ Ek ‘wﬁ

for a constant density of states over a band of width (i)w about the

Fermi level, (4.10) becomes

(;)2pB N(0) log(kT/W) + terms of lower order (5)

The significance of (4.2) can be seen from the U—> 90 graphical’

representation for .AEE’ given in Chapter II1.

K : o
\\\d,e' ‘

 X— -
ﬁi’@J £E4V§CFGJ (iﬂ?

- e -

Fig.51

d,e

s
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The above graph gives the U—»o0© limit of (4;2) and corresponds to

a process in which the spin of the d-electron on the impurity is flipped
in the intermediate state.

. The remaining contributions to F in Vq may be easily calculate
in this technique. Since however one is primarily interested in the

large U region, it is just as instruc¢tive to look at the U infinity limit.

In this limit the remaining c¢ labelled graphs correspond to

tdo>

‘o) Fig.52

() giving
e (1 - fked)(fkl) n_ . )
E,,ﬁl,s“(skl - sd)a(skl - o)
' (41)V4 fk30 fklo "0
‘ 2
EI,£3,64(sk3 - g4) (skl - €y)
aﬁd (b) giving .
Vk | (1 - fkla)fkao B4g .
,kés'(sd - skf(ek2 - ekl)
(-l)VI+ (1 - fksc)(l - fkld). Ny,
(eq =€, )3(5d - €, )

51’%06' 3 1
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together with the set .of dasred line connected graphs :

D | (a1)

Ei? Qpé die'
—— e -—— <
Epe' g
196' d’el.

-10053

o]}

L j
Ch2) v fkc
A2 —
o —
C 2’) €1 €4

; kse’
—— e . - .c i

FiQ.SA

1ig.53 contributes | Ma(al,dl) (-g/21) (a;ra)2 = (;5/2!)n00(1 -n_) x

2.
. . L ' 1 - f
fig. b4 gives vi(-p/2!) n, (1 - nd?) k4
: t _/_\: €4 = &
g t
similarly for (a3)2 """""""" (a3)2 which gives .
b, ' 1~ f
Vi(-p/21) n, (1 -n, ) k4
dy 3 €4~ Fp .
R \
fd?,)
(d3)
C e = - —— [+



- I ; 1 - f
fig. § 5-7(-';‘5/21)'»/4( -L. n. ) t wh _ fid
"

f "*4' Ed - El{+ :\A - 8}:‘
similarly for (a3)2 ““““““““““ (012)2
() Lotg)
Vol ¥ AR W

A z 1 - f E f,
fig. 56 gives (-,"s/az)vl+ (—noond ) Tt e
‘ + €4 = 614' €, = €4

k R
similarly for | (a3)2 ““““““““““ (ocl)2
COFE (o),
CO (a3)2 -

An enalysis of the graphs in flgEZ shows that the dominant contribution

in order Vl} is indeed 'due to (4.2)A, and that they give rise to contributions
of 0(1/T) and less to X{T); a similar result is obtained for the dashed
line connected graphs in this order. Thus»_to order Vl} the result obtained
for X (T) including only the dominant terms in every order in the region

sd<0 and 25d+u>0 .and for lovw temperatures 1s given by

XA(T) = Xp + }1123 [1 + , N(O)T «+ NZ(O)JZ log(kT/W)] (4,11)
(39)

in agreement with the work of 3calapino , who further suggested

that in higher orders the dominant contribution to DX (I') can probably
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be written as a geometric series in powers of  Ii(0)J log(xT/%) ,
in which case the result for X {T) including only the dominant term

in every order would be

Xy = X . T B §(0)J (4,12)
1 - ii(0)Jdlog(kT/\)

This result would imply that for J negative the perturbation treatment
"breaks down at temperatures below TK s the characteristic or Kondo
temperature given by (1.36), a conclusion very much expected on thé basis
_ of the Sch;ieffer—Wolff canonical transformation.

Iﬁ this section, we shall show that the dominant contribution
in each ordgr of perturbation theory can indeedbe represented in_the
form (4,12), and that there will also be lower order'logarithﬁic terms
in order V@ n2}6 ’ ;n a similar way to the s-d model. TFor simplicity
we shall be wofking in the U infinity limit which is sufficiently
generél for this purpose.

I£ turns out that in perturbation theory, the dominant
contributions to X (T) in the region of interest, come from the single

¢ labelled graphs in other words those contained in

Zna AL | | (4.13)

=24

oF

o

and that the dashed line connected graphs make comparatively ’unimportant’
contributions, except those connected by a single line. This is shown
in section (b). Thus to order vb and in U—s» 0o , the dominant effects
to 9((T) can be represented by the graph in fig.(8) which actually gives
! i i B : .
the complete contribution to [nd*‘ AL* + ndJ’ A'J

For dl = 0, = =0 4 the contribution is ( %f%- 57)
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Fig.57 -
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1)
i n. (1 - £ - )f, f,
do :clcv KZ—G :c3 fo] )
3
) (ek o~ %k ot %40 -ed-a)(gk -0 v ot Cdog T %Gao

1'§z'f!315" 2 1 3 1
St Q-5 5 2)
ki 0 2 T .3
2
(€50 k'3-c_ ekla+ €eo™ e’ (Eact eks-c- skla" Ekz-a)
1)52)‘3;" : : .
For oy =0 o, = =0 and Oy = =0 ., 0, =20, the result

is identical and the total contribution can be written

| - (3)
ng, (1 -fkld)(fk4_d)(fk20)
/ (e - )3(5: - & (e - € + € -e. )
61’54;‘754,6’(10 kla kaa kla . kq-a | kla do d-o
z 4ol = f Q@ -1 Of ' (4)
3
(eqe = & )(Eda - eksa) (4 = amg * Ekq—a - €k30)
ﬁyﬁy&q,s' _ . )
(-1, Q- f If ,
( l)V 1\10 ksd kl_*'-ﬂ (_5) .
2
(eaq (Eda,' Eksc) (Ekq-a - €k30 * E4g = f4og)

ﬁj’E;:EJpG'

ng
(L ~f )(1-£ Of (6
( l)V klU "‘30 1\.4—0 |
2
k )(8 - k50) .(Eka—c - 51(30 * 840 T ed-c)
E;:Eyiﬁ, .

The remaining contributions come from g, = 0, = 0, this corresponds

to the situation where there is no spin flip in the intermediate states

and no logarithnmic effecté—to X(7) appear for such processes in any
order. The contribution when gy = 02 =g in order V6 is given in
the appendix (3 ).

It is not difficult to see that the dominant [log(k"‘/ )} l
contribution to')(( ) \1111 come from the first and .third term in - the
above results,

For o ::T , the first term can be rewritten:
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(3/2)° ’,-‘d dey de, deg N(el)N(ez)Iv‘(ez)(l - £(eqy ))f(szl’)if(z}l,

(ca - 51)(53 - 51)

The .[}og(kﬁ/ﬁi] term comes from

%h ‘/:[fdcl de, de3 N(el)l‘l(cz)N(Ej) (-f(cl’)f(e )£ (e J,)
(ea - el)(s - €.)

3 1 h=0

which leads to

2
282 (0) My [1og(kT/w_)—_I

combining with Vg J3 and multiplying by 2 for both spin directions,
kT 8

we can write the dominant contribution to 7C(T) due to this term

pB N2(0) 37 [log(kT/w)]
2kT

A similar analysis of (3) leads to the same result as above , thus

to this order the dominant contribution to 9((T) becomes

2

2
Y5 N2(0) J° log(k’l’/w)]
KT

in agreement with the previous discussion.

