
NOTE ADDED IN PROOF  

When the work for this thesis was completed, and it was in the 

process of being submitted, two papers appeared in the Physical Review the 

content of which overlapped in part with the work of Chapters III and IV. 

G. Toulouse (Phys. Rev. 2 270 (July 15,1970) ) independently obtained 

formulae of the type 3.19 and 3.23 for the U infinity limit of the Anderson 

Hamiltonian. H. Keiter and J.C. Kimball , Phys. Rev. letters 22, , 672(Sept. 7, 

1970) , derived a time independent expression for the partition function Z in 

the Anderson model which is essentially equivalent to the results obtained in 

Chapter III of the present work. In particular they also succeeded in 

identifying the graphs which lead to the most divergent contributions to the 

static susceptibility x(T) and obtained the same expression as derived in 

Chapter IV and given by 4.16 in the U infinity limit. 
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ABSTRACT 

The Anderson model of magnetic impurities in simple metals 

is treated by perturbation theory from twu different directions. In both 

cases, the expansion is carried out in powers of the mixing interaction 

and the Coulomb repulsion on the impurity is treated exactly. The problem 

is first approached by using a Green's function method and it is found 

that the characteristic logarithmic divergence associated with the Kondo 

effect, cancels in the fourth order, but remains in the sixth order of 

perturbation theory. Computational difficulties however, seriously restrict 

the scope of the method, although it does throw some light on some of the 

more general problems encountered in perturbation treatments of the 

Anderson model. In the second stage, a time independent expansion is 

obtained for the Grand Partition Function Z and the Free energy F which 

simplifies enormously the perturbational calculation of the thermodynamic 

Properties of the system. It is found that by including a certain class 

of contributions to all orders, a formula is obtained for Z and F which 

is exact except for contributions of 0(1/N) and less. In this way the 

calculation of Z and F is reduced to solving a self-consistency relation 

which ili the zero temperature limit corresponds to the Brillouin-Wigner 

formula for the ground state energy shift. Various graphical representa-

tions are put forward for the calculation of Z and F by perturbation 

theory; the limit of an infinitely strong Coulomb coupling leads in 

particular to a great simplification. With this technique, it has been 

possible to verify Scalapino's(39) predj.ction that the dominant contribu-

tions to the static susceptibility can be represented by a geometric 

series. The low temperature limit of the static susceptibility is 

considered in some detail, both perturbationally and using an 'exact' 

relation. It is found that in some situations, the two approaches can 

lead to qualitatively different results.- 
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CHAPTER I 

INTRODUCTION 

Magnetic impurities in metals represent systems of great 

interest both for their own sake and as a possible means of understanding 

the magnetism of metals in general. Theoretical work in this direction 

has been mainly focused on studying the physical properties of a 

single transition element impurity in a simple metal,that is,a metal 

in which the electron-electron interactions can to a good approximation 

be neglected. A typical example of this is afforded by systems 

corresponding to iron group impurities in noble metals. 

Experimental observations on magnetic impurities in 

different metallic hosts have produced a variety of behaviours for 

the physical parameters such as the magnetic susceptibility,resistivity 

...etc. In particular it has been known for some time that 3d transition 

metal impurities in some cases give rise to susceptibilities with 

a Curie like behaviour in simple metallic hosts. This was interpreted 

by Matthias et al.(1), who performed some of the first experiments 

that-showed this behaviour as being due to the formation of a localized 

moment in the region of the impurity. The interesting feature of 

a metallic host as opposed to an insulator is the itinerant character 

of the electrons in a metal. Under these circumstancesone expects 

. the interaction between the conduction electrons of the host and 

the impurity atom to play a significant part in determining the 

magnetic behaviour of the impurity. The study of such systems will 

also lead,one hopes,to a better understanding of the processes 

responsible for ferromagnetism in metals. 

To introduce a magnetic impurity i.e an atom which, 

when isolated,has by Hund's rule.a finite spin and orbital angular 

momentum,into a metallic host is to produce a coupling between the 
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electrons on the impurity and those of the metal, therefore the 

existence of a non—vanishing spin in the region around the impurity 

becomes in practice a cooperative phenomenon. The first summary of 

the evidence for local moments in simple metals was given by Friedel(2).  

Experimentally, by the existence of a local moment one usually 

means a strongly temperature dependent susceptibility in the form 

of a Curie law; temperature independent behaviour is taken to signify 

• no magnetic moment. Both these behaviours have been observed(2)for • 

different impurities in a given host, as well as for a given impurity 

in different hosts. 

In practice of course, one never has a single impurity, 

but a finite even though small concentration, in a given host. One 

could expect that impurity-impurity interactions should play a 

significant part. It turns out however that this is not so because 

though the susceptibility can in many cases be described by a 

Curie-Weiss law of the form 

= 
0+T 

the Curie-Weiss constant & is independent of impurity concentration 

and cannot therefore be a result of impurity-impurity interactions. 

Experimentally 0 is always finite and the magnetic behaviour is never 

of the free spin type (0=o). The data in the magnetic cases such as 

CuFe (ref.3) and CuMn can be made to fit a law of the type (1.1) 

wither1-32° or the high temperature susceptibility. Measurements 

carried out down to very low temperatures have however established 

that the magnetic susceptibility never diverges; this is true for 

all systems studied so far(3) 

Another aspect of the impurity problem which has turned 

out to be very fruitful in the conceptual understanding of the 

physical effects that are involved, was the observation of the now 

well known resistivity iinimum in dilute alloys (ref.3)0 It has been 

C 



established that this resistance minimum occurs when the impurity 

atom is magnetic' (i.e. a strongly T dependent susceptibility). It 

was shown by Sarachik et al.(4)that there exists a complete correspon- 

dence between a strongly temperature dependent susceptibility and the 

appearance of a resistivity minimum. The weak concentration dependence 

of the effect indicated that, like the susceptibility, it cannot be 

due to impurity-impurity interactions, but must be a result of the 

coupling between the impurity electrons and conduction electrons 

of the host metal. Kondo's(5) explanation of the resistance minimum 

in dilute alloys using a model of a magnetic impurity interacting 

via an s-d exchange mechanism with the conduction electrons of the 

host, opened up a whole new area for theoretical and experimental 

activity. Kondo showed by using perturbation theory and - going beyond 

the first Born approximation that the existence of a term proportional 

to log(T) seemed to lead to good agreement with the experimental behaviour 

of a variety of systems over a wide temperature range. However the 

logarithmic term found by Kondo was itself a problem, for it meant 

the ocurrence of a contribution which would diverge in the limit T-Oto. 

In fact it indicated a breakdown in perturbation theory for an 

antiferromagnetic coupling J at temperatures below a characteristic 

temperature given by 

kTK  = Wexp(-1/1J1N(o) ) 

where W is the band width, k is the Boltzmann constant and N(o) is 

the density of states at the Fermi level, and where J is <0. 

This breakdown in perturbation theory was itself a new 

and interesting phenomenon which had to be explained. Later theoretical 

work
(6)  suggested that this divergence was to be associated with 

the formation of a tIquasi bound" state between the localized spin 

and the conduction electron spin for J.c(o. Nagaoka
(6) argued that 

this spin compensated state appeared to come about gradually as 



the temperature was lowered,in other words there was to be no 

• phase transition. MOssbauer(7)  and N.M.R.(8) studies at sufficiently 

low temperatures have provided some evidence in support of the 

concept of such extended spin correlations. Nevertheless in general 

the theoretical picture is inconclusive; many questions have to 

be answered with more authority before it can be claimed that 

we have a complete understanding of the wide range of observed 

behaviour. 

a) THEORETICAL MODELS  

Many properties of dilute alloys have been explained 

in the past by using the model that an additional potential is 

produced when an impurity is introduced in the metallic host. 

Thus the problem was reduced to that of the scattering of the 

conduction electrons by a single atom in a metal. This was the 

basis of the approach of Friedel et a1.(9) who first introduced 

the concept of a virtual bound state in a metal,i.e a state resonantly 

built up from the continuum states and which has a finite lifetime. 

This concept followed from the observation that the impurity energy 

levels would in general lie within the conduction band of the host 

and that therefore these states would not really be localized, 

because they would acquire a finite lifetime as a result of admixture 

with the continuum states. The way the question was put with regard 

to the existence of a local moment was to ask under what conditions 

is it possible to have an unequal population of 'up' and 'down' 

spins,on the average, occupying the virtual level. 

The theoretical models that have been proposed to 

describe magnetic impurities in simple metals and on which most 

attention has been focused in recent times are those of Anderson
(10 

and WolffOa) In the Anderson model one thinks of the impurity as 
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a localized extra orbital representing the d level of a transition 

metal atom in an otherwise noninteracting 'electron gas'. This 

is particularly applicable when the impurity atom has an unfilled or 

partly filled d shell and the conduction band states of the matrix 

are s-like. In the case where there is only one unfilled d shell 

with two possible spin orientations,the Anderson Hamiltonian can 

be written in the second quantized representation 

H
A
=EkanIto + I dandy + Un 

	DT (c+  c + c 	) dacka  
d nt dl + dk ka da 	(1.1) 

kcs 	6 	 k6 
The first term represents the kinetic energy of the band states 

the second is just the unperturbed energy of the d state on an 

impurity atom. The third term corresponds to the Coulomb repulsion 

between the up and down spin electrons in the d state. This repulSion 

is generally assumed to be the most important contribution responsible 

for the formation of magnetic moments.Clearly it favours occupation 

of the d level by electrons of either up or down spin. Theast term 

is the so called mixing term,it represents the transfer of electrons 

from the Bloch states of the conduction band to the impurity state 

and vice versa. Vdk 
 is normally assumed to be independent of 

k , which means that only the s waves are affected by the potential. 

In which case one can write 

V 	= v 	= V 
dk fR  

The Wolff model treats the scattering of the conduction 

electrons from the impurity by a zero range b function type potential 

of the form 

H Ps = VEail-taalt,cr  
kled 

and the Coulomb repulsion is represented as a repulsion betweqn 

two electrons of opposite spin which occupy simultaneously the 

Wannier function located at the impurity site. The Wolff Hamiltonian 

may be written 
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where 

H41 = 1: ekan
ka 

+ V E akaka   a! 	.Un
ot
n oi 

kc 	 kV 
• a 

Un 
ot  n = U a  a a+ a ks.t 	k44. 

k. 

(1.2) 

The Wolff model appears-to be more applicable when the states of 

the impurity are similar to those of the host metal,but despite 

the formal difference between the Anderson and the Wolff Hamiltonian, 

the physical situation they describe are the same. Within the 

framework of approximate theories howeverlone may in practice turn 

out to be more convenient than the other. Both models neglect all 

interactions in the matrix,this seems to be quite justifiable 

in simple metals such as the noble metals for instance. 

The formal simplicity of the Anderson model for example 

is misleading,the Hamiltonian still represents a many body problem. 

The Coulomb interaction on the impurity is transferred to the 

host via the mixing interaction,and the tendency to equal up and 

down occupation is counteracted by the Coulomb repulsion. 

b) THE HARTREE FOCK APPROXIMATION  

The Hartree Fock approximation to the Anderson model 

was orginally carried out by Anderson(10),it is a helpful step 

conceptually to posing the problem. A very direct way of obtaining 

Anderson's solution as well as solving the problem in some limiting 

situations is to use the Retarded Green's function method of Zubarev(12)  

The retarded Green's function of two operators A and B in the 

Heisenberg representation is defined by 

GAB(t-t7=  < 
= —ie(t—t')<LA(t),B(ts)J> 

where the inner bracket represents either a commutator or anticommutator 
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and the average is taken over an ensemble.. 

After taking the Fourier transform with respect to time 

the equation of motion of the Green's function can be written 

E4,‘A:B)E  =1/2-rt<[A(0),B(0)]> + <<{.1111 :13))E 	(1.3) 

where <<A.:1:0 E  is the "Fourier transform of ‹.(t):B(1 with 

respect to (t-t?). 

The equal time correlation functions <AB) are expressed in terms 

of the Green's function by the formula 

... 
<BA) 41...Im(AlB)Etf(E)dE 	(1:4) 

.." where F(E)= 	1 	and Im denotes the 'imaginary part of 

ePE  + 1 

For the Anderson Hamiltonian one can immediately set 

up the following equations of motion, starting with 

(1/2TE)Gkv a  = (ckalc ak 
	

(1.5) 

( 	Gmea  = °kW + VGdk 
	(1.6) 

(E-sk ,)Gdka 	,=VGddla 

 

(1.7) 

from which we obtain the exact relation 

 

2 

Gkie,a(E) = 6kk/ 	
VG 	(E) dd,a  (1.8) 

E-Ek (E-ek)(E-c0 

 

where Vdk has been taken as V and Gdd,a(E) =ecdal e
d)>E(2n) 

equation (1.8 ) shows that Gdda 
acts as the conduction electron 

l  

t matrix, a knowledge of Gddia  is sufficient to solve the problem 

completely. 

al.) 13=0 

In this limit the problem can be solved exactly, from 



energy shift and can be absorbed by redefining Ed, g(E) corresponds 

to the density of states in the conduction band. Assuming g(E)V2 n 

can be treated as a Constant A ,then (1.11) becomes 

Gdda(E) = 
	1 	 (1.12) 

E - da + 

The system can be seen to behave as if there were a virtual state 

at .E = eda 	
The resonant nature of the virtual state may 

be seen from the density of states now given by 
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(E-e 	= 1 a dda 	kda 

(E-eka)Gkda = VGdda 

giving 

Gdda(E) = 
1 

  

 

E-c - da 

 

1 

    

ka 
k 

The sum over k in the self energy of Gdda can be evaluated as 

follows 

lim. b -0 
E V2 	

= 	V2  

E 	E
k 	

- inV2  g(E) 

E - ek  + ib 

where g(E)= Eb(E - ek) 	and P denotes principal part of'. 

The first term on the R.H.S can be treated as an inconsequential 

(1.9) 

(1.10) 

(1.13 Ndp) = -1/nIm Gdda(E) 

= 1/n 	 
( E - da 

+ 

A. is identified as the d electron lifetime 

b) V=0 
Another limiting situation which is of interest specially 

with reference to Chapter II is the case V =0. In this case we have 

the two equations 

(E - Edo)  Gdda 
• = 1/2n - Uida  nd-a l cd > (1.14) 



with -1/nIm Gdda(E) = 

where do) 	= -1/n ImIGdda(E)If(E)dE 

-co 
l/n A  

(E -Eda)2 	[12  

and Edo- c 	11.4nd-a) do  

(1.18) 

(E -Edo- U) 	cdand_al cda)-  = 1/271 4nd_à , (1.15) 

The solution is: 

Gdda(E) = 	1 - vid-a 	end_a  (1.16) 

  

E - eda 	E - eda - U 

 

In this limit therefore there are two levels corresponding to 

E = eda  , and E =eda  + U, when 2eda  + U is 1 0 (where the energies 
are measured relative to the Fermi level ef) the impurity is singly 

occupied by either an 'up ' or 'down' spin electron at T = 0. 

e• 

1/2 UZdand_0 11/2 endc;)nd-a 	4nd_a%Inda] 

where the averages end  pre to be determined self consistently. 

o . 
In this formI the CouloMb term can be absorbed in Ho where Hd 

equal to Edanda  and by writing instead &da + Uznd-o  3)  nda 
es 	 is 

The d electron Green function then simply becomes 

Gddo(E) = 

 

1 (1.17) 
E - e a  - U4nd_a7 - V2r 1 

LE - cka 

C)H.F approximation 

The Hartree Fock approximation can be obtained by 

writing the Coulomb term in the form 

Equations (1.17) and (1.18) must be solved selfconsistently, at 

T = 09  we have 

znda  = 1 11 de 	(1.19) 

A2- 	(Eda-e)2 

-ob 
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giving 

4n, 	= 1/11 cot-1  ed tiCndi) 	 1 I 

p.-1 
ndi,7  = 1/n cot 

1  {( cd + j 1  

The details of the selfconsistent solutions are given by Anderson
(10) 

The regions of magnetic and non magnetic behaviour are shown in 

fig.1),where non magnetic means endt) = <ndo 

 

Fig.l. Shaded area 
represents the region of 
magnetic. behaviour. 

Ref.(10). 

 

 

£F 
U 
-£d  

 

The critical value for moment formation can be expressed by the 

instability condition 

d <nd,o, = -1 	(1.22) 

d < n d47  

which leads to 

II Nd(0) = 1 	
(1.23) 

(1.25) has the same form as the Stoner criterion for ferromagnetism(13)  

The favourable situation for magnetism is 

-I- cd 4e-- o 	 (1.24) 

)" a 	 (1.25) 

this may be seen from a simple physical argument: for a magnetic 
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situation (‹ncit)f <ncri.>) one expects that the virtual level must 

in one case lie well beneath the Fermi level,while in the other 

case it must lie well above it,thus one level is almost full and 

the other almost empty. 

The Hartree Fock approximation has serious shortcomings, 

it fails to take into account the d-d correlations on the impurity: 

it does not treat adequately the correlation in time between the 

up and down spins on the impurity and therefore tends to overestimate 

the tendency to moment formation. For the Anderson model,one can 

physically think of a parameter U/1 such that when U/.6,>1 one expects 

the system to develop a moment and Ne.k.?. to signify the non magnetic 

situation. The reason for this can be seen if one notes that A 

the virtual level width is a measure of the inverse of the time 

a d-electron spends on the impurity,then the longer the electron 

spends on the impurity (on the average ) the more the Coulomb interaction 

plays a part and thus U/A large is favourable to magnetism and vice 

versa.It is easy to see that the Hartree Fock approximation can 

only be valid,if at all,in the region U/A.C1, i.e when the time 

spent on the average by a d-electron on the impurity is short compared 

to U in which case it is conceivable that a self consistent field 

approach may be adequate. Another serious defect of the H-F solution 

with regard to the problem of magnetism is the fact that it breaks the 

rotational invariance of the original Hamiltonian ta manifestation 

of which is the appearance of a sharp critical boundary between 

magnetic and non magnetic behaviour (fig.3).This implies a sharp 

phase transition,a concept which is not expected to be valid for 

a system consisting of a single impurity in an 'infinite sea of electrons 

c) THE EFFECTS OF CORRELATIONS  
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Various attempts have been made to include in some 

measure the effects of correlations in the Anderson Hamiltonian. 

Both perturbational and non perturbational solutions have been 

proposed. In particular one should mention the work of Hewson(14)  

and Schrieffer and Mattis(15). 

Hewson used a non perturbational approach based on the 

equations of motion method for the Green's function(12). He solved the 

equations using a decoupling scheme which is such that the solution 

is exact in both limiting situations U= 0 and V= 0. We note that 

in the Hartree Fock approximation .the limit V-“:1 of Gdda(E) gives 

Gdda (E) = 1 
(1.26) 

E - cd  - U<nd..0-7  

(1.26) is in contrast to the correct solution which is given by (1.16) 

Hewson concluded that in general the impurity would be nonmagnetic. 

A similar conclusion was reached by Schrieffer and Mattis05)using 

a perturbation theory based on summing the ladder diagrams in 

the zero temperature linked diagram technique
(16): 

In the ladder approximation,the vertex part T(El 
+ E

2
) 

can be written(15) 

T(E
1 

+ E
2
) = U 

(1.27) 
1 + U T°(E1+E2) 

the approximation is exact for- the two body problemlone presumes 

therefore that it is valid in the limit of low density.Even then, 

to evaluate the self energy in a simple way, Schrieffer and Mattis 

had to make an approximation of the Hartree Fock type by assuming that 

the density of states given by (1.13) could be represented by 

Lorentzian. In the Schrieffer Mattis solution,the criterion for 

magnetism can be written 

UeffNd(0) = 1 	(1.28) 
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where 	
Ueff= T(0) ,.and T°(0) is given by 

0.0 

JT°(0) = 1/27ti de Gcl&e)GL0(-e) 
	

(1.29) 

_00 

Go
da
( 

) corresponds to the result given by (1.11),equation (1.28) 

follows if one assumes T(E) can be approximated by T(0),in which 

case the self energy Yo(e) simply becomes 

Za(0) = T(0)‹hd_a> 	(1.30.) 

With (1.30) we are simply back to the H.F type self energy with 

U replaced by Ueff. UeffNd(0)turns out to be generally less than 

1 and Schrieffer and Mattis concluded that in the low density limit 

the ground state of the Anderson Hamiltonian was probably nonmagnetic. 

Conceptually the Schrieffer Mattis approach may perhaps 

be thought of as having contributed to the theory, the picture 

first introduced by Kannamori(17)for the theory of magnetism in 

metals that the effect of correlations in some situations is to 

produce an effective reduced Coulomb in:.eraction on the impurity. 

But this is only directly useful within the framework of an/effective 

field approach'. 

d) THE KONDO EFFECT 

A conceptual breakthrough was made by Kondo's(5)discovery 

of the anomalous logarithmic term in the perturbation expansion 

of the scattering amplitude of the conduction electrons from the 

impurity using the so called s-d model. The s-d model was first used 

by Zener(18)to describe magnetism in metals. It was subsequently 

used to describe a magnetic impurity in a simple metal and interacting 

with the conduction electrons of the host via a spin-spin interaction. 

The model makes the a priori assumption that there is a fixed spin 
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on the impurity, and in this respect is more phenomenological than 

the Anderson model. The s-d Hamiltonian is usually written 

H = n s-d 	ka ka 
K 

k
f is l
z 
 (a+  cl- +  c l) + S

+
c+ C

k  
, + Sc

+ 
c, 

ki  ki  ki: ki 	, 
* 1 	

k k, 
t 

(1.31) 

S
+ 
and Sz 

are the components of the spin operator associated 

with the impurity. Jkk/is usually taken as independent of k and k 

and is simply replaced by J/2N . For J70 the s-d interaction is 

ferromagnetic and for J<0 it is antiferromagnetic. 

Kondo showed, using the s-d model that there are processes 

in higher orders of perturbation theory (beyond the first Born 

approximation) which give rise to divergent contributions to the 

scattering amplitude. The divergence is a logarithmic one, at zero 

temperature and to order J2  it behaves as logle‘ as e tends to P. 

He showed that the resistance minimum found experimentally in dilute 

alloys could be explained with an antiferromagnetic J. It is well 

known from scattering theory(19)that divergences in the scattering 

amplitude are usually associated with the existence of a bound ustate'% 

Subsequent theoretical work using variational
(20 21)perturbational 

Green's function(22)and non perturbational techniques,(
23,24,25,26) 

suggested that the logarithmic divergence was associated with 

the formation of a spin compensated singlet state with extended 

spin correlations in the region of the impurity. 

Kondo(5) showed that the matrix element T 	/ for the 
kki* 

scattering of an electron from k to k in the s-d model is given 

in lowest order by 

-J/4N sz  

In second order there is a scattering that consists of two successive 

events. First, electron k t  goes to k t  or 	and in the second 

event k 
T 
 or kli, is changed to kl  . There is also an analogous T  
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process in second order. The sum of the matrix elements for the 

two processes and for elastic scattering i.e ck  = Ski 	can be 

written 

(J/40
L 

S:'+ 1/2(S+S-  + SS4") 

[+ (J/4N)2  (s -s+  - s+s-) (1.32) 

• k0- ck 
lc° 

The second term is the one leading to the logarithmic divergence 

and does not vanish because of the noncommutativity of the local 

spin operators,in fact if we put 	 •• 

--n 

21afk  - 1/2 = q(E) ck ck 

(1.33) 

then q(c) behaves as N(0)log(e/W) at T=0 , which diverges in the 

limit as c-10 (i.e as it approaches the Fermi level) . It has been 

assumed that the density. of states in the conduction band N(e) 

can be taken as 

N(e) = N(0) 	-1.4.4 	
(1.34) 

N(s) = 0 	outside 

At finite temperatures and s = 0 the divergence in e is replaced 

by a divergence in T, q(c) is then proportional to(5) 

N(0)log(kT/W) + (terms of lower order) 

The resistivity may be easily calculated in this order, the result 

can be written 

R = Cym E + N(0)Jlog(kT/W)] 	(1.35) 

where c is the-concentration,ym  is the first Born scattering term. 

The logarithmic term is a many body effect associated with the 

additional internal degree of freedom of the localized spin. 

The Pauli exclusion principle comes into play in the intermediate 
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because of the noncommutativity of the localized spin operators. 

Such an effect does not occur for ordinary potential scattering 

with a many body sea of electrons in the limit of infinite impurity 

mass. This point has been considered in detail by Silverstein(27)  

Similar logarithmic divergences have been found in the other physical 

) 
parameters such as the magnetic susceptibility

(28  lusing the s-d 

model. 

Kondo's treatment, despite its success in explaining 

the resistance minimum effect,revealed that perturbation solutions 

for the physical parameters were not valid below a characteristiC 

temperature (or Kondo temperature) TK given by 

kTK  = Wexp(-1/IJIN(0)) 	(1.36) 

The physical significance of this divergence was in part elucidated 

by Nagaoka's work 

Nagaoka,using the retarded Green's function method of Zubarev, 

was able to obtain a non perturbational solution by decoupling at 

some stage the infinite chain of double time Green's functions. He 

obtained a set of equations which had to be solved selfconsistently. 

