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ABSTRACT 

The role of zero crossings in speech recognition and 

processing is twofold: zero crossings define the clipped 

speech waveform, and zero crossing interval sequences may 

yield objective estimates of certain speech features or form 

patterns representative of the original speech signal. 

This thesis consists of four sections, two of which pro-

vide parallel treatment of the dual aspects of zero crossing 

phenomena. 

First, topics concerning signal theory and the special 

nature of speech are considered. Included is a discussion of 

the philosophy and implications of machine classification as 

opposed to human perception of speech sounds. 

Next, phenomena associated with the audition of clipped 

speech are reviewed and efforts to explain the high intelligibility 

of clipped speech are critically examined. The evidence which 

justifies the consideration of zero crossings as useful input 

parameters for automatic speech recognition is surveyed and 

interrelated. 

Then, two experiments employing a measure of average 

rate of zero crossings and zero crossing interval histograms, 

respectively, in limited vocabulary, adaptive automatic speech 

recognition are described. The experimental results, though 

encouraging, reinforce the belief that a lack of understanding 

concerning the significance of zero crossings as parameters 
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representative of speech signals exists. 

The final section approaches zero crossing-related speech 

phenomena from a unified, zero-based point of view. The concept 

of zero crossings as a subset of those zeros which are sufficient 

to completely specify a bandlimited periodic signal is introduced. 

It is shown that the clipping-bandlimiting operator effectively 
samples the speech waveform at the real zeros (zero crossings) 

and has limited ability to manipulate the complex zeros. A 

zero-based relationship connecting pre-clipping signal processing 

and post-clipping intelligibility is proposed and related to un-

explained observations in psychoacoustic experiments. The 

sufficiency of zero crossings as objective waveform descriptors 

is then examined and it is argued that the zero crossings of 

highly structured signals such as vowels may implicitly contain 

sufficient information to almost completely reconstruct the 

signal's power spectrum. 



The real problem in formulating 
a mathematical model is to find 
an adequate compromise 
between realism and mathematical convenience. 

I. J. Good, 1958 

I can tell. from your voice harmonics, Dave, 
that you're badly upset. Why don't you 
take a stress pill and get some rest? 

HAL 9000 computer 
in 2001: A Space Odyssey, 

Stanley Kubrick and Arthur C. Clarke 



PREFACE 

The research reported in this thesis constitutes a con-

tinuation of investigations into the role of zero crossings in 

speech recognition and processing. J.M. Dukes (1954), A.J. 

Fourcin (1959) and V.J. Phillips (1961), for example, have 

explored certain aspects of this subject in studies at the 

Imperial College Communications Laboratories. 

The form of this thesis was dictated by several factors, 

one of which is that the thesis title implies that a comprehensive 

treatment of the subject is presented. 

First, it is necessary to review briefly some aspects of 

signal theory in order to provide a firm basis for the establish-

ment of certain results in zero-based signal representation. 

Similarly, various facts concerning speech and hearing in general 

and the time-frequency characteristics of speech sounds in par-

ticular must be established in order to provide a foundation for 

the understanding of the value of spectral features in human 

recognition (perception) and automatic recognition (classification). 

A common purpose of both these reviews is to clarify time-frequency 

relationships in speech processing, analysis, and perception. 

Next, the philosophy of automatic speech recognition is 

discussed with the object of explaining the interactions among 

the three stages of the recognition process: parameterization, 

transformation of parameters, and decision making. This material 

includes several examples of recognition schemes and provides an 
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introduction to our own experiments. 

In reviewing the literature on clipped speech and zero 

crossing-related phenomena we reached at least one significant 

conclusion: the published reports in this area are scattered 

and relatively obscure. The lack of interrelationship among 

extant results is such that several unfounded myths have arisen 

regarding what has and what has not been shown regarding certain 

aspects of zero crossing-related speech signal phenomena. For 

this reason, two chapters are devoted to a detailed review and 

critique of research in this area with a view to explicitly es-

tablishing just what is known and understood in this field. 

The final section of this thesis treats zero crossing-

related speech phenomena from a zero-based viewpoint. That 

zeros can be regarded as informational attributes of signals 

(with zero crossings constituting a subset of the total zero 

array) was formally established by H.B. Voelcker in 1966. 

However, we expect that zero-based concepts will be essentially 

unfamiliar to most readers of this thesis. Therefore, a sub-

stantial amount of space is set aside to provide the background 

material necessary to create some feeling for these concepts and 

essential to the understanding of our zero-based treatment of 

speech clipping and zero crossing-related phenomena. 

Zero-based signal theory may be considered novel and 

perhaps unrealistic for many signal analysis problems. However, 

the fact remains that vowels are most realistically represented 

over a pitch period as a finite Fourier series, and that zero-

based product representations specify periodic signals in terms 

of zero crossings and complex zeros. Thus, although this thesis 

is ostensibly concerned with zero crossings, it is through the 



clarification of the significance of these unfamiliar complex 

zeros that the role of zero crossings in speech recognition and 

processing is deduced. 

L. Robert Morris 

June 1970. 
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GLOSSARY 

Major Symbols and Definitions 

Note: Arrangement in each alphabetical section is 
in order of usage with the section of first occurence given 
in parentheses. 

{ak} - the Fourier series (cosine) coefficients of a 
periodic signal, s(t) (2.1) 

{bk} 	- the Fourier series (sine) coefficients of a 
periodic signal, s(t) (2.1) 

BL{ } 	- the bandlimiting operator (5.1.7) 
co 

comb 	- combT
s(t) E 	E s(nT)-(S(t-nT) (2.4.1) 

n=-co 

C 	- the clipping operator. C x E sgn[x] (5.1) 

cos 4(t) - the phase function of s(t) (5.1.7) 

{ck} - the (complex) Fourier series coefficients of a periodic 
signal, s(t) (2.1) 

CZ 	- complex zero (8.1.3) 

{Czk} 	- the (complex) Fourier series coefficients of sCZ(t)  
(8.1.3) 

(5
'it 	

- Kronecker delta (2.1) 

S(t) 	- delta function (distribution) (2.4.1) 

E{ } 	- the expectation operator (5.2.1) 

T (T
-1) F

o 	
- fundamental frequency of a signal periodic in 
(2.1) 

F{ } 	- operation of Fourier transformation (2.2) 

(P(t) 	- the phase of s(t) (2.3.3) 

f
o 	

- carrier frequency of a SSB signal (2.3.3) 	
10 
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- the n

th 
formant and its frequency (4.3.1) 

- instantaneous frequency of s(t) (6.3.2) 

- average value of 4)'(t) over a specified interval 

- power spectrum (5.2.1) 

- operation of Hilbert transformation (2.3.1) 

- imaginary part (8.1.1) 

- lower half plane (8.2) 

- analytic signal [m(t) = s(t) + j g(t)] and its 
Fourier transform (2.3.1) 

Fn, F
n 

4)' (t) 

4)' (t) 

G(f) 

H{ } 

Im[ ] 

LHP 

m(t) ,M(f) 

(6.3.2) 

Im(t)I 	- the envelope of s(t) (2.3.3) 

m
wo 	

- the analytic counterpart of the SSB translate of s(t) 
(2.3.3) 

2nR 	- number of real zeros (zero crossings) per period in 
a periodic signal (8.1.1) 

nC  - number of complex zero pairs per period in a periodic 
signal (8.1.1) 

2n 	- number of zeros per period in a periodic signal (8.1.1) 

52 	- fundamental radian frequency of a signal periodic in T 
(2.1) 

P[ ] 	- Cauchy principal value (2.3.1) 

rect 	- rect[x] = 1 for lx1 	, and zero otherwise (2.3.1) 
CO 

rep 	- repTs(t) E 	E s(t-nT) (2.4.1) 
n=-00 

R(T),p(T) - autocorrelation function, normalized autocorrelation 
function (5.2.1) 

P , oP m 

15  o m 

- average time rate of zero crossings of a signal and its 
first derivative (6.2.1) 

- average value of 4)'(t) for a signal and its first deriva-
tive, respectively, measured over a specified interval 
(6.3.2) 
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Re[ ] 	- real part (8.1.1) 

RZ 	- real zero (zero crossing) (8.1.3) 

{Rzk} 	- the (complex) Fourier series coefficients of sRZ(t) 
 (8.1.3) 

s(t),S(f) - general signal' and its Fourier transform (2.2) 

g(t) 	- Hilbert transform of s(t) (2.3.1) 

sgn 	- sgn[x] = 1, 0, -1 as x > 0, = 0, or < 0, respectively 
(2.3.2) 

s 	- single sideband translate of s(t) (2.3.3) 
coo 

s(t), S(f)- sampled version of s(t) and F{g(t)} (2.4.1) 

sinc 	- sinc x = sin 7Tx/(Trx) (2.4.1) 

SSB 	- single sideband (5.1.2) 

s(t),{ck} - a signal periodic in T and its complex Fourier series 
coefficients (8.1.3) 

sRZ(t),{Rzk
} - the real zero component of s(t) and its complex 
Fourier series coefficients (8.1.3) 

sCZ (t),{Cz
k} - the complex zero component of s(t) and its complex 

Fourier series coefficients (8.1.3) 

T 	- period of a periodic signal (2.1) 

- sampling interval for a sampled signal (2.4.1) 

T. 	

.th 
1 	

- location in time of the 	real zero (8.1.1) 

T2, IiG2, 	- location in time of the
th complex zero pair (8.1.1) 

U 	- unit step, U(x) = 1, x 	1 and 0 otherwise (9.4.1) 

UHP 	- upper half plane 

W 	- signal bandwidth (2.4.1) 
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w
o 	- carrier frequency of SSB signal (2.3.3) 

w 	- the polynomial plane variable (8.1.1) 

x(n),X(k) - sampled signal and its discrete Fourier transform (2.5.1) 

z 	- the complex time variable (z = t + j a) (8.1.1) 

a 	- the a-transform variable, a E e-j2711 	(2.5.2) 

Miscellaneous 

x*y 	- convolution of x and y (2.3.1) 

x* 
	

- complex conjugate of x (2.1) 

- (n) E n!/(n-r)!r! 	(8.4.1) 



Phoneme Symbols and Key Words  
Vowels 	Fricative Consonants 
/i/ eve 	/v/ vote 

/I/ it 	/(S/ then 

/e/ hate 	/z/ zoo 

/E/ met 	/3/ azure 

/se/ at 	/f/ for 

/a/ father 	/0/ thin  

/p/ all 	/s/ see 

/o/ obey 	/f/ she 

/U/ foot 	/h/ he 

/u/ boot 	Stop Consonants 

/A/ up 	/b/ be 

/47 bird 	/d/ day 

Nasals 	/g/ go 

/m/ me 	/p/ pay 

/n/ no 	/t/ to 

/y/ sing 	/k/ key 

Glides and Semi-Vowels 

/j/ you 	/w/ we 

/r/ read 	/1/ let 
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1 	INTRODUCTION 

1.1 	The Problem: Manifestations of Zero Crossings  
in Speech Recognition and Processing  

This thesis is concerned primarily with the interpretation 

and clarification of two phenomena associated with clipped speech 

waveforms. First, clipped speech is highly intelligible. 

Secondly, the same zero crossing interval sequence which defines 

the clipped speech waveform can be manipulated so as to yield an 

objective estimate of certain speech spectral features. 

The intelligibility of clipped speech is a subjective 

effect; it is a psychoacoustic phenomenon involving perception of 

speech using the human auditory system. In contrast, the use of 

zero crossings for extraction of information from the speech waveform 

must be cast in an objective, signal theoretic context. Neverthe-

less,'speech signal analysis and human speech perception are not 

entirely unrelated. 

Sections 1.2 and 1.3 are brief, introductory surveys 

describing clipped speech phenomena and the use of zero crossings 

as waveform descriptors, respectively. These ideas provide the 

motivation for this thesis and they will be expanded in later 

chapters. 

24 



1.2 	Psychoacoustic Phenomena 	 25 

Infinite clipping of speech results in a harsh sounding, 

but highly intelligible, acoustic signal. This phenomenon was 

first noted in 1947 by Licklider, Bindra and Pollack [L-13] who, 

in an investigation of questions related to the information 

carrying characteristics of speech, performed a classic set of 

experiments using clipping as a distorting operator on the 

speech waveform. 

They found that removal of all amplitude information, 

except polarity, above one-tenth of peak waveform level resulted 

in discrete word articulation scores of 96% or more. Further 

elimination of amplitude information until the waveform was 

defined entirely by the times of polarity reversals (zero crossings) 

reduced the word articulation scores to an average of 70%; although 

for some listeners this score was as low as 50%, conversation 

could be carried on with little difficulty. Pre-clipping 

elimination of low frequency speech spectral components improved 

post-clipping intelligibility. Other tests, conducted with 

clipped and normal speech equal in peak amplitude and heard 

against a background of spectrally flat ('white') noise, demon-

strated that for low speech to noise peak amplitude ratios the'  

clipped speech was more intelligible than the original speech 

signal. The subjects' ability to understand clipped speech 

improved during the course of the experiments and the above scores 

are the maxima noted. 

In another series of experiments [L-14], Licklider and 

Pollack examined the effects of pre- and post-clipping spectral 

tilting (differentiation and integration) on the intelligibility 

of the infinitely clipped speech signal. The figure below 

(from [L-14]) graphically describes the effects on word articula-

tion of the various combinations of spectral manipulations. 
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Fig. 1.1: The effects of various combinations of 
differentiation, integration and infinite clipping 
upon word articulation. The heights of the bars 
of the column diagram indicate the overall average 
for each of the ten arrangements. (From [L-14]). 

Pre-clipping differentiation (6 db per octave positive spectral 

tilt) of the speech signal significantly improved the intelligi-

bility of the clipped waveform while pre-clipping integration 

(6 db per octave negative spectral tilt) was severely deleterious 

under the same conditions. Post-clipping integration or different-

iation produced only minor changes in per cent word articulation; 

however, the former operation lessened the subjective harshness 

of the clipped waveform while the latter operation accentuated it. 

Again, articulation scores improved with experience. 

Finally, Licklider [L-15] showed that quantization of the 

times of zero crossings to the nearest 'x' milliseconds produced 

virtually unintelligible clipped speech if 'x' was greater than 

0.2 milliseconds. 

1.3 	Objective Estimation of Speech Parameters  

Automatic recognition--classification-- of speech sounds 

has been a primary research target for over twenty-five years. 
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The first step in machine recognition of speech usually involves a 

condensation of data so as to exclude "non-essential" information 

and preserve "invariant", or essential, data. The question as to 

what is "essential" for objective sound classification is central 

to the entire speech recognition problem. 

For example, as we shall see, spectral features of certain 

speech sounds (principally vowels) are prominent and to some extent 

can characterize the sound; hence short-time estimates of ampli-

tude spectra have often served as input data to speech recognition 

machines. Certain properties of zero crossing intervals and dis-

tributions may, after manipulation, yield an estimate of spectral 

parameters. In addition, histograms of zero crossing intervals 

have been found to possess prominent 'speaker invariant' 

features [B-5]. 

For these reasons, and perhaps due to the simplified hard-

ware used for binary data processing, the infinitely clipped 

waveform (possessing only zero crossing information) has fre-

quently replaced the original waveform as a data source to the 

primary feature extractor of speech recognition automata. We 

shall examine the implications of the use of zero crossing interval 

sequences as waveform descriptors and the significance of zero 

crossings as informational attributes of the original signal. 

1.4 	Unanswered Questions  

Zero crossing interval sequences, evidently, carry 

sufficient information to construct a highly intelligible speech 

signal. They may also afford estimates of speech spectral 

features or, as first-order histograms, be regarded as distinctive 

attributes portraying the sound source. Yet, the exact signifi-

cance of zero crossings as a representation of the original 

speech signal has been unclear. Good has conjectured, for example, 
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that under certain circumstances zero crossings may completely 

specify, or in some cases overspecify, a signal source [G-9]. 

Finally, no convincing answer has been proferred to the question, 

"Is clipped speech intelligible because the original signal was 

speech, or because clipping is a special type of transformation, 

or are the two considerations inseparable?" 

1.5 	Zeros as Signal Descriptors: an Approach to the Role of  
Zero Crossings in Speech Recognition and Processing  

In 1966 H.B. Voelcker showed formally [V-6] that zeros 

can be regarded as complete descriptions of bandlimited signal 

waveforms with the proviso that covert, or complex, zeros be 

included with the real zeros, or zero crossings, in the set of 

signal descriptors. He employed Analytic signal theory and zero-

based concepts to unify many principles in the field of modulation 

theory. 

We shall apply these ideas, amongst others in this thesis, 

to explore the role of zero crossings in speech processing and 

recognition. Specifically, we shall focus on the problem of 

accounting realistically for the high intelligibility of clipped 

speech, and of justifying and explaining the use of zero crossings 

as both an estimate of speech spectral features and a description 

of the waveform itself. We also describe two short experiments, 

carried out during the course of this research, concerning the 

computer implementation of limited vocabulary, zero crossing 

input speech recognition machines. 

1.6 	Organization of the Thesis  

We conclude the introduction with a description of the 

thesis organization, by chapters. 

2: This thesis is cast mainly in the language of the telecom-

munication engineer, but it should be useful to psychologists, 
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physiologists and others concerned with speech phenomena. There-

fore, in chapter 2, we briefly review the signal theory which 

provides the mathematical basis of the entire thesis. 

3: Chapter 3 is a survey of certain theories and experimental 

evidence which provide the necessary background for studies of 

speech and hearing. In particular, we examine the physiological 

and psychological aspects of theories of hearing, and the acoustic 

properties of speech sounds. Since we shall build a theory of 

post-clipping speech intelligibility upon a foundation of speech 

spectral characteristics, we examine the problem of whether static 

(time invariant) spectral information is sufficient for human 

recognition (perception) without such cues as transitions or 

context. In addition, we argue that accurate extraction of 

spectral parameters is not quite as straightforward as often implied. 

4: Chapter 4 is devoted to preliminary studies of machine recog-

nition (classification) of speech sounds. We outline specific 

problems relevant to the implementation of automatic speech recog-

nition machines. Brief descriptions of schemes using spectral 

information directly as input to the recognition machine are 

presented. 

5: Psychoacoustic phenomena associated with audition of infinitely 

clipped speech are reviewed in detail in the first section of 

chapter 5. Attempts to justify analytically the intelligibility of 

clipped speech are then described and critically evaluated. 

6: Zero crossings per se can be viewed as informational attributes 

of a signal. Chapter 6 briefly outlines current knowledge con-

cerning the statistics of zero crossings of random processes. 

Then, the use of zero crossings as an estimate of spectral para-

meters in speech signals is detailed. Single sideband modulation 

as a transformation affecting the zero crossings of the speech 

signal is described, and the effects on subsequent extraction of 
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spectral parameters are noted. The chapter is terminated by a 

comprehensive review of automatic speech recognition schemes 

based on zero crossings as input parameters. 

7: Chapter 7 is a description of two experiments in machine 

recognition of speech carried out by the author. Both experiments 

relied upon zero crossing information as source data. The results 

of the experiments are discussed, together with the conclusions 

which resulted in the theoretical and experimental investigation 

of zero crossings as signal descriptors which constitutes the 

remainder of the thesis. 

8: In chapter 8 we elaborate upon a specific, quite general, zero-

based signal model. We then apply zero-based concepts to speech 

signal models to construct a foundation, both theoretical and 

experimental, for certain postulates and conjectures concerning 

clipped speech phenomena and zero crossings as waveform descriptors. 

9: Chapter 9 explores the phenomena associated with speech clipping 

from a zero-based viewpoint. We discuss product formulations for 

the original and clipped waveforms and examine the relationship 

between low-pass and single sideband clipped speech. In conclusion, 

the effect of clipping on a signal's zeros, and hence its spectrum, 

is analyzed with some reference to critical band theories of 

hearing. 

10: In chapter 10 we examine the sufficiency of real zeros as 

waveform descriptors, and the relevance of this idea to the use of 

zero crossings as input to speech recognition machines. Methods of 

signal processing which ensure that the zero crossings almost 

completely describe the original signal are consolidated. 

11: Chapter // is dedicated to a summary of ideas developed 

throughout the thesis, a description of outstanding problems, 

and recommendations for further research. 



2 	TIME-FREQUENCY ANALYSIS 

In the first five sections of this chapter we outline 

some of the basic analytical concepts of signal theory which have 

been adopted over the last 50 years as the primary tools of com-

munication theory. The basis of these concepts is time-frequency, 

or Fourier, analysis. 

Gabor, in a discussion of the physical significance of 

Fourier analysis methods, noted [G-1] that "if the word frequency 

is used in the strict mathematical sense which applies only to 

infinite duration wave trains, a changing frequency becomes a 

contradiction in terms as it is a statement involving time and 

frequency." That is, "Fourier's theorem makes of description in 

time and description in frequency two mutually exclusive methods." 

In order to resolve this anomaly, Gabor presented "a new method of 

analyzing signals in which time and frequency play symmetrical 

parts, and which contains 'time analysis' and 'frequency analysis' 

as special cases." Section 2.6 is devoted, therefore, to an out-

line of theories, including Gabor's, on the interrelationship of 
time and frequency in signal analysis. 

Finally, we conclude the chapter by qualifying the use of 

Fourier methods in the study of psychoacoustic phenomena. We defer 

discussion of applications of time-frequency plane analysis in 

speech and hearing to chapter 3. 

31 
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2.1 	Fourier Series: Periodic Signals  

Fourier series arise when the problem of describing a 

time function s(t) on an interval [0,T] is considered. 

The general series expansion 

N 
se(t) = 	skgk(t) 	OE.t.;T 

k=1 
(2-1) 

involves N coefficients {s
k
} which depend only upon s(t) and are 

not functions of time [S-3, p. 9]. The N functions of time, 

{gk(t)}, are specified independently of s(t) and se(t) is an 

approximation to s(t). In order to minimize the mean square error 

between s(t) and s
e(t) for a given N, and have this error approach 

zero as N increases, for any finite energy signal 

i.e. 	J Is(t)12dt < CO 
2 

0 

it is necessary that [V-1, p. 170], [S-3, p. 12] 

If the functions g
k 

T
r  

s
k 

=
J  
 s(t) g k

(t) dt 

0 

are chosen so that 

T

( 
g.(t)g

* 	
dt = 8 

jk ={ 0 ]=011: 

(2-2) 

, (2-3) 

0 

they are orthonormal [S-3, p. 10]. dik  is the Kronecker delta. 

The standard Fourier series form for signals periodic in 

T arises if one chooses 

(k21cos 
	

Set) k odd 

g
k
(t) = 
	

k=1,2,...(2-4) 

sin( 	Set) k even , 	= 27r/T. 2 



s(t) = X c
k 
e+jka  . [S-3, pp. 15-16] 

(2-6) 
k=-° 

and power of the kth frequency (spectral) component of s(t) [L-6]. 

IckI, k' 
and c

k
2  represent, respectively, the amplitude, phase, 
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Since these g's are a complete set [S-3, p. 13], then over the inter-

val [0,T], se(t) = s(t) in the sense that there is no energy in the 

error {s(t)-se(t)}, for N = m in (2-1). Then 

CO 

s(t) = a0/2 + 	(a
k
cos kft + b

ksin kQt), Ot.;T,(2-5) k=1 

which, using Euler's identities, yields the complex form 

00 

T 

Here 	c
k 
= 4. J s(t)  e-jkOt 

dt . 

0 

Note that c
k 

can also be written in the form 

c
k 

= Ic
k
I.ejek 

(2-7) 

(2-8) 

where Ic
k
I =

k
2 	b

k
2  1 -

1/2  
and Ok  = tan

1
[-bk/ak] . 	(2-9) 

It follows that (2-5) can be expressed in the alternate form 

CO 

s(t) = a0/2 + 2 X Ickl-cos(kQt + Ok) . 	(2-5b) 
k=1 

2.2 	The Fourier Transform: Aperiodic Signals  

The periodicity, with T, of eikSIt  ensures that s(t) = s(t+T) 

in (2-6). As noted in sec. 2.1, a periodic signal has a discrete 

line structure in the frequency domain. If the period T m, then 

the signal s(t) becomes aperiodic and the spectral line spacing 

Af = Q/2.ff = 1/T tends to zero. That is, when if-4-0, kAf--f, a 

continuous independent variate. 
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Therefore, from (2-7) 

CO 

lim 	c
k 

-*- 
T -4- 09 

kAf÷ f 

c(f) E S(f) = J s(t) e-j27ftdt 	(2-10a) 

-CO 

and 	 s(t) = 
	s(f) e  j27ftdf  

.
r 	

(2 -10b) 

-co 

so that s(t) and S(f) are a Fourier transform pair with (2-10) 

defining the members. That is, 

s(t) -f-)- S(f) 	. 	(2-11) 

The preceding approach through limits, while intuitively 

appealing, is not rigorous. In using the limiting conditions one 

does not define the conditions which are necessary for the existence 

and validity of (2-10a) and (2-10b) [P-2, p. 2]. In fact, satis-

faction of either of the following restrictions on s(t) is the 

most important factor in assuring that S(f) exists and satisfies 

(2-11): 

1. fls(01 dt < oc[P-2, p. 9] 	(2-12) 

Co 

2. ils(t)12dt 	[S-3, p. 31] 	(2-13) 

-co 

Hence, an alternative is to define the Fourier transform pair with 

their associated existence conditions and from them derive the 

Fourier series [P-2, pp. 42-45], [B-16, pp. 204-208]. 

We shall use the notation F{ } to signify the operation 

of Fourier transformation. 
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2.3 	The Analytic Signal  

If s(t) is a real, aperiodic signal then the real and 

imaginary parts of the complex spectrum S(f) are given by 

S
R
(f) = s(t).cos wt dt (2-14) 

and S 	(f) = s(t).sin wt dt (2-15) 

respectively, where w = 27f. 	Consequently, S(f) has real, even, 

imaginary, odd, symmetry about f=0. Thus, given S(f) for f>0, 

S(f) for f<0 can be defined by conjugation. 

2.3.1 	Definitions  

For convenience, we can define a signal m(t) having a 

single-sided spectrum M(f) such that 

2S(f) , 	f > 0 

M(f) = 	S(0) 	, 	f = 0 

0 	, 	f < 0 . 	(2-16) 

It follows,(using Woodward's operational notation, [W-9]) that 

M(f) = lim 2S(f)-rect[(f-W/2)/W] . 	(2-17) 
144-w 

Taking Fourier transforms, and using the "product-convolution" 

relationship [S-3, p. 45], one obtains 

m(t) = s(t) + j s(t)* 1t 	[V-7] 	(2-18) 
7 

1 
t where s(t)* 	E g(t) is the Hilbert transform of s(t). 	(2-19) 

Tr  
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) That is, 	H{s(t)} = A(t) = P[ ! I  st
T

T  dT ], 	(2-20) 

—co 

where P[ ] denotes the Cauchy principle value [G-1]. 

The function 

m(t) = s(t) + j A(t) 	(2-21) 

is termed the analytic signal representation [P-1]. 

2.3.2 	Hilbert Transformers  

In principle, since the definition of Hilbert transformation 

involves a convolution, a Hilbert transformer could be realized by 

a linear, time invariant network with impulse response 

hH(t)  = 1/irt . 	(2-23) 

Such a network would have a frequency response given by 

HH(f)  = F{h
H
(t)} = -j sgn[f] , 	(2-24) 

	

11 , 	x > 0 

	

where sgn[x] = 0 , 	x = 0 

	

-1 , 	x < 0 

This network does not affect spectral amplitudes but causes a phase 

shift of -90°  or +90°  for positive or negative frequencies, respective-

ly. 

In practice, such a network is unrealizeable because hH(t) is 

non-causal and undefined at t=0. In addition, HH(f) has infinite band-

width. Implementations and limitations of ildlbert transformers are 

discussed by Gouriet and Newell [G-11], and by Voelcker [V-8]. 
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Since m(t) is a complex signal, it can be represented in 

the form 

m(t) = Im(01.e3gt) 
	

(2-25) 

where 	Im(t)I= is(t)2  + g(t)2 	(2-26) 

is the envelope of s(t) 

and 	(P(t) 	tan i[g(t)/s(t)] 	(2-27) 

is the phase function of s(t) [D-15]. 

The real part of the analytic signal, s(t), can be expressed 

in the form 

s(t) = Im(t)I.cos (P(t) , 	(2-28) 

the phase-envelope formulation for a bandlimited signal. 

If a positive frequency translation, f
o 
= w

o
/27 

to m(t), then 

mw 	= m(t).ejwc't  
0 

and the real part of mw  (t) is 

is applied 

(2-29) 

swot) = s(t)-cos wot - g(t)-sin wot 

. = Im(t)I-coskot + cl)(t)] 	(2-30)  

This, a model for a real single sideband signal (upper sideband 

form), differs from (2-28), s(t), only in the addition of w
o
t, 

the frequency translator. It follows that the phase and envelope 

of the signal are analytic signal attributes which are not affected 

by frequency translations and (2-29) is a suitable model for 

studying such processes. Phase-envelope relationships in speech 

signals will be discussed in sec. 6.4. 
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In 1928 Nyquist demonstrated that the number of "signal 

elements" (i.e., telegraphic 'dots') which can be transmitted per 

unit time over a bandlimited line is a function of the bandwidth[N-5]. 

Eighteen years later Gabor stated as the fundamental theorem of 

communications that [G-1]: "In whatever ways we select N data to 

specify a signal in the interval T, we cannot transmit more than a 

number 2(f
2
-f
1
)T of these data, or of their independent combinations 

by means of the 2(f
2
-f
1) independent Fourier coefficients." Here 

f
1 and f2 were the limits of the frequency range in which the band-

pass signal was to be defined. Gabor's proof was based on Fourier 

series expansions and he noted that "it Zeaves a sense of dissatis-

faction."(Italics mine.) 

In the next three sections we briefly review the fundamental 

concepts of sampling theory in order to provide a framework for our 

work on specification via zeros. These ideas constitute a develop-

ment and rigorization of Gabor's "fundamental theorem." 

2.4.1 	Lowpass Sam.lin- 

A conventional approach to lowpass sampling is via Fourier 

transform theory, again referring to Woodward [W-9]. 

The sampled version of s(t) can be represented as 

CO 

g(t) = comb s(t) = 
	

X s(t)•S(t-nT) 
	

(2-32a) 
n=-oo 

where T is the sampling interval in seconds. The Fourier transform 

of g(t) is 

CO 

§(f) = 	repi/T  S(f) = 	n=-.00 S(f-n/T). [W-9] 	(2-32b) 
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If S(f) = 0 for If! > W, and if T < 1/2W, then S(f) can be recovered 

from §(f) by filtering since the repeated S(f)'s which constitute 

S(f) will not overlap. That is, 

S(f) = rect(f/2W).repi/TS(f), T<1/2W . (2-33) 

Using the convolution-product theorem, and taking Fourier transforms 

of both sides of (2-33) one obtains, 

CO 

s(t) = 	X s(nT).sin[27W(t-nT)]/27W(t-nT) . 	(2-34) 

Or, using sinc x = sinTrxrux, 

s(t) = 	X s(nT)-sinc 2W(t-nT) 	(2-35) 

Hence s(t) can be completely recovered from (an infinite number of) 

its samples, taken every T seconds, by interpolation with sinc 

functions [W-9], [K-10]. 

If s(t) is periodic in T, as well as bandlimited to ±14 Hz, 

then 

n1T,1  
s(t) = 	L s(nT/nl)• 

n=0 

sin [7(n-n1t/T)] 
, (2-36) 

ni.sin [7(n/n1-t/T)] 

where n
1 

= 2WT-1 [G-8]. Thus, a periodic signal having a finite 

number of Fourier coefficients requires only a finite number of 

samples for complete determination. In sec. 2.4.3 we will show 

that these samples need not be taken at uniform time intervals. 

2.4.2 	Bandpass Sampling 

If the signal spectrum occupies the band fo<Ifl<fo+W then 

only in special circumstances (i.e., when fo=cW, c=0,1,...) is it 
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possible to reconstruct s(t) from its samples at 2W equispaced 

points per second. Generally, a minimum uniform sampling rate R
min 

--where 2140tmin  VtW--is required. The actual value of Rmin depends 

upon the relationship of f
o 

and W. 

Second order sampling, which involves two interlaced 

sequences of W equispaced sampling points per second, may be used 

but the interpolation functions corresponding to this mode of 

sampling are quite complicated [K-10], [L-17]. 

However, uniform sampling of a bandpass signal and its 

Hilbert transform, at a rate > W times per second, suffice to 

uniquely determine that signal [L-17]. 

2.4.3 	Noniniform Sampling 

J. L. Yen considered the problem of nonuniform sampling of 

lowpass signals. He showed [Y-1] that if the signal s(t) is band-

limited to ±W Hz, then it is uniquely determined by (and can there-

fore be completely reconstructed from) its values at recurrent sets 

of N sample points taken at 

TPm = t
P 
 + mN/2W, 	p = 1,2,....N 

m = .., -2, -1,0,1,2,... 

That is, 

co 	N 
s(t) = X . 	s(r )-T (0 , 

m=-.. p=1 	pm pm  
(2-38) 

(2-39) where 	T (0 - 
Pm 	N 

Ti-  sin 2-(t p-t q 2 ).—(t-t 
p
-mN/2W) 

0 

q=1 

"p 

N 
1--F sin 0  --(t-t 

q
)• (-1)mN  

2  
q=1  

is the interpolating function. If s(t) is also periodic in T=N/2W, 
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then, s(T ) = s(t) for all m and only one set of N nonuniform 

Pm 	p  
samples is required for complete signal determination. 

2.4.4 	Uniform vs Nonuniform Sampling  

A major difference between the interpolating function for 

uniform and nonuniform sampling of bandlimited signals should be 

emphasized. 

For uniform sampling the maximum value of the sine inter-

polating function occurs at the sample point and this value is unity. 

For nonuniform sampling, however, the maximum value of the interpo- 

lating function 

While the value 

sample point is 

T (0 does not necessarily occur at the sample point. 
Pm 
of the interpolating function at its particular 

unity, its maximum value may become very large due 

to bunching of sampling points [Y-1]. 

We shall examine the phenomenon of signal growth due to 

"bunching of sampling points" in chapter 9. 

2.5 	Finite Sample Sets: the Discrete Fourier Transform 

Signal analysis using the digital computer as a tool--

either as a sophisticated calculator or as a simulator of a communi-

cation system--requires that all signals be both sampled and 

quantized; that is, defined only at specific instants of time or 

values of frequency and specified only to some finite degree of 

accuracy. 

As discussed in sec. 2.4, bandlimited signals may be 

completely specified by sampling at uniform rates exceeding twice 

the highest frequency present in the waveform. However, quantization 

implies introduction of noise. Quantization error is analyzed by 

Gold and Rader [G-4, ch. 4], Papoulis [P-4], and Widrow [W-7]. 

We are concerned primarily with the properties of the 

transform pair which apply to signals represented by finite sets 
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of discrete samples in both the time and frequency domain. In the 

next section, therefore, we briefly describe the discrete Fourier 

transform--DFT--for sampled signals and in sec. 2.5.2 we discuss 

some of its properties. 

2.5.1, 	Formulation of the Discrete Fourier Transform  

If a continuous signal x(t) is sampled every T seconds, the 

sampled signal R(t) can be represented as 

CO 

R(t) = 	x(nT).(S(t-nT) 	(2-40) 

If 51(t) is defined only for t?,.0 and we consider only a finite 

number of samples--N--, then, taking Fourier transforms of both 

sides of (2-40), 
N-1 

R(f) = 	y x(nT) .e-j2nfnT 

n=0 
• (2-41) 

Since e-j2TrfnT is a periodic function of f, the sampling operator 

has "folded" the frequency axis so that frequencies greater than 

1/2T Hz are discriminated only as aliases of themselves. Therefore, 

it is imperative for accurate sampled signal representation that s(t) 

be effectively bandlimited to ±W Hz, where W = 1/2T [B-9, pp. 31-33]. 

We evaluate (2-41) at equispaced intervals of Q Hz. 

That is, let f = kQ/27 where, by definition, 

E 2TINT = 27(W/0.5N) . 	(2-42) 

Then, from (2-41), 
N-1 

	

R(kc /27) E k(k) = 	x(nT) •e junk . 	(2-43) 
n=0 

It can be shown that X(k) = R(k+pN), p an integer [G-4, p. 163]. 

Therefore (2-43) yields a periodic sequence of complex numbers with 

period N. 

Letting X(k) 	X(k) and x(nT) 	x(n)/N , 
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then, using (2-42) in (2-43) we obtain the DFT of the time sequence 

x(n): 

N-1 
X(k) =-

1 	
X x(n)-e-j2wnk/N,  k=0,1,... N-1. 

n=0 
(2-44) 

The inverse discrete Fourier transform maps the {X(k)) back into the 

{x(n)} and is given by 

N-1 
x(n) = 	X X(k)•e 

j2Trnk/N,  n=0,1,... N-1. 
k=0 (2-45) 

That (2-45) is the inverse of (2-44) can be shown by substitution 

[G-4, p. 165]. Equations (2-44) and (2-45) are the discrete 

Fourier transform pair. That is, 

{x(n)}÷-÷{X(k)} 

2.5.2 	Nature of the Discrete Fourier Transform 

Summarizing, the discrete Fourier transform of a finite 

sampled signal {x(n)} is a finite sampled complex spectral series 

{X(k)}. Both series are periodic in N in their respective domains, 

due to the cyclic nature of ej27nk/N.  

For {x(n)} real and N even, X(N/2) is real and represents 

the amplitude of the real part of the highest frequency component of 

{x(n)}, while X(0) represents the average value of the sampled time 

function. {X(k)} possesses real even, imaginary odd symmetry about 

X(N/2) with positive frequency complex Fourier coefficients indexed 

by k=1,2,...N/2-1, increasing in frequency with increasing k and 

the negative frequency complex Fourier coefficients indexed by 

k=N/2+1, 	 N-l,decreasing in frequency with increasing k. 



1[e-j27/N](N-1-n) n=0,1, ...N-1 
hk(nT) = 0 , otherwise , 	(2-46) 
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Spectral Component (-) k (e) 

. X(0) X(R) X(20) ... X([N/2-1]R) X(NO/2) X*([N/2-1]0) ... 

e 0 1 2 	N/2-1 	N/2 	N/2+1 

	 X*(20) X*(Q) 

N-2 	N-1 
	e 

Fig. 2.1 Discrete Fourier transform output array. 

The {X(k)} can also be regarded as the output at time (N-1)T 

of a linear digital filter whose unit sample response is 

and whose input is the sequence 

..0,0,....0,x(0),x(T),x(2T),...x([N-1]T),0, 	[B-22] . 

From (2-41), the Fourier transform of hk(nT) is 

N-1 

ilk(f) 
 = / [e-j27/YN-1-n)k-42711nT •e J . (2-47) 

n=0 
 

Letting e-j2111T= z, then, following some manipulation, 
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(From [B-22].) 
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Fig. 2.2 Ifik(f/fs)1 for N=8 and k=0 . 

-.40 

Hk (f ) E fik (z) 
z -N  -1 

 

(2-48) 

45 

z-1-[e N]k  

 

which has N zeros located at zm = ei27m/N  , m=0,1, • • • N-1 

and one pole at 	z = ej27k/N  

which cancels the kth zero. 

Then, evaluating (2-48) as a function of f, with fs  =1/T=2W, 

= lak(z=d2nf/fs)1 = Isin(1rNfifs)/sin[7(f/::-ZI. 

Iiik(f)1 is shown in Fig. 2.2 for N=8 and k=0. 

0 db 
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Therefore, the discrete Fourier transform corresponds to 

filtering the input signal x(nT) with N filters having center 

frequencies f
c = (W/N)[2k-N], k=0, 1, ...N-1, and frequency 

responses of the form sinNx/sin x. The outputs of the filters at 

time (N-1)T are the Fourier coefficients [B-22]. Figures 2.3 and 

2.4 illustrate the spectral distortion introduced by time and 

frequency sampling of aperiodic and periodic signals, respectively, 

and by truncation of aperiodic signals. 

Direct evaluation of the N complex frequency coefficients 

{X(k)} requires a number of operations (complex additions and multi-

plications) proportional to N2. The Fast Fourier transform, or FFT 

[G-4, pp. 173-201], [M-14], enables computation of the DFT in a 

number of operations proportional to N log
2
N if N = 2M, M a positive 

integer. Much of the computer analysis of speech waveforms described 

in chapter 9 was made economically feasible by using the FFT to 

evaluate the DFT. We postpone description of some uses of the FFT 

algorithm until section 8.5.1. 

2.6 	Energy Distribution in the Time-Frequency Plane  

The time and frequency descriptions of signals can be 

represented by orthogonal coordinates on a time-frequency plane [G-1]. 

A continuous sine wave, for example, exists for all time and is 

represented on the positive frequency axis by a delta function at its 

frequency of oscillation; conversely, a time domain delta function 

exists for a vanishingly short time but has equal energy at all 

frequencies. Gabor suggested that the problem of describing the 

frequency spectrum of a truncated sine wave be resolved by reference 

to the response to such a waveform of a physical system, a bank of 

tuned reeds, for instance. Such systems, he proposed, divide the 

time-frequency plane into approximately rectangular areas whose 
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shapes are dependant upon the nature of the system, with the restriction 

that no more than 2(f
2
-f
1
)T independant data can be obtained from the 

'occupied' area, (f2-f1)xT, of the plane. 

He argued that by making a function of time or frequency a 

function of both time and frequency an arbitrarily exact analysis 

with respect to either, but not both, of the variables could be made. 

The product of the 'uncertainty of measurement' in time and frequency 

is [G-1] 

Lt•Af 3 z , 	 (2-50) 

where 	At = 72T.Dt 	 Af = f 

Here Dt  = [(t-i)2]1/2 , 	(2-51)  

and Df  = [(f-T)2]1/2 	(2-52)  

are the rms deviation of t or f from the mean epoch, t, or 

frequency, f, of a signal. Equation (2-50), rather than expressing 

a true 'uncertainty' effectively places bounds on the 'duration' 

of a signal and the bandwidth of its Fourier transform. The 

definition of 'duration' and 'bandwidth' is usually dependent upon 

the nature of the signal being studied [P-2, pp. 62-74]. 

Gabor found that the signal which makes (2-50) an identity 

is 

s(t) = Re 
[e_a2(t_to)2.ei(wot+0] 

 , (2-53) 

a sinusoidal signal with a Gaussian [normal] shaped envelope and 

Fourier transform 

S(f) = e 
_o 	)/a)2(f_f0,2 .e_ j[27to(f-f)+(p]

. (2-54) 

a, At, and Af are related by 

At = 17-2-  /a and Af = a/VITT 	. 	(2-55) 
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Each elementary signal occupies an area of 1/2  unit, called a logon, 

and an arbitrary signal could be expanded, approximately, in terms 

of the elementary signal. However, since the elementary signals 

are not orthogonal, this process is inconvenient. Slepian and Landau 

(see [P-2, pp. 67-74]) generalized Gabor's uncertainty principle and 

showed that the prolate spheroidal wave functions are the orthogonal, 

time-limited signals which squeeze the most energy into a given 

bandwidth. 

Recently, Rihaczek derived an analytic expression for the 

energy distribution of an arbitrary signal [R-11]. He showed that 

the complex energy density function (on the time-frequency plane) 

of a signal s(t), with analytic representation m(t), is defined by 

ec(t,f) E m(t) 
.14*(0.e-j27ft 	

(2-56) 

with tle real form given by 

e(t,f) = s(t).Re[S(f)ec-j27ft] 
	

(2-57) 

This equation can be used, for example, to interpret Gabor's 

question regarding a truncated sinusoid. If 

s(t) = rect(t/T)-cos27fot , 

then 
e(t,f) = 1/2-rect(t/T)-[sinc2T(f+f0)+sinc2T(f-f0)]-[cos47fot+1]. 

This function is illustrated in Fig. 2.5. 

Equation (2-57) satisfies the requirement that its integral 

over all t gives the signal energy density as a function of f--the 

energy density spectrum--and that integration over all f gives the 

energy density at time t--the energy density waveform. As expected, 

integration over the entire time-frequency plane gives the total 

energy in the signal, Et. Furthermore, the total energy in a 
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Fig. 2.5 Energy density function for s(t)=rect(t/T).cos2nf
ot , f

o 
= 10/T. 

51 



52 
particular cell, centnato, fo, of the t-f plane is given by 

rect(I rect(lata).m(t).M*(f) e-j27/1tdt df . 

(2-58) 

However, if T and B--O, the resultant point value for the energy 

e(t o  ,f o) is not really a true measure of energy distribution since 

neighbouring points might have energy densities, which are nearly 

equal in magnitude but opposite in sign and hence cancel. This 

implies that, as Gabor suggested, a cell of minimum dimensions 

should be'used. Now (2-58) can be written as 

ET B 

	

	
Im(01.1m(0(.ei[gt)-0(0-27ft]dt df. (2-59) 

T B 

For signals with strong phase modulation, (e.g., speech, 

as we shall see) this is an integral which fluctuates rapidly under 

a slowly varying envelope. Rihaczek noted that for these signals, 

the significant contributions to the integral come from the time-

frequency areas where the phase, 

c(t,f) = q(t) - 0(f) - 27ft , 	(2-60) 

is stationary; that is, where its derivative goes through zero. 

Then 

a0(t 
- (1)'(t) - 27f = 0 when f = (p'(0/27 E fi(t) at 

and 
a0(t

f 
 f) 

- 0'(f) - 27t = 0 when t =-0t(f)/27 E r (f). 

muswehaveaconcentrationoferiergy,simultameously,atf.(0 

and T (0 with the value of the energy dependent upon m(T ) and 

M(f). If q(t) is linear about the stationary point, E
T B increases 

CO 

E
T,B 

= 
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linearly with T; similarly, for 0(f) linear, ET B  increases linearly 

with B. In both these cases, the linear variation of the term 2ffft 

is just offset. Rihaczek derived, using these concepts, an expression 

for Tr, the relaxation time (or interval within which the signal 

energy is concentrated at a particular time) of the signal and for 

Bd, the dynamic signal bandwidth (or frequency band within which the 

signal energy is concentrated) and showed that 

Tr•B
d 
= 1 
	

(2-61) 

and that the shape of the cell 	on the t-f plane depends 

upon the rate of change of (P c(t), the instantaneous signal frequency. 