Term (2) may be written

(J?/S) g J[[I’ de, de N(E )N(s N(e., )(} - f(sls))<} f(s2 )f(“
{e, - € )2
teg - g7
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term would appear to contain divergent contributions to 7(CT),
in the sense that the resulting integrals do not exist, however it
rust be comdbined (6) which shows a simialr beraviour. Vhen this is

cone the result -can be rewritten:

n, f (1 -f- )1~f¢ ) (-1)
V6 éo “k,-0'" = Tky0 kB-o .
2
(e. -g,_J){(e, =-¢_ Jde,-¢ e, ~¢_ +g =c¢g_ )
ﬁyﬁyﬁyvu kl S k2 € d AB- d Ky L 3
o 4o fk2~o(l - fklo) fk30 fks-o
2, 2 - -
(e, - g_)(e, =€ ) E, - E E. - E
d k k k d k -d k
l’Ef" E’:G' 1 ) 2 1 3 3

The first term gives a 1 log(kT/W) contribution to X (T), the second
T R

term vanishes for zero magnetic field but gives aAsimilar contribution
to X (T), This is an example of a problem which often arises in
perturbation theory, If shows that individual terms or diagrams may
give rise to 'meaningless' contributions, but when groﬁped~together 
in éach order, the fesﬁlt converges, This point has been discussed

(54)

by C. de Dominicis in connection with the‘time independent
technique. A similar argument applies for the present method where

it should be noted that to obtain-formula (3.16), one has implicitly
grouped together ’‘p rotationally equivalent graphs ' and thus individual
contributioﬁs need not be meaningful, and must be grouped together in

each order,

In order V8 for example, there will be individual terms

contributing to F which behave as e{g

where ©(x) does not—>0 as %2 , however it has been be checked in
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this order that when all such ccntribtutions are grouped together, the

. » L
final result converges.

It is not difficult to see that (&) and (5) give rise to

contributions proportional %o 32 ug log(kT/%) 5 writing (4) as
kT
2.2 Ty = Ty o) Ny ey
(J°ve/h) . 3 1
€ - £ "’ £ - E
k I, d kg
gh’k‘s b 2 &1

and considering the -0 > of the first btracket, this simply giveé
5he - — - ,
the order VL+ dominant contribution in the same way as (4.2). The

second bracket can be evaluated and is equal to  K(O) logl £q l ’
Vit+e
thus the final result can be written d

(v23%) N3(o) log

€a ug log(kT/W)
W+sd 7

Similarly for (5) apart from the constant factors multiplying the
temperature dependent part.

The dominant series for j{(T) to order V6 can now be written

A = X, + pg 1+ N(O)J + K2(0)3%log(kT/u) + NB(o)JB[;og(kT/wQI}
' ‘ (4.14%) f

In addition there are lower order effects behaving as 1 log(kT/w) and
T .

1.
T

The graphical revresentation used to obtain the above results
is not convenient.for the purpose of generating the dpminantfterms to
all orders. TFor this we shall now use the connected graphical representa-
tion in the U infinity limit discussed in Chapter IiI. The advantage

of the bubble graphs over the connected graphs with HI given by (3.35)



is that there are far fewer contridutions to be considered in every
order and therefore tnis representation is particularly useful when
tne complefe result in a certain order is required. The reason for
this is again related to the fact that in the conrecied grachical

representation,.Pauli‘s principle'is not necessarily obeyed in each

individual graph even though fdo =0 or 1.

It was shown that in the limit U—> 0 and to order Vh,

the key contribution to F comes from the graph

X

d,6”
X __________

: da-e’

61?60 Ga-.al_ d7el

d,6’

K A

Fig.58

for V6, the 3 graphs

s |
&ye’
&a—e’i' E e om kar®

________ gl g " %
? ' O‘qej
Ei,gr | §d,e , ya,¢ E.,si ‘ i

b
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.
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X(T). The first craph zives (1) andthe other two give équivalent
contributions and lead to (3), The series leading to the dominant
lecgarithmic terms in all orders for X (T), can ﬂow be generated by
repeating in all possible non eguivalent ways the spin flip and direct

self energies

R

R

7 | d" . ’
E )

e

Ke =m ==

in the da-line going down and closing the graph by a single ko-line
going up .
The first term in the series is taken to be the graph of

fig 58 and the result can be written

Iy
' (; - fk U)f

197 K9,
(Edd- €x o)a(ek o.” %k.o" fdao” fdo
oF. = n Rar6 1 272 1 2
D~ dag
' 2 fk o
1 - v 33
e - £ e £ + & £
k <
E&;EJ do klo _363 lld dg dc3
- ks
. Ll' . .
(1 - £ Of v . (4.15)
- klc k20
2
(e £ )°(e, =~ ¢ )
kz do” “ky0 ko kol
. f
1 _ V2 kBG )
£ - € ; g, = €
4o kld » E, nBG klc

The first term in this expression includes graphs in which there are

no enin flip self energies i.c it includes the series : F( 6 1
- . o 9 .
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/. , )
x d)G’ d’sl \d)G’
k& ”
¢ R,e”
;E’GI E)G’ X
£

Eig.6l'

Y

All these contributioné are then exactly cancelled bty ihe second term
in (4,15) which corresponds precisely to the sum of the above series,

On the other hand, these processes do no§ give rise tg logarithnic

terms %n.?((T) when all the appropfiéte terms have been grouped together
in every order., Thus we may neglect the second term in (4#.15) and -

by making the usual approximation

2
—Y— 2 J
€4 k
éFD becomes
., (L - £, f,
_lld 1{10 AZGZ
L €.~ & .
oF, = n, Rz162 ™2 "1 (4,16)
. ag T
1 _ J k?c3
£ - £
& kg 9
writing

j : 7
6’ .
the dominant contribution to X (T) comes from

. /
& 7Y = -2 ( N
&h bh
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and furthermore when ©6 crerates on fy < inside the summation sign,
- O ¢
oh 1l .

then after some algebra the result heccmes

- 22 [
6Xp(T) = ug 38 (0)1og (kT/i) (4.17)
) KT T - ON(C)log(KT/W)
. . 2 . - 2
which together with vy + iXLp + N(O)uuB
kT kT

then gives back (4.12). It is reasonable to expect that for finite

U, J will simply be 2V2 .

U(sd+U)

It would have been possiblie of course to make a more
complete evaluation of X.(T) using the 8F, given by (4.16), however
this series does not include sufficiently many graphs to yield
anything more inceresting than the dominant series., This result was
. expected on the basis of the analogy between the s-d model and the
Andergon mudel and from the first few orders of perturbation theory.
The technique developed here has made it bossible to prove this and
to show that the Konde temperaturse TK is indeed given by (1.36) which
implies that perturbation theory breaks down for temperatures below
Ty o For TZ>TK (4.12) predicts a Curie like behavirur for X(T),
As in the s-d model, the problem becomes focused on how to remove the
divergence at T=TK in the physical parameters.,

It was shown explicitly that in ordef V6 there are logarithmic.

contributions to X (T) of lower order than those summed in (4.,17) and
it is easy to see that this will be so in higher orders as welle. These
contributions are not negligeable in the low temperature region and
a theory capable of going below TK would at least have to include
these terms partially(BB) (e.g as in t1e Nagaoka-Hamann~-Bloomfield theory)

In the framework of a perturbation theory for the static

susceptibility, we have seen that the most divergent terms as T—»0
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ccre from the '35 indepzncent nart of F, namely the right hand side” of

(4.13). In fact we may go further and write

6 X(T) = -ZZ(_@_ ndc)(_;_ ABCQ =pg & (Az-;’ - AED (4.18)
Gh Oh — ©oh _ ;
= h kT n :

=0

and the quantity of interest in perturbation theory is always £ (A:G>
: . bh
h=o

where ALEO(h,T) is expanded in powers of the mixing interaction and

we have taken AE_ = ABEa‘ o * Assuming therefore that the inclusion
273 ‘
~of the lower order logarithmic terms in © GQE% will remove the
) ’ 5h
h=o

K (4,18) would probably still diverge in T—»0

because of the factor i/T « Such a behaviour is not in qualitative

divergence at T =T

agreenent with experiment, neither is it to be expected from general
theoretical consideraﬁions (Cnapter 1). Thus to.obtain a theory for
;{(T) which is at least in qualitative agreement with experimeﬁt, two
difficulties ﬁafe to be overcome: the divefgence at _T = TK and in thg
limit T-—>0. As far askthe divergence at T = TK is concerned, the
guantity of interest is xkEc(h,T) and its derivative with respect to
'h s this can bé calculated either using a direct perturbation expansion
or ’'non perturbationally’ by seting up a self-consistency eguation
using (3.23). In the direct perturbation expansion it is difficult

to renormalize the theory for finite U because bne does not have'a
convenient graphical representation. _Qn.the other hand in U—»o0 ,
one can use the connected graphical reéresentation with HI given by
(3.35) with the help of which it is possible to renormalize in a
self-consistent way those processes which lead to the logarithmic divergencé'

A direct way of seeing that the divergence at T.= TK can

be removed, is to consider ZBEO(h,T) which may be written
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oo . R
AE (h,T) = z Tr e-B(HB+uBhSZ’B' H. 1 ! (4.19)
~ o « “\aE_(h,7) - §

P=1 a

Tr %e_p(HB+thsz,B) i

where P is a projection operator which plays the same role a~ the double
bracket, HB is the Hamilto.ian for the non interacting band‘electrons
Sz B is the =z cemponent of the total spin operator refering to the

?

band states only i.e

and o denotes that the d-average is to be taken in the state.[d)’.