Nagaoka's approximate solution of these equations showed that the 

Kondo divergence could be interpreted as a quasi bound state between 

the conduction electron spin and the localized impurity spin for J4;0. 

Subsequent theoretical work based on the idea of a/localized' 

singlet state for.  J4(0, was carried out using the variational 

technique of minimization of the ground state energy (29'3°)  they  

have found ground state energies lower than the 'normal state ' 

by a condensation energy associated with the quasi bound state. 

In the simplest approximation the condensation energy just corresponds 

to kT.. given by (1.36). 

Nagaoka' succeeded in removing the unphysical singularity 

in the resistivity at T = 0, however his solution failed in the region 
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T = TK' below which the conduction electron states become unstable 

near the Fermi surface . His solution is therefore restricted to 

the domain Ts,,TK. Abrikosov
(22)made an attempt to describe the 

situation when 
T<TK' 

he developed a special technique to overcome 

the non commutativity of the spin operators and used the Feynman 

graph technique for the Green's function. Abrikosov's summation 

of the most divergent terms in each order although here too succeeded 

in removing the T=0 singularity,nevertheless did give a resistivity 

diverging at T=TK  (for J<O) which also meant that the equations 

become unphysical in the region TOK  . 

Hamann and Bloomfield(31) set up an integral equation 

using Nagaoka's equations(6)and by making simplifications that are 

valid as far as the logarithmic divergence is concerned,they succeeded 

in solving Nagaoka's equations exactly. Their solution removes the 

singularity associated with the Kondo effect at T=TK  for all. the 

physical parameters which were found to be well behaved for both 

0 and. J (0 at all temperatures (T finite). Furthermore Hamann
(32) 

showed that the susceptibility is well behaved in T< TK  and that 

in the limit as T-70 and for a spin 1/2,the local spin is almost  

compensated by the antiparallel conduction electron spin polarization. 

The good behaviour of the physical parameters in T<TK  is in qualitative 

3) agreement with experiment j  but the precise temperature dependence 

of the physical parameters is not,in the limit of low temperatures 
(25) 	(26) 

Suhl 	and Suhl and Wong 	used a non perturbational 

(19) 
method for the s-d model based on Chew-Low scattering theory 	, 

they too were able to remove the divergences associated with the 

Kondo effect. Their solution shows strong similarity with that of 

Hamann and Bloomfield(31 '33)  

The theories of Suhl and Nagaoka-Hamann-Bloomfield (NHB) 
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are important in that they show what one would expect on physical 

grounds,namely that the divergences associated with the Kondo effect 

can be removed in a treatment that keeps more than simply the leading 

order logarithmic terms. To what extent the other terms are kept 

is however not clear for it has been noted (33)that in the s-d 

11+1 
model apart from the leading order terms behaving as e.g (0 

	)(logkT/W)n 

in the various expansions for the physical parameters,there will 

in general be lower order terms behaving as ( 4111+1)(logkT/W)s  where 

n and s are integers and n s. These 'lower order' terms are clearly 

not negligeable as T tends to 0. The theories of Suhl and Nagaoka-Hamann- 

Bloomfield must certainly have included these lower order terms 

partially to yield results in the region T<TK  and T TK but to what 

extend they have done so is difficult to tell . Recently,Zittartz
(34) 

and Zittartz and Willer-Hartmann(35)have shown that the exact solution 

of NeRaoka's equations at T=0 yield results which violate the Mattis 

singlet ground state theorem
(36)

1  Mattis having proved rigorously 

that the ground state of the s-d Hamiltonian must be a singlet. 

Clearly therefore the theories of N-H-B are not correct in the region 

. Zittartz(34)  has also shown that in this theory,the cancellation 

of the local moment is not exact and obtains a susceptibility which 

eventually diverges as T-40. This shows that in this limitIthe terms 

not included in the N-H-B theory must play an important part in 

determining the behaviour of the physical parameters. In any case 

the Nagaoka equations are based on an equation of motion decoupling 

scheme the physical meaning of which is difficult to interpret. This 

is a disadvantage often associated with approximate non perturbative 

treatments. 

The s-d model together with all its implications becomes 

particularly relevant in the light of the Schrieffer-Wolff canonical 

(37) transformation of the Anderson Hamiltonian . They showed by 



eliminating the mixing term in (1.1) to first order in Vdk using a 

suitably chosen generating function,that the transformed Hamiltonian 

can be written when (1.24) and (1.25) 

HS-W = Ho 
+ H

2 

where H2 is well approximated by 

H 	= H 	+ Hd  . 2 ex lr 

are satisfied,as 

Ho- is the unperturbed Hamiltonian,Hdir  is just a potential scattering 

part and is sometimes included in the s-d Hamiltonian as given by 

(1.31), and 'Hex  can be written 	 a• 

where 

H 	= - 	 ; S i+di(trd  S y+d) ex 	kk k  
kV 

(1.37) 

Yk =(cki 	tfid = c
d 
e 	S = a/2 (l 

and /2 are the Pauli spin matrices. The s-d coupling jkkrie given 

by 

1 	1 	1  

- 'a u 	cle 'd 	cle ed 

(1.38) 

= Valikd  

1  
e 	ed 

for k 	kclose to kF  J,,, can be taken as 45k. k  
F  

2UV2 	 (1.39) jkF  kF 	d(cd U) 

clearly for cd.<0 and Cd  U>0 IIKO and the interaction is 

antiferromagnetic. 

It appears therefore that in (1.24) and (1.25) the 

Anderson Hamiltonian is equivalent to the s-d Hamiltonian. This is 

certainly true if there are no new physical effects associated 



with the terms that have been neglected. BUt even though this 

'equivalence'must be tested in greater detail by, future work,one 

can say immediately that the Anderson model must contain partly 
• 

the picture predicted by the s-d model. In the light of the 

Schrieffer-Wolff canonical transformation,both the s-d model and 

the Anderson model become very interesting indeed , it implies 

that the Anderson model which is more realistic contains physical 

effects verified experimentally in the framework of the s-d model. 

But it also poses the problem of how close the contact is between 

these models specially in relation to the results and concepts 

arrived at through the investigation of the s-d model e.g Kondo 

temperaturellocalized spin compensated by conduction electron spin 

polarizationoinglet ground state ...etc 

Kondo type divergences in the physical parameters have 

been found using the Anderson model and making and expansion in V 

while keeping U exactlyl this is of course what one should expect. 

Hamann(38)found a logarithmic term in the resistivity in order V6 

and in the U infinity limit. The coefficient was found to be in 

agreement with the result of the s-d model when LT is identified via 

(1.38). Scala p' 	made an expansion of the Free energy in powers 

of V and obtained the susceptibility to order v
4 

in which order he 

found a logarithmic term in agreement with the s-d model calculations(28)  

However in the techniques used so far,the mathematical difficulties 

associated with an expansion in powers of V have made it impractidal 

to' go beyond the first few orders in perturbation theory. Dworin(4°)  

attempted to devise a technique which would be able to deal with this 

difficultyland allow higher order terms to be analyzed. He developed 

a method based on the equations of motion technique for the double time 

Green's function(12) his method is however far too complicated for practica: 

purposes. 
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Perturbation theories for the Anderson Hamiltonian 

in powers of U and keeping the mixing term exact are easier to carry 

out to high orders and also have the advantage that one can desdribe 

directly the dynamical properties of the impurity spin systems this 

is because one can employ the usual diagrammatic methods of Field 

theory(16). The dynamic susceptibility theories of Lederer and Mills(41) 

for the Wolff model and Suhl
(42)for the Anderson model have made 

it possible to incorporate in the theoryt the concept developed for 

homogeneous metals by. Berk and Schrieffer
(43)and Doniach and Engelsberg(44) 

40 

namely that of 'Spin fluctuations'. The physical picture that has 

emerged from this approach is that one can think of the impurity 

as having a moment on a certain time scalelin other words the localized 

spin moment has a finite lifetime. This is also connected with the 

more general consideration that the question of whether the impurity 

is 'magnetic' or'non magnetic' is itself not well defined. :f by 

magnetic one means that the time average of the occupation number 

of the impurity states has an unequal population of 'up' and 'down' 

spins,then this is not really satisfactory because it omits all 

onsideration of the dynamics of the situation. The definitions of 

magnetic and non magnetic should be related to what one observes 

experimentally. Then it is much more satisfactory to talk of magnetic 

as.meaning that the lifetime of the moment is sufficiently long so 

that it is detectable by experiment , but this in turn also depends 

on whether the particular experiment is measuring the static or dynamical 

aspects of the localized moment (45). Theseideas have found in the 

spin fluctuation theory some theoretical basis.  

The localized Paramagnon propogator .X(w) or d-electron 

dynamic susceptibility is generally assumed to be of the form(41)  

2 
(1.40) 

1w + 1/Tsf  
(w)= l/n 
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where T
sf 

is the spin fluctuation lifetime and w is the 'frequency' 

In the limit Tsf-1.0,7(w) acquires the simple form corresponding 

to the dynamic susceptibility of a localized free spin. 

Zuckermann and Rivier 
(46)

have evaluated the self energy 

of the one particle Green's function using a Xd(w) as given by (1.40) 

and have Claimed to have found the Kondo effect in the limit
sf 

co. 

This question together with some of the other theoretical questions 

associated with the Spin fluctuation model are discussed in Chapter II. 

Despite its success in clarifying some of the physical 

concepts involved in the magnetic impurity problem,the spin fluctuation 

model does not at the present time rest on solid theoretical foundations, 

it provides mainly an intuitive description. Neither has it been 

really able to make contact with the predictions of the s-d model which 

in many cases seem to be in good agreement with experiment,and which 

one knows must be a fairly good description of the Anderson model in 

some limiting situation . 

Roaghly one can think of three different regions for the 

ratio IVA : 

1) 13,46,4.1 	in which case the simple Hatree Fock picture may be 

a good enough description in many situations 

2) IJAN--1. here the spin fluctuation description (in its present 

form ) is more appropriate. 

3) in this region the s-d model is probably correct. 

Experimentally one finds for Iron group. impurities in noble metals
(45) 

an estimate for Va,-10 which is well within region (3); for Iron 

group impurities in Aluminium one finds UAN,--2 again in region (3) 



in this case it has been suggested 
(47)

that the non magnetism 

observed is as a result of the Kondo effect with a high Kondo temperature. 

It appears that for manylif not most cases of interest the region 

(3) seems to be appropriate,i.e the s-d picture is applicable. 

Certainly there seems to be a need to treat the Anderson model from an 

s-d point of view , this is most directly achieved in the framework 

of perturbation theory by expanding the mixing term V and keeping the 

Coulomb term exactly . The techniques that have been used up to now 

are unsuitable to analyze the higher order effects. However approaching 

the problem from this direction will undoubtably be able to throw some 

light on the relationship between the Anderson and the s-d model. 

In Chapter III a time independent method is proposed for 

the expansion of the Grand Partition Function Z and the Free energy 

F which is capable of going beyond the usual low order approximations 

in a considerably easier manner tAan the usual techniques used. A graph 

representation is derived for F and the results , together with those 

for the susceptibility are discussed in Chapter IV . 

In Chapter II , time dependent perturbation theory for the 

Anderson model is examined. In particular it is shown how Nagaoka- 

(6 22) Abrikosov 	' 	type self energies may be obtained from a Green's 

function technique for the Anderson model ,.this is also discussed 

with reference to the usual expansions in powers of U and SiLin fluctuation 

theory. 



-29- 

CHAPTER.II 

TIME DEPZNDET PERTURBATION THEORIES  

A) THE SPIN FLUCTUATION MODEL  

For the Anderson model the two quantities of great 

interest are usually the one particle 'time Temperature' Green's 

function and the dynamic susceptibility. The 'time Temperature' 

) 
w T 

d
t, ( s 

d Green's function G 

	

	is the Fourier transform of G
t

a
T
(t) a  

where(16)  

Gdta'T(t) = 	<Ticdo  (t)cda  (OP 
	

(2.1) 

The operators are in the Heisenberg representation, T is the usual 

time ordering operator and the average is over the 'perturbed'ensemble. 

The poles 

at finite 

electrons 

of Gt,
da
T(0 give the spectrum of one particle excitations 

temperature. The scattering cross section of the conduction 

from the impurity is proportional to ImG
t,T( ) , and 
da 

from this'it is possible to calculate the resistivity. The dynamic 

properties of the impurity spin are contained in the response function 

(w) (41)  which is the Fourier transform of 'X R(0 where 

X ( ) = 	e(tX [d+(t),rd(o]> 

.The sqare bracket denotes acommutator, Sd 	c c 
dt di 

9(t) is the usual °function . In the 'imaginary time 

(2.2) 

S
- 

= c
+ 
	and d 	d4.  

' technique 

XR(w) is calculated by considering the quantity X d(T) given by 

Xd(T) = 1:TN(T)S(01> 

The function XR(w) describes the.response of the local spin to 

an external magnetic field of frequency w 	The techniques most often 

used to calculate Xd(T) and Gda(t) are based on the Feynman diagram 



dcn  <T1A( T )B(0) 

(2.4) 

or Field theory approach 

The expansion of a general two time Green's function 

in the imaginary time technique is written (16) 

co 
if 	YT 

T<A(T)B(0> = 	1 _1)- 
n  T 	•( 

<S% n! 

I ) 0  

n=o 

Hnt(T 1)H  int(T 2) 	Hint(Tn)k I   

where H
int can either be taken as 

1) Hint = Mixing + CouloMb term 
	•• 

2) Hint = Mixing term 

In case (1) the average <> is over a noninteracting ensemble whereas 

in case (2) it is with respect to the Kinetic energy and the Coulomb 

term in (1.1) . The advantage in the first case is that one may use 

the usual thermodynamic Wick's theorem and the expansion reduces to 

summing over all topologically distinct connected graphs. Furthermore 

it is easy to show that the expansion reduces to one in powers of U 

only because V may be exactly included in every order by taking the 

'bare' propagator in the Fourier transform version of the theory as 

the Green's function given by (1.11) 	In the second case the problem 

is much more difficult because one cannot apply Wick's theorem for 

the d-states and as a result the problem acquires considerable 

complexity . Nevertheless it is of great interest as it represents a 

very different physical situation to (1). This problem is treated in 

chapter II section B. 

One•of the• simplest approximations for Xd(w) is to,consider 

the sum of the so called particle hole ladder diagrams given by 

Xd  (w) = 

F4 - 2 + • • 
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The sum can be written
(42) 

1 - )(3(w - 	li ) (2.5) 

where "'y'tB(w) which corresponds to the particle hole bubble is given by 

X B(w) doc
w + iw

n
1
)G

d
T 
 -a(iwn1

) 	(2.6) 

We have written G
da for the temperature Green's function in the 

imaginary time technique. The approximation corresponding to (2.5) 

is refered to as the R.P.A or time dependent Hartree Fock approximation. 

It represents the repeated scattering of a particle and a hole pair 

at the impurity. 

The 'zero order'bubble XB(w) may be "evaluated by the 

standard methods of changing the sums over frequencies into integrals(16) ' 

and is written as 

00  

B 	= -1/2n de tanhe/2T ImGt'T(c) 
 
d
,T(e+w) + Gt,dA

T
(c42. dR 	R  

-00 

In (2.7), Gt'A
T
P  denote the advanced and retarded time Temperature Green's 

functions respectively. 

We note that 

ReGA  (w) = ReGR  (w) = Re(w) 
	

(2.8) 

'ImGA(0 = -ImGR
(w)  = nNd(w) 
	(2.9) 

where Re and Im denote the real and imaginary parts of respectively. 

It follows that 
00 

Re)C3(w) = +1/246c tanhE/2T Nd(e) Re(c+w) + Re(e w)I1(2.10 

and 

-oo 

00 
(2.11 

 

• (w) =-- 
+n/2 

ir  

de tanhc/2T Nd(e) ;:a(e+w) - Nd(c-w) 
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Clearly Im-Xiit(w) 	0 	as t•:—•>.0 

further: Re,4B(w) at w =0 and at T =0 is given by 

0 

Re
B
(C)- :. 	2N

d
(e) R(c) de 

- 00 

(2.12) 

If Gd in 2(B
(0 is taken as the Hartree Fock renormalized propagator 

and written 

GT a (iwn  ) - d  
1 

 

(2.13) awn 
eda U<nd-a>+ iQ 

where the<nsac > have to be evaluated selfconsistently, then with..this 

renormalization we arrive at the analogous result in the Anderson model 

found for the Wolff model by Lederer and Mills(41)using an equation of 

motion approach . The static susceptibility ;<:cL(0) simply becomes 

1.1 
N
dH.F

(0) 
(2.14) 

UN 	(0) dH.F 

The static susceptibility develops a pole at 1 = UNdH.F(°) and 

perturbation theory breaks down for UNdH.F(0),>1 , this is simply 

the Hartree-Fock condition for a local moment to appear (eqn. 1.23 ). 

If U is is taken as the critical value of U for moment formation in 

Hatree-Fock theory then for U>UcX B H.F(0) becomes 

    

[G. T(is ) 
t n1  

-(ie )1] 
4 nl H.F 

(0) = 

12(‘n, - ‘nd  ) 
rti 	at 

= 1/U 	 (2.15) 

Now going back to the more general situation represented by (2.),. 

we assume, following Lederer and Mills,that for small w the numerator 

and denominator of (2.5) may be expanded. in powers of w as 

xd (w)  

  

• / 
+ v;X8(0) 

- UXB 	• (0d- UwX_(0) •   

(2.16) 
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where 2‹.
B(0) denotes dw B » (w 	and only the terms to power w 

have been kept. 	vi=0 

In the non-magnetic situation, it follows easily from (2.7) 

that Re .2(B(0) = 0 and that Im C13(0)  is given by: 

op 
Im 2C-B(0)= 1/2n-co d [tanh e/1 	Gd(e) 

-co de  

2 
(2.17) 

,2 which is well approximated by its T=0 limit, nJd(0) 

Neglecting the second term in the numerator of (2.16), 

7.d(w) becomes : 

2Cd(w) 
_X-B(0)/Uned(0) 

iw 	1 - 	(0j 

-UnN2d
(0) 

(2.18) 

iA 

 

w i-r (2.19) 

2("B(°) r 	1 - 2CB(0) where A is real and = 	and 

UnN2(0) 	Un 42(0) 

frcan be put = 1/Tsf, where Tsf  is interpreted as the spin fluctuation 

lifetime. In the limit U
B(0)-10-1 	Ts f --J0-00i.e. the moment on 

the impurity becomes infinitely long lived and the system is magnetic 

in the sensee(n
dt 
 >i<n 	. This situation is allowed to occur in the 

11.F approximation described above 
1- UN (0) 

In the region UNd(0),‘,1 T
-1 may be written sf 	TENd(0) 

Equation (2.19) almost sums up spin fluctuation theory. It is the 

mathematical formulation of' the concept that the moment on the impurity 

must be thought of as existing for a certain ' time ' and is much more 



satisfactory than the static 'either' 'or' way of putting the question. 

On the other hand it may be seen that the form (2.19) is essentially 

an assumption. It is assumed that the ladder approximation is a good 

enough description of the response and that furthermore the small 

frequency limit of the numerator and the denominator of (2.5) is 

sufficient to describe the dynamical properties of the localized spin. 

The physical' picture that the form (2.19) is designed to give is 

probably good in the region ur,IN where one can conceive that the 

low frequency fluctuations of the local moment will be one-of the 

dominant physical effects in determining the behaviour of the physical 

parameters . The approximation (2.19) having cut out much of the 

information contained in the dynamic response function . 

N.Rivier and M.J.Zuckerman(46)calculated the self-energy 

contribution to the Green's function GT(iw n  ) due to the particle-

hole ladder for which the vertex part frh  (0 is given by the graphs p 

ph(w) =  
1 

1 	 I 
1 	+ 	1 

1 
I 	 1 	 

 

I 	I 	I 
I 	I 	I 
I + I 	1 
I 	I 	I 

-.< 	I 	I 	-C 	I  
g< 

	etc. 

     

Fig.3 

II 

1 - U/(B(w) 

The self-energy Eda(w) = 
Pc 

Excluding the first term in the ladder which is simply the H.F term 

theself-energy can be written as: 

zdd( ) = -iwn)Xi iwn) 
(2.230 

N.Rivier and M.J.Zuckerman took Xcl(w) as given by (2,19) and Gaa  as the 
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Hatree-Fock renormalized propagator (eqn. 2.13). They obtained a self 

energy the real part of which is proportional to lo(4kT/n + 

and argued that in the limit-4 
sf

-00, the self energy acquires the 

logarithmic behaviour associated with the Kondo effect. We note that 

iA • in this limit ;K:(iw
n
) becomes 	iw 	

and 
n 

iA  
• XdA,R(w)  = w + ib (2.21) 

which is similar to the dynamic susceptibility for a free spin,but whereas . 

for a free spin we have 	 •1• 

;X FAIR(W) = 	ib 
	 (2.22) 

in which case the logarithmic self energy cancels in this order because 

= 	in zero external field,(2.21) can only be interpreted as a 

localized spin susceptibility in the region 
<Szlocal

>#  but this 

would be in contradiction.to the assumption made in deriving the form 

(2.19), and it seems doubtful that the logarithmic self energy found 

in (46) is correctly describing the Kondo effect in the limit T
sf
-1-00 

This limit corresponds to the situation where the static susceptibility 

has a pole and therefore the system exhibits a sharp transition 

between magnetic and non magnetic behaviour as in H.F theory. Physicallly 

however, one would not expect the notion of a sharp phase transition 

to be applicable to a small system such as an impurity, the fluctuations 

in such a system should be able to smoothen out the sharp critical 

boundary between magnetic and non magnetic behaviour and the susceptibility 

should never exhibit a pole. This has been the basis of the approach 

due to Suhl(42) and Levine and Suhl
(48) who have argued that the 

particle-hole ladder gives the dominant contribution to the dynamic 

susceptibility and that selfconsistent renormalization of the propogators 
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in the ladder should remove the pole in the susceptibility which is 

obtained by the use of unmodified (or H.F modified ) propagators. 

In Suhl's treatment , the equations (2.5) 	(2.6) , (2.20) and (2.23) 

where (2.23) is given by 

GT 	(iw n 	
1 ) = 	 (2.23) de  

iwn - do* 
- V 	1 	- U<nd_a> - 2:(iw

n 
 ) 

Liwn-cka  

must be solved selfconsistently . This is in general very difficult 

and Levine and Suhl(48) further assumed that the low frequency response 

as described by (2.19) gives the essential features of IgEd(iwn) 	Thus 

in fact what is determined self-consistently is A, and Tsf. The 

physical picture that they assumed corresponds therefore to saying 

that the susceptibility is always close to a pole but that the localized 

spin fluctuations will always prevent the moment from actually forming 

in the static sense . Hamann(49)  obtained a self-consistent solution 

to these equations in which the logarithmic effects in the self energy, 

as in (46) for example, are treated correctly . He also considered 

the problem in the situation in which these logarithmic effects would 

be interpreted as the Kondo effect and found that for large U, the 

characteristic or Kondo temperature TK  in this treatment differs by an 

enormous factor from the TK 
obtained via an s-d treatment of the 

.Anderson model. He concluded that the renormalized R.P.A treatment is 

not correctly including the Kondo effect. Levine and Suhl(48)also 

showed that when modified Green's functions are used in the particle-hole 

ladder, the theory is no longer spin conservingand one has to include 

a much larger class of diagrams for the susceptibility in order to satisfy 

the symmetry requirements. 

It can be seen that the spin fluctuation picture has not 

been able to go beyond the'non magnetic' situation into the s-d type 
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situation, probably because it has so drastically reduced the physical 

'mechanisms' through which this could take place. However the failure 

to go beyond the small U limit into the large U limit characteristiC 

of the s-d model seems to be rooted in the perturbation method itself. 

It is very difficult to see how the perturbation expansion in powers of 

U in its present form could achieve this, to illustrate this point one 

may consider the expansion when V = 

When V = 0, we know that the exact result for the Green's 

function is given by (1.16).- If this result were to be obtained using 

the connected graphical expansion for V = 0, the task would a hopeless 

(:)-Vone. 

. 	y41.1V GT . (lw ) = 	 wit,  6-  I Wm  
oa n 

• • 
Wri.Per' 	W n. 1 45,' 	Wrk. , 	 Wri 7 e' I 	 , 6- 

)Pds 	 )1. 

Fig.4   etc. 

Clearly any partial summation of the above graphs is likely to give 

a misleading representation forda(iwn
). The reason for this is not 

difficult to see; if a direct expansion of (1.16) was made in powers of 

U and compared with the result of the graphical method, one would note 

that the latter contains in high orders an enormous class of terms which 

actually cancel when grouped together in each order and only then does 

one obtain the contributions of the former. This is of course associated 

with the application of the thermodynamic Wick's theorem to this problem 

where all the operators are refering to the same site. As an example 

of how Wick's theorem works in this case one can consider the average 

	

Zedacdandand-a%.= (1 	fda)fda d-a -   (1 	fda)fdafd-a 
= 0 

which gives the correct result when both terms are summed as it should do 



In high orders the number of terms on the right hand side will increase 

considerably, each representing a graph, whereas in fact a tremenduous 

self cancellation would take place if they were all grouped together. 