This, effectively, is a more physically meaningful formulation of 

Gabor's 1946 "mathematical identity which is at the root of the 

fundamental principle of communication." (sec. 2.4) 

2.7 	Fourier Analysis in Speech Recognition and Processing 

Gabor [G-1] explained the choice of sine waves in favour of 

other orthogonal functions for gk(t), (2-1), by noting that only 

simple harmonic functions transmit the same amount of information 

in equal time intervals. He also explained that only harmonic 

functions satisfy linear differential equations in which time does 

not figure explicitly and that it follows that these are the only 

ones which can be transmitted by linear, time invariant circuits. 

However, we must justify the use of Fourier analysis in 

speech processing, specifically clipping, analysis. Helmholtz, 

in his classic work, On the Sensations of Tone [H-10, p. 35] 

pointed out that Fourier techniques give convenient, but without 

reference to auditory perception, arbitrary mathematical descriptions 

of sounds. The study of speech clipping, using Fourier techniques, 

might then appear to be a study of the phenomenon using an arbitrary 



54 
mathematical description. However, when auditory perception is 

understood as a form of spectrum analysis, then Fourier techniques 

provide an analog description of the psychophysical process. 

In the next chapter, we briefly review the nature and 

theories of speech and hearing and attempt to show that the descrip-

tion of hearing as a form of spectral analysis is compatible with 

both physiological evidence and psychophysical experimental results. 



3 	SPEECH AND HEARING 

This chapter is intended to serve three purposes. First, 

it introduces some basic theories concerning speech and hearing. 

This material is directed primarily towards readers of this thesis 

familiar with signal processing concepts, but unacquainted with 

the distinctive characteristics of the speech signal source, the 

acoustic speech waveform and the human auditory system. Secondly, 

the role, if any, of spectrum analysis in the perception of speech 

sounds must be critically examined before we can discuss the effects 

of clipping as an operator on the speech spectrum. Finally, we 

provide a realistic physical basis for the adoption, in chapters 9 

and 10, of certain mathematical models of speech waveforms for use 

in the study of the role of zero crossings in speech perception 

and automatic recognition. 

In outlining the characteristics of speech sounds we shall 

make an important distinction between objective features and percep-

tual cues. First, we describe those features of the acoustic wave-

form which, either directly or indirectly (through a transformation), 

enable speech sounds to be objectively categorized--perhaps with 

reference to the ultimate mode of production. Next, we consider 

certain static and dynamic characteristics which have been shown 

to be important cues for perceptual discrimination among speech 

sounds. Finally, the role of various objective features as 

perceptual cues will be emphasized. 

55 
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Similarly, in describing the nature of the auditory system 

we shall differentiate between physiological characteristics and 

psychoacoustic phenomena and models. The physical nature of the 

peripheral auditory system--and its response to external stimuli--

is known through objective observations, notably those of Corti 

(see [H-10]) and Bekdsy [B-1]. Psychoacoustic phenomena are 

subjective effects--that is, subjectively reported responses (of the 

auditory system) to external stimuli. These phenomena often enable 

researchers to postulate--independently of structural detail--

models which describe aspects of auditory system behaviour. 

3.1 	Auditory Perception as a Form of Spectrum Analysis  

Helmholtz, in his classic work On the Sensations of Tone 

[H-10], investigated the physical nature of acoustic disturbances 

and the physiological aspects of the mechanical sensing of these 

disturbances in the ear. He began by exploring the physical 

characteristics and mathematical analysis of acoustic vibrations, 

in consonance with the following law of G.S. Ohm: 

Every motion of the air which corresponds to a composite 
mass of musical tones is capable of being analyzed into a 
sum of simple pendicular vibrations, and to each such simple 
vibration corresponds a simple tone, sensible to the ear, 
and having a pitch determined by the periodic time of the 
corresponding motion of the air. 

Helmholtz proceeded to justify the correctness of this law by empha- 

sizing, with reference to Fourier analysis, that "the multiplicity 

of vibrational forms produced by the composition of simple pendicular 

[harmonic] vibrations is not merely extraordinarily great: it is 

so great that it cannot be greater." 

To demonstrate that the harmonics contained in complex 

tones can be physically detected independently of the human ear, 

Helmholtz introduced the idea of sympathetic resonance of physical 

bodies. He extended this to the use of external acoustic resonators 
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acting as analyzers of sounds with the ear serving merely to detect 

whether or not the analyzer is excited, and to what degree. Next, 

he attempted to show [H-10, ch. 4] that the ear itself was capable 

of carrying out the analysis. In fact, he demonstrated that an 

experienced observer can detect the presence of harmonics in tones 

and speech, in some cases up to the sixteenth harmonic. In addition, 

Helmholtz emphasized that "the quality of the musical portion of a 

compound tone depends solely on the number and relative strength 

of its harmonics and in no respect to their differences of, phase." 

In further investigations [H-10, ch. 7,8], hOwever, 

Helmholtz found that audible beats were produced by simple tones 

above a few hundred Hz when the frequency ratio of the tones is 

less than five to six. As Goldstein pointed out [G-5], on the 

basis of these and other experiments with interference of sound, 

Helmholtz suspected, but neglected to state explicitly, that there 

is the possibility of phase perception among tones which are not 
separately resolved by the ear. 

Thus, on the basis of psychoacoustical experiments only, 

Helmholtz postulated a model describing sound perception as a form 

of continuous, parallel, spectrum analysis with limited frequency 

resolution. 

3.2 	The Nature of the Auditory System 

In this section we briefly describe the structure of the 

ear and its relevance to Helmholtz' psychoacoustic model. We then 

examine more recent attempts to specify and describe the operation 

of the auditory system. 

3.2.1 	Physiological Structure  

The components of the ear can be divided into three regions: 
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specifically, the outer, middle and inner ear (Fig. 3.1). 

Fig. 3.1 

Schematic diagram of outer, inner and 
Middle ear regions. Not to scale. (From [K-7].) 

The outer ear, consisting of the visible pinna (or ear 

flap), surrounds and protects the entrance to the meatus, or 

external ear canal, which approximates a uniform tube. The meatus 

is about 2.7 cm in length and, hence, one-quarter wavelength at 

3000 Hz for acoustic sounds. Near this frequency, the resonance 

effects provides a sound pressure increase of 5-10 db at the closed 

termination, the eardrum or tympanic membrane, over the value at 

the ear canal entrance [W-1]. 

The middle ear contains the ossicular bones, the malleus 

(hammer), incus (anvil) and stapes (stirrup). This coupled asseinbly--

eardrum, hammer, anvil, stirrup--effects an upward acoustical 

impedance transformation from the low impedance of the air to the 

high impedance presented by the inner ear. A pressure transformation, 

as much as 15:1 [F-8, p. 78], is accomplished through the lever 

action of the ossicular chain and the large effective ratio of 

input-output (eardrum-stirrup) surface areas. Besides having the 

additional property of protecting the inner ear-by means of a 
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change in mode of ossicular vibration--against very intense sounds, 

the middle ear possesses a low pass amplitude transmission charac-

teristic [F-8, p. 80] whose effective "roll-off" frequency, though 

on the order of 1 kHz, is subject to much variation. Helmholtz 

described, qualitatively but accurately [H-10, pp. 129-135] the 

form and function of the outer and middle ear relying mainly on 

anatomical observations. It remained for Mkesy, Zwslocki and 

Moller (see [F-8, p. 79]) to quantify this description nearly 

100 years later. 

The complex inner ear (described as "the labyrinth" by 

Helmholtz) consists of the vestibular apparatus, the cochlea and 

the auditory nerve terminations. The vestibular apparatus comprises 

three semi-circular canals used primarily in sensing spatial 

orientation. The cochlea (see Fig. 3.1) proceeds forward from the 

oval window and takes the form of a spiral "snail shell" filled 

with perilymph, a colourless liquid. The spiral is divided into 

two canals separated by a partition which is itself a channel 

(Fig. 3.2). This channel, the scala media, is bounded by a bony 

shelf and two membranes--the soft Reissner's membrane and the more 

rigid basilar membrane (Fig. 3.3). The two canals, the scala 

Fig. 3.2 A cross section of the cochlea. (From [W-6].) 
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vestibula and scala tympani, are connected only at the helicotrema 

(a small gap where the basilar membrane and bony shelf terminate' 

just short of the spiral's end) and hence form a continuous, folded 

tube. 

In operation, the stapes vibrates the oval window which, 

acting as a piston, produces a volume displacement of the cochlear 

fluid. This displacement is relieved by the compliant covering of 

the round window at the far end of the folded tube. The fluidic 

vibrations are transferred to the basilar membrane which, via the 

organ of Corti resting on the membrane [and containing over 30,000 

sensory cells which terminate the auditory nerve] provides the 

mechanical to neural transduction. Therefore, it is the acousto-

mechanical properties of the basilar membrane which provide the key 

to the first step in the analysis and perception of sounds. 

Fig. 3.3 Enlarged cochlear cross section. (From [F-8].) 

Helmholtz believed that the basilar membrane was tightly 

stretched in its transverse direction (width), but rather limp along 

its length. He also knew that the width of the membrane increases 

about an order of magnitude from beginning (oval window) to end 
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(helicotrema) [H-10, pp. 145-146]. Using this anatomical evidence, 

he hypothesized that the basilar membrane acts approximately as a 

system of parallel, independent, damped, stretched strings each 

having a slightly lower resonant frequency than the one before. 

Furthermore, he stated, the nerve cells in the organ of Corti 

"will be the means of transmitting the vibrations received from 

the basilar membrane to the terminal appendages of the conducting 

nerve." 

Helmholtz claimed that his hypothesis "has reduced the 

phenomenon of hearing to that of sympathetic vibration and thus 

furnished a reason why an originally simple [compound] periodic 

vibration of the air produces a sum of different sensations and 

hence also appears as compound to our perceptions." [H-10, p. 148] 

The hypothesis accounted for beats which are produced by single tones 

"so near to each other in the scale that they both make the same 

elastic appendages of the nerves vibrate sympathetically." 

Helmholtz' hypothesis concerning the mechanism of the ear thus 

accounted for his formulations based on psychoacoustic experiments. 

Bekesy performed extensive investigations concerning the 

mechanism of the middle and inner ear, particularly the basilar 

membrane [B-1]. He demonstrated that the place of maximum membrane 

vibration in response to sinusoidal excitation of the stapes varies 

as a function of frequency with lower excitation frequencies causing 

maximum vibration at membrane locations further from the oval 

window. As to the mode of vibration, Bekesy concluded (from obser-

vations of both models and actual membrane motion) that "during 

stimulation, a travelling wave is formed on the basilar membrane 

and not standing waves." [B-1, p.425] This behaviour results from 

the absence of reflections (at the helicotrema) which in turn is 

due to the gradual variation of the membrane structural parameters 

[F-8, p. 83]. 
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Let each place on the basilar membrane be identified with 

the input sinusoidal excitation frequency causing maximum vibration 

amplitude at that place. Bek6sy found that, for an input frequency 

f., the amplitude of vibration at other membrane "frequency" places 

is analogous to the amplitude response of a broadly tuned bandpass 

filter with center frequency f
i
. Place-amplitude response curves 

for various excitation frequencies have "bandwidths" (when places 

are identified with frequencies, as above) which are a constant 

percentage of the excitation frequency. The "frequency" resolution 

of the membrane is best, therefore, at the "low frequency" end 

(helicotrema) and the "time" resolution best at the "high frequency" 

end (oval window). 

Bekesy's findings regarding the place ("frequency") 

-amplitude response of the basilar membrane, to sinusoidal signals, 

were not in accordance with the auditory model postulated by 

Helmholtz for the following reason: the limited frequency resolu-

tion of the human auditory system, as evidenced by Helmholtz' 

experiments with beats, is much better than the mechanical "frequency" 

resolution of the basilar membrane (see Fig. 3.4). In the next 

section we first discuss attempts to quantify the frequency 

resolving power of the "auditory spectrum analyzer." We then mention 

some attempts to explain the discrepancy noted above. 

3.2.2 	Cochlear Analysis and Critical Band Theories  

R. Plomp observed in 1964 [P-14] that the only quantitative 

statements concerning the audibility of harmonics date from a time 

when it was impossible to measure the objective strength of the 

tones. To rectify this situation, he performed a series of 

experiments to investigate the number of distinguishable "harmonics" 

of signals composed of a series of simple tones with integer 

(harmonic), and non-integer (inharmonic) frequency ratios. 
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He found, for example, that with a fundamental of 250 Hz, 

integer harmonics of frequency less than 1625 Hz (the '6.5
th' harmonic) 

could be distinguished from an independent test tone 125 Hz away 

more than 75% of the time. This means that at 1625,Hz,-two harmonics 

must be separated by a critical frequency difference of more than 

250 Hz in order to be distinguished, or resolved. The experiments 

were duplicated for other fundamental frequencies and, to eliminate 

the possibility that observers could recognize frequency ratios, 

repeated for inharmonic tone complexes. Figure 3.4, from [P-14], 

illustrates that the critical frequency differences for both harmonic 

and inharmonic tone complexes agree quite closely. Note also the 

fairly close correspondance with the lower solid curve, which rep-

resents the critical bandwidth of the auditory system as determined 

by Zwicker et al.[Z-1]. 
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The concept of critical bandwidth is used to describe the 

fact that the subjective response to auditory stimuli with a 

frequency spectrum exceeding a certain "critical" bandwidth is 

different from that when stimuli not exceeding this bandwidth are 

used. J.L. Goldstein briefly described [G-5, pp. 45-51] recent 

experiments which were carried out to quantitatively measure the 

actual size of the critical bands as a function of their centre 

frequency. 

As Helmholtz had suggested, the frequency resolution of the 

auditory spectrum analyzer is limited and tones sufficiently close 

together (within the same critical band) excite "common areas" 

and give rise to anomalous perceptual phenomena, including beats. 

In fact, Goldstein demonstrated through his own experiments that, 

as Helmholtz had implied, perception of phase effects in monaural 

sound is possible as a consequence of this limited resolution. 

However, as we have seen, Helmholtz' belief that the "common areas" 

were "elastic appendages of the nerves" cannot, in the light of 

Bekesy's findings, accound for the observed degree of resolution of 

"the auditory spectrum analyzer." 

We now discuss one attempt to reconcile the anomaly of 

broad cochlear bandwidth apparently giving rise to 	acute 

perception of minimal pitch changes [S-15] and critical bandwidths 

as little as one-tenth of the cochlear bandwidth at the same 

frequency (see Fig. 3.4). 

Huggins and Licklider [H-25] postulated mechanical and 

neural mechanisms for supplementing the mechanical "frequency" 

resolution of the basilar membrane. The several mechanical 

hypotheses mentioned show that mechanical processes interposed 

between the motion of the basilar membrane and the excitation of the 

auditory nerve could produce a resolution sharpening effect; 

conversely, or in addition, various neural sharpening mechanisms 
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were proposed. In discussing the possible models for neural 

sharpening, Huggins and Licklider emphasized that 

one of the basic facts of neurophysiology is that the nervous 
system works despite a considerable amount of disarrangement 
of detail . . . 	Nevertheless it is important to keep in 
mind that a statistical interpretation of details is required. 
Thus, the hypothesis that the nervous system computes an 
exact derivative, as by a digital process, is hardly to be 
taken seriously. But the hypothesis that the nervous system 
performs, in its statistical and analogical way, an operation 
that may roughly be described as differentiation, and one 
that we may represent by differentiation in a mathematical 
model, seems to account economically for a considerable 
range of facts. 

In an analogical sense, we might reasonably justify--in the 

light of"a considerable range of facts"--the performance of the 

combined ear-brain system (the human auditory system) as a form 

of "auditory spectrum analyzer." However, again quoting Huggins 

and Licklider: "The principle of diversity [i.e. that the peripheral 

auditory processes may present a number of "transforms" to the 

central nervous system, which may use one or all of them] suggests 

that a simple description of the auditory process may not be 

possible because the process may not be simple." (Italics mine.) 

3.2.3 	Auditory Analysis on the Time-Frequency Plane  

If the human auditory system can be considered to effect 

a form of spectrum analysis, then using the principles reviewed in 

chapter 2, we should be able to quantify its action. Gabor [G-1], 

for example, applied the concept of information on the time-frequency 

plane in an attempt to calculate the minimum area on the time-

frequency "information diagram" which could constitute a datum of 

information and to test the shape dependence of this threshold 

value. He analyzed the experiments of Shower and Biddulph (concerning 

frequency modulated signals) [S-15], and BUrck et al (concerning 

truncated sinusoids) [B-23], and concluded that below 1 kHz, the 
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performance figure of the auditory system is such that only 50% of 

the available information is rejected. This discrimination is the 

maximum for an instrument, like the ear, which is effectively phase 

insensitive. At higher frequencies the efficiency is much less. 

In addition, he argued, the auditory system appears to have a 

variable time constant adjustable "at least between 20 and 250 

milliseconds." 

Finally, in order to explain the facility of the auditory 

system for accurately defining the relative pitch of a prolonged 

sinusoid (e.g. see [F-8, pp. 211-213]), Gabor stated that it is 

necessary to assume a second mechanism (besides the mechanical 

"analyzer" constituted by the basilar membrane) "which after about 

10 milliseconds detaches itself from the mechanical resonator 

curve and locates the centre of the resonance region with a pre-

cision increasing with the duration of the stimulus." Cherry 

emphasized [C-7, p. 157] that if the action of the auditory system 

is to be modelled as a form of spectrum analysis, then the para-

meters of the analyzer (bandwidths, for example) would be expected 

to be variable, rather than fixed. 

To conclude this section we ask the following question: 

"Is it possible that the inner ear, rather than the auditory system, 

effects a form of spectrum analysis?" Huxley recently pointed out 

[H-27] that when certain physical features of the cochlea are taken 

into account it becomes theoretically possible for a truly resonant 

oscillation, the position of which shifts with frequency, to occur 

in the cochlea. He showed that by taking into account both the 

spiral shape of the basilar membrane (hitherto ignored in math-

ematical models) and the prestressed condition of the bony struc-

ture which supports the membrane, it is possible to postulate a 

realistic model which incorporates a truly resonant mode of 

oscillation rather than the travelling wave solution formulated 
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by Bekesy to explain his observations. Huxley states that Bekesy, 

by opening the cochlea and using an artificial stapes, may have 

altered the mechanical conditions sufficiently to convert a 

resonant mode which had existed during life into the travelling 

wave observed. 

3.3 	Speech Production  

Speech is the product of a highly restricted mechanism--

the human vocal system--which can be modelled as a linear, time 

varying acoustic system [F-2],[F-8],[F-9],[S-21]. Since the 

attributes of the vocal apparatus determine the character of its 

output, we begin with a short description of the system emphasizing 

properties responsible for the distinctive characteristics of the 

acoustic speech signal. 

Some speech sounds (vowels, for example) are characterized 

by spectrally prominent features which are relatively speaker in-

variant. Other sounds, some consonants, for instance, are spectrally 

uninformative and may be perceptually unambiguous only in context. 

In section 3.4, therefore, we discuss the spectral characteristics 

of speech sounds, describe some methods of parameter measurement 

and classification, and evaluate the objective and subjective 

information conveyed by static and dynamic measures of spectral 

features. Sections 3.5 and 3.6, respectively, are reserved for a 

description of the statistical properties of speech waveform 

amplitudes and a discussion of alternate modes of speech perception 

and classification. 

3.3.1 	The Source  

A basic outline of the speech production system is given 

in Fig. 3.5. 
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Fig. 3.5. The Human Articulatory System (From [F-8]) 

The source excitation for voiced sounds (e.g. vowels) is 

the volume velocity output of the vibrating vocal cords, or folds. 

Miller suggested [M-11] that, based on his experimental observations, 

the most significant fact concerning the spectral structure of the 

glottal waveform is that "uniform harmonic distribution . . . is a 

rarity." However, the time variation of the glottal aperature 

area is most aptly described as a quasi-periodic'triangular' wave. 

The fairly constant pressure supplied to the glottis by the lungs 

gives rise to a volume velocity wave which duplicates in form the 

area wave and hence, due to the spectral qualities of triangular 

waveforms, has a spectral envelope falling in amplitude as 1/f2. 

The quasi-periodic nature of vowel acoustic waveforms 

results from exciting a linear system, the vocal tract, with quasi-

periodic waves. The system output can therefore be calculated 

using time domain convolution. Since time domain convolution 

corresponds to frequency domain complex multiplication, the 
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downward sloping (with increasing frequency) envelope characteristic 

of most vowel spectra directly reflects the nature of the glottal 

wave spectrum. 

Two modes of glottal waveform time behaviour are observed: 

As the period of the waveform (pitch period) is varied, the wave-

shape over the cycle may simply be uniformly stretched or the basic 

triangular pulse duration may be invariant with an increase in 

interval between pulse occurence. In the former case the spectral 

line components retain the same amplitude but their separation 

changes; in the latter case the envelope of the spectrum of the 

basic triangular pulse is sampled at different points. Therefore, 

as well as attenuating the vocal tract transfer function with 

increasing frequency, the time characteristics of the glottal 

waveform effectively specify the discrete frequencies at which the 

continuous tract frequency transfer function is sampled to give the 

line spectrum characteristic of a voiced sound [N1-11]. 

Excitation for unvoiced sounds occurs not at the glottis 

but between glottis and lips [F-8, pp. 47-51] and is created by 

forcing air through a narrow constriction or across a barrier. 

The resultant turbulent airflow is characterized by a random 

pressure distribution which directly contrasts with the quasi-

periodic, deterministic nature of voiced sounds. Stop consonants 

result from pressure buildup and rapid release at a constriction 

(e.g. teeth, lips) within the system. 

3.3.2 	The System  

In 1928 Russell [R-17] accepted Alexander Graham Bell's 

suggestion (1907) that "The quality or 'timbre' of the human voice 

. . . is due in a very minor degree to the vocal cords and in a 

much greater degree to the shape of the passages through which the 

vibrating column of air is passed." Thirty years later Fant [F-2] 
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reinforced the overall concept of the vocal tract system as a 

filter with his theoretical studies and practical confirmation 

(using X-ray studies of Russian articulation) of the nature of the 

vocal tract. 

The human male vocal tract (Fig. 3.5) is about 17 cm. 

long and has its cross section varied in area by the movement of 

lips, jaw, tongue and velum--a small flap which connects the 

nasal side tract to the main tract. The frequency response or 

transfer function of the vocal tract is dominated by three or more 

marked resonances which are manifested as formants, or peaks, in 

the spectrum of voiced sounds. Finally, the radiation impedance 

which terminates the vocal tract contributes a radiation resistance 

directly proportional to frequency [F-8, pp. 33-34],[M-15]. 

3.4 	Time-Frequency Characteristics of Speech Sounds  

G.E. Peterson emphasized [P-10] that only a minimal amount 

of the information required for the interpretation of speech is in 

the signal itself and that "the listener who is able to interpret 

the speech of a particular language successfully has large quantities 

of information about that language stored in his central nervous 

system." However, the first step in any speech processor involves 

a reduction and extraction of information-bearing acoustical para-

meters from the waveform and knowledge concerning the nature of, and 

bounds on, these parameters is essential to proper analysis. In 

sections 3.4.2-3.4.8 we describe the information conveyed by the 

short-term amplitude spectrum of speech sounds. We begin by 

describing the process of short-term spectral analysis. 

3.4.1 	Short-term Spectral Analysis  

The generalized short-term amplitude spectrum is defined 

as [G-5, p. 90],[F-8, p. 121] the amplitude spectrum of the Fourier 
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transform of a signal weighted so as to eliminate future values of 

the signal and progressively attenuate past values. 

That is, 	S(t,f0) = IFy  {s(t-y) • h(y)}1f=f  (3-1a) 0   

00 

= I J s(t-Y) • h(Y) • 
ej2nf oydyi  

0 	(3-lb) 

where w
o 
= 27f

o and h(t) = 0 for t <0 (Fig. 3.6). 

Temporal window 

Fig. 3.6 'Time limiting by weighting with finite impulse response' 

Expanding (3-lb), 

S(t,f0) = Is(t)*h(t)cos27f
o
t + j s(t)*h(t)sin27f

otl 

= IF 	[H1(0 + j H2(f)D1 

where 	h
1
(t) 	= h(t)cos2711

o
t -(--)- H

1
(0.  

and 	h2(t) 	= h(t)sin27fot 4.-÷ H2(f) . 

H
1
(0 and H

2
(f) can be interpreted as the frequency characteristics 

of phase-complementary bandpass filters centered at fo  [G-5, p. 92], 

[F-8, p. 123]. (See Fig. 3.7) S(t,f0) can be regarded as the 

detected temporal response of H1(f) and H2(f), found by taking the 

square root of the sum of the squared responses of the filters. In 

practice, for economy, S(t,f0) is approximated by detecting the 

temporal envelope response of a bandpass filter having a frequency 

characteristic identical to H1(f). 
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Goldstein noted [G-5, p. 93] that unless the relative band-

width of the bandpass filter H1
(f) is very small, the temporal 

envelope response of the filter is not identically equal to S(t,f) 

as defined above. The temporal envelope response of h1(t) to a 

signal s(t) is 

E(t,f0) = IF 1{S(f) [H1(f) + j H3(0111 

where 	jH3(f) = sgn(f)H1 
 (f). 

H1(f) 	 • H1 
 (f) 

	11, f 

Fig. 3.7 'Fourier and Hilbert Complement Filters' (From [G-5].). 

If jH3(f) = sgn(f).H1(f) (Fig. 3.7), then h3(t) 'is equal tó ,  

h1
(t)*lint and hence time-unlimited. Therefore h3(t) cannot be 

the impulse response of a realizeable filter [G-5, p. 95]. However, 

for a narrow band H1(f), the short-term amplitude spectrum S(t,fo
) 

closely approximates the temporal envelope response of a bandpass 
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filter centre frequency f [G-5, p. 93], [F-8, p. 123]. Hence the 

analysis performed by a model of the auditory system as a continuous 

parallel spectrum analyzer with limited frequency resolution 

(i.e. a set of contiguous bandpass filters) and that implemented 

by the instrument called the Sound Spectrograph--a short-term 

spectral analyzer, using envelope detection--are approximately 

the same. 

3.4.2 	Vowels: Their Acoustic Nature and Physiological Correlates  

The term "visible speech" [P-15] has become synonomous with 

the short-term speech spectrogram (Fig. 3.8a). Spectrograms of 

vowels are dominated by a number of formants, or spectral peaks, 

which are characterized by location, magnitude and bandwidth 

parameters. Figure 3.8b, from [F-8, p. 131], shows the average of 

the first 3 formant frequencies (F1,F2,F3)
, and amplitudes (A1'A2'A3) 

T H E 	EA - GLE 

Fig. 3.8a Short-term speech 
Speaker-NAA (American)  

H A S 
	

LAND 	-Eb 

spectrogram, made on Kay Sonograph. 
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Plots of F
1 vs F2 for different vowels as spoken by one 

person reveal a characteristic closed loop on the F1-F2  plane; in 

addition the areas occupied on the 
F1-F2 plane by different vowels 

uttered by various speakers are generally non-overlapping [P-16, 

Fig. 5], [P-11, Fig. 8]. These graphic phenomena suggested to some 

researchers that articulatory interpretations might be accorded to 

the frequency locations of the first three formants. In fact, 

Delattre showed [D-7] that degree of maximum constriction in the 

vocal tract and position of the tongue hump possess striking 

formant position correlates. For a given tongue hump position, 

decreasing the degree of constriction raises the first formant 

position; for a given degree of constriction, the further back 

the tongue hump the lower the frequency of the second formant 
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(see Fig. 3.8b). Other relationships were noted and later quantita-

tively analyzed by Fant [F-2]. 

3.4.3 	The Information Conveyed by Vowel Spectra  

Speech sounds convey linguistic information--needed for 

word identification purposes--as well as social-linguistic and 

personal information [L-2]. The apparent objective vowel classi-

fication afforded by formant location and magnitude parameters 

[P-11] has suggested that these parameters alone might be suffi-

cient for conveying the linguistic information of vowels. However 

it has been debated whether static formant information alone is 

sufficient to convey any linguistic information. Moreover, if 

formant parameters are used as perceptual cues, are these cues 

contained in the absolute values of certain formant properties 

(especially frequencies) or in the relationship between these 

properties and the values for other vowels pronounced by the same 

speaker? Finally, the relative importance of each of the first 

three formants as carriers of information has been questioned. 

We attempt to illuminate these problems in the following subsections: 

i) The Intelligibility of Sustained Vowels  

A. Jones remarked [J-1] that "if any chosen vowel is sung 

steadily for some time, the lack of contrast soon makes the vowel 

less easy to recognize . . ." Siegenthaler devised a set of 

experiments [S-16] designed to test this assertion by answering 

the following questions: 

1. To what extent can . . . [subjects] . . . identify 
vowels of English as spoken in isolation when the usual 
elements of initiation and conclusion are eliminated, and 
when all vowels are sustained for the same period of time? 

2. Are certain sustained vowels more easily recognized than 
others? 

He found that experienced listeners showed an average correct 
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perception of 57.6% for sustained, isolated vowels with the vowel 

/i/ having the greatest intelligibility and the vowels /U/ amd /e/ 

being the least accurately recognized. For naive subjects the 

score dropped to 47.2%. Most vowels incorrectly identified were 

mistaken for vowels in close proximity, from a• physiological and 

hence spectral viewpoint, to the presented vowels. The arrangement 

shown in Fig. 3.8b minimizes articulatory steps between adjacent 

vowels. 

W. Tiffany approached the same problem from another view-

point [T-8]. He noted that vowels in connected speech vary con-

tinuously in fundamental frequency, are surrounded (and presumably 

influenced) by adjacent sounds, and have varying durations. He 

attempted to determine whether the specification of the physical 

nature of a vowel solely in terms of its acoustic spectrum over a 

few pitch periods was possible. "To what extent," he asked, "are 

variations inherent in the contextual speech pattern required for 

a complete specification of the physical characteristics of vowel 

phonemes?" Tiffany's results showed a mean rate of 71% to 77% 

correct recognition for uninflected, electronically isolated short 

vowel segments and a rate of 86% for short vowel segments spoken 

in isolation. His findings that duration and context did influence 

the recognition rate precluded any hypothesis that vowels are 

physically specified solely in terms of spectra over a few pitch 

periods. He also noted that some vowels are more stable than 

others, and hence better understood, possibly because they represent 

'limit' positions of the articulatory mechanism [P-11]. He suggested, 

therefore, that "standardization of [enunciated] phonemes is a much 

more difficult task than might be supposed." 

Lehiste and Peterson, in a more recent study [L-7], showed 

that sustained vowels can be recognized correctly between 90 and 

100% of the time with training. Siegenthaler and Tiffany allowed 
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no training period in their experiments; we note here, that as 

mentioned in the introduction, a training period is required to 

achieve maximum comprehension of clipped speech. 

We conclude, that on the basis of the preceding experimental 

evidence, nearly 100% recognition of sustained, uninflected vowels--

i.e. on the basis of time-invariant spectral parameters--is possible 

with training. Ordinarily, in running speech, the availability of 

other cues obviates the need for this training. Nevertheless, the 

high rates obtained without any learning period whatsoever demonstrate 

that the spectral parameters are doubtlessly a very important factor 

in vowel perception. 

ii) The Importance of Formant Structure  

Ladefoged and Broadbent [L-2] attempted to discover whether, 

as Joos had suggested [J-2], the information conveyed by a vowel 

depends on the relationship between the formant frequencies of a 

particular vowel and the formant frequencies of other vowels pro-

nounced by the same speaker rather than the absolute values of their 

formant frequencies. Using synthesized sentences varying in formant 

frequency ranges, followed by an unaltered reference word, they 

showed that the auditory context greatly affected the identification 

of the fixed word. Thus, Joos' theory was verified and the authors 

concluded that "it is, therefore, only of limited service to look 

for common points in the acoustic structure of equivalent vowels 

spoken by different speakers." The consequences of this statement 

will become evident when we discuss the use of spectrograms for 

speech recognition in chapter 4. However, Haggard [H-2] cautioned 

that "the hypothesis that relationships, not absolute values, 

determine vowel quality . . . does not imply that vowel quality will 

be unaffected by octave frequency transpositions [translations], 

because human perception does not work with the mathematical 

precision of a slide rule." 
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Lehiste and Peterson [L-7], and Carterette [C-2], attempted 

to define further the information conveyed by vowel spectra by 

investigating, using lowpass and highpass filtering techniques, the 

importance of individual formants in sustained vowel perception. 

They concluded [L-7] that "one or more of the first 3 formants is 

essential to the recognition of each vowel" and that their data 

"did not support the thesis that any arbitrary portion of the 

vowel spectrum is adequate for identification of aZZ vowels." 

iii) The Influence of Vowel Duration  

Tiffany [T-8] also studied the relation between vowel 

duration and recognition. Using vowel segments ranging from 0.08 

to 8.0 seconds in length, he found that the nearer a given vowel is 

to its 'natural duration' in connected speech (e.g. [Fig. 1, H-20]) 

the better the recognition score for that vowel. Nevertheless, 

"differences in recognition attributed to duration were found to 

be [statistically] significant for [only] four [of the twelve] 

vowels" and the average recognition rate for uninflected vowel 

segments 0.08 seconds long (<8 pitch periods) was 70% rising to 

78% for a hundred-fold increase in duration. 

3.4.4 	Indirect Extraction of Vowel Spectral Parameters  

The use of short-term Fourier analysis (or banks of band-

pass filters, [T-7]) as a starting point for estimating formant 

frequencies, amplitudes and bandwidth (all system properties) is 

quite common. Pinson [P-13] and Dunn [D-17], [D-18] stressed, 

however, that there are effects which limit the accuracy of this 

method. 

First of all, little information is available about the 

spectrum between the spectral lines caused by the periodic source 

(sec. 3.3.1) so that spectral peak and bandwidth estimation require 

interpolation. Secondly, as Miller suggested (sec. 3.3.1 and [M-11]), 
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the envelope of the glottal waveform spectrum is a rapidly varying 

function of frequency. If this spectrum has zeros near resonances 

of the vocal tract then bandwidth estimation, in particular, is 

difficult. These, and other problems--such as deciding how to 

define a measure of formant amplitude [F-3]--, have prompted 

investigators to adopt other, more indirect methods of measurement. 

The analysis-by-synthesis technique, for example, is an 

attempt to specify parameters for a vocal tract which will best 

synthesize a spectrum to "match" the sample spectrum [M-8], [B-2], 

[P-8]. Suzuki et al.[S-28] extracted formant frequency parameters 

by calculating spectral moments. Synthesis of a waveform to fit 

the sample signal has also been tried with damped sinusoids [M-3], 

[P-13] and Gaussian (normal) shaped waveforms [H-22] among the 

fundamental signals proposed. This type of analysis is often 

"pitch synchronous" and requires accurate extraction of pitch para-

meters, a difficult task [G-3], [H-6], [N-4], [W-4], [S-11]. 

AutocorreZation has also been suggested and used [F-1], 

[H-24], [M-4], [S-23], [S-7], [P-6] as both a representation of the 

speech sound and as a means of obtaining the power, and hence 

amplitude, spectrum [L-6]. In addition, Kleinrock showed [K-8] 

that the repeated autocorrelation of a signal eventually yields a 

pure Sine wave whose frequency corresponds to the location of the 

maximum peak of the original signal spectrum. He demonstrated the 

use of this method in accurate formant frequency estimation. 

These indirect methods of spectral parameter estimation, 

developed to overcome the deficiencies of short-term spectral 

analysis, will be contrasted with methods using zero crossings in 

chapter 6. 



80 

	

3.4.5 	Nasal Consonants  

The nasal consonants /m/, /n/ and /y/ (sing) are voiced but 

differ from vowels in two ways: first, the nasal side passage is 

coupled to the vocal tract during production and second, the nasals 

are all associated with dynamic movement of the articulatory system 

[N-2], [F-18]. The former condition causes zeros in the system 

transfer function at frequencies for which the transmission to the 

nasal cavity is short-circuited by a zero impedance oral cavity. 

The latter condition is responsible for the time variation of 

nasal consonant spectra. The portion of a nasal consonant during 

which the oral cavity is closed at a point is termed the nasal 

'murmur'. 

Fujimura found [F-18] that the nasal murmurs of /m/, /n/ 

and /g/ are spectrally characterized by low (750-1250 Hz), medium 

(1450-2200Hz) and high (>3000 Hz) positions of the spectral anti-

formant (zero), respectively. The cluster of the 2nd  and 3rd  

(/m/), or 3rd  and 4th  (/n/), formants with the spectral zero 

generates a flat spectral null between, roughly, 800 and 2300 Hz. 

The first formant, he noted, is always low in frequency (=300 Hz) 

and all formants are relatively highly damped. 

Nakata [N-2] confirmed the importance of the wide band-

width of the first formant of nasals as a perceptual cue. He also 

demonstrated, using a synthesizer, that the trajectory and frequency 

of the second formant, often obscured by the spectral zero, is 

quite informative, perceptually. Therefore, he concluded, second 

formant transitions to the adjacent vowel play an important part 

in human perception of nasal consonants. 

	

3.4.6 	Stop Consonants  

The stop consonants, /b/,/d/,/g/,/p/,/t/,/k/, are produced 

when, with the nasal cavity closed, "a rapid closure and/or opening 
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is effected at some point in the oral cavity. Behind the point of 

closure a pressure is built up which is suddenly released when the 

closure is released." [H-4] If, during the closure, the vocal cords 

vibrate, a voiced stop (/b/,/d/, or /g/) is produced; if not, a 

voiceless stop (/p/,/t/, or /k/) results. However, Halle et al. 

warned [H-4] that in English the essential difference between these 

two classes of stops is that the /p/,/t/,/k/ group result from a 

more intense pressure buildup causing a higher intensity burst 

than obtains with the other group. 

Acoustically, stops involve rapid changes in the short-term 

amplitude spectrum preceded or followed by a fairly long (=0.07 sec.) 

period devoid of all energy above the voicing component. When a 

stop consonant is adjacent to a vowel, three cues--silence, burst, 

transition or transition, burst, silence--are present of which the 

silence is a necessary, and--with either a transition or a burst--

a sufficient, cue for stop perception. For example, in the /k/ of 

'tack'both transition and burst are present; in that of 'task' only 

the burst is present; while in that of 'tact' the transition alone 

is present [H-4]. 

Halle et al.,after investigating the spectral properties 

of the stop spectral bursts, stated that the three classes of stops 

(/b,p/,/d,t/,/g,k/), each associated with a different point of 

articulation, have the following spectral characteristics: 

/p/ and /b/, the labial stops, have a primary concentration 
of energy in the low frequencies (500-1500 Hz). 

/t/ and /d/, the postdental stops, have either a flat 
spectrum or one in which the higher frequencies (above 
4000 Hz) predominate, aside from an energy concentration 
in the region of 500 Hz. 

/k/ and /g/, the palatal and velar stops, show strong 
concentrations of energy in intermediate frequency 
regions (1.5-4.0 Khz). 

Using observed spectral features only, the authors could classify 

correctly and objectively 95% of their sample sounds. 
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The very complex role of formant transitions and loci 

(defined as a formant transition source or target frequency) as 

acoustic cues in stop perception was also thoroughly investigated 

by Delattre et aL.[D-8], Harris et al.[H-8] and Hoffman [H-17], all 

at Haskins Laboratories. Halle theorized on the nature of transi-

tions as follows [H-4]: 

When a [system] resonance is changing in frequency, the 
formant bandwidth increases. The more rapid the movement, 
the broader the bandwidth. In the limiting case of 
instantaneous movement, the bandwidth is infinite; . . . 
the burst can therefore be considered as an extreme case 
of transition in which changes in the short-term energy-
density spectrum are very rapid and the organization of the 
energy in the frequency domain [as in vowels] is replaced 
by organization in the time domain . . . . Formant 
transitions might then be intermediate structures whose 
assignments to the vowels or to the consonants is a 
function of their bandwidth, which in turn is dependent on 
their rate of change. 

Summarizing, the cues for stop perception are quite 

complex. However, short-term spectral structure--i.e., the burst 

alone--is sufficient both for accurate classification, and--as 

Halle et aZ. found--for a high rate of recognition of /p/,/t/,/k/ 

in perceptual tests, with training [H-4, p. 108]. 

3.4.7. 	Fricative Consonants  

The English fricative consonants, together with their 

place of maximum constriction ('articulation'), are shown in 

table 3.1. 

Table 3.1 Fricative Consonants 

Place of 
Articulation Voiced 

	
Voiceless 

Labio-dental 
Dental 	. . 
Alveolar . . 
Palatal . . 
Glottal . . 

vote 
then 
zoo 
azure 

/f/ for 
/0/ thin 
/s/ see 
III she 
/h/ he 



83 

Fricative consonants are produced by a constant-pressure noise 

source located in the vocal tract (sec. 3.3.2). Since the poles of 

the vocal tract response are system properties and do not depend 

upon the location of the excitation [H-9], [F-8, p. 63-64], the 

energy density spectrum of fricatives, although continuous, may 

exhibit resonance peaks resembling those of vowels of similar 

articulatory configuration. In addition, spectral zeros appear at 

frequencies for which the impedance, looking back from the source 

towards the glottis, is infinite [H-9], [F-8, p. 64]. Poles 

(resonances) and zeros (anti-resonances) of the system may cancel; 

but the average spacing of the zeros is greater than that of the 

poles and, therefore, the cancellation is not present throughout 

the entire audio spectrum [H-9]. 

Hughes and Halle noted [H-26] that unvoiced fricatives 

have little energy below 700 Hz. Conversely, above 1 KHz the 

spectra of cognate
1 
fricatives do not differ appreciably. By means 

of a set of objective spectral measurements, they were able to 

achieve 85% correct classification of unvoiced fricatives into 

three categories, each associated with a distinct point of 

articulation. In addition, using isolated 50 msec. portions of 

/s/,/f/ and /f/ Hughes and Halle showed that 71% of the stimuli 

could. be correctly perceptually classified with little training. 

They emphasized that the perceptual errors were highly correlated 

with the errors which occurred using the objective spectral methods 

of classification. The physiological correlates of fricatives and 

their spectra were investigated in detail by Strevens [S-27]. 

He showed that the bandwidth of voiceless fricatives (i.e., low, 

medium, high) was correlated with the place of articulation (i.e., 

front, back, middle). 

1
Cognates are pairs of consonants produced with the same articula-
tory configuration, but with different modes of excitation. 

2
This applies to the series excitation model of the vocal tract. 
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Heintz and Stevens, in another study of voiceless fricatives 

[H-9], demonstrated that "simplified versions of fricative consonants 

generated in accordance with the theory [of pole-zero transfer func-

tions] are demonstrated to elicit responses that are in agreement 

with the results of the spectral analyses [of actual fricatives]." 

(Italics mine.) 

Finally, the role of transitions in fricative perception 

was clarified by Harris, who showed [H-7] that transitions in 

fricative-vowel syllables are important for differentiating /f/ and 

/0/ from their voiced cognates, /v/ and /6/. 

3.4.8 	Glides and Semi-vowels  

Physiologically, the glides /j/ (you) and /w/ (we), and 

semi-vowels /r/ (red) and /1/ (let), differ from the stops and 

fricatives in the lesser degree of oral stricture present and from 

the nasals in the absence of nasal coupling [0-1]. Phonetically, 

only /w,j,r,l/ can constitute the third member of an initial three-

term consonant cluster--for example, splint, skew, square. In 

other consonantal clusters these consonants must occupy the 

position immediately before (bread, slow) or after (melt, bird) 

the vowel [0-1]. 

O'Connor et aZ. [0-1] attempted to discover whether, 

spectrally, these sounds were distinctive among phonemes. They 

found, using spectrum synthesis and analysis, that the formants of 

/w,j,r,l/ begin, as do those of voiced, final stops, at loci or 

frequency starting points. However, they demonstrated, using 

synthesized phonemes in psychoacoustic tests, that--in contrast to 

the stops--the /w,j,r,l/ formants must, if confusion with other 

phonemes is to be eliminated, remain at the loci frequencies for 

30 (/w,j/) to 50 (/r,1/) milliseconds before proceeding to the 

steady-state positions in the following vowel (see also [L-8]). 
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Discrimination among /w,j,r,l/ is accomplished using the transition 

directions and extents of the second and third formants. The first 

two formants of /r/ and /1/ have identical loci frequencies so 

that a third formant is required to remove the ambiguity. In 

contrast, /w/ and /j/ have different second formant loci so that 

two formants suffice for unambiguous synthesis and perception. 

Briefly, the low (600 Hz), medium (1200 Hz) and high (2400 Hz) 

frequency of the loci for the second formant of /w/, /r,l/ and /j/, 

respectively, distinguish among these sounds; the low (1500 Hz) 

locus of the third formant of /r/ contrasts to the high (2900 Hz) 

locus of Ill's third formant. 

3.4.9 	Spectral Specification and Perception  

of Speech Sounds: an Overview  

In section 3.4 we have examined, briefly but in some detail, 

the use of spectral features as descriptors of speech sounds. 

We have shown, using experimental evidence, that steady-

state spectral parameters are sufficient for vowel discrimination--

i.e., that sustained, uninflected isolated vowels are highly 

intelligible, especially with training. Furthermore, we have seen 

that perception of nasals, stops, fricatives and glides/semi-vowels 

is greatly dependant upon their frequency domain structure; manipu-

lation of certain spectral features of these sounds is directly 

reflected by a change in perceived identity of the sound. 

We do not underestimate the importance of speech dynamics, 

especially transitions [L-16], [S-25]. Indeed, as noted in 3.4.6, 

certain stop consonants reqLire a minimal period of virtually zero 

energy for correct perception! Neither do we fail to recognize the 

importance of contextual cues, especially under non-ideal (e.g., 

noisy) conditions. Our reference to Peterson's work (sec. 3.4, 

introduction) emphasized the relevance of the linguistic store. 
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What we have firmly established is that preservation of 

overall spectral structure is necessary, sometimes sufficient, and 

in any case desirable, for retention of high intelligibility. 

3.5 	The Statistical Properties of Speech Sounds  

In section 3.4 we observed that certain portions of speech 

waveforms, (vowels, for example) are quasi-periodic. However, in 

general, extended observation of a speech signal does not permit 

prediction of its future behaviour, on a long-term basis. In this 

sense, speech is the result of a random or stochastic process. 

Moreover, if the time during which the speech signal is observed is 

not so long as to permit a fundamental change in the character of 

the speech source (e.g., fatigue) then stationarity (time invariance) 

of the stochastic process may be assumed. 