It follows that

. _ - 1 -
6 AE_(n,T) = g 4§Sz,B“I<;EE——:ZThI D (4.20)
— B o _
6h o KT =1 ,
1 - g ga(n)
N = AB
a
AEa(T) is determined from
— »
OE (T) = g, (AE (1))
and we have put <S5 _> - 0, Note that the denominator of (4,20)
. Z,B _
kT h=o0
cannot vanish because we have assumed that in (3.28) 1 has

e - g, (e)
a simple pole at ¢ = ZXEa .
Using (4.20) and (3.23) it is possible in principle to
obtain a sclf-consistent result for §'<?E;j « In particular it
. 6h h=0

can be seen that the excitation energies appearing in contributions



£ E—" -2 ' . |
of the type *k(; K ) ceeacsae which eventually lead to the
€, = €./ A :

logarithmic divergences are row shifted to e.g E fy(l - fpr)

AEG. + Sk - ek',

wnich 1is no longer singular when k, kfapproach the Fermi surface.

However the situation is not quite so simple, for we shall see that

~the perturbation expansion of ASEU is itself not valid in T"’TY y and
N - 1S

the problem has to be considered in greater detail.

v} Analysis of the dashed line connected sraphs

The dashed line conﬁected gréphs to order Vh were enurierated
in section (d) and the dominant contribution to X (T) was found to be
of order 1/T , In general the important contributions to )C(T) will
come from grarhs labelled (aa,aj)vponqected by dashed lines, where
ay refers to ]dfﬁi> and'a3 to ld*q> . There is Pf.coursg a fgrmula
which exactly includes all the dashed line gfaphs.in F, this is given

by (3.34) and can be written

F-F_ = (~kT)log Znaexp(-ﬁ AEa) (ho21)
O‘ .
However this is essentially a ’non perturbational’ result, and it is
instructive to investigate the problem firsﬁ frpm a perturbational
viewéoint and then compare the result with a non perturbational approachs
From the series expansion for F given by (3.33) it follows
thét it is not actually necessary to analyze graphs in each order of V
but for fthe present purposé it is sufficient to subdivide the contributions ;
in terms of the number of dashed lines. The complete contribution to

F consisting of two parts joined by one dashed line can be written

4
(-p/2) E Mz(ai,aj) AE  AEB : (k,22)
Ha=1 . J
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The dominant contribution to X (T) comes from

(~B/2) [Mz(az,az) AEaz AEOLB_ + Mz(aE,aE) AEGB AEGB o+

2}-52(a2,<x3) AEaZ AE“;] =

(-/2) | n; (1 - n, YCAEDZ + n. (1 -n, )AE)Z

2n, AE E b,
nofnd{( E1)(A 4)] . (ke23)

-

Wie note that for zero external magnetic field, (4,23) can be rewritten

(AE ) [an - anﬂ (-p/2)

this expression vanishes in the limit T—> 0 since lim’-’:T—pO n, = 1/2
when s,d.<0 s 25d+U>O .and is zero otherwise. In fact the contribution

to X (T) due to (4.,23) in the limit of low temperatures can be written

_ ) s |
-6 X(T) = %T (%Hégoﬂbff)) - o (4..24)

where o =‘f0r+.
It can be seen that the dominant contributions to X (T)
due to graphs joined together by a singlé dashed line will be of

similar importance to the lower order logarithmic terms coming from

S
(4.13). e.g va[log(k‘.l‘/W)] Jh s<n—1

xr

N

A -detailed analysis of the 2,3,.... dashed line contributions
to X (T) has been carried out, and it has been found that they give
rise to results wvhich vanish in the limit T-—%O0. The reason for this

is not too difficult to see for we recall that by definition, the
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243, ..;n dasnhed line connected graphs have factors of Bz,BB,....Bn
and i1f their centributions to X (T) we.e non vanishing in the limit
as T—>0 , we should expect terms behaving as e.g (1/T2) log(T)
(1/T3} 1og(T) , ...etc. Such terms are ciearly much more important
in T—é-O than the logarithmic enes considered previously and are
not expected to occur in this problem neither have they been found
in s-d model calculations., Hence it can be seen that when >C(T) is
evaluated term by term from the séries (3.33) , then in the limit
I—>»0 we need only consider the first two terms of this series. On
the other hand this does not exclude the possibility that the sum of
of the series gives a qualitatively different result to the term by term
analysis. This in fact can turn out to be the case (see section &),

To conclude briefly the werk of the last section, we can
now state that i X (T) is to be calculated from a perturbation theoory
which is based on including the most important contributioans te X (T)
in the limit T-»C , then the result in the region ed<ﬁ) y 26d+U;>O

must be calculated from

3
X = 'XP + pg - ()2 aAhM + _L(_c; AE;PQ (L.25)
kT : A 6h' h=o

where AEU(h,T) may be evalvated pertufbationally using the various
methods described previously.

Consider nuw the approximation for ‘AEs(h,T) given by (4.16)
and which leads to the dominant logarithmic series for X(T). If to

(4,16) we add .he contribution to order V2 we can then write

bAE (h,T) - (J/Z)]LBN(O) (6= f) (4,26)
®n 1 - N(0)JTLog(kT/W) ‘

h=o

Substituting (4.26) in (4.25), X(T) beconmes



~122~

: 2
Xy =X+ ¥B |1 & "~ No)J +
P Xt 1 < N(0)JLlog(KI M)
2
*3 (J/2)8(0) (4+.27)

RT 1 - N{GC)Jlog(KT/W)

The last term in (4,27) is absent in (4,12) and is clearly of lower
order in the logarithmic divergence when it ié expanded in powers of

Je ‘In fact it corresponds to the dominant contribution of the graphs
connected by a single dashed line. The interésting feature of this term

is the fact that it is actually more divergent than the so called

dominant series when T—»TK. This example clearly shows that in low
temperatures, the lower order logarithmic terms are not nezligeable.

X(T) as given by (4.25) will not be meaningful in T-—»TK
unless AlEa(h,T) is suffieciently well approximated so that the divergence
at T = TK is removed. Assuming that when the lower order logarithric
terms,are‘included (or at least partially) (4.25) is defined in T:QTK
to obtain a qualitatively correct recult for X(T) would require that the

2
lm g o L gt gigghﬂ(h,T) is_finite. The
T kT oh
significance of this condition is investigated further in Ql)wﬁere it
is obtained in a more general context.