In this way it is easy to see that if only a partial summation is made 

of these graphs one may obtain a totally irrelevant result, in particular 

for large U. The difficulty expresses itself in this way that in each 

individual graph the electrons interact on the d-level as if there were 

no restriction on the occupation number of the d-level, giving a probabilit 

fd and (1 - fd) for the d-state to be occupied or unoccupied, i.e the 

Pauli principle is disobeyed in each individual graph. The result (1.16) 

is trivially simple to derive from perturbation theory if the contributions 

are evaluated directly and Wick's theorem is not used (see end of section B 

This difficultYz associated with Wick's theorem in_.conjunction with 

partialisummations appear less serious when the mixing term is included 

and the propogators are replaced by those of (1.11) . In this case 

the impurity level acquires a width A and is no longer well localized, 

but nevertheless it is still there and it is difficult to see how this 

approach will'ever be able to describe the Kondo effect properly and 

yield the presumably two pole structure of the exact Green's function(40) 

because in both these cases the correct treatment of the exclusion 

principle on the d-level is,it seems essential to produce this structure. 

These conclusions are supported by the perturbation theory developed in 

'the next.  section in which U is kept exactly while the expansion is carried 

out in powers of V. 

B) EXACT TREAMENT OF U 

In this case Hint is taken as 

+ 
H
int = V >(c+  daCka 	c kac  da)  

(2.24) 



and Hint(T) = exp(H - ItN)T• Hint exp-(Ho
-uN)T 	

(2.25) 

where Ho is now given by 

Ho= Ye-kanka + yc-- nda 	
a  

+ Un_ n 

4 	

(2.26) 

kfie 	G4 

To calculate T  Gd0(-t1-T2) which is defined as -14CTIcdo(ycL62  > . 

we substitute (2.25) into (2.4) and expand in powers of the mixing 

interaction. Keeping the terms of order V
2
from the numerator and 

denominator of (2.4) we have for example: 

	 V I 

	 Y 

GT (1. 	= G0T(T  

de 1 21 	de 1 2) + V
2(-1) 	

r' 
dT1dT2 F.rc+  k1a1

1 
	a2(T2)1> 

koce ° ° 

T 	da (T1d )c+a 62d )c 	6 )c+  6 )> + <:T da 	d (T
1
)c+o (T )c+  a ( a1 I do2 2 	 2 dal 
	2 

TC
k
1
a
1 
 (T
1k 

)C-1-

2a2 	 1 
)> 	

G

de
OT(T 

1 
_T 

2) 
- 
C:Tcda  (T1 )cda2  (T2  )> 

< Tic,i+t  (T2)ck  (T 
1 - 	2 

(2.27) 

The localized and band states are non-interacting and can be decoupled 

(as shown) in every order, the band states are non-interacting among 

themselves in Ho and can be expanded by the usual thermodynamic Wick's 

theorem for 'imaginary times'. The whole difficulty here,is of course 

that the d-electron many particle Green's functions cannot be expanded 

by Wick's theorem because -H°  includes the Coulomb interaction, but 

at the same time we do not get into the difficulties mentioned earlier. 

One can devise a graphical representation for the terms 

appearing in the expansion of GT a (T1 
 -T
2  ) 
	We represent the 1,2,.... n d  

paricle Green's functions refering to the impurity site merely by a full 

circle which is the junction of 2,4, 	2n lines carrying the 

appropriate time, spin indices. The convention used is cd for an 

ingoing line and c+c, for an outgoing line. 
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e.g (-1)24:T(od  (T )c4.  (T )c 	(T al  1 da2  2 da3 	aa4  4 

Z2,  e 

is is represented as ( fi5•S) 

  

TPA 

- - • 

The contribution in each order of the numerator of the expansion for 

GT(T1 2) can then be represented graphically by joining together in all 

possible ways the internal lines of the n-particle Green's functions 

by open circles in such a way that an ingoing line is joined to an outgoing 

line. 

e.g to order V2the numerator gives 

, 61 

Fiq.6 

An open circle connecting an ingoing line of index Tn,am  to an outgoing 

line of index Tn,an contributes 

(-1) <11e,
m
a
m  m khan  n 
(T )a+ 	(T )1> 	

,T 	
(T - T ) 	(2.28) 4 mam

lk
n
a
n m n 

We sum over all momentum labels,internal spin labels and integrate 

over all internal time labels. Clearly the two terms of order V2 graphedM 

above give identical contributions, they differ merely by a permutation 

of the labels. In general to order V
2n we have a (1+1)-particle d-Green's 

function, we join together the 2n internal lines by open circles in all 

possible ways, there is asymmetry factor (1/n!)2for each contribution 

furthermore all the contributions obtained by joining the internal lines 

in all possible ways are equivalent , there are II! of these. Thus to 

order V2n there is a single graph in:the expansion of the numerator 

composed of an ingoing and outgoing line into a full circle with n bubbles, 



Fig.7 

together with a symmetry factor 1/r.:. 

e.g to order V4  there is a single graph (Fig.7): 

with a symmetry factor 1/2!. 

If we choose the convention of writing all the n-particle 

d-Green's functions as: 

T G
dn (Tl' T2' T3' wet2n) = 	d n4TtCd(T1)C-1-(T2  )Cdd (T-)C÷(T4 4poose 	) .1-(T2n  t> d 

i.c where an annihilation operator is always followed by a creation 

operator, and so on, then to a diagram of order V2n there corresponds a 

factor (-1)n and a symmetry factor 1/n! where n is the number of bubbles. 

Clearly G
k
T  
k may be written GT

k and thus each bubble has 
m n 	nn

a bk k 6
cl nmma , 

n 
 

a single spin and momentum index. 

Thus to order V4  for example, the contribution of the numerator 

graph can be written: 

T 

11 

TT 	T 	T 	T 3dT 4dT 5dT GT 6 3d( 1a  ' 2O 'T 3a 3'  4a  3' 5a  5' 6a 5)  

G 
3 a3 

 kt34)G
k5 a5 

tT •..Tj 
T 

The sum to all orders of the above type graphs, constituted in order 

2n V 	of an incoming line and an outgoing 	joined to n bubbles, then 

gives the numerator of the expansion of Gdo(TI-T2). 

The grphs corresponding to the expansion of the denominator i.e 

in powers of V will give rise to the same kind of diagrams, except that 



c b) 

-1+2- 

these will be 'unlinked' 	eg. 1  

fa) 

Fig.8 

To a disconnected diagram consisting of a graph with two 

external lines joined to m bubbles, n
1 vacuum graphs with m1 bubbles 

2 vacuum graphs with m2 bubbles,.... ns vacuum graphs with ms bubbles 

factor (-1)6(-1)8  where g is the total number of bubbles;e.g. the • 

m!(m1On' (m2. )n2 ...(msOns 

s! 	
and a sign 

graph (a) of fig. $ has a factor (.....1)2(...1) 

1!
1 

1! 

a) Fourier transform  

It is simpler to work in the Fourier transform version of 

the theory . For the imaginary time technique, we write in the usual way(16 

(-1)n<Tic (T )c4-(T ). 	c+(T )17=T2n 	GT  (iw iw 	iw 	)e-i(wnIrwnTi.  d 1 d 2 "" d n 	dn n1 n2"' n 2n h1 
This relation may be inverted to give: 

GT (T T 	2n 	
T 	) 

a2 ni 
GT (iw 	iw 	. iw 	)= 

dT1'6' dT  2n 	do 	2"'" T )e-i(w T dnn
1' n2 	n2n o 

(2.30) 
where w =(i)-1(2n+1).1111, n is an integer and kT has been taken as T 

throughout. The transform of Gk(T1-T2)  with respect to the two time 

variables is easily calculated and is equal to GiciWn  Awn  ) where 
1 2 

there is a symmetry factor 



- 	. 	 1 Gk(iwn iwn ) = 	w in l- 1-  ck 

5 
 nl 

,w  n2 T 1 

(2.31) 

Carrying out the appropriate Fourier transformations in the original 

expansion , the contributions to GT(iw n) is now evaluated as follows 

from the graphs: e.g the order V
4 

contribution to the mAltrueratior (fig.7) 

becomes 

ca  
Fig.9 

and gives: 

V 4(-1) 2 	T Gd3 iwna'iwna'iwn1  a1  1
iw
n1  a1 

 ,iwn
2  a2 

 ,iw
n2a2

) X 

nz 	 . 

T 	T 
Gk a (iw )Gk a (iw ) 
1 1 	

n1 
 2 2 

n
2 

The problem 'reduces' therefore to evaluating then-particle Green's 

functions for the d-electrons in frequency space. This has to be done 

from first principles by using the definition of the Green's functions 

and turns out to be impossibly tedious beyond the 2-particle- case which 

is itself very difficult to calculate. In addition to this there is 

also the difficulty associated with the non-cancellation of the unlinked:. 

graphs. This particular difficulty is overcome in the 'cumulant' method 

or themethod developed by Hubbard(50) and which was in particular 

designed to treat the model often used to describe magnetism in metals. 

It can equally well be applied to the present perturbation expansion 

for the Anderson model. 

In Hubbard's technique as applied to the Anderson model, the 

advantage is that one can have. a linked cluster theorem. The graphs are 



(2.32) 
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drawn in the same way as before except that .the vertices (or full circles) 

can now be repeated e.g as in the following diagrams 

 

O 	 

 

0 

 

   

• • • • et'c• 
C.' 

Fig.1O 

The Gz,n's function is then given by the sum of all topologically distinct 

connected diagrams, where the vertices can be repeated. In this 

representation , the full circles no longer denote n-particle Green's 

functions but the n-particle cumulants defined as follows: 

If A ,A , 	A
an 

refer to Fermi-Dirac operators (in this case 
al a2 

they will simply refer to the creation and annihilation operators of the 

impurity state) , then the cumulant average 

<A A 
al a2 

 

Act  >c  is, defined as 

 

b 
7.1 (t,) 6:1 (t,) 	b 
al 	a2 	

ia  (tn) 	a 	a  a* 
log 	exp. 6n(t )A (t) 6 	 1 

6    6  

where 	qb(t)1(34(‘)  = ria(t)ri5  (t) 

The rules for calculating the sign and symmetry factors are given by 

Hubbard and are particularly complicated. The cumulant method makes 

it easier to draw all the possible contributions in each order and to 

make partial summations of diagrams, but the main difficulty associated 

with the calculation of the d-Green's functions still remains. 

As a comparison it is useful to consider the contribution 

to the Green's function from the direct method and the cumulant method 

to order V2. 

Yr 
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In the cumulant method there are two graphs in this order: 

vt, 2 6" 	 idvt. G.°  
> • > 0> • >' 

Fig.11 

In the direct method we have: 

w'1  

C 

where the index c on the full circle is to distinguish between the 

cumulant and the Green's functionvertices. 

The contribution toNfig12 is written: 

V2(-1)T2  G(iw iw iw iw )GT  d na na nlal nlo1 klal(
iwn1

) 

n',5, 

for fig. n  we obtain: 

2 oT V2 (-1) Gda(iwn 
GoTdo(iw n 

	k 
)G
T 

(iwn ) 

1 	1 	1 	1 
(2.33)' 

(iwn) 	
+ 	V2T2 	Gk1a1 

(iw n
1 c 
)X(iwno' iwna' iw 1 1iW 1i

1  n a 	nG1--  

il-r , 	(2.34) i   

Xc(Tl' 2,T3,T4) = -1 <,T1cd(Ti)cl-d(T2)cd(T3)'c T4)1> 	- 

1 )c-17d  (t2 )1> <Ticd(T3)cd÷(T4) > - <11cd(Ti )cd+(t4 ) > A 
< Tic:.1(T2)cd(t3)1> (2.35) 

It is easy to see that when the Fourier transform of (2.35) is 

substituted back into (2.34), we are back to the expression corresponding 

to the direct expansion (2.33) as we should expect. 

2 

k(iwn)  

Where 



• 

The term • 	V Gd 
2toT 

(iwn //ka  (iw n) 	having actually cancelled when 

grouped together with the 2-particle cumulant graph. 

In the cumulant expansion it is already possible at this 

stage to obtain an approximate expression for Gda(iwn)  based on the 

summation of the graphs 

?.. 	0  > 	+ 	),- 	0 	), e > 	+ c 	 c 	c 

> 	0 	) 0 > 0 >  -0 	0  > 	± • • • . . etc 
G 

Fig.l3 

1 	1T2GoTaw 
n 
 ) 7GT (iw n)  

da  
k 

where Gda
oT 

is given by (1.19) with E replaced by iw
n 
and G

T 
a (iw 

n
) k  

1  
iwn ka 

correct result in both limits U--)-0 and V---)-0 . In fact (2.36) is 

similar to the result obtained by Hewson( 14)  via an equation of motion 

method , the difference being that in this case the averages <nd4.0> in 

G
da
T  
are zero order , whereas in Hewson's scheme they are to be evaluated 

self-consistently. Therefore there is no direct connection between the 

two results . 

It'was pointed out that the term corresponding to the 

first expression in (2..34) and to the order V2  diagram in (2.36) 

cancelled when the complete contribution was considered, this is 

actually true in all orders for the diagrams of fig13. In fact these 

contributions do not exist when the expansion is written out in full, 

one has merely added them in one place and substracted them in another. 

The question that still remains is whether such contributions exist 

in the direct term corresponding to the first term in (2.33). 

The sum is written 

Gda(iwn) - (2.36) 

is simply from (2.31) . This approximation gives the 
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If so it must arise when a
1  = a. Calculating Gd(iwn a,iwn a'iwn O'iwn4a) 1 	2 	3 

from first principles, we obtain 

Gd(iwn a'iwn a'iwn a'iwn4a) = (-1)  
1 	2 	3 	Tr e-PHd • 

Tr 
-RHd 14n1Wn2 3  Wn Wn4  

   

d-a 1 - d-a 	nd-a  '13cr 
w w 	w w 	

21 - nd- 
 

n n, n 	n1 do 	n1 
 

da 	n3 do iw- 	iw - c- U iw- E 	iw - E 1 	q n  2 n
3 

3do 

(2.37) 

where p = 1/T , 0
w
n
w
n
/ is the Kronecker b and the nd+a  in the square 

brackets are operators. 

The result (2.37) is the same as would be obtained by 

applying. Wick's theorem, the difference being however that in this 

case the nd+a are operators and the Trace must be evaluated for the 

whole product. This result is quite general, the n-paricle Green's 

functions with all the spins parallel may be expanded by 'Wick's theorem' 

keeping the 	as operators and evaluating the Trace with respect 

to the complete product. If the contribution is now evaluated using 

the Green's function (2.37) we have the two graphs 

op 
op 	k 	op 	 op 

›.  0  > 0 >,- 0 > 	+ 	>- • w.„6-•  
c a) 

Fig.14 

i.e the graph from figt2awith 01=0 has broken up into a linked and 

unlinked graph. The 'op' label signifies that the Trace must beg 

evaluated for the whole product. The linked part contributes: 

a 
(iw 	u. a  (iw n) 	 (2.38) 

k 	. 
r 

V < 
m 

 da,op 



(2.38) can be rewritten 
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1 - (nd- 	

(iw 	e - 	 -1 

V2 

\2

!

irca 

iw

n

) 

[

(5  
	 - 	end-off  

(iw - e )2  n do 	n do 

(2.39) 

For o=a1 there is in this order another contribution, coming from the 

expansion of the denominator e.g the second term in (2.33) for o=01-. 

Combining this with the contribution due to fig.(141 , we have 

V
2 
:-?7.?

T
k  (iw o n A:GrZawn)Gfi n  (iw) 

1 

GoT 	(iw )GoT . (iw  ) 
da,op n da,op n1 

(2.4o) 

1 
The analogous term to the first term of (2.34) is clearly (2.38) and 

is obviously very different from it. Thus it can be seen that the 

advantage in form gained by the cumulant expansion may be lost in practice 

when one wishes to carry out partial summations: the above example shows 

how one could be summing effects which do not actually exist in the 

complete expansion. The difficulty is similar to the one mentioned 

in connection with the linked graphical expansion in powers of U at the 

end of section A. 

Working with the direct expansion it can be seen that one 

can think of two kinds of 'unlinked graphs', those appearing in the 

expansion of the numerator and those coming from the denominator. The 

characteristic feature of these unlinked graphs is that they will give 

.rise to contributions having factors of 1/T, 1/P
2
...etc and must 	0 

.as T-40. There is good reason to believe that they can be included 

as renormalizations of the temperature averages, this point is discussed 

further at the end of this section. 

The analogous series to (2.36) in the direct expansion 

is: 

   

0 }  
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Fig.15 
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Gda(iwn) - 
1 - <nd_ci> 

iwnda 
- V 
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• < nd-a> 

iw - cda
.- 	1  

iwn-eka 

1  
iwn-cka 

(2.41) 
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(2.41) describes two resonances around Ed and cd+U with a width A 

This result can also be obtained from an equation of motion approach, 

the difference here too is that in the latter the averages are self-

consistent whereas here they are zero order. In (2.41) , GcTia  retains 

its zero order two pole structure , a result strongly suggested for the 

exact Green's function from an equation of motion analysis
(4o) 

and in 

sharp contrast to Hartree-Fock and renormalized R.P.A type results(49) 

To be able to go further with this perturbation approach, 

one needs to know G
L
(iw

n a
.,iw

n a
.0.w

n -a
,iwn -a) as well as the.  

1 	2 	3 	4 
higher order Green's functions. These are in general very .difficult 

to compute and it is worthwile to look at some zero temperature results 

to get an insight into the structure of the higher order Green's functions 

for finite temperature. 

b) Zero temperature 

) 
At T=0 we define the one particle Green's function Gda(t-t) 

GL(t-ti) = (-i)<(1) IT oda( t )c da(t1)1(,9> 

where the average is taken over the exact ground state 100 of the 

perturbed system and will be simply denoted by 

The Fourier transform with respect to t,-C'  may be written 

Gtda (w'  151) = 
f 	• t 
dt at Gd (t' 	e 

iwt-iwt 

and ....Do -co ct. 
• 

G (t t) = (1/2702 	dw driGtda(w W) 
It 

-iwt+iwt 



In general we define the n-particle Green's function at zero temperature 

as 

Gdn(ti, t2,t3  , ....t2n) = (-i)n<colTlcd(ti)c:i(t2)....c(t2n)Ik> 	(2.4 

where as before a c+  always follows a c and so on . 

co 	0o 	c** 
t,a Gd 	(t-t) = (-i)  NZ-i)n 	dfdt1 dt2 	dtn 

(c'°)› 	n ! 
vc  n=o 	< 11.1c d (t)c 	H int( tnki dc(t)Hint(ti) 	(2.1+3) 

Where E>efeenotes one of the 4 possible unperturbed "ground states" 

given by Idtd>pF  

1d4.0) 

Idt0>pl, 

10 0> cpF  

a3 

a1. 

 

    

      

denotes the unperturbed Fermi sphere. 

The contributions to Gt'a  da 

where F 

may be graphed in the same way 

as before. For the numerator graphs the contributions are changed accordin 

to: 

Gd,(iwne...) 

Tm+1; 

 

00 
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(2n)
m+1  -Co 

0.5
OD  
1W10•41.1(1Wm  
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1  and Gk
t 	= a 	w - cka+ ibsing(ek  

e.g in order V2 the graph 

Fig.16 

contributes: 
0 

(-1)V2(1/2n)2  I dw 	G(w w w 	w 	)G 	(w 1 	d a' a' la
1
' la

1 ka1 1)  
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To obtain the full order V2 result at T=O,one has to evaluate the 

wla'w2a'w3-a' 2-particle Green's function Gd' ( 	q-a) where a refers 

t to the 4 possible ground states . 'The G a  can be found by taking 

the limit T-.*0 of the 'time Temperature ' Green'S functions defined 

in the same way except that the averages are taken over the '-ensemble! 

of states at finite temperatures. An explicit calculation of Gt2'
T gives 

(Appendix 1) 

Gt,T( 	• 
d 	

ur 
 la'

w 
 2a/w3-ew4-a)  = (-i)2  

2 

Tr e d 	  (1-nda)(1-nd_a)b(w4-w3)b(wl-w2Ala l  
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Gt'= al  
2 	w3, 

Gt'a4= 
2 

X [ (217.i)2  
Tr e-"d 

 

(2.44) 

 

The result for G2'
T  given by (2.44) is easy to interpret in the limit 

T-*O. In this limit and in the region ed>0 , 2ed  + U>0 (all the 

energies are measured relative to the'Fermi level) G'T  becomes 

Gt2
a' which is given by 

Gt'a 	w 	w 	w. 	) = (2n)2 6(w -w )6(w -w )Gta1(w )Gt'al(w ) d 	la' 	 2a' 3-a' q-a 	1 2 	3 4 da 	1 d-a 	3 

+ 	Gt'a2.(w1  )-G
t'a1(w2  ) G

ta d1(w3 ) G
t
d'a1(w4  ) T pp (w2 4 ) (2n)b(w24  +w,-w1  -w3  ) da 	da 	a a   

where 

t a 	1  G "(w) - da 	w - Eda  i6 
and Tpp(w+w1) 

iU(w + y2ca) 

 

 

(w + w1-2ed-U+ib) 

(2.45) 

t a 
G2 1  can be represented 

T PP(E)  is just the vertex part for the partible-particle ladder. This 

result could of course have been anticipated because in the region 

ed).0 , 2ed  + U>0, the only nonvanishing graphs are the ladder graphs 

and the propogator remains the bare propagator 

1  
w -'ed+ ibsing(ed) 

in a perturbation calculation of G' 
2 	

in powers of U. 

Similarly, for ed.<0 , 2e + U.KO we have 

- ed+ ib 

where Thh  = . . . . etc. 

 

Fig.1Z 

 



the propagators are Ed 	U 	
and Thh w

1 
+ w3-2ed  U-ib 

1 ju(w1  + w3-2cd) • ;  

i G ci(w 	) - 2 	lt'
w  2 t'w34)w  44, 
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represents the hole-hole ladder. The propagators are renormalized 

with the Hartree-Fock bubble 

which in T=0 and cd <0 , 2cd + U<0 just gives U. 

In the region ed 4(0 , 2ed  + U>0 the ground state is 

doubly degenerate , if one takes either 
I de> 4)F 

 or I d,ir  0> (pF  

to be the ground state (in which base one has to think of a small 

magnetic field lifting the degeneracy), then we have 

where Gt'at  l(w) = -d 	• 
1 

Fig.19 

and Gt'a2(w) 

  

w d - U + ib w 	ed - ib 

 

T
ph(w4-w1) = 

I 
	 t 	 

I 	 I 

I 	 I 

I 	+ 	I 
I 	 I 
r 	 I 

iU(w4  - wl  - U) 

w4 	wl 	cdt- cd4,4.  ib 	
(2.46) 

Fig.20 

I 	 r 	)- 	 t 
I 	 I 	I 
I 	 I 	I 

I 	 I 
I 	 i 	 I 
I 	 I 	 I 
I 	< 	I 	< 	i 

+ 	 eEe. 

Similarly of course if 140> cpF  is taken to be the ground state 

except for the changes T  to 1, and wf-3.-w3  , w2—›,w4  . 

The graphs for G
t
'da
a
(0 can now be bro/ken up in this order 

into the more conventional type of representation by identification 

with the results of a U and V -expansion (note that the Green's function 

a 
to be calculated now also carries a label avdenoting the unnerturbed 
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state with respect to which the expansidn is carried out) . 

Thus for Gt'a1(w) the order V2  graph for opposite spins splits up 

according to 

Fig.21 

1 
w 	eka  + ibsing(eka) 

The result to order V2 for 	
a i Gt;asand Gd ifs now simply evaluated da 	
t,a 

and only the linked graphs in the usual representation (fig.21) need 

be considered, the unlinked graphs from the numerator exactly cancel 

those from the expansion of the denominator in (2.43). The result 

shows no Kondo type anomaly in this order. 

The region of greatest interest is ed 	'2ed + Ui>01  as one 

should expect. The scattering properties of the conduction electrons 

in this region are actually described by Gdat im2 
d Gta
a3  as a result 

2 

of the degeneracy of the ground state. This is easy to see if one 

imagines taking the limit T-F-0 in the finiteTcase . 

The contribution to Gt,a2(w) from the. graph 

wIA4 

X.  X 

. 1 	Wi 

Fig.22 

where the wavy line represents 

f 

is = [G t,a2(w)  
dt where Zjw) is given by: 



Fig.23 

Oa 

=V2(1/2njrdwITph(w-4 GliaL(w/Gitc l) 
co 

(2.47) 

(2.48) 

in the limit U--,-00  (2.48) becomes 

(2.49) 

P Ea(w) 	is proportional to 1 glwl and is divergent as 11-1.0 . 

Similarly for Gt ,a3(w, ) we have 	 •• 

a 

2 

which gives 	2:  (0 	,a3 f  1 
7  di. '` / 	- 	1 	

t(14) d Ed - U + ib)
2  

)  - 
	c

d)2(w - Ek) 

k 
(2.50) is also anomalous in the limit w--.}0 . 