If these postulates--set forth by Davenport [D-3]--are 

accepted, and their conditions of validity satisfied, then it is 

possible to describe speech, on a long-term basis, as a stationary, 

stochastic process [D-3; p. 4]. 

With these criteria in mind, Davenport made measurements 

of long-term, first-order and conditional speech waveform instan-

taneous amplitude distributions. In the next two subsections we 

consider briefly his findings and those of later investigations 

concerned mainly with Russian speech sounds. This section provides 

the necessary background material for the discussion, in chapter 5, 

of certain aspects of speech clipping. 

3.5.1 	First-order Density Functions  

The first-order probability density function fX
(x) is 

defined, for a stochastic process, as [D-3; p. 4] 

fx(x,t) = lim Ax,-)- 0 I{x,x(t).;x1+Axi} 	. 	(3-2) 
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If stationarity is assumed, then the definition becomes independent 

of time. 

Davenport measured fX(x) over extended durations of speech 

(one-half minute to ten minutes) by sampling signal amplitudes 

every 12 usec. He showed analytically that these measurements 

would suffice to define fX(x) using the relationship 

fX(xl) 1 (nl/n) 	
(3-3) 

where n = total number of samples taken and n
1 

= the number of 

samples in which the event fx
1
...5x(t)<x

1 
 +Ax

1 
 occurs, if n is suf-

ficiently large and Ax1  is sufficiently small. In these studies, 

n?.2.5 x 10
6 

and Ax
1 

= 1/50 to 1/100 of the maximum peak-to-peak 

signal amplitude. The experimentally determined density distribution 

is shown in Fig. 3.9 for three different speakers, in an anechoic 

chamber. 

Figure 3.9 The first-order (normalized) probability density 
function for speech waveforms measured over long periods 
(II to 10 minutes). Data for three speakers. (From [D-4].) 
Note: W

1
(x/6(x)) = f

X
(x). 
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By trial and error, Davenport derived an approximate 

expression for the graphical results. He hypothesized that "the 

spike" is due to both unvoiced sounds and system noise and that 

the "overall exponential character" is due to the vowels. Therefore, 

the vowels were modelled as an exponential distribution occurring 

0.6 of the time and the unvoiced sounds and system noise as a 

Gaussian distribution occurring with probability 0.4. That is, 

-17-2-.1xl/a 
+ 0.4 	

 e
22 	

(3-4) fX(x) = 0.6k- e V27(3 
-x /20 

2 1 

and, by curve fitting procedures, 01  = 1.23 and 02  = 0.118. 

Similar measurements on Russian speech [F-6], [R-13], [V-3] yielded 

distributions quite close to those of (3-4). 

A. Rimskii-Korsakov proposed [R-13] an extension of the idea 

that the long-term probability density function of speech waveform 

amplitudes is the sum of individual densities, each occurring for 

some proportion of time. He hypothesized that, if, over a long 

period of time (at least 2.5 minutes, according to Fersman [F-6] ) 

each different speech sound [vowel] has a Gaussian distribution 

defined by a variance 0T and, if each of these sounds is present 

for a proportion of time defined by another distribution, then the 

long-term probability density function for speech waveform amplitudes 

would be 

where 

f
X
(x) 

fT(x)  

= f 

0 

f
T
(x).f

a
(a
T
) du

T ' 

1-x
2
/2a

T
2 

(3-5) 

(3-6) 
V7Pra

T 
e  

a Gaussian density function with variance 0T
2
. Furthermore, if the 

distribution of the variances, fa(GT), is Rayleigh, that is 

2 	2 
f
a
(a
T
) = (0

T
la
o
2
). e

-0T /20
0 , aT 0' (3-7) 
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then substitution of (3-6) into (3-5) yields 

1 e-lxliao f (x) = 
X 	2ao  

(3-8) 

Equation (3-8), after substituting 01/1/2 for a
o
,is equal (except 

for a multiplicative constant) to the experimentally determined 

exponential distribution for vowels observed in (3-4). "In other 

words," he suggested, "there are strong bases [sic] for assuming 

that speech . . . signals are similar in their [long-term] sta-

tistical properties to a stationary random [Gaussian] process 

modulated in amplitude by other random processes [e.g., Rayleigh]." 

3.5.2 	Conditional Density Functions  

Davenport also investigated the long-term conditional 

density distribution of speech waveform amplitudes. For a 

stationary stochastic process the conditional density function is 

defined, using Bayes' theorem, as 

fxly(xlix2;T) = fxy(xl,x2; -0/fx(xl) 	fx(xl)i° (3-9)  

where fxy(xl,x2) = lim 
A 0 	

Ax1
.Ax

2 

61c2 43  

Davenport showed [D-3, p. 26] that, for small Ax, and Ax2' 

fxry(xilx2;T) = P(xilx2;T)/Ax2  

where 	P(x1lx2;T) = P(x1,x2;T)/P(x1), P(x1)00. 

P(x1,x2;T) and P(xl) are, respectively, the numerator of (3-10) 

and of (3-2). Therefore, for small Ax
1 
 and Ax2, the conditional 

density function is 	f 	(x Ix .T) = — (n /n ) 	(3-12) 
XIY 	1 2' 	Ax

1 

2 	
2 1 

Pfx
1 
 <x(t)‹x

1 
 -1-Ax 'x

2." 	." 
<x(t+T)<x

2  +Ax2  1 "   

(3-10) 

(3-11) 
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where n

1 
= number of samples in which the event {x

1
.cx(t)<x1  +Ax1  } 

occurs and 

n2 = number of samples in which the events {x1
45x(t)

1
+Ax

1
} 

and {x2
4x(t+T)<x

2 
 +Ax

2 
 } occur. 

'  

Davenport measured the conditional probability P(xilxi;T) 

for three different values of x11  : x =-0.33a, -0.65a, and -1.3a, 

where a is the rms speech waveform amplitude. These experimental 

probability distributions are shown in Fig. 3.10. Note that, in 

r-11.1.,9.0.141 

Fig. 3.10 The conditional probability 
P(xlIxi;T). For three different values 
of x . Single speaker in anechoic chamber. 

(From1 [D-5}.) 

Fig. 3.10, a peak occurs in the distribution for T= a pitch period, 

and that the peak height is proportional to 1x11. This peak reflects 

the quasi-periodic nature of the voiced sounds which account for 

most of the higher amplitude excursions in speech waveforms. Daven-

port also measured fXIY  (x1  lx'r) for x1
= -0.65a as a function of x 

for several values of T. The results of these measurements are 

shown in Fig. 3.11; note the change of vertical scale among the 

diagrams. 



91 

Fig. 3.11 The conditional probability distribution fX  1 s/ I (xdx;T). 
Measured data for six different values of T for a singlei speaker 
in an anechoic chamber. (From [D-5].) Note: Wi(xl/a lx/a,T)=fxly(xllx;T). 

Davenport showed analytically that 

and 

as T 	° 	(3-13) f
X
(x) 

d(x-x
1
) as T 	0. (3-14) 

Equation (3-13) obtains because, as T increases, the amplitudes of 

the two points on the speech waveform tend to become statistically 

independent. Note 

of the line x/a(x) 

is--except for the 

Fig. 3.10. 

that, in Fig. 3.11, the locus of the intersection 

= x
1
/a(x) with fXIY 

 (x
1 
 lx;T) as a function of T 

proportionality constant 1/Ax2--equal to P(x1 Ix1" 
-T) 

3.5.3 	Joint Probability Density Functions  

A. Rimskii-Korsakov, in conjunction with Lui Yung-Ts'un, 

experimentally determined [R-13] the long-term joint probability 
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Fig. 3.12 Constant joint probability density contours, experi-
mentally determined for varying T, for Russian speech. (From [R-13].) 
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density function for speech waveform amplitudes, i.e., 

fXY (xl' x2' 'T) 
	

(3-15) 

Using the same criteria as Davenport used to derive (3-14)--that 

of independence of waveform amplitudes for large T 	Rimskii-

Korsakov argued that 

f 	(xl' x2' 
'T) '=" f

X
( x(t) )• f ( x(t+T) ) (3-16) XY  

for large T. Therefore, using (3-4), for T large, 

fxy  (u, ur  ;T) = T 	-[fi(lul+luTI)/al], (3-17) 
-- e  
1 

the product of two exponential distributions. Constant density 

contours of this function occur for lul+lu I = a constant; i.e., 

squares with vertices on the u and uT  axes. Fig. 3.12, from [R-13], 

shows that for T>30 milliseconds, the distribution is close to that 

predicted. The sharper corners of the experimental distribution 

result from the Gaussian component of (3-4) predominating at small 

signal amplitudes. Rimskii-Korsakov showed explicitly that the 

elliptical character of the equal density contours for small values 

of T can be explained "if we assume that the signal once again can 

be considered as a complex random process, randomly modulated in 

amplitude." [R-13] 
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3.5.4 	Summary  

The agreement between Rimskii-Korsakov's experimental 

results and theoretical predictions for large T tends to confirm 

what Davenport emphasized: that on a long-term basis speech can 

be considered to be a stationary stochastic process only in the 

sense that prediction of future speech sounds is not possible and 

that the characteristics of the source are "invariant" if the 

long-term period is short enough so that fatigue etc. does not 

occur. 

We shall see (in sec. 5.3) that Davenport's models have 

often been misinterpreted and misused in an attempt to apply the 

powerful tools of stochastic signal theory to the analysis of 

speech signals which exhibit formant structure. As we emphasized 

in sec. 3.4, vowels--over the analysis period necessary to reveal 

formant structure--are not stochastic processes but quasi-

periodic waveforms. 



4 	AUTOMATIC SPEECH RECOGNITION 

What is the motivation behind attempts to realize automatic 

speech recognition machines? What is the value of such automata? 

What is their function? Are such machines simply an attempt to 

duplicate the human facility of speech perception? Motivation, value, 

function and method are important quantities to be considered in 

respect to automatic speech recognition. 

This chapter, therefore, is concerned mainly with the 

philosophy of automatic speech recognition. Note that we do not 

propose to generate a model for a general purpose speech recognition 

system of the type described in some of our references. Instead, 

we wish to outline some of the conceptually important ideas which 

provide the foundation upon which such systems are constructed. 

The purpose of this chapter, then, is to establish a framework for 

the speech recognition experiments presented in chapter 7 and a 

perspective concerning the role of signal processing in automatic 

speech recognition. 

4.1 	Whither Speech Recognition?  

J.R. Pierce, in a recent letter [X-2, October 1969) asked, 

"Whither speech recognition?" He implied that it is "not clear" 

that speech is desireable mode for man-machine communication. "In 

fact," he emphasized, "we do very well with keyboards, cards, 

tapes and cathode-ray tubes." After presenting some indication of 

94 



95 

the extreme difficulties associated with automatic speech recognition, 

Pierce noted that an undeniable justification for speech recognition 

research is "that through such work we [can] learn something about 

speech." He observed that this will be the case only if the 

"learning" is made an immediate goal rather than one of a number 

of means to a more important end. More often than not, he pointed 

out, the investigation of the nature of speech becomes subservient 

to "rapture for computers and for unproven schemes . . . for 

recognition." D.B. Fry expressed the same sentiment when he 

stated [F-16] that "It is disquieting to note the number of people 

in various parts of the world who have embarked upon the task of 

devising a speech recognizer without having learned anything at 

all . . . ." 

Thus, although the immediate value of a speech recognition 

machine, per se, is questionable, the knowledge gained in the 

investigations which should provide the prelude to, and basis of, 

such ventures is invaluable. Unfortunately, the increase in 

fundamental knowledge which can be attributed to reported attempts 

at automatic speech recognition is small; furthermore, these schemes 

have been--until very recently--comparatively fruitless. "Why have 

two or more decades of intensive research concerning automatic 

speech recognition been rewarded with such apparent lack of success?" 

[Hill; H-12] We shall attempt to provide some answers in the next 

section. 

4.2 	The Philosophy of Automatic Speech Recognition  

4.2.1 	Function  

In 1958 Fry and Denes described [F-17] the function of a 

mechanical speech recognizer as "recognition of linguistic elements 

on the basis of the acoustic input and the re-encoding of this 

sequence of elements in the form of a letter sequence." In essence, 
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the recognition automaton serves to replace the human subject as a 

transcription device. The availability of the phonemic string in 

discrete, coded form is therefore inherent in the concept of a 

phonetic typewriter. It is important to note that in 1958 the band-

width saving effected by a phonemic encoder was considered as 

important, perhaps, as the recognition aspect itself [F-17]. The 

string of phonetic symbols could be transmitted over a narrow band-

width channel and a speech signal synthesized using a voice encoder, 

or "vocoder" [S-6]. 

4.2.2 	Speech Specification via Articulatory Parameters  

The modelling of the human auditory system as a form of 

spectrum analysis--and the success of short-term spectral analysis 

in revealing certain physically meaningful features in speech 

sounds--has prompted many researchers to adopt spectral analysis as 

a first step in the recognition process (sec. 4,3). Nevertheless, 

as early as 1950, Huggins proposed [H-23] that the auditory mechanism 

may effectively analyze not the acoustic waveform but the system 

[vocal tract] transfer function. "As far as the response of the 

basilar membrane . . . is concerned, the mouth and ear may be 

combined into a single linear system. In effect, the speaker's 

mouth is part of the listener's ear." [H-23] This idea, that a 

human perceives sounds (at one stage) by "reference" to the vocal 

tract configuration which produced the sounds, was formalized in 

1960 as the motor theory of perception. N. Lindgren summarized 

the essence of this theory as follows [L-18], [L-19]: "Because 

perception seems to follow articulation rather than sound, the 

speculation arose that the relation between phoneme and articulation 

might be more nearly one-to-one than the relation between phoneme 

and acoustic unit." 
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4.2.3 	Analysis, or Analysis-by-Synthesis?  

We recall that an alternative to speech waveform analysis 

by direct extraction of spectral parameters is the synthesis of a 

pole-zero system whose transfer function approximates the amplitude 

spectrum of the incoming signal. (sec. 3.4.4) K. Stevens proposed 

a model, for a speech recognition system which, in effect, involves 

the synthesis of a spectrum to match that of a particular speech 

spectrum in terms of articulatory parameters. He argued that 

[S-24]" . . . the analysis that leads to the articulatory descrip- 

tion can be performed without reference to the particular language 

or dialect of the speaker. Since the output of this analysis 

stage provides, in effect, a description of vocal tract configurations 

. . . results of the analysis preserve sufficient information [so] 

that the original speech signal can be approximately recreated." 

At a further stage in the analysis, articulatory configura-

tions are expressed in terms of phonetic symbols. A matching 

process is used to select the phoneme which 'most likely' produced 

the articulatory configuration which, as noted in the previous 

paragraph, is determined to have produced the input speech spectrum. 

Both matching processes necessarily incorporate feedback loops. 

Stevens justified the choice of spectral parameters as 

primary data by reaffirming the belief that "a . . . process 

similar to spectrum sampling . . . exists in the auditory mechanism." 

The use of an intermediate articulatory representation reflects 

the possibility that "a similar representation may likewise exist 

at some stage during the . . . process of speech recognition." 

Finally, D.M. MacKay summarized the arguments for the use of 

analysis-by-synthesis models in speech analysis as follows: 

. . . three distinct arguments are possible for the 
usefulness of 'active matching' or 'analysis-by-synthesis' 
in speech perception. 
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The first is that since speech is the product of a 
generative process with few degrees of freedom, and the ear, 
being a general purpose organ, converts it into a represen-
tation with many degrees of freedom, it would be economical 
to represent speech internally by a model of the generative 
process rather than the product. As it stands, however, 
this argument could equally apply to the perception of 
non-speech sounds with few generative degrees of freedom. 

This leads to the second argument, that since speech 
is something we produce, we have a suitable internal 
generator ready made and can economically use it. Moreover 
'delayed feedback' experiments have shown the existence of 
the necessary coupling from the ear to the organizing 
system for speech. 

The third argument is of a different kind. In per-
ceiving speech as such we are concerned not only with the 
classification of phenomena, nor even with the internal 
imitation of sounds. Our object, in part at least, is to 
discover what the originator is up to, as another agent 
like ourselves. Here, I suggest, is the chief reason for 
entertaining seriously the idea that perception of speech 
(as speech) requires the running of an internal active 
organizer matching that of the speaker in relevant 
respects; for it is, I think, the success of this ongoing 
enterprise that constitutes 'following' him. [M-1] 

4.2.4 	Segmentation: the Gating Problem 

Speech is a continuous process. Yet the output of a speech 

recognition machine must be a series of discrete symbols. Speech 

is produced by a vocal track which has inertia. Thus, phonetic 

transitions are generally gradual rather than abrupt. J. Darman 

noted that [D-2] "one of the fundamental contrasts between the 

phonemic sequence and its physical manifestation is that, while the 

former is discrete, the latter is quasi continuous." In continuous 

speech, furthermore, the target configuration representing a 

certain phoneme is barely reached before motion towards the next is 

initiated; hence a given configuration may be the result of a 

motivation to produce more than one phoneme [H-3] and it may be 

impossible to establish a one-to-one correspondence between an 
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acoustic utterance and a phoneme. P. Denes emphasized that 

[D-10; 1963] 

the basic premise of . . . automatic speech recognition 
. . . has always been that a one-to-one relationship 
exists between the acoustic events and the phonemes . . . . 
there was a deep seated belief that if only the right 
way of examining the acoustic signal was found, then the 
much sought-after one-to-one relationship would come to 
light. Only more recently has there been a wider 
acceptance of the view that these one-to-one relations 
do not exist at all . . ." 

Indeed, experiments have shown that human recognition of phonemes 

may be dependant upon cues derived from several acoustic segments 

[F-17]. 

Segmentation--and the related problem of time scaling and 

normalization due to variability of speech rate [B-10]--is a major 

hindrance to successful automatic speech recognition. But, assuming 

that segmentation is somehow possible, the choice of acoustic unit 

(i.e. phoneme, word) presents a series of formidable, interrelated 

decisions [S-14]. For example, phonemes may not be combined in 

any order to form syllables [D-19]. Therefore the longer linguistic 

units (e.g. words) incorporate linguistic constraints which should 

make identification easier. Yet recognition presumably depends on 

matching a pattern derived from the incoming acoustic unit with one 

of a set of reference patterns; if so, the number of word patterns 

that would require storage seems prohibative. And even the largest 

practical store would not prevent forced, erroneous decisions on 

unknown words. Phonemes, however, would presumably form a compact, 

inclusive set [F-16]. 

4.3 	Automatic Speech Recognition: An Overview 

We discussed--in section 4.2--some concepts directly 

relevant to the implementation of automatic speech recognition 

machines. Specifically, we dealt with some aspects of speech 
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production and perception which, to many researchers, seem desirable 

to imitate in automatic speech recognition machines. 

The extraction of "patterns" from source data--or para-

meterization of the signal--is a central problem in this thesis. 

In particular, we will consider the role of zero crossings as a 

representation of the signal for speech recognition purposes. How-

ever, we believe that before this can be done a review of some 

actual implementations of (non-zero crossing) speech recognition 

machines should be presented. This review will serve a number of 

purposes. 

First, most of the schemes described parameterize the' 

speech signal via a well known and physically meaningful method--

the features revealed in a short-term speech spectrogram. For this 

reason, the nature and purpose of processing applied subsequent to 

the initial parameterization, which we will define as pre-processing, 

should be reasonably clear. In contrast, the nature of the estimate 

of the source afforded by zero crossings is, at this point, some-

what obscure. This subject will be discussed in detail, and 

clarified, in chapter 6. 

Secondly, the review will be logically organized in that 

we will describe, in turn, attempts at vowel, word and continuous 

speech recognition. In this manner the difficulties and limitations 

associated with the recognition of each speech unit should become 

apparent. Similarly, the complexity of the system associated with 

each mode should become clear. The brief description of the system 

used in each case should, we hope, provide some idea of the actual 

processes which may constitute a speech recognition machine. 

Finally, we wish to demonstrate a key concept in automatic 

speech recognition. Hill argued that the lack of success in 

machine recognition of speech "is not due to a lack of means of 
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analysis for the acoustic signal." [H-12] "What is difficult," he 

claimed, "is telling the machine what to do with the results of the 

analysis." We contend that, as these examples will demonstrate, 

the recognition phase--telling the machine what to do with the 

results of the analysis--may fail not through lack of technique but 

because the signal parameterization does not provide a sufficient 

basis for signal classification. Note that we do not claim that 

correct signal parameterization is the key to successful automatic 

speech recognition. However, correct parameterization is vital in 

the following sense: Mechanical speech recognition can be divided 

into three phases--measurement (or parameterization), transformation 

of measurements or parameters, and decision making (or recognition). 

The decision is made on the basis of information extracted from the 

signal via measurement or parameterization and presented to the 

decision function' through the transformation. We shall see that 

information is often lost or obscured when the parameterization is 

neglected in favour of premature excursion into the recognition 

stage without sufficient attention being given to transformations. 

4.3.1 	Vowel Recognition  

J.W. Forgie and C.D. Forgie based their recognition system 

upon "the interpretation of the two-dimensional patterns of amplitude 

and frequency which exist during steady state portions of . . . 

vowels."[F-11] The envelope detected outputs of a bank of 35 

contiguous bandpass filters covering the 115-10,000 Hz region were 

sampled 180 times per second and quantized versions fed into a 

computer. The vowels were extracted from a /b/-/t/ context; energy 

considerations provided the basis for a vowel-consonant decision. 

1 
The role of decision theory in pattern recognition will be 

discussed in chapter 7. 
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The first operation in the detailed analysis of each 

frequency sample array was to estimate, roughly, the locations of 

F1  and F2. The experimenters noted that: 

outstanding among the problems encountered in attempting 
to set up a formant-tracking programme were (1) a voicing 
harmonic which was high enough in frequency to be F1  and 
higher in amplitude than Fl, (2) a low frequency F2 which
was confused with Fl because the former was higher in 
amplitude than Fl, and (3) an Fl-F2 combination peak which 
might appear as Fl only or F2 only. 

A somewhat complicated subdivision of the F1-F2 
plane, into rectan-

gular regions, resulted in which "as many as six vowels could have 

the same F
1 
and F

2 
locations." In order to eliminate confusion 

among vowels having similar F1-F2 
configurations, sets of "confusion-

elimination" operations were devised using empirically determined 

thresholds based upon ratios of areas under arbitrary regions of 

the spectral cross-sections. These measurements were an attempt to 

more accurately determine the formant frequencies and the authors 

remarked that "information about true formant locations can be 

obtained more reliably from measurements of the type used here than 

from measurements of peaks using a formant tracking technique." 

The final technique was to locate F1 
and F

2 
approximately, resolve 

confusions associated with 9 of the 11 F1-F2 
combinations and 

hence identify the unknown vowel. The overall performance of the 

system for 21 subjects (11 male and 10 female) was 88% correct 

classification. Application of vowel duration information (e.g. 

[H-20]) raised the average score to 93% correct. The Forgies 

concluded that "the development of the recognition process in the 

form of a tree, where rough operations are followed by more 

detailed ones 'tailor made' for the particular confusions which 

remain, results in a comparatively efficient program since only 

applicable operations need be executed in any particular case." 

A question which might have been relevant to this investi-

gation is "Can a precise 
F1-F2 

mapping provide sufficient informa- 
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tion for accurate vowel recognition?" In other words, the trans-

formation stage has been overlooked completely and the decision 

process appears needlessly arbitrary and unjustifiably confusing. 

J.D. Foulkes questioned the sufficiency of raw F1-F2  data 

for automatic classification of vowels [F-12]. He noted that Welch 

and Wimpress had shown [W-5] the necessity of retaining data con- 

cerning Fo, the voicing frequency, and F3, the third formant 

frequency if maximum separability using objective techniques is 

desired. Foulkes therefore applied a series of transformations 

to the raw data. Figure 4.1, from [F-12], shows the scatter 

diagram of Fl  vsF2  for isolated vowels as measured by Peterson 

and Barney [P-11]. Foulkes observed that the dotted lines in Fig. 4.1 
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Fig. 4.1 Plot of fl  [F1] vs f2  [F2] for nine vowel types. From 

[F-12], using the data obtained by Peterson and Barney [P-11]. 
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are members of a one parameter family of parabolas with a common 

origin at F1  = 200 Hz and F2  = -500 Hz. Using the coordinate 

translation 

x = F
1 
 -200 and y = F2+500 

he transformed x and y into a and b, as shown in Fig. 4.2. 

800 	1000 	1200 	1400 	1000 
	

800 	2000 	2200 	2400 	2800 	2800 	3000 
b 

Fig. 4.2 Plot of log10  a vs b for nine vowel types. (From [F-12].) 

We note that the isophonemic regions of Fig. 4.1 have become roughly 

rectangular in Fig. 4.2. However, there is still overlap, especially 
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of /A/ and /a9/. Foulkes therefore used data concerning Fo  to apply 

a correction, transforming b to B. The result, shown in Fig. 4.3, 

eliminates most of the overlaps. 

Finally, F3  data can be used as a further correctional 

factor in a manner similar to that used to incorporate Fo. The 

total effect of the transformations is to substitute a simple 

matrix representing the boundaries in Fig. 4.3 for the extremely 

large table which would be required to describe those in Fig. 4.1. 

The penalty paid is the time required to effect the transformation. 
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Fig. 4.3 Plot of A = logio  a vs B = 800 + 320(b-800)/(F0+120) 
for nine vowel types. (From [F-12].) 
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Recognition results using the transformed data were 88% correct. 

This exchange of computing time for store is, Foulkes noted, the 

"sole justification for the transformations . . . and the tempta-

tion . . . to speculate on the subjective significance [of the 

transformed parameters] . . . is worth resisting." 

We have outlined the techniques employed by Forgie and 

Forgie, and by Foulkes, in order to emphasize the difference 

between recognition procedures using raw data and those using 

transformed data. Forgie and Forgie considered the preprocessing 

to end with spectral analysis. Their classification program was 

relatively complicated and the amount of data storage space 

required quite large. Foulkes transformed the input data and 

employed a relatively simple final classification criterion. Both 

efforts yielded precisely the same average rate of correct clas-

sification. 

4.3.2 	Word Recognition  

H. Dudley and S. Balashek described a word recognition 

machine conceived as an extension of Audrey, an early (1952) 

spoken digit recognizer [D-6] which--since it used zero crossing 

information--will be reviewed in chapter 6. 

Dudley and Balashek initiated their analysis with a set of 

10 contiguous bandpass filters [D-14]. The filter outputs were 

envelope detected and the "patterns" thus generated then effectively 

cross correlated with a set of stored reference patterns derived 

by prior experiment. A continuous indication appeared at the 

output of this "phonetic pattern recognizer" and indicated which 

of six vowels /i,I,e,a,o,u/, a semi-vowel /r/, a nasal In/, or two 

fricatives /f,s/ was present. The next stage was a "word pattern 

recognizer". During a learning phase, the duration of each of 

the ten phonetic patterns was observed as each of the ten digits 
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was spoken repeatedly. A resistor matrix was constructed--taking 

account of the variation in nominal duration among the spoken digits 

but not the sequence of appearance of phonemes within each spoken 

digit--such that the actual digit spoken is correctly identified 

via a capacitor charging operation. Dudley noted that in actual 

tests "the operation was invariably successful [i.e. correct more 

than 90% of the time] when the apparatus had been adjusted to the 

speaker's voice and he was careful to utter the digits just as he 

did in setting up the memory patterns." 

We wish to emphasize two points concerning the results of 

this experiment: 

First, in contrast to the vowel classifiers described in 

the previous section, this scheme was successful only for a single 

speaker--the speaker whose voice set up the machine. It seems 

probable that the explanation of this discrepancy (all schemes use 

spectral data) lies in the fact that, while the Forgies concentrated 

on defining differences and similarities between significant 

spectral features (e.g.t formants), Dudley attempted a more gener-

alized approach which seems to ignore spectral structural detail 

except in a general sense. That is, the resistor matrices treat 

all spectral areas with equal priority. 

Secondly, the attention given to the duration information 

is not justified in view of the insufficient analysis performed to 

discover phoneme identity at a spectral level. 

P. Denes and M. Mathews were among the first to programme 

the classification phase of an automatic speech recognition machine 

[D-11]. Although they were aware that "automatic speech recogni-

tion is probably possible only by a process that makes use of 

information about the structure and statistics of the language 

being recognized" they felt that "by restricting the library of 

words . . . to the relatively small number of 10, the acoustic 
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redundancy of the speech waves will be increased to a level where 

linguistic information is no longer required for successful 

recognition." 

The source data for their recognizer also consisted of the 

envelope detected output of a filter bank, 17 channels in this 

case. Sixty sweeps of the filter bank outputs (=.85 sec) yielded 

1020 analogue samples, each subsequently quantized and represented 

by a 10 bit number. Reference patterns were formed by adding 

together corresponding array points (after time normalization) from 

a group of utterances of the same digit and then normalizing so that 

the sum of the squared point values in each reference array equals 

unity. Recognition was accomplished by cross correlating input 

patterns with each reference pattern. The results were quite 

similar to those of schemes previously mentioned: correct 

recognition (classification) of words spoken by the speaker whose 

utterances were used to form the reference pattern set averaged 

greater than 90% while the rate of errors increased to 33% for 

other speakers. 

P. Sholtz and R. Bakis dispensed with all analogue appara-

tus and inserted digitized speech directly into a computer [S-13]. 

However, the first computed operation was simulation of a filter 

bank .(40 channels) giving a spectral cross section output every 

10 milliseconds. The next step, the first in the recognition 

process, involved a vowel--non-vowel decision using energy consid-

erations. Segmentation into phoneme strings was accomplished 

by observing changes in the spectral cross sections. Those 

segments deemed 'non-vowels' were further classified by means of 

an elaborate tree structure which incorporated many of the known 

time-frequency characteristics of speech sounds (chapter 3). 

Vowels were similarly separated into one of 11 categories using 

spectral energy measurements, time variation of spectral information 
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and durational characteristics. Following word termination, the 

sequence of classified segments were referenced to a "dictionary", 

constructed during the learning phase, and the word identified or 

rejected. 

The overall performance of this system was 96% correct 

recognition, 1.7% incorrect classification and 1.8% rejection. 

The authors emphasized that it is difficult to draw conclusions 

from these comparatively successful results but note that their 

procedure seems to be "more tolerant of interspeaker variations 

than other . . . procedures previously reported." 

A final example of spoken word recognition using spectral 

primary data is the experiments of King and Tunis [K-6]. They 

claimed that their work "extends the results existing in the 

literature in that it deals with significantly larger sample 

sizes than have commonly been used, with a limited number of 

different vocabularies, and with the effect of transformations of 

the primary measurement space on recognition performance." 

This scheme also commenced with envelope detection of the 

outputs of a set of (fifteen) contiguous bandpass filters. However, 

prior to sampling by a computer, an analogue ANDing operation 

sensed peaks in the spectral corss sections. The result was a 

record of the formant positions only. A separate highpass circuit 

detected energy associated with unvoiced sounds. The training and 

recognition algorithm used was a basic linear, adaptive decision 

function; this class of recognition algorithms will be considered 

in chapter 7. 

King and Tunis are unusual in that they actually explicitly 

presented a rationale for their methods. "The hypothesis has been 

made," they stated, "that the spectrum analysis of a speech wave-

form provides measurements that contain, if they are not themselves, 

statistically invariant measures of the spoken words." The correct 
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recognition rate for each of two 15 word vocabularies was greater 

than 97% for testing using the same speaker during algorithm 

training and recognition phases. An attempt to recognize words 

spoken by a person other than the 'trainer' resulted in a drop in 

correct recognition to 55% and 85% in two separate tests. Mixed 

training (samples from two speakers) raised the recognition rate 

to 99%. 

We now summarize the results of the experiments described: 

Features extracted from short-term spectral analyses of speech 

appear to be sufficient only for recognition of a limited vocabulary. 

Training, or setting up of the machine, requires a vocabulary sample 

drawn from more than one speaker if multiple speaker recognition 

is to be successful. Recognition can be accomplished through cross-

correlation with a set of master patterns [D-14], [D-11], decision 

trees based upon known time-frequency characteristics of speech 

sounds [S-13] or via adaptive classification algorithms [K-6]. 

To close this section, we note that W. Hillix achieved a 

high rate of spoken digit recognition using "nonacoustic measures" 

of speech information. These nonacoustic measures include lip and 

jaw movements and "wind velocity" in the vicinity of the mouth 

[H-13], [H-14]. 

4.3.3 	Automatic Recognition of Continuous Speech  

At this time (1969) only one significant attempt at 

continuous speech recognition has been reported in the literature. 

D.R. Reddy first described one solution to the problem of achieving 

primary sementatiOn of continuous speech [R-4]. His techniques were 

determined "in an ad hoc way by the visual inspection of the wave-

form." The speech waveform--sampled, quantized and inserted 

directly into a computer--was divided into a succession of minimal 

segments using the variation or stability of sound intensity levels, 
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with zero crossing counts used as an aid in resolving ambiguities 

and in error correction
2
. Minimal segments of similar characteristics 

were later combined to form larger segments and these, in turn, 

could be classified as sustained or transitional segments. 

In a later paper [R-5], Reddy reiterated the problems 

encountered when a one-to-one correspondence between phonemes and 

their acoustic representation is attempted. He noted that Sanskrit 

grammarians often consider allophones (variant forms) of certain 

phonemes to fall into different phoneme classes. In English, for 

example, /f/ and /0/ are often acoustically closer to stops than to 

fricatives. This occurs when the turbulent airflow is deemphasized. 

And, as noted in section 3.4.5, except for the coupling of the 

nasal passage the vocal tract configuration for nasal murmurs is 

close to that of stops. It is therefore imperative, Reddy noted, 

that "any grouping scheme for automatic speech recognition that is 

mainly dependent on the acoustic parameters for its classification 

cannot require that a given phoneme belong to one and only one 

phoneme group" and that "the grouping should be such that the 

acoustic parameters required for associating segments with a phoneme 

group are few and easily obtainable." Reddy's scheme was to group 

the sounds into four nonmutually exclusive subsets--stoplike 

sounds, fricativelike sounds, nasal-liquidlike sounds and vowellike 

sounds. The actual method of classification into the subsets was 

quite complicated and was based upon intensity and zero crossing 

measurements. We emphasize that the criteria incorporated in the 

flow graph which constitutes the classification system were ad hoc 

derived from the known characteristics of speech sounds. The main 

value of this phase of Reddy's automatic recognition system is 

undoubtedly in his interpretation of nonexclusive phoneme grouping. 

2 
This phase will be elaborated upon in chapter 6. 
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Reddy's complete system for computer recognition of con-

nected speech (single speaker) was described in detail in 1967 

[R-6]. He noted that "any attempt at simulating the approaches that 

require the use of filters would have required excessive computer 
3 time” and that he therefore sought "new and different solutions to 

the problems of speech processing." The prime objective of the 

system was to obtain a phoneme string from continuous speech. 

The system is an extension of the segmentation method 

described in his earlier papers. Spectral analysis aids in 

classifying the segments; formant amplitude and frequency are among 

the spectral parameters extracted. Zero crossing information 

supplemented the spectral information (sec. 6.3). Classification 

within each of the four subsets (stop-, fricative-, nasal-liquid-

and vowel-like) was accomplished using a tree-like flow net. The 

criteria for branching within the nets were, as before, based 

upon observations concerning the time-frequency characteristics of 

speech sounds. The results of a test on 287 phonemes gave 81% 

correct segmentation and classification. 

Reddy's system was based on an extensive knowledge of 

speech characteristics and judicious application of these properties 

to the design of flow (decision) nets. No fundamentally new methods 

of speech processing were used. Nevertheless, this scheme, above 

all others in the literature, seems to hold the most promise for 

success in the near future. 

3The fast Fourier transform algorithm (sec. 2.5 and 8.5), which 
obviates this problem was published in 1965. A lag of nearly 
two years in adoption of FFT techniques followed. 
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4.4 	Barriers to Successful Automatic Speech Recognition  

We have briefly examined a number of partially successful 

attempts at automatic speech recognition. Most of these systems 

made use of the envelope detected output of a bank of contiguous 

bandpass filters (or a variation thereof) as the source of primary 

data. For narrow bandwidth filters this method of processing 

approximates short-term spectral analysis (sec. 3.4.1). This 

reveals features which can be interpreted in a physiologically 

meaningful and conceptually attractive manner. However, except for 

a single speaker, spectral features do not seem to possess sufficient 

invariance to serve as a useful measure of the acoustic waveform in 

automatic speech recognition machines. By useful we imply successful. 

We now explore one of the major problems in this chapter: 

should we expect any automatic speech recognition machine to be 

successful on the basis of acoustic information alone? Fry warned 

[F-16] that, "It is no use . . . looking . . . for acoustic 

invariants which characterize each sound that occurs in a given 

language. A language is a system of relations, at the level of 

acoustic recognition as at other levels, and what characterizes a 

sound depends entirely upon what other sounds it has to be 

distinguished from." (Italics mine.) 

4.4.1 	The Contextual Problem 

D.B. Fry has repeatedly emphasized the inadequacy of acoustic 

information for automatic speech recognition. "In the case of the 

human listener," he explained [F-16], "the classifying is done on 

the basis of a vast store of knowledge about the language system, 

and such is the degree of redundancy of natural languages that the 

weight the listener attaches to the incoming acoustic information 

is low compared with the weight given to the stored linguistic 

information. It is only in this way that we are able to make sense 
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of running speech." He observed that limited vocabulary speech 

recognition schemes are somewhat successful only because in such a 

small ensemble acoustic information may be significantly more 

important than linguistic constraints. Thus, the design criteria 

for a word recognition machine would certainly be a function of the 

number of words in the vocabulary. 

Contextual relationships--a knowledge of language statistics 

in general and the sequential probabilities of phonemes in particu-

lar--appear to be a key to the human facility of continuous speech 

perception under conditions involving varying speakers and conditions. 

A mechanical speech recognizer incorporating a linguistic store and 

able to simulate the use of statistical information at various 

levels would "undoubtedly work successfully even if its acoustic 

recognition was far from perfect." (Fry and Denes; [F-17]) Why 

then is a large portion of this thesis (chapters 6,8,9 and 10) 

devoted to the investigation and clarification of the significance 

of a particular type of acoustic signal processing (zero crossing 

extraction) to automatic speech recognition? 

Fry and Denes answered this question by stating [F-17]: 

"It is clear that a certain level of accuracy in acoustic 

recognition is necessary if the use of a sequential probability 

is not to lead to an increase rather than a decrease in errors . . . 'I 

(Italics mine.) 

4.4.2 	The Future of Automatic Speech Recognition  

In a discussion of problems relating to the study of 

language, N. Chomsky recalled the situation which prevailed in the 

speech recognition field only a few years after the introduction 

of the speech spectrogram [C-10]: 

The interdisciplinary conferences on speech analysis 
of the early 1950's make interesting reading today. There 
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were few so benighted as to question the possibility, in 
fact the immediacy, of a final solution to the problem of 
converting speech into writing by available engineering 
techniques . . . 

. . . there is little trace today of the illusions 
of the early postwar years.  

Chomsky feels that as far as "automata-theoretic models" for 

language use (and related problems in perception) are concerned, 

there is a fundamental inadequacy in the systems of concepts and 

principles that have been advocated. He cautioned that 

'extrapolation' from simple descriptions of language 
processes cannot approach the reality of linguistic 
competance; mental structures are not simply 'more of the 
same' but are qualitively different from the complex 
networks and structures that can be developed by elabora-
tion of the concepts that seemed so promising to so many 
scientists just a few years ago. What is involved is not 
a matter of degree of complexity but rather of quality of 
complexity. Correspondingly, there is no reason to 
expect that the available technology can provide signifi-
cant insight or understanding or useful achievements; it 
has noticeably failed to do so . . . (Italics mine.) 

If Chomsky is correct, then the possibility of immediate, 

large-scale success in automatic speech recognition using conven-

tional analysis techniques seems remote indeed. Nevertheless, the 

task of knowledgeably exploiting the only easily accessible 

evidence of human speech communication--the acoustic waveform--

requires that the significance of any measure of information 

extracted from the waveform be fully understood. Therefore, the 

remainder of this thesis--with the exception of two experiments in 

automatic speech recognition described in chapter 7--is concerned 

with exploring and clarifying the role of zero crossings in speech 

recognition and processing. 



5 	CLIPPED SPEECH I: PSYCHOACOUSTIC PHENOMENA 

The central theme of this thesis is "the role of zero 

crossings in speech recognition and processing." "Recognition" is 

intended to encompass both human recognition--perception--and 

machine recognition--classification--; "processing" signifies those 

operations on the speech signal which precede the "recognition" phase. 

In order to provide a foundation for these investigations, we have 

devoted the introductory portion of this thesis to a review of the 

more fundamental concepts of signal theory (chapter 2), a detailed 

description of some aspects of the nature of speech and hearing 

(chapter 3) and an outline of ideas, problems and experimentation 

in automatic speech recognition (chapter 4). 

We now propose to establish the link between zero crossings 

and perception-classification which provides the basis for the 

direction and parallel structure of this and the next chapter. 

A rectangular waveform which switches polarity at each zero 

crossing (instant of zero pressure) of a speech waveform is 

intelligible. In this chapter we describe in detail the key 

experiments which established this result and delineate certain 

phenomena associated with the intelligibility of "clipped speech". 

We then review some attempts--using conventional signal theoretic 

ideas--to account for these phenomena. Zero crossings per se can 

be, and have been, considered as informational attributes of signals. 

116 
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In chapter 6, after a brief discussion of the zero crossings of 

random processes, we review some of the key papers concerned with 

the value, nature and use of zero crossings in speech processing. 

Then, after establishing the basic characteristics of a zero-based 

signal model in chapter 8, we will apply this model to speech 

clipping phenomena (chapter 9) and the use of zero crossings as 

waveform descriptors (chapter 10). 

5.1 	Experiments Concerning the Intelligibility of Clipped Speech  

We have seen that certain prominent spectral features (e.g. 

formants) appear to contribute to the intelligibility of speech in 

the following sense: manipulation of these features causes a 

change in the perceived identity of a speech sound. Shortly after 

the introduction of the speech spectrograph as a tool for speech 

analysis, J.C.R. Licklider, D. Bindra and I. Pollack' asked [L-13] 

the following questions: "Upon what characteristics of the speech-

wave does intelligibility depend? Are certain characteristics of 

the speech-wave of paramount importance for intelligibility? Are 

other characteristics perhaps irrelevant insofar as intelligibility 

is concerned?" Licklider proposed to operate upon the speech wave-

form in an effort to eliminate irrelevant characteristics and thus 

reveal essential features. Peak clipping was chosen as the primary 

operator. 

Mathematically, an infinitely clipped signal C s(t) can be 

defined in terms of the original signal s(t) by the following 

relationship: 

1
For convenience, we shall refer to Licklider as the investigator 
in describing the papers by Licklider, Bindra and Pollack [L-13], 
Licklider and Pollack [L-14] and Licklider alone [L-15]. 
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C s(t) = sgn [s(t)], 	(5-1) 

1, x>0 
sgn[x]=/ 0, 	x=0 

-1, x<0 . 

That is, a rectangular waveform of absolute value unity and having 

the same polarity as the original signal is interpolated through 

the zero crossings of the original signal. Practically, we speak 

of degrees of peak clipping. The term infinitely clipped is applied 

to a signal which has undergone some minimum degree of peak 

clipping.2  The degree of peak clipping, or clipping level in 

decibels, may be defined as 

C 	= 20 log
10
(P
1
/P2) 	(5-2) 

where 	P
1 = peak value of original waveform 

and 	P2 = level of original waveform at which 
clipping takes place. 

Progressive peak clipping of a signal is illustrated in Fig. 5.1. 

Fig. 5.1 Progressive peak clipping: A) original signal 
B,C) clipping at progressively lower signal levels. 
(From [L-13]). 

2
In practice, the highly peak clipped waveform is transformed into 
a truly rectangular waveform by a non-linear circuit (e.g., Schmidt 
trigger). 
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5.1.1 	Licklider's Experimental Observations  

Licklider's first experiments were designed to study the 

intelligibility of discrete words after the application of progressive 

peak clipping. For peak clipping less than 20 db, the articulation 

scores--the percentage of discrete words correctly identified--were 

greater than 96%. As the clipping level was increased, the articu-

lation scores decreased; for clipping levels greater than 60 db 

([P
1
/P
2] = 1000), the 'word articulation score' vs 'peak clipping 

level' curve approached a minimum or flattened out (L1)3. This 

minimum varied from 50% for more difficult words to about 75% 

maximum. Licklider noted that 50% word articulation corresponded 

to about 90% sentence intelligibility for his tests, and that under 

these conditions, conversations could be carried on with little 

difficulty [L-13]. 

In order to prevent interword system noise from appearing 

at the output as clipped noise, a 25 KHz bias signal was added to 

the speech signal prior to clipping. The strength of this bias was 

such that clipped circuit noise was replaced by a 25 KHz inaudible 

square wave, and the speech signal was, ostensibly, unaffected. 

Further tests involved the addition of white noise to the 

clipped speech signal. For comparison purposes, the original and 

clipped signals were made equal in peak amplitude. Figure 5.2 

shows per cent articulation scores for various speech-to-noise 

ratios. It is apparent from these results that for low speech-to-

noise ratios the clipped speech is more intelligible than the 

original speech (L2). 

3
For future reference, certain observations associated with observed 
phenomena will be labelled. The letter identifies the experimenter. 
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Fig. 5.2 Effect of added white noise upon the intelligibility 
of speech and clipped speech. (From [L-l3].) 

Licklider also noted that the frequency response of his 

record-playback system was uniform within t5 db from 250 to 7000 Hz 

and that "severe peak clipping appears to be less deleterious if 

the low frequency components are supressed . . ." before clipping (L3). 

40 

20 

-15 

During the conduct of these tests, over a period of 30 days, 

Licklider observed that the percent word articulation scores for 

both unclipped and clipped speech gradually increased (L4). The 

values for percent word articulation in Fig. 5.2 were the maximum 

noted. Although some of the improvement was attributed to the 

finite set of recorded words repeatedly used, introduction of new 

word sets showed that about 66% of the 'learning' (roughly 20 

percentage points on the articulation scale) was indeed an increased 

ability to understand clipped speech. Licklider's analysis of the 

results also showed that the deleterious effects of clipping were 

least for more experienced subjects. In addition, the learning 

factor for the original speech plus noise was only apparent for 

intermediate noise levels. 