In the next two sections we look at the susceptibility
and the Free energy from a 'non perturbatidnal angle ' by using the
equations (3.23) and (4.21) . Particular ~ttention is paid to the
limit T»e-o for F and XA(T). The low temperature limit for X (T)
is particularly important in view of the incapacity of present day
theories %o describe it; It appears that the result obtained for

F in Chapter II1 may be able to throw some light on the question of
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tne exact cancellation of the local moment in the s-d region,

¢) The limit T—»0 for the Free enersy

The perturbation expansion for F is’obtained from (3.33)
and by using the Rayleigh-Schrodinger or iterative expansion of the sgelf-
consistency relation (3.23)for -AEa e« In the limit T—> 0 we have to

distinguish between the 3 regions

(]_-) sd_<0 2e4 + <0
(2) | g4 0 264 + UDO
(3). eq <0 2ey + U>o0

The.limit T—»0 of the [ independent part of F generated by the

¢ labelled single graphs tends to

. o .
lim o o Ena AEa(R.S) = AEg(R.S) in (1)
& o .
= .AEg(R.S) in (2)

I

$ . :

% [AEg(R.S) + 4 g(R.S) in (3)
) $ '
. s . . . . = AR

Clearly in the absence »oi‘ an external magnetic field ALg(R.S) a z(R.S)

The dasiled line connected graphs give contributions that go to zero

in this limit. This is clear from the definition of the linking factors
Mn(ai,a., ....an) . TIn the presence of a magnetic field h to 1lift

the degeneracy i.n regi‘_cv;n (3), each factor of the type Ban'_l must
approach zero as T—> 0, However when h = O ,region (3) causes some
difficulty, in this case all the contributions.of .this type must be
grouped -together before the limit T—0O is taken ané' t‘hen the above
conclusion will follow, An example of this situation is provided

by (4.23). | ; “

(p)

Thus the limit T—>»0 of F can be written

1

1m . B vAEEfE’) s e o+ EO (4,28)
T—0 <



where g, = 284 + U -2 ~in (1)
= 0 ' in (2)
= E; -1 in (3)
and EO = E° - uﬁ wvhere E° is ‘the ground state energy for
B £,B _ g,8 = R

the non interacting band electrons. The label (p) in F(p)

means -’

‘perturbationally’.

(e)

We kXnow on the other hand that if F is the exact Free

"energy of the interacting system

. (e) _ =
11@ P->0 F = Eg - uN ‘ (4.29)

vhere E_ is the exact ground state energy of the syétem. If the system
g :

is normal, or in other words if the adiabatic hypothésis is valid, then
B, = AEé?%.S) v oE, o+ EZ,B
where "o is determined according to the 3 regions cdnsidered,.and
(4.295 is then identical to the ground state energy as determined from
F(p) except for the replacement u—e-gF in 'AEé%;'S) where €p is the
fermi level determined by the number of particles in the system., 1t
turns out that in parfiéular the effect éf the neglected 'accidentally
vanishing excitation energies’ is to shift p—»eg, (section £). Thus
if the system is normal then (4,28) and (4.,29) are consistent when this
allowance is made. On the othér hand when adiabatic theory breaks
down,F(p)no longer leads tq the correct ground state energy.

Let us now consider the limit T—>»0 of F, where F is

given by (4.21)

lim T—30 F = Eg,B + ’AEg + & = uN (4,30) .

where l&EEa) is the T—>0 limit of Z}Ea as given by (3.23). This
8 . 4
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{a)

jo)
[oid
[

result is more general than (4.é€)Ain two ways, firstly A& is the
ground state energy shift as 5ivén by the Brillouin-Vigner formula -
_ (3.?3) and the correct soluition of this eguation, namely that which
gives the least value for the ground state energy shift, is not
necessarily the one obtained by the R.3 expansion of (3.23), when the
adiabatic nypothesis breaks down, Seéondly,,if we write

E;a) =-_Z§Eéa) gLt E;,B
. then if

29, 5% )

the 1limit T—»0 of (4.21) actually gives ,Eé") and not Eé“z’“a) as the
true ground state energy in this region, vhereas from (4.2&) the factor
n, in the limit T—> 0 of n, ’Ea exponentially pushes the result
to Eé_“a"’? even if Eé"'a’“) > 5% in the region (3). Thus (4,21)
indicates that the term by term analysis of the infinite series for F
misses out the possiBility of the sum giving rise to a qualitatively
new result. |

The greéter generality afforded by (4.30) as opposed to
(4,28) can have important consequences for this problem where it is
known that as a result of the Kondo effect, anomalous behaviour occurs
in the expansion of the physical garameters at low temperatures.

No anomaly is expected and none is found for the two functions

E(QQ(T) and E(QQ(T) , furthermore

s (og 10 cmy _ (og yorg _ (a,,ai
lin g, B = %= 530S

Adiabatic theory is valid in region (1) and (2) and the correct solution
of (3.23) is the same as the perturbational or (R.S) solution correspondingz

v

to the unperturbed ground states locq_)(pF and |a1>ch respective]_.y

1-.'hich-may also be written ,d, d‘><;,*F . and lOO) Pp -

The region of interest is (3) vwhere one of the impurity states
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lies helow and the other above the 'Fermi level’. The unperturhed
ground state ld00:>wF is doubly degenerate and in principle aaiabatic
theory is not valid., The temperature dependent function ASEU(T) leads
to the anomalies in fhe susceptibility at low T. The question of
whether lim , _ AB (T) = AE (. oy = AEE(R.S) must be looked at
more carefully. (S.C) stands for 'self-consistent?,
The answer is provided by comparing the perturbation expansion
of A;EG(T) with the expansion of the Free energy in powers of J in the

(33)

s-d model as given by Kondo « Kondo explicitly calculated the fourth
order dominant contribution to the Free energy by using the time
integration method (3.5). He found a contribution behaving as Tlog(kT/W)

and argued that there should be an infinite series which can eventually

be written as

6F _d°< T 3
s [ - s10gCr/u)]

. and df&érges at T = TK' Thus the cxpansion of Fs~d is not wvalid

in T<’I‘K. Kondo's work suggests that when the lower order logarithmic -
terms are included in Fs-d(T) such that the divergence at T = T,

is removed, then the limit T—»0 of Fs-d can no longer be obtaiﬂed
from a T = O expansion of the ground state energy. Nore generally it
can be said that

ARCEE M R

but in fact

(s-d) (s=-d)
1
g < Ee(R.S)
A direct comparison between AsEc(T) in the limit U—»00 and
the Free energy in the s-d model shows that in the s-d region the two

are essentially the same. Certainly we should expect a similar divergence



X

in ZSEO(T) verturbationally at T = T and furthermore the exact
‘

ASEU(T) in the limit T—pC will give the true ground state energy
shift Azg which is less than AE;(R.S-)'

Thus the ground state energy shift in region (3) must be

calculated self-consistently from the B.Y formula

=

. AE2,¢=X<")1‘QIY‘I( 1 | PHI \(pt,L> (4.31)
P=1 45, - &

where

'(pf > ldf°>(pF : ) .
loy 2 140> vp '

and as a result of the Kondo effect, ‘AEE can be thought of as having

a 'non analytic part; which cannot be expanded by perturbation theory.
Adiabatic theory is not valid in (3) and (4.31) has more than one solution
the lowest one of which is ﬁot the perturbational or R,S solption.

. The.perturbgtion expansion for ‘AEO(T) is strictly speaking

not valid in Ts;T however one can imagine to be in T}TK and obtain

K"
a result which can be continued to T Ty,- In principle AEG(T) can

also be evaluated self-consistently from (3.23).

In U—>»©o0, the limit T—»0 of F can be summarized as

follows:

€d> O i.e region (2)

E =1 » The ground state energy is obtained from .
g g1y o
Ea (T) in T—»0 , perturbationally (or non perturbationally). The
1 . .
exact many body ground state wave function has singlet symmetry, this

follows from the adiabtatic assumption.

e; <G 1i.e region (3)
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a) “g T “5(s.0) < “z(R.S)
= =0 .
b) ug(al)<: E (5.0) even in sd<:0

(b) would imply thaif even in sd<:0 the correct ground state energy

is the one obtained by taking IOd>>¢F as the zero order ground state,
The evidencerfor this possibility is discussed in the next section,-

- it must also be noted that this never arises in the s-d model because
there are only two possible unperturbed ground states ramely the pair '
of degenerate.magnetic states If(%i> and l ¢@é> ; This could be an
important difference between the s-d model and the Anderson model even
in the U infinity limit,

- G
ana

iew ignifi E E A
In view of the 51gn1f1c§nce of Lg(al) g(s.c)
we call
E E
g(al) g
0 Y
Pe(5.0) = Eg

where S , D refer to ’Singlet’ and ’Doublet’ respectively.