The total contribution to (Ga  t  'cc2  + G
t 

i'
a
3t• )  

2 

V2 may then be written: 

(Gt,a2 	G
CI" 1  
t,a3\  2 

2  
 V -Er  1 	 (1/2 )  

c  )2 	 ck 	w - Ed  

2) 
	(1/2 )(1 - f k ) 	 (1/2)(1 - fk) 

and in U--,0-00 
2 

ZjN) t i cx,3 (id 	V2 
dt 

1 - fk 

(w d)(ek 
- cd

)2  ce "k 
NZ, 

	Ed) 

(2.51) 

(2.50) 

to order 

Thus to this order.the anomalous logarithmic terms cancel, but it is 
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already possible at this stage to draw some interesting conclusions. 

First one may note the similarity between the particle-hole vertices 

(2.46) 1 	with that of the spin fluctuation 

 

w - w'+ c - s + i45 di. 	di,- 

 

theory in the limit 7. -r-).00(2.21) iA 	. This result 
- w'+ ib 

 

suggests that the limit Tsf--->- 	describes a similar situation and one 

should expect the anomaly to cancel in this order as shown by (2.51) . 

Secondly one can see through the identification of these vertices for 

the 4 possible 'ground states' with the perturbation expansion it powers 

of U, that the zero energy transfer particle-hole vertices (2.46) only 

occur in the region ed<0 2ed  + U;>0 in the general n-particle 

Green's functions . It is also clear that in e
d;>0 , 2ed + U)>0 

(or 	d e,:0 2cd  + U <0 ) the only vertices are of the particle-particle 

type (2.45) (or hole-hole ), for which no anomalous behaviour occurs 

in any order of perturbation theory when the contributions are evaluated. 

The Kondo anomalies are to be expected in order V6  for 

G
t

f kk (w) (or V
4 
for Gt'a  (w) ) d 	. For this in general a knowledge of 

the 3-particle Green's function is required. From a knowledge of Gt 

however, it is possible to generate higher order graphs. To see this 

in a general way and also to show that the unlinked graphs in the expansion 

of the numerator and denominator exactly cancel in every order.in the 

T=0 method, it is simplest to go back to the cumulant expansion. At 

T=0 , the temperature averages simply become averages over the 'ground 

state', furthermore the cumulants (2.32) are in this limit simply 

identifiable as the completly connected part of the n-particle Green's 

functions when the latter have been evaluated and graphed as in e.g 

.(2.45),fig 17.  

In G
t
3  

for exvipie, we know that there will be terms with 

2 
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• 

1,2,3 energy conservation factors b(w 
	

G3 can be drawn 

     

     

       

       

      

Fig.24 

 

The last term represents the completely cnnected term and has only 

one energy conservation factor namely b(w1
+w
3

-1-w
5
-w
2
-w -w6) this term 

is actually equivalent to the 3-particle cumulant crresponding to G
t
3
,a 

and calculated by (2.32). Thus at T=0 it is possible and convenient 

to use the cumulant method, in which case the cumulants are simply 

the 1,2, 	n particle connected parts as illustrated above, and they 

may be repeated in all topologically non-equivalent ways. From a 

knowledge of Gi
.a 
 , 

2 
Gt'a it is possible for example to construct the 

following higher order graphs 

 

Fig.25 

 

  

The previous conclusion is really quite obvious, the only reason one 

needs to use the cumulant argument at all is to generalize it in a simple 

manner. An additional simplification which may be obtained in a simple 

way without having to evaluate the higher order Green's functions 

explicitly, is to deduce the Higher order vertices on the basis of a 

knowledge of the 2-particle ones and by using the relationship between 

these results and the perturbation expansion in powers of U. FOY. example 

it is easy to see that for a=a
i 

there will be a 3-particle vertex. 

f the type: 
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Fig.26 

where T
PP 
 is given by (2.45) . Thus we may write: 

 

 

Fig.27 

 

Where T
3g 

refers to the complete 3-particle vertex and T
3A  refers to 

those not included in the one which was generated. Unfortunately it 

is not possible it seems to deduce in this way the complete higher 

order Green's functions, but nevertheless a considerable number of 

vertices may be deduced in this way. An explicit calculation of G3'al 

gives: 

Gtia1( w d 	10, 20, 3_0, 4_0, 5_0,w6_0) = (27)3 Gt,a1(w )Gt,a1(., )Gt,al(w 
5'  
) 

do 1 d...cr "3 d-a - 

o(w
1-w2)6(w3- )6(w5-6) 	b(w

1
-w2 )6(w

3-w6)6(w
5

-w
2
] 

atlair )Gtsatrw NGttatt.w  NGti a-saw4)Gt(i T(w5)Gct:441.(w  ) Àdo ẁli  do ` 21  da ` 3' d-a ` 
[I 

T (w +w )T (w_+w 
pp 1 3 pia 

"1.711-w34-w5-w27w4-w6) (1/2n)2- 	+ 	(1/2n) 	1 
b w +w +w -w

2  -w4  -w6  )s 3 5 	
>(.. 

u3  +(-1) permutations . . 
(w1 + w3 

- 2cd- U +io)(w2  + w4  - 2cd- -U + io 
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• 5 , 	6 '(P. number of permutations) 

+ 	Gda
t ,a1(w  )Gda

t,a1(w 2' )G
d-
,t
a
a1  t a 	t a 

d:0.1(144)GdIci(w5) (1/2n) b(w5-w6)Tpp(wl+w3) 

b(w
1
+w3-w2-w4 ) + (-1) permutations 	5 , 

(2.52) 

  

Thus G3'
a  1  = 

  

  

   

   

Fig.28 

 

The general 3-particle Green's function has broken up as expected 

and where everything but the last graph (second part of second term in 

2.52 ) was generated from G2'
a4  . Similarly for the other regions 

corresponding to the 3 other values of a and for the higher order 

Green's functions. 

With (2.52), it is straightforward to evaluate the contribution 

t
a  to Gd  ' 	in order V

4 
exactly, it is not difficult to see that there 

.will beno anomalies in this or higher orders as mentioned before. The 

singlet symmetry of the ground state does not allow the spin flip processes 

in the intermediate states responsible for the Kondo effect. (similarly 

for 	G
1
'a '& 

for which Gt
3
'a4 may be deduced by simple permutations) 

In 

immediately on 

set of graphs 

ed<O, Zed  + U:10 , and for G
t,a2  we may write `down 
dt 

the basis of the previous discussion, the following 



w - c - V2  \ 	1  
w - c 

v221-fk )(w-ek-U)U 

k (w-ck)(Ek-ed)2  

Gt,a3(w) - 1 

k- 

=-b0- 

Gt,a2= dt  

   

 

Fig.29 • • • G-C-• 

TPA  

involving the anomalous self energy (2.48) , the above series can be 

summed to give in U---4. -4,2 

Gtd'1(w) - 	1 

w - cd - V
2 

   

(2.53) 

 

k 

 

    

including in addition the self energy 

(2.53) becomes 

t'at(w) = 	1  
GdT w - c 	V2 	fk + 1  d  

(2.54) 

k 
w ck 

at finite U we can simply use (2.48).  

There is an analogous series for G. 'a3 3  giving di 

(2.55) 

(2.55) tends to zero as U--).00 . 

t, However it is really 	(Gdt /  Gt'a3) 
d f one is 

2 

interested in. The exact result in order V4 may be found by usinc, the 

3-particle Green's function , in 	00 
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Gta3(w 	w 	w 	w4 ,w 	w, ) 	(20 b(w +w +w -w -w -w )- Gt'a (w ) 3 	1i ' 21.1  31.' 44,  04, 	1 3 5 2 4 6 	d 4, 	6 

Gt,a  (w ) G
t,a  (w + 	) 	 3.  

d 4, 	5 	d y
1,  -w 5 '3 2 	(w1 	W6 	cdy- cdt+ ib)(w2 	w5 	Ed - cd +la)  L 

(-1)Ppermutations w1—* w
3 (2.56) 

  

G
d 
t a 	

2 ' 	2(w1+ ,w2 1, ,w344 ,w,  4' ,w-  4, 	) 	(211) ,w6 	= 	[(-1) b(w3+w-w-w6)b(w1-w2) 

Gt,a (w 	Gt,a (w  ) Gt,a (w4) 31  d i. 1 dt  
1 

w5  - w4  + Ed  - Ed  + ib 

permutations w -HPW 
1 W --W4 1 	3 	2 f

(1/2n)b(w1
+w
5
+w
5-w2-w4, 

-w6)  

Gt'a  (w) Gt'a  (w   d 1, 	3 	(1 4 Gds 
1  (w+w2-w3) w -w+E-E+ ib It• 	6 	3 	dt 	d 

 

 

1 
(-1)P  permuations (1/2n) 

W5 - /44 	'a - Ed 	i6 

b(w1+w+w-w2-w4-  
w 
6 	di,. 
) Gt,a (w

2 
) 
Gd  
tim (w.

4 
 ) Gt4c (wi) G

GdsGds (w4+w2-w3) 

1 
+ (- P permutations wi --1"3 w2---"4{] 

(2.57) 

-w4 + dtd ib 

The general finite U result could have been obtained by making appropriate 

transformations in (2.52) . 

The particular spin arrangements chosen in (2.57) are 

actually sufficient to obtain all the relevant possibilities in the 

general fourth order term. In this order the anomalous terms do not 

t' cancel and in fact make a colitrbution to Im(Gt'z + Gdta3)  
2 



> 	
 w ek 

which behaves as loglwi as 	. proportional to 
1- 2fk  

Finite temperatures 

The two particle'temperature Green's function G
T must 
2 

be closely related to the 2-particle time temperature Green's function 

given by equation (2.44). There are in principle general relations 

connecting these functions similar to those for the one particle case(16) 

however these can be very complicated and it is more convenient to 

evaluate it directly (Appendix/ ). Thus we have in U--.)-400: 

(1 - b 

	

T 	 (-1) 2  , 	= 	aHo 	Tr 1 e-PH(71. 

	

G2 	(wn aiwn  a w 
 n -a'wn -a) w ,w 1 	2 	3 	4 	Tr e_ " d 	 n4  n ) l  

w +w ,w +w 	(wn - da
)(w

n - w + eda 
 - E

d-a
)(wn -

da
) n1 n3 n2 n 

(1/T)  
4 	

2 1 	4 nl  

(-1) b 	(1/T) w +w ,w +w 
n, n3  n2  n4  

 

1 - nd -a 
(w - eda)(wn - da)(wn - Ed-a)  n1 	2 	4  

- 	
-  

bw +w ,w +w (1/T) 	1 nda,  n1  n3  n2  n4  
(w n4  - d-a)(w

n3
-

d-cr)(wn2 - Eder) 

, 	_ (-1) s
w +w 	w +ww ,w 	(1/2T2) 	nda(1 - na-a) 	d-a(1-ncc ,n1  n3  n2  n4  n2  n3  (wnda)(w

n3
- d-a)  

1 

wnere fcr simplicity we use wn 
instead of.iwn and 

where in the first term the factor (1 - b 	) excludes the w n4  ni  

possibility w =w and as a result of the degeneracy of the singly J14  n1  

occupied level such that cdo= Ed-a  . This possibility reappears 

in the last term and apart from this the above result could have 

been obtained from (2.44) by making the changes w 	w and 2.gb4 

nd-a(1 - nda) 	nda(1 - nd-a
) 

(2.58) 



Fig.30 

where T(T) 
ph = w w 

n1 
n 

(w zdf w ) 
1 n/ nit 

I 

> T(wn -w 	 -s
nl

)(wnl k) 
nit n 

;(ur.) (-1)V2T2  (2.59) 
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..--(1/T) b 

	

	in the limit U-0-0.o. In general, the temperature 
wn 

Green's functions in higher orders will have the same structure as 

the time temperature ones, apart from the effects described above 

associated with the 'particle-hole vertex' 	the advantage of the latter 

being that they are much easier to calculate. It is easy to deduce 

in general that in this perturbation theory, the two pole structure of 

the Green's function will remain and it can be seen to be the result 

of the exclusion principle on the cu-level being 'correctly
P
treated . 

The interesting self energy for finite T occurs as a result 

of the first term in (2.58) 

The self energy contribution can be written: 

Of course to this order (2.59) simply vanishes because 

but it is instructive to evaluate (2.59) nevertheless. 

n = 
Qt 	nd 

    

 

The sum 	> 	may be transformed into an integral which 

becomes 

 

Ri  

 

f(s) 1de (2.60). 
2ni ( e)(e ek) w 

where f(s) = 1 	and the contour encircles the poles of 

 

e
e/T+ 

 

f(s) which are at c = wn  = -(2n + 1)1IT 
. 	i 

except the one at c = w
n (fig.31 
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Closing the contour on the right hand side and left hand side by..infinite 

semi circles , the contour C can be deformed into C which encloses 

the poles at c = ek and c = wn . The contribution due to the pole 

at s = ck to (2.60) is equal to 

f(E k) 

- ek 

(-1/2) 	together with a term 
	w - n ck 

which vanishes at T=0 . The contribution of interest to the self energy 

then becomes 

27..(w ) = V2\
/   

(f(ck) -1/2)(ndt-lidi (2.61) 
w - k  n ck 

Apart from the factor (nd1a  - n. ), the above self energy can be l 

the s-d model. It vanishes in this order but will remain inhigher 

orders. One could proceed to make partial summations, renormalizations, 

...etc and obtain various approximate results for Gda(wn) , but this 

is not the object of this section neither would it be particularly 

revealing in the present form. The object was to derive the self energies 

characteristic of the s-d model from a Green's function approach using 

the Anderson model, and to see what possible conclusions can be drawn 

The double pole at c = wn  gives 

22) identified as the Nagaoka-Abrikosov (6, 	type self energy obtained for 



from such an approach in relation to the perturbation treatment in 

powers of U outlined in section.A. 

The perturbation treatment presented in this section cannot, 

unfortunately, in its present form supply an alternative to the method 

of section A. It is difficult to make it self-consistent. However 

it does provide some important support to the arguments presented at the 

end of the previous section. It suggests that a proper treatment of the 

exclusion principle on the d-level will maintain the 2-pole structure 

of the zero order Green's function as has been suggested by equation 

of motion analysis(40)  and that this is also closely connected with 

the appearance of the zero energy transfer vertices which eventually are 

responsible for the Kondo anomalies (equa. 2.46). The non-cancellation 

of the 'unlinked' diagrams at finite temperatures is a serious disadvantag 

of this method, but on the other hand it provides a 'clue' as to what 

an alternative to the expansion of section A could be based on in the 

framework of the present theory. There is very good reason to believe 

that a large class of graphs including all the unlinked graphs of the 

numerator and denominator simply go to renormalize the bare distribution 

functions. As an example consider the derivation of the result (1.16) 

	

GT (w ) = 
1 -‹nd-a 	end-a  

da n 	
wn cda - 	w

n - ed - U 

from perturbation theory using it direct or non-Wick's theorem approach. 

InSuch an expansion,(2.4), it may be seen that from the numerator 

one has the following contributions to Gd (T1-T2) 

G
d T 2). = 

  

t 

 

   

  

o 0 
I 

I 	' 	
i 

1 	 I 

     

,Fig.32 
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together with unlinked graphs which may be represented 

. 	. 	. . e.1 6'c • 

Fig.33 

The propogator lines are taken as (-1) [(1-nda  ) 0(T1 T2) - ndo  6(T2  -T1 )]X- 

e 	da 1 T2)  where the nda are operators as opposed to the Wick's 

theorem case where they represent zero order temperature averages, 

although the diagrams can be drawn in the same way. The contribution 

to the numerator of the expansion arising from the connected graphs 

may be written down immediately and gives 

1 - fd-a 	f
d-a 	(2.62) 

ww
n 	

- U cda 	cda 

where 1 
e,.cd 	1 

(2.62) already has the basic structure of (1.16). The contributions 

to the numerator from the unlinked graphs are 

f f do [(-p)u + (-p)2u2  
2! 

+ (-P)3  U3 	...etc I 	1  
3! 	J wn - cdo

- U 

, -pu f f 	te 	- ) da d -a  
wn - cda - U 

Combining this with (2.62) and noting that the denominator GS >0  by 

definition is just 	Tr e
-H  d we arrive back at (1.16). 

Tr e
-PH

o 
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This example goes to illustrate in a very typical way 

the above argument. Future work in this direction may be able to 

identify exactly graphs that renormalize the distribution functions 

and those that determine directly the analytic structure of the Green's 

function. In this way a self-consistent result along the line of those 

found by equations of motion techniqUes(12)  may be obtained with the 

advantage that the physical processes included would be simply 

identifiable. Such an approach , it seems, will ultimately make it: 

possible to bridge the gap between the spin fluctuation picture and 

the s-d picture in the description of the dynamical properties of the 

magnetic impurity system. The'technique developed in the next Chapter 

overcomes many of the difficulties associated with an expansion in powers 

of the mixing interaction. It is a time independent method and gives 

a description of the physical parameters in the static limit. 
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CHAPTER III  

TIME INDEPENDENT PERTURBATION THEORY FOR THE GRAND PARTITION FUNCTION 

Z AND THE FREE ENERGY F.- 

a) The transformation for Z 

The time dependent approach, in particular to calculate 

the Green's function and the dynamic susceptibility was presented 

in the last Chapter. Section B was devoted to an investigation into 

the possibilities of a Green's function theory in which the expansion 

is carried out in powers of the mixing interaction and the Coulomb -

interaction is treated exactly. In this Chapter the same problem is 

tackled from another direction and a perturbation method is developed 

for the partition function Z and the Free energy F in which the Coulomb 

term is again treated exactly. From a knowledge of the Free energy 

it is possible to calculate the thermodynamic properties of the system 

e.g Entropy, static susceptibility,...etc. The Free energy F is related 

to Z according to the formula 

F = 7(3)-1  log z 	(3.1) 

where Z is given by 

Z = Tr exp[11..N.-:_10d 	 (3.2) 

H is the Hamiltonian p = 1/kT and u  is the chemical potential 

determined from 

( 

1.1 = 	6F 
CDN T,W 

and W is the volume. 

(3.3) 

If the Hamiltonian is split up into 

= H
o 	HI 

.where HI is the perturbation, the expansion for Z then reads 

0o  
Z(u,)  
Zo • (-1}n  dT

1....dt 4:TllI(T1) 	
HIn )> (3.4) 

n!  0 
11=0 



where 4: >0  denotes the thermodynamic average over the unperturbed 

ensemble, Zo  is the partition function corresponding to Ho and HI(T) 

is given by 

HI(T) = e
H
o
T 
H
I 
e Ho

T 
 

An alternative way of writing the expansion for z(n,P) is 

.(-1)11 	dTi  dT2 	dT
n 

Trlexp(1iN-110)13 111(T1)...HI(Tn)i 

(3.5) 

Expansion (3.4) is more convenient when .  Wick's theorem applies for 

the unperturbed averages, in which case the time ordered averages 

may be expanded in terms of the usual connected and disconnected 

vacuum-vacuum graphs of field theory. The.Free energy is then given 

by the sum of all the connected graphs. 

For the Anderson Hamiltonian with 

	 dand kanka 
ee 	kor 

	

HI 	V > (c+docko  + ckacda
) 

kA- 
Wick's theorem cannot be used and it is easier to work with (3.5)  

in which the time integrals may be evaluated directly. This has been 

the approach used by Scalapino for the Anderson model(39), and Kondo 

for the s-d model(33). It can be seen that the computational problem 

involved is so enormous that it is very tedious to obtain even the 

order V4 result, let alone higher order contributions. The alternative 

method presented here rercoves this difficulty by transforming (3.5) 

into a time independent form using the technique developed by C.Bloch 

	

and C.. de Dom 	(51)inicis 	These authors obtained a time independent 

expansion for the Free energy in terms of connected diagrams i.e 

when Wick's theorem applies, the technique they devised is however 

equally applicable to the problem of eliminating the time integrations 



Z
o 

exp "n-Tn-1)HO HI 

1 	Tr (exp(00) exp (T1-Tri-P)H0  HI  exp (T2-T1)Ho  HI 	H
I  

(3.7) 
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in the above expansion for z(1103) 	 

Thus following Bloch(52), we consider the function 

<Ttiii(ti)HI(T2) 	.11
In

)1> 	.(3.6) 

T means that the operators must be put in the same order as Ti,T2,....rn  

on the circle of time?  

for this particular ordering i.e 13 ,Ti> T2> 	Tn.> 0 , (3.6) 
can be written 

This quantity depends only on the successive time differences and 

is invariant when all the times are rotated by the same angle on the 

circle of time. If some points cross the origin (o,p), it can be 

seen that the only change occuring in (3.7) is a circular permutation 

of the factors which leaves the trace unchanged. 

The expression given for z(11,13) by (3.5) may be rewritten 

z(11,p) 	(-1)n 
 S dT1 	

d-cn  <TIHI(Ti)....HI(Tn)/>0  
•zo 	.n 

n=-1 	p 	 (3.8) 

where D is now the sum of the following domains of integration 

13> Tl> T2> 	Til:›0 

P  > T2> T,› 	T1>°  

T n>ti 	 T n- >0 1. 

D 



Cco-m 

- 

	

Z(u 	= 1 + (713) 	1 	de e  

	

Zo 	grin c 

00 

13=1 

H k [ 1 	H 
£ -6' (3.10) 
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The integrals corresponding to each of the individual domains of D in 

(3.8) are equivalent since they differ only by .a. permutation of the 

time variables and thus there is a factor 1/n outside the integrals. 

This kind of transformation is quite standard in the theory, it is 

for instance in a similar way that (3.4) can be obtained from (3.5). 

The transformation of variables 

T1 = ul "n 	T2  = u2  + T 
	

in-1 = u n-1  + Tn  
• 

changes the domain D into.a new domain of integration given by 

	

P)0 T
n 	p >u1> u2> 	un-1> 0 

The T
n integration in (3.8) may now be carried out immediately and we 

are left with 

00 

z(, p) = 	p ;5-(-1)p s du, 	du
p-1

4 [H
I 
(u
1 • • • •HI(up-l)H(0)1> 

o p>ui>u2.• • • • Li v_i>0  

(3.9) 

• This expression can be further reduced by making the change of variables 

vl  =ul  u2  

	

2 = u2 u3 	vp-1 

which changes the domain of integration in (3.9) into 

vl  > 0 , v2> 0 , 	iv
p-1
>0 

where V
1 
 + v2  + 	v

p- 1 4.1.3 

The last restrction can be satisfied by multiplying the integrand with 

	

1 	de exp[e(v1  + v
2 

+ 	v 	-p)] 
2iti 	E 

p-1 
t•Ct1 OL 

Clearly the integrations over v1,v2 may be carried out , 	 p-1 • 

immediately and the final result is written 



Ho  = HB -
+ H

d 

Hd = 

anko,  
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.The 	correspond to the excitation energies 	
g 	ccH  

Ni 1 

The contour in (3.10) can be closed by an infinite semi circle in the 

riceht hand plane (fig 39, so that it surrounds all the poles of the 

integrand (a can be chosen accordingly). 

too-a 

C 	
cc 

Fig.35 

-4v-a 

In this form, the expansion for Z(u,P) is already considerably simpler 

for computational purposes than (3.5). It is similar to the result 

obtained by Bloch and de Dominicis for log Z except that in the latter 

only the.connected graphs are to be summed over. The reason why the 

time independent transformation is valid for gil,p) is because the 

only property that was needed to obtain it was the cyclic invariance 

of the trace in the integrand. 

If H is written 
0 

where 

then 	Z = ZB Zd and Zd = 1 	e-Pc  da + e cd-d 	e-13(2ed+U) 

a 
where all the energies are measured relative to the Fermi level IL. 

The simplest way to evaluate the contributions in (3.10), is to represent 
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the quantity Z (E) by diagrams where Z ( ) is defined as 

71- 
Z 	H (E) = 4: H_ 	1 	- 	

1 	
(3.11) 

The contributions to Z (E) may be represented by simple time ordered 

bubbles, where time increases clockwise and each bubble represents 

'HI' drawn in the order it appears in the trace going from right to 

left. Each bubble consists of an outgoing and ingoing line specifying 

an annihilation and creation operator respectively. Only graphs 

with an even- number of bubbles contribute. To order V2 for example 

there is a graph 

Fig.36 

corresponding to V2 	
da2c

k2a2 

2 
1  

1a1
c
da
1

>43 	(3.12) g 

into 4 categories corresponding to the 4 possible eigenstates of H
d 

e.g (3.12) is rewritten 

414. ck 6
1  

K a 
cdaB e

-Pea 
2 2 2 E - g 

A 6c  

where a again refers to the impurity states with Corresponding energy 

E
a and the label B denotes that the thermodynamic average is to be 

taken for the band states only. The graphs may now be drawn to have in 

addition a label a specifying the state of the impurity over which 

the 'average1is to be evaluated and have a factor 	nda equal to 

e-P(Eda)/Zd , where 

n
al 

= n 
00 

= 1/Zd 
) n 	= n 

a
2 	

t /Zd  elf 

kAn 

To be able to evaluate the excitation energies, .we divide the graphs 

1 
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n 3 n = -;;(E 	) /ifi  , d  n 	= e 	cd+U ),(7,
d 
. 

a ndd 4  

The excitation energies are then simply evaluated by keeping track 

of the occupation number of the d-level after each bubble. The 

thermodynamic averages over the band states are evaluated by Wick's 

theorem. The effect of the exclusion principle on the d-level will 

eliminate a great many possibilities and'in general it is obvious 

there can be no more than 2 consecutive ingoing (or outgoing) d-lines 

of opposite spin (one of the same spin). Further restrictions are 

imposed of course according to the label of the particular graph. 