P
E

R
 C

E
N

T
 W

O
R

D
 A

R
TI

C
U

LA
TI

O
N

 

80 

IN
T.

+ 
CL

IP
.  +

 D
I F

F  

60 

40 

20 

121 

In a further series of experiments [L-14], Licklider 

introduced "frequency-selective circuits" into the speech channel 

at various points. Specifically, a differentiator or integrator 

could be used to operate upon the original or clipped waveform. 

The differentiator introduced a 6 db per octave positive spectral 

tilt to frequencies between 1 and 16 KHz and the integrator a 6 db 

per octave negative spectral tilt to frequencies above 16 Hz. The 

following arrangements were used in word articulation tests: 

1) No distortion--original speech 
2) Differentiation only 
3) Integration only 
4) Differentiation + clipping 
5) Differentiation + clipping + integration 
6) Clipping + integration 
7) Clipping 
8) Clipping + differentiation 
9) Integration + clipping 
10) Integration + clipping + differentiation 

A total of 250 word articulation tests were made: 25 with each of 

the 10 arrangements, 10 with each of 5 scramblings of 5 phonetically 

balanced (PB) word lists. The results of these experiments are 

summarized in Fig. 5.3 (a repeat of Fig. 1.1) and can be divided 

into four operational groups: 

100 	,,,,,,,, 

5 	10 	15 	20 	25 
SUCCESSIVE TEST SESSIONS 

Fig. 5.3 The effects of various combinations of differentiation, 
integration and infinite clipping upon word articulation. The 
heights of the column diagram indicate the overall average for 
each of the ten arrangements. (From [L-14].) 
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Speech processed using the arrangements of the first group, 

(1,2,3)--all of which do not involve clipping--had virtually 100% 

intelligibility. However, Licklider emphasized that "this result 

concerning their intelligibility is in marked contrast to the 

observations concerning their naturalness and timbre. Differentia-

tion, because it greatly emphasizes the fricative consonants and 

weakens the low pitched vowels makes the speech sound overly crisp. 

Integration emphasizes the low pitched vowels, weakens the consonants, 

and makes the speech sound muffled and l boomy'." 

The second group of operations (4,5)--both members involving 

differentiation before clipping--resulted in articulation scores 

of over 90%, "even for unpractised listeners (L5)." The effect of 

post-clipping integration was to improve intelligibility slightly (L6). 

Group three (6,7,8) all involved clipping as the initial 

distorting operation. We record Licklider's impressions of the 

quantitative results shown in Fig. 5.3: ". . . it is evident that 

the process that follows clipping has but little effect on intel-

ligibility (L6) and again it is true that the articulation scores 

fail to reflect differences in quality and timbre that are quite 

striking to the listener. The . . . integrator makes the effect of 

infinite clipping sound less noticeable . . . the differentiator 

made the clipped speech sound even worse . . . ." (Italics mine.) 

The final group (9,10), involved pre-clipping integration 

and produced such subjective distortion that it was pronounced 

"incompatible with clipping." (L6) 

The same learning effect observed in Licklider's first 

experiments appeared here. He noted that "the skill developed by 

the listeners during the tests is . . . only in part specific to 

the words of the test vocabulary. It is to a considerable extent 

a general skill, an ability to identify words correctly despite 
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severe distortion." In discussing the value of an ultrasonic bias 

in eliminating interword noise, Licklider cautioned that "if the 

intensity of the speech is not well above that of the ultrasonic 

tone, there is danger that a spurious effect, a 'duty-cycle 

modulation' of [the] ultrasonic rectangular waves, would make the 

rectangular waves [clipped speech] more intelligible than they 

would be with infinite clipping per se." (L7) 

In a final set of experiments [L-15], Licklider investigated 

the effects of quantizing the time scale in clipped speech. This 

process allows the rectangular waveform to switch polarity only at 

"predetermined instants." The following switching rules were 

formulated: The output waveform (rectangular) switches polarity at 

the end of a time interval if, during the interval, the input 

speech waveform has--rule A--one or more zero crossings or--rule B--

an odd number of zero crossings. Word articulation tests were carried 

out using pre-clipping differentiation and post-clipping integration. 

The results of the tests are shown in Fig. 5.4. Licklider noted 

O 1°° 
1•0 

80 
Method 

4.. • 60 eK 	/0 

1) 	Method • 40 
4: 	/

/ A 
• 20 
ft 
cl 00  6 8 10 
CIL 	Klloquanta per Second 

Fig. 5.4 Results of articulation tests. For the two methods 
of time scale quantization, average word articulation scores 
are plotted against the number of thousands of quanta per 
second. (From [L-15]). 

that "with fewer than 2000 quanta per second, the listeners under-

stood essentially nothing. The quantized speech sounded like an 
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impure tone in the case of method A or like static in the case of 

method B (L8) . . . with either method vowels were the first to 

become intelligible . . . . 

. . . the amplitude and time quantized speech sounded worse 

than the articulation scores suggest . . . and considerable training 

was required before 	the level of proficiency . . . [observed 

was attained)." 

We will now summarize Licklider's most significant 

experimental observations regarding the intelligibility of clipped 

speech: 

Ll. Progressive clipping: Increasing the clipping level 
on a speech waveform results in decreased word articulation 
scores. For infinite clipping (C>60 db) minimum word artic-
ulation scores of 50%, corresponding to 90% sentence 
intelligibility, were observed. 

L2. Addition of noise:  In the presence of white noise, 
clipped speech is more intelligible than the original 
speech for small speech/clipped speech-to-noise ratios 
( < 4db). 

L3. Highpass filtering: Severe (e.g., infinite) peak 
clipping is less deleterious to intelligibility if the 
original speech is filtered so as to remove low frequency 
components. 

L4. Learning: Repeated exposure to clipped speech enhances 
a subject's ability to understand it. 

L5. Pre-clipping differentiation: Pre-clipping speech 
differentiation results in higher word articulation scores 
(> 90%), even for unpractised listeners. 

L6. Post-clipping integration or differentiation: Integra-
tion of the clipped waveform has little effect on intel-
ligibility but greatly improves the quality of the signal. 
Similarly, differentiation of the clipped waveform has 
little effect on intelligibility but worsens the quality. 

L7. Ultrasonic bias: Unless the level of an ultrasonic 
bias--applied to the speech waveform before clipping--is 
"small" compared to the speech signal level, the resultant 
clipped speech will be more intelligible than it would 
be per se. 
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L8. Time quantization: For rule A or B, a quantization 
interval of 0.1 millisecond or less does not impair 
intelligibility of the clipped waveform but does cause 
degradation in quality. Quantization intervals less 
than 0.5 milliseconds results in an "impure tone" (Rule A) 
or "static" (Rule B) for speech input. 

5.1.2 	Licklider's Conclusions  

Licklider offered explanations for some of the observed 

clipped speech phenomena: 

Ll. Progressive clipping: Licklider stated that "instead 

of asking why infinitely clipped speech is not as unintelligible as 

its wave-form would suggest, it is probably better to compare an 

intensity-frequency-time pattern [i.e., short-term speech spectro-

gram] of infinitely clipped speech with a corresponding pattern of 

normal speech." He did this and observed that "although many 

details of the pattern are changed by infinite peak clipping, the 

general . . . structure . . . is by no means rendered unrecognize-

able. . . . only the details of the intensity-frequency-time 

pattern are modified." 

L3. Addition of noise: Licklider asked, "What character- 

istic of square speech gives it an advantage over normal speech at 

low speech-to-noise ratios?" He quite rightly noted that clipping-- 

by virtue of its rectangular interpolating waveform--distributes the 

power equally among the consonants and vowels, whereas in normal 

speech the consonants are relatively weak and therefore easily 

masked by noise. However, as the speech-to-noise ratio increases, 

the power advantage of clipped speech is balanced by the deleterious 

effects of distortion and, since more of the weak consonants pass 

the masked threshold, the ordinary speech becomes the more intelligible. 

L8. Time quantization: Licklider noted that for long quanti-

zation intervals the probability that the speech waveform has at 
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least one zero crossing approaches unity whereas the probability 

that it has an odd number of zero crossings is "in the neighbour-

hood of 0.5." Therefore rule A yields an impure tone (one output 

polarity change per time quanta) and rule B yields a "noise" 

(probability of polarity change in time quanta 0.5). The degrada-

tion in quality of time-quantized clipped speech over clipped 

speech, even for small quantization intervals, was--Licklider 

suggested--probably due to the fact that the reciprocal of the 

time quantization interval is usually unrelated to the fundamental 

frequency of voiced sounds. 

In summary, Licklider suspected that the high intelligibi-

lity of clipped speech could be attributed to overall preservation 

of the speech amplitude-power spectrum structure. He offered no 

explanation for this preservation nor did he prove that it always 

did occur. Explanations for the other phenomena (L2,L4,L5,L6,L7) 

were not suggested. 

5.1.3 	Ahmend and Fatechand  

R. Ahmend and R. Fatechand extended Licklider's experiments 

by examining the intelligibility (percent articulation) of vowel 

and consonant segments after differentiation or differentiation 

and clipping [A-2]. We shall list the effects observed: 

Al. Initial consonant suppression: The removal of the 
initial consonant of a consonant-vowel-consonant (CVC) 
word has little effect on vowel recognition for either 
the normal or clipped versions. 

A2. Final consonant suppression: Provided the initial 
part of the vowel portion of a vowel-consonant (VC) word 
is present (= 40 msec. gives 80% articulation of unclipped 
VC words), the presence of the final consonant does not 
materially alter the articulation of the original, or the 
clipped, vowel. In all cases, the articulation of the 
clipped vowels was less than that of the unclipped vowels. 
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A3. Initial part of vowel suppressed: If the initial part 
of a VC word is suppressed (for less than 100 msec.), there 
is little impairment of the percent vowel articulation. 
As the suppression time increases, anomalous effects are 
noted. Both clipped and unclipped /a/ and /o/ remain 
highly intelligible until almost the entire vowel is 
deleted. The articulation of /o/,/u/ and /i/, however, 
falls rapidly even while a reasonable portion of "vowel" 
remains. We note, for future zeference, that (see Fig. 3.8I  
/a/ and 	are the only vowels having substantially less 
than an entire octave between Fl  and F

2 
while /u/ and /i/ 

have, respectively, 1% and 3 octaves between F1  and F
2
. 

Ahmend and Fatechand concluded that, since the first 
40 msec. of a VC word always provides high intelligibility 
(A2) "it would seem that the ends of the vowels, as 
modified by the final consonants [including transitions], 
provide much poorer recognition clues than 'pure' portions 
of equivalent lengths." 

A4. Clipped consonants: The experimenters found that 
clipped initial consonants are not only less intelligible, 
but are also more susceptable to a degradation of intel-
ligibility due to duration shortening. Clipped final 
consonants also appear to contain less redundant infor-
mation than their unclipped counterparts. 

The experimental evidence presented by Ahmend and Fatechand 

suggests, therefore, that clipping may cause both a decrease in the 

intelligibility of speech sounds and a decrease in the resistance 

of the speech sounds to degradation of intelligibility by alteration 

of durational cues. Clipped consonants, particularly, appear to 

lack some perceptual cues which, though normally of little use, 

are needed for identification purposes when durational information 

is destroyed. 

5.1.4 	Ainsworth  

W. Ainsworth augmented Licklider's findings by investigating 

the intelligibility of transforms of clipped speech [A-3]. These 

transforms include: 
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1) the clipped waveform itself 
2) pulses (delta function approximations) which indicate 

the occurence and direction of each zero crossing 
3) pulses of the same polarity at all zero crossings 
4) pulses which indicate only the zero crossings in one 

direction 
5)-8) same as 1)-4) but using the zero crossings of the 

differentiated waveform. 

Following the convention established in section 5.1, we 

can represent the signals used by Ainsworth as: 

1) si(t) = C s(t) 	 (5-3) 

2) s2(t) = ± silt) = ±{16(t-Ti).(-1)11 
	

(5-4) 

3) s3(t) = -1 182(01= Iqd(t-Ti)} 
	(5-5) 

and 4) s
4
(0 = ±{16(t-T.)} or ±{X(S(t-T.)} . 

i odd 	i even 
(5-6) 

Signals 5)-8) parallel signals 1)-4) with s(t) replaced by s'(t). 

Here C s(t) = sgn [s(t)] and Ti  is the time of occurence of the 
.th 

zero crossing. Figure 5.5 summarizes Ainsworth's results 

using standard PB word lists. The signals which retain zero 

crossing position and 'polarity' (i.e., signal goes from + to - or 

from = to + at a zero crossing) information (group 2) are the 

most intelligible, while the signals retaining only positional 

information (group 3) are the least intelligible. Signals consisting 

of pulses only at alternate zero crossings (group 4) have a percent 

word articulation between that of groups 2 and 3. The transformed 

signals derived from the differentiated speech are, in most cases, 

more intelligible than their counterparts derived from the 

original signal. 
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Fig. 5.5 Average (black bars) and standard deviation 
(white bars) of percent word articulation for normal 
and differentiated speech, and their clipped versions. 
-ve at +ve zc etc. means negative pulse at positive 
going zero crossing. (From [A-3].' 

Ainsworth interpreted his results by analytically demonstrating 

that, if s(t) is a sine wave, then the clipped signal (a square 

wave) contains only odd order harmonics, s2(t) and s4(t) contain 

both odd and even order harmonics, s3(t) contains only even order 

harmonics and lacks a fundamental. A ranking according to number 

and/or type of harmonics correlates with the intelligibility 

results. For example
, 
s
2
(t) and s4(t) have the most harmonic 

distortion and therefore should be least intelligible. The 

applicability of this analysis to speech clipping is somewhat dubious. 
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Finally, Ainsworth presented the results of experiments 

showing the confusion among clipped phonemes. He did not use an 

ultrasonic bias to prevent clipped noise in the silent intervals 

of stop consonants and he stated that this factor could have 

contributed to the observed confusion of voiced stop consonants and 

semi-vowels. Generally, in these experiments, vowels were least 

often confused with other sounds. However, Ainsworth further 

stated that "clipped vowels heard in isolation are not at all 

easy to recognize." Since the results of Ahmend and Fatechand are 

not referenced, we must assume that Ainsworth was unaware of 

these contrary findings (A2). 

5.1.5 	Thomas  

I. Thomas' experiments were an investigation of the 

influence of Fl and F2 on the intelligibility of clipped speech 

[T-4]. He passed speech through one of two bandpass filters and 

clipped the resultant signal. One filter had minimum attenuation 

at the centre of the second formant frequency range for a male 

adult, = 1500 Hz. Thomas noted that, for this filter, "spectrograms 

of the resulting clipped speech . . . show . . . that the first 

formant and voicing bands are entirely missing." However, the 

dynamic range of a spectrogram is only 12 db [P-17] and Thomas' 

"second formant filter" is 12 db down at 1200 and 2000 Hz; thus 

his claim that "only the second formant band and higher bands 

identifiable as its harmonics are present in the [filter] output" 

is highly suspect. Similarly, the observation that speech filtered 

by the "first formant bandpass filter" (centre frequency 500 Hz, 

attenuation = 60 db per decade away from centre frequency) and 

then clipped, revealed only "occasional presence of [a] residual 

second formant" in spectrograms is inconclusive. 
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Thomas' two filters resulted in the following changes in 

formant amplitudes: 

First formant filter: Fl, unchanged; F2, = 20 db down; 
F3, = 30 db down. 

Second formant filter: Fl, = 20 db down; F2, unchanged; 
F3, = 20 db down. 

His results showed an average word articulation score of 7.6% for 

speech passed through the first formant filter and then clipped. 

Speech passed through the second formant filter, and then clipped, 

yielded average word articulation scores of 71.1%. Thomas 

summarized his findings as follows: 

It is evident that [clipped] speech in which all formants but 
the second have been suppressed is still highly intelligible 
. . . . It is equally evident that speech in which all 
formants but the first have been suppressed is virtually 
unintelligible . . . it is [therefore] reasonable to attribute 
the high intelligibility of differentiated [then] clipped 
speech to the survival of the second (and possibly higher) 
formant frequency information through the clipping operation. 

We remark here that, as will be noted in subsection 5.3.3, 

Vilbig [V-5] showed that clipping a predominantly Fl speech signal 

model yields distortion products which must fall in the frequency 

band below or within the F3 region--and therefore may mask any F2 

or F3 present--whereas a predominantly F2 signal, when clipped, 

produtes distortion products below the F3 region (= 3000 Hz) only 

for the vowels /D/, /U/ and /u/. Considering the nature of the 

filtered, unclipped signals (i.e., first formant filter gives one 

formant 20 db down and one formant 30 db down while second formant 

filter gives two formants 20 db down) and the location of the 

distortion products produced by predominantly Fl or F2 signals, 

Thomas' conclusions regarding the importance of the second formant, 

per se,--"that the overall intelligibility of speech which has been 

subjected to amplitude distortion, frequency distortion . . . is 

largely determined by the extent to which second formant frequency 
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information survives the distortion process"--are not justified. 

Thomas attempted to further justify his "second formant 

theory" by referring to other experimental results. He noted, for 

example, that "intelligibility of speech which has been passed 

through either a lowpass or a highpass filter should [and does; 

see [L-7], for example] change from a very low value to a very 

high value as the passband of the filter is increased to include 

the entire second formant frequency range."(Italics mine.) However, 

such a signal then includes both Fl and F2 or F2 and F3. In another 

experiment [K-11], Thomas noted, "for a single bandpass filter of 

500 Hz bandwidth, the highest articulation score is obtained when 

the passband extends from 1250 to 1750 Hz for a male speaker." 

Thomas' neglected to point out that, first, this "highest articulation" 

is only 37% and second, that the articulation vs centre frequency 

of passband curve is double-peaked, with another peak of 32% 
occurring for passband 500 to 1000 Hz. 

L.R. Focht noted [P-10], in describing a set of experiments 

in which the perceptual response of "all possible combinations of 

[three] formant amplitudes and frequencies were studies," that two 

formants were required to specify the perceptual value of 'a vowel 

and that "these two formants were not always the same pair but 

depending upon the perceived vowel jumped between combinations of 

the 	first, second and third formants." Therefore, although the 

second formant may be relatively important, we prefer to recall 

the results of Lehiste and Peterson's experiments on filtered 

volwels [L-7], that "one or more of the first three formants was 

found essential to . . . recognition." 

In a further set of experiments [T-5], Thomas carried on 

Licklider's work on the perception of clipped speech in a noisy 

environment. Thomas showed that suppression of Fl prior to 

clipping increases post clipping intelligibility in the presence 
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of noise. However, in this paper, Thomas correctly concluded that 

a predominant Fl is deleterious in that it creates clipping 

distortion products in the F2-F3 region. Thus, the high intelligi-

bility of this clipped speech results from the suppression of Fl 

relative to F2 (below 700 Hz, Thomas' filter for these experiments 

is essentially a triple differentiator with a positive slope of 

20 db per octave) rather than being due to the preservation of an 

ostensibly "most important" second formant. We shall clarify the 

correlation between spectral features and the intelligibility of 

clipped speech in chapters 8 and 9. 

5.1.6 	Rose  

H. Rose's investigations were concerned with achieving 

maximum performance in clipped speech communication channels by 

determination of optimum combinations of spectrum shaping and 

clipping level as a function of relative levels and spectral 

shape of ambient noise at the speaker and listener positions [R-14]. 

For example, can we predict the percent articulation of a 

speech plus Gaussian noise signal which is clipped at an arbitrary 

level? To answer this question, Rose defined Nw 
as the average 

noise at the clipper output which can be attributed to the 

addition of noise to the speech signal prior to clipping. 

Physically, Nw  is the output of a lowpass filter fed with the 

difference between the clipped speech signal and the clipped 

speech plus noise signal. By plotting S/N--the signal-to-noise 

ratio at clipper input--vs Sout
/N
w
--where S

out
is the output signal 

level, and S/N vs AI, the articulation index (known from Licklider's 

experiments), a new curve of S /N vs AI can be determined. For 
out w 

other (non-infinite) clipping levels, Rose claimed that measurement 

of 
Sout/Nw 

will enable the articulation index to be predicted. 

He assumed here that both noise created by clipping and noise due 
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to perturbation of speech zero crossings before clipping are 

effectively Gaussian. He did not, however, document his reasons 

for believing that "it is known that clipping . . . [of voiced sounds] 

. . . creates so many intermodulation products . . . that the added 

IM [intermodulation] noise power is essentially Gaussian . . . II 

Rose also investigated the effects of pre-clipping dif-

ferentiation and noise at the listening position on the intelligibi-

lity of clipped speech. The results presented may be valuable for 

predicting performance levels in clipped speech communications but 

do not offer any insight into the basic problem of explaining 

clipped speech-intelligibility phenomena. 

5.1.7 	Marcou and Daguet  

P. Marcou and J. Daguet applied the tools of analytic 

signal theory to speech clipping-zero crossing studies [M-5]. They 

asked the following question: 

If the phase-envelope representation of a speech signal 

is considered, 

i.e., s(t) = Im(01 cos 4)(0 	(5-7) 

then what perceptual information can be attributed to Im(01, the 

signal envelope, and to cos 4)(0, the phase function? 

They presented a conceptually simple scheme for physically 

analyzing s(t) into Im(01 and cos 4)(0: s(t) is translated in 

frequency by a carrier of frequency wo 
using single sideband 

modulation. That is, as in (2-30), we consider 

s
w
(t) = Im(01 cos [w

o
t + 4(t)] 	(5-8) 

o 
 

If w
o
>>27W, where s(t) is bandlimited to ± W Hz, then envelope 

detection of s
w
(t) yields Im(01 [S-3; p. 155] and infinite 
o 

 

clipping of sw  (0, followed by bandpass filtering--elimination of 
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all frequency components for which wo-2fflidwl>wo+27TW--and demodula-

tion, yields cos 4(t). Marcou and Daguet reasoned that the latter 

result obtains since SSB modulation, with. w
o
>47rW, assures that all 

harmonics created by clipping fall outside of the translated speech 

band. That this procedure does indeed yield cos (P(t) is shown by 

Sakrison [S-3; pp. 171-172]. Therefore, 

D[BL{C sw ssB(t)}] = cos cP(t) , for wo>>27W . 	(5-8b) 

D, BL and C are the demodulation, bandlimiting and clipping 

operators, respectively.4 

Marcou and Daguet implemented this system and found that, 

for speech signals, "If im(01 is used to drive a loudspeaker, an 

output is obtained which is essentially made up of a succession of 

loud and soft auditory impressions. If cos cp(t) drives the loud-

speaker, the output gives essentially the same aural sensation as 

the original signal . . I I • (Italics mine.) That is, 

Ml. "Single sideband clipping": The envelope of a speech 
signal is not perceptually recognizable as speech; the 
phase function of a speech signal is, perceptually, 
essentially the same as the original signal. 

We shall complete our description of Marcou and Daguet's experi-

ments with single sideband modulation in section 6.4. 

4
The approximation is due to the fact that cos gt)--being an FM 
signal--is not strictly bandlimited [D-15], [S-3; p. 168]. Thus 
the bandlimiting operation necessary to eliminate clipping harmonics 
results in a deviation of the envelope of cos 4(t) from its nominal 
value of unity. The approximation becomes progressively better if 
the carrier frequency is increased so that it is much greater than 
twice the width of the band of frequencies over which the spectrum 
of cos 4)(0 is appreciable in magnitude. 
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5.2 	The Mathematics of Clipping as a Spectral Operator. 

Licklider suggested that the high intelligibility of 

clipped speech is due to the overall preservation of the short-

term speech power spectrum structure. In the next section, we will 

examine several attempts to quantitatively justify this statement. 

First, however, we will survey the methods used to predict the 

effects of clipping on the power spectrum of random and determin-

istic signals in general. 

5.2.1 	Random Processes  

J.H. Van Vleck and D. Middleton remarked [V-2] that "the 

problem of determining the intensity spectrum of a disturbance 

subject to extreme clipping is closely related to that of finding 

the zero crossing points of the [time] axis) . . ." They showed 

that if a signal s(t) is subjected to a limiter of transfer 

characteristic as shown in Fig. 5.6, then, if s(t) is a wide sense 

stationary, Gaussian, random process with zero mean, autocorrelation 

function R(T), and normalized autocorrelation function 

p (T) = R(T)/R(0) , 	(5-9) 

Output 

b 

Input 

-b 

Fig. 5.6 Transfer function of a 
progressive clipper. (From [V-2].) 
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then the autocorrelation function of the output of the limiter is 

p2n+1(T\  
R (T) = p2(erf(b/i2)) + 

(2n+1)!
/  [H

2n-1
(b)-e 

-1)2/2.]2, 
 (5-10) 

n=1 

where erf(x) =1/T e - 
x 

 x 

0 

and H
n(x) is the Hermite polynomial, 

(5-11) 

e
x2/2

.(-1)
n
.dn(e-x2/2)/dx

n 	
(5-12) 

If b --> co, then the limiter is a linear amplifier and R
Y 
 (T)--> p(T), 

as expected.
5 
 If b 	0, then 

R (T) 	b2.sin ip(T) . 	(5-13) 

Normalizing (5-13) to unity mean square amplitude after clipping6 

gives 

R (T) = 
2 	 1  
— sin p(T) , the aresine law. (5-14) 

The power spectrum G(f) of the output of the clipper is then obtained 

by using the relationship [W-2], [P-2, p. 240]: 

G(f) = F{R(T)} . 	(5-15) 

Van Vleck and Middleton applied (5-10), (5-14) and (5-15) 

to examine the effect of clipping on the shape of various input 

signal power spectra. For example, when a Gaussian process with a 

rectangular power spectrum of centre frequency wc  and bandwidth 

1'wa/21T Hz (white noise) is clipped by the limiter of Fig. 5.6 (b=0), 

5
The mean square amplitude of s(t) is normalized to unity before 
clipping. 
6
Divide (5-13) by R (0) = b2-,727-7•b•e-b2/2+  (1-b2).erf(b/V2). 
R (0) 	b2  for smalY b . 
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the output power spectrum is given by 

CO 

2 
G(f) = 2 J.  7. sin 1  [(sin wat/wat) cos w

c
t] . cos wt dt . (5-16) 

0 

The shape of the "fundamental" component of G(f) after s(t) is 

clipped is given in Fig. 5.7, for various values of b. The 

Fig. 5.7 The fundamental component of 
the post-clipping power spectrum of a Gaussian 
process. The total power in the spectrum in 
normalized to unity before and after clipping. 
(From [V-2].) 

qualitative effect of infinite clipping (b = 0) on the original 

power spectrum is to diffuse a certain amount of power--31%--outside 

the limits A = ±(w-w 
c 
 )/w

c  and to make the power spectrum less 

uniform within these limits. Twelve percent (12%) of the diffused 

power is located in the "wings" of the "fundamental" power spectrum 

component (see Fig. 5.7).7  The other 19% is located in harmonics 

7
L.R. Wilson has recently (1969) investigated the asymptotic 
behaviour of the "tails" of the power spectrum of the output of an 
infinite clipper when the power spectrum of the Gaussian input 
signal can be expressed as a rational fraction [X-3]. See also 
[X-4] and [C-1]. 
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of the fundamental band, the first two of which are shown in Fig. 5.8. 

Ea, 

Cdc 	3Cgc 	5  wc 

Fig. 5.8 The gross power spectrum structure 
of clipped white Gaussian noise. (From [V-2].) 

In fact, it is shown [V-2; p. 14] that the distribution of energy 

among the harmonic bands and the fundamental band is exactly the 

same as occurs if a sine wave of frequency w
c 
is clipped. 

Derivation of the autocorrelation function of the output 

of a non-linear device--a clipper, for example--involves evaluation 

of the definite integral 

Ry(t1,t2) = E{y(ti), y(t2)} 

h(x1).h(x2)-f xy (x1,x2) dxidx2  ,, (5-17) 

where h(x) is the transfer function of the non-linear device (h(x) = 

h
c
(x) = sgn[x] for an infinite clipper) and fXY(xx2)  is the joint 

density function of the input signal.
8 The arcsine law, (5-14), for 

example, results from manipulation of (5-17) with fxy(xl,x2) a 

jointly Gaussian density function. 

8
For a wide sense stationary process R 

y 
 (t
1 
 ,t
2 
 ) = Ry1

-t2] = 

CO 
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In certain applications, where the transfer function h(x) 

has a simple Fourier transform, it is convenient to evaluate 

R
y
(tt

2
) using the "characteristic function method." It can be 

shown [T-6; pp. 284-285] that 

 

o 

_  1  
(2n)2  _ 

 

R
y
(t
1
,t
2
)  (1)

AB
(ww

2
).11(w

1
).H(w

2
) dw

1
dw
2 
. (5-18) 

 

Here 
j(w

1
x
1
+w
2
x
2
) 

0
AB
(ww

2
) = E {e 	} 

= F 1{f
XY
(xx

2
)} 

and H(w=27f) = F{h(x)} . 	 (5-19) 

For the infinite clipper, Hc(f) = -j/rf . [S-10] . 	(5-20) 

It follows immediately from (5-19) that the output of a 

non-linear device with input x can be expressed as 

H(f).ej2rfx dx  

which, using (5-20), gives 

he  (x)= 	I sin2rfx/f df 	(5-21) 

= sgn[x] , for an infinite clipper [S-18]. 

5.2.2 	Deterministic Signals  

Equation (5-21) defines the output of an infinite clipper 

in terms of an infinite integral involving an arbitrary input "x". 

"x" may represent--as x(t)--a periodic signal, for example. 

F. Vilbig noted [V-5] that, for lx1.5.r, the output of an infinite 

clipper can also be expressed as an infinite series: 

CO 

i.e., 	hc(x) = E sin (2n-1)x  
2n-1 

(5-22) 

1 
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W. Solfrey analyzed [S-18] the effect of clipping on the 

members of either a three-tone (two of equal amplitude) or a four-

tone (amplitudes equal in pairs) complex under the assumption that 

the tone frequencies are incommensurable.9 The signal model used was 

s(t) = a cos (w
1
t+0

1) + b [cos (w2
t+0

2) + cos (w3
t+0

3
)] 

where col, w2, and w3  are incommensurable. This is inserted into 

(5-21) and expanded using Bessel functions. Solfrey's results 

showed that for b/a small (weak double input component), the output 

single component (at w=w
1) tends to amplitude 4/u while the output 

double component amplitude vanishes as 2b/na. For b/a large (weak 

single component) the double component amplitude tends to 8/n2  

while the single component amplitude vanishes as (2a/n2b). 

(log10l6b/a + 1/2). If b=a=1 both single and double output components 

have output amplitudes of 0.67. Thus, as a single component 

becomes greater in amplitude than the double component at the 

input, the effect at the output is to rapidly suppress the relative 

amplitude of the double component. 

Using sout(t) = c cos(w1t+01)+d[cos(w2t+02)+cos(w3t+03)], 

Solfrey defined a suppression ratio "y", 

where y 	d/c i  = Iva  a/b > 1 , 

and y
2 
- c/d 

a/b 
a/b < 1 . 

He showed that yi  tends to a value of 2 for very large a/b. For 

b>a the suppression ratio y2, for large b/a, tends asymptotically 

to y2[db] = -20 1og10[0.818+0.576 logio(b/a)]. This suppression 

9
A three-tone model for a vowel could satisfy this requirement 
provided that the fundamental, voicing frequency is not F1. 
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is a negative suppression as it grows much more slowly than b/a. 

For example, when b/a = 106  [120 db], y
2 
is only -12.5 db. In 

effect, clipping then enhances the weaker single component with 

respect to the stronger double component for large b/a. 

5.2.3 	Summary  

The methods available for analysis of the spectral effects 

of clipping appear to lack the power and generality desired for 

predicting, qualitatively, the spectral consequences .of clipping. 

This is especially true for deterministic signals. In the next 

section, we review some attempts to apply these methods to speech 

clipping. 

5.3 	Why is Clipped Speech Intelligible?:  
Some Contemporary Viewpoints  

This section is devoted to a detailed review of three 

attempts to explain the intelligibility of clipped speech in terms 

of Licklider's suggestion of overall power spectrum feature 

preservation. 

5.3.1 	Dukes  

J.M. Dukes explained that the object of his paper [D-16] 

was "to examine to what extent the spectral content of the [clipped, 

and differentiated, then clipped] speech waveform . . . is similar 

on the average to that of the original signal. More important 

still, however, is the degree of coherence between the two spectra 

under consideration, i.e., the extent to which corresponding 

regions of the spectrum [spectra] are phase-related in a fixed 

rather than a random manner." Dukes stressed that his method is 

"only valid in so far as it relates to averages over long periods 

of time" and that "further work is still required to show what are 
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the important invariants in the case of individual sounds." (Italics 

mine.) 

In the first section of his paper, Dukes treated time-

quantized, strictly-stationary, random signals completely 

specified by their first order probability density function--what 

he terms a totally random signal--and having zero mean. Dukes 

calculated the normalized crosscorrelation function between the 

input and (normalized) output of an infinite clipper and showed 

that it is 

2A
x 
(it-ITI) 

(T) xy 	a
x 
 it 

= 0 

for I'd 	it 

for ITI > it 
(5-23) 

Co 

where 	A
x 
= I x.f

x
(x) dx 

0 

co 

02x  = 	x2.f 
X
(x) dx 

—Co 

and it is the quantizing interval. Dukes noted that the cross 

correlation function p (T) is "a measure of the average in-phase 
xy 

energy of the two signals [input-output]" and defined 1p xy(.01max 
as "the first coherence coefficient"-- p. If Ax 

and a
x 
are 

considered for the Gaussian and exponential distributions (represent-

ing, respectively, the long-term amplitude density functions for 

consonants and vowels, as noted in sec. 3.5) then 

p 
xy 
 Gaussian = p 

xy 
 (0) =1/2/7 = 0.798 (5-24) 

and 	p exponential = p (0) =47-2- = 0.707.(5-25) 
xy 	xy 
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Note that these results are independent of At, the quantizing 

interval. Dukes further showed that the coherence coefficient 

for the differentiated clipped waveform is 

p xz = V/ Ax/ax 
	(5-26) 

That is, post-clipping differentiation reduces the coherence 

coefficient by a factor of T. Finally, the relationship between 

the normalized autocorrelation functions at clipper input [Pxx(T)) 

and output [p YY (T)], the cross-correlation function [p 
xy
(T)], and 

the first coherence coefficient can be expressed as follows: 

Pxy (T) = Pxy Pxx (T) = Pxy Pyy (T) 	IT I<At 	(5-27) 

Therefore, the two autocorrelation functions and the cross-correla-

tion function are identical in shape (for ITI<At) and differ only 

by a proportionality constant--p. Note that as At-)-0 (the contin- 
xy 

uous case), p xy (T), 
p xx 

(T) and p 
YY

(T)-4-0 except for T=-0. Thus, 

nothing is really stated about the post-clipping shape of p 
YY
(T). 

The second section of the paper treats partially constrained 

time-quantized random signals; that is, signals whose density 

function at a point is conditioned by the preceding sample. Dukes 

noted that since the instantaneous output of a clipper is a function 

only of the instantaneous input, the first coherence coefficient p 

is independent of statistical constraints between successive values 

of the input signal and is therefore unchanged. However, (5-27) no 

longer obtains and, in general, clipping a partially constrained 

signal may modify its power spectrum considerably.10 

10
R. Luce showed [L-25] that signals for which I xi .fx7(xl,x2;T) dx, = 

P(x1)•Q(T) satisfy the relationship p 
xy 

 (T) = k p xx(T). 

CO 



2  (2n)! G 2n+1  

n=0 (n!)
2
.2
2n.(2n+1).[R(0)]

2n+1 
= 

7 
, (5 -28) 
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In his conclusions, Dukes emphasized that "the results only 

have significance in respect of very long samples [of speech sounds] 

and that with this formulation nothing can be deduced about the 

intelligibility of individual sounds, except . . . that deviations 

below the average must be relatively infrequent." He remarked that 

although the values of the coherence coefficients calculated are 

near the overall intelligibility of clipped speech, "the principle 

difficulty is the unknown relationship between the coherence 

coefficients and intelligibility." (Italics mine.) 

5.3.2 	Fawe 

A. Fawe's paper [F-4] purports to include "a theoretical 

study of the phenomena [phenomenon] [that severely clipped speech 

is intelligible]." Yet Fawe almost immediately states that 

"whispered, as well as normal speech is intelligible after clipping; 

in this study we shall consider them only "since" voiced sounds 

that appear in normal- speech are not easily described." (Italics 

mine.) In fact, Fawe strongly implied that he used whispered 

rather than normal speech for a model because he wished to apply 

the statistical theory of signals. 

Fawe commenced his analysis of whispered speech by 

expanding the arcsine law, equation (5-14), into a power series 

and taking the Fourier transform of the result. That is 

G(f) = F 	(T) = — {RR 2 
7 
sin-l[R(1} 

R(0) 

CO 

CO 

where 	G 	= Ff[R(T)]111} = 	[R(T)]m e-J2TrfT., 
d . (5-29) 

_00 
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Note that the first term in the summation--n = 0--in (5-28) is 

simply G1(f) =F{R(T)/R(0)}, the power spectrum of the original signal. 

From this Fawe correctly concluded that "the infinite clipper adds a 

[spectral] noise and [also] suppresses the dynamics of the [Gaussian, 

random model for the speech wave." He also stated that "the [spectral 

structure of the] noise due to the clipping operator is very similar 

to [that of] the input signal; indeed, since m is odd, R(T)51  is like 

R(T) and Gm(f) like G1(f)." We agree in that R(T)m, m odd, has the 

same zero crossings and polarity as R(T). Also, since the maximum 

value of p(T) = R(T)/R(0) is unity, then i[R(T)/R(0)11111 <iR(T)/R(0)1. 

Fawe gave an example for the clipping of white, Gaussian 

noise. Although the mathematics in (F-4) are very unclear, 

some valid conclusions were reached . 	He demonstrated that 

the real (apparent) noise power is only 15.8% of the expected 

noise power because "The [spectral structure of the] noise due 

to the clipping operator is very similar to [that of] the input 

signal [white Gaussian noise]." 

He then extrapolated from these results for clipped, white 

Gaussian noise: "The [power spectrum] minimum [at f=W
o
, 1.886] is 

about 5 percent below the [power spectrum] maximum [at f=0, 1.982]. 

Since the differential sensitivity of the ear for amplitude is 0.13 

(or 0.26 for power) at a level of 40 db above threshold, the spectrum 

appears perfectly flat to the hearing mechanism, and clipped 

[whispered?] speech is highly intelligible." (Italics mine.) We 

would rather say that clipped white Gaussian noise might be percep-

tually indistinguishable from white Gaussian noise. Fawe further 

extrapolated by stating that "it is [now] evident that a flat 

spectrum is the optimum one, when the signal is passing through a 

nonlinear circuit and when the highest signal-to-noise ratio is 

desired an equalization of the mean speech power spectrum is 

required before clipping" and that, for speech, "a derivation 
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[differentiation] of the signal before clipping . . . will be the 

best way to achieve the purpose." Pre-clipping differentiation, 

as Licklider noted (L5), does improve the intelligibility of 

clipped speech, but not--as we shall show in chapters 8 and 9-- 

for the reasons Fawe extrapolates from a study of white Gaussian 

noise. 

Fawe next noted that, as shown by Crater, clipping 

causes only small changes in the power spectrum of a Gaussian wave- 

form with an original power spectrum resembling that of a single 

formant,11  

0 	a i.e., G(f) 	
R(
2Tr) [ a2+(f-F1)2 

a  
a2+(f+F1)L . (5-30) 

He claimed that "this latest approach tends to prove that results 

for the ensemble of speech sounds are valuable for isolated 

utterances too." 

Fawe then rederived the results of Dukes [equations 

(5-24,25)] concerning the coherence coefficients
12 and reworked 

Dukes' results with respect to Luce's theorem (see footnote 10; 

also [L-25]). 

We do not believe that Fawe's final conclusion "that we 

have shown an infinite clipper has very little effect on the 

power spectrum when first flattened so that clipped [whispered?, 

see [M-9]] speech is highly intelligible" is justified. 

11Velechin [V-4] apparently repeated Crater's experiments for 
Russian speech. 
12

Although Dukes' paper is referenced, direct credit for the 
results (5-24,25) is not given. 
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F. Vilbig used the expression (5-22) 

 

  

4E  sin(2n-1)x hc(x) = 
7 n=1 	2n-1 , (5-31) 

to examine the effect of clipping on two-tone speech models [V-5]. 

If x = s(t) = a-cosw
1
t + b.cosw

2t , then 

hc(x) = 1: 1i sin(ma•cosw1t)•cos(mb•cosw2t) 
7T  m=1 m 	 (5-32) 

m odd 
	

+ cos(ma.cosw
1
0-sin(mbicosw

2
0 ] 

The Bessel function expansions can then be introduced: i.e., 
CO 

sin(z.cos0) = 21:(-1)11- j2 +1(z) -cosK2n+1)0] 	(5-33) 
n=0 	n  

00 

cos(z-cose) = J0(z) + 211:(-1)n.j2n(z) -cosK2n)01.(5-34) 
n=1 

Unfortunately, expansion of these functions involves much calculation 

and the results are qualitatively unsatisfying. 

Vilbig's graphical data concerning the frequency distortion 

caused by clipping three-tone vowel models probably represents the 

most comprehensive published data in this area (Fig. 5.9). He 

noted that when one formant is much larger than the other two, the 

distortion generated by clipping lies mainly at the third harmonic 

of this dominant formant--i.e., 3F1, 3F2, or 3 f3. Bandlimiting 

the clipped signal to 3000 Hz eliminates clipping harmonics due 

to any but a dominant Fl, or F2 of W, /U/, or /u/. (see Fig. 3.8b) 

If two formants, Fm and Fn (m=1,2; n=2,3; min) are approximately 

equal in amplitude and much larger than the other formant, then--

using results from a two-tone model--the lowest frequency clipping 

distortion harmonics appear at two frequencies, 

w
1 = 1.5 -(wm 

 +w 
n
) + 0.5-(w

n-wm
) 
	

and 

and 
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Fig. 5.9 Distribution of the formants of various vowels and 
position of the distortion frequencies created by the clipping 
process. (From [V-5].) 
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w
2 = 1.5 •(wm+wn) - 0.5.(wn-wm) 	. 

The areas in which these frequencies may fall for three-tone models 

of vowels are represented in Fig. 5.9 as al  and a2 
(m=1, n=2) b

1 
and b2 (m=1, n=3), and c1 and c2 

(m=2, n=3). In this case, only 

the ranges a
1 
and a

2 
fall within the 0-3000 Hz region. 

In summary, only clipping harmonics from a dominant Fl, a 

dominant F2 for /,/, /U/ or /u/ only, or a dominant (equal amplitude) 

Fl-F2 complex can fall within the 3 KHz passband for the three-tone 

model. Vilbig argued that the third'harmonic of a dominant Fl--

falling between F
1 
and F

2 or between F2 
and F3, depending on the 

vowel--produces the most perceptually degrading distortion. The 

a1-a2 distortion regions interfere predominantly with F3. He 

added that "for vowels . . . all the newly created [distortion] 

frequencies are harmonics of the pitch frequency and . . . are less 

noticeable than if the frequency had been arbitrary." Finally, 

Vilbig stressed that pre-clipping attenuation of frequencies in 

the F
1 region will weaken the otherwise strong clipping harmonics 

of Fl (3F1) and thus yield a less distorted clipped signal. Actual 

pre- and post-clipping spectral cross sections of actual vowels 

modified in this manner objectively support his assertion. 

5.3.4 	Summary  

Dukes and Fawe, and Vilbig, provide arguments which 

support conjectures suggesting overall power spectrum preservation 

in clipped random processes and three-tone periodic signal models, 

respectively. However, the explanations proposed are somewhat 

unsatisfactory: 

First, they do not satisfactorily explain why a process 

(infinite clipping) which ostensibly destroys all waveform amplitude 

information and preserves only zero crossing positional data does 
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not yield changes of similar apparent magnitude in the frequency 

domain. 

Second, there is no indication of whether the nature of 

the original waveform and the extent of post-clipping power 

spectrum preservation are correlated in any manner. 

Finally, although Vilbig suggests a method for processing 

the speech signal before clipping in order to enhance post-clipping 

power spectrum preservation, the technique--although intuitively 

justifiable--is somewhat ad hoc. 

We will show, in chapters 8 and 9, that certain types of 

waveform processing (and the spectral transformations associated 

with such processing) will produce signals of extremely high post-

clipping intelligibility. Furthermore, we will produce arguments 

that certain waveform attributes are highly correlated with post-

clipping power spectrum preservation. Finally, we will argue 

that clipping preserves other waveform attributes in addition to 

zero crossing information. 



6 	ZEROS I: ZERO CROSSINGS AND AUTOMATIC SPEECH RECOGNITION 

6.1 	Evidence for Consideration of Zero Crossings  
as Input Parameters for Automatic Recognition of Speech  

Rectangular interpolation of speech waveform zero crossing 

sequences yields a highly intelligible signal. Can this sequence 

of zero crossing intervals be used independently-of the auditory 

system to provide an estimate of the spectral features of the 

original signal? If so, then presumably, zero crossings could 

serve as input data for automatic speech recognition schemes. 

Furthermore, can zero crossing interval sequences be interpreted 

meaningfully without explicit reference to the frequency domain and, 

are such interpretations useful for automatic speech recognition 

purposes? 

In this chapter we discuss these, and other closely 

related problems from the viewpoint of conventional signal theoretic 

ideas. The related problems include manipulation of zero crossing 

information via single sideband (SSB) modulation and, finally, 

examples of automatic speech recognition machines using zero 

crossing information. 

152 



153 

6.2 	The Zero Crossings of Random Processes  

In our review of the acoustic properties of speech sounds 

(ch. 3) we noted that some speech sounds--unvoiced fricative and 

stop consonants--result from excitation of the vocal tract by a 

noise source. Davenport observed (sec. 3.5.1; [D-3,4]) that the 

amplitude distribution of these sounds could be represented by a 

Gaussian model. Spectrally, these sounds often resemble "white" 

noise bands with different frequency location and bandwidth para-

meters (secs. 3.4.6,7; [F-14],[H-4,9,26],[S-27]). It is impera-

tive, therefore, to briefly state some results--derived by S.O. 

Rice [R-10]--concerning the characteristics of the zero crossings 

of random processes. 