The limit T—>0 of X(T) in U~—> 00,

It is now possible to investigate some of the consequences
of the last section in relation to the T—50 1limit for the susceptibility..

From (4.1) the susceptibility can also be uritten

X(m) = |-xr %2 1 . KT (6%/6h)° (4o32)
) 6h° 7 N feo -
2 9 (433)
= <3, tot? - {8, 1ot <33
T T
Define A (T) + € + E° = B (T) (L.34)



E (1) = E(T)
1 D
E, & (?) = E- (7)
510
then
r .:0 - m
2= 20 PF) D PRI (4.35)
(-4
and
XA(T) = xAm + X (1) (h436)
where .
27‘,0 L
XA(T) = XB(T) - 8°E] _(h.37)
oh2 h=o0
= XB(T) - XP
Hm sy %A(T) =0
2 2
(6Ea) 1 _ -(a E o—F(E)
Xi(T) = oh / kT 6h
oA
L—B(E ) f=o
of

_ ‘(6E e_B(Ea) -
) | -
- = e ' kT (4.38)
I:Z;ii(Ea)]z'

Equations (4.36) and (4,38) give the susceptibility X (T) calculated

from the Free energy (4.21) vhich is exact except.for the neglect

of contributions of order 1/N and less. We are primarily interested
in the low temperature limit for X (T), in which case ?(A(T) can be
neglecteds In the absence of magnetic ordering and by rptational
invariance of thé Hamiltonian we put.<isz’tot:> = 0 aﬁ T = 0. Hencé
we can neglec% the second tern in ?(i(T) as given by (4.328) and it

is clear that lim.,__ EQ(L) = Eg,a (=ground state energy)
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Conzider the situation U =00, T—30 , £ . <0 , and

in trhe low temperature limit XAT) benaves as

(4.39)

X (1) = 1 -

o
o] '
(]

=)

=0

The divergence in T—»O0 is due to the first term which can be rewritten

2
1 iyt o
kT 7 oh
: ﬁ:: 0

. which is just the result obtained from the perturbation analysis

and given by (4.,25) , based on including the most important contributions
in the limit T30,

If l}B + S;IAE]‘. § is interpreted as the effective
=0

moment’ on the impurity , where ﬁB is the magnetic moment of the
localized spin and ﬁAEO corresponds to the antiparallel spin
Bh

polarization around the impurity, it follows that for the effective moment
to vanish in T—»0

\ 4
\ 7
[LB : %hﬁ% I T T as T—» O (4.40)
: R=o0

¢ is determined from the equations (4.20) and (3.23), from which
o6h cmm »

it is also possible to obtain approximate self-consistent results.

However it is difficult to conceive how (4.40) could ever be satisfied
unless one thinks of Aﬁg(h,’l‘) in terms of two serarate parts (in T—3»0)

e.g

E_(h,7) ~»e (R) + B(h,T) (4.42)

where Ea(h) is a non analytic part describing the region close to the

impurity and which is such that 6sc(h) = Fhg and. B(h,T) refers
' 6h h=o
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to the r=st of the system and is only weakly affected by the impurity

such that  8B(h,T)| —>C as T—»0C. The form given by (4.41)
6h =0
is suggested by the work of {ondo(Sh) on Suhl’s theory (26) and

° n
Yosida( ), and essentially gives the picture of a quasibound state

localized in the region of the impurity.

Now let us consider the situation

E° & B in £, <40

g g

in this case the low temperature behaviour of X (T) is determined by.

1 BES(n,T) - 5°E>(u,T) ' (4,42)
%T. oh h=o on h=o

Es(h,T) is well behaved and

lim 6F> = 6E°(h,0)
Y

p—so 2L
6h | h=0 5h K=o

remenbering that E: refers to the ground state'energy of a many body

singlet state (even in €d<:0)’ we have

it
(@]

; , ,
6E~ (h,0) = ”B<Sz,tot>
oh h=o0

and the limit T-+0 of the susceptibility is given by
X () = X + (- l)b (AE (h 09 (4.43)
i p h=o

Naturally =211 this is saying.is that if the exact ground state is a

singlet, then the T = 0 susceptibility is finite.



122~

The pcssibility that ESALED in ed<;0 has some relevance in view of the

(55)

calculations made by Tculouse for the ground state energy of the
Anderson Hamiltonian in the limit U— o . His approximate perturbational
calculations for Ez and Eg in ed7 0 and ed<(0 led him to give an estimate

of the Lehaviour of thes: quantities as a function of €4 @s shown

schematically in Fig.62.

Ea
-w +W
| tlff—*’ffpﬂv | %i
Egt.§) /A
/’, TTmeeenly Es

Fig.62

The behaviour of E ( s) and E as functions of ed
-L\. c

according to Toulouse (reference 55).  Dashed 11ne is continuation

of E: into the region €3 £0,

S L e 1 s e - Ce et me e eem e e e

From Fig.62 it can be seen that the analytic continuation of EZ(ed)
into the region edé_O, denoted by the dashed line, is lower than the

normal Doublet ground statc energy . Toulouse concluded that

ED

| g(R.S)
the correct ground state energy in ed<;O is given by EZ calculated ir
ed(.O, and that consequently the ground state many body wave function

had singlet symmetry.

» . ie e S .
Toulouse's work raises the possibility that Eg is also less



Eg - E; = kT where Tc is ;>(), then in thes limit of low temperature
XK{(T) can ve written
X(T) "= 4 + Bpg g_(lc/i) : (hokils)
. “om

- where A, B are temperature independent , and the local moment is
quenched exponentially as T-9 0., It must be remembered that the new
structure predicted by the inequality
5 D
E B in ale 0
2 g < d<:_

has been accounted for as a result of the exact inclusion of the dashed

line connected graphs in the formula (4.21) for the Free energye

Discussion

It appears that from the expression found for the Free
energy (4,21), certain conclusions may be drawn as to the behaviour
of X(T) in the limit T-» O without having to evaluate the functions

ZSEa(T) explicitly.
(55) -

Toulouse s on the basis of his estimates for LE and
Eg (fighs) concluded that the ground state in the limit U infinity
and for sd<:O was of singlet symmetry. Such a conclusion however
is not justified on the basis of a perturbation calculation of Eg o
The close similarity between the temperature dependent functions ASEO(T)
and the Free energy in the s-d model indicates, in view of Xondo’s
calculations, that the limit T—» O of ;SEG(T)-méy not be c;léulated
perturbationally, s’arting with the T=0 résult. The true ground state
for the pair of degenerate states lch;>q%,must be calculated self-

. . ; D X
consistently and will be lower than hc(P 5)° Thus apvarently the
) & e D M



aquestion becomes focused'én the.relative magnitude of the self-concistent
'Doubliet’ solution and the Singiet solution in sd<:O. The latter
possibilitiy is absent in the s~d model and is a feature of the
Anderson model {in U—>00),

It seems thaf one can deduce the following picture: in the
region €4 <gp i,e in the s-d region; E?(S ) <iAES and the limit

. g\nebl) g

T—>0 of X(T) is correctly given by (4.39) . It is difficult to see
. how ?C(T) can te finite in T—> 0 unless one adopts the simple physical
picture of a spin compenséted singlet state formed by the localized.spin
ahd a conduction electron, lopalized near the impurity, the rest of
the systenm being only 'weakly affected® by the presence of the impurity.
This is a physical picture often adopted in s~d model calculations(qsz
Better appréximations involving more complicated many body proceeses
tend to destroy the exact spin compensation near the impurity and
'and lead to = suscepfibility which eventually diverges in T—> 0, A
good starting point to obtain a self-consistent éolution for ZSEG(T)
may be to spiit it up into an analytic :and non analytic part , the latter
describing the region around the impurity.(si) .