As an example consider the following graph in order V
4 

and 

contributing to al  

Fig.37 

which gives 

ck -ack
3 
 -a k

2
ack

1
a% 

kj.A.zIkpktt 

(c - Ea, a+  ck
1
a)(6  - Ck2o + Ck

1
a)(E  -ck

2
a 

-I- E
k
1
a _ - cd-a+ £k3-a) 

< >0(  denotes that the thermodynamic average is to be taken over the 

%% # 
band states and that the impurity state is a 	, we shall be using this 

notation throughout. Thus we have 

c, 
4 

c, 	c, 	c 
-o 	K

2
a k

l (fl:_-a) 	( fk o) ak_k, 

	

4 	4 

V4 n oo 



X- - - - ----- - 

Ca) 

connected and disconnected diagrams e.g 

0 A. 

Fig.38 

(0) 

Z(11,0 	 e-Pc the contribution to 	 is obtained by multiplying by 	(-W2nOn
a Zo 	 En 

and integrating over the contour C, which reduces to summing over the 

residues of the poles of Z 
Pla

(E)e-r)e  (-0 na  

   

£ p 

An alternative graphical representation may be used for the 

Z (E) which is sometimes more convenient. In this , the graphs are 

drawn in the usual way, i.e as if Wick's theorem applied in terms of 

Coo) 

C) 

the wavy lines correspond to the ka  lines and give rise to a factor 

(1-fka) going up and f, 	going down. The occupation state of the 

impurity must here too be specified for each graph and thus for a graph 

corresponding to a , the d
a
-lines give a factor (1-f

da,a)  going up 

and 	f
da a 

going down, where fda,a =  <al ndal a> and is either 0 or 1. 

The complete contribution is then multiplied by na  . The crosses 

denote the interaction times and give' a factor V. The excitation 

energies are evaluated in the usual way where of course the occupation 

number of the d.-state must be watched at each stage. so  that the Coulomb 

interaction is properly included. In this representation it is easy 

to see that there are two types of graphs , those overlapping in time 

and non overlapping ones . For example (a)b) fig. 38 is overlapping in time 



whereas we could also have 

(00 

  

ris.39 

 

and it is obvious that all the possible graphs may be generated from 

the set of all overlapping graphs by simply repeating them in all 

possible non equivalent ways and where a non overlapping graph 

consisting of e.g 2, 3, ....n parts gives rise to an additional 

	

factor 1/e, 1/e2, 	• • • • 1/£
n-1  

	

b) Elimination of the 	integration 

In the expansion (3.10) for z(IL,p), it turns out that the 

integration may in fact be completely eliminated which leads to 

an even greater reduction in the amount of work required to calculate 

the contributions. Consider in general the contribution to Z (e)/e 

which may be written 

Z (e) 	= 1 <HI  1 	H
I 	

1  H 	 1 H
I  N. * 	(3.13) 

E -g 	•-g 	£ 	 0( 

  

(3.13) gives rise to a set of non vanishing graphs each corresponding 

to one or at most two of.the labelsa . .Consider a graph contributing 

to a. 	only, this has p_ bubbles and (p-1).excitation energies 
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2 

Fig.40 

assume the excitation energies are labelled gi,ga,a3  ,  	The 

contribution to Z/Zo may be written 

(-13/2nip)dee -13  

S 
e 	

<CA1A2 	 A 

(e - 8i)(e - &2  ) 	 

>,. 
(e  _6 

n  
. a p 	4,A. i. 	. 

tu c 
(3.14) 

the A represent the operators occuring in the successive bubbles together 

with the appropriate momentum summations (the spins are taken to be fixed). 

Now consider the (p-1) other diagrams obtained from this one (fig 110) 

by rotation, each one is non vanishing in one of the states a and is 

therefore contained in the set of all (non vanishing) graphs to order p, 

by trace invariance. The contribution to Z/Zo  from the corresponding 

graph rotated by one bubble clockwise can be written 

	

. 	. n
* 

 ,, 
(70127tilEe-Pc 	

4!A 2A 3 	
A p

A 1) 
 0...) 	(3.15) 

e 	(c +-)(c 4- 4- ga ) 	(c +  e  2  
1,- C 

where the graph now contributes to the state a.
3 
 . When Wick's theorem 

is applied to the band states, the expression (3.14) corresponding 

to the original graph splits up into several terms each having a set 

of excitation energies, similarly for (3.15), the rotated graph. Then 

to each term from '(3.14) there will correspond a term in (3.15) such 



that the excitation energies are related as shown. The corresponding 

term is identified by assigning to the operators in (3.14) a fictitious 

time label and taking in (3.15) the term given by the contraction of the 

same time labelled pairs of operators. The corresponding_ a to a. 

is obtained by noting that if 	(5.14) 	is non vanishing in a unique 

state a. 	then each successive rotation gives a non vanishing 

contribution to a unique a . 

Assuming now that the expressions (3.14) and (3.15) refer 

to a pair of corresponding terms, then if all the excitation energies 

are different in (3.14) , they will be different in the (p-1) 

corresponding terms coming from the set of (p-1) rotated graphs. 

It can be seen that the residue at e= 0 	in (3.15) gives the same 

result as the e=0 residue in (3.14). The factor e-13(  61"-i)  compensates 

for the difference in the Fermi factors arising out of the rotation 

of the band operators in the thermodyn'amic average, and the change 

in 	e-PE  at, It would be easy to show , with a convenient 

graphical representation that the complete contribution of 

corresponding terms are identical , from which one may immediately 

deduce that for the set of p corresponding terms in which all the 

(p-1) excitation energies are different only the e=0 residue need 

be taken and the result multiplied by a factor p . This then gets 

rid of the — 1-- in (3.14). 

The general case when some of the excitation energies 

are equal , can be dealt with by noting that if e of these energies 

are identical in (3.14) , then the pole of order 9 will appear e 

times as the pole of e=0 in the set of all rotated graphical 

contributions. Thus we need only'take the residue at poles of 

e=0 and multiply the result by 73— where is the order of the 

pole at e=0 . 

A general non-vanishing graph may contribute to either 

'0 it 

a single a or to two states la., a. ; in the latter case there 



will also be two sets of excitation energies. When this graph is rotated 

it will contribute again to two possible states 	 2  j ictL. ad.The rotated 

graph correstonding to a may be easily identified by noting that the 

first rotation can only change the occupation number of the d-level 

by one particle, similarly for the second rotation ...etc. The general 

result may now be written 

OD  

Z(11,0 = 1 	(-p)\,› 1 Res e=o  le-Pc  Z (01 
Z
o 

 

P=.1. 

(3.16) 

where 0 is the order of the pole at e = o . This is merely an extension 

to this problem, and for Z, of the result obtained by Bloch and de 

Dominicis
(52) for logZ when Wick's theorem applies. The proof is 

on similar lines, this extension was possible because the above result 

is again simply the consequence of the trace invariance and is independent 

of whether Wick's theorem applies or not except that in the former 

case the Free energy is given by the sum over the connected graphs only. 

The simplest example of the above argument is provided 

in order V2 consider for instance the graph 

Fig.41 

this graph contributes to both ail.  (Idtd4).) and a2 
(Id,t0) . The 

rotated graph also appears in the expansion e.g.  

Fig.' 2 
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and contributes to al ( ICC> ) and a3. (1d0 ) . Clearly the 'equivalent' 

rotated graph for a4  is the above grauh for a
3 ' 

The contribution 

to Z/Zo  in the first case is 

(-P/27Ei 	e-Pc 	(1 - fk) de 	e-g2ed
+U) 

	

c2e 	e 	(sk 	ed - U) 	Zd  

and in the second case 

(43/2ni 	e-PE 	fk 	de 	e-P(ed ) 

	

3 2e 	E  - (Ed 	U 	ck) 	Zd 
k 

clearly the total contribution of each of the above expressions is 

identical to the other. Similarly for a1 	
a2 , and it is sufficient 

to consider the residue at E = 0 in each contribution and drop the 

factor 1/2 . 

The expansion (3.16) represents a tremenduous simplification 

over (3.5) . The contributions to every order can be evaluated without 

any difficulty and although the excitation energies cannot be deduced 

in the same automatic manner as for Ho 
non interacting , it turns out 

that the non-use of Wick's theorem leads to a considerable reduction 

in the number of terms by virtue of the restriction imposed by the 

exclusion principle for the impurity level. A trivial example of this 

is provided when 

	

Ho 	.da da 

HI  = U n
dtn 

• 

a direct evaluation of the right' hand side of (3.16) leads to the series 

(Z
d 
 - Z

o
) 	= (-04(n .11: ›0  Res e=o. 	e-Be (U/e 	U

2/2e2 	Un/nen 	I 
u  

zo 
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which is easily evaluated:and gives 

Z
d
- 	Zo 	= 	e-P(2ed1 IT) 	e-13(26.a) 

zo 	 Z
o 

which is the correct result. The Free energy is then obtained from 

(3.1) , if this result were to be obtained from the formula 

00 

F = Fo 	1 Res 
e=o e 17,e  4., 

 

HI( 1  Fi) >0,C (3.17) 
c -g 

where c means that only the connected graphs are to be included, 

it is difficult to see how this could ever be achieved. 

c) The limit U---0.00  

The limit U--->.coleads to a great reduction in the number 

of graphs that have to be kept in each order. The state dtdpcompletely 

disappears in this limit and only the graphs refering to a ,a , 
1 	2

a 
 3 

need be considered. Furthermore, among these graphs only those give 

non vanishing contributions, where no two creation or annihilation 

operators of a d-state appear in consecutive bubbles anywhere in the 

graph. 

3) Elimination of the non overlapting-graphs  

In the evaluation of Z (e)/e , where Z (e) is given.  

by (3.11) , terms are encountered which lead to multiple poles at e = 0. 

It was pointed out that in the usual representation these terms 

correspond to graphs which are non'overlapping'in time. In this 

section we shall devise a method of taking all these terms into account 

such that in the final analysis only the overlapping graphs need be 

evaluated, i.e contrbutions (of order 1) giving rise to simple poles 

13-1 



at c = 0 	and for which the result-may be written down immediately • 

using formula (3.1E). This will then lead to a general formula for Z/Z 
 

IL 
Consider for instance the contribution to order V 

corresponding to al  from the following diagram 

which can be written 

k3a2 
fk
f
a 	 notl 

(E +E
ka

-eda)(E +cka -cda ) c2 
1 	3 2 	2  

fk 	(1 - fk3a 
 ) no,1 

e(c + ck
1
- eda)(ek

la
- ek

3
a + c) 

kred  

the additional 1/c factor in the first term comes about because <c c+  > 
1 2 

= (1 - f
k ) 6

kk and this term may be represented as 
1 	l 2 

 
• 

kJ.) k3 )61  

Fig.44 

a 
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i.e as two non overlapping graphs. The second term of the above 

expression has a single pole at E=0 when ki=k3  and therefore its 

contribution to Z/Z
o is just 

   

fk1 a
(1 - fk_o) nal (-0v4 

  

 

r Cck a 
e 	)2(e• 	c  

` kla 	k
3
a' 

Klossyv 1 

When 
k1=k3' there is a double pole at E=0 and the contribution must 

be evaluated according to (3.16). However there is an essential 

difference between the latter contribution and the first term of the 

expression which also exhibits a double pole at E=0. In the last case 

it arises as a result of expanding the thermodynamic average, and 

essentially because of momentum conservation in Ho, it gives rise 

to a contribution to z(11,p)/zo  of order 

0(1) 

where v/TN = V . Whereas in the former case it occurs only when k
1
=k
3 

and gives a contribution of order 

0(1/N) 

Thus in the limit N--11.- 00 (or infinite volume) this contribution vanishes. 

Following Bloch(52) , we shall call these vanishing excitation energies 

'accidentally' vanishing, as opposed to the other case. In general 

the accidentally vanishing excitation energies lead to contributions 

of 0(1/N) and less to Z and F. Furthermore it is easy to see that the 

overlapping graphs give rise to simple poles at E=0 to 0(1) and double 

and higher order poles to 0(1/N) and less. In the subsequent discussion 

we shall assume that in the case of interest,namely r 	d when the 



number of particles is very large , these possibilities give rise to' 

negligeable contributions to Z and therefore need not be considered. 

We shall come back to this point ih Chapter IV. 

Now let us consider in general Z2p,^a(e)  which is given by 

Z
2p,a

(c) = 	H
I 	

HI 	
H 

> a 
e - 

(3.18) 

the total number of ways Z
2p,a

(e) splits up into 2,3, 	 

non overlapping parts (or parts disconnected in time) as a result of 

Wick's theorem applied to the band states, is simply enumerated. For 

instance in order V
4 
there is only one way e.g giving 

<0,  1H  - 1 <<HI 	1  H 
c -g  	0a. 

6 - g 

hence in V
4 

we write 

+ H 	1 	H 	1 <?..11 	1 	H `3} 1-,  a 

where the double bracket simply means that the possibility of a 

vanishing excitation energy to 0(1) in the expansion of this term 

has been projected out e.g in view of the previous discussion we 

could write 	« >> 
= < 

In general it is easy to bee that in the expansion of 

(3.16) in terms of overlapping contributions , the coefficient of 

the term constituted by the product of 

s
1 	parts of type 	x

1 

s
2 	

x
2 



Z - Zo
0

1
0.  

e-PE n 
= ( - 	> Res 

E-0 

o(' 

where the factor 1/n comes about as a 

02  

)41f•  ( 

P=1  

result of the pole of order n 

o 

(3.19) 
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s3  parts of type 

xm 

is just the coefficient of 	(x
1
)51 (x2)52 	

(x
m
)sm 	in the 

expansion of (x
1 + x2 

+ 	x
m 
 + ...)q where q = (s1  • + S2  + 

	sm) 

and is equal to 

_R!  
s,! s

2
! 	sm! 

x
1 

= 4?: 11 	1
a e 

X 
2 = <<lil 	I 	H

I  e E - 

211-1 
xn  = <<Hi(  1 9. 

e - g 

The complete expansion for Z/Z
o may now be written 

at c=o. If we now define 

P-1 

gm  (e) = 	1  Hi>>c, 	 (3.20) 

then g
a(e) corresponds to the sum of all possible overlapping graphs 

corresponding to a and the above result is not difficult to see, 

it merely says that the overlapping graphs may be repeated in all possible 

ways to generate all the graphs of z(IL,p). If the- double bracket is 

now taken to mean < >cx,g 40, it must be emphasized that the above 

formula does not include the possibilities g =0 'accidentally' Jon the 

where 

H/ 	1 	H1:>cf.  
E - 5 



feiEa = 	1 	d 
a  

den-1 [g (e]] 
n!  

(3.22) 
5=0 n 

,̂e 

basis of the argument that they vanish in the limit of an infinite 

volume. Thus by definition.a  (e) has no poles at E=0 and the residue 

in the formula (3.19) may be evaltiated according to the standard 

formula for a pole of order n due to 1/en  and we have 

Z-Zo  = (--;) 	 d yl 
ga(E)  Zo 	n!n-1 • de It 

na 
	(3.21) 

E=0 

The result (3.21) may be viewed as a power series in. P, the implication 

of which can be appreciated by considering the complete coefficient 

of (-p) in (3.21). If we call this coefficient 	a s  na  then 

LSEa is given by 

(3.22) may in fact be identified as the iterative solution of the 

self-consistency equation 

prima 	
I4Ea 
(  1 	H) >>a.  - 

 t'=1 	• 
(3.23) 

about 4Ea =0. This is easy to check by iteration, and furthermore 

it can also be checked that the complete series (3.21) leads to the 

formula. 

:411/19 = > 
C( 	

exp(-PAE a ) nCC Z
o  

(3.24) 

where 2!IE
a is given by (3.23) perturbationally. . 

The above formulae are interesting and not totally unexpected 

because the zero temperature limit of AEa can for example be identified 

to be the ground state energy shift exansion as given by Brillouin- 
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Wigner perturbation theory. This point is investigated further on. 

The proof of (3.23) and (3.24) by series summation is 

very tedious, to obtain these results it is easier to proceed from 

another direction. Going back to (3.21) and rewriting it as 

Z-Z 	= > (-0 le HE  I g(e) 	2 

2ni 	c 	
g(e) + 	 + gn(e) de n 0 a 	(3.25) 

ncn-1  

where the contour C now avoids all the poles of g(e) and therefore 

also of ga
2  (e) ...etc, and where none of the poles of gm(e) is by 

definition at c=o. Equation (3.25) can also be written 

Z-Zo = 

o 	

(-12).1e-Ps  (a(c) a(e) 6a 	cc 	a  / 
2ni 	

g C(6)  i(og  

El 	2 
e2 e3  

(::(e) 'a a(e)g
2
(c) 

2 

	 + gn(e) 	gim(c)g:-1(c) 	de na a 
n+l en 

(3.26) 

where gals) = d iga
(1 and the series in the square bracket in (3.26) is 

a 

simply (-1) d 	(c).], where Ga(c) is the series in the first expression a a  
(3.25), the factor (-p) outside having disappeared. The identity of (3.25) 
and (3.26) can be checked by evaluating the residue of the pole at c=o 

for the n th term in each case e.g from (3.25) we have 

(-13) d 	gna(E) e-13  -  n! den-1 

and from (3.26) we obtain 

1 d 
ni 

den-1 
ie (: ga  n-1 n 	(e)ga(e) 1 

n-1(s)ga/(e)e 
n-1)! den-1 	1 

     

.,•••••••• 

zo 2e 

E.t 



-Pe ga(e) 

e - g a  (e )1 - 
g (6) 	 de 	(3.28) Z-Z 

o = 	na 
Zo 2ni e(e 	ga(e)) 
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clearly the first and last term in (3.27) cancel and we are back to the 

previous expression. By definition ga
(e) has no poles inside and on 

and from the point of view of perturbation theory we can sum the 

expression in (3.26) as a geometric series which yields 

the pole at s=o in (3.28) contributes 	(-1) Ina 
which is just equal 

ot 

to (-1). The pole at e = g
a
(e) which we assume with reference to 

the perturbation expansion (3.21) to be a simple pole and unique, 

contributes 

n
a exp (-Pe 	) c,a 

where E 	must be determined from cla 

 

00 	
P-1 

<‹. 	(c,a1.... 6   HI.) 
E 
	= 

P=r1 

 

hence we have 

(3.29) 

    

n
a 

exp'(-Pe 	) 
c,a 

 

     

clearly ec a 	&Ea and we obtain the result for Z,put forward in , 

(3.24). It would appear that the above method leads to a more general 

result since it allows in principle more than one solution of the 

self-consistency equation. e = ga
(e) to occur and thus to contribute 

to Z. Clearly the series representation of (3.28) can only give the 

iterative, or perturbational solution to this equation and is no longer 
valid if (3.29) has more than one solution. However this is not an 

unusual situation in perturbation theory and it will be seen that in this 

problem (Chapter IV), the correct viewpoint is obtained by looking 

at (3.29) or (3.23) as a self-consistency relation the correct solution 
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of which at T=0 is not necessarily the perturbational one , because  

of the Kondo effect when a .1a2,a31. 

From (3.1) and (3.24) it follows that a knowledge of the 

Qua  s is sufficient to determine the Free energy, in practice however 

ilEcx is calculated apprOximately and it is also desirable to have 

a direct perturbation expansion for F in powers of the mixing interaction 

so that the higher order terms can be analyzed in each order of the 

expansion for F. 

e) Perturbation theory for F 

To obtain the perturbation expansion of F, it is best to 

first go back to the time dependent formula for Z, and write for 

log(Z/Z0) the well known expansion(53)  

00 

log (Z/Z0) 	(-1)n11301T2. n Mn(T1 	T
n
) 

q=0 
n! 

(3.30) 

where (2-  > 1 	1 o 

M2 
=<TIHI(Ti)HI(T2)HI(T3):›0 _411HI ( T1U<4T HI(T2) 0  

M = ‹.41(T )II(T)H(T3 	i i  % 	I 2 i 3  )>0  - <Tfli(t))<TIH(T)Ii(T. 00  3 	
I 2 I  

 

<Tili/(T2)j>o  <T111,(1.1)HI(T306 - 
	<111,(1.3)>o  GTIIII(T1)HI(T2)i>c, 

+ 	2 <T 	(-ri)%% < T 	2)f>0 <TfliI(T3)1>° 

OOOOOOO 

T is the usual time ordering operator and the Mn's or time ordered 

semi-invariants are generated in the same way as the cumulants of 

Chapter II (2.32). The transformation of the Mn's into a time 

independent form is easily accomplished using the relation 
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(-1)n 
 P 

riT1 dT 	
dT 2"" n n! 	0 

Ti )YT2)   	( T n 
>0 

(-1)n.",1  ird 	dT2 	dTn 	H(T1)HI(T2)  	T
n
)> 

'  

p>fri >Ty.. • . . try, > 0  
n-1 

(-P)  ICIE e-136  1 < 	C  3-6 	> 0 
2ni 	c 	n 

and where each product in the expansion of the semi-invariants may 

be transformed sepsfately. It is convenient to call 

ao = 1 

= 1! -P/2ni ),Ids 	4H1  >0 
• o 

	

a2  = 2! 	)fd 	c <H11 

e - g• 

an  = n! (-(3/2mi) dE  e -156  <H,(: 1  
E - 6 

IL) 1 

00 

If (3.30) is written as 	An 	then it follows easily that the 

	

 	' A
n's are given by 	

on  

A = 1 
0 

A
l 
= a

l 

A
2 

= a
2 	

2 
- al 

3 A
3 
 = a

3 3a2a1  + 2aI  
...etc 

The A
n's are related to the an's in a similar way as the semi-invariants 

are related to the time ordered averages e.g the above relations 

can be obtained directly by assigning to the a's a fictitious 'time' 

label and expanding the quantities
(1)(2) 	a

(n)
>oin terms of 

m-1 

>0 
C 
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the A's, for exa;:.11e to third order we can write 	a1  = 1 	2 . 

a .:: <a
(1)

a
(2)

>o 	
2 A_ 	'7 	A 1.- 	a_ =4(a

a)
„-
(2)

a
(3)
>0= A3  + A_ +_;1:2  2 	2 '1 	, .;)  

and zimilarly for higher orders. The advantage of writing things 

in this way is that one can obtain the expansion for log(Z/Z0) directly 

in terms of the time indecendent quantities a
n
. 

To obtain a graphical representation for F, from which 

the contributions in each order can be evaluated, it is best to 

-consider the relation (3.24) 

Z 	
Ena 

exp(-13 AE
a
) 

o 	0C 

and write it as a power series in p in the following way 

a 	
- 	13 AE

a 	(-P)2(-AEa)2    + (-p AEa)n  • • .1 

where the implicit dependence of AEcc  and rim  on 3 is not considered. 

L1 Ea is given by the self-consistency relation (3.23) the expansion 

of which in powers of the mixing interaction can be represented by the 

series 
00  

> ac  	 a n 
n=1 	1)=1 

c 
The a 	simply represent the complete contribution to order n 

a,n 

of the perturbational solution of (3.23) and may be graphed in the same 

• way as the co11  Atributions to Z i.e in terms of the 'time ordered'bubble 

graphs, except that each graph now in addition has a label 'c' to 

distinguish it from the previous ones. The contribution corresponding 

to each graph is evaluated in the same way as for Z. except that the 

formula (3.19) now becomes 

Z. 
0 

2! 	 n! 



C 

oo  

1Res 	1/ a 	E=0 

11=1 

 

1 

 g 

  

I 

(3.31) 

   

C 

 

where C means that only those contributions are to be included which 

are explicitly independent of p. The complete expansion for F can now 

be given and consists of the sum of all possible single (c,a) labelled 

graphs together with all possible combinations of disjoint (c,a) labelled 

graphs joined together by dashed lines in a simply connected, way, where 

simply connected means that the complete graphs splits into two if cut 

at a dashed line. 

e.g 

Fig.45 

is a single (c,a) labelled graph of order V
2 

and 

c,d 

 

 

C t.  

Fig.46 

is a dashed line connected graph to order V4. In addition we have the 

following rules: to a single graph labelled (c,a) there is a factor 

M1(a) (-0°  . To a set of graphs labelled (c,a.), (c,a.1  ) , 	 (c,a. 11 	2 im  

joined together by (m-1) dashed lines there corresponds a linking 

factor N (a. ,a., 	 ,ai m) 	
and a factor  (13  )m-1 . The a!s 

m 31,12. 	 1 
m! 

as before refer to the 4 possible impurity states (al' a2' a3' q 
at). To 

evaluate the N (a. ,a. , 	 ,a 
in

), we associate the operators 
II 1 1 i 2 



a .I  a >„ 

• 

i a .a jko 

M1  (a.)M1j  (a.) 

= M3  Ca. a.ji  ak  ) 	M
2j 
(a. a.)M •1(ak  ) • + M21  (a.'  ak )M1j  

(a.) 