6.2.1 	Average Rate of Zero Crossings  

Rice showed that the expected number of zero crossings, 

per second, of a Gaussian random process is completely determined 

by knowledge of the power spectrum G(f) of the ?rocess: 

f
f G(f) df 
2 

i.e., p
o 
 = 2 °

( 

	

(6-1) 

G(f) df 

For bandpass white Gaussian noise such that 

G(f) = 	
2 	<f1;_f

b  a'  

0 , otherwise , 

eq. (6-1) becomes 

156 	= 	
[ f a 

 aff afb +f
b ' 
2  11/2  

- 	/5    (6-2) 
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When f
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=0 (lowpass, white Gaussian noise), (6-2) becomes 
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p
o 

= 2f
b
/75 . (6-3) 

    

In this case p
o 

is 1/17-3-  times the Nyquist rate, 2fb. 

Finally, it can be shown that for the mth  derivative of 

lowpass bandlimited white Gaussian noise, 

p
o 
= 2f

b 
1(2m+1)/(2m+3) 
	

(6-4) 

4- 2f
b 

for m large. 

These properties form the basis of much of our discussion 

of the zero crossings of speech signals. Extensions of Rice's 

work are detailed in Cramdr and Leadbetter [C-11]. 

6.3 	Zero Crossings as an Estimate of Fremency  
Information in Speech Signals  

H. Dudley noted the possibility of extracting frequency 

information indirectly from the speech waveform in 1965 [D-13]. 

In an example, he reproduced a portion of an oscillogram of the 

vowel /a/ (Fig. 6.1) and analyzed it as follows: 

BEAT NODES 

Fig. 6.1 Oscillogram of the vowel /a/. (From [D-13].) 

"We note a high frequency ripple . . . [of approximately] 

2700 cps for F3. . . . A clear beat shows up separating strong 

sections . . . the separation corresponds to 350 times per second. 

If we measure a period of the strong wave itself we get a correspond- 
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ence to 980 cps which is presumably F2  and F1  is then (980-350) or 

630 cps." Dudley then tabulated some waveform characteristics 

which may be related either directly, or indirectly, to the spectral 

features of the speech sound. He emphasized that "there can be no 

change in the sound spoken and heard without a corresponding change 

. . . [in the waveform]." 

Dudley's estimates of spectral information involved, 

indirectly,measures of zero crossing data. In the following 

subsections we shall review and evaluate attempts to directly use 

zero crossing information to estimate spectral parameters in 

speech signals. 

6.3.1 	Chang 

S. Chang et aZ. [C-3] ,[C-4] considered the problem of 

"the representation of speech sounds and some of their statistical 

properties." They noted that, while the Fourier transform of a 

signal contains both amplitude and phase information, the time 

autocorrelation function, R(T), defined as [T-6; p. 90] 

T 
. 	1 

R(T) = lam -2-,f, f s(t).s(t+T) dt 
T--)-00 -T 

' (6-5) 

for a random process,' discards phase information. That R(T) 

contains no phase information about s(t) is made clear by noting that 

CO 

R(T) = F 1{G(f)} = J G(f).cos2TrfT df 
	

(6-6) 

o 

and 	G(f) = IS(012  • 
	 (6-7) 

1
The same definition applies to a periodic signal if T÷To/2, where T

o is the period of the signal [L-6, p. 11]. 



The value of k
o 
and k

m is 1/7 when n(t) is a Gaussian signal. The 

nth moment of the power spectrum of n(t), G(f), is defined as 
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The usefulness of R(T) as a representation of speech sounds is 

inferred from the relationship between R(T) and IS(f)1, the amplitude 

spectrum, via G(f). In fact, the short-term autocorrelation function 

can be defined (S-7) and used (B-8) for automatic word recognition. 

Similarly, they noted, clipping--another time domain opera-

tion involving s(t)--discards amplitude information. The usefulness 

of zero crossings in obtaining estimates or representations of 

speech sounds is to be inferred, ostensibly, from the fact that 

clipped speech is intelligible. Chang2 pointed out that more direct 

links between zero crossings and signal spectral features can be 

established. Rice's classic relationship for the average number of 

zero crossings per unit time--in a stationary, random process 

n(t)--can be written as [C-4]: 

r7Ti-57  p
o 
 = k

o 	 (6-8) n 

 while the average number of zero crossings per unit time, of 

n' (t) is 

p = k 222-LC1-2- 
m m • 

n'(04  
(6-9) 

CO 

M
n 
= 

J 

fn  G(f) df . 	(6-10) 

0 

Since R(0) = Mo  and -R"(0) = 472M2  (from (6-6)), then, using 

2
For convenience, we shall refer to the authors Chang, Pihl and 
Essigman [C-4] and Chang, Pihl and Wiren [C-5] as "Chang". 
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(6-6) and (6-10) in (6-1), we can write 

p
o 
= 27k

o 
)41
2
/M
o 

= k
o 
/-R"(0)/R(0) 	(6-lla,b) 

and, similarly, 

pm = 27km AM4/M2 
= k

m /-R""(0)/R"(0) 	. 	(6-12a,b) 

In this manner the average (expected) rate of zero crossings per 

unit time can be related, through the autocorrelation function, to 

the power spectrum of the signal. However, as Chang pointed out 

[C-4], "application . . . [of these relationships] . . . to a speech 

sound assumes that it can be regarded as a stationary time series 

. . and the extent that this requirement is met can only be 

conjectured at the present time [1950]." (Italics mine.) 

Chang presented limited experimental results which implied 

that "there is a close similarity between the shapes of the po- and 

p-grams and the first two bars [formants] of the spectrogram." 

He explained that "since the frequency components in the first bar 

[formant] are usually strong enough to cause zero crossings, the 

po-gram is a close approximation of this bar [formant]. The 

frequency components in the second resonance region may not be 

strong enough to cause extra zero crossings, but they will affect 

the slope of the wave [-form s(t)] and may, therefore, contribute 

extra maxima and minima which are included in pm." 

6.3.2 	E. Peterson  

Soon after Chang's conjectures and limited experiments 

concerning the utility of the average time rate of zero crossings 

as an estimate of formant trajectories in speech spectrograms, 

E. Peterson published [P-9] an excellent experimental and 

theoretical study of such techniques. Peterson first described 

an accepted method of estimating po  for a speech signal: an 
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impulse is generated at each zero crossing of the signal and these 

impulses are averaged for a time interval greater than the fundamental 

period of voiced sounds (=10 msec.) and less than the phonemic 

utterance rate (=10 per second). [This type of estimate will be 

defined as 00  to distinguish it from po, the true average rate of 

zero crossings per second.] In his experimental work, Peterson 

used a lowpass filter with a 30 Hz cutoff frequency to implement 

the averaging process. Experimental results for two-tone signals 

are shown in Fig. 6.2. 

G4C 
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0.2 . 
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RATIO OF HIGHER FREQUENCY TO LOWER FREQUENCY 

INPUT AMPLITUDE IN DECIBELS 

Fig. 6.2 Response of an impulse averaging %-meter to 
a two-tone input. Ordinate is the "counter" reading in 
KHz and abscissa is 20 1og10(A2/A1), the ratio of the input 

amplitudes in db. The three curves apply to the pairs of 
input frequencies noted. (From [P-9].) 

Note that Lobanov [L-24] derived an expression for the 

true number of zero crossings per second for a two-tone signal. 

If 

s(t) = A1sin wit + A2sin w2t , w2>w1 	(6-13) 

2 
0 
0 

a. 

5 

0 

z 

0 
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T 2 	1 
(2F2-2F1).sin 

	[A1/A2
] + 2F

1 ' 
IkA2/1y.1 

Po = 
(6-14) 

where F
1
=w
1
/2rr and F

2
=w
2
/27. Peterson's experimental results for 

p
o 
estimates,

o
, and Lobanov's expression for actual po both suggest 

that when the amplitude of the higher frequency signal dominates, 

then all (zero crossing) indication of the lower frequency tone 

is lost. However, when the low frequency tone has the larger 

amplitude, the indicated "frequency" lies between the two input 

frequencies over a very extended amplitude ratio range. Peterson 

emphasized that this anomalous behaviour is not due to the nature 

of the "counter"; it is, he showed, fundamental to operation of 

this type of "counter" in the audio band. His explanation was as 

follows: 

The envelope of s(t), (6-13), is 

Im(01 = 1
2  + A

2
2  + 

2A1A2 
cos(w

1
-w
2
)01/2  , 	(6-15) 

A -A  0(t) = 1/2[wl+w2]t + tan -1[l2} A
1 

 +A
2 
tan[Vw1-w2)0 ,(6-16) 

and the instantaneous frequency, the time derivative of the phase, 

is 
1A1-A21 1 + tan

2
[k(w1-w2)t] 

°'(t)  = Il[w1411)2] 	1/2[wl-w2]  A +A 1 2 1 + Al+A2  tan [11(0)1-w2  
1 2 	(6-17) 

The value of 4'(t),averaged over a half-period, is 

7/f2  [Al-A2  
Ol(t) = Tr- J 

V(t) d[Ww1-w2)] = 11(01
+w
2 
+ (w

1
-w
2
).sgn A1+A21).  

0 
(6-18) 

then 

2F
2 	

, A2>A1  

the phase is 



That is, 

16o 

wl 
	Al > A2 

.1(t)  = 1/2 [4)1+w2] 
	

A
l 
= A

2 
3 

W2 	A
l 

< A
2 
	(6-19) 

Fig. 6.3 shows a plot of 4'(t) for w
1
= w

, 
w
2
= 3w and (A

2
/A
1) = q. 

FUNDAMENTAL PERIOD OF INPUT S(t)•23 

Time 

Fig. 6.3 4'(t) waveforms for 
s(t) = coswt + q-cos3wt. 
(From [C-9].) 

Note that "W" is a frequency translator, considered equal to zero 

for our purposes. The average values of 40(t), 40(0, are the dotted 

lines labelled "W+3w", for q>1; "W+w", for q<1; and the solid line 

labelled "W+2w", for q=1. From Fig. 6.3 and equation (6-17), it is 

apparent that 

(1)'(t) 	>=1 

  

1>1 

 

as q = 1 
q=1 1 , (6-20) 

  

4' (t) 

 

  

and that for 1/2<q<2 , q 	1 , the instantaneous frequencyX(t), 

3That (PI(t) = 1.1[w
1
+w
2
] for A

l 
= A

2 
is shown by Cherry and Phillips 

[C-9, p. 1070]; it also follows directly from (6-17) with Al  = A2. 
This situation is very unstable. 
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exhibits very sharp peaks. 

The problem is to show why the output of the .0
o
-meter, 

shown in Fig. 6.2, does not indicate the readings predicted by (6-19). 

We assume here that this type of "meter"--i.e., impulse averaging-- 

should indicate 0'(t). 

Peterson showed that the answer lies in the bandwidth 

required to transmit q'(t), the instantaneous frequency function. 

From (6-17), 

cPt(t=7/[wl-w2])  = Il[w14-w2] 	1/2[wl-w2]  A1 

 
-A
2 

l Ai+A2  1 
, (6-21) 

and °'(7/[631-w2])max 	as A1÷A2  or, equivalently, as q÷1. 

Therefore, when t = Tr/[wl-w2], q'(t) 	.= or -0. as q approaches 

unity from a value greater than 1, or less than 1, respectively. 

In the practical case, for q small, but greater than unity, the 

positive peaks of the c0(t) function are attenuated due to the 

bandwidth limitations incorporated in the ̀
0 

	This lowers 

the value of q5'(t). Conversely, for q<1 but near unity, 4'(t) 

"attempts" to become very small and much less than w, its theoretical 

average value. When (P'(t), a positive quantity, "attempts" to 

become negative, it is reflected positive. This substantially 

raises the average value of (1)'(t), 4)'(t). These effects are both 

evident in Fig. 6.2. A solution to this system deficiency is to 

translate the audio band upwards (using SSB modulation) in order 

to eliminate the source of the greatest errors, the positive 

reflections of 4'(t) for q<1. Figure 6.4 shows the results of 

oE4)'(t); mE(1)'(t) for s'(t). Note that p
o  is average rate of 

zero crossings and has dimensions of sec
-1 

whereas 0o 
or 0

m 
is 

average value of instantaneous frequency and has dimensions of 

radians/sec. 
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SSB modulating a 1 KHz--4 KHz tone complex with a 60 KHz carrier 

(W = 60 KHz in Fig. 6.3) and then measuring c0(t) via the 0-meter. 
4.4 	  
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Fig. 6.4 Response of a %- 
meter to a SSB modulated 1 KHz-4 Khz 
tone complex. Carrier frequency is 
60 KHz. (From [P-9].) 

The transition region has been substantially reduced, especially 

for the 
A2<A1 (negative db) range. 

Peterson summarized his analysis by stating that the audio 

band is badly situated for obtaining an accurate estimate of the 

average value of the instantaneous frequency of a two-tone signal 

and that SSB modulation must be used to insure an accurate indication. 

He concluded his investigation with experimental tests, using the 

SSB 00-meter on speech waveforms. He found that the 00  trajectory 

was generally higher than that of the first formant, Fl, and was 

located between the first and second formant spectrogram bars. 

For differentiated speech, the pm  trajectory closely paralleled, 

but was somewhat higher than,the second formant spectrogram bar. 
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He concluded that "the average axis crossing rates [as estimated by 

(P'(t)] cannot be trusted in general to follow specific [formant 

spectrogram] bars, whether the speech is normal or differentiated" 

and that "the [formant] bars higher in the spectrum affect the 

axis crossing averages." Finally, tests with SSB 130- and f3m-

meters using bandpass filtered speech provided a fairly accurate 

estimate of F
1 
(bandpass = 0.2-1.0 KHz) and F

2 
 (bandpass = 1.0-

4.0 KHz). Estimation of F
2 was made more accurate by introducing 

a 6 db per octave attenuation in the 1.0-4.0 KH,z bandpass filter. 

Three questions arise after consideration of Chang [C-4] 

and Peterson [P-9]: 

1: Of what value are simple zero crossing measurements 

(e.g., precise f3
o
- or "i5- meters) in obtaining accurate estimates 

of formant frequencies? 

2: Is there any zero crossing measurement which can provide 

accurate estimates of formant frequencies? 

3: Is "00  [ E (1)7 (t) 	= 7.po  ? That is, is the average 

value of the instantaneous frequency proportional to the average 

rate of zero crossings? 

Peterson and Hanne, Focht, and Scarr have provided some answers to 

questions 1: and 2:. Question 3: is considered in sec. 6.5. 

6.3.3 	Peterson and Hanne  

We first consider Peterson and Hanne's answer to question 1:. 

They analyzed the ideal case where, by filtering, it is possible to 

isolate a single formant and, by deconvolution (e.g., [M-11]), the 

effect of glottal excitation may effectively be removed [P-12]. 



{[(F -f)2  + (B/2) 21rip 	+ 03/2)21}-2  
f,30 

1 
(6-22) 

IH(01 - 
F12  + (B/2)2  

2n-1 < T < 2n+1 , n> 1 , 	(6-25) F1  F1  
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The transfer function of a resonator model for a single 

formant is [F-2, p. 53] 

where F1 is the formant frequency
4 and B is the formant bandwidth. 

If F
1 > B/2 (usual for vowels), then 'HMImax occurs for 

f = [F
1
2  - (B/2)2]` . 	(6-23) 

The result of periodically exciting this resonator with an impulse 

(delta function) of period T is 

CO 

s(t) = 	U(t-nT).a.e
--7B(t-nT

sin[27F
1 
 (t-nT)+274)] , (6-24) 

n=0 

where 	a = [1-2-e-7BT-cos 27F1 T + e-27BT ] • p 

tan 27(10 = [ sin 27F1T/(e7BT  - cos 27F1T) ] , 

and U(x) is the unit step, 	= 1, x ; 0 
U(x) 

=0, x < O. 

Peterson and Hanne showed that for 

s(t) will exhibit 2n zero crossings per period. Then the average 

counted rate of zero crossings per second is po  = 2n/T. For 

T = (2n+1)/F
1' 

there is a discontinuity of magnitude 2F
o 
 (F 

o
=1/T) 

4 F
1 

represents an arbitrary formant frequency here, not necessarily 

the first formant. Our notation is that of [P-12] and Fig. 6.5. 



F
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= 1/T . . E(T) = 2F

1 
I F

o 
(6-26) 

2F1  
5 	T 	9 	11 	13 
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in p
o
. Figure 6.5 shows p

o 
( the zero crossing counter estimate of 

F
1 
is p

o
/2) vs T, the period of resonant cavity excitation. The 

envelopes of the po  output are given by 

Fig. 6.5 Steady state zero crossing 
frequency estimation of a single formant (f=F1) 
resonator as a function of the period of 
impulse excitation. (From [P-12].) 

Therefore, the error in estimating formant frequency using an 

accurate zero crossing counter method can be as much as Fo
/2. 

Furthermore, this estimate is the nearest harmonic of Fo 
to F

1 
rather than--as is often suggested--the strongest harmonic of Fo. 

Since the resonance peak of IH(f) I does not occur exactly at F1  

(see equation (6-23) ), the strongest harmonic of Fo  is not 

necessarily the nearest to F1. 

Peterson and Hanne also calculated the estimate of formant 

frequency afforded by a harmonic tracker which indicates the frequency 

of the strongest harmonic of Fo. They showed that, in contrast to 

the maximum frequency magnitude error of the zero crossing counter-- 
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0.5F
o
--the strongest harmonic tracker has a maximum frequency magni-

tude error which ranges from 0.550F0, for F1  = 2.55F0, to 0.515F0, 

for F
1 
= 8.5F

o. Nevertheless, it turns out that the strongest har-

monic tracker is a slightly better F1  estimator on the basis of 

maximum percentage error. 

In summary, both methods of formant frequency estimation 

yield approximately the same large percentage maximum error in 

estimating formant frequency as long as the actual formant frequency 

is less than about 17F
o ( error = 3% in this case ). . Thus, even in 

these ideal circumstances ( single formant, glottal waveform influence 

removed) a simple zero crossing formant frequency estimator is 

potentially as inaccurate as a more conventional "highest energy" 

harmonic tracker. 

6.3.4 	Focht  

One answer to question 2: is provided by L. R. Focht [F-10]. 

In a study of the perceptual identity of various combinations of 

formant amplitudes and frequencies, for three-formant sounds, Focht 

found that only two formants (Fl-F2, Fl-F3, or F2-F3), depending on 

the particular vowel, were required to specify the perceptual 

value of a vowel. A plot of Fd  (the frequency of the larger 

amplitude or dominant formant) vs Fr  (the frequency of the lesser 

amplitude or recessive formant) revealed that aZZ isophonemic areas 

on the 
Fd-Fr plane intersect the Fd 

= F
r 
line. In other words, a 

different single equivalent formant (SEF) frequency can be specified 

to evoke the perceptual response of each vowel. The frequencies of 

vowel SEF's are shown in Fig. 6.6. Moreover, Focht stated that "it 

was observed that the zero-axis crossing period of the first excursion 

for the speech wave after glottal . . . excitation is proportional 

to the half-period of the largest amplitude formant. The value of 

the SEF was also found to follow closely the dominant formant 
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frequency. Thus a reasonable approximation of the SEF parameter may 

be made by the measurement of the first zero-axis crossing period 

after each excitation pulse." In section 6.5 we shall describe a 

limited vocabulary speech recognizer based upon the SEF principle. 

STIMULUS 
FORMANT 

FREQUENCY 
( Hz ) 

SINGLE EQUIVALENT
LIst FORMANT 

FORMANT 

100 
u U3 AaaearEIi 

PERCEIVED RESPONSE 

Fig. 6.6 Single equivalent formant 
(SEF) frequencies (heavy line) for English 
vowels. Conventional F, 1F ' and F

3 
are 

shown by light lines. 	(From [T-2].) 

6.3.5 	Scarr 

R. W. Scarr's work [S-4] represents a theoretical and 

experimental extension of that of Peterson and Hanne [P-12] and 

Focht [F-10]. 

Equation (6-22) can be rewritten as 

 

 

1 (6-27) 

 

{[1_(f/F1)2}2 + [fB/F1]2}1/2  
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and Q = 1/F12  + (B/2)2/B 	(B/2)2  << F1. This criterion is generally 

satisfied for English vowel formants. 

Using this simplified version of the single formant model, 

Scarr analyzed the expected waveform zero crossing pattern when the 

excitation is a bandlimited sawtooth waveform, 5 

g(t) = K (sinft + sin20t/2 + sin3Qt/3 + . . . ). (6-29) 

"K" is an arbitrary constant and F
o 
= Q/27.  = 1/T is the excitation 

or voicing frequency. Scarr considered only the second, third and 

fourth harmonics of (6-29). The output of the resonator is then 

where 

s(t) = A2sin22t + A3sin3Qt + A4sin4Qt 

+ B
2
cos2Ot + B

3 
 cos3Qt + B

4
cos452t 

[ 1 - (nF
o
/F
1
)2] 

A = 
2)2  + [nFoB/F1212}11  n 	n {[1-(nFo/F1) 

nF
o
B/F

1
2 

B 
n n {[1-(nF

o
/F
1
)2]2 + [nF

o
B/F

1
2]2}1.1 

(6-30) 

(6-31) 

(6-32) 

and 
	

tan
1
[Bn/An] = arg [ H(nFo) ] . 	(6-33) 

Equation (6-30) was solved (iteratively) for s(t) = 0 for varying 

F 
o 
 , 130 Hz *, Fo  . 200 Hz with F1  = 500 Hz. Figure 6.7 shows 

• 
contours which represent the position where the zero crossings of 

s(t) occur as a function of the phase angle j. The time interval 

At between any two adjacent contours separated horizontally by 4 

degrees is 

At = (A44360).(1/F0) = (A114360).T. 	(6-34) 

5 Peterson and Hanne [P-12] dealt only with the case of periodic 
delta function excitation of the resonator. 
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Fig. 6.7 Zero crossing pattern for equation 
(6-30) as a function of voicing frequency, for 
F1  = 500 Hz. Each number represents Alp, in 
degrees, for the intersection of the contour 
lines (on either side of the number) with the 
horizontal line immediately below that same 
number. (From [S-4].) 

Scarr calculated the frequency f represented by the average zero 
crossing interval At, 

i.e., f = (ni)-1  . 	(6-35) 

He also found that the frequency fl  represented by the phase interval 

separating the two vertical contours at the left of Fig. 6.7, 

i.e., f1= (360/AW(F0/2) , 	(6-36) 

where the LIP-F
o 

pairs are 46°-130 Hz, 49°-135 Hz . . . 83°-200 Hz, 

gave the best estimate (of all pairs of adjacent contours) of F1. 

His results showed that while f varied as much as +70 or -110 Hz 

from F1  for varying Fo, fl  remained within +10 and -65 Hz of F1. 

Scarr also noted that f
1 
varies smoothly with F. In contrast, f, 

as well as being a poorer estimate of F
l' 

is a discontinuous function 

of F. The calculations also showed that the peak amplitude of s(t) 

always fell between the pair of vertical contours at the right of 

Fig. 6.7. In summary, Scarr stated that--for this model--a measure 

0 
:1 

O 
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of frequency based upon the zero crossing interval following that 

interval containing the maximum value of s(t) is a better estimate 

of F
1 

than that derived from the average zero crossing interval 

length. 

Scarr also showed that the following conditions govern the 

number of zero crossings per second--po--of a slightly more complicated 

version of (6-13): 

s(t) = A
1
sin n t + A

2
sin (m t+e) , m> n. (6-37) 

1: If A2>A1, 	po  = 2mf , f = w/27. 

2: If A
2
=A
1' 	

p
o 
is usually 2mf but may be, depending 

on 0, (n+m)f. 

3: If m/n>A1/A2>l, po=2pf, where n<p<m. 

4: If m/n=A
1
/A
2' 

p
o
=2nf, including (m-n)f triple zeros if 

= 0 or 27. 

5: If A
1
/A
2
>m/n

' 
p
o
=2nf. 

Clearly, these results represent an extension and confirmation of 

those of E. Peterson and Lobanov. For example, note that if SSB 

modulation is applied to s(t) then, for a carrier frequency w
o 

such that w
o 
= kw >> mw, (m+k)/(n+k) 	1. Then, as Peterson noted, 

regions 3: and 4: are narrowed and 

2mf + w
o
/7 

2nf + w
o
/7 

A
2
>A
1 

A
1
>A
2 	

(6-38) 

   

Scarr's experimental work consisted of a comparison of 

formant frequency estimations derived using the "second crossing 

interval"(equation (6-36) ) of bandpass filtered speech sounds 

[passband = 250-1200 Hz, 950-1500 Hz or 1500-3000 Hz] with those 

extracted from a 13 channel third-octave filter bank [290-6000 Hz] 
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by "peak-picking" techniques. The true formant positions were 

visually determined by inspection of speech spectrograms. Scarr 

summarized his results by referring to physiological vowel 

correlates (see Fig. 3.8b): 

For "front" vowels (/i/,/I/,/e/,/a?./) both methods gave 

good F1-F2 
estimation and separation. 

For "central" vowels (/D/,/A/,/a/,/S/), F1  and F2  fall 

within the same (250-1200 Hz) region and the zero crossing estimate 

gave the average frequency of F1  and F2. This result is in overall 

agreement with Focht's SEF findings (see Fig. 6.6), and both 

Peterson's [P-9], Lobanov's and Scarr's predictions concerning two-

tone signals. 

For "back" vowels (/U/,/u/), having closely spaced F1-F2  

and large Fl, zero crossing estimates indicated the position of 

Fl, F1. 

Generally, in close agreement with the analysis of 

Peterson and Hanne [P-12], both the zero crossing and "peak-picking" 

methods were subject to large errors and neither was entirely 

satisfactory. 

6.3.6. 	Summary  

Before closing this section, we note that Lavington 

demonstrated experimentally that--for synthesized speech sounds--

the following zero crossing-formant frequency correlations can be 

observed [L-4]: 

1) The number of zero crossings "T" per 10 msec. of the 

differentiated waveform shows a close correlation with the average 

value of F
2 
and F3, i.e., "T"=0.05(F

2
+F
3
)/2 -73. 

2) Plots of the number of waveform zero crossings per 10 
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msec., "Z", vs "T"--for various phonemes--ostensibly divided the 

Z-T plane into isophonemic regions. 

However, the measurements seem quite arbitrary and no 

rationale is given for using them. 

Finally, Ahmed showed [A-1] that if the number of zero 

crossings in a short time interval, "n", is plotted against the 

time interval duration, At, for a sustained vowel, then a straight 

line approximated by n=kAt results. The slopes "k" for different 

speakers uttering the same vowel are more similar than for one 

speaker uttering different vowels. This report, however, is not 

conclusive. 

In summary, the use of zero crossings for formant frequency 

estimation is, theoretically, well founded and, experimentally, 

reasonably successful if prefiltering excludes other formants. If 

two formants are present then the frequency of either formant can 

be estimated closely by zero crossing methods if suitable pre-

emphasis ensures that the amplitude of the desired formant is 

dominant, and SSB counting methods (e.g., sec. 6.3.2) are used. 

6.4 	Frequency Division by Zero Crossing Manipulation 

We have already briefly discussed a specific type of 

speech signal transformation, single sideband modulation (SSB), and 

two phenomena associated with it: 

1. Single Sideband Clipping (Ml, sec. 5.1.7): 

The envelope of a speech signal--Im(01--is not perceptually 

recognizeable as speech; the phase function of a speech signal--cos 

gt)--is, perceptually, essentially the same as the original 

signal. That is, 

cos (1)(t) = *Oleos 4(t) , 

where "P" denotes "perceptually." 
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2. Single Sideband Frequency Estimation  (sec. 6.3.2): 

Estimation of the average value of the instantaneous 

frequency--4'(0--of a two-tone signal (one approximation to p
o
, the 

average time rate of zero crossings) is ambiguous for a wide range 

of tone amplitude ratios unless SSB modulation methods are used. 

In summary, the phase of s(t), 4(t), yields both cos gt), 

and 
	

cos q(t) = s(t) 
	

(6-39) 

and 4'(t), 

    

 

where 4)1(t) E o 
(6-40) 

6.4.1 

signal 

Bandwidth Compression Techniques  

 

Marcou and Daguet reasoned that if the constant amplitude 

s
wSSB(t) = cos [wo

t + cp.(t)] , 	(6-41) 
0 

 

is frequency divided by "n" to yield 

sn,wSSB 	= cosf[w
o
t + cp(t)]/n} , (6-42) 0  

then, provided that 
(P'(t)max<wo' 

 "the spectrum of cos{[wot+4(t)]/n} 

will be effectively narrower than that of cos [wot+gt)] by the 

factor n." They implemented this system and found that, for speech 

input, the signal obtained by frequency division, transmission 

over a channel, and frequency multiplication "was evidently of high 

intrinsic intelligibility but . . . difficulties are encountered 

when it is required to pass the divided signal through a narrow 

band filter which cuts off sharply." (Italics mine.) [M-5] 

Cherry and Phillips explained this phenomenon. They noted 

[C-9] that equation (6-17), describing cp'(t) for a two-tone signal, 
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can be rewritten as 

wl cl2w2 cl(wifw2)
-cos(w

2
-w
1)t 4)1(t) -1 + q2 

	

	 (6-43) + 2q-cos(w2-wi)t 

with q = A2/Al. 	From (6-43), it is clear that 4'(t) is a periodic 

function, period T = 2Tr/(w2-w1). In Fig. 6.3, for example, T = Tr/w. 

Therefore, although the frequency divided signal, cos{[wot+q)(0]/nl, 

has its major component at frequency (w
o
+w
1
)/n--assuming that A1

>A
2' 

the second harmonic occurs at 

w = (wo+wi) in 	(w2-wi)  • 
	(6-44) 

This demonstrates that although the major (i.e., greatest amplitude) 

signal component is divided down in frequency, the inter-tone 

spacing, w2-wl, is preserved. Frequency division is, therefore, a 

bandwidth preserving transformation. In the case of unvoiced 

sounds the argument given against bandwidth reduction by frequency 

division is less convincing. 

Marcou and Daguet's alternative suggestion, that 4'(t) be 

divided and manipulated directly for bandwidth compression purposes, 

neglects the fact that--as shown by Peterson--4)'(t) is not band-

limited. 

R. Bogner experimentally confirmed that, for more complicated 

signals, frequency division has two major effects. First, it trans-

lates the entire signal spectrum downwards in frequency, with the 

spectral component of largest magnitude being the only component 

that is truly frequency divided [B-11].5  Second, it suppresses 

[relatively] minor spectral components and tends to produce a 

spectrum which is symmetrical about the largest magnitude component. 

In addition, he demonstrated analytically that the recovery of the 

5Bogner showed that, similarly, frequency multiplication produces 
an upward frequency translation of the signal spectrum about the 
largest amplitude frequency component. [X-1] 
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original signal after remultiplication depends upon the cancellation 

of several terms, so that very accurate preservation of the phase 

and amplitude characteristics of the frequency divided signal is 

important. Bogner also explained that the distortion noted by 

Marcou and Daguet when a lowpass filter was inserted into their 

frequency division system was undoubtedly attributable to phase 

errors incurred by frequency division during time periods of small 

minima of 171(01. Although "jumps" in phase of 27/n (in an imper-

fectly frequency divided signal) are audible only as a series of 

faint clicks, insertion of a narrow bandwidth filter modifies the 

clicks so as to produce "chirps", following signal multiplication. 

Frequent chirps produce a characteristic "burbling" distortion. 

Bogner noted that rooting the envelope as well as dividing 

the phase, 

i.e., 	
sl/n(t)  = Im(011/11  cos[gt)/n] 	(6-44) 

effects an apparent expansion of the dynamic range of the frequency 

divider and may make the system less amenable to phase errors. 

J.L. Daguet had used (1963) signal rooting (n=8) in each 

of the three, separated speech formant ranges (300-700 Hz, 700-2000 

Hz, and 2000-3400 Hz) to implement a practical bandwidth compression 

systeM [D-1] using SSB modulation. Schroeder, Flanagan and Lundry 

later [1967; S-8] simulated a four-channel, bandwidth compression 

system--using "signal rooting"--directly, without SSB modulation. 

They showed that, for n=2, (6-44) can be written as 

sl/2(t) 	(1/2)
1/2 

[1m(01 + s(t)]1/2  , (6-45) 

and noted that the phase ambiguity inherent in taking the square 

root can be avoided by changing the sign of s1/2(t)  whenever 4(t) 

goes through an integer multiple of 27 radians. 
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6.5 	The Relationship between the Spectrum and 
the Instantaneous Frequency of a Signal  

Both 4'(t), the instantaneous frequency, and S(f), the 

Fourier transform or "spectrum", are derived from the same source--

the signal s(t); both constitute, in different senses, descriptions 

of that signal. In section 6.3.2, for example, we noted that for a 

two-tone signal, 4'(t) indicates the spectral frequency of the tone 

having the larger amplitude. Can direct, more generalized, 

relationships be established between 4)1(0 and S(f)? We provide some 

answers to this question in this section. 

6.5.1 	Fink's Theorems  

We first define 

  

w G(w) dw 

G(w) dw 

wI - 

  

  

(6-46) 

as the mean frequency, or centroid, of the power spectrum G(w). 

Here, G(w) = IS(012$ where S(w) = F{s(t)}. 

The mean-square frequency of G(w) is defined as [B-16, 

p. 155] 

wII 

 

W2  G(w) dw 

G(w) dw 

(6-47) 

 

while the mean-square width of G(w) is [B-16, p. 156] 

f
(„.„2 G(w) dw 

(A0 0 2  = 

	

	 (6-48) 

G(w) dw 



f 
, 

T 
(A0)2 = 	-T  

lira 

T÷CQ  

Im(012  dt 

(6-51a) 
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L. Fink defined the following measures of the instantaneous frequency, 

cP T(t), of the signal s(t) having envelope Im(t)I and phase ci5(t) [F-7]: 

The mean instantaneous frequency:T  

J (p'(t).1m(t)1 2  dt 

-T Q
I  = lim 	 

T- 	T 4-co 

J 
1m(t)12  dt 

-T 

(6-49) 

The mean-square instantaneous frequency: 

T 

f [40(0]2-1m(012 dt 

2II = lim 
T-' 

-T 

 

(6-50) 
T 

j im(t)12 dt 
-T 

The mean-square width (or deviation from 0I) of cp'(t): T 

fW(t)-y"Im(t)12  dt 

or 	00)2 = 0 - 0 I2 	. 
II  

(6 -51b) 

Note that for signals periodic in T, all integrals need only be 

evaluated over [0,T]. 

Fink established the following results: 

1: R
I 
= w

I 	
(6-52) 

2: QII  < wII 	 (6-53) .`  

3: 002 .. 002 	 (6-54) 
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These results are subject to the existence of wl  and w
II and are 

valid for the signals we shall consider. It can be shown that 

equations (6-53) and (6-54) become equalities for Im(01 constant. 

6.5.2 	cP'(t) and Q
I 

Fink's theorems establish direct links among Qv  4'(t), 

Im(01, and G(w). However, how do we interpret the definition of OI? 

For example, is 0, related to 4'(t)? In order to establish a 

relationship between 0, and 4'(t), we turn to a result of Hiramatsu 

et al. [H-16]. 

Specifically, they proved that the mean value of 4'(t), 

(r(t), over an arbitrary time T is: 

cr(t) = Re[M
(1)

] - Im[M
(2)

/2!]T - Re[M(3)/3!]T2  + Im[M(4)/41]T3  . . 
. 

f
w  S(w) dw 	(6-55) 

where 	M(1) 	0 = 	 (6-56) . 	, 

f
S(w) dw 

0 

I 	
,w...,,,, w in 

S(w) dw 

and 
	M (n) - 	0 	

n>1 . 	(6-57) 

J  S(w) dw 

0 

If S(M(1)+AO = S*(M(1)-AO, and if T is "small" (e.g., T = 30 msec. 

for speech signals, as per sec. 6.3.2), then the contributions of 

the higher order moments, M(n), in (6-55) are negligible and 



 

CO 

J  w S(w) dw 

J 

S(w) dw 
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(P' (t) 	Re[M(1)] = Re (6-58) 

  

  

Furthermore, the assumption that S(w) possesses "symmetry" about its 

mean guarantees that 	co 

Re 	

J 

	
.G(w) dw 

0  
S(w) dw 	

w 

1  w S(w) dw 
0  

G(w) dw 

*If w 	

. 	(6-59) 

0 

Combining (6-46), (6-52), and (6-59) we find that, when the "symmetry" 

conditions on S(w) are satisfied, 

40(0 	w
I 
= Q

I 
. 	(6-60) 

In summary, Hiramatsu had shown analytically that the 

centroid, wi, of the power spectrum, G(w), is a reliable estimate 

of 4'(t) only when S(w) satisfies the amplitude-phase symmetry 

criteria. Fink's first theorem tells us why: 

i.e., for periodic signals, 
fT 

01(0-1m(t)12  dt 

0 w
I 
=

I 	fT 

 

Im(012  dt 

 

0 

 

and for = 1 
T 

fT 
0'(t) dt = q' (t) 

0 

it is sufficient 
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(but not necessary) that the symmetry conditions be satisfied. Thus, 

when the symmetry conditions are satisfied, Fink's second and third 

theorems establish bounds on the mean-square deviation of the 

instantaneous frequency from its average value. More important 

perhaps, the first theorem implies that 4'(t),--for signals which 

satisfy the required amplitude-phase criteria--is independent of 

the absolute value of the phase spectrum of S(w) provided that 

the required phase symmetry is present. 

For the simple example of the two-tone signal [s(t) = 

Alsinwit + A2sinw2t) substitution of im(01, (6-15), and 4)1(0, (6-43), 

into (6-49) yields 

w w
1 	2  p

I 
- 

I+q
2 

1+q-2 
(6-61) 

where q = A
2
/A
1. When the symmetry criterion is satisfied, 

i.e., q>>1 or 0<q<<1 , 

(6-61) yields c1  '(t)= w2  or wi, respectively. This is in agree-

ment with (6-19). For example, when q = 4 or 1/4, then 0, = 0.94w
2 + 

0.06w
1 

or 0.94w
1 
+ 0.06w2, respectively. It should be noted that, 

although (6-49) is fairly difficult to evaluate directly, Fink's 

theorem 1, equation (6-52), enables (6-61) to be calculated by 

simple, direct reference to the power spectrum of s(t). 

As another example, the bound on the deviation of (P'(t) 

from QI (for the two-tone signal) can be calculated directly using 

(6-48) and (6-54): 

i.e.,  002....5  002 = [q/(14.(12)]2 (w 1 w2)2- 	. 	(6-62) 

Then, for values of q such that OIW(t), we would expect that 

[A(r(t)]
2 
= 00)

2 	
[q/(1+q

2
)]
2
(wl-w2)

2 
, 	(6-63) 
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(6-64) where [A01(t)]
2 
= V(t)

2 
- (1)1(t)

2 

is the mean-square deviation of (P'(t) from 4'(t). 

The actual. value of [AVM]
2 
is calculated by using 4'(t), 

(6-17), in (6-64). This yields, after much manipulation, 

[Acp'(t)]2 = [(1k-1)2/8Ik1) (6.11-w2)2 	(6-65) 

with 	k = (A
1
-A
2
)/(A

1
+A
2
) 	(6-66a) 

= (1 - q)/(1 + q) . 	(6-66b) 

Rewriting (6-62) with q = (1-k)/(l+k) gives 

(Aw)2 = [(1-k2)/2(1+k2)]2 (w1-w2
)2 

Hence, for the approximate range [1/2<lkl<1]--i.e., [0<q<1/3] or 

[3<q<0,]--01(t)=521  and, from (6-63), we expect that 

[W(t)]
2 
= (w1-w2)2[(Ik 	/81k1w1-w2)

2
[(1-k

2
)/2(1+k

2
)]
2 
= (AO

2 
I -1)2 	W  

or 	[(1k1-1)2/2Ik 1][(1-k2)/1+k2]2 
	

(6-67) 

This is indeed the case. 

The two-tone signal is, spectrally, somewhat simple, How-

ever, the single formant resonator satisfies the symmetry criteria 

(see sec. 6.3.5, equations (6-27) and (6-28) ). We would therefore 

expect that the value of 40(t) would accurately approximate F1, the 

frequency of maximum resonator output (= formant frequency). 

Experimentally, Hiramatsu found that the estimate of formant 

frequency afforded by 4'(t) was invariably more accurate than that 

resulting from the calculation of 	equation (6-46). For unfiltered 

vowels (i.e., multi-peaked spectra) the maximum error in estimating 

the frequency of the largest amplitude formant using V(t) --pro-

vided the amplitude of this formant was at least 6 db above the 

others--was Fo
/2, half the voicing frequency. This is exactly the 
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the maximum error predicted by Peterson and Hanne for measuring the 

formant frequency of a periodically pulsed single formant resonator 

(sec. 6.3.3) using "average rate of zero crossings"!
6 

In contrast, 

the maximum error of wI based estimates was Fo
. When bandpass 

filtering was introduced to insure that only the first formant, Fl, 

was present--thus satisfying the symmetry conditions--both the 

4'(t) and w
I 

estimates had a maximum error of F
o
/2. Generally, the 

(P'(t) estimates were more accurate than the wI estimates. 

In summary, we have shown that the average value of the 

instantaneous frequency p'(t) --4'(t)-- of a signal provides an 

accurate, reliable estimate of the centroid of the power spectrum 

G(w) only when the spectrum S(w) possesses amplitude-phase symmetry 

about the centroid wI. When the symmetry criteria are not 

satisfied, then 

f

T 
cp 1(0.1m(t)12  dt 

w
I 
= P

I = 
0
fT 	

V(t), by definition. 

Im(t)12  dt 

0 

Therefore, in the case when the symmetry criteria are 

satisfied (again using a periodic signal)--e.g., the single formant 

resonator--, 

= QI 
= cp'(t) 

and, since w
I 
= 27f

I' 
we obtain an expression for the average rate 

of zero crossings, po, using the results of Peterson and Hanne 

(sec. 6.3.3): 

Po = 2fI . 	
(6-68) 

Here, fI  is the nearest spectral component to fI. Therefore, for 

6
Hiramatsu was apparently unaware of this work. 
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the periodically excited single formant resonator, 

p
o 

= 2 fI=2 fI 
 =0o/Tr = cr(t)/7 

or 	Po  ="O'(t)/n = f5 o  /n . 
	(6-69) 

It follows that (as Hiramatsu experimentally observed) the best 

zero crossing estimate of F
1, 

for an isolated formant, is 

O T(t)/27 = 1:5o
/27 = f

I  . 
	(6-70) 

6.6 	Zero Crossing_ Interval Sequences as  
Descriptors of Speech Sounds  

In section 6.3 we described methods of processing "zero 

crossings" so as to yield an objective estimate of speech formant 

frequencies. The interpretation of zero crossing interval sequences 

as patterns, without explicit reference to the frequency domain, is 

of great relevance to automatic speech recognition studies. 

6.6.1 	The Intervalgram  

S. Chang proposed [C-5] that if the interval, At; between 

adjacent zero crossings of a speech waveform or its derivative is 

displayed as a function of time, then the number of points per 

unit area on the At-t plane--defined as the intervalgram--could be 

interpreted in a manner analogous to the spectral energy density 

displayed in a spectrogram. Figure 6.8 shows the method of 

generation of intervalgrams. Figure 6.9 a,b,c shows intervalgrams 

for the vowel /u/, while Fig. 6.10 shows an intervalgram for the 

words "one, two" spoken in succession. 
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Fig. 6.8 Generation of "Intervalgram." 
(From [C-5].) 

Fig. 6.9a Intervalgram for vowel /u/, speaker LRM. 
Sweep = 2 msec/cm. 
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- 	Fig. 6.9b Intervalgram for /u/. 
Sweep = 10 msec/cm. 

Fig. 6.9c Intervalgram for /u/. 
Sweep = 50 msec/cm, with beam 
suppression as per Fig. 6.8g. 

Fig. 6.10 Intervalgram for words "one, two" 
spoken in succession. Sweep = 500 msec/cm. 
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We recall here that the bandwidths chosen for the "analyzing 

filters" in the speech spectrograph are invariably a compromise 

between frequency resolution and time resolution. M. Lecours has 

shown, for example, that Cherry's suggestion (sec. 3.2.3) regarding 

variable bandwidth filters in models of the auditory system is 

applicable to automatic speech recognition [L-5]. Is it possible 

(as Chang suggests) that zero crossing intervals, which may be 

measured with arbitrary accuracy, are in some respects superior to 

short-term spectral analyses as an estimate of the speech waveform? 

Chang also noted that other functions can be substituted 

for the linear ramp--which gives a vertical axis gradation linear 

with respect to time. A hyperbolic wave generator, which can be 

approximated by an exponential source, gives a vertical axis 

gradation linear in frequency. Finally, Chang argued that the 

centre of gravity of the intervalgram, with respect to the At scale, 

approximates the p
o 
function. 

T. Sakai and S. Inoue suggested that the zero crossing 

intervals of speech waveforms be classified into a number of 

channels [S-1], each channel corresponding to a range of zero 

crossing interval lengths. This is equivalent to dividing the 

vertical axis of the intervalgram into a number of discrete, 

contiguous segments, or "bins", and projecting the "dots" representing 

the lengths of the zero crossing intervals occurring over some 

larger time interval--corresponding to a vowel, for example--

horizontally, i.e., into the "bins". The array of numbers 

representing the number of interval lengths falling into each 

"bin", or channel, can be defined as a zero crossing interval 

histogram. 

More specifically, Davenport defined a first-order density 

distribution associated with measurement of zero crossing intervals 
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over a time interval T [D-3]: 

T 	n. 

ft (T M1  
.) =

1 
LIT. 	

mi 1  , i = 1,...c 	(6-71) 
1 

where n.
1  is the number of zero crossing intervals falling into the th 2 	of c channels, 

AT. is the time interval difference between the upper and 1 
th. lower limits of the 2 channel, 

and 	T is the time representing the midpoint of the ith 
mi 

channel. 

In equation (6-71), ft(Tmi) is defined by [D-3] 

f
t (r .).AT

i  = P(T M1.) m1  
(6-72) 

where P(T 
mi) is the probability that a given instant of time t, 

the duration of the zero crossing interval falls within the limits 

[T-AT./2, T .+AT./2]. Strictly speaking, (6-71) obtains only for mi 1 ma. 1 
T- opandAT..÷0. 