As €4 Moves closer to the Fermi level, at some stage

S . D
. t 9
Fg will be less than Eg(S.C)'

by (4.42) or (4.43) and the local moment disappears exponentially as T—> O,

the limit T—»0 of X (T) is then given

However at T:>TC the temperature dependence of X (T) is mostly determined :

by the magnetic component ZSEO(i), and at high temperatures this gives

rise to a Curie law type behaviour. The possibility that Ez <:EZ(S.C)

raises the question on the type of singlet structure Ez(sd) describes

in ed<:O. vThe spin flip effects are absent in'ES(T)_and it certainly

does not seem to describe the kind of 1ocaiized spin compensated state
S

associated with the Kondo quasi-bound state. For Eg to be the ground

state energy, o would probably have to be in the band and quite close
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to the Fermi level; even in this situation there will be spin flip
‘ effects (at finite temperatures) but the weak condensation energy and
thg importance of the lifetime effect could well mean that the 'Spin

fluctuation ~odel? is appropriate in this region e.en in U infinity,

{ s-d model ' U>>A
Schrieffer-Wolff transform. \\
-\
\
perturbation theory in Vv \
\
\
\
\
Spin lifetime Tsf??
Andérson : !
model / U>A ??
/
/
/
perturbation theory in U //
/
/
Spin fluctuation
model UNA

This is in contrast to the ed<3(0 situation where the localized spin
is strongly correlated to.’a? conduction band electron and it is no
longer possible to use the physical picture of a localized spin on which
the effect of the many body interactions can be thought of as principally
producing a finite lifetime, |

Even in U— 9 and ;d<g 0, there are however still difference
between the Anderson model and the s-d model associated'with the fact
that in the former, fhe localized spin is not fixed and there will

therefore always be a lifetime effect absent in the s~d model, In the

perturbation theory presented here}this manifests itself in that there
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are a considerably greater number of lowver ordeﬂ\terms in the Anderson

model calculations for the ﬁhysical paraneters. The technique'developed
in Chapter III is clearly equally suitable for the s-d model and future
work on these lines should clarify further the guestion of the equivalence

of the Anderson model and the s-d model,

f) The sicnificance of contributions of O(L/N) and less to F

In Chapter III paée%}, it was pointed out that the simple
expression for Z and therefore F as given by (5.24) vas only valid
- in the limit of a very large number of particles because effects of 0(1/N)
and less were neélected. In this section we briefly examine the
significance of such contributions in the light of the work of R.ﬁalian
and C.de Dominicis(56)and R.Brout and F.Englert(57’582

Consider for instance a contribution to Z in order V
given by fig.37,

I

vV f (L - T ) n
(-p/2mi) |fe. e "® k0 kp0" 00 (k.45)
€ i _ 2, _
(e + £ o edo) (ek 6" fkg * €)
1 1 3
Ry ks
for k., = k we obtain the contriﬁution included in (3.24) and which

1 3
is of 0(1). Uhen k) = k , (4.,45) vecomes

(l - £ ) n .
(-B/2ni) Jge 19 °° (4.46)
(c + ) (&) ‘

' b
this is of order 1/N and is not included in (3.2k). Oviously such

contributions are not negligeable when the number of available states

is small e.g as for the two atom problem where HI is given by
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wWhen the € idutcgraticn is carried out in (4.46), we obtain =5 a
coniribntion to F:

4 e Lk
(-ﬂ)fkla(l - fklc) n v ijc(l - fkja) n v

- cdo)z(a) (e

3
k,o ~ Edcr)

k,c 1

E - . 1
1 .
The first term gives a nonvanishing contribution in ihe limit T7—>0

for ed)vO. Clearly this contribution has no.equivalent in the ground
state energy formula for sd>>0 e (3.23) « ='al, whiqh differs from the
true ground state energy formula i.e the Brillouin-Wigner expansion,

by the replacement of u by Eps where EF is the Fermi level aqd is
determired by the number of particles in the sysiem (fixed). In fact

it car be shown that a large class of these terms must go to renormalize
the Fermi functions fk in svech a way that in T—» 0 4 is shifted

to e,. The discussion of this point together with the proof is given

F
(56)

in full by Balizn and de Dowminicis when the zero order Hamiltonian
is non interacting. A similar result would be obtained in this case
as well, This may be seen quite easily by looking at the prohlem from
another direction,

We recall that the partition function Z was calculated for>
a Grand canonical enéémble; In principle Z cculd also have been
evaluated in a canonical ensemble, the former is very convenient becauvse
the thermodynamic Wick'’s theorem may be applied to. the band states and
the chemical potential is the ekact one given by (3.3). The summation
over the band stafes is unrestricted and this gives rise to the
possibilities that e.g k; = k3 as in (4.46) ., On the other hand, h~d
we worked in the canonical ensemble, i.e with a fixed number of particles
N, then the thermodynamic ¥Wick’s theorem would no longer have applied

and the temperature averages would have had to be evaluated under the

restriction :
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§ [}kc * ndé] ' '
k.6

it is easj to see nowever trnat when these averages are eyaluated, the
contributions to order 1 would corrzsnond precisely to the terns

summed in (3.23), with thne restrictions on the summations which exclude
the vaniching of the denominators.‘ The fefmi functions would be

£, = 1
ep(sk_po)+1

where LN is the unperturbed chemical potential which simply reduces to

the Fermi energy € determined by the number of band electrons.

F?
Katurally there will also be contributions of 0(1/N) and less which
will go to renormalize the chemical potential to its correct value(SBQ.
Coming back to the formulation involving the Grand canonical ensemble,

we can state that in particular, inclusion of a class of contributions

‘which are of O(L/N) and less will shift u to p-W(k) in i, which is now

written
kT B(e +$ -u)
e k' 'k +1
The new Fermi surface is defined by e, + W, =u and W(k) is

: F F
given by some self-consistency relation, any deformation of the Fermi

surface arising out of the Kondo effect should be of negligeable
importance in this particular problem: 1In fact to a good approximation

we can replace p by e, in all the results obtained in Chapters III and

F
v .

We can conclude that the 0(1/1i) and smaller contributions
go to renormalize the Ferﬁi functions for single particle excitations,
they are not likely to be of great importance and the formula derived
for F is a good description of the system. However this does not exhaust

all the possible vanishing denominators (accidental), consider for
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instance the O(V ') contribution to F which leads to the log

term in tre suscepilbility

(VIT'/LH:i) E‘Pa | do - Tkyo'Tky-0 cle
& (e + ¢ - € + £, =€ (e + e, - ¢ )2
: k-0 klc dg d-o do klc
kyfys 6 = '
the possibility Kk, = kg' leads to a O(1/K) contribution proportional to
n, (1L -£f_ )f
. -3 k K. -
de. e ge do k0" "k, ~0
2 (e + - )2
& & edc Exo

E?G’

and. can be represented by the graph

Unlike (4.46) which can be drawn
Ry’ ko6’ -

' Fié.éh

The graph corresponding to fig. 63 . cannot be interpreted as a renormaliza-

tion of the single particle distribution functions, although it is of
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tre zzme order as (4.,46); A careful consideration of this point suggests

<O

‘that it actually renormalizes the two particle average

+ + . 2 .
c. C, ¢, c “to order V in e.g
< do ko k=g d=0 > *o

. e + +. ‘136 )
fpﬂﬂ“) v <:cdcfckc;ck-cf“.d--c;;> e ) de ' (5.57)

ele - €, + sd)

kR ,6°

and vhere fhe two ﬁérﬁicle average vanishes in zero order.
it a‘pears therefore that a complete sum of the order 1/H

and sﬁaller contribufions Eannot be performed bj introducing a self—cénsis-
tent field W(E) ‘which acts on each particle individually(56), rather
this would have to be a 'spin dependent field’. in which case the
tenrerature averages in (3,10) could no longer he decoupled in a simple
vaye Naturélly this wéuld then completely modify the form obtained
for the partition function and the Free energy. An attempt to méke
the theory self-consistent along these lines, does not appear to be
necessary in the limit N—»o0 which is the situation one is interested in,,
even though this question cannot be dismissed entirely in view of
the argument due to Brout et al.(sg)who pointed out that under certain
conditions, namely when the system undergoes a tragsition to an orderéd
rhase, contributions of 0(1) may in fact become of O(N) (in this case
it would be O(l/N)——? 0(1) . In the impurity problem the question éf
an ordered phase in the usual sense does not arise, but clearly at
low temperatures a kind of ordering does take place in the viciniﬁy
of the impurity for sd<§0 and a consistent description of tﬁis may
require in the T—»0 limit the consideration of the 0(1/N) and smaller