M 	 ' (a.1  a.j) 2  

graphs are immediately identified , e.g 

O1 

(1 - nd )(1 - n6 ) 	,to 	a1 

n-
G 
 ( 1 - /I_al ) 

	to 	a
2 

n.( 	a
1- n.

t  ) 
	to 	a

3  al  

n. n. 	to 	a4 at i 

(3.32) 

and calculate the M (a. , 	. 	....,. n 1 	a, 	a 	in the same way as the A
n n 

fr 
and where the ai 	are contained in the set of operators (3.32), e.g 

the first few M are calculated  as follows 

M (a.) 
1 	= <=i>o = na. 1 

M2(ak I41 a.) 	M1(ai)M1(aj)M1(ak)  

and 	<.1jk 	as  >0 	Tr e Hd aiajak....a
s1 g 	.ft 

Where ct,‘ 	NV)  op 

 

Tr e 
-PH

d 

 

To obtain the expansion for the Mn  it is necessary to give the a separate • 
labels even though some (or all) are necessarily identical. The order 

of the operators a.
t. 
 in the linking factors is unimportant because 

they commute with each other. 

The correct counting of the dashed line connected graphs 

is obtained by drawing them in a linear form, in which case non identical 

Fig.47 

are non identical and must both be included to obtain- F, even though 



they both give the same contribution. 

It is easy to see that the complete set of graphs consisting 

of : single, one dashed line , two dashed line,, 	 , connected 

graphs may be grouped together to give 

4  
F -F

o = 	nm.21Ea. 	+ 	(-p/2! > (4hEa.)(AEa ) 1:
2(ai'aj) 	 i 	1 	 1 t=1 	4 	 47,j=.-_.1 

1- 	(-i3)2 	( 4;7.,a )(AE
a 
 )(AE ) M (a a. 	) 	+ 

3! 	1 	J 
	ak 	3 i" j'ak 
 

l'jilk=mi 

...etc 	 (3.33) 

This series can be identified to be the expansion in powers of i of 

(-kT) log <exp-P4 LLEa.na.,0)>0  
1=1  

(3.34) 

 

and where n is put equal to 1 at the end of the calculation. The n a.,op 
refer to 'the operators as defined by (3.32) , and the thermodynamic 

average is taken over Hd. Clearly (3.34) is identical to (3.1) with 

Z given by (3.24) when 	is put equal to 1. 

The equivalence of (3.33) with the expansion in powers of 

71 of (3.34) follows by comparison with a general result given by 

Brout(53) for quantities of the form (3.34), it can also be obtained 

from (2.32) which gives the general defining relation for Mn in the 

limit when all the 'times.' go to zero and when the Aa. are identified 1 
as the n 	When (F -Fo) is written as in (3.33), it is obvious a.,op 

that any graphical representation of AEa 
in powers of the interaction 

would be suitable to obtain a representation for F.- The representation 

we used for .AE
a 

, i.e the (c,a) labelled graphs, is not particularly 

elegant, it does however seem to be the most convenient when U is finite. 



We shall now see that in the limit U---iP4042 1  a representation may be used 

for AE , from which the contributions can be evaluated directly 

and one does not have to go through the procedure as for-the bubble 

graphs. One may note that in the expansion (3.33) of (F - F
o), all 

explicit dependence on p has been grouped together in a way which 

is very convenient when the limit T-P-0 is to be taken; this is carried 

out in Chapter IV. 

f) Graphs for LS Ea in the limit U---11.044 

It has already been mentioned that AF,
a 

is given by the 

same kind of self-consistency relation as the ground state energy 

shift from Brillouin-Wigner perturbation theory, e.g we recall that 

The. Rayleigh-SchrOdinger expansion of XSEa will generate the same terms 

as occur in the ground state energy expansion, except that the summations 

are now extended over all the band states with weighting factors fk  and 

(1-fk) where fk  = 	1 	and It is the chemical potential 

eP(Ek-11) 1 

given by (3.3) , whereas in the ground state energy expansion 

fk 	 k4(cF = .1  

fk = 	ck> cF 

where c
F is the Fermi energy determined by the number of particles 

in the system, which is fixed. Thus the limit T-1-0 of /1E, , except 

for the replacement u--).e.„ 	corresponds to the ground state energy 

shift (E g,a - - E 
o,a) where Eo,a 

is the unperturbed ground state 

energy associated with the wave function IYo,a > and 

o,a = cr> 
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A * 

a 	denotes tie imTpurity Mate and•cp_. the unperturbed Fermi crhere. 

Clearly in this limit, the double bracket in (3.23) will play the 

same role as the projection operator P where P is given by 

P = 1 ko,a> 

in the B.W perturbation formula. The difference between ji and c_ 

is related to the fact that to obtain (3.23) we have been working 

with an unrestricted number of particles, whereaS in the ground state 

energy formula , the number of particles is fixed. This question 

together with the limit T--).0 of F is dealt with in Chapter IV and • 

has some interesting consequences. For the present purpose however, 

we merely want to show that a graphical representation for Q Egla 
can also be used for 6.E (T) except that 

  

fk 

(1 - fk) 

  

  

It is also well known that when Wick's theorem applies, 

the B.W formula reduces to the Goldstone expansion for the ground state 

energy (when the system is normal), given by 

E
g 
- E

o 
= 	<,/..(1) I H (1 H J-11(1) ;›, o I -10-- I 	'o 

17=1. 	• 	1:9 

where only the connected graphs in the usual representation are now 

included. 

For the Anderson model in the limit U--)..00i  we may use 

Wick's theorem with the effective interaction 

HI  > 
+ 

[ 	

+ 
(1 - nd-o)  cdo

c
Ica 

+ cIcac
d0.] (3.35) 
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for the 3 possible unperturbed ground states 	
Ial> (pF  1.1(12> WF  , I > (1;,17. 

The interaction (3.35) eliminates all contributions which go to zero 

in the limit 1J--)-400, and the average is taken over Ho  which now simply 

is 

Ho = >nda + 2  ekanha 
	(3.36) 

6- 

Thus in the limit U -->oo , the dEm  may be calculated perturbationally 

from the expansion 

00  
> Ea  = 	< Hi  (2_.e_H) 

P.1 
where H

I is given by (3.35) and the sum is over the connected graphs only, 

e.g 

(00 

d t 

The excitation energies are evaluated in the usual way. To a ka-line 

going up there corresponds a faCtor (1-f
ka 

 ) , going down a factor f
ka 

where f
ka 	1  • 	. To a da-line going up there corresponds 

0(e e 	k 	+ 1 
a 	 a 	a (1 - fda) , going down a factor fda  . Where fda  

It must be pointed out however, that Wick's theorem 

together with the effective interaction (3.35) can only be used when 

the average is taken over a specified d-state as in the above formulation. 

The thermodynamic Wick's theorem cannot be used because with Ho given 

a factor 
< ndala>' 



(3.36), there is in the U infinity limit always an additional. 

conciititon <n, n.= G 
C; 

This in the limit U-->CO 3 (F Fo ) is given by the sum 

of connected and disconnected graphs of the type generated by the 

Goldstone expansion , and where the disconnected graphs are joined 

.together by dashed lines with rules which follow immediately from 

the expansion of F as given by (3.33). Once the LSE a are known 

in every order, the contributions to (F - F) can be written down 

almost immediately. The linking factors M n 	
a (a. 	. 	....a. ) are ,

n 
- calculated as before, for example 

142( al, 3 = 	> 4:21 
"1 	a1 	al 

= noo(1 noo)  

M2
(a,
l'
a
2
) = 0 - < n <n > a 1 	a 2 

- n
d,
n
oo 

The technique developed in this Chapter has many possibilities 

in relation to the impurity problem. In the next Chapter, we present 

some of the results which. may be obtained with this method , perturbatio 

nally and non perturbationally. Particular attention is paid to the 

static susceptibility and its behaviour in.the limit T-÷0. We also 

make a brief analysis of the error associated with the neglect of the 

0(1/N) and smaller contributions. 
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f  n 
ka 00  

ku
- E

do 

CHAPTER IV 

RESULTS AND DI3CUSSION  

a) Some perturbation theory results for F and the static susceptibility 

The method developed in Chapter III will be used here 

to obtain some perturbational results for the Free energy and the 

static susceptibility. 

The contributions to order V
2 

to F come from the graphs 

Fig.49 

The result may be written down immediately and is : 

f
ka 

n
d-a 	

(1 - fka
) n

dd 

Elsa 	
e
da 	

U 	Edo - e
Ica 

+ U 

(1 - 
fka) ndu 

(4.1) 
Edo eka 
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In order V4 , the 4 gra-ohs : 

Fig.50 

corresponding to 	a,0 
	contribute : 

fk2-a - fk1 a
) nda 

(cda - ck1a
)2(ck2-a - ek1a 

 + eda 	ed-a)  

kJ.) ka, 6' 

fk1 -a(1 - fk2a) nda 

tek -a -Eka +cdo - Ed-a)(Eda - k a)(Ek -a - Ed -a 
U) 

kJ.) 	2 	2 • 1 	-a 

fk2 -a 	fk a) ndo 

1)kv6a 
tek2-c 	ckla 	eda 	Ed-a)(eda 	ek1  a)(ek2-a - c

da 	U) 



X (T) = 62F 

  

6h2 

 

h= o 
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(1 - f, 	) n 
K
1
-0

2
cs 	aa 

- c. + eda - ed 
)(c, 	- cd-a - U)

2 

20 	-a -a 1 l 

These 4 terms can be grouped together to give 

V
4 

fk2-a(1 - fk a) nda 	1 1  

[ 	(Ek2
-a - k

l
a 	a + e.a 

 - e
d-a) 	Ed 	Ek

1 	
e
d + U - ek

2 
(4.2) 

The order V2 result together with the above contributions in V
4 

correspond to the result obtained by Scalapino(39)  by evaluating the 

time integrals directly. 

The susceptibility is obtained by including in the zero 

order Hamiltonian a term corresponding to an external magnetic field 

h so that 

H 	HoB h Sz,tot 
.0 

where -1113  is the Bohr magneton and Sztot represents the z component ,  

of the total Spin operator. This term can be absorbed into H
o 

by 

redefining 

ekt4, --> h Ek t /113 

e---)- h dtq 	Cd I 11B 

The static susceptibility 2( (T) is related to to the Free energy by 

(4.3) 

0  where and the zero order susceptibility is calculated from F 

(-0 Fo  = log 1 + e-pod + e-PEd -+ e-P(2Ed+U)  log Z° 
	

(4.4) 



.  [-. ed - el: 	
e
d 
+ U - e
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2 
1 	1 	= J2/4  
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(the label B refers to the Eand states). 

The region of interest physically, is ed<0 	and 2e +1;;>0 

(all the energies are measured relative to the Fermi level 11), this 

corresponds to the situation where the impurity is singly occupied by 

either an up or down spin at T=0. The low temperature suscePtibility-

for the unperturbed system can be written 

X°(T) = 6
2
F
c 

= 	 + 	2 X 
11B 6,112 . 	P 

=0 	kT 

(4.5) 

X 	is a temperature independent contribution from the conduction 

. electrons,and 2 
B
/kT represents the - Curie law for a free spin. 

From (4.1), Scalapino evaluated the dominant contribution 

to the susceptibility and found in this order 

,c(2)= ILB  2 N(0) J 
	 (4.6) 

kT 

where J is an antiferromagnetic s-d coupling in agreement with (1.38) 

and given by (1.39) in the region k = k
F  and N(0) is the density 

of states at the fermi level . Scalapino evaluated the contribution 

due to (4.2) in the low temperature region and showed that it produces 

the logarithmic temperature dependence characteristic of the Kondo effect: 

2, .5 -X.(4) N't0) J2 log(kT/W) 

KT 
(4.7) 

where W is the band width and the density of states is taken to be 

constant. It is instructive to See how this logarithmic term arises. 

If in (4.2) we put 

(4'.8) 



bh h=o 
(T) /IB 

2kT 

(.in low T), The (1/T) term comes from 

00 becomes 

then 	aX.
..(4)(T) 	(J2/4) -o2 

fk2-a(1-fkla
) nda 

- 
kiied-' 

0 

and the log(kT/W) term from 

f
ka 

a 
bh 

expanded 

h=o 

(4.9) 
fk 	(1-f. 

24.'t 	Kit $ 
- C ck 	k1 rzlIki, 	2 

about 	h=0 	givers 

f = fk 	(T) 	11B  h fk(1 - fk) p 

and lim T0 fk(1 - k) 	P 	6(ek) 

So the dominant, or most divergent contribution in T--y:) from (4.9) 

2(T) 11.B 	fk / 	(7-211B) 	N(e)f(e).10 	(4.10) 
	ek -co 

for a constant density of states over a band of width (t) 	about the 

Fermi level, (4.10) becomes 

(T)211.13  N(0) log(kT/W) + terms of lower order (5)  

The significance of (4.2) can be seen from the U----1.00 graphical' 

representation for LIEa given in Chapter III. 

,6" k..6,d-64  

xct)e  

k 
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The above graph gives the U--).-00  limit of (4.2) and corresponds to 

a process in which the spin of the d-electron on the impurity is flipped 

in the intermediate state. 

The remaining contributions to F in V4 
may be easily calculate 

in this technique. Since however one is primarily interested in the 

large U region, it is just as instructive to look at the U infinity limit. 

In this limit the remaining c labelled graphs correspond to 

	(Ek 	cd 
okAos- 1  

-  (Ek 1 
	

E
k 
2 

(1 - fk_a)(1  - f 	n, k a 	aa 
1 

(E
d 
 -Ek 

3 	1
)3(ed  - Ek  ) 

Zs-,s' 
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together with the set of dashed line connected graphs 

c A%) 

Fig.53 

ii 	 a g.53 contributes 	M2(al'a1) (-13/2!) (ac )
2  = (-3/2!)n oo (1 	n ou  _) x 

v4 fko 

ca Z) 
	 c

k 
Ed 

,V 

Fig.54 

fig. 54 gives v4(-4V2!!) 	- ndt) at. 
1 f

kt 
Edkt  

2. 

similarly for (a3)2 
which gives 

4 1/4(-(3/2!) n, (1 -nd,)  
1 fk4 
Ed ck 

C 3) 

Fig.55 



(a )
22  similarly for (a3)2 

(-p/20v4 (-noond ) fig.56 giVes 

(al )
2 

(a3 )2 similarly for 

(a2)2 

(a3) 2 

Fig.56 

fig. S5--)(-'i.V2!)v
4
( -n. n -t  

An analysis of the graphs in fig. 52 shows that the dominant contribution 

in order V4 is indeed due to (4.2), and that they give rise to contributions 

of 0(1/T) and less to›C(T); a similar result is obtained for the dashed 

line connected graphs in this order. Thus to order V4 the result obtained 

forX(T) including only the dominant terms in every order in the region 

<0 and 2ed+Li>0 and for low temperatures is given by 

    

XT) 	X p 2 
P13. 
kT 

2 + ,N(0)J + , (0)J2  log(kT/W) (4.11) 

   

in, agreement with the work of Scalapino(39), who further suggested 

that in higher orders the dominant contribution toX(T) can pro'bably 



N(0)J 

	11 

1 - ii(0)Jlog(kT/W) 
X (T) = X 

/-/B [-1_  (4.12) 
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be written as a geometric seriez in powers of 	N(0),1 log(kT/W) 	1 

in which case the result for X (T) including only the dominant term 
in every order would be 

This result would imply that for J negative the perturbation treatment 

breaks down at temperatures below TK  , the characteristic or Kondo 

temperature given by (1.36), a conclusion very much expected on the basis 

of the Schrieffer-Wolff canonical transformation. 

In this section, we shall show that the dominant contribution 

in each order of perturbation theory can indeedbe represented in the 

form (4.12), and that there will also be lower order logarithmic terms 

in order Vn n>6 , in a similar way to the 5-d model. For simplicity 

we shall be working in the U infinity limit which is sufficiently 

general for this purpose. 

It turns out that in perturbation theory, the dominant 

contributions to 7( (T) in the region of interest, come from the single 

c labelled graphs in other words those contained in 

6F = :In 	E 
a 

.6,
a 

c< 
(4.13) 

and that the dashed line connected graphs make comparatively 'unimportant' 

contributions, except those connected by a single line. This is shown 

in section (b). Thus to order V6  and in U--s-co, the dominant effects 

to X(T) can be represented by the graph in fig.(Sb which actually gives 

the complete contribution to [n 21E1 	+ n /1E 	. dA 	4 4 
For a1 = 02 

= -a 	the contribution is ( fr05- 57) 
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Fi6.57 
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- E
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For a1 = a, 	a2= -a 	and a1 = -a , 2 	, = a 	the result 

is identical and the total contribution can be written 

( 3) 

2V
6 	nda (1 -fk a )(fk4-a )(fk2a ) 

( Edo 
Gi41,2 40' 

c 	)3(E 	)(E 	Ed -a)  k a 	k2a - kla 	kLl--a 	
Ckla 

+ Edo 	-a 1 

ndo(1 	fk1a)(1 - fk3a)f  4-a 	(0f) 
(-2)v°  

  

.v.6 nda 

(-1)V 

(-1) V 
(cda

2  
Ek a)(Eda 	El(

3
a) (Ek4-a 

- k
3
a 	Edo - Ed-a) 

1 
ivEykro  6-1  

The remaining contributions come from al = a2 
= a 	this corresponds 

to the situation where there is no spin flip in the intermediate states 

and no logarithmic effects-to X(T) appear for such processes in any 

order. The contribution when al = a2 = a 	in order V6 is given in 

the appendix (3 ). 

It is not difficult to see that the dominant [16g(kT/W)] 1 

contribution to X (T) will come from the first and .-third term in the 

above results. 

For a' 1, the first term can be rewritten: 
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0/2)3 	fif  dci  del  dc3  N(el)N(e2)N(c3)Q. - f(cit ))f(c2.1.)f(E31) 
(e2  - e1)(c3  - el) 

The [10g(kT/W)'.1 	term comes from 

th 	del  del  dc3  N(c1)N(c2)N(E3) (-f(elt?f(e2.1.)f(e 

(c2 - el)(e3 - el)  

which leads to 

2N3(0) Ix [log(kT/W-21 

combining with and multiplying by 2 for both spin directions, 

kT 8 

we can write the dominant contribution to X(T) due to this term 

N3(0) J3  [og(kT/14)] • 

A similar analysis of (3) leads to the same result as above , thus 

to this order the dominant contribution to 9((T) becomes 

2 z  
IIB N-1(0) J3  [1og(kT/W] 
kT 

in agreement with the previous discussion. 

Term (2) may be written 

(J

J 	  	 Ji  

3/8) 	nda 	de, del  dc3  N(e )N(c2)N(s3)(_ - f(e3.6.))(1-f(e24p(e3...k 

(e - e )2 

h=o 

2 

ILB 
2kT 

3 1 
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This term would appear to contain divergent contributions to X(T), 

in the sense that the resulting integrals do not exist, however it 

must be combined (6) which shows a simialr behaviour. When this is 

done the result-can be rewritten: 

n. 	f - 
	

(1 - fk a)(1 Ga 	-a 2 	1 
)  k -a (-1)  

(Ed - E  (E 	Ek )(Ed - ek )(ed -- ek 
+ e, 	e, ) 

1 	1 	3 	1 
42 "3 Er FQ7 Rpr 

V° 	
n, Ga  f  k2-a(1  - 	a) 	I 	fk3a 	fk3-a 

(ed  - ek1
)2(ek

2 
- ek1

)2 	Ed - Ek 	Ed 
3 	

- Ek
3 

The first term gives a 1 log(kT/W) 	contribution to 2C(T), the second 
T 

term vanishes for zero magnetic field but gives a similar contribution 

to 7C(T). This is an example of a problem which often arises in 

perturbation theory. It shows that individual terms or diagrams may 

give rise to 'meaningless' contributions, but when grouped together 

in each order, the result converges. This point has been discussed 

by C. de Dominicis (54)in  connection with the time independent 

technique. A similar argument applies for the present method where 

it should be noted that to obtain formula (3.16), one has implicitly 

grouped together 'p rotationally equivalent graphs ' and thus individual 

contributions need not be meaningful, and must be grouped together in 

each order. 

In order V8  for example, there will be individual terms 

. 	- 
contributing to F which behave as e.g 

IS dx co(x) 

x3 

where y(x) does not 	as x2 , however it has been be checked in 



fk-a (1 - fk a) ndo 

ck4— -3 

(J2V2/4) 
1 - fki  

E
d 
- kl 
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this order that when all such contributions are =ouped together, - the 

final result converges. 

It is not difficult to see that (4) and (5) give rise to 
2 

contributions proportional to J
3  113  log(kT/W) ; writing (4) as 
kT 

and considering the 	-6
2 	of the first bracket, this simply gives 

oh 
the order V4 dominant contribution in the same way as (4.2). The 

second bracket can be evaluated and is equal to N(0) log cd 

thus the final result can be written 
	 tl+gd 

(112J2) N3(0) logl cd 143  log(kT/W) 
W-Fed  

Similarly for (5) apart from the constant factors multiplying the - 

temperature dependent part. 

The dominant series forAST) to order V
6 

can now be written 

X(T) = )(1)  + ItB [1 + N(0)J + 112  (0)J2  log(kT/W) + li3(0)J3Fog(kT/V] 

(4.14) 

In addition there are lower order effects behaving as 	1 log(kT/W) and 
T 

1 . 
T 

The graphical representation used to obtain the above results 

is not convenient for the purpose of generating the dominant terms to 

all orders. For this we shall now use the connected graphical representa- 

tion in the U infinity limit discussed in Chapter III. The advantage 

of the bubble graphs over the connected graphs with HI  given by (3.35) 
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is that there are far fewer contributions to be considered in every 

order and therefore this representation is particularly useful when 

the complete result in a certain Order is required. The reason for 

this is again related to the fact that in the connected graphical 

representation, Pauli's principle is not necessarily obeyed in each 

individual graph, even though fda  = 0 or 1. 

It was shown that in the limit U--* 00 and to order V4, 

the key contribution to F comes from the graph 

Fig.58 

for V
6, the 3 graphs 
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2 
give the contributions (1) and (3) leading to the log(WW) term in 

7C(T). The first graph gives (1) andthe other two give equivalent 

contributions and lead to (3). The series leading to the dominant 

logarithmic terms in all orders for,K(T), can now be generated by 

repeating in all possible non equivalent ways the spin flip and direct 

self energies. 

16." 

Fig.60 

in the d6-line going down and closing the graph by a single ka-line 

going up . 

The first term in the series is taken to be the graph of 

fig 5$ and the result can be written 

1 

- f
k a

)f

k2a2 
2 

Edo-  c 
	\ 1,6  
k
I
a' 	k

2
a
2 

CI(
1
a 

e 
 da- cda

2 

f
k a 	• 

V2 3 3 
ee 
da - ck a 	ck

3
a
3
- 	Edo-cka 

	
da
3 1 	 

R5,643' 

     

(1 	fk a)fk a V
4 

1 2 

 

(4.15) 

     

(cda- ek1  o
)2(e

k2 a
-  e

k1 a
) 

 

      

        

   

f 

 

1 V
2 

 

k
3
a 

E.do - Ek a 

   

ck
3
0- a 

'1 

   

The first term in this expression includes graphs in which there are 

no spin flip self energies 4  i.e it includes the series : (II 61.) 



Fig.61 

6'.  
4/iele 

X cGG' 
All these contributions are then exactly cancelled by the second term' 

6 
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in (4.15) which corresponds precisely to the.sum of •the above series. 

On the other hand these processes do not give rise to logarithmic 

terms in X(T) when all the appropriate terms have been grouped together 

in every order. Thus we may neglect the second term in (4.15) and 

by making the usual approximation 

V
,2 

J/2 _ - 
E
d 
 - ck 

becomes 6F
D  

2  

3T.3 
1 

6FD  = 	n, 
a 

1- 

	

	 ,) 
k 

62, 
c
k 

22 1   z(2a2  

a 

- f,

1( 

 )f, 

>  c 	e 

k
1  

_a3  
r  k_ k 

writing 

6FD= Ynda  5F0  
s' 

the dominant contribution to 7C (T) comes from 

(4.16) 

6 	(T) = -2 6n , 	6 (6F De  Dee ---- - Oh 	Oh 
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and furthermore when 6 	operates on 
6h 

f 	inside the summation sign, -k1cl 

then after some algebra the result heccmes 

D(T) = P2  

L 	
J2N2(0)log(kT/W)  

1 kT 	- JN(C)log(kT/W) 

which together with p 
[2 

13 
krT' 

N(0)J4 

kT 

(4.17) 

then gives back (4.12). It is reasonable to expect that for finite 

U 	J will simply be 	2V2  . 
U(ed+U) 

It would have been possible of course to make a more 

complete evaluation of 7C(T) using the bFD  given by (4.16), however 

this series does not include sufficiently many graphs to yield 

anything more in',,eresting than the dominant series. This result was 

expected on the basis of the analogy between the s-d model and the 

Anderson model and from the first few orders of perturbation theory. 

The technique developed here has made it possible to prove this and 

to show that the Kondo temperature TK  is indeed given by (1.36) which 

implies that perturbation theory breaks down for temperatures below 

TK . For T)>TK 
 (4.12) predicts a Curie like behavirur for 7C(T). 