1 

Sakai and Inoue measured ft(Tmi)  for Japanese vowels and 

found that characteristic peaked distributions resulted (Fig. 6.11). 

They noted that "the peaks in longer intervals seem to correspond 

to the first formants of /i/, /e/, /o/, and /u/, but the peak of 

/a/ is probably a combination of the first and second formants. 

The peaks in shorter intervals are the second or third formants of 

/i/ and /e/." [S-1] They further observed that "if the peak in a 

[the] shorter interval is removed from /i/ by a low-pass filter, 

the distribution of the zero crossing wave turns to that of /u/. 

Such an /i/ is misheard by listeners as /u/ . . . It was found 

that filtered [low- and high-pass] vowels that generate similar 

distribution patterns were often confused with each other in 

listening tests made at the same time." It appears, therefore, 
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that zero crossing interval distributions implicitly relate back to 

the spectral nature of the source signal. 

a: original signal 
	

b: differentiated signal 

Fig. 6.11 First-order density distribution W
1 
 (T mi) 

[f t (Tmi)] 
 
vs -c[1. .], for a male Japanese speaker. (From 

[S-1].) 

Histograms, or first-order distributions (which are really 

weighted histograms), fail to retain information concerning the 

sequence in which different zero crossing interval lengths occur. 

Experiments relating to the digram structure of the zero crossing 

intervals of speech waveforms (specification of the relative 

frequencies of occurence of different pairs of interval lengths in 

succession) have been carried out by MacKay et al. [M-2]. They 

found that digram displays discriminate among vowel sounds that 

generate almost identical histograms, and that articulator move-

ments are reflected in "corresponding movements of major points of 

the display." 
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6.7 	The Use of Zero Crossings in Automatic Speech Recoznition: 
Some Examples  

In section 4.3 we described in detail some schemes for 

using spectral speech data in automatic recognition. Besides 

considering the measure of spectral information used, we also 

briefly described the method of training the machine and carrying 

out the recognition phase. This description was intended to 

familiarize the reader with conventional methods prior to the 

introduction of adaptive algorithms in chapter 7. 

Therefore, in this section the discussion of the use of 

zero crossings in automatic speech recognition will be limited to 

a description of the measure of zero crossing information used, and 

the rationale for the particular choice. We shall group the schemes 

according to the measure of zero crossing information used. 

6.7.1 	Average Rate of Zero Crossings  

"Audrey"--an automatic digit recognizer--was one of the 

earliest attempts at automatic speech recognition [D-6, 1952]. 

Audrey used the average rate of zero crossings in 1) the 200-900 Hz 

band and 2) the 800-3000 Hz band (presumably detected by %-meters) 

as input to the X and Y axes of an oscilloscope. The time varying 

trajectory displayed for each spoken digit was then regarded as a 

pattern representative of that digit. Training and recognition was 

effected by measuring the time occupancy, of the trajectory, in each 

of 30 squares of a 6x5 grid superimposed upon the oscilloscope screen. 

Subject to the criterion that only one formant was actually 

'present in each of the two channels, Audrey's input consisted of 

zero crossing estimates of F1  and F2  of the type described in 

sec. 6.3.3 and 6.5. Effectively, then, this was an 
F1-F2 

tracker 

and the results (=98% correct classification for a single speaker) 

are about the same as those of other systems of the same genre(e.g., 

sec. 4.3.1). 
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Seventeen years after "Audrey", Ewing and Taylor [1969, E-4] 

suggested that "a display of averaged zero crossing rate of the 

original waveform versus that of the differentiated waveform should 

be of interest . . . it would be a pattern defined by the first 

and second formants. . „6 . . 

C. Howard also used a 00-meter to track F1  in bandpass 

filtered (300-1000 Hz) speech [H-21]. He then used this first Po  

estimate to tune an active filter so as to more accurately define 

the actual position of F1. A second .00-meter was applied to the 

active filter output and a final, ostensibly more accurate, F1  

estimate resulted. Finally, the accurate F1  estimate was used to 

tune another active filter so as to ensure that no Fl energy entered 

the F2 Po-meter. 

Lobanov showed that average zero crossing rates could also 

be used to separate phonemes into various classes [L-24]. We recall 

his expression, equation (6-14), for the average number of zero 

crossings per second of a two-tone signal (equation (6-13) ): 

2 	1 --(2F2-2F1).sin [A2
/A
1
] + 2F1  , ' 

O<A
2 
 /A
l 
 <1 

o 
2F2 	, 
	

A2>A1  . (6-73) 

If this function is plotted and compared to the (imperfect) estimate 

of the average value of instantaneous frequency obtained by an audio 

band Po-meter (Fig. 6.2), it is clear that the two curves are equal 

for A2>A1  and are identical in shape for Al>A2. However, Lobanov's 

6
They also claimed that "we have found no indication in the litera-
ture. . . to show that anyone else has attempted to verify Chang's 
conclusions [regarding the similarity of po and F

1, and pm and F2] 

for speech sounds." Peterson (sec. 6.3.2), of course, quantified 
Chang's conclusions [C-4] in the same year Chang's work was published. 
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function has a slower rate of fall for decreasing A2
/A
1. 

Lobanov, and Howard, argued that unvoiced fricatives (/f/, 

/6/, /s/, /f/) can be modelled as a band of white Gaussian noises of 

"proper center frequency and bandwidth." [H-21] Such a signal, having 

bandwidth of and centre frequency fo
, has an average time rate of zero 

crossings given by (from equation 6-2): 

p
f 
= 2 [foe  + Af2/12]1/2 

	
• 
	 (6-74) 

Finally, Lobanov suggested that an acceptable model for 

certain voiced fricatives (e.g., /z/) is a sine wave of having 

randomly distributed amplitude and phase (but not frequency) super-

imposed upon a white Gaussian noise background. In this case 

(see [B-3, p. 384]), 

= 2 

	f 2.2/2 + m 

2/2 + M
0 1 

s 

! 

2  
. 
	

(6-75) pvf  

Here the sine wave is r(t) = Q.sin(2Trfst + 4)) and r(t), Q, and (I) 

have (respectively) Gaussian, Rayleigh, and uniform distributions. 

Q=E{Q} and M0, M2  are defined by equation (6-10). For Q÷0, 

(6-75)-4-(6-11); for G(f)E0, (6-75) = 2fs, as expected. If A2>A1, 

p
o
>p
vf

; if 
 A1>A2' 

a value of [A2/A1] can always be found such that 

Pvf›Po.  

Lobanov showed that by proper use of pre-emphasis, fricatives 

(both voiced and unvoiced) can be separated from vowels using average 

zero crossing measurements and equations (6-73), (6-74) and (6-75). 

For example, good separation of vowels from unvoiced fricatives is 

ensured by pre-emphasizing the first formant region; then po
=2F

1 
while pf  is very large. However, since fs=Fi  for speech sounds 

(equation (6-75) ), this type of filtering can lead to a low value 

of pvf. In summary, Lobanov found that--for Russian speech sounds-- 
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a simple differentiating network with a time constant of 48 usec. 

produced maximum separation of vowels from voiced and unvoiced 

fricatives when the average zero crossing rate criterion was used. 

A scheme somewhat analogous to that proposed by Lobanov had 

been used by Wiren and Stubbs [W-8] to separate voiced-unvoiced 

sounds in the first stage of a phoneme classification system based 

upon "distinctive features" (e.g., Cherry et al., [C-8]). They 

generated a sawtooth voltage between zero crossings (see Fig. 6.8) 

and allowed only sawtooth peaks greater than some arbitrary height 

to be amplified and gated through to a "voiced-unvoiced" relay coil. 

This system depends upon the greater average zero crossing interval 

in voiced sounds predicted as a consequence of equation (6-73) and 

observed by Chang (sec. 6.3.1). 

Histograms showing the total number of zero crossings for 

a large sample of unvoiced fricatives and stops suggested to Wiren 

and Stubbs that these sound classes might be objectively distinguished 

using a measure of average rate of zero crossings. In fact, an 

estimate of phoneme energy during the time required for the first 

40 zero crossings was ultimately chosen. Unvoiced fricatives have 

Zow average energy and a high average zero crossing rate (in 

equation (6-74), fo>2000 Hz as per sec. 3.4.7 and [H-9], [H-26] ). 

In contrast, the unvoiced stops have greater average energy and more 

energy in the low frequency regions--hence a Zow expected zero 

crossing rate (sec. 3.4.6). 

G. Tsemel found that the general features of the spectral 

noise structure of unvoiced Russian fricatives can be characterized 

by using measurements of the mean duration of zero crossing intervals 

during periods of = 25 msec. and the variance of the interval lengths 

[T-10]. In an earlier paper [T-9], Tsemel had experimentally 

determined that, for the unvoiced stops (/p/, /t/, /k/) a plot of It II n -- 

the number of zero crossings in the first 10 msec. of the sound-- 
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vs "t"--the total sound duration--divided the n-t plane into isophonemic 

regions. 

H. Resnikoff discovered that the third-order moment (about the 

mean) of the reciprocals of the zero crossing interval lengths for /s/ 

and /z/ (alveolar fricative consonants) are negative; the same measure 

is positive for all other speech sounds [R-8, 9]. 

Finally, D. Reddy used the mean [R-4] and standard deviation 

[R-4, 5, 6] of zero crossing counts over 10 msec. periods to aid in 

resolving ambiguities in segmentation of speech sounds into sustained 

and transitional segments. 

In summary, we note that the known acoustic properties of 

speech sounds (reviewed in chapter 3) enable models to be formulated 

which, in turn, suggest certain correlation of average zero crossing 

rates with spectral features. Additionally, experimentally determined 

characteristics of zero crossing interval lengths (and variance of 

interval lengths) have been used in creating tests for discrimination 

among phonemes. 

6.7.2 	Zero Crossing Interval Sequences  

The simplest zero crossing interval measure is "The zero-

axis crossing period of the first excursion in the speech wave after 

glottal . . . excitation." [T-2] The reciprocal of twice this zero 

crossing interval is a measure of the Single Equivalent Formant, or 

SEF, frequency (sec. 6.3.4.). C. Teacher, H. Kellet and L. Focht 

constructed a compact, limited vocabulary speech recognizer using 

. three parameters: SEF frequency, SEF amplitude (maximum waveform 

amplitude during SEF zero crossing interval) and state-of-voicing. 

Performance of the system on the spoken digits, for members of the 

design or "teaching" group, averaged 90% correct classification [T-2]. 
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W. Bezdel and H. Chandler carried out an exercise in 

sustained vowel recognition by measuring zero crossing interval 

histograms [B-6]. The histogram vector (row matrix) for the j
th 

vowel sample is defined by 

c 

X. 	

_, 
X. = [ Ix.] • [x1, 

 x2, . . . xc] 	(6-76) 
ili  

where x.
1 
 is the number of zero crossing intervals of length Ti  

suchthat[T.-Ar./2<r.<r .+Ar./2]. Here, as in (6-71), 
ml 	1 M1 1 

LT. is the width, and T
mi  the midpoint, of the i

th 
 channel. 

Equation (6-76) is an unweighted version of f 
t 
 (r 

 ml  
.), equation (6-71). 

During the learning phase, Bezdel and Chandler established 

reference sets, X., for each vowel. Recognition involved comparison 

of unknown histogram vectors, X, with each reference vector by such 

methods as dot product [C. = 	with j for 
J 

unknown class] or weighted Euclidian distance 

where W. = X. orli.Ci. = [a
lj
-1
' 
a
2j
-1
' • • =3 =3 -1 -1 

the standard deviation of the ith element of 

C. max identifyi 
3 
[D = 	- 

a j
wi-1 =1 =1  

], and aij 
is 

c 
the jth reference 

ng the 

vector) ]. For these tests, using c=16 and 5 different vowels 

(j
max

= 5), the best recognition scores were 97, 95, and 94% for 

women, men, and mixed groups of speakers, respectively. These 

scores were obtained using the Dcriterion, with W. = S.. 
wj 	-1 -1 

T. Sakai and S. Doshita extended the ideas presented in 

sec. 6.5.1 [S-1] by periodically measuring ft(rmi) for both the 

Fl (0-1500 Hz) and F2 (800-2500 Hz) regions of Japanese speech [S-2]. 

They argued that peaks in f 	(T •) and f 	(T ) should correlate ft 
mi  ft mi 

with F
1 

and F2, respectively. A fairly complicated hardware system 

provided for speech segmentation and phoneme identification. 

recognition rate claimed was 90% for the vowel part, and 70% for 

consonant part of Japanese monosyllables. 

was 

The 

the 
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W. Bezdel and J. Bridle also used broad (LP, HP) filtering 

as a prelude to zero crossing analysis [B-4,5,7]. In their system, 

zero crossing intervals are sorted into different channels, as in 

other systems mentioned. However, the channel boundaries are 

moveable and a separate digital interval filter is used for each 

sound class to be detected. These filters are dynamically adjusted 

to maximize discrimination against sounds outside of the design class. 

Finally, R. Purton implemented a limited vocabulary word 

recognizer using the autocorrelation functions of lowpass and highpass 

filtered, then clipped, speech (0-1 KHz, 1-4 KHz) as patterns to 

form master matrices for training and recognition. 

6.8 	Summary  

In this chapter we have reviewed, related and evaluated 

some methods of extracting "useful" information from the zero 

crossings of speech signals. "Useful" implies that the measure of 

information extracted is valuable for automatic recognition of 

speech processing purposes. The relationship among the various 

techniques described is shown in Fig. 6.12. 



196 

Clipper 	>Count s(t) :Lobanov[L-24] 6.7.1 
Zero Crossings :Peterson 

and Hanne [P-12] 6.3.3 
:Reddy [R-4,5,6] 6.7.1 

Frequency 	:Marcou 
and Daguet [M-5] —*Division 6.4 

:Cherry 
and Phillips [C-9] 6.4 

:Bogner [B-11],[X-1] 6.4 
:Daguet [D-1] 6.4 
:Schroeder et aZ. 	[S-8] 6.4 

-4'0
0
-meter 	:Chang [C-4] 6.3.1 

:Peterson [P-9] 6.3.2 
:Cherry 
and Phillips [C-9] 6.3.2 

:Howard [H-21] 6.7.1 

Single Zero 	:Focht [F-10] 6.3.4 
---,Crossing 	:Scarr 	[S-4] 6.3.5 

Interval 	:Teacher et al. 	[T-2] 6.7.2 

First Order 	:Chang [C-5] 6.6.1 
Intervalgram 

Histogram 	:Bezdel and 
Chandler [B-6] 6.7.2 

:Wiren and 
Stubbs [W-8] 6.7.1 

:Sakai and ft  (r mi) Inuoue [S-1] 6.6.1 

-*Second Order 	:MacKay et aZ. 	[M-2] 6.6.1 
Histogram 

LP -,Clipper po or o 	:Peterson [P-9] 6.3.2 
Filter II 	:Scarr 	[S-4] 6.3.5 

:Lavington [L-4] 6.3.6 

HP -,Clipper 
Filter 

:Davis et aZ.[D-6] or 0m 	:Ewing and 
Taylor [E-4] 

6.7.1 

6.7.1 

(T 	) 	:Sakai and 
tu ml Doshita [S-2] 6.7.2 
tHp(r ,) 	:Bezdel and 

Bridle [B-5] 6.7.2 

orrelator 	:Purton [P-19] 6.7.2 

LCorrelator 
Fig. 6.12 Zero crossings in automatic speech recognition 

and processing: Summary of papers reviewed. 



7 	EXPERIMENTS IN AUTOMATIC SPEECH RECOGNITION USING ZERO 

CROSSINGS 

7.1 	Motivation 

This chapter is intended to give the reader some feel for 

the actual mechanics involved in implementing a speech recogni-

tion machine. To do this we will briefly review the literature 

associated with adaptive pattern recognition and then describe 

in more detail two different methods of pattern recognition, 

their structure and implementation. The vehicle for this des-

cription will be two short experiments in limited vocabulary 

speech recognition using zero crossing data. These experiments 

were originally intended to form the nucleus for the implementa-

tion of a large scale but limited vocabulary speech recognition 

machine. As will be noted in sec. 7.9, this goal was abandoned 

in order to carry on the studies concerning the nature of zero 

crossings as signal informational attributes which comprise the 

remainder of this thesis. 

7.2 	Pattern Recognition  

We noted in Chapter 4 that the first step in recognition 

is parameterization of the signal. The analogy to parameteriza-

tion in the jargon of pattern recognition is the receptor which 

"has as its input a physical sample to be recognized, and as an 
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output a set . . . of quantities which characterize the physical 

sample. These quantities will be called measurements of the 

sample . . . " [H-11]. 

The output of the receptor is the input to the categoriz-

er, which is "a device which assigns each of its . . . inputs to 

one of a finite number . . . of categories." [H-11] As Nilsson 

emphasized, adaptive pattern classifiers or learning machines 

are concerned with categorization only and that "we shall hence-

forth assume that the . . . measurements yielding the pattern to 

be classified have been selected as wisely as possible while re-

membering that the pattern classifier cannot itself compensate 

for careless selection of measurements." [N-3] 

Some methods of adaptive pattern recognition are taken 

from classical detection theory [G-12], [T-1], [V-1]. For ex-

ample, if n classes--S1, S2, . . S
n
-- are to be identified and 

thereby correctly categorized, a cost C.. can be assigned to the 
.3 

decision that a member of S
i is identified as belonging to S. 

[G-12]. That is,Cii  is the cost of correctly identifying a 

memberofSi whereasC.ij, 	, is the cost of incorrectly identi- 

fyingamemberofSi asamemberofS.C.could be the cost of io 
rejection, or failure to assign a class when the pattern belongs 

to Si.Generally, C..›C. 
>C 
 ii. It can be shown ([G-12], [H-11], 13 io 

for example) that if the a priori probability of occurrence of a 

pattern of the class i, 10..,5.n, is pi, then the optimum Bayesian 

categorizer is the implementation of the decision function which 

minimizes the expected loss 

n n 
C(S) = 	Ci..pi. fmi s(miSi).(5D i m(di lm) dm 	(7-1) 

1=1 j=0 
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where 

fmi s(miSi) is the conditional probability that a certain 

measurement m will be made, given a pattern from class i at the 

receptor 

and 

dri l m(di lm) is the probability that the decision function 

or categorizer will make the decision d., 0 	given the mea- 
1 

surement m, with j = 0 corresponding to rejection. 

If we let 

n 
Z (m) = 	(C..ij-C.lo )-pi .fMIS 

(nls.) 
i=1 

(7-2) 

where Z.(m) measures the excess of the cost of identifying a pat-

tern which gives rise to the measurement m as belonging to Si  

over the cost of failure to make any identification (Z0(m) = 0), 

then it can be shown that C(d) is minimized by associating with 

m the class Si  for which Z.(m) is least: that is, let cSDIM (d.lm) 

= 1 if Z.(m) 	Zi(m), ij, and zero otherwise. If the cost of 

any error is equal and greater than the cost of rejection, and 

if the cost of correct recognition is zero, then minimizing the 

expected cost is equivalent to minimizing the error rate for a 

given rejection rate [H-11], [V-1, pp. 46-52] and this type of 

processor is called a maximum a posteriori probability computer 

[V-1]. 

However, as Highlyman pointed out [H-11], fMIS 
 (m1S.) is 

usually unknown to the designer of the machine and therefore 

"categorizers based on the optimum decision function are not, in 

general, practically realizable." Highlyman also asserted that 
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a key factor in realizing a pattern classifier is economic 

feasibility. A possible procedure is "to make no assumptions 

about . . . the particular distributions involved but rather 

make certain restrictions on the structure of the categorizer. 

Then search through all possible structures of this type to 

find the categorizer which is optimum with respect to a sampling 

of patterns from the real world." Furthermore, he emphasized, 

"if the designer can limit his search to those structures which 

are economically feasible, and if the optimum structure in this 

class works well enough for the given purpose, then a techni-

cally feasible solution has been found." 

7.2.1 Linear Decision Functions  

Because the decision criterion is non-random--that is, 

every point in the measurement space is, effectively, preassigned 

to a particular category or rejected--the decision function can 

be represented by the boundaries of the regions which comprise 

the measurement space. If the measurement space is considered 

to be a vector space of dimension N (N measurements per sample), 

then a linear decision function is simply a partitioning of this 

hyperspace by one or more hyperplanes, each of dimension N-1. 

Then,-"the effectiveness of a linear decision function in identi-

fying a given family of patterns is contingent upon the possi-

bility of specifying an adequate linear decision function in 

terms of an economically reasonable number of hyperplanes." 

([G-12], Italics mine.) We emphasize that the repeated refer-

ence to economy of implementation is vital primarily because 

published accounts of applications involving large-scale computer 

simulation of decision functions frequently overlook this factor 

either as a direct cost, or, because of complexity-time factors, 
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as a barrier to real time implementation of the recognition 

scheme. 

Highlyman noted that the question of whether or not a 

linear decision function is useful is partially answered by the 

fact that "for any categorizer based upon minimizing a Euclidean 

distance to a set of reference points there exists a categorizer 

based upon a linear decision function which is at least as good. 

This includes categorizers which maximize a normalized cross-

correlation function . . . " 

Linear decision functions are discussed in detail in 

[A-4], [D-12], [F-19], [N-3], [P-7], [R-15], and [S-9]. Piece-

wise linear decision functions [D-12], and higher order surface 

decision functions (e.g., quadratic) are similarly described in 

[B-18], [B-19], [N-3], [S-9], and [S-19]. Methods of establish-

ing the positions of hypersurfaces--training the machines--are 

also detailed. We shall limit our description of training meth-

ods to those algorithms associated with the speech recognition 

machines we have implemented. A useful comparison of various 

recognition algorithms is given by Nagy [N-1]. 

7.3 	Perceptual Units in Automatic Speech Recognition  

The problem of deciding upon a size of perceptual element 

to utilize in practical speech recognition investigations is 

quite important. It is often tempting to work with the simplest 

units of speech--the phonemes--initially and then attempt to ex-

tend any progress in recognition to more complex units. Although 

all acoustic information must be channelled through the same set 

of physiological transducers, the method of processing or attend-

ing to the neural signals probably varies with the difficulty 

and/or the circumstances of the recognition task involved. 



202 

Certainly we can recognize nonsense syllables under varying sets 

of conditions; but the mode of recognition has been shown to vary 

greatly--there is no continuum for acoustic recognition. 

For example, in one experiment (see [F-8], p. 228) four 

groups of stimuli, varying in their similarity to speech, were 

presented in isolation to listeners who were to learn to identify 

the sounds in a certain manner. The tests showed that the great-

er the dimensionality of the stimulus (the dimensions being fre-

quency, amplitude, and time) the more rapid the learning. How-

ever, actual speech sounds were learned most rapidly of all, 

with the least speech-like of the other tri-dimensional sounds 

being the next most "learnable" of the group. It was concluded 

that the method of identification of sounds which are not speech 

is completely different from the method utilized on actual 

speech. 

Thus, unless a sound is speech it will not elicit re-

sponse from the mechanism which identifies speech. The fact that 

a stimulus is "speech-like" (as some of the experimental stimuli 

were designed to be) apparently is not taken into account in the 

recognition process until we are sure that it is actually speech. 

Probably, then, the first step in human speech recognition is 

that'of deciding that the stimulus is speech. Once this decision 

is made the recognition process can make use of the enhanced 

efficiency it demonstrates when dealing with actual speech sounds. 

It has also been suggested that the mechanisms involved 

in the processing of isolated stimuli, even isolated speech 

sounds, may be considerably different than the "running speech" 

recognition mechanism. Flanagan has stated that "items such as 

syllables, words, phrases and sometimes even sentences may have a 
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perceptual unity" and that "attempts to recognize speech in terms 

of brief acoustic units may be of little or no profit." [F-8, 

p. 238]. 

In the experiments described in the following sections 

it was necessary to restrict the size of the vocabulary. The 

spoken digits were chosen for the limited vocabulary for two 

reasons. First, they contain 18 of the 40 English phonemes and 

therefore represent a non-trivial set as far as complexity is 

concerned [S-14]. Second, this set has been chosen for many 

published experiments in automatic speech recognition because 

its elements represent a useful restricted vocabulary for ver-

bal machine instruction. Thus, some comparison may be made (in 

a restricted sense because of differences in data rates and para-

meterization) to published results. 

7.4 	Experiment I: Motivation  

Experiment I constituted an initial attempt at limited 

vocabulary speech recognition using zero crossing information. 

The motivation for this undertaking was the set of experiments 

described in sec. 6.7.1 associated with average rate of zero 

crossings. We wished to combine this measure of information with 

a simple, adaptive type recognition algorithm in an effort to 

test the possibility of recognition at very low data rates. 

The basic limitation on the experimental procedure at 

this time was data gathering and handling. The only "automated" 

data gathering system was a combination digital voltmeter, (DVM) 

eight-hole paper-tape punch capable of punching 50 two decimal 

digit (4 bits per digit) numbers per second. The paper tapes 

could be transcribed via the Atlas Computer at the University 

of London and cards punched for use in the Imperial College IBM 
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7090 computer. The direct data facilities into the 7090 (later 

7094 Mk II) used for the experiments of Chapter 9 were not avail-

able until a later period. 

For these reasons, as a first attempt at low data rate 

(500 bits per second) adaptive speech recognition we chose the 

only zero crossing measurement compatible with the above limita-

tions, a measure of average number of zero crossings per 20 msec. 

interval. The zero counting method chosen was a staircase gen-

erator incremented at each zero crossing and quenched to zero 

every 20 msec. This combined zero crossing counting with count-

to-analog (voltage) conversion. A brief description of the data 

gathering assembly follows. A block diagram of the apparatus is 

shown in Fig. 7.1. 

7.5 	Experiment I: System Description 

7.5.1 	First Stage: Speech Clipper  

The speech waveform is first "infinitely clipped." This 

action is accomplished by a modified Schmidt trigger which pro-

vides for adjustment of both the base level about which clipping 

occurs and the effective sensitivity. The base level is set so 

that clipping takes place about zero voltage; the effective gain 

adjustment is used to desensitize the device with respect to 

background noise. It is important that the position of the zero 

crossings be specified extremely accurately. However, due to 

the inevitable presence of noise it is obvious that "infinite" 

sensitivity of the zero crossing detector would entail noise 

induced clipping and hence erroneous zero crossing indication. 

Previous investigators have tried to solve this problem 
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in a number of ways. An ultra-sonic bias of amplitude "just 

greater" than that of the noise present in the system will en-

sure that noise does not actuate the clipper (sec. 5.1.1). How-

ever this preventative measure results inIldistortion4and errors 

on low amplitude signals [F-13]. 

For this reason, noise interference was avoided by adjust-

ing the level at which clipping occurred to be the minimum which 

would prevent the clipper from operating on noise, and by feeding 

in a speech signal which was of sufficient magnitude to ensure 

that clipping was effected very near, or at,the actual position 

of axis crossing. In the equipment used, the clipper responded 

only to voltages greater than 5 millivolts (peak). With a sig-

nal voltage of 5 volts (peak), a clipping ratio of 60 db is ob-

tained. A certain amount of hysteresis with respect to actual 

zero crossing location is inevitable with this system. However, 

since the present experiment involves counting the number of 

zero crossings in intervals much greater than the period of the 

lowest frequency present, the errors due to hysteresis will be 

negligible and, more important, non-cumulative. 

7.5.2 	Second Stage: Zero Crossing Counting 

The square wave output of the Schmidt trigger is fed to 

a gate which produces positive pulses of fixed duration and ampli-

tude at each zero crossing. The duration of these pulses is con-

stant and of length shorter than half the perod of the highest 

frequency speech component to be encountered. In the present 

apparatus the pulses are of magnitude 10 v. and 40 usec duration. 

The positive pulses are fed into a linear staircase gener-

ator, each "step" of which is 0.05 volts. The staircase output 
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is returned to zero (quenched) every 20 ms. For a sine wave 

frequency of 5 KHz the output is 10 volts, the maximum voltage 

desirable if 100 steps of 0.1 volts are to be "resolved" on the 

available digital voltmeter. The sample period of 20 msec (50 

samples a second) was also chosen because of inherent limita-

tions and characteristics of the digital voltmeter/readout com-

bination. 

7.5.3 	Synchronization  

In order to maintain maximum accuracy it is desirable that 

the first sample period should always terminate 20 milliseconds 

following the onset of each spoken digit. 

7.5.4 Readout  

The problems of readout into the digital voltmeter/punch 

device are two-fold. 

First, the voltmeter requires that the voltage to be 

read is present for approximately 5 msec. Since the desired 

voltage--the peak (or final) voltage of the staircase generator--

is present for a minimum time of approximately 40 usec, the short-

est "possible" step, it is necessary to store this peak voltage 

for a delayed read/printout. 

In this device, the staircase voltage is sampled just 

prior to quenching and stored for the next 20 msec in a capaci-

tor designated capacitor 2 (C2). 

Hence the procedure is: 

(1) Quench capacitor 2. 

(2) Transfer the voltage on the staircase store 

(cap. 1) to cap. 2. 
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(3) Quench cap. 1. 

This sequence should take place as rapidly as possible 

so that cap. 1--the staircase store--is ready to receive the 

first zero crossing pulse of the new sample period immediately 

after it is quenched to zero. A chain of monostable delay 

elements provides the necessary sequencing. 

Unfortunately, this storage facility is inadequate in 

that it is synchronized with the voice input whereas the digital 

voltmeter/punch is synchronized with the mains and may only 

sample at a specific point with respect to the 50 Hz mains wave-

form. Therefore it is probable that the digital voltmeter will 

often attempt to sample the voltage on cap. 2 when cap. 2 is be-

ing quenched, thus causing an erroneous "zero" reading. A second 

store was added to remedy this situation; synchronized with the 

mains, this store (capacitor 3 or C3) receives the reading from 

cap. 2 fifty times a second and is quenched at a time when the 

digital voltmeter is recycling for a new reading. This results 

in a store which always contains a reading at a time convenient 

fo the digital voltmeter. If the transfer [2-3] circuitry tries 

to operate when capacitor 2 is quenched, a "guard" pulse delays 

the transfer until cap. 2 contains a new reading. 

7.5.5 	Overall Operation 

(i) Capacitor 1 is incremented by 0.05 volt at each zero 

crossing, and is quenched to zero 20 msec.after the first zero 

crossing of a speech sample and every 20 msec. thereafter for 

the duration of the spoken digit. 

(ii) Capacitor 2 contains, for a period of 20 msec., a 

voltage equal to the peak voltage on capacitor 1 (i.e. the volt- 
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age present just before quenching) in the previous 20 msec. 

period. 

(iii) Capacitor 3 contains, for a period of 20 msec. and 

in synchronism with the mains, a voltage equal to the voltage 

on capacitor 2 at the commencement of the 20 msec. mains period. 

The overall "sine wave" transfer characteristic of the 

Zero Crossing Sampler (ZCS) is shown in the accompanying graph, 

Fig. 7.2. In practice, the upper limit to the output is deter-

mined by the ZCS voltage supply (10 v). Because of character-

istics of the circuits used, a minimum input of 150 Hz (6 zero 

crossings per 20 msec. period) is necessary. 

7.5.6 	Speech Sample Recording Procedures  

The subject (in the soundproof booth) records the desired 

speech sounds on the external tape recorder.' Following this, 

the data is played back via the line (600 ohm) output of the tape 

recorder into the Zero Crossing Sampler. 

Subjects were instructed to speak the digits zero to 

eleven in sequence a number of times. The numbers zero and 

eleven were included to help eliminate the alterations in empha-

sis at the beginning and end of the "sentence." Only the numbers 

1-10 were actually used. The subjects were asked to speak at a 

normal conversational level and to pause momentarily between 

digits. The microphone (AKG D19C) was positioned about 15-18" 

from the speaker's lips and a B & K voltmeter used to monitor 

speech recording level. 

1  A more detailed description of the experimental record-
ing 

 
apparatus will be found in Chapter 9. 
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Fig. 7.2 Sine wave transfer characteristic of Zero Crossing Counter. 
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7.5.7 The Adaptive Recognition Algorithm 

The algorithm used for adaptive recognition was that due 

to Braverman [B-17], [B-19, ch. 3], and is of the Linear, Non-

Iterative type. The basis of this algorithm is the following 

hypothesis: 

Let the observed data be represented in 

terms of N binary (1 or 0) digits, where N is the number of bin-

ary digits necessary to represent each speech (or arbitrary 

species) sample. (In optical character recognition, the data 

might be represented by projecting the character on a matrix 

of N photocells each of which outputs a 1 if more than half of 

the cell is beneath the projected character and a 0 if not.) 

Then each set of its  and 0's corresponding to a sample can be 

represented by a vector from the origin to a vertex of a hyper-

cube in N-dimensional space. There will be 2N vertices of this 

N dimensional unit hypercube. 

About each vertex belonging to a given 

category of optical character, or digit (e.g. the set of vertices 

belonging to the category 'x') we describe a unit hypersphere; we 

then term the vertex "internal" if all vertices lying on the sur-

face of the hypersphere belong to the same category (as the ver-

tex at the centre of the hypersphere.) Otherwise the vertex is 

termed "boundary". 

Then the set of vertices belonging to a 

given category is compact if the ratio of boundary vertices to 

the number of internal vertices is very small. This algorithm 

is designed to operate upon compact sets. 

In the case where each dimension of a sample is an arbi-

trary number, between 1 and 100 in the present experiment, then 
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the sets of samples belonging to different categories can be 

said to form "clouds" in hyperspace. A cloud can be said to be 

compact if the number of points lying near the edge of the cloud 

are much fewer than the number of points within the cloud. 

The algorithm proceeds as follows: 

(i) Training Phase  

The first two known sample points are arbitrarily of dif-

ferent categories. The computer constructs a hyperplane perpen-

dicular to the "line" joining the two points and midway between 

them. The coordinates of each point are substituted into the 

equation of the hyperplane. One point will produce a positive 

output and will be given a "1" output with respect to this plane 

(plane 1). The other point, being on the other side of the hyper-

plane, will produce a negative output and be assigned to "0" with 

respect to this plane. 

As each new "known" point is read into the computer, its 

coordinates are substituted into the equation(s) for the exist-

ing hyperplane(s). If the output n-dimensional "binary" vector 

x (where n is the number of hyperplanes existing, and xl  is the 

output of the point with respect to hyperplane 1, x2  the output 

with'respect to hyperplane 2, etc.) is different from all pre-

vious output vectors or if the output vector is the same as that 

of a previous point belonging to the same category, nothing is 

done and a new point is read into the computer. If, however, the 

output vector is the same as that of a previous point belonging 

to a different category then a new hyperplane is constructed per-

pendicular to, and through the midpoint of, the "line" joining 

the two conflicting points. The output is calculated for all 

points with respect to this new hyperplane. It is clear that, 
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since the two conflicting points are on opposite sides of the 

new hyperplane, the outputs of these points will be different 

with respect to this new hyperplane and hence the output binary 

vectors of the two points will no longer be the same. 

Thus, after all training (known) points have been read 

into the machine, there will exist an n dimensional vector of l's 

and O's for each point, where n is the number of hyperplanes the 

machine has found necessary to construct in order to effectively 

partition the hyperspace into different regions, or "clouds", for 

the different categories. If the categories do indeed form com-

pact sets, then the n dimensional vectors corresponding to mem-

bers within a given category should be somewhat similar. 

Following the hyperplane construction, the computer 

methodically tries to eliminate hyperplanes without allowing 

"conflicting points" to arise. This may be possible since the 

construction of any given hyperplane during the sequential read-

in of points might have made an earlier hyperplane redundant. 

It is interesting to note that if there are n different 

categories to which a point may belong, then the maximum number 

of hyperplanes necessary to separate the different categories if 
the categories form compact sets is n(n-1)/2. This is because 

each of the n categories must be separated from the other n-1 

categories; however the hyperplane separating category i from 

category j can be the same as the hyperplane separating category 

j from i; hence the factor of 1/2. In practice, this number of 

hyperplanes is usually not required. 

As each point finally produces an n dimensional vector of 

l's and O's, the number of possible vectors is 2n-1 . Because 

this number is inevitably much greater than the number of cate- 
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gories, or the number of different n vectors which were produced 

by the training points, the machine must index un-named regions 

so that they will be identified with the category of an adjacent 

named region. When this is done, any input sample will produce an 

n dimensional vector of l's and 0's and be classified into some 

known category. The accuracy of classification will depend upon 

the "closeness" of the "unknown" to a particular region. 

(ii) Recognition Phase 

"Unknown" points are entered into the algorithm by sub-

stituting their coordinates into the equations for the existing 

hyperplanes, as in the training phase. Due to the algorithm 

construction, the "hypervolume" into which this point falls must 

correspond to a known category. 

7.6 	Experimental Results  

One hundred samples, ten of each of the digits (1-10), 

[S-14] were prepared on punch cards from the data secured from 

each of two speakers. Each sample consisted of a category iden-

tification number (1-10) and then the 47 samples (range 0 to 9.9 

volts in steps of 0.1 volt) punched out by the Zero Crossing 

Sampler via the digital voltmeter/punch. If a spoken digit pro-

vided less than 47 samples (i.e. was less than 47/50 sec. long) 

the remaining sample positions were termed "0". 

The algorithm was programmed in Fortran IV and executed 

on the IBM 7090 computer at Imperial College. 

(i) Recognition of Subject One from Subject One  

The machine was given five samples of each of ten digits 

spoken by subject one (LR1, Canadian) and, after the learning 
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algorithm had been implemented, asked to recognize another 50 

unknown digits (five of each). 

Results: The machine correctly identified 31 out of 50, 

i.e., 62 percent. It constructed 13 hyperplanes. 

(ii) Recognition of Subject Two from Subject Two  

Same conditions as 1. (Speaker RLW, British) 

Results: Correct recognition of 36 out of 50---72 per 

cent. Constructed 9 hyperplanes. 

(iii) Recognition of Subject Two from Subject One  

The machine was given 100 samples (ten per digit) of 

digits spoken by subject one and asked, after the learning pro-

cess, to identify 100 samples (ten per digit) spoken by subject 

two. 

Results: Correct recognition of 51 out of 100---51 per 

cent. Constructed 15 hyperplanes. 

(iv) Recognition of Subject One from Subject Two  

Reverse of (iii). 

Results: Correct recognition of 45 out of 100---45 per 

cent. Constructed 12 hyperplanes. 

(v) Mixed Recognition  

The machine was given both groups of 50 samples used for 

learning in (i) and (ii). The machine implemented the learning 

algorithm without knowing which samples were from which speaker. 

The machine was then asked to identify 100 samples (five 

of each digit from each of the two speakers) without knowing 

which speaker had spoken the digit. 
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Results: Correct recognition of 65 out of 100-65 per 

cent. Constructed 16 hyperplanes. 

Individual Results: Speaker 1: 29/50 = 58 per cent 

Speaker 2: 36/50 = 72 per cent 

7.6.1 Remarks and Analysis  

(i) and (ii).The machine found less "variance" within 

categories of the spoken digits of speaker 2 than speaker 1 since 

it constructed fewer hyperplanes and recognized a larger percent-

age of unknown samples. If the Confusion Matrices are examined 

it will be noted that the percentage correct recognition was not 

evenly distributed over the field of digits. The machine was 

very accurate in recognizing the digits 1, 2, 6 and 8 for both 

speakers (and 10 for speaker 1), less accurate on 7 and 9, and 

inaccurate in recognizing 3, 4, and 5. Examination of the pat-

terns for the digits 3, 4 and 5 shows very little basis for sep-

aration in any case. (See Fig. 7.3). 

(iii) and (iv). In accepting 50 additional samples from 

speakers 1 and 2 the machine constructed 15% and 33% more hyper-

planes, respectively. This indicates that the machine was adjust-

ing its boundaries to the further refined positions dictated by 

the additional information. Although the percentage accurate 

recognition dropped to about 50, it is still high enough to state 

that the categorical distributions encountered when learning on 

the samples from one speaker were sufficiently invariant to rec-

ognize unknown samples from another speaker. In fact, the confu-

sion matrix shows 80% accuracy in recognizing the digits 1, 6, 9, 

10 as spoken by subject 2 after having heard only 10 samples of 

each digit as spoken by subject 1. It should be noted that the 



1 

D
I
G I
T
 
C
H
O
S
E
N
 
B
Y
 
MA
C
H
I
N
E
  

6 

7 

8 

9 

10 

2 

3 

4 

5 

1 

D
I
G
I
T
 C
H O
S
E
N
 
B
Y
 
M
A
CH
I
N E
 

2 

3 

4 

5 

6 

7 

8 

9 

10 

ACTUAL DIGIT 

1 2 3 4 5 6 7 8 9 10 
3 

5 

2 1 

1 2 1 

1 

1 5 1 

1 2 3 

1 4 1 

2 1 4 

2 2 4 

Part i 

Speaker: 

Training digits: LRM (50) 
Unknown digits: LRM (50) 

% Correct: 62 

ACTUAL DIGIT 

2 3 4 5 6 7 8 9 10 
5 

4 1 1 1 

3 2 3 2 

1 2 1 

3 

5 

5 

4 

1 2 2 
Z _ 

Part ii 

Speaker: 

Training digits: RLW (50) 
Unknown digits: RLW (50) 

% Correct: 72 

Fig. 7.3 Confusion matrices for Experiment I 



ACTUAL DIGIT 

2 3 4 5 6 7 8 9 10 

8 1 2 

6 2 

4 2 1 3 

1 4 1 1 3 4 

1  1 

7 6 2 

2 --__ 
1 

1 1 1 10 8 

3 3 10 

Part iii 

Speaker: 

Training digits: LRM (100) 
Unknown digits: RLW (100) 

% Correct: 51 

ACTUAL DIGIT 

4 5 6 7 8 9 10 

10 

5 1 

2 4 1 8 

3 2 5 3 1 5 1 

1 2 3 

7 

2 2 2 g 
1 3 3 3 

1 1 4 2 1 

, 1 ---. 
Part iv 

Speaker: 

Training digits:RLW (100) 
Unknown digits: LRM (100) 

% Correct: 45 

1 
2 

3 

4 

5 

6 

7 

8 

9 

10 

1 
2 

3 

4 

5 

6 

7 

8 

9 

10 

Fig. 7.3 Confusion matrices for Experiment I 



D
I
G
I
T
 CH
OS

EN
 B

Y 
MA

CH
I
N
E
 1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

ACTUAL DIGIT 

1 2 3 4 5 6 7 8 9 1 

10  2 

10  1 

,,4  1 1 

1 6 1 1 2 2 

2 2 2 2 1 

8 2 

2 1 6 

5 1 5 

3 1 5 1 

9 

Part v 

Speaker: 

Training digits: 
Unknown digits:  } LRM (50), RLW (50) 

% Correct: 65 

Figure 7.3 Confusion matrices for Experiment I 



220 

machine mistook all of speaker 2's fives for nines. Speaker 

2's fives do look like Speaker l's nines when the source pat-

terns are examined, due to a suspected fault in the recording/ 

punchout wherein the initial fricative was lost. Also, it is 

interesting thaehearinespeaker 1 saying ten enabled the mach-

ine to accurately identify all of speaker 2's tens but the re-

verse was not the case. This might be expected since, if the re-

gion (or volume in hyperspace) containing speaker 2's tens is 

within a larger region containing speaker l's tens, then being 

trained on speaker 2 will not allow recognition of speaker 1 even 

though the reverse will be true. 

(v). When the machine was trained with 50 samples from 

each of the two speakers, it recognized about the same number of 

unknown samples from each speaker as it did when trained by the 

50 samples only from one speaker as in experiments (i) and (ii). 

It did not, and this is most important, achieve this proficiency 

by constructing twice as many hyperplanes as it had required, on 

the average, for each of the speakers individually. 

In fact, the machine operated as follows: 

In constructing the hyperplanes for the 50 samples from 

speaker 1 only, (part i) the machine erected 16 hyperplanes and 

later eliminated 3 as being redundant. Since the same 50 samples 

(of part i) from speaker 1 were "learned" first in part v, ini-

tially the same 16 hyperplanes were constructed. After the next 

50 points (from speaker 2) had been examined, 10 more hyperplanes 

were found necessary. However, the machine later eliminated 11 

of the 27 total hyperplanes to leave 16, only 3 more than were 

needed for speaker 1 alone. Thus we may conclude that, although 

the machine was roughly as efficient in identifying the unknown 



221 

samples of both speakers, the memory required was only slightly 

larger than that needed for identifying one speaker only. 

7.6.2 	Conclusions  

The correct recognition rate for parts i, ii, and v of 

experiment I (62%, 72% and 65%, respectively) exceeded the chance 

rate (10%) by at least a factor of 5. Nonetheless, because of 

the limited amount of experimentation done, no statistical sig-

nificance can really be attached to the results. The remarks in 

sec. 7.4.9 concerning the significance of variations in the num-

ber of hyperplanes constructed for different teaching sets are 

basically an interpretation of the algorithm behaviour. The drop 

in correct recognition rate when the machine was trained using 

the samples of one speaker and asked to identify those of another 

speaker is similar to that observed in other speech recognition 

experiments (see chapter 4). 

It was decided that, despite the existence of the data 

gathering limitations, an improvement should result if zero 

crossing interval Zengths could be "sampled" and encoded within 

the basic punch machine structure. The scheme described in the 

next section successfully accomplished this goal. 

7.7 	Experiment II: Motivation  

The technique used in experiment I preserved information 

concerning only number of zero crossings per 20 msec. time inter-

val. In sec. 6.6 we discussed the use of the intervalgram, or 

histogram, of zero crossing interval length distributions for 

automatic speech recognition. Figures 6.9 and 6.10 illustrate 

the fact that displays somewhat analogous to the time-frequency 



intensity display of a short-term speech spectrogram can be 

derived from zero crossing interval lengths by linear (or ex-

ponential) ramp generators. This was first shown by Sakai and 

Inoue [S-1]. Figure 6.11 shows the "peaked" structure of the 

first-order density distribution of zero crossing interval 

lengths. 

That these results obtain for English vowels were con-

firmed by Bezdel and Chandler ([B-6], sec. 6.7.2), who showed 

experimentally that such information is sufficient for a high 

degree of success in sustained vowel classification. Our own 

experiments (Figs. 6.9 and 6.10, and Figs. 7.3, 7.4, and 7.5 

below) further demonstrated that zero crossing interval histo-

grams are highly structured. 