&

contributions to F, in particular those of the type (4.47).
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The theoretical treatments-of the magnetic impurity protlen
were revieweé in Chapter I and particﬁlar attention was devoted to the
two tasic models ?kat have been used to. describe magnetic impuritie; in
simple metals, namely the s-a rodel and the Anderson medel, The s-d model
in many ways gives results vhich are in good agreement with exp;riﬁent,
Howevér the Anderson model commends itself by its greater generality
and turns out to be 'equivalent® to the former in the region

) €4 = Ep L D

U + €4 ~ Ep j> TAN

but it is this particular region that the theoretical treatments used
so far have been ﬁnaﬁle to descrbe beyond the first fgw orders of
perturbation theory. lost of these were based oﬁ the well known
connected gréphical expansion of Field theory for the Green’s function
and dynamic sﬁsceptibility and despite their successes have failed to
account for the s-d region. The most important recent development,
the Spin fluctuation model, was outlined and critisized in Chapter IT
where it was aléo pointed out that the limitations of approximate
theories for the magnetic impurity problem were closely connected to
the use of the thermodynamic Wick's theorem, This indicated the
necessity of developing an alternative approach in which the perturbation
expansion‘would be carried out in powers of the mixing interaction
while the correlations on the impurity were treated exactly.

The problem was approached in two ways, in Chapter II by

means of a Green’s function method and later using a time independent

technigue for the calculation of the Free energy. With the aid of the
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Green'’s function it vwas possitle to show how Abrikosov-lagoaka tyni

self energies would appear in the Anderson model, dbut the computaticnal
problems invoived are 30 enormous that it is difficult to go bejyond
perturbation theory in varticular for finite temperatures, altrough

the method does indicate how a self consistent theory could be arrived

at. Tlievertheless it was vossible to get zn insight into the guestion

of the wvalidity of partial summations ih linked graphical expansions

in relation to the impurity problem,

time depenaent R
"~ 1] funection . .!1 . R
mfreen S tuncvy time indevendent method
A
G -
to G{V )-ioglwl in B.%W relation for 8% (T)
Im Gd(#), to difficult seif-consistent solufion?
to continue ‘

f-consistent good for T <TY
1N
P e ?
_approach? T &T,?
S

a

The technique developed in Chapter IIJ overcomes the
computational problems normally encountered in perturbation theory

when the thermodynamic Wick's theorem is not avnplicable., The expansion



appiicaticii of the method devised

buil it has important consequencés.

It is particularly suited to the present problem where the restriction
imposed by the exclﬁsiun principle is of fundamental importance anc
moreover reduces considerably tho number of contributions that have to
be evaluated. The representation in terms of the 'time ordered bubble
graphs' was éhosen to exploit this simplification'in a direct manner,
even though more familiar representations can also be used (section(dQ )
Chapter III). The next step was to observe that the n;n overlapping graphs
could be summed exactly and to reduce the calculation of Z, with the

sole neglect of contributions of 0(1/N) and less, to the self consistency

relation

AE

s( AEQ)

and
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"
™

R
o
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<
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When 2 is written in this form; it is a simple matter to obtauin the
perturbation expansion and the graphical representation for the Free
energy, by writing F in the form (3.34) and calculating the linking
féctors using the cumulant expansion (2.32) in the lirit when all

the 'times’ go to zero. The resulting expansion for F is given by
(3.33) . The self-consistency relation (3.23) is particularly appealing
for not only does it correspond to the Brillouin-Wigner formula giving
the ground state energy shift in the limit T<->0, but it also gives

the possibility of obtaining self-consistent results at finite temperatures
In general it was shown that from an essentially perturbational result
We were able to extend the theory into a form capable of going beyond

perturbation theory.

With this techrique it was possible to confirm the results
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the perturbation expansion vere znalyzed and it was found that fo
4.
[

X{(T), a perturbation theory based on including the most divergen

termes as T—20 could at best lead to

. 2
ax
X() = X+ 1 3 o
< k% oh h=o0
in the 'magnetic region’ sd<:O _st + U2>O. Using this it was shown

that the lower order logarithmic terms could in fact be more divergent
in T—-T,  than the dominant series (4.12)

The limitations of the perturbgtioﬂ‘formula for ¥ were
investigated in Chapter IV section (c) and it was found that (4.21)
could lead to a ground state energy given by EZ for 4 close to the .
Fermi level which would have draséic consequences on the behaviour of
;K(T} in the limit T—>0. It must also be noted that although the
perturbation theory orezks down as Sd"*}L (or 55-’0), no aifficulty
is expected when the theory is viewed sélf-consis%ently via (3.23).

The time independent technigue makes it easy to ectaLllon
that the Free energy in the s-d model has the same gqualitative behaviour,
as the function ji: AE%(T) in the limit U——+0; , when J is

identified via tre Schrieffer~'olff canonical transformation., In view

of Keondo's calculation it follows easily that

lim az (1) # ax’

Te—0 g(R.S)

= A which is <:A

5(S.C) r(R S)

ey g _ ¢ =~
one should expect that Eg(R-S) Eg(S.Ci] L



" 'singlet ground state

~1h45.

where ¢ is a non amnslytic part vwhich cannot be expanded by perturbation

L
theory and must be related to the condensation energy of the conduction

electron(s). In particular a simple approximation for e; would give

= Wexp(-1/N(0)|J|) = kT

€L K

(55) ipat

This argument is in contrast to Toulouse’s suggestion

E° _ S
l:g(R.S) Eg NkTK

and we conclude that the true ground state energy in the s-d region

will be given by 1lim AE%(T) , despite the fact that in principle

T—>»0
£§E; refers to the ground state energy of a wave functionrn with doublet
syirmetry. It seems that to obtain the correct singlet symmetry predicted
by Mattis(sé) would necessitafé the inclusion of. contributions of 0(1/N)
and less into F. Such contributions were neglected in the calculation
of F and hence there would seem to be a contradiction, for on the one
band the fact that the exact ground state has singlef symmefry appears
to be of great impertance since it guafantees fhat the limit T—»0 of
7((3) is finite, and on the other hand it waé'érgued that such terms

can be neglected in the limit of a large ?olume (or number of particles);
This point can actually be éxplained as follows: in this problem vhere
there is a single impurity in an’’infinite sea’ of conduction electrons,
the knowledge that the exact ground state wave function has singlet
symnmetry has little importance unless one also knows the type of singlet
structure and the low energy excitations, for it turns Qut that the
triplet‘states are only infinitesimally sepérated in energy from the
(36). The impertani aspect of d&EU(T) is that it
gives rise to the Kondo ’quasi-bound state® picture (at least in an

approximatz treatment of AsEU(T)), and one should expect exact compensation

in this case to mean the cancellation of the moment in a finite (and small)



region around the impurity. Effects of C(1/1) and less on the other

edistributicn of all the particles irn the

4

nhand are associated with the

D)

s rroulen,

e

systen Wifh respect to the 'new Fermi surface! and should,in th
te negligeable in the limit as the volume goes to infinity (except for
processes which as a result of ordering go from 0(1/il) to 0(1), if they
exist at all). .

The method pressnted in Chapter III and 1V will be capable

of dealing with the divergence at T = TY in the physical parameters,
»

and in particular of generating results for [}EO(T) and étBEO(T)

valid in T§;TK, but the question of the exact cancellatioghof th? local
moment in the s;d region is more difficult to decide on the basis of
(4.39_) . The possibility that X (T) will d.iverge as T—>0 in any
approximate calculation because the inclusion of the more complex
many body processes glving risé to thg‘lower order divergences' destroys
the approximate singlef bound state picture, cannot be aismissed.
Nevertheless this is an important guestion which can be investigated
- further by using (4.20) and (4.39) .