As in the s-d model, the problem becomes focused on how to remove the 

divergence at T=TK in the physical parameters. 

It was shown explicitly that in order V6  there are logarithmic. 

contributions to X (T) of lower order than those summed in (4.17) and 

it is easy to see that this will be so in higher orders as well. These 

contributions are not negligeable in the low temperature region and 

a theory capable of going below T
K 

would at least have to include 

these termspartially(33) (e.g as in .sae Nagaoka-Hamann-Bloomfield theory) 

In the framework of a perturbation theory for the static 

susceptibility, we have seen that the most divergent terms as T-0 
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colne from the 	indep,:ndent tart of F,-namely the right hand side' of 

(4.13). In fact we may go further and write 

    

b
t
- 4E) 

1h=o 

 

X er = (b ncia,)( &E)1 
	 bh 	Oh 

h=o 
= 18. 
kT 

(4.18) 

and the quantity of interest in perturbation theory is always e 
oh ) 

where AE a(h,T) is expanded in powers of the mixing interaction and 

we have taken AE = 	Assuming therefore that the inclusiona 	
a2'a3 

of the lower order logarithmic terms in b OE 	will remove the 
Th

h=o 

divergence at T = TK, (4.18) would probably still diverge in T-o.0 

because of the factor 1/T . Such a behaviour is not in qualitative 

agreement with experiment, neither is it to be expected from general 

theoretical considerations (Cnapter 1). Thus to obtain a theory for 

x(T) which is at least in qualitative agreement with experiment, two 

difficulties have to be overcome: the divergence at ___T = Tx  and in the 

limit T--11,.0. As far as the divergence at T = TK  is concerned, the 

quantity of interest is Ata(h,T) and its derivative with respect to 

h , this can be calculated either using a direct perturbation expansion 

or 'non perturbationally' by seting up a self-consistency equation 

using (3.23). In the direct perturbation expansion it is difficult 

to renormalize the theory for finite U because one does not have a 

convenient graphical representation. On the other hand in U---1..co 

one can use the connected graphical representation with H
1 

given by 

(3.35) with the help of which it is possible to renormalize in a 

self-consistent way those processes which lead to the logarithmic divergence 

A direct way of seeing that the divergence at T,= TK  can 

be removed, is to consider AE(h,T) which may be written 

h=o 
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oo 	
P-1/ 

ANE a  (h,T) = 	
> Tr a [-P(HB+11311Sz,..

b
) HT( 	1 	19 	 (4.19) 

p== 1 
i.-• 

11,E
a
(h,T) - g 

Tr i e' -B(H
B 

 -111...nhSz B ) 

where P is a projection operator which plays the same role a7 the double 

bracket, HB  is the Hamiltoldan for the non interacting band electrons 

Sz,B is the z component of the total spin operator refering to the 

band states only i.e 

S
z,B 

= 7T(n
k 

and a denotes that the d-average is to be taken in the state la) . 

It follows that 

.0  > 1 <<sz,BH.,_ GE  -P E) A‹ w kT 	'=i 	a  
(4.20) 6 hE

a(h,T) 

bh 
• 
	h=o 

1 	ga(TI) 
on 

q= a 

bEa(T) is determined from 

AEa(T) = ga(41Ea(T)) 

and we have put <:Sz B> 

kT h=o 

= 0 . Note that the denominator of (4.20) 

   

cannot vanish because we have assumed that in (3.28) 	1 	has 
e - ga(e) 

a simple pole at c = 	a 

Using (4.20) and (3.23) it is possible in principle to 

obtain,a self-consistent result for b (11E 	In particular it 
bh 1h=o 

can be seen that the excitation energies appearing in contributions 



logarithmic divergences are now shifted to. e.g - f.P  • ) 
AEa x - ck# 

>of the type 	fk(1 - f.K  / ) 

Ek - Ek i  
which eventually lead to the 

which is no longer singular when k, k'approach the Fermi surface. 

However the situation is not quite so simple, for we shall see that 

the perturbation expansion of4NEa  is itself not valid in
K , and 

the problem has to be considered in greater detail. 

b) Analysis of the dashed line connected graphs 

The dashed line connected graphs to order V4  were enumerated 

in section (%) and the dominant contribution to X(T) was found to be 

of order 1/T . In general the important contributions to 21(.(T) will 

come from graphs labelled (a2,a3) connected by dashed lines, where 

a
2 refers to Id0> and a3 

to Id > . There is of course a formula 

which exactly includes all the dashed line graphs in F, this is given 

by (.3.34) and can be written 

F - F = (-kT)log 	n
aexp(-PdIEa) (4.21) 

    

However this is essentially a 'non perturbational' result, and it is 

instructive to investigate the problem first from a perturbational 

viewpoint and then compare the result with a non perturbational approach: 

From the series expansion for F given by (3.33) it follows 

that it is not actually necessary to analyze graphs in each order of V 

but for the present purpose it is sufficient to subdivide the contributions 

in terms of the number of dashed lines. The complete contribution to 

F consisting of two parts joined by one dashed line can be written 

(-13/2.) > M2(ai,aj)403:  AE a. 
	 (4.22) 

(1)=1.  
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The dominant contribution to X(T) comes from 

(-P/2) [ M
2
(a2'a2)  LSEa2 

AE
a3 	

+ 	m
2
(a3'a) LiEa3  LiEa3 	+ 

2112(cc2'a3) AEa2 
AEa] 

(-p/2) n• (1 - nd )(AE )2  t 	
t 	. 	t 	

+ 	4,(1 - n )( AE )2  .4 	4 

2n, nd4 (AEt  )( AEI) 	 (4.23) 

We note that for zero external magnetic field, (4.23) can be rewritten 

(41E )
2[12nd  - 4nd  (-(3/2) 

this expression vanishes in the limit T-÷-0 since lim nd  = 1/2 

when (:1 <0 	2cd+U)>0 .and is zero otherwise. In fact the contribution 

to X (T) due to (4.23) in the limit of low temperatures can be written 

bX(T)  

• 
1 (b LSE (h T) 
172 bh 	h=o 

(4.24) 

where a =for+. 

It can be seen that the dominant contributions to% (T) 

due to graphs joined together by a single dashed line will be of 

similar importance to the lower order logarithmic terms coming from 

(4.13). e.g 	11 [10g(C/W] Jn 	s <n-1 
kT 

.A -detailed analysis of.the 2,3,.... dashed line c2ntributicns 

to X(T) has been carried out, and it has been found that they give 

rise to results which vanish in the limit T-10.0. The reason for this 

is not too difficult to see for we recall that by definition, the 
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213, ...n dashed line connected graphs have factors of p2,p3n 

and if their contributions to X (T) wee non vanishing in the limit 

as T--).-0 , we should expect terms behaving as e.g (1/T2) log(T) 

(1/T3) log(T) , ...etc. Such terms are clearly much more important 

in T-.0 than the logarithmic ones considered previously and are 

not expected to occur in this problem neither have they been found 

in s-d model calculations. Hence it can be seen that when 2C(T) is 

evaluated term by term from the series (3.33) , then in the limit 

T--)1.0 we need only consider the first two terms of this series. On 

the other hand this does not exclude the possibility that the sum of 

of the series gives a qualitatively different result to the term by term 

analysis. This in fact can tul'n out to be the case (see section a). 

To conclude briefly the work of the last section, we can 

now state that if X(T) is to be calculated from a perturbation theory 

which is based on including the most important contributions to 7,:(T) 

in the limit T-0-0 , then the result in the region £d ((0, 2ed+u>0 

must be calculated from 

     

3<(T) =2
12 	

11, 

1711 kT 
(92 b 46E,t14, 
- 751 

+ I 	Art) 
bh h=o 

(4.25) 

     

     

where CLE (h,T) may be evaluated perturbationally using the various 

methods described previously. 

Consider nuw the approximation for 4SE,..(h,T) given by (4.16) 

and which leads to the dominant logarithmic series for 2C(T). If to 

(4.16) we add ',,he contribution to order V2 we can then write 

  

(J/2 )113N(0) (G= f) 	(4.26) bilE
o
(h,T 

Oh 

 

h=o 1 	IT(0)Tiog(kT/W) 

    

Substituting (4.26) in (1t.25), 2C(T) becomes 
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2 
X (2) =

A 
 + BB [71 + ' N(0)3  

3c 	1 - N(0)Jloc(kTA) 

a 
(J/2)N(o) 	l 	0-.27) 

- N(0).11og(KT/W) 

The last term in (4.27) is absent in (4.12) and is clearly of lower 

order in the logarithmic divergence when it is expanded in powers of 

J. In fact it corresponds to the dominant contribution of the graphs 

connected by a single dashed line. The interesting feature of this term 

is the fact that it is actually more divergent than the so called 

dominant series when T-*T
K
. This example clearly shows that in ).ow 

temperatures, the lower order logarithmic terms are not negligeable. 

(T) as given by (4.25) will not be meaningful in 

unless AE(h 1 T) is suffieciently well approximated so that the divergence 

at T = T
K 
is removed. Assuming that when the lower order logarithmic 

terms, are included (or at least partially) (4.25) is defined in T4Tic  

to obtain a qualitatively correct result for 7((T) would require that the 

7 
.14B 

kT [1 

lim [La 
kT 

▪ 6 AEN(h,T) 
• sh 

 is finite. The 

significance of this condition is investigated further in 0..)where it 

is obtained in a more general context. 

In the next two sections we look at the susceptibility 

and the Free energy from a 'non perturbational angle ' by using the 

equations (3.23) and (11.21) . Particular attention is paid to the 

limit T-0-0 for F and /((T). The low temperature limit for X (T) 

is particularly important in view oi the incapacity of present day 

theories to describe it. It appears that the result obtained for 

F in Chapter III may be able to throw some light on the question of 
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the exact cancellation of the local moment in the s-d region. 

c) The limit T.--)) for the Free energy  

The perturbation expansion for F is obtained from (3.33) 

and by using the Rayleigh-SchrOdinger or iterative expansion- of the self- 

consistency relation (3.23)for-ilEa . In the limit T-->0 we have to 

distinguish between the 3 regions 

(1) 

(3) 

(2) + 

ed4(0 2ed 

Ed> ° 

E
d 

4f..0 2ed  

+ U < 0 

2ed 	
U> 0 

+ U> 0 

The limit T--i0.0 of the p independent part of F generated by the 

c labelled single graphs tends to 

lim 	7.1 a 4SEa(R.$)  = LSEa 	in (1). TAO 

	

	 g(R.S) 
ot. 

= AEmg, S) in.(2) 
R. 

11,  
= 	1 akElg(R.S) 

 + ill;
g(R.S)] 
	in (3) 2   

Clearly in the absence of an external magnetic field AEf g(R.S)=  LIE4'g(R.S) 

The dashed line connected graphs give contributions that go to zero 

in this limit. This is clear from the definition of the linking factors 

M (a.,a
j'  ....an) . In the presence of a magnetic field h to lift 

the 	degeneracy in region (3), each factor of the type pn M
n+1 

must 

approach zero as T---30-0. However when h = 0 ,region (3) causes some 

difficulty, in this case all the contributions of this type must be 

grouped together before the limit T-Ht.0 is taken and then the above 

conclusion will follow. An example of this situation is provided 

by (4.23). 

Thus the limit T--4.0 of F(p) can be written 

lirn 	 (p) 	(a) 	_o 
F  • = 	Ecf.(R.S) a 

+
B 7:4-0 

(4..28) 
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where 	ca 	
2ed 

+ U -211. 	in (1) 

0 	in (2) 

= Ed  - 	in (3)  

o vo 
and EB 	- 	where Eg,B 

is -the ground state energy for 
Fr,B 

the non interacting band electrons. The label (p) in F
(p) means 

'perturbationally'. 

We know _on the other hand that. if F(e)  is the exact Free 

energy of the interacting system 

F(e) = lim g  - (4.29) 

where Eg  is the exact ground state energy of the system. If the system 
0 

is normal, or in other words if the adiabatic hypothesis is valid, then 

Eg = AE
(a)  
g(R.S) 	ea 	E

o 
g,B 

where "a4  is determined according to the 3 regions considered and 

(4.29) is then identical to the ground state energy as determined from 

F(p) except for the replacement 11"-÷EF 
(a) 

in  AEg(R.S) where EF is the 

fermi level determined by the number of particles in the system. It 

turns out that in particular the effect of the neglected 'accidentally 

vanishing excitation energies' is to shift U,--)P EF  (section f ). Thus 

if the system is normal then (4.28) and (4.29) are consistent when this 

allowance is made. On the other hand when adiabatic theory breaks 

down,F(p)no longer leads to the correct ground state energy. 

Let us now consider the limit T--3.0 of F, where F is 

given by (4.21) 

lim T--). 0 F = Eg,B 
 + 	&E(ga) 
	

Ea  - 	. 	(4.3o) 

where AE(a) is the T-÷0 limit of AEa 
 as given by (3023). This 
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result is more general than (4.2) in two ways, firstly A.1.,(a) is the 
O  

ground state energy shift as given by the Brillouin-Wigner formula 

(3.23) and the correct solution of this equation, namely that which 

gives the least value for the ground state energy shift, is not 

necessarily the one obtained by the R.S expansion of (3.23), when the 
• 

adiabatic hypothesis breaks down. Secondly, .if we write 

E(a) =E(a) 	c 	Eo 
a 	g 	a 	 9 a B C-3 

. then if 

	

E( 	in (3) 4  E
g 

 4 . 
__,
g
a) ( the limit T-Ho. 0 of (4.21) actually gives h 	and not E(

g
al'at)  as the 

true ground state energy in this region, whereas from (4.28) the factor 

n
a 
in the limit T-÷0 of Tna  E exponentially pushes the result 

el 
	a 

to 	E(
g
al'a3)  even if 	E

g
(aa'a  	EW in the region (3). Thus (4.21) 

indicates that the term by term analysis of the infinite series for F 

misses out the possibility of the sum giving rise to a qualitatively 

new result. 

The greater generality afforded by (4.30) as opposed to 

(4.28) can have important consequences for this problem where it is 

known that as a result of the Kondo effect, anomalous behaviour occurs 

in the expansion of the physical parameters at low temperatures. 

No anomaly is expected and none is found for the two functions 

E(4(T) and 	E(ai?(T) , furthermore 

Iim T ___> 0  (  E(ai'q(T) = 	E m d' 4= 	
g 

E(al
(R

'ai .S 

Adiabatic theory is valid in region (1) and (2) and the correct solution. 

of (3.23) is the same as the perturbational or (R.S) solution corresponding: 

to the unperturbed ground states tak> 	and lai>.(pF 	respectively 

which may also be written Idf  d 
:>(n

fF  . 
	and 100>yl, . 

The region of interest is (3) where one of the impurity states 
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lies below and the other above. the 'Fermi level'. The unperturbed 

ground state Ida0>wp  is doubly degenerate and in principle adiabatic 

theory is not valid. The temperature dependent function AEa(T) leads 

to the anomalies in the susceptibility at low T. The question of 

whether lim T__).0i1Ea(T) = Ea(S.C) = "ag(R.S) 	must be looked at 
A   

more carefully. (S.C) stands for 'self-consistent'. 

The answer is provided by comparing the perturbation expansion 

of AE(T) with the expansion of the Free energy in powers of J in the 

s-d model as given by Kondo(33). Kondo explicitly calculated the fourth 

order dominant contribution to the Free energy by using the time 

integration method (3.5). He found a contribution behaving as Tlog(kT/W) 

and argued that there should be an infinite series which can eventually 

be written as 

bF
s-d 

T 

  

El - Jlog(kT/W)] 
3 

and diverges at T = TK. Thus the expansion of Fs_d  is not valid 

in T47TK. Kondo's work suggests that when the lower order logarithmic 

terms are included in  Fs-d(T) such that the divergence at T = TK 

is removed, then the limit T---$.0 of Fs_d  can no longer be obtained 

from a T = 0 expansion of th.,. ground state energy. More generally it 

can be said that 

s-d lim 	Fs-a ,(T) = 	
-d) 

7h  .u—yes 	Eg(R.S) 

but in fact 

7(s-d) 
E
(s-d) 
g(R.S) 

A direct comparison between AEa(T) in the limit 13.--“0 and 

the, Free energy in the s-d model shows that in the s-d region the two 

are essentially the same. Certainly we should expect a similar divergence 
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in &E a  (T) erturbationally at T = TK  and furthermore the exact 

LSE (T) in the limit T-4.0 will give the true ground state energy a 

shift A .7.a  which is less than &F,(1  
g 	 g(R.S).  

Thus the ground state energy shift in region (3) must be 

calculated self-consistently from the B.W formula 

d E
C  I 

13-1 
(AE  	pH)vpo> (4.31) 

where 

I Yf 	Idto>yF 

I (P4. > = 	I dr>(pF  

and as a result of the Kondo effect, AEa can be thought of as having 

a 'non analytic part' which cannot be expanded by perturbation theory. 

Adiabatic theory is not valid in (3) and (4.31) has more than one solution 

the lowest one of which is not the perturbational or R.S solution. 

The perturbation expansion for AEa  (T) is strictly speaking •  

not valid in T <ITK  however one can imagine, to be in T;),TK and obtain •-..  

a result which 	 T< 

	

can be continued to 	:TIc..  In principle &E a
(T) can `  

alo be evaluated self-consistently from (3.23). 

In U—IP.010 the limit T.O. of F can be summarized as 

follows: 

e
d > 0 i.e region (2) 

	

E=- E 	. The ground state energy is obtained from 
g 	glai  

	

.a (T) in T--ir0 	perturbationally (or non perturbationally). The 
1 

 

exact many body ground state wave function has singlet symmetry, this 

follows from the adiabatic assumption. 

i.e region (3) 



In this case there are two possibilities 

° 	< 	S) 
a) E

g 
= E 

g(S.C) 	-g(R. 

b) 7 

''g(al) even in E
d
<10 

(b) would imply that even in ed<0 the correct ground state energy 

is the one obtained by taking 100)>T1, as the zero order ground state. 

The evidence for this possibility is dicussed in the next section,- 

it must also be noted that this never arises in the s-d model because 

there are only two possible unperturbed ground states namely the pair• 

of degenerate magnetic states I attp_N and I4,(pF> . This could be an .e/ 

important difference between the s-d model and the-Anderson model even 

in the U infinity limit. 

and Ea 
C(S.C) 

In view of the significance of E
g(a ) 

we call 

E
g(a1) 

D  
h
g(S.C) = 

E
g 

g 

where S 	D refer to 'Singlet'. and 'Doublet' respectively. 

d) The limit 	ofX(T) in U--+00.  

It is now possible to investigate some of the consequendes 

of the last section in relation to the T 	limit for the susceptibility..  

From (4.1) the susceptibility can also be written 

	

7((T) = -kT 62Z 1 
	

kT 	6Z/6h)2  

	

bh2 Z 
	

Z2 

2 	 2 
= - ,,,tot> 	<Sz,tot>  • 

kT 	kT 

-0 Define 	L/E
a
(T) + e

a 
+ h

B 	
=. E

a
(T) 

(4.32) 

0 

(4.33) 

(4.34) 



bh 

2 
b -Ea e-P(Ea) 

1 ) = 
>  kali  bEa) 

tT 

E
a (T) 	-"I(T) 
1 

E 	(T) = E3 (T) 
a ,a_ 2 ) 

then 

and 

= 	o 
e 

_o 
-P(E(T)) 

oc 

9C( T) = 2CA (T) 	+ 	7(i(T) 

where 

9(11(T) = XB(T) 	- 	52EB 
bh2  h=o 

_ ( 4 . 7 ) 

   

2CB(T) 
	2c, 

lirn 
A(T) = 0 

:D-P(Ea)  
e-P(EaT 

Vrx,) 	
1 
kT 

I EF-"Ea l 

2. 
 

(4.38) 

Equations (4.36) and (4.38) .give the susceptibility X (T) calculated 

from the Free energy (4.21) which is exact except.for the neglect 

of contributions of order 1/N and less. We are primarily interested 

in the low temperature limit for X (T), in Which case XA(T) can be 

neglected. In the absence of magnetic ordering and by rotational 

invariance of the Eamiltonian we put 4Sz,tot 	= 0 at T = 0. Hence 

wecanneglectthesecondterminX.(T) as given by (4.38) and it 

is clear that 	lim.T 	E (T) = E 	(=ground state energy) a 	gta 



}1B    1 
W- I` 

‹ Consider the situation b 	, 	, 	.7,D 0 , and S  th,n1. 
6 

in the low temperature limit ,C(T) behaves as 

      

- 1 	6E [11 	a 
2 KT 777— 

On 

 

O 

(4.39) 

    

      

The divergence in T--)0.0 is due to the first term which can be rewritten 

b Li 
- bh 

which is just the result obtained from the perturbation analysis 

and given by (4.25) , based on including the most important contributions 

in the limit T-4.0. 

[-- 
If u + B - 

b LIF] 
bh 11=0 

is interpreted as the effective 

    

moment' on the impurity , where uB is the magnetic moment of the 

localized spin and 	Ea 	corresponds to the antiparallel spin 

bh 

polarization around the impurity, it follows that for the effective moment 

to vanish in T--*0 

    

+ 	b LSE, 
bh 

 

Iteff  ".0 T 	as 	0 

`t=0 

(4.40) 

   

    

b4SE a 	
is determined from the equatiOns (4.20) and (3.23), from which 

bh 

it is also possible to obtain approimate self-consistent results. 

However it is difficult to conceive how (4.40) could ever be satisfied 

unless one thinks of AEa(h,T) in terms. of two setarate parts (in T--i0.0) 

e.g 

E
a(h,T) 0N-pca(h) 	B(h,T) 	(4.41) 

where e
a
(h) is a non analytic part describing the region close to the 

impurity and which is such that 	be(h) 	4:1113 
	and. B(h,T) refers 

bh 



to the rest of the system and is only 'weakly affected by the impurity 

such that 	oEs(h T) 	---> 0 	as-  T-4.0. The form given by (4.41) 
oh 	h=o 

4 
is suggested by the work of Kondo

(5) 
on Suhl's theory (26)  and 

Yosida(20) and essentially gives the picture of a quasibound state 
ft 

localized in the region of the impurity. 

Now let us consider the situation 

ES ED 
	

in ed 0 

in this case the low temperature behaviour of X(T) is determined by 

     

     

1 	bE
s
(h,T) 

kT. bh h=o 
b
2
E
S(h,T) 

bh h=o 
(4.42) 

     

     

E (h,T) is well behaved and 

lim 
	

bE 
bh h=o  

bEs(h,0) 

bh 

S_ 
remembering that t refers to the ground state energy of a many body 

singlet state (even in cd <O), we have 

bEs(h,0) 

bh h=o 
B<Sz, tot>  

= 0 

    

and the limit T--!0-0 of the susceptibility is given by 

X ( o ) (-1)b27  0E (h,0)) 
p 	 bh 	al h=o 

(4.43) 

    

Naturally all this is saying.is that if the exact ground state is a 

singlet, then the T = 0 susceptibility is finite. 
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The possibility that ES  ED in Ed KO has some relevance in view of the 

calculations made by Toulouse(55) for she ground state energy of the 

Anderson Hamiltonian in the limit 	00 	His approximate perturbational 

_ 
calculations f 	

S
or r, and ED in cd) 0 and Ed4.0 led him to give an estimate 

of the Lehaviour of these quantities as a function of Ed  as shown 

schematically in Fig.62. 

Fig.62 
The behaviour of Eg(R.S) 

and E as functions of E
d c 

according to. Toulouse (reference 55). Dashed line is continuation 

of E into the reg4 on
d 

From Fig.62 it can be seen that the analytic continuation of Eg(cd) 

into the region cd.40, denoted by the dashed line, is lower than the 

normal Doublet ground state energy ED 	. Toulouse concluded that 
g(R.S) 

the correct ground state energy in c
d4:0 is given by E

S  calculated in 

E
d
4.0, and that consequently the ground state many body wave function 

had singlet symmetry. 

TOulouse's work raises the possibility that E is also less 
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than Eg(5.C) in part of the region ed4:0, in which case it implies 

that the 
	

T--.0 of "X(T) is given by (4.4) and is finite. If 

[ED 	ES  = kT where ic  is >0, then in the limit of low temperature 

7((T) can be written 

2 -(T /T).  e c (4.44) 

where A, B are temperature independent 	and the local moment is 

quenched exponentially as T-4..0. It must be remembered that the new 

structure predicted by the inequality 

• ES  4 ED 	in 	a<cd<0.  

has been accounted for as a result of the exact inclusion of the dashed 

line connected graphs in the formula (4.21) for the -Free energy. 

e) Discussion 

It appears that from the expression found for the Free 

energy (4.21)4  certain conclusions may be drawn as to the behaviour 

of X(T) in the limit T--> 0 without having to evaluate the functions 

Ea(T) explicitly. 

Toulouse (55),  on the basis of hiS estimates for E
D 

and 

ES  (fig62) concluded that the ground state in the limit U_ infinity 

and for ed <0 was of singlet symmetry. Such a conclusion however 

is not justified on the basis of a perturbation calculation of E . 