Fig. 7.3 Zero crossing intervalgram, /'/. 
Sweep = 50 msec/cm. 
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Fig. 7.4 Zero crossing intervalgram, /e/. 
Sweep = 50 msec/cm. 

Fig. 7.5 Zero crossing intervalgram,/i/. 
Sweep = 50 msec/cm. 
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The aim of the system described in the next section--

based upon zero crossing interval histograms--was twofold: 

First, the peaked structure of the histograms suggested 

that amplitude quantization could be employed to reduce the bit 

rate required to describe them. An analogous technique had 

been successfully employed by King and Tunis [K-6] in respect 

to classification of short-term speech spectrograms. 

Secondly, it was decided to make use of the total sequence 
of "short-term" zero crossing histograms which constitutes a 

spoken digit. The order of the sequence members as well as the 
constitution of each member was to be taken into account in the 
training and recognition process. 

In the next section the equipment constructed to produce 

quantized zero crossing histogram sequences in the form of paper 

tape output will be described. Then, in sec. 7.5.3, we will 

briefly outline the algorithm used; this algorithm incorporates 

the sequential aspects noted as being desirable. 

7.8 	Experiment II: System Description  

The basic limitation on the rate of data flow was still 

the paper tape punch output of 8 binary digits per 1/100 second; 

the voltmeter reduced this rate by 50%. Thus it was decided to 

bypass the voltmeter and output 32 bits of information every 40 

msec. or 1/25 second. We recall that the 33.3 msec. averaging 

time used for the lowpass filter in Peterson's work [P-9] was 

based on the desirability of averaging over a time interval less 

than the phonemic rate--10 per second-- and greater than the 

pitch period--1/100 second. 
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A block diagram of the system is shown in Fig. 7.5. The 

system is composed of three sections: 

7.8.1 Pulse Production and Gating  

Spoken digits were recorded using the setup described in 

Chapter 0 (Soundproof booth, AKG dynamic microphone and Tandberg 

62 tape recorder at 712 ips). The speech was bandlimited to 4600 

Hz by a Mullard switched filter (60 db per octave attenuation 

out of passband) and then clipped by a cascade of three balanced 

(long-tail pair) limiting amplifiers. The output of the final 

amplifier is transmitted by a balanced gate through to a Schmidt 

trigger which, in turn, drives a monostable multivibrator which 

thus produces short pulses at each zero crossing of the band-

limited signal. 

The gate is controlled by an envelope detector which con-

sists of an a.c. signal amplifier, a diode detector, a d.c. ampli-

fier and a three-stage RC lowpass filter.2  The gate serves two 

purposes: First, pulses due to clipped system noise are com-

pletely eliminated. Second, an internal clock which controls the 

operation of the following stages is turned on at the start of 

each spoken digit and remains on for a set period of time after 

speech ceases to be detected by the envelope detector. This 

"turn-off delay" is necessary to inhibit system turn-off during 

intra-word energy gaps. We recall (sec. 3.4.6) that stop con-

sonants, for example, are often preceded by periods of near 

2 The detector-gate was developed by R. L. Wiley of Imperial 
College for speech-noise switching purposes. It was capable of 
distinguishing between speech (even weak, unvoiced fricatives) 
and system noise with minimal onset delay. 
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silence. During intra-word energy gaps, the system noise zero 

crossings are inhibited but the internal clock remains running 

since the "silent" interval is necessary to the word structure. 

The maximum delay time needed to allow for intra-word energy 

gaps was experimentally determined to be about 1/25 second. 

7.8.2 	Zero Crossing Interval Sorting 

The zero crossing pulses enter the first of a chain of 

13 monostable multivibrators, MO  to M12, having "on times" To  

to T13. Each monostable in the chain is triggered by the "off" 

edge of the preceding monostable. Thus monostable Mi  turns on 

At. milliseconds after the first monostable is triggered, where 

At. = y 
P  p=0 

(7-3) 

T
0 
 is 0.1 msec. and At

13 is 3.33 msec. (1/300 sec.) If a zero 

crossing occurs at a time t, 

3.33 msec. < t < 0.1 msec, 	(7-4) 

after a previous zero crossing, one of the monstables M
1
-M
12 

will te on. The output of this monostable is ANDed to the input 

of one of 12 divide-by-Ni  digital circuits. All of M1  -M12  are 

then rapidly set to "off." Monostable Mo, 0.1 msec. after the 

zero crossing which initiated the ANDing operation, initiates 

the start of a new pulse chain down 
M.-1412.  Thus each zero 

crossing interval is classified into one of 12 channels, accord-

ing to the interval length. 

Each divide-by-N. circuit emits an output pulse after 

every N
i
th 

input pulse. These pulses, in turn, enter a set of 
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two binary counters (12 sets, one per channel). These counters 

are inhibited from returning to the (0,0) state after the (1,1) 

state has been reached. Every 40 msec., all 12 sets of counters 

are parallel shifted to 12 corresponding sets of storage bi-

stables and then returned to the (0,0) state. 

Hence, during a given 40 msec. period, the two storage 

counters for channel p, p=1,..12, will contain information as to 

whether there have been less than 1 (0,0), between 1 and 2 

(0,1), between 2 and 3 (1,0) or more than 3 (1,1) groups of Ni  

zero crossing interval lengths between 

p-1 	p 
E Ti < AT < E T. 

i=0 	
p 

i=0 i 
 

(7-5) 

milliseconds. This yields a weighted and quantized (by the Ni  

counters), twelve channel zero crossing interval histogram con-

sisting of 24 bits every 40 milliseconds. The "histogram" is 

punched out onto 4 rows of eight-hole paper tape. Actually, 

only 7 holes of each of the 2nd, 3
rd

, and 4
th 

rows may be used 

for the histogram. The first 4 holes of row 1 are used to indi-

cate start of word and/or start of 4 row sequence. The first 

hole-of rows 2, 3, and 4 is always4 blank:' 

The divide-by-Ni  circuits An each channel consist of 

binary counters which may be adjusted to zero after any count 

up to 64. We recall that, from sec. 6.6.1, ft(Tmi), the first 

order density distribution associated with measurement of zero 

crossing interval distributions, is actually a weighted histo-

gram. The divide-by-N. counters are adjusted to approximate this 

function. The channel boundaries themselves can be adjusted to 

simulate the various ramp functions as used by Chang et al. 
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(sec. 6.6.1). 

7.8.3 The Adaptive Recognition Algorithm  

The adaptive recognition algorithm used was actually 

chosen in conjunction with the design of the data collection 

system. The paramount requirements for the recognition algorithm 

were that 

(i) the algorithm should cater to data in binary form 

(ii) the sequential aspect of the short-term speech histo-

grams be taken into account in the training and recognition 

phases. 

In Braverman's algorithm (experiment I), each 20 msec. 

estimate of the zero crossing count was assigned to one dimen-

sion of a multidimensional space. It can be shown (see [H-11], 

for example) that the performance of a linear decision function 

is unaffected by a non-singular linear transformation, followed 

by a translation. Therefore, the sequential aspects of the pat-

terns are not really utilized in this class of algorithm. 

The algorithm chosen was devised by R. E. Bonner [B-14]. 

Besides satisfying conditions (i) and (ii),Bonner's algorithm 

possesses the following desirable attributes: 

(i) If a new category or class is added after initial 

training occurs, excessive revision of the original structure is 

not required. This was not the case in Braverman's algorithm. 

(ii) The algorithm is capable, during recognition phases, 

of prediction. That is, at a certain point during the read-in 

of the sequence of sub-patterns constituting the spoken word, the 

machine should be capable of predicting the rest of the sub-patterns 
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which will follow. 

(iii) The algorithm provides for the existence of "local 

stability" in the input sequence of binary sub-patterns. This 

means that the closer the sub-patterns occur in time, the more 

correlation there is apt to be between them. 

Bonner emphasized that his implied allusion to human per-

formance characteristics (i.e., prediction, correlation of spoken 

sub-patterns) "has been used only as a source of requirements in 

an interesting problem situation; there is absolutely no reason 

to believe that the scheme to be described in any way explains 

actual human functioning." 

The algorithm is described below, as in [B-14], with 

reference to Fig. 7.6. 

At the left is a shift register consisting of M connected 

segments, each n bits long; these are labelled as "present," 

"past I", etc. At the start of the test-forming procedure, the 

first sub-pattern (n bits) of the sequential pattern is intro-

duced into the "present" portion of the register. The ORing pro-

cedure is then followed. Here, when bit i in the "present" reg-

ister is one, the test Ti  for output bit i is updated. When up-

dating is necessary, the contents of the entire shift register 

are used to OR to a test. This means that nxM bits of storage 

are required per test. 

After updating the tests, the first sub-pattern is shifted 

to "past I" and the next subpattern is entered into the "present" 

segment. Updating again takes place, as before. The process of 

shifting and updating continues until all the sub-patterns in the 

sequential pattern have been exhausted. Sub-patterns shifted past 

"past M-1" are lost. The shift register is then cleared and the 
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procedure repeated for the next sub-pattern. An example of this 

process is given in Fig. 7.6a. 

At completion of formation, test i contains the informa-

tion on which bit positions in all sequences of sub-patterns of 

length M were ever one when bit i of the "present segment" was 

one. The test is therefore designed to reproduce at the output 

the sub-pattern contained in the "present" portion of the shift 

register. The tests following training, for this example, are 

those in Fig. 7.6b, and consist of an (n.M)x(n) matrix of binary 

digits. To use the tests for recognition, the input is intro-

duced into the shift register one sub-pattern at a time, exactly 

as during test formation. 

Sequential pattern used for test formation 
in Figure 7.6 ; 

1/ 1 Subpattern 0 0 1 1 0 

# 2 Subpattern 0 1 0 1 0 Time 

# 3 Subpattern 1 0 1 0 1 
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SEQUENTIAL PATTERN (M..2, n....5) 

Subpattern 
number in 
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Shift 
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condition 

ORS representing tests 

Test No. 

1 2 3 4 5 

1 Presen
t
 I
 Pa

st I
 I 

0 0 0 0 0 
0 0 0 0 0 
0 0 1 1 0 
0 0 1 1 0 
0 0 0 0 0 

0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 

2 Pre
se

n
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0 0 

0
0

0
0
0
 0

1
...
..
0
o
  

0 0 
0 1 1 0 
0 0 1 0 
0 1 1 0 
0 0 0 0 

0 0 0 0 
0 0 0 0 
0 1 1 0 
0 1 1 0 
0 0 0 0 

3 Pres
e
n

t I
 Past I 

1 0 1 0 1 
0 1 0 1 0 
1 0 1 1 1 
0 1 1 1 0 
1 0 1 0 1 

o o 0 0 0 
1 0 1 0 1 
o 1 o 1 0 
1 1 1 1 1 
o o 0 0 0 

a) Training Procedure 

b) Tests following training 

Fig. 7.6 Illustration of Bonner's algorithm. (From [B-14].) 
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The sequential pattern used to demonstrate the test or recogni- 

tion procedure is 
Subpattern #1 1 1 0 0 1 

# 0 02 1 0 1 Time. 
#3 1 1 1 0 0 

To commence the test, subpattern #1 is introduced into shift 

register 1, shift register 2 being empty (see Fig. 7.7). The M 

shift registers--M = 2 here-- are ANDed to Test No. 1 of Fig. 

7.6b. The number of one's in the result, divided by the number 

of one's in the M shift registers gives the "match number" for 

the test. n match numbers are calculated and an n bit output 

results with one's wherever the match number exceeds some thresh-

old (0.6 in the example) and zero's otherwise. This n bit number 

is then ANDed to the "present" segment of the input register and 

gives the output in column 5 of Fig. 7.7. 

Fig. 7.7 

Bonner's algorithm, 

recognition procedure. 

(From [B-14].) 

Subpattern 
number in 

present 
segment of 

register 

Shift 
regis- Test ter- 
condi- 
tion 

T es 
No. 

'Match 
tnum- 

ber 
for 
test 

Output formed by 
using threshold =1.6 
and then ANDing 
to "present" seg- 

ment of input reg. 

Match ,mber  
'3 - for sub- 
pattern 

1 1 1 2/3 1 
1 
0 2 1/3 0 
0 
1 3 2/3 0 0.667 
0 
0 4 1/3 0 
0 
0 5 2/3 1 
0 

2 0 1 3/5 0 
0 
1 2 0/5 0 
0 
1 3 3/5 1 1.000 
1 
1 4 1/5 0 
0 
0 5 3/5 1 
1 

3 1 1 2/5 0 
1 
1 2 2/5 0 
0 
0 3 2/5 0 0.000 
0 
0 4 3/5 0 
1 
0 5 2/5 0 
1 

Average — 
.0.556 
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Finally, the number of one's in this output divided by the number 

of one's in the "present" segment of the input register gives the 

"match number" for the subpattern. This procedure is repeated as 

each subpattern of the word enters the "present" register forcing 

previous subpatterns into past I, past II, .... past M-1. The 

average "match number" for the sequence of subpatterns constitut-

ing the "word" gives an indication of the overall match of the 

unknown word to the (n.M)x(n) matrix of one's and zero's which is 

the result of "learning" a particular category. 

The key to the practical implementation of this algorithm 

turned out to be the use of the machine dependent (i.e., non-

Fortran) AND and OR operations on the 7094 computer. If each 

spoken digit constitutes p subpatterns of n binary digits each 

(n word length of machine, 32 in this case), then only (M.n) 

words per storage table (one storage table per category) are 

needed. In our case, M was varied from 3 to 9, n = 24, and the 

number of categories was 5. The algorithm description has been 

necessarily brief and more of the philosophy behind the algo-

rithm development is described in [B-14]. 

7.8.4 Experimental Procedure  

In order to conserve computer time--both in the paper-

tape to punched card transcription phase and in the learning-

recognition phase--the vocabulary in the tests reported was 

limited to the spoken digits one, two, three, four, five. Three 

hundred and five samples (61 of each digit, the author speaking) 

were recorded using the same equipment setup as in Experiment I. 

Following tape editing to eliminate inter-word "extraneous noise", 

the quantized histograms were punched out using the apparatus de- 
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scribed earlier. The time and difficulty in tape editing and paper- 

tape to card transcription (carried out by the University of 

London Atlas computer) proved to be one of the factors which 

caused the project to be abandoned when direct input to the 7094 

became feasible. 

7.9 	Experimental Results  

The boundaries for 

ments corresponded to sine 

630, 770, 920, 1130, 1450, 

earlier, the shortest zero 

be counted corresponded to 

divide-by-Ni  counters were  

the twelve channels in these experi-

wave frequencies of 150, 295, 400, 540, 

1700, 2380, and 3400 Hz. As mentioned 

crossing interval length which could 

a sine wave frequency of 5000 Hz. The 

set so as to produce an approximation 

to f
t  (T mi). The variable in the learning-recognition phases was 

the memory length, M. 

The results of the limited tests carried out are shown in 

the confusion matrices of Fig. 7.8. The percentage correct recog-

nition varied from 77%, for M = 3, to 88% for M = 7 or 9. The 

recognition reached maximum at this point for the noted conditions. 

For M = 9, the recognition of digits 1, 2, 4, 5, reached over 95%. 

The digit 3 was mistaken for 2 nearly 35% of the time. 

7.9.1 Conclusions  

At the conclusion of these initial tests we were faced 

with a difficult decision. The results were very promising (very 

comparable to those reported in the literature for other pre-

processing methods but with similar or higher bit rate) and other 

variables which could possibly increase the accuracy were still 

available for manipulation. Histogram weighting (divide-by-N. 
1 
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circuits) could be varied and signal preprocessing (particularly 

differentiation) was intended to be applied. 

However, three factors suggested that this course of 

action might not be the most fruitful. First, the paper-tape to 

card transcription was proving difficult because of erratic Atlas 

computer service. The paper tape input promised for the 7094 did 

not become available. Second, an FM tape recorder was acquired 

so that the Direct Data Channel, with its limited sampling rate, 

might be employed for effective high speed speech input and 

magnetic tape input. Finally, it was suggested--both by the de-

tailed review of the literature which now constitutes Chapters 

5 and 6, and by conversations with Professor H. B. Voelcker, 

visiting Imperial College at the time--that the role and signifi-

cance of zero crossings in automatic speech recognition and in 

clipped speech perception was not clearly understood. Although 

Voelcker's papers on zeros as informational attributes of signals 

had contributed significantly to the understanding of links among 

various modulation schemes, the zero-based signal theory develop-

ed therein had not been extended and applied to what were obvious-

ly zero-related speech phenomena--clipping and objective estimates 

of speech spectral parameters using zero crossings. 

We therefore decided that the short-term goal of realiz-

ing a reliable, limited vocabulary speech recognition machine--

partially accomplished--should be discarded in favour of the 

theoretical and experimental studies which constitute the latter 

and more significant portion of this thesis. These studies are 

intended to clarify the significance and role of zero crossings 

as parameters for use in automatic speech recognition machines 

and to provide links between zero crossings and more concept-

ually meaningful attributes of speech signals. 



8 	ZERO-BASED SIGNAL MODELS 

In chapter 1 we stated that this thesis is concerned with 

the interpretation of two intimately related themes: that clipped 

speech is intelligible, and that the same zero crossing interval 

sequence which defines the clipped speech waveform may be used to 

obtain objective estimates of certain speech spectral features. 

In preceding chapters we have described in detail some phenomena 

associated with clipped speech audition together with some theo-

ries proferred as explanations for them. We have also reviewed 

the use of zero crossing interval sequences in objective speech 

spectral feature estimation, and as patterns representative of the 

original speech signal. 

Yet, profound doubts linger concerning the conventional 

methods of dealing with these phenomena. Furthermore, there still 

exist many unexplained observations associated with clipped speech 

audition. For example, the power spectrum of Gaussian signals is, 

in some cases, roughly preserved after clipping. Of what relevance 

is this to voiced speech sounds--specifically vowels-- whose wave-

forms are not random but quasi-periodic? Experimentally, the 

power spectrum of vowels is often preserved after clipping insofar 

as the formant structure may still be observed in the post-clip-

ping speech spectrograms. But not all speech sounds are equally 

intelligible after clipping. Does this imply that the degree of 

post-clipping power spectrum preservation is somehow related to 
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the time-frequency characteristics of the original signal? 

Pre-clipping highpass filtering and/or differentiation en-

hances post-clipping intelligibility. Why? Is there a process 

which will ensure almost complete intelligibility of the clipped 

signal? For example, the single sideband clipped speech signal--

cos 4(t)-- is perceptually the same as the original speech wave-

form, s(t)=Im(t)lcos q(t). What is the relationship between 

clipped speech--sgn[s(t)]-- and SSB clipped speech--cos 4(t)? 

Zero crossing interval sequences can be processed so as to 

yield estimates of speech spectral features. Can these estimates 

be made exact? In other words, can the original signal spectrum 

be recreated exactly using only zero crossing information? If so, 

how? If not, then exactly what measure of information concerning 

the original signal do zero crossings constitute? 

Thus three basic questions remain: 

1: Why does clipping-- a process which ostensibly destroys 

all signal amplitude information except for polarity-- apparently 

preserve power spectrum features in some speech signals? 

2: What measure of information--concerning the original 

signal-- do zero crossings constitute? 

3: Are there signal transformations which will ensure that 

almost all information contained in the signal is available in its 

zero crossings and -- if the signal is speech -- will its intelli-

gibility be effectively undiminished by clipping? 

To answer these questions we must adopt a method of sig-

nal analysis which treats zero crossings as informational attri-

butes. Such a technique was formalized by H.B. Voelcker in 1966 

[V-6]. He applied these ideas to achieve a unified description of 

modulation processes. 
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In this chapter we review and expand upon this technique 

and demonstrate that it has important applications in speech sig-

nal analysis. In section 8.1 we will outline the transition 

from Fourier series sum to zero-based product representation of 

periodic signals and discuss basic relationships between the spec-

tra of the two, fundamental zero-based signal components. This 

section is based primarily on Voelcker's published [V-6] and un-

published [V-7, 9, 10] work. We then show (sec. 8.2, sec. 8.3) 

that extension of these models to analytic signals provides a 

link between some concepts of zero-based and conventional signal 

theory and--in certain cases--permits conclusions to be made 

about the zero crossings of the original signal. This work was 

accomplished primarily by S. Haavik [H-1]. 

We then apply these concepts to propose a zero-based 

interpretation of the unexplained observations in the psycho-

acoustic experiments reviewed in chapter 5. We argue that, 

apparently, the zero crossings of a speech signal generally con-

stitute only a partial description of that signal. At the same 

time, the zero crossings completely specify one of the components 

of the zero-based model. We show that the spectrum of this sig-

nal can be explicitly (though not simply) expressed in terms of 

the zero crossings and review the method devised by Voelcker for 

generating this signal. 

The latter part of the chapter is devoted to a theoretical 

discussion and experimental demonstration of the significance of 

zero-based signal theory and complex time domain concepts to 

practical analysis of simple signals. A large number of graphic 

examples are included to familiarize the reader with zero-based 

signal ideas and to prepare for the exploitation of these con-

cepts in the analysis of speech signals and clipping phenomena. 

Then, in chapters 9 and 10, we will approach the specific problem 

of explaining speech clipping phenomena and zero crossing signal 
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parameter estimation, respectively, using the tools of zero-based 

signal analysis. 

8.1 	Product Representation of Bandlimited Signals  

8.1.1 Periodic Signals  

In chapter 3 we noted that a signal s(t) periodic in T can 

be expressed as 

CO 

ft s(t) = 	ck ejk  
k=-0. 

(8-1) 

where the {ck} are complex Fourier series coefficients and, 

because s(t) is real, 

ck = c* -k 
	 (8-2) 

If s(t) is bandlimited to ±W Hz, where W = 11Q/2ff, then the finite 

Fourier series for a bandlimited periodic signal results: 

s(t) = X 	ck 
k=-n 

Letting w  = eift 

s(t) = 
k=-n 

ck 

We can write (8-5a) as  

ejkOt (8-3) 

,(8-4) 

wk . 	 (8-5a) 

2n -n  
s(t) = c-nw 	X ck 

k=0 
wk , (8 -5b) 

where ck = cn-k
/c
-n 

. This is a polynomial in w of degree 2n and 



2n 
=1-wl y. . . . 

i=1 

2n 2n 
w 771.' 

i=1 1 
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therefore, by the fundamental theorem of algebra, has 2n roots.' 

Thus (8-5b) can be written as 

2n 
s(t) = c_nw-n  TT (1 - y.w) , 	(8-5c) 

i=1 

where the roots yi  = lyilejPi are, in general, complex. This 

approach, suggested and developed by Voelcker [V-6], [V-7], is 

the key to zero-based signal theory. The following exposition 

(8.1.1, 8.1.2) is based largely upon his unpublished notes. 

Note that 

where 

c2n 
' = c

n
/c
-n 

= C  /c* 
n n 

ej2On  

n = arg[cn] 

(8-6) 

(8-7) 

Equating the summation in (8-5b) with the product in (8-5c) we 

find that 

2n 

+  ej2811 w2n) = TT (1 - yiw) 
1=1 

(8-8) 

Then, by equating coefficients of w2n in (8-8), we find that 

1 	To prove the fundamental theorem of algebra it is suffi-
cient to show that every polynomial has a root. This root can 
then be factored out leaving a polynomial of one less degree. 
This polynomial also has a root, etc. [L-20]. 
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2n 
TT Ii.l = leJ20111 = 1, 
i=1 

(8-9a) 

and 
2n 

P. = 2e . 
i=1 1  

(8 -9b) 

For this to obtain, some even number, 2nR, of the 

have lyil = 1 and/or there must exist n pairs 

roots y. must 

of roots such that 

liere2n11 +2n=2n.Thenotionthat1.1 Y3  

is not admissible since the expansion must still ob- 
IY .1 = 1/IYkI. 
= 1/1ykI . lyI 

tain if n is reduced by 

as  

unity. Therefore, (8-5c) can be rewritten 

2nR 	nC 
s(t)=Icnle-jen(w 1)2L1] I (1-eiMiw) 	(1-ly I). 

2nR 	 nc 
Using, from (8-9b), 6 = X p./2 + X p /2 , n 

i=1 1 	k=1 

(8-10a) can be further simplified to 

2nR 
= lc I TT (w 1/2e j11412 - we I 1/2  j 2  " ) n i=1  

n, 
(4-1/2e-iPi/2-ly lAiN./2).(w-1/2e—iPt/2  

st=1 

i=1 	k=1 
(8-10a) 

s (t) 

(8 -10b) 

Finally, noting that w = ejQt, (8-4), we can write 	after some 

manipulation -- 

	

2nR 	nc 
s(t) = (-1)111c I 17 2 sin -2-(t-T.) TT 2[coshQa 

	

n i=1 	1 i=1 
- cos11(t-T)]. 

(8-11) 
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Here 	T
i 
= -U /0 

r = -Pk/0 

and e2at = lyil or, az  = Inlyz1/2. s(t) is identically equal to 

zeroforrealvaluesoftime,t=T,or for complex values of 

time, z = Tt 	Here we define z to be the complex time 

variable. 

From (8-4) it follows that 

Re(z) = ftan l[Ww)/Re(w)]}/Q 	(8-12a) 

and 
	

Im(z) = -1n{[Re(w)]2  + [Im(w)]2}/20 . 	(8-12b) 

Hence, roots whose location on the w plane satisfy 

[Re(w)]2  + [Im(w)]2  = 1, 

i.e. roots on the unit circle of the w plane, lie on the real time 

axis of the z plane. 

Thus s(t) is described completely, except for a multiplica-

tive constant lc
n
I, by the location of its real and complex zeros. 

We note that the ambiguity as to multiplicative constant arises be-

cause we require only 2n zeros in (8-11) whereas, from (8-3), s(t) 

requires 2n complex Fourier coefficients (half of which are the 

complex conjugates of the other half) plus one real Fourier co-

efficient--the D.C. component--for complete description. There-

fore 

s(t) ccsRZ(t)  • sCZ(t)  

2nR 
, 

• where 	
sRZ(t) = 
	

0 -Fr 2 sin 	(t-T i) 
i=1 

is a wholly real zero signal , 

(8-13) 

(8-14) 
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nc 

and 	sc1(t)  --,1T 2[cos0a 
2=1 

cosQ(t-Tz)] (8-15) 

> 0 

is a wholly complex zero signal [V-6]. 

Here 	2nR  = number of real zeros or zero crossings per period T 

n 	= number of complex zero pairs per period T 

2nR + 2nc  = total number of zeros per period T 

Ti = location in time of ith real zero [0;i1..a] 

and 

TR, ±ila2,1 = location in (complex) time of th complex zero 
pair [0.,T,T] . 

8.1.2 Limiting Forms: Extensions to Aperiodic Signals  

Although aperiodic signals can be treated by considering 

them as periodic signals with infinite period, the periodic signal 

model, (8-11), should be expected to approach the aperiodic Hada-

mard form [X-5, p. 246] 

2nR=0. 	nc=.0 

s(t) = s(0) T  (1-t/T.) TT (1-tiz )-(1-t/z*) , (8-15) 
i=1 	1  Z=1 

(where z
Z 
= T

Z + jlaI and s(0) 0 0) as T becomes very large. 

2nR 	nC 
i.e. s(t) = lim (-1)111cnI T-r 2sin 2(t-T)T-T2[cosQa -cosQ(t-T2,)] 

T 	1=1 	Z=1 
4a° 

(8-16a) 

In (8-11), as 140., 0=27/T+0. It seems reasonable then to 

replace the trigonometric products with the first terms of their 

series expansions [V-9]: 



2nR 0  

= lim (-1)nlc I Tr 112[2(t-T ) 

T 
n  i=1 2  i  

4°3  

n, 
-1-7 2[1 + 1/2(s1a

2.
)2  + . . . -{1-1102(t7rd + . . .}] 

st=1 
(8 -16b) 

= lim 

T->00 
n40. 

(_1)ni 
2nR 	nC  

c 	ITT 0(t -T. )T-T 	+ (t-Tz)2 ] ,(8-16c) n 1=1 	t=1 

if (t-T.) < T for all i and (t-T9) < T for all L. 

After some rearrangement, we obtain 

2nR 	tic 	2nR 	nc  

s(t) = (-1)nlcn  le 	i l 	I Q(t-TiflzR. 197(1-t/Ti  )i-1-(1...t/z).(1-t/z*), i=1  

	

2,=1 	i=1 	t=1 

(8-17a) 
2nR 	nC 

with s(0) = (...1)nl
en 
 le 

1=1  TT 1.
1 L-1 
• 	1z0 1 2  

- 
(8 -17b) 

Therefore (8-15) follows from (8-17a) and (8-17b). The "if" 

conditions which permit (8-16c) to replace (8-16b) may not always 

be satisfied. For this reason, the above approach is--at best--

a plausibility argument for extending periodic model zero-based 

theory to the aperiodic case. Product formulations for aperiodic 

signals are discussed and examined in some detail by Requicha [R-7, 

part I], [L-10]. 

However, for the remainder of this thesis, we will be con-

cerned only with periodic signals and signal models. 

• + . • • • 
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8.1.3 Basic Spectral Relationships  

The factorization of s(t) into real zero (RZ) and com-

plex zero (CZ) components immediately suggests certain spectral 

relationships. For example, 

nR+nC 

	

s(t) = 	
c.ejkft 

k=-(nR+nC) 

nR  

RZ 	Rz .ejidlt s 	= 
k=-nR  

(8-18a) 

(8 -18b) 

and 

n
C  

s (t) = 	Czk 
.ejkat 

CZ 
k=-n

C  

(8-18c) 

where n = n
R
+nC

. Therefore, because 

	

s(t) 
cc sRZ(t)  • sCZ(t)  • 	

(8-19a) 

it follows from (8-18) that 

min{nR,k+nC} 

ck  cc- 	Rzn.Czk-n 	
(8-19b) 

n=max{-nR 
 ,k-n

C 
 } 

for 	nC  -n <k<n +n . 

This result may be obtained directly from the convolution 

theorem: 

i.e. sRZ  (0 • sCZ(t) 	{Rzk} * {Czk
} . 	(8-20) 

From (8-18) and (8-19) it is clear that s(t), sRz(t) and sCZ(t)  
are bandlimited to ±nO, ±ne, and ±j 	radians/sec., respectively, 

so that 
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nc2 = nRS1 + n
c 
. 	(8-21) 

We emphasize that {ck},  {Rzk} and {Czk}, the Fourier coefficients 

of s(t), sRZ(t) and scz(t),respectively, are complex. 

From the relationships established in sections 8.1.1, 2, 3 

the first principle regarding the significance of zero crossings 

as signal descriptors becomes obvious: 

P1: Zero crossings (real zeros) apparently constitute 

only a partial description of bandlimited signals. Specifically, 

for a periodic signal bandlimited to ±W = n1/2Tr Hz, the "percent-

age information" available in the form of zero crossings is 

I[s(t)] = 100 nR/(nR  + nc) 	(8-22) 

where 2nR 	
= the number of zero crossings, 

nC 	= the number of complex zero pairs, 

and 	2n = 2nR+2nC  = the total number of zeros, 

per period T. 

Only when nc  = 0 is a signal completely determined (except 

for a multiplicative constant) by its zero crossings. The reason-

ing behind the qualification on P1: will become clear in Chapter 

10. 

8.2 	Analytic Signal Formulation  

The relationships developed in the previous sections were 

based upon Fourier series factorization. In order to exploit the 

powerful tools of complex variable theory it is necessary to de-

rive certain zero-based relationships using Analytic signal 

theory. 
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If we again let t z = t + ja, the complex time variable, 

then the properties of m(z) [defined by equation (2-25)] on the 

complex z plane may be studied with z = t constituting the special 

but familiar case of m(t). 

H.B. Voelcker showed that the following properties obtain 

for m(z) [V-6]: 

1: m(z) is analytic, i.e., free of singularities, in the 

closed [a>0] upper half of the z plane (the UHP). Voelcker de-

fined this type of analyticity as Analyticity. 

2: m*(z) is analytic in the lower half [a<0] of the z 

plane (LHP). 

3: For m(t) bandlimited (i.e. 14,<03) m(z) is an entire 

finction of exponential order unity [R-7] and has singularities 

only for 1z1-4-= in the LHP. As lzlo. in the UHP, m(z); a finite 

constant. 

That Im [m(t) ] = H{Re [m(t) ]} 
	

(8-23) 

is a consequence of property 1: [V-6, p. 343]. 

8.2.1 Product Representations  

. The periodic analytic signal 

m(t)  = 	c. 
 ejkOt 

k=0 

can be factored in a manner similar to that applied to s(t) to 

yield 

wherelad=eQ"-.z.=T.+ja.is the location of the ith zero 1 	1 	1 	1 

and 

(8-24a) 

n 
m(t) = K T [1 - aie

jO(t-Ti)
] , (8-24b) 

i=1 
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rift) = 1 - aiei"t-Ti) 
	

(8-25) 

is termed the "elementary analytic signal." [H-1], [V-6] 

It is instructive to ask, at this point, whether know-

ledge concerning the zero locations of m(t) allows one to make 

any statements about the zeros of s(t). Furthermore--and per-

haps more importantly-- the question arises as to the existence 

of relationships between zero locations and other, more conven-

tional, signal attributes. We consider these problems in sec-

tions 8.2.3 and 8.2.2 respectively. 

8.2.2 Phase-Envelope Relationships  

The envelope, Im(01, and phase, 0(t), of an Analytic 

signal may be related by studying the behaviour of the logarithm 

of m(z) = Im(z)leJ4)(z)  on the z plane [V-6]: 

i.e., ln m(z) = lnlm(z)1+ j 0(z) . (8-26) 

Since m(z)÷a finite constant as Izi 	co in the UHP, ln m(z) may 

have--if the constant is zero-- a singularity at this point. 

The derivative of ln m(z), 

in' m(z) = m t(z)/m(z) 	(8-27) 

has no singularities for finite UHP z (a>0) provided that m(z) 

is free of UHP zeros. Under these conditions, it can be shown 

that [V-6] 

40(t) = H[ln'Im(t)1] 	(8-28) 

and 
	

ln' Im(t)I = -H[(1)'(t)]. 	(8-29) 

Analytic signals with no UHP zeros are termed minimum phase 

(MP) in analogy with network theory. Signals with zeros in both 

half-planes are termed non-minimum phase (NMP) while signals with 
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zeros only in the closed UHP (a>0) are maximum phase (MaxP) sig-

nals. 

In the general case (NMP), the instantaneous frequency, 

cr(t), and the derivative of the log envelope, 1dt m(t)I, are re-

lated by 

(1) '(t) = (1) 1 (0) - 
r a 	r a n 	

L
n_ + 7  n n  

17-1-2 	L  (t.TTn
)2  + a

n
2. 

n 	n 
(8-30a) 

r
n
(t-T

n
) 

and ln'Im(t) I = ln'im(0)1.+
T1: 

1znn 
+ (t-T )2  a 2 

(8-30b) 
n 	n 	n 

 

where the zeros of m(z) are located at zn = Tn 
+ jan and rn 

is 

the order of the zero at z
n 
[V-6, p. 345]. 

Therefore "phase and envelope fluctuations are wholly 

describable in terms of zeros, and thus the zeros of a bandlimit-

ed wave can be viewed as its informational attributes." [V-6]. 

8.2.3 Relationship Between the Zeros of s(t) and those of m(t)  

Using ri(t), equation (8-25), we may define an elementary 

real signal [V-6], [H-1] 

s.(0.--Ite[r.(0]=1-a.cos Qt. (8-31) 

The zeros of s.(t) occur at 

	

zn  =.[27rn t j cosh 1(1/ai)]/Q, 0 < ai 	1 	(8-32a) 

orzli =T11 =[2unIcos 	11(1/a.) ]/O, a.> 1 	(8-32b) 

whereas 	 rift) 

occur at 

z
n 
= T

n 
+ ja

n 
= [27rn + j ln(a )]/O, 0 < a

i 
< = . (8-33) 
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If 0 < a
i  < 1, then the zeros of s(t) occur in complex 

conjugate pairs, one per period T = 2Tr/O. As ai  1, these zeros 

approachtherealaAs(a=0)andwilena.=1, become second order 

real.zeros.Thusr.(0,for0<a„.11, represents a MP signal 

with one zero per period occuring in the LHP (a < 0). To illustrate 

(8-29), we note that 

in mi(t)mp  = in [1-aiej2t], 0 < a1 ..5 1 

• ejkQt/k. 	(8-34) 
k=1 1  

IbusReDmInt(Ompi=1111mi(0112 =-1aoskOt/k (8-35a) 
k=1 

and Im[ln mi(t)es,] = (Pi(t) = 	k = - L a. • sinkQt/k.(8-35b) 
k=l 

The derivatives of (8-35a) and (8-35b) are indeed a Hilbert pair. 

It follows that, although the zeros of the elementary real 

and analytic signals are "related", in the general case-- involving 

products of real or analytic signals-- knowledge of the zeros of 

m(t) certainly does not imply that the zeros of the real part of 

m(t)--s(t)-- are in any way simpler to locate. However, as Haavik 

has shown [H-1], knowledge of the gross nature of m(t) sometimes 

enables statements to be made about the overall distribution (i.e., 

whether complex or real) of the zeros of s(t). 

8.2.4 The Properties of MaxP Signals  

Using the elementary analytic signal--ri(t) = 

[1 - a
i
ej"t-Ti)]-- we can representa general MaxP 

signal as [H-1] 

R 1(t) = IRn(olej(NaxP(t)  

Analytic 

(8-36) 
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where 	 (8-37a) 1Rn(t)1 = FT 11 - a.ej0(t-Ti) 	1 < ai 
 < 

i=1 
 

n 
and 	

CbMaxP(t)  = 	"t) 	[H-1]  
i=1 (8 -37b) 

Iricol 
i.e., 

and yt) may be found by using logarithmic expansions: 

1n ri(t) = lnlri(t)1+ j 4i(t) 	(8-38a) 

co 
= [ln ai  - 	ai-kcoskO(t-ii)/k] 

k=1 

CO 

+ j[0(t-T.
1
)+11.+Xa.

1  ksink12(t-T.)/kl, k=1 

1 < a
i < = . 
	(8-38b)  

Alternatively, Ir.(01=D- -Fal2-2a-cosS-2( 11  so that 

Iri(01 > 0 for a.
1 
 > 1.2  

It is therefore evident that 

s
n
(t) = Re[Rn(t)] = 1Rn(t)1 cos (41axP(t) (8-39)  

has real zeros only when 

cos cpmaxp(t) = 0. 	 (8-40) 

We shall now show that these RZ's are the only zeros of s(t). 

The derivative of the elementary phase contributions to 4)MaxP(t) 

is found from (8-38b): 

CO 

cp. W-+-0[11-1.a -kcosid2(t-Td],1<a.<ce. 	(8-41) 
k=1 

• 2 	Let a
i 

= 1 + x, x > 0. Then  Ir'(Wmin = El-Fa?  1 

=x > 0. 
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Haavik showed [H-11] that cPil(t) is non-negative so that 

(P'maxp(t) = 	cp'.(t) > 0. This implies that ybmaxp(t) is a 
1=1 

monotone increasing function of time. From (8-38b), 

4.(t +T) -41(t) = 2T so that 

(p maxp(t+T) 
	

= nc2T 
	

(8-42) 

= 27n . 

Thus cosc
PMaxP  (0, and hence sn

(0, passes through odd multiples 

of 7/2 and 37/2 n times per period and therefore exhibits 2n zero 

crossings per period. Since s
n
(t) contains only 2n zeros, all of 

its zeros are real or zero crossings. 

2n 

sn(°= 	2 
(t-Ti).TT 2sin—  

i=1 
(8-43) 

As before, the zeros of s
n(t)--{T

i}-- are not simply related to 

thezerosofRII(0--{T.+ja.}. 

Since an RZ signal, by definition, is completely deter-

mined (except for a multiplicative constant) by its zero cross-

ings, it is interesting to ask whether operations exist such that 

a general RZ-CZ signal may be transformed into a wholly RZ signal. 

Given s(t) (and hence m(t) ) then a process which could convert 

m(t).to a MaxP signal would simultaneously transform s(t) into a 

wholly RZ signal. 

Haavik showed that at least two such processes exist [H-1]. 

We examine these in the next section. 

8.3 	Zero Conversion (CZ to RZ) Processes  

8.3.1 Differentiation and Sinewave Addition  

n 	
jk2t 12ck, k- > 0 

If 	Rn(t) = y ck  e 	, ck = 
k=0 	

ck' k  = 

(8-44a) 
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happens to be MaxP then 

n   
w = ejOt Fn(w) = kY0 	wk, 

(8 -44b) 

has roots only on and inside the unit circle in the w plane. 

S. Haavik showed that repeated differentiation of sn(t) = 

Re[R
n(t)] converts the signal (asymptotically) into a real zero 

signal by forcing Rn(t) to become MaxP. The following alternative 

proof, suggested by A. Requicha, also encompasses another zero 

conversion method: 

n-1 
We write F

n-1(w) = 	ck w
k  = F

n(w) - c' w
n
, 	(8-45) 

k=0 

n-1 
and note that IF

11-1(w)1 < 	X le;(1 • lw
k

I 	(8-46a) 
k=0 

On the unit circle, lwl = 1, so that 

n-1 
IFn-1(eie)1 

k=0 
I ci'c  I • (8-46b) 

Then Rouch6s theorem [M-6, p. 2] implies that if 

IFn-1(w)1< Ic 
 wn I, 	1141 < 1 
	

(8-47a) 

then c' w
n 

and n 
Fn
(w) = Fn-1(w) + c' w

n 
	 (8-47b) 

have the same number of zeros inside the unit circle. But c, wn n 
has n zeros, all at the origin. Therefore, from (8-46b), a 

sufficient condition for F
n(w) to have n zeros within the unit 

circle, and therefore be MaxP, is 

• 
	 (8-48) 
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It is clear then that if the highest frequency component is 

"sufficiently large", sn(t) will be wholly RZ. It is also 

evident that repeated differentiation will ultimately satisfy 

this criterion. This suggests a second principle concerned with 

zeros as informational attributes of signals: 

P2: Repeated differentiation of a bandlimited signal 

asymptotically converts the signal into a real zero signal. 

That is, differentiation tends to convert CZ's into RZ's--zero 

crossings. 

Combining P1: and P2: we find that 

I[s'(t)] 	I[s(t)] 	(8-49) 

and 
	

I[sn(t)] 4- 1 as n increases. 

That differentiation cannot decrease the number of zero crossings 

follows directly from Rolle's theorem. Equation (8-48) also im-

plies that--as first suggested by Haavik--simply increasing Icnl 

so that 

n-1 
Ic;11 > 	Ic;t1 	(8-50) 

k=0 

will ensure that s
n
(t) has only real zeros. Therefore, since a 

real.signal bandlimited to -1-W Hz must exhibit precisely 2W zeros 

per second, the addition of a sine wave of frequency W Hz and 

"sufficient amplitude" will convert all CZ's to RZ's. Thus: 

P3: Addition of a sinewave of frequency W Hz to a band-

limited (±W Hz), periodic signal s(t) will--if the sinewave 

amplitude is sufficient--convert all CZ's to RZ's. 

Extension of P2: and P3: to random signals is intuitively 

straightforward. For example, the mean zero crossing rate of the 

-m
th 

derivative of bandpass white Gaussian noise is [H-1],[R-10] 
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f  2m+3_f  2m+3 

 

(8-51) 

 

= 2 

   

    

0,M 2m+3 

 

fh
2m+1-f 2m+1 

 

       

where the noise is bandlimited to [ft, fh] Hz. For f = 0, 

(8-51) reduces to (6-4). Note especially that p 	p , 
0, m+1 	0,m 

8.3.2 	Bandpass Filtering  

Differentiation and sinewave addition convert CZ's to RZ's; 

highpass filtering sets a lower bound on the number of RZ's per 

period. This can be demonstrated by writing [V-11] 

1 ccejkft r ft 
s(t) = 	y 	L ck-ejk 	, 0 	n

1 * 
n (8-52) 

k=-n 	k=n
1 

and noting that s(t) has 2n zeros per period. 

n 
Now 	m(t) = 2 	c jkft 

 
k=n1 

Rearranging, we find that 

n-nl 

m(t) = 2 eiril t  
k=0 

= einlft 111112(t)1  

(0 1 eigt). 	(8-53a) 

k+ni 
ejkOt 
	

(8-53b) 

ejOLP(t) 
	

(8-53c) 

(8-54) 

n-ni 
where mu(t) = KT-T [1 - e3 C2(t -zi)] 

1=1 

is an (n-n1) zero lowpass analytic signal. 

Because 
	0(t) = nift + OLp(t) 	(8-55) 

[0(t+T) - 0(t)]min  = 2 nl, when mu(t) is MP. Conversely, if 

mu(t) is MaxP, then Ou(t+T) - (1)12(0 = 2Tr(n-n1) 
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and 

[O(t+T) - 0(t)] = 2nn1  + 2n(n-n1) = 2nn. 

Therefore 2nn
1 
 < Agt) 2nn 
' 

(8-56) 

and s(t) will exhibit not Zess than 2n
1 

and not more than 2n 

real zeros--zero crossings--per period. Hence 

P4: A periodic signal bandlimited to [n10/2w, n0/27] Hz 

exhibits not less than 2n
1 

zero crossings per period. 

8.3.3 Application to Clipped Speech Psychoacoustic Phenomena  

At this point we reiterate three of Licklider's "unexplain-

ed phenomena": 

L5. 	Pre-Clipping Differentiation: Pre-clipping speech 
differentiation results in higher word articulation scores 
(>90%)even for unpracticed listeners. 

L7. 	Ultra-Sonic Bias: Unless the level of an ultra-
sonic bias--applied to the speech waveform before clipping 
--is small compared to the speech signal level, the re-
sultant clipped speech signal will be more intelligible 
than it would be per se. 

L3. 	Highpass Filtering: Severe (e.g., infinite) peak 
clipping is less deleterious to intelligibility if the 
original speech is filtered so as to remove the low fre-
quency components. 

Equating L5 and P2, L7 and P3, and L3 and P4 we find that 

operations which condition s(t) by increasing the number of zero 

crossings per period (by effectively converting CZ's to RZ's) pro-

duce a more intelligible clipped speech waveform. We suspect, 

therefore, that the greater the percentage of zeros available as 

zero crossings then the greater amount of information preserved 

by clipping since clipping apparently affects only CZ's and leaves 

RZ's unaffected. (We shall assume, for the remainder of this 
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thesis, that in speech clipping systems the clipped signal is re-

bandlimited to the bandwidth of the original signal so that the 

total number of zeros per period is unchanged. In practice, this 

re-bandlimiting is often effectively accomplished by the electrical-

to-audio transducer, i.e., the headphones or loudspeaker.) 