The results and prédictions given in Chapter IV are as
far as one can go - 'without evaluatiﬁg the temperature dependent functions
ASEa(T) explicitly. They were mainly designed to provide an insight
int§ the possibiiities ana shortcomings assoclated with the time indenen-
_dent technigque in relation to the general theoretical problems encountered
in the magnetic impurity'problem. It can be seen that the most important
difficulty that still remains is the question of the exact cancellation
of the local moment in the s-d region. The answer to this question
is by no means obvious'frgm (4.39), and it is not surprising that the
approximate non perturbational theories of Suhl and Nagaokafﬁamann-
Bloomfield still predict a divergent X (T) as T—>0. One tends to

suspect, on the basis of (4.39), that this is not simply a matter of
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the brezkdown of the approximations in '"<< TK but that it could well be
associatéd with the inadequacy of the model itself in the very low
temperature region., This is tc be understood in the sense that to obtain
a X (T) even in qualitative agreement with experiment may require the
consideration of very complex mary body prdcesses of much less importance
than the interactions ﬁeglected in the host metal itself, in which case
the resulting ’cancellation' may in fact have very little to do with the
actual experimental reality. ~The point that should be stressed is that
Just bécause a particular model in some approximate calculations gives
rise to results and concepts in agreement with experiment, need not
necéssarily mean fhat better and better approximations and in the final
analysis the exact solution, will lead closer to the truth.
« It appears that the time independent method presented in the
last two Chapters is a powerful tool for the investigation of the

Anderson model. The method essentially reduces to the calculation of
ﬂnEa(T) for which a variety of techniques have been, and can be, cevised,
perturbationally and non perturbationally. It is clear that the applica-
bility of the method is not restricted to the present probleu but that

it can be apﬁlied with advantage to the s-d Hamiltonian and should prove
very effective for the two impurity problem as well. It hes the
disadvantage that it describes the physical parameters in the static 1limit,
and gives no direct information on the dynamical aspects of the system.
This restricfion is particularly serious in view of the fact that recent
experimental techniqués have made it possible fo observe 'directly?! the

(45)

dynamical characteristics of localized moments , and one should exgpect
that a considerable part of future developments in the theory will be
arrived at, both gqualitatively and quantitatively, through the considera-

tion of the time dependence of the physical observables.



Time Terrerature Green's functions

Tne time “emrerature Green'’s functions may be calculated
as follows: cornnider for examu&e the ‘two particle Green's function

i 3 saich by inition ma;
(-i) <: 2 (t )c (tZ)chE(tE)chQ(t#’§:> which by definition may

. be expznded

Gt’l(t a

e ; - s 2 N + - 3 -
2 1 l'bZOZ’tjcﬁ’tL{-cL}) = ("‘l) g (u —ua)e(ta t:ﬁ)}g(ti tl{)

1

¢ +
e (tl)cd“a(tz)cd°3\t3)cd°4(t4):> + e..ete

where

N _ & _
< cdglul;cd%(tZ)cdgs(tB),d%(tq)> =

-fBe + - +
1 E e a‘<alCdUl(tllCdUZ(tZ)CdUE(t5)cd04(t4),€>f

Ty {e-"' a; X

consider now the Fourier transform of e(tl—ta)e(t t 10(¢ —t4) X - 9

<:a’ (t )c a(ta)c (tj)cdc'(tq)‘é> with respect to the four

time varlables. This can be written

00 00 O3 o

’J:]ijf &u -t 19(+ “t439(t2 3) elt (w +E =€, ) 1t (—w +e =€ )

—(0 =09 =00

11;5(”3-*6 e )r eltz{,('whfsn_sa <alcdcl| nl> <nl‘ Cdaa ‘n2><n£l chBI n3>

+ . . . '
<:n3]cdcbla:> dt, dt, db, d

Hote: there is no sumnation over the intermediate states bYecause



in this case there is only one nossible intermedaiate state after each

c operator,

The time integrations rmay bes carried out by maxzins the
change of variables
-t = L= tL =T Tt =t =T t. + t, =1
E o b 3000 Y37 R T Ty o 27 "%
and tie result can be written

276 (W V=W -w4)(i)j 1

1 '3 72 - -
- - 7 - s}
(wh 15 + €, e, + 16)(v4 + e e, + 1 )

{w, + £ - € +
1 a n

1 - <al cdoi Irx]> <nl‘ c;02‘312> <'r12‘c:do3 ‘n3> <113\C;O"’+} 0.>

and may be defined as

Ka(wlol’WZUZ’w303?w404)

The contributions corresponding to the different time orderings may

be obtained from Ka(w T 04) by permuations of the w's

199995 303,\%r
and appropriate modifications of ao , nl,nz,nB, ssoetce The 2-particle
time temperature Green'’s function is calculated by grouping together

the various-contributions as indicafed by the definition, It can be

seen that even in this cése, the algebra reguired to obtain G;’T is

considerable. The 3,4 ... particle Green'’s functions are evaluated

in a similar manner.
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APFENDIY (2)

By defirition, we have

o e
ol - . ilw_t.)
(iw sitw sesase iV y} = f....} dr, dt, .....d7T e” "' nl
Y2 n, 0, n202 n, 0, 1 2 Z2s
(o] o)
~i(w_1.) -1(w T, ) + .
e R (-1)°<1fe a(’l)"doa( v,) ""°do,s("as’?>

The time integrals in this case are much more difficult to evaluate
because of the finite limit of the integrations. The simplest way
is to expand the integrals in terms of the various time ordered
averages and carry out the integrals directly, e.g for 2 particles
and for By T T .51 0  we have
P> ]_> 2> j) l+>
) ‘.t'i (Ez Ts
+ 2

dTl drz d15 d‘& <:cdcl(rl)cd02(12)c ( )cd (14);> (-1)

(o] (o] fo) (¢]

1(w T ) 1(w T ) 1(wn13) ei(wnt4)

where
_ H.t ¥ =-H.t
cd(t) = ed c e d
Similarly for the other possible time orderings . The complete Gg
is then obtained by grouping the contributions together in the manner

indicated by the definition. The computation is impossibly tedious

beyond the 2 particle case.



are varallel and v

hich correspond to (o, ,u%;)
7

; 1 -1 1 - f, f (-1
. n g ( ki ) ﬁzd) kao )
(e, -, )(e, ~¢,_ e, +e,_=1¢, =~¢_ (g =
Eyﬁpgps’ d 51 d g d AZ kl k3 k2
: Ty (1 - fk1°)(fk2°)(fk4°)
4 .
: (e, ~¢g_)(e,_ =€, (g, =g )
Ei,ﬁz,ﬁzl_,S' d kl 1{2 K.l kL!. lxl
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‘ . do klo LBO kao
(éd - & )2(5k - g )2(8d - g~ &+ & )
Ryrkarkss 6 1 2 1 1 T3 2
n,. (L -#£ ) ~-£f Jf (-1)
dag k30 k 20_
Z >
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1R2oRs6" Ek} 4 skl €k2 skl
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2 2
(e, = Y- {e - (e, - )
Rokope @ 7 %k’ CfaT Tk ok, T Tk
:EE:::: n, (¥ -£f )1~ £ If (=1/2)
do klo k30 kad
2 : 2
(e. - ) (e, ~g, ) (e, - € )
ﬁ;?ﬁl’ﬁ_ye’ d kl d - kB kg k}
z; Dag (1 fklo)(l -fk3 )szo(-l)
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1 3 2
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¢ nda (1- £ )(1 - £, )(1 - £, )(2/3)
v ; ' ko £:9 3
/ )5

(e, - €y )(ad—‘sk (e, - & )

RiRaR5:6 d 1 3 d ko
v6 Dig (1 - fklc)-(l - szc)(l - f.K}U)(l/Z)
Z 2 2
- e )(e, - Y(e. = g, )
A R T N

One could think that there should be contributions to X (T) behaving
as log(T) , [}og( a ...etc as a result of the above terms, this is
however not so and the anomalous contributions cancel when they have

been grouped together.,
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