The close similarity between the temperature dependent functions lEa(T) 

and the Free energy in the s-d model indicates, in view of Rondo's 

calculations, that the limit T-4.0 of AE(1( ) may not be calculated 

perturbationally, starting with the T=0 result. The true ground state 

for the pair of degenerate states Ido00(,9F  must be calculated self-

consistently and will be lower than Eg(R.$). Thus apparently the 



question becomes focused•on the relative magnitude of the self-consistent 

'Doublet' solution and the Singlet solution in gd <p. The latter 

possibilitiy is absent in the s-d model and is a feature of the 

Anderson model (in U-79.00). 

It seems that one can deduce the following picture: in the 

• fe ES 
region 	i.e in the s-d region, ED( 

	
and the limit 

d gS.C) -"" g 

T-->0 of X(T) is correctly given by 44.39) . It is difficult to see 

how 2C(T) can be finite in T-4.0 unless one adopts the simple physical 

picture of a spin compensated singlet state formed by the localized spin 

and a conduction electron, localized near the impurity, the rest of 

the system being only 'weakly affected' by the presence of the impurity. 

This is a physical picture often adopted in s-d model calculations
(45) 

Better approximations involving more complicated many body proceeses 

tend to destroy the exact spin compensation near the impurity and 

and lead to a susceptibility which eventually diverges in T--)-0. A 

good starting point to obtain a self-consistent solution for LIEa
(T) 

may be to split it up into an analytic:and non analytic part , the latter 

describing the region around the impurity.(33) 

As ed 
moves closer to the Fermi level, at some stage 

ES  will be less than EDg(S.C),the limit T-4-0 of PC(T) is then given 

by (4.42) or (4.43) and the local moment disappears exponentially as T-4-0. 

However at T>T
c 

the temperature dependence of 2C(T) is mostly determined 

by the magnetic component 	E0(T), and at high temperatures this gives 

rise to a Curie law type behaviour. The possibility that E
SD 
g 	g(S.C) 

raises the question on the type of singlet structure 	Eg(ed) describes 

in e
d
<0. The spin flip effects are absent in ES(T) and it,certainly 

does not seem to describe the kind of localized spin compensated state 

associated with the Kondo quasi-bound state. For E to be the ground 

state energy, E. would probably have to be in the band and quite close 



theory perturbation in 1/ 

I
Spin lifetime T

sf
??I  

Anderson 
model 

perturbation theory in U 

Schrieffer-Wolff transfo'rm. 

\\\\\\NNSpin  Euctuation 
model UrvA 

-135- 

to the Fermi level; even in this situation there will be spin flip 

effects (at finite temperatures) but the weak condensation energy and 

the importance of the lifetime effect could well mean that the 'Spin 

fluctuation Todel' is appropriate in this region e.en in U infinity. 

This is in contrast to the e
d<;‹,:0 situation where the localized spin 

is strongly correlated to 'a' conduction band electron and it is no 

longer possible to use the physical picture of a localized spin on which 

the effect of the many body interactions can be thought of as principally 

producing a finite lifetime. 

Even in 11----)"0  and e
d 0, there are however still difference 

between the Anderson model and the s-d model associated with the fact 

that in the former, the localized spin is not fixed and there will 

therefore always be a lifetime effect absent in the s-d model. In the 

perturbation theory presented here this manifests itself in that there 
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fk1a(1 	fk
I
a) not) 

	

cck a 	
c 
 da'  
)2(4) 

1 

4 
('0.46) 

lops 
are a considerably greater number of lower order terms in the Anderson 

model calculations for the physical parameters. The technique developed 

in Chapter III is clearly equally suitable for the s-d model and future 

work on these lines should clarify further the queStion of the equivalence 

of the Anderson model and the s-d model. 

f) The significance of contributions of 0(1/N) anecless to F 

In Chapter III page $3 , it was pointed out that the simple 

expression for Z and therefore F as given by (3.24) was only valid 

in the limit of a very large number of particles because effects of 0(1/N) 

and less were neglected. In this section we briefly examine the 

significance of such contributions in the light of the work of R.Balian - 

and C.de Dominicis(56)and R.Brout and F.Englert(57'58). 

Consider for instance a contribution to Z in order V as 

given by fig.37, 

(-3/2mi) 
V
4 

fk aft - fk3a) noo 

. 4(c + ck c  - eda)2,ck a 
1 

- ck a 
+ c) 

1 	3 ci, k; 

(4.45) 

for kl  = k3  we obtain the contribution included in (3.24) and which 

is of 0(1). When k1 
= k3 , 

(4.45) becomes 

b 
this is of order 1/N and is not included in (3.24). 0vious1y such 

contributions are not negligeable when the number of available states 

is small e.g as for the two atom problem where HI 
 is given by 

H_ = V 
++ 

0, 
+ 
ducoc 	(), 
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When the E integratien is carried out in (4.46), we obtain as a 

contribution to F: 

I 

(-"fl- -(1  - fk a)  noo V
4 

`1 j̀ 	1  

CEk
l
a - eda)2(2) 

lk c( 1 	
a)

f 	n ooV 

(ek
l
a - eda)3 

 

The first term gives a nonvanishing contribution in 	limit T---).0 

for 
c.>  0. Clearly this contribution has no equivalent in the ground 

state energy formula for 	
)) 

c.
d  0 
	(3.23) a = a1, which differs from the 

true ground state energy formula i.e the Brillouin-Wigner expansion, 

by the replacement of y. by eF, where e7  is the Fermi level and is 

determined by the number of particles in the system (fixed). In fact 

it car_ be shown that a large class of these terms must go to renormalize 

the Fermi functions f
k in s-och a way that in T-* 0 u  is shifted 

to c
F 	The discussion of this point together with the proof is given 

in full by Ealian and de Dominicis(56) when the zero order Hamiltonian 

is non interacting. A similar result would be obtained in this case 

as well. This may be seen quite easily by looking at the pro'nlem from 

another direction. 

We recall that the partition function Z was calculated for 

a Gland canonical ensemble. In principle Z could also have been 

evaluated in a canonical ensemble, the former is very convenient because 

the thermodynamic Wick's theorem may be applied to the band states and 

the chemical potential is the exact one given by (3.3). The summation 

over the band states is unrestricted and this gives rise to the 

possibilities that e.g k
1 

= k
3 as in (4.46) 	On the other hand, hnd 

we worked in the canonical ensemble, i.e with a fixed number of particles 

N, then the thermodynamic Wick's theorem would no longer have applied 

and the temperature averages would have had to be evaluated under the 

restriction : 



ko 	ac n. 	= 

It is easy to see however that when these averages are evaluated, the 

contributions. to order 1 would correspond precisely to the terms 

summed in (3.23), with the restrictions on the summations which exclude 

the vanishing of the denominators. The fermi functions would be 

f,, 1 

 

J'(Ek-llo )+1 

where Ito  is the unperturbed chemical. potential which simply reduces to 

the Fermi energy eF., determined by the number of band electrons. 

Naturally.there will also be contributions of 0(1/N) and less which 

will go to renormalize the chemical potential to its correct value(53) 

Coming back to the formulation involving the Grand canonical ensemble, 

we can state that in particular, inclusion of a class of contributions 

which are of 0(1/N) and less will shift .11 to ii-W(k) in 1k  which is now 

written 

Fk = 1 
k
-14 -11)

+1  

The new Fermi surface is defined by 	e
k 	

W
k 

= p. 	and W(k) is 
F 	F 

given by some self-cohsistency relation, any deformation of the Fermi 

surface arising out of the Kondo effect should be of negligeable 

importance in this particular problem. In fact to a good approximation 

we can replace IL by eF  in all the results obtained in.Chapters III and - 

IV . 

We can conclude that the 0(1/N) and smaller contributions 

go to •renormalize the Fermi functions for single particle excitations, 

they are not likely to be of great importance and the formula derived 

for F is a good description of the system. However this does not exhaust 

all the possible vanishing denominators (accidental), consider Tor 
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instance the OW) contribution to F which leads to the lo:,-:arithmic 

term in the susceptibility 

n 

(c + ek -a - ek a + Edo 	d-a
)(e +do 	ek1a)2. 

(v /4ni) 	e-Pe 	
a)fk -a 
1 	2 	• de da (1 - k 

.1 

at. 

nda (1 - f
k1

)fk1 -a 
24' c   
2 	2 

CE 	E da 	Ic 'a' 
pe 

and. can be represented by the graph 

Fig.63 

Unlike (4.46) which can be drawn 

The graph corresponding to fig. 63 . cannot be interpreted as a renormaliza-

tion of the single particle distribution functions, although it is of 

kA  ,6' 

the Possibility kl  = k2  leads to a O(1/N) contribution proportional to 



_Ile 
cc

ka
c
k-ccd-a 	e 	cle 

E(E - ek  + Ed) 

(4.47) (f3/2gt) 

k 26' 
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the same order as (4.46). A careful consideration of this point suggests 

that it actual l:i-  renormalizes the two particle ayerage 

<cdackack-acd-a s • to order V
2 in e.g 

and ,,:here the two particle average vanishes in zero order. 

It appears therefore that a complete sum of the order 1/N 

and smaller contributions-  cannot be performed by introducing a self-consis- 

tent field W(k) which acts on each particle individually
(56)

, rather 

this would have to be a 'spin dependent field'. in which case the 

temperature averages in (3.10) could no longer be decoupled in a simple 

way. Naturally this would then completely modify the form obtained 

for the partition function and the Free energy. An attempt to make 

the theory self-consistent along these lines, does not appear to be 

necessary in the limit N--).000which is the situation one is interested in„ 

even though this question cannot be dismissed entirely in view of 

the argument due to Brout et al.
(58)who pointed out that under certain 

conditions, namely when the system undergoes a transition to an ordered 

phase, contributions of 0(1) may in fact become of 0(N) (in this case 

it would be 0(1/N)---1,  0(1)'. In the impurity problem the question of 

an ordered phase in the usual sense does not arise, but clearly at 

low temperatures a kind of ordering does take place in the vicinity 

of the impurity for Ecl° and a consistent description of this may 

require in the T-i.0 limit the consideration of the 0(1/N) and smaller 

contributions to F, in particular those of the type (4.47). 



' 	CHA:: TER- V 

;,ND C&NCU:STONS  

The theoretical treatments. of the magnetic impurity problem 

were reviewed in Chapter I and particular attention was devoted to the 

two basic models that have been used to. describe magnetic imrmrities in 

simple metals, namely the s-d model and the Anderson model. The s-d model 

in many ways gives results which are in good agreement with experiment, 

however the Anderson model commends itself by its greater generality 

and turns out to be 'equivalent' to the former in the region 

E
d 
- 
	<4 

Ed 
 

but it is this particular region that the theoretical treatments used 

so far have been unable to descrbe beyond the first few orders of 

pertUrbation theory. Nast of these were based on the well known 

connected graphical expansion of Field theory for the Green's function 

and dynamic susceptibility and despite their successes have failed to . 

account for the s-d region. The most important recent development, 

the Spin fluctuation model, was outlined and critisized in Chapter II 

where it was also pointed out that the limitations of approximate 

theories for the magnetic imnurity problem were closely connected to 

the use of the thermodynamic Wick's theorem. This indicated the 

necessity of developing an alternative approach in which the perturbation 

expansion would be carried out in powers of the mixing interaction 

while the correlations on the impurity were treated exactly,, 

" The problem was approached in tworlirays, in Chapter II by 

means of a Green's function method and later using a time independent 

technique for the calculation of the Free energy. With the aid of the 



Z, F 
time independent method 

relation for AE (T) 
self-consistent solugion? 

good for T 4T
1 

T 	T1,? 

Green's function it was possible to show how Abrikosov-Nagoaka ty7;e 

self energies would appear in the Anderson model; but the computational 

problems involved are so enormous that it is difficult to go beyond 

Perturbation theory in particular for finite temperatures, although 

the method does indicate how a self consistent theory could be arrived 

at. Nevertheless it was possible to get an insight into the question 

of the validity of partial summations ih linked graphical expansions 

in relation to the impurity problem. 

Anderson model 

time- dependent 
Green's function 

to 0(V)-aloglwl in 
Is Gd(), to difficult 

to continue 

self-donsistent 
approach? 

The technique developed in Chapter III overcomes the 

computational problems normally encountered in perturbation theory-

when the thermodynamic Wick's theorem is not applicable. The expansion 
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obtained. for Z (3.16) is a simple application of the method devised 

by C.Bloch and C. de Dominicis(51) but it has important consequenoes. 

It is particularly suited to the present problem where the restriction 

imposed by the exclusi,n principle is of fundamental importance anti 

moreover reduces considerably tho number of contributions that have to 

be evaluated. The representation in terms of the 'time ordered bubble 

graphs' was chosen to exploit this simplification in a direct manner, 

even though more familiar representations can also be used (section(& 

Chapter III). The next step was to observe that the non overlapping graphs 

could be summed exactly and to reduce the calculation of Z, with the 

sole neglect of contributions of O(1;N) and less, to the self consistency 

relation 

AEa 	g( AE(x ) 

When Z is written in this form, it is a simple matter to obtain the 

perturbation expansion and the g:aphical representation for the Free 

energy, by writing F in the form (3.34) and calculating the linking 

factors using the cumulant expansion (2.32) in the limit when all 

the 'times' go to zero. The resulting expansion for F is given by 

(3.33) . The self-consistency relation (3.23) is particularly appealing 

for not only does it correspond to the Brillouin-Wigner formula giving 

the ground state energy shift in the limit 	but it also gives 

the possibility of obtaining self-consistent results at finite temperatures 

In general it was shown that from an essentially perturbational result 

we were able to extend the theory into a form capable of going beyond 

perturbation theory. 

With this technique it was possible to confirm the results 



1  • I, 

obtained by Scala_ .ono for the static susceptibility and with the help 

of a connected grathical representation- ,in the limit U---00 generate 

the dominant logarithmic series for X(T). Some general features of 

the perturbation expansion were analyzed and it was found that for 

X.(T), a perturbation theory based on including the most divergent 

terms as T-7).0 could at best lead to 

2 

(T) = 2( EB 	
b 

kT 	bh 

in the 'magnetic region' ed 
	Zed 

+ U"0. Using this it was shown 

that the lower order logarithmic terms could in fact be more divergent 

in T.-0-T_ than the dominant series (4.12) . 
r. 

The limitations of the perturbation formula for F were 

investigated in Chapter IV section (c) and it was found that (4.21) 

could lead to a ground state energy given by E for cd close to the 

Fermi level which would have drastic consequences on the behaviour of 

X(T). in the limit T-4.0. It must also be noted that although the 

perturbation theory breaks down as c---0-11 (or el,--)-0), no difficulty a . 

is expected when the theory is viewed self-consistently via (3.23). 

The time independent technique makes it easy to establish 

that the Free energy in the s-d model has the same qualitative behaviour. 

as the function > 11- AE (T) in the limit U--4.00 , when J is 
	 do 
6- 

identified via the Schrieffer-Wolff canonical transformation. In

Kondo's calculation it follows easily that 

,c 
lim 	GV.%r(T) 	L11,

g(R.$) 

g(S.C) 

  

_c 
which is 4:1S. g(R.S) 

one should expect that 	 cl  
00S) - B(S.C) 	.L 

h=o 
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where
L is a non analytic part which cannot be expanded by perturbation 

theory and must be related to the condensation energy of the conduction 

electron(s). In particular a simple approximation for s
L would give 

sL = Weno(-1/N(0)1JI) = kTK  

P
This argument is in contrast to Toulouse's suggestion(55) that 

- ElrvkT
K g(R.S) 	g  

and we conclude that the true ground state energy in the s-d region 

will be given by lim
T0ilEa(T) , despite the fact that in principle 

&Ea refers to the ground state energy of a wave function with doublet. 

symmetry. It seems that to obtain the correct singlet symmetry predicted 

by Mattis(36) would necessitate the inclusion of contributions of 0(1/N) 

and less into F. Such contributions were neglected in the calculation 

of F and hence there would seem to be a contradiction, for on the one 

hand.the fact that the exact ground state has singlet symmetry appears 

to be of great importance since it guarantees that the limit T--3.0 of 

2C(T) is finite, and on the other hand it was argued that such terms 

can be neglected in the limit of a large volume (or number of particles). 

ThiG point can actually be explained as follows: in :this problem where 

there is a single impurity in an''infinite sea' of conduction electrons, 

the knowledge that the exact ground state wave function has singlet 

symmetry has little importance unless one also knows the type of singlet 

structure and the low energy excitations, for it turns out that the 

triplet states ar,,  only infinitesimally separated in energy from the 

singlet ground state(36). The important aspect of CiE
a
(T) is that it 

gives rise to the Kondo 'quasi-bound state' picture (at least in an 

approximate treatment of &E 
a
(T)), and one should expect exact compensation 

in this case to mean the cancellation of the moment in a finite (and small) 



region around the impurity. Effects of 0(1/N) and less on the other 

hand are associated with the redistribution of all the :articles in the 

system With respect to the 'new Fermi surface' and should,in this nroblem, 

be neligeable in the limit as the volume goes to infinity (except for 

Processes which as a result of ordering go from 0(1/N) to 0(1), if they 

exist at all). 

The method presented in Chapter. III and IV will be capable 

of dealing with the divergence at T = TK 
in the physical parameters, 

and in particular of generating results for AE(T) and biNE(T) 

valid in T<(TK' 
 but the question of the exact cancellation

bh  61 the local 

moment in the s-d region is more difficult to .decide on the basis of 

(4.39), The possibility that X(T) will diverge as Tr-ii.0 in any 

approximate calculation because the inclusion of the more complex 

many body processes giving rise to the lowerorder divergences' destroys 

the approximate singlet bound state picture, cannot be dismissed. 

Nevertheless this is an important question which can be investigated 

further by using (4.20) and (4.39) . 

The results and predictions given in Chapter IV are as 

far as one can go-without evaluating the temperature dependent functions 

CS,Em(T) explicitly. 'They were mainly designed to provide an insight 

into the possibilities and shortcomings associated with the time indepen- 

. dent technique in relation to the general theoretical problems encountered 

in the magnetic impurity problem. It can be seen that the most important 

difficulty that still remains is the question of the exact cancellation 

of the local moment in the s-d region. The answer to this question 

is by no means obvious from (4.39), and it is not surprising that the 

approximate non perturbational theories of Suhl and Nagaoka-Hamann-

Bloomfield still predict,a divergent X(T) as T-0.0. One tends to 

suspect, on the basis of (4.39), that this is not simply a matter of 
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the breakdown of the approximations in T4TK  but that it could well be 

associated with the inadequacy of the model itself in the very low 

temperature region. This is to be understood in the sense that to obtain 

a X (T) even in qualitative agreement with experiment may requ5re the 

consideration of very complex ma.ny body processes of much less importance 

than the interactions neglected in the host metal itself, in which case 

the resulting 'cancellation' may in fact have very little to do with the 

actual experimental reality. "The point that should be stressed is that 

just because a particular model in some approximate calculations gives 

rise to results and concepts in agreement with experiment, heed not 

necessarily mean that better and better approximations and in the final 

analysis the exact solution, will lead closer to the truth. 
-k 

It appears that the time independent method presentee, in the 

last two Chapters is a powerful tool for the investigation of the 

Anderson model. The method essentially reduces to the calculation of 

(T) for which a variety of techniques have been, and can be, devised, 

perturbationally and non perturbationally. It is clear that the applica-

bility of the method is not restricted to the present probleui but that. 

it can be applied with advantage to the s-d Hamiltonian and should prove 

very effective for the two impurity problem as well. It he. the 

disadvantage that it describes the physical parameters in the static limit, 

and gives no direct information on the dynamical aspects of the system. 

This restriction is particularly serious in view of the fact that recent 

experimental techniques have made it possible to observe 'directly' the 

dynamical characteristics of localized moments
(45), and one should expect 

that a considerable part of future developments in the theory will be 

arrived at, both qualitatively and quantitatively, through the considera-

tion of the time dependence of the physical observables. 
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"r, 	'•',•• • •••• - 

Time Ter:7erature Green's functions  

The time lemperature Green's functions may be calculated 

as follows: con:;ider for example the two particle Green's function 

(-i)24:Ac, (t )c, (t )c, (t )c+, (t4)1> cal  1 aa2  2 aa3  3 oak  . 

be expanded 

which by definition may 

t ,T G 	(t1crl'4-'2c2't3c3' t) 	(-i)2 9('1c  -t,)e(t2--L)e(t_-t4  ) 2 	c4 	' 	)  

cda  (t1)cda  (t )cd  (t,)cda  (-bid> 	...etc 
1 	2 	a3 -1  4 

where 

c 	(t )Ct  (t )C 	(t )c+  (t4)) dal  1 da2  2 da3  3 dal+   

	

1 	> e-Pcctlcda (y_cicic; (t2)cda  (t3)Cl.d04(t ) 

	

Tr le 	0( 	1 	2 	3 

consider now the Fourier transform of 8(t1-t2
)e(t2-t3)9(t3-t4) x.- 

<alc. (t_)+, (t )c. (t )c+a  (t4 	),a> )1u> with respect to the four 
aal  1 aa2  2 aa3  3 d 4  

time variables. This can be written 

oo oo co 03 

1  J 

fie ( tl-t2  )0( t3-tide(t2-t3) e
it
1
(w
1
+s
a
-6
n
) 
 e

it2(-w2+6n-en) 

n3lcda4 la;>• 	dt1  dt2  dt3  dt4  

Note: there is no summation over the intermediate states because 

-02 

e 3 3 n n e4 -w4n-Ea) lc 	nndcda 1n2><n21 dadn3 it (w 	-E 	it ( 
da I  1/ 	'1 	2' 



in this case there is only one possible intermediate state after each 

+ 
do. 
1 

operator. 

The time integrations may be carried out by making the 

change Of variables 

t1 t2  = Ti  , 	t2  - z3  = T
3 	

t_ - t4 
 = 4 , t.

1 
 + t2  = T 2 

and the result can be written 

1 

	

(W4 *.• 	+ ea  - en 
 + ib) (w1} 

 + ea - 
E
n 
+ 

1' 	̀ alcda 1-13> <nit o
da 2> <nd oda  in3> <213  oda,  a.> 

(w
1 

+ c
a - En + ib) 	

1 	2 	3 

and may be defined as 

Ka(wial  w2c2'w3a3'w4°4)  

The contributions corresponding to the different time orderings may.  

be obtained from K
a
(w
1
ow

2
o2'

w
3
a
3'

w45
4
) by permuations of the w's 

and appropriate modifications of a , ni,n2,n3, ...etc. The 2-particle 

time temperature Green's function is calculated by grouping together 

the various contributions as indicated by the definition. It can be 

t 
seen that even in this case, the algebra required to obtain G2'

T 
 is 

considerable. The 3,4 	particle Green's functions are evaluated 

in a similar manner. 

2nb(W
1
+w32-w)(i)3  
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APPENDI'l (2) 

By definition, we have 

	

!IT 	k. 
G (iw 
2n a 'iw   iw n 	' 1 1 	2 2 	

n a 
2s 2s 	

-. . 	dT
1 dT2 
	dT2s e

i(w
n1)  

o 0 

-i(w
n
T
2
) 	-i(w 	) n Ls (--1)8<Ticd(Ti)cd+0.(T2) ....cda (T2s)1> 2 	2s   

The time integrals in this case are much more difficult to evaluate 

because of the finite limit of the integrations. The simplest way 

is to expand the integrals in terms of the various time ordered 

averages and carry out the integrals directly, e.g for 2 particles 

and for we have 
> T1) T2> T3 > 

`Fs 	C: a 	'r3 T 
dTif dT2  jrdT_ j[dT4 	<ccial(Ti)o:152(1-2)ca53(T3)cL4(T4);› (-1)2  

ei(w.t 
 e ) 	i(w nT2 e ) i(Wn' e T-) i(W

n4) nl  

where 

e
H
d
T 
 cae-Hd c(T) = 

Similarly for the other possible time orderings . The complete G
T 
2 

is then obtained by grouping the contributions together in the manner 

indicated by the definition. The computation is impossibly tedious 

beyond the 2 particle case. 
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 67' ) 

1 	-3 	2 	3 2 1 2 "3 
Ek )(cd 	)(Ed + 	

E 

Contributions to C('10) -from the (c) graphs in which all the snins 

are narallel and which correspond to (a2'fx3) 

nd0  (1 - fk 0)(1 - f,,  0)fk 0 (-1) 
1 2 

(1 - f, a)(fl, )(fk  ,) 
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	cci 	ck1)3(ck 	ck 	ck ) „ 2 	1 	1 
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 k27. ck1
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6 	c 
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3  re d ki 	k2 k

3 
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cki)(cd - Ek3)3(ck 	ck3)  2 
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(la V6 	
(1- fk1a 

)(1 - fk  )(1 - fk,a)(2/5) 

, 	
r d 

- ek )(ed e
k
)
3 
 ke

d - e ) 
KvkLyg3 	1 	3 

ncia (1-f, 0)(1-fica)(1-fa/2) 2 	K30) 

kpkvflper Ed - el` 	 e ‘2(  e 

1/ -d 	k
2
/  ` u 	 k

3
) 

One could think that there should be contributions to 2C(T) behaving 

as log(T) 	[3..og(q ...etc as a result of the above terms, this is 

however not so and the anomalous contributions cancel when they have 

been grouped together. 
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