However, before these ideas can be consolidated, the effect 

of clipping on complex zero configuration--and the links between 

zeros and spectral parameters--must be clarified. For example, 

the unrestricted manipulation of only one complex zero pair could 

significantly alter the spectral characteristics of the Fourier 

series polynomial. If clipping--which can be considered to be a 

member of a class of operations affecting only the complex zero 

component of a signal--can be shown to be somehow restricted in 

its freedom to manipulate complex zeros then arguments for gross 

preservation of the complex zero signal spectrum could be put for-

ward. Explanation of these phenomena requires an investigation 

into the geometry of the zeros of polynomials. 

Our first priority, however, is to review and establish 

some physical characteristics of RZ and CZ signals and to thus 

provide a more meaningful link between zeros and signal spectral 

characteristics. 

8.4 	Real Zero Signals  

Real zero signals possess the minimum bandwidth possible 

for any signal having the specified set of zero crossings; in this 

sense they are unique. A real periodic signal having 2nR  zero 

crossings per period and no complex zeros has bandwidth n0/27 Hz, 

where St = 27/T and s(t) is periodic in T. It follows directly 

from Rolle's Theorem that all derivatives of real zero signals 

are real zero. 
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8.4.1 The Spectrum of RZ Signals  

2nR 
Since sRZ(t)  =yr 2 sin (t—T

i 
 ) 2  i=1 

(8-57a) 

nR  

= 2 1 IRzkl cos(kQt + ek), 	(8-57b) 
k=0 

then the {Rz
k}'s and 

0kPs can be derived explicitly in terms 
of the {T.}'s. The following results are primarily of academic 

interest. In practice, the Fourier coefficients of sRz(t) are 

calculated by expanding (8-57a) to yield sRz(t) at 2nR  equispaced 

time intervals and then employing the discrete Fourier transform. 

Expanding (8-57) we find, after much manipulation, that 

the spectral components of 	(t) can be calculated as follows: 

i) k=nR  

so that 

IRz I r1R  

IRz I nR  

2nR  
cos (net + 8 	

2 ) = cos -- x(2n_t - 1 Ti), 	(8-58) nR   1=1 

= 1. 

ii) 0 < k < nR  
, 'PrIR  

IRzkl cos (ka + 0k
) = (-1) 	1 cos il 	

R 
[2(n -k)t + -c(ii ] 
2 

j=1  
(8-59) 

21 th $ where 	and Tcp,  is the sum of the elements in the j 
'11R = (k 	3 

row of a {2neci5nR} matrix 



T1  0 0 0 0 0 0 . . . 0 

0 T2  0 0 0 0 0 . . . 0 

0 0 13  0 0 0 0 . . . 0 
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T ¢ = 	• 

. 0 0 0 

0 0 0 0 0 0 0 0 . . T 2nR 

Here [q] is a {2nR34nR) matrix of signed l's where j of the 2nR  

2nlid)its in each row are given plus (+) signs in each of th . 

possible ways and the rest of the l's are given minus (-) signs. 

iii) k = 0 

(PnR  

IRzal cos 00 = (-1)
nR 
 1 cos '2  — 1  + T(pi) 	(8-60) 

j=1 

4)1141  = 	
2nR-1 	2n 

where where = -2- 	and To  is the sum of the elements 

nR-1  

in the
th  row of a {(2nR-1) x q5n ) matrix R   

T2 0 0 0 0 0 0 . . . . 0 

0 
T
3 
0 0 0 0 0 . . . . 0 

= [N] • 0 0 T4  • 

• • • 

0 0 0 0 0 0 0 0 • • • T2nR,  
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Here [N] is a f(2nR-1) x (Pn  matrix of signed l's where j of the 

possible ways and the rest of the l's are given minus (-) signs. 

The details of the preceding computational algorithm make 

it quite clear that the spectral nature 
ofsRZ(t) 

 is a very com-

plicated function of the zero crossing positions. However, from 

equations (8-58), (8-59), and (8-60), it is evident that, for a 

given number of RZ's, 2nR, 

2n) IRzkI 	. max 

	
, 0 < k nR 

2 
	k = 0 

(8-61) 

When k = nR, IRzI  is, as per (8-58), unity. 

8.4.2 Real Zero Interpolation  

A real zero signal is specified entirely by its zero cross-

ing (RZ) positions. Thus, clipping-- which preserves RZ positions 

-- is a lossless process for real zero signals. Given the set of 

zerocrossingpositions,{1. }, then s
RZ 
 (0 can be generated using 

equation (8-14), 

2nR 
i.e., 	sRZ(t) 
	

0 TT = 	2 sin --(t-Ti  ) . 2  i=1 

, 	• 
However, this requires knowledge of both Q and all 2nR  zero cross- 

ings before sRz(t) can be calculated. 

R  

(nR-1,) 
(2n

R
-41's in each row are given plus (+) sign in each of the 

nR-1 



263 

Voelcker showed that s
RZ  (t) for arbitrary (i.e. aperiodic) 

signals can be approximated closely, or with arbitrary accuracy,by 

invoking the phase-envelope relationships noted in 8.2.2([V-6, pt. 

II): 

i.e., writin
gsRZ(t)  = Is

Rz(01 cos cps(t) , 	(8-62) 
RZ 

it can be shown that 

.'(t) = 	71-6 (t-Ti) 	 (8-63) 
sRZ 

and that lni lsRz(01 = y 1/(t-Ti) 	(8-64a) 

(8-64b) = 1/{(P t  ( t)} 
RZ 

Then, from (8-62), (8-63), and (8-64) 

sRZ(t)  = sgn[s(t)] • exp { 

-I 

	

i d(t-Ti)] dt}. (8-65) 

This method, defined by Voelcker as Real Zero Interpolation, os-

tensibly removes the periodicity criterion implicit in (8-14). The 

requirement that all zero crossing positions be known is not re-

laxed since implementation of (8-65) requires a real, non-ideal 

Hilbert transformer which is characterized by finite memory. How-

ever, (8-65) makes is possible to generate an approximation to 

sRZ(0; because the impulse response of a Hilbert transformer falls 

off as l/t (sec. 2.3.2), the influence of zero crossings remote 

from t = 0 becomes negligible if the non-ideal Hilbert transformer 

is "sufficiently long." Fig. 8.1, from [V-6, pt. II], illustrates 

the operation of the Real Zero Interpolator. 
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Hilbert 
Transform 

Delayed 
Pulses 

Integrator 

Binary 
Divider 

Exponential 
Function 

Generator 
(Diode) 

Multiplier 
(Gate) 

sgriER z(t) 
Pulse 

Generator 
Hilbert 
Network 

(Delay To) 

sgn[s
RZ  (t-T *  

RZ ("1;)  

Fig. 8.1 The Real Zero Interpolator, block diagram. (From [V-6].) 

The significance of sRZ(t) to clipped speech studies is 

that all information needed to construct the clipped speech wave-

form is carried bysRZ(t) 
 in a signal of minimum bandwidth, 

i.e., 	sgn[s(t)] = sgn [sRZ(t)] • 	(8-66) 

We note here, for future reference, that the output of the 

Real Zero Interpolator, for speech input, is almost completely 

unintelligible. Thus, the intelligibility of clipped speech 

depends toxin more than preservation of zero crossing locations. 

Specifically, the nature of the interpolating waveform (i.e., 

clipped speech results from zero crossing interpolation with a 

rectangular waveform) is of great importance. V. Sobolev and 

V. Telepnev have shown, for example [S-17], that zero crossing 

interpolation with waveforms of the form 

s(t) = (-1)isin[v(t-T.)/Ar], 	(8-67) 

(a single sine wave half-cycle interpolated between zero crossings) 
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or silt) = (-1)ifsin[Tr(t-Ti)/ATi] + k(Ti) sin[37(t-Ti)/ATO , 

(8-68) 

(a two-term square wave approximation half-cycle interpolated 

between adjacent zero crossings) --where AT. = T
1+1 

- T. and 
1 

k(rd=AT.-- produces speech which is subjectively more 

pleasant than rectangular interpolated (clipped) speech. 

8.5 	Complex Zero Signals  

A wholly complex zero, bandlimited periodic signal may 

be defined as 

nc  
sCZ (t) = I l 2[cosh0at - cos0(t-T )] t=1 

0 

(8-69) 

where the n complex zero pairs occur at complex times z = T ±ja . 

Observe that the elementary complex zero signal, in 

(8-69), 2[coshOat  - cos0(t-Td], is periodic in T = 2w/0 whereas 

the elementary real zero signal, 2 sin 0 	1) 
,is periodic in 2T. 

Thus--by the product-convolution relationship--addition of each 

complex zero pair to a signal increases the signal bandwidth by 

0/2n.  Hz. In contrast, each additional real zero increments the 

bandwidth by 1/2(0/27)Hz. However, a periodic signal must have an 

even number of real zeros and real zeros must therefore be added 

in pairs. For example, in a bandwidth preserving CZ conversion 

process--e.g., differentiation-- each converted complex zero 

pair becomes two real zeros. 

Real zeros--zero crossings-- are overt signal attributes. 

Complex zeros are ostensibly covert, or hidden. Their presence, 
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however, may often be inferred from other signal attributes. In 
the following two sections we will discuss the nature of complex 
zero signals and methods of determining the complex zero positions. 

8.5.1 Determination of sCZ (t)  
i) Division  

Since 	s(t) m  sRZ (t) 
	

sCZ(t) 	 (8-70) ' 

sCZ (0 may be extracted from s(t) by noting that 

2nR  
sCZ coccs(ty[ Tr 2 sin 2  —(t-T  .a.) • 

i=1 
(8-71) 

s(t) is synthesized using the product formulation, eq. (8-14), RZ 
which is expanded in terms of the zero crossings of the original 
signal. As will be noted in sec. 8.6, the positions of zero 
crossings may be defined to an arbitrary degree of precision by 
bandlimited interpolation of the Nyquist samples using the FFT 
implementation of the discrete Fourier transform. 

For example, a bandlimited periodic square wave of unity 
amplitude has the Fourier series representation 

s(t) = —452 y sin Ic.C2t  
Tr k=1 

(k odd) 

(8-72) 

where SZ = 271./T and s(t) is bandlimited to iL52/27r Hz. But 

sin nS2t = (n) cosn-1 sina-(3)cosn-3Qt.sin3  t + . 1  
(8-73a) 
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,n n-1 0 n n-3 1 ,n n-5 2 = sinQt[t.
1)cos 	Rtix - (

3)cos 	0t*x + (5)cos 	Rt-x - +] 

(8-73b) 

where x= (1 - cos 52t). Using the Binomial expansion, 

(1 - cos220n = 	(-1)i(.)cos2i2t • i=0 

Therefore, from (8-72) and (8-73), 

40 	1 L (k+1)/2 1 	1  -- 	(-1).14-1( k  )cosk-2j+1  s(t) = 	{ 0t 
k=1 j=0 	2j-1 

(k odd) 

j-1 
[ 	(-1)i(31)cos2iftp. sinft . 
i=0 

It is clear that, for the square wave, 

(8-74) 

(8-75) 

sRZ 	2 (t) = 4 sin - 	2 t • sin —(t-T/2) 

= 4 sin 2 — t • cos 2— t 

= 2 sin 0t 	, 	 (8-76) 

and s
CZ  (t) is simply (8-75) with the factor 2 sin 0t removed. 

Figures 8.2. and 8.3 illustrate the following features 

of the bandlimited square wave, (8-72), with L = 15 and 31, 

respectively, and 0 = 1. 

a) s(t)  = sRZ(t)  • sCZ(t) 
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b) s
RZ
(t) = TT 2 sin P  --(t-T

i 
 ) 

2  1=1 
n
C  

c) sCZ(t)  = TT 2[coshOa 
2=1 

cosP(t - Tit)] 

d) Is MI 
CZ 

e) Root map: the RZ-CZ positions on the complex 
time plane. 

(The method of complex zero location will be discussed.in sec. 

8.6). Note that the proportionality constant which makes the 

rms value of s(t) equal to unity has been omitted from the dia-

grams. Multiplication of all s(t) values by 1%1 (2/v) will 

accomplish this (see (8-11) ); Here, Ic I = 1/L. 

In practice, dividing s(t) by sRz(t) to obtain scz(t) 

is complicated by the fact that s(t) = sRZ(t) = 0 at all real 

zeros or zero crossings. This problem is solved using 1' 

HOpital's Rule: 

	

+At) 	
(8-77) 

sRZ(t)  

	

s(t) 	s' (t)  _ 	s(Ti 	. lim 	- lim s 	(0 	s'RZ  (0 	sRZ  (T.+ At) 1 

t4T. 	t4- 1 	
ri 

ii) Deconvolution 

Equations (8-19) and (8-20) express the basic con-

volution relationship which yields the Fourier series co-

efficient of s(t), {ck}, given those of sRZ(t), {Rzk 
 } and 

scz (t ) ,  {czk}  ' 

min {nR' 
k+n } 

Rzn • Czk-n 
n = max{ -nR' k-n

c  } 

-n -n <k<n +n C R— CR 

(8-78a) 
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or 	{c} cc {Rz}*{Cz) • 	 (8-78h) 

{c} is often called the serial product of (Rz} and {Cz} because 

the sequence {c} consists of the coefficients of the polynomial 

which is the product of the polynomials represented by {Rz} and 

{Cz} [B-16; p. 35]. 

When {c} and {Rz} are known, {Cz} may be found by long 

division of polynomials. Polynomial division is equivalent to 

calculating {Cz} using the following relationships [B-16, pp. 

35-36]. 

-(nR+nc) / Rz-nR , k = -n 

k-1 
c-nek - 	Cz •Rz k- j j 	-nR  j=-n , -nC<k<0 

Cz -k ' 
	0<kri C 	(8-79) 

Note that each subsequent value of Czk  depends upon all previous 

values of Czk 
calculated; thus roundoff errors may accumulate 

rapidly if the values of {c} and Mei are not accurate. 

iii) Analytic Factorization  

Analytic factorization of polynomials higher than the 2
nd 

degree is cumbersome and only very specific solutions exist. How-

ever, certain waveforms possess symmetries which enable conditions 

--similar to those used in evaluated Fourier integrals (e.g., [P-2, 

pp. 10-12] ) --to be formulated and used to effect factorization 

of higher degree polynomials. 

n 
Generally, f

n
(w) = 1(..f

np
(w) = K ri (w - w

i
) , 

i=1 

Czk Rz 
-nR 
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so that fnp
(w) = wnn -w 	w n-1 {(

1
) 
 

+wn-2{(n) w.1 
2 j +(-1)114 n 

(8-80) 

where . (n 	() w. 	i  consists of 	terms, each involving all the I 3 
possib_e selections of the n roots taken i at a time. For in- 

stance, 

f4p(w) 
4 

= 	- w ) 
i=1 

(8-81a) 

= w4 - w3 • (w1+w2+w3+w4) 

• (w w 4.w w 4.w w 	w +w w +w w 1 
1-2 —1-3 —1-4 — 2-3 —2-4-3.- 4' 

▪ (w w w +w w w +w w 3w +w w 3w4  ) 

+w1w2w3w4  , unless a1 and/or a2 = 1. 	(8 -81b) 

Because our polynomials are actually Fourier series representing 

real signals, we can make the following statements concerning the 

roots of (8-81): 

1) If w
1
= a

1
e3e1, w2= a2eje2  then w3= ejel/a1  and 

w4= eje2/a2  , unless a1 and/or a2 = 1: 

ii) 1w1w2w3w41  = 1  

iii) i wl+w2 lw3+w4 1  = 1w1w2w3+w1w2w4+w1w3w4+w2w3w41 • 

iv) Im[ wiw2+wiw3+wiw4+w2w3+w2w4+w3w4] = 0 . 

Two examples follow in which 6 and 10 degree polynomials 

representing bandlimited square waves (BW = 3 and 5 C2, respective-

ly) are factored analytically by invoking waveform symmetry con-

ditions and equation (8-81): 

+w2 

-w 



wmwn
, min, which sum to 5/3 and that 10 1 consists of 210 terms 

s(t) = sinQt + sin3Qt/3 + sin50/5 	(8-85) 

On the w plane, the roots must lie at 

	

i) 	1, -1 -- the real zeros 

and 	ii) 	reJ , e rej 
0—e), rej(Ir+0), re-JO 

eje/r, ej°-41)/r, ei°4-6)/r and e
je/r, 	(8-86) 

again, by virtue of waveform symmetries. 

We find that 
1(02) 

 wj consists of 45 terms of the form 
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Example 1: A 6th degree square wave, s(t) = sinft + sin3S2t/3 . 

(8-82) 

On the w plane, the roots must lie at 

i) 1, -1 -- the real zeros 

and 	ii) jx, j/x, -jx, and -j/x, 	(8-83) 

by virtue of symmetry conditions. Also, 

wiw2+win+wlw4+win+wiw6 
+w2w3+w2w4+w2w5+w2w6  

+w3w4+w3w5+w3w6  
+w4w5+w4w6  

414w6 = 0 , 	(8-84) 

because the coefficient of,sinnt is zero. Inserting the roots of 

(8-83) into (8-84) we find that x2 = -2 I/5 so that x = j 1.93 or 

j 0.52. We shall later confirm these results with computer 

factorization of (8-82). 

Example 2: A 10
th 

degree square wave, 
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of the form wmwmwowp, m, n, o, pall different integers, which 

sum to -4/3. After very much manipulation we derive two equations: 

cos20 • [r2 + r
-2

] = -4/3 	 (8-87a) 

and 	[r4 + r 4] + [r2 + r
2
] • 2 cos26 + 2 cos4e = 3. (8-87b) 

Letting r = ell), we obtain 

cos28 • cosh2cp = -2/3 	(8-87c) 

and 	2 cosh4c1) + 4 cosh4 • cos20 + 2 cos40 = 3 . 	(8-87d) 

Solving, r = e0.476 = 1.61 and 6 = 58.45°. 

This type of factorization procedure is generally supplant-

ed by iterative computer based methods when dealing with realistic 

speech signal models (or actual waveforms) which involve equations 

of at least the 50th degree. 

8.5.2 	Inference of CZ Positions in Real Time  

Examination of Figs. 8.2 and 8.3 reveals that the complex 

zero pairs have positions in real time which are associated with 

the square wave ripple. The following theorem shows that this 

should be true: 

Theorem:  Between two successive maxima of a bandlimited periodic 

signal, there must be a complex zero pair--provided that there is 

not a minimum of sRZ  (t) between these points. 

We say that "successive maxima" occur at t1  and t
2 
if 

i) s'(t1) = s'(t2) = 0 
	

(8-88) 

and 
	

ii) I is(t0)1<min{ls(t1)1,1s(t2)1}, where t1<to<t2
. 
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Condition ii) demands that s'(t) = 0 for some t such that t1<t<t2. 

Proof: As usual, we may write 

nc  
s(t) .sRZ  (0 	2[coshOo - cosQ(t-T )] 

k=1 
(8-89) 

with (for example) positive maxima of s(t) occurring at t = t
1
,t
2 

and IsRz (01 ;, min {IsR2  (ti) I, IsRz (t2)1}. That is, sit2(t) 

monotonically increases, or decreases, between t1  and t2. 

Assume that there is no complex zero pair between t
1 and 

t2. Then, for any Z = 1, 2, . . . n and t
1 < t < t2' 

2[coshOat  - cos52(t-it)]'?. Kt 	(8-90) 

where K = min[2[cosiffla-cos52(t
1-T)], 2[coshOa-cos0(t2-Td]} . 

Calculate the following sequence:,  

where 

s (t) = s 	(t) Z-1 • {2[coshRat-cos0(t-Td] , Z = 1, .. nc  

(8-92) 

s0(t) = sRZ(t) 	(8-93) 

and 	 snC(t) = s(t) 	. 	(8-94) 

Then, for t
1 

< t < t
2 and 1 < R < n C' 

s 	= s 	(0 • 2[coshQa -cosO(t-T )] 

>s Z-1  (0 • K '  

(8-95a) 

(8-95b) 

That is to say, all points between t
1 and t2 are multiplied by a 

value which is greater than or equal to Kt. Thus, if there is no 

CZ between t
1 
 and t

2 
there can be no s(t

o
)
1 

t
l 

< t
o 

< t2, such 
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that Is(t
o
)1 < min {Is(t1)I,  Is(t2)I}. Hence s(t1

) and s(t
2
) can-

not, by condition ii) of our definition, be successive maxima. 

Q.E.D. 

We emphasize here that the converse does not obtain; the 

presence of a CZ pair is not always signalled by the presence of 

"adjacent maxima." Thus, there must be a complex zero pair between 

adjacent ripple maxima on a square wave. Close examination of 

Figs. 8.2 and 8.3 reveals that the CZ's doe not occur exactly 

at the minimum between the adjacent maxima. We note that it can 

be shown that for 

2n-1 
sin kt  s(t) = 21 	1 	9 

k=1 
(k odd) 

s'(t) _-2
7 
 sin(2nt)/sin(t) 

so that the ripple peaks of s(t) occur at t = m7/2n, m = 1, 3, 5.. 

and ripple minima of s(t) occur at t = m7/2n, m = 2, 4, 6,... 

It follows that ripple on a square wave bandlimited to IW=1:nfZ/211.  Hz 

(n odd) occurs at a frequency W Hz. There are (n-2) ripple minima, 

each associated with a CZ pair, and 2 real zeros so that, as per 

(8-21b), n = nR  + nc  = (2) + (n-2). In sec. 8.7 we shall examine 

further the determination of the positions of CZ's in the complex 

time domain. 

8.6 	Computer Factorization of Complex Polynomials  

8.6.1 Difficulties in Root Finding  

Location of the roots of polynomials with complex co-

efficients may be carried out in a number of ways. Among the more 



w14 
= 13.992 

w15 

 

w16 

17 

2.519 

2.813 [R-3, 

and 

16.731 P• 186]. 
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well known techniques are the secant method, the Newton-Raphson 

method and the methods of Muller and Laguerre [R-3, ch. 10]. The 

condition of the polynomial is important in this respect. A 

polynomial is ill-condititioned if very small changes in its co-

efficients result in large changes in its zero locations. For 

example, the polynomial 

20 
f(w) = 1 I (w-wi), where wi  = i 

i=1 

= w20 - 210 w19 + 20, 615 w18 - 	+20!  

is highly ill-conditioned. Replacement of -210 by -(210+2-23) 

[-210.000000119] results in 

The viability of the various factorization methods and accuracy 

considerations are discussed by E. Bareiss in [R-3] and by Delves 

and Lyness [D-9]. 

Fortunately, as we shall see, the roots of the polynomials 

we wish to factorize are such that the polynomials are well-

conditioned. This is the case because the roots lie either on 

the unit circle--and therefore have magnitude unity-- or occur 

in reflected pairs at rej  and ej  /r 	Hence the coefficient 

of w
2n 

and w
o is 1 [L-21, 22, 23]. 

8.6.2 The Factorization Algorithm 

The technique used for polynomial factorization was 
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chosen primarily because i) the algorithm was reasonably 

efficient and ii) a proven subroutine using the technique was 

available. The subroutine--NEWRA (now listed in [X-6])--

combines the Newton-Raphson technique with polynomial defla-

tion, implicit removal of roots as they are located. 

Given a polynomial 

f(w) = a
2n
w2n+a

2n-1w
2n-1+....+a

1
w+a

0 

2n 
K TT 
i=1 

(8-96a) 

(8-96b) 

then a root of f(w) may be found by making an estimate of the 

root, w
k' 

and using the Newton-Raphson technique [R-2, p. 332] 

to yield a better estimate, wk+1' of the true root. 

i.e., 	w
ktl 

 = wk  - f(wk)/f'(wk), 
	(8-97) 

If the iterated estimate diverges--Iwk+l-wki grows larger-- 

then the polynomial 

g(w) = w2n•f(1/w) = aow
2n
+alw 

2n-1 
+—a2n-lw+a2n (8-98) 

whose roots are the reciprocals of those of f(w) is considered. 

Iteration of either f(w) or g(w) will therefore, effectively, 

yield a root of f(w). 

Note that 

ft(w) = 2n-a2n
w2n-1+(2n-1).a2n-1w

2n-2
+....+a1 	(8-99a) 

2n 
= f(w) • 1 	(w-wk)-1 (8-99b) 

k=1 



h(w) = f(w)/ TI  (w-wi) 
i=1 

But 	ht(w)/h(w) = f l(w)/f(w) - -wi)
-1
. 

• 

When m of the 2n roots [m>1] have been found, the polynomial 

of which we desire a root is 
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That is, (8-97) may be replaced by 

wk+1 = wk 	[f'(wk)/f(wk) - 	(11,-wi)
-1 
]
-1 

i.1 
(8-102) 

during the iteration sequence whose purpose is to find the 
s 

111+1t  root of f(w). For m=0, (8-102) reduces to (8-97). 

8.6.3 Accuracy Tests  

Subroutine NEWRA was tested by factorizing polynomials 

representing square waves of various degrees. For 

L 
L s(t) = 40 — L sin k0t/k , 	(8-103) 

T.  k=1 
(k odd) 

f(w) = K [-jw
2L/L - jw2L-2/(L-2) - ..... 

	+ j W2/(L-2) + j/L]. 	(8-104) 

For example, when L = 7 and 0 = 1 : 

f(w) = K [-jw14/7  - jw12/5  - jw10/3 - jw8  

+ jw6 + jw4/3  + jw2/5  + j/7]. 	(8-105) 



280 

The theorem derived in sec. 8.5.2 implies that--due to the ripple 

associated with a bandlimited square wave--the polynomial is 

well-conditioned; that is, the zeros are "uniformly" distribu-

ted in angle about the origin in the w plane because they are 

associated with ripple in the z plane. 

The roots were located iteratively and are shown in 

Fig, 8.2e and Fig. 8.3e for L = 15 (30 degree polynomial) and 

L = 31 (62 degree polynomial), respectively. The transformation 

w = ej2z 	e jRt -e 
 -Ro 	• (8-106) 

has been used to map the roots of f(w) from the w plane to the 

complex time [z] domain. The accuracy of the factorization was 

checked by substituting the derived roots into the original 

equation. In all cases the result (theoretically zero) was 

less than 10-3. In addition, the original waveforms (s(t), 

sRZ (t) and sCZ  (t)) were synthesized using the derived roots in 

the product formulation. In fact, all waveforms in Figs. 8.2 

and 8.3 were synthesized by expanding sRZ(0  and s (0 in 
CZ 

terms of the derived real zeros, eq. (8-14), and complex zero 

pairs, eq. (8-15), respectively, and then forming the product 

of sRZ(t) and sCZ  (t) to yield s(t). Multiplication of all s(t) 

values by 2/7 IcnI 	2/157 for L = 15, 2/317 for L = 31 -- re-

sults in the expected rms value of unity for s(t). 

Despite the, accuracy of the factorization subroutine, 

tests on actual speech sounds revealed that reduction of the 

degree of the polynomial to be factorized was in the best 

interests of improved accuracy. For this reason, a method of 

hybrid factorization was developed and used for complex zero 

location of speech signals (sec. 9.4.1). 



8.6.4 Complex Zero Configurations: Some Experimental Observations  

In order to provide some familiarity with complex zero 

concepts and configurations, we have factorized the polynomial 

representing 

2 	15  sin(ka)Tsin(kt)  
sl(t)  = a(7-a) 	L  k=1 	k2 

(8-107) 

for various values of a. This Fourier series represents a 

"triangular" wave of period T = 27 seconds with peaks occuring 

at t = a, a+T/2 . (Fig. 8.18a.) For a = 0, the "triangular" 

wave becomes a "sawtooth" while when a = 7/2, the "triangular" 

wave becomes symmetrical about t = 0, ±7/2, ±r, ••• . Figures 

8.4a, 8.5a, 8.6a, 8.7a, 8.8a, 8.9a, 8.10a, and 8.11a show 

s
1
(t) for a = 0, 7/14, 7/7, . . . 7/2. The "b" and "c" 

diagrams of the figures show the respective RZ signals, sRz(t), 

(all equal to sin t) and the CZ signals, sCZ(t)' sRZ(t)' 
sCZ (t), and s

1(t) are all 
synthesized using the RZ's and CZ's 

depicted in Figs. 8.4e-8.11e, respectively. The "d" diagrams 

of each figure show the logarithm of the amplitude spectrum of 

sCZ (0 re 0.001. 

In Figs. 8.11a-8.17a, the signal 

4 	
y, k odd sin(ka)-sin(kt) 	(8-108) 

s2(t) - 7.a  k=1 	k2 

a progressively clipped symmetrical triangular wave of period T 

= 27 seconds. (Fig. 8.18b.) When a= 7/2, si(t) = s2(t); as 

a+0, s2(t) becomes progressively clipped. As before, the "b" 

and "c" diagrams of the figures show the respective synthesized 

RZ and CZ signals while the "d" and "e" diagrams show the log iScz(f)I 
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15 

StT)=C2/(ALPHA(PI-.ALPHA))):E: SIN(N•ALPHA).SIN(NI.T)/N**2 

N=1 

COMPLEX ZEROS// TIME IN MILLISECONDS 

ALPHA=0 	ALPHA=PI/14 

390.9281 J 185.5483 0.0 +/- J 831..5760 

805.3395 J 217.6496 520.4454 +/-• J 338.2498 

1216.1935 J 228.9254 970.1765 +/- J 374.8076 

1626.1606 +/-• J 228.9232 1397.8863 J 384.0616 

2036.4177 +/••• J 219,1010 1819.4108 +/- J 381.0325 

2448.5605 J 196.5045 2240.4705 J 367.2570 

2869.3292 +/-•' J 144.7215 2668.1998 J 338.8469 

3413.8508 +/- J 144.7215 3141.5873 J 296.7100 

3834.6194 +/..• J 196.5044 3614.9802 J 338.8469 

4246.7623 J 219.1010 4042.7095 J 367.2570 

4657.0193 +/* J 228.9232 4463.7691 +/.•. J 381.0325 

506609864 J 228.9254 4885.2937 J 384.0616 

5477.8404 J 2/7.6496 5313.0035 +/a.. J 374.8076 

5892.2519 J 185.5483 5762.7346 J 33802497 

Ref .FIG. 8.4 Ref. FIG. 8.5 
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15 

:
S(T)=(2/(ALPHA(PI....ALPHA))) 	SIN(NoALPHA)4,SIN(N0T)/N**2 

N=I 

ALPHA=P1/7 	 ALPHA=3.P1/14 

COMPLEX ZEROS// T/ME IN MILLISECONDS 

.0 	J 	734.1893 	0.0 

.o 	j 	364.3000 	342.4563 

J 

J 

611.9049 

394.1668 

744.3586 J 353.5619 964.4964 +/- J 361.3032 

1185.8023 J 379.6491 1400.4975 J 382o5490 

1610.1615 +/- J 384.4113 1822.6156 J 383.8903 

2030.7522 J 377.1398 2243.1125 J 372.1940 

2453.4827 +/*.m J 357.4752 2670.1306 J 345.0571 

2892.9940 J 318.6825 3141.5873 J 304.8662 

3300.1859 +/." J 318.6825 3613.0494 +/•.. J 345.0571 

3829.6973 +/- J 357.4752 4040.0674 J 372.1941 

4252.4277 J 377.1398 4460.5693 +/A. J 383.8903 

467300185 J 384.4113 4882.6825 +/..• J 382.5490 

5097.3776 +/8.' J 379.6491 5318.6835 361.3032 

5538.8213 +4". J 353.5619 5940.7237 +/... 394.1668 

Ref. FIG. 8.6 	Ref. FIG.  8.7 
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15 

:StT)...(2/tALPHA(PIALPHA//) 	S/N(N•ALPHA),SIN(NoT)/N**2 

N=1 

ALPHA=2•PI/7 	ALPHA=5.PI/14 

COMPLEX ZEROS,/ TIME /N MILLISECONDS 

169.3257 J 462.8560 0.0 4/- J 421.4052 

609,7062 +/- J 389.7043 4/905884 +/- J 414,3765 

1183,1398 J 366.1033 849.1005 +/••• J 38444769 

1615.1604 +/- J 384,7700 1401.4751 J 36947138 

2035.7023 J 382.9798 1830.4115 J 386.9803 

2457.2795 J 366.0712 2249.9749 J 381.9554 

2895.4966 +/••• J 329.5891 2675.0214 J 358.5050 

3387.6833 J 329.5891 3141.5873 +/- J 322,7324 

3825.9004 J 366.0711 3608.1586 J 358.5050 

4247.4777 +/a.. J 382.9798 4033.2050 J 38/09554 

4668.0196 J 384.7700 4452.7684 +/..• J 386.9803 

5100,0401 J 366.1033 4881.7048 +/- J 369.7133 

5673.4738 J 389.7043 5434.0795 J 384.4769 

6113.8542 J 462.8560 - 5863.5916 +/••• J 414.3766 

Ref . FIG. 8.8 	 Ref . FIG. 8.9 
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SAWTOOTH 	 293 

15 

S(T)=(2/(ALPHA(PI"ALPHA)
),:"E: 

 SIN(N4DALPHA).SIN(NoT)/N**2 

N=1 

ALPHA=3•PI/7 	ALPHA=PI/2 

COMPLEX ZEROS// TIME IN MILLISECONDS 

226.8819 +/" J 388.7121 0.0 J 35503194 

652.3696 +/- J 400.1266 454.7640 +/" J 381.6530 

1077.6081 +/" J 380.0545 87507541 +/" J 393.5808 

1620.3742 +/- J 372.9579 1300.8278 +1- J 376.2999 

2046.9420 J 389,6929 1840.7629 +/- J 376.2993 

2466.3798 +/- J 381.1516 2265.8369 +/- J 393.5795 

2900.2744 +/" J 350.4972 2686.8275 +/- J 381.6511 

3382.2056 +/" J 350.4972 3141.5873 +/- J 355.3168 

3816.8001 +/- J 381,15/6 3596.3524 +/" J 38106511 

4236.2379 +/- J 389.6929 4017.3430 +/- J 393,5795 

4662,8057 +/" J 372.9579 4442.4171 +/'- J 376.2993 

5205.5718 +/" J 380.0545 4982.3522 +/" J 376.2999 

5630.8143 +/- J 400.1266 5407.4258 +/..•.1 39305808 

6056.2980 +/" J 388.7121 5828.4160 +/" J 381.6530 

Ref . FIG*  8.10 Ref. FIG. 8.11 
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15.N ODD 

StT)=(4/(PleALPHA)).:ESIN(N.ALPHA).SIN(NeT)/N**2 

N=1 

ALPHA=2•PI/7 ALPHA=5.PI/14 

213,6435 +/••• J 	409.1230 0.0 	+/". J 	374.3107 

636.6764 J 	387.5850 443.6772 +/- J 	391.8559 

1159.6155 +/" J 	371.9856 865.1148 +/". J 	385.2004 

1570.7963 +/". J 	387.9891 1364.2341 J 	378.5919 

1985.9771 +/- J 	371.9856 1777.3586 J 	378.5919 

2504.9162 +/- J 	387.5850 2276.4778 +/". J 	385.2004 

2927.9491 +/- J 	405.1230 2697.9154 +/- J 	391.8559 

3355.2309 +/- J 	405.1230 3141.5873 +/••• J 	374.3107 

3778.2638 +/•- J 	387.5850 3585.2645 +/." J 	391.8559 

4297.2029 +/". J 	371.9856 4006.7021 +/-.• J 	385.2009 • 

4712.3836 +/- J 	387.9891 4505.8214 +/". J 	378.5919 

5127.5644 J 	371.9856 4918.9459 +/..• J 	378.5919 

5646.5035 +/•.• J 	387.5850 5418.0652+/" J 	385.2004 

6069.5364 +/". J 	405.1230 583905028 +/". J 	391 .8559 

Ref. FIG. 8.13 Ref. 	FIG, 8.12 
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1541N ODD 

StT1=C4/(PI.ALRHA/).
I
f: SININ.ALRHA).SIN(N.T)/N**2 

N=1 

COMPLEX ZEROS// TIME IN MILLISECONDS 

ALPHA=P2/7 	ALP-A=3.21/14 

57.2989 	J 	477.9712 	0.0 	+/- 

	

730,0919 +/•.. J 	351.9913 	388.9414 +/•.- 

J 

J 

46660206 

39769154 

1157.4008 J 37905836 944.1641 J 363.0827 

1570.7963 J 386.6301 1365.1062 J 385.3008 

1984.1918 J 379.5836 1776.4864 J 385.3008 

2411 65007 J 351.9913 2197.4285 J 363.0827 

3084.2937 J 477.9712 2752.6512 J 397.9154 

3198.8862 +/..• J 477697/2 3141.5873 +/•*. J 466.0206 

3871.6793 +/•-. J 351.9913 3530.5287 +/- J 397.9154 

4298.9881 +/4.6 J 37965836 4085.7515 +/- J 363.0827 

4712.3836 J 386.6301 4506.6935 J 385.3008 

5125.7791 +/•.. J 379.5836 4918.0737 +/- J 385a3008 

55 J•0880 J 351.9913 5339.0158 J 363.0827 

6225.8810 J 477.9712 5894.2386 +1- J .397.9/54 

Ref. FIG. 8.15 Ref. FIG. 8.14 
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150N ODD 

:E:SCTIm(4/(1,141,ALPHA)10 

	

	51N(NoALPHA).SIN(N.T)/N**2 

N=I 

COMPLEX ZEROS// TIME IN MILLISECONDS 

ALPHA=0 	ALPHA=PI/14 

374.0449 J 186.6256 0.0 J 688,0681 

775.3279 J 224.4835 511.6899 J 335.1230 

1173.4956 J 241.0565 947.8636 +/•.- J 371.9515 

1570.7963 J 245.9723 1364.3655 +/•.. J 384.4134 

1966.0970 +/•-. J 241.0565 +/•.. J 384.4134 1777.2272 

2366.2647 J 224.4635 2193.7290 J 371.9515 

2767.5477 J 186.6256 2629.9027 +/4.. J 335.1230 

3515.6322 J 186.6256 3141.5927 J 688.0681 

3916.9152 +ior J 224.4835 3653.7273 J 335.1230 

4315.0829 +/••• J 241.0565 4089.4509 +/••• J 371.9515 

4712.3836 +/- J 4505.9528 +/.• J 384.4134 245.9723 

5109.6843 J 241.0565 4918.8145 +/.•• 384.4134 

5507.8521 J 224.4835 5335.3163 +/•.. J 371.9515 

5909.1351 J 186.6256 5771.4900 +/- J 335.1230 

Ref. FIG.  8.17 Ref. FIG. 8.16 



303 
re 0.001 and the RZ-CZ arrays. 

a) sl(t) 
	

b) s2(t) 

Fig. 8.18 Triangular and progressively clipped triangular waves. 

Observe that, in Figs. 8.12e-8.16e the CZ configura-

tion corresponding to the clipped portion of the original wave-

form assumes the "arced" configuration typical of a square 

wave (Fig. 8.17e). We note that the same symmetries observed 

in the waveforms are seen in the zero arrays. For example, 

for a = 7/2, (Fig. 8.11a), si(t) is symmetrical about 0, 

7/2, 7, 37/2, 27 . . while s2(t) is symmetrical about the same 

points for all a (Figs. 8.11a-8.17a). In these cases, the zero 

arrays are symmetrical about the same points. 

Note the apparent regularity, in real time, of zeros 

generally. That is, a real zero or a complex zero pair occurs 

about once every T/(nR+n
C
) seconds. In some cases the regu-

larity is "forced" by ripple; the square wave and sawtooth, for 

example. Other waveform characteristics which lead us to ex-

pect real time regularity of zeros will be examined in sec. 9.4 
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and 9.5. 

8.6.5 Complex Zero Manipulation  

Figure 8.2a, the square wave, differs from Fig. 8.4a, 

the sawtooth, only in their respective complex zero waveforms. 

Fig. 8.19 demonstrates the effect of adding a CZ pair with co-

ordinates z = 7 ± j 0.00001 to the square wave CZ waveform. 

The even order harmonics appear in ISCZ  (01 (and hence IS(01) 
and the wave shape of s(t) is forced to become roughly-tri-

angular. This follows because the CZ pair at z = 7 ± j 0.00001 

suppresses the central peak of scz(t). 

Conversely, Fig. 8.20a-e shows s(t), sRz(t), IScz(f)I 
and the root map for a triangular wave similar to that shown in 

Fig. 8.4; the difference is that the upper limit in eq. (8-107) 

has been increased by 1, to 16. This has the effect of adding 

a CZ pair at z = 7 ± j 0.5303 cosec. In Fig. 8.21 we have in-

creased the imaginary time coordinate of this CZ pair from 

± 0.5303 to ± 835 milliseconds. This permits an excursion of 

s 
CZ
(0 at t = 7 seconds so that s(t) very roughly approximates 

the square wave of Fig. 8.2a. Note specifically that the odd 

harmonics of S
CZ 

 (f) have been greatly suppressed. 

8.7 The Complex Time Domain  

The product representation for a bandlimited periodic 

signa1,1  
2n
R 
	nC  

s(t) = TT 2 sin -2- (t-Ti) 	2(coshgaz-cosQ(t-Tz)i, 
i=1 

1 	We shall ignore the real, multiplicative constant. 
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specifies s(t) as a function of t and its real zeros (zero 
crossings) and complex zeros. If the behaviour on the complex 
time plane is to be investigated, we let t-÷z, the Complex time 
variable. 
Then 

2nR  
s(z=t+ja) = 1T21sin 

i=1 	2  
(t-Td 	0.cosh 	E2 - j cos 	(t-Td.sinh la]. 

nC  
172[cosh0a -cosQ(t-T )-cosh0a-jsinO(t-T ),sinhi/a] 
A=1 

(8-109a) 
2nR 	

nC = Tr A (z).ejal(z)T-TB (z).eibk(z)  (8 -109b) 1=1 	 Z=1 

At a real zero , s(z) is zero because sin 	 c2  a and sinh 2  - 2 
are zero; at a complex zero, s(z) is zero because 

0 cos-2(t-T).coshQa is equal to cosifflak'  and sinO(t-Tk) is zero. 

The phase function is the sum of the contributions to 
the phase from all the RZ's [ai] and the CZ's [bt]; 

W(z) = tPRZ(Z) 	l'CZ(z) 
	

(8-110a) 

2nR 	 0 

tan [ = 	I 	-1 	2 	2 —COS—(t— T ) • si,n1r- , 
0 i=1 	sinf21 (t-T.).cosh-a 2 

nC  
g(t-T )-siniffla + 	tan-1 -sin 	2,  

	

[ 	
(8-110b) Q==1 

COSUbia —COSQ(t— T ).cosimia R, 
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If coshOa>>coshRa 	or equivalently, Im [z] >> max 
fal' 

a
2' 
..a } 

then (8-110b) reduces to 	
nC  

2n
R 1 t- 	

nc 
1 T(z) = 	tan [-co(t-T

i 
 )] + 	tan [tang(t-Td], 

2  i=1 	L=1 

(8-11]a).  

which, after some manipulation, becomes 

2nR  

1=1 

n
C 

(t-Ti /2) + 	52(.E-T) 
L=1 

(8 -111b) 

	

2nR 	nC  

= Ot(n_+nC  ) - OTnR
/2 - 11 • 1 Ti  - 0 • Y 

i=1 	t=1Tk- (8-1110 

But 
neli

C = n and Q = 27riT. Therefore, 

2nR 	nC  

T(z) = rat -TtnR  -S-4 X Ti/2 	X T ]. 	(8.111d) 
i=1 	Z=1 

We emphasize that, apparently, the reduction of (8-111b) to 

(8-111d) depends on the following: 

i) a is large enough so that 

tanh a= 1 	 (8-112a) 

ii) coshOa>>coshQam' am = max{al'a2' .. an }. (8-112b) 

Under these conditions, by (8-111d), T(z) is a linear function 

of t and is independent of a. It is dependent upon the number 

of real zeros and the sum of the RZ and CZ positions. The slope 

of T(z), dT(t+ja)/dt, is equal to the bandwidth of the signal, 
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In Fig. 8.23 a and b we have plotted constant T(z) 

contours for the square wave of Fig. 8.1 and the sawtooth of 

Fig. 8.4, respectively. The principal values of T(z) 

[W(zW-n] were calculated for O<Re[z]<2n seconds and 

-0.5(Im[z]..0.5 seconds at the 8328 intersections of a 128 point 

(0 by 65 point (a) grid. The contour plotting algorithm 

[M-13] searches for pairs of adjacent grid points between which 

the calculated phase function assumes the desired level, based 

upon a linear interpolation. Unfortunately, when the phase 

moves from 2n to 0, the contour plotter thinks that all phases 

T, such that 0<T<27, may be found between these two points. 

This results in the thick "bars" of Fig. 8.22 (whose thick-

ness is that of the actual grid spacing) which, in reality, 

mark the transition from 27  to 0 radians. Fig. 8.22 exhibits 

a detailed section of Fig. 8.23a, showing the contour levels. 

The significance of the constant phase contours be-

comes evident if we define 

s
r
(z) 

and 

j.s
i
(z) 

= [s(z*)+s(z)] /2 = 

Lw 

f S(f).cosh2nfo..e32111tdf , (8-113a) 

= [s(z*)-s(z)]/2 = S(f).sinh2nfcr.ej27rftdf . (8-113b) 

-W 

sr(z) is a real signal because S(f).cosh2nfa has real (even), 

imaginary (odd) symmetry about f=0; s
i
(z) is an imaginary 

signal because S(f).sinh2nfa has real (odd), imaginary (even) 

symmetry about f=0 [P-2, p. 11]. From (8-109b). 

and 

sr(z) = is(z)I cosT(z) 

j.si(z) = Is(z)1 sinT(z). 
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Fig. 8.22 Enlarged section of Fig. 8.23bshowing contour 
levels of 7/6, 7/3, 7/2, 27/3, 57/6, 77/6, 47/3, 37/2, 57/3. 

s
r(z) exhibits zero crossings whenever T(z) = ±1/2p7, p odd, while 

s.(z) exhibits zero crossings whenever T(z) = *137, p even. In 

particular, 

sr(t) = Is(t)I cosT(t) = s(t) . 	(8-115) 

From(8-110b),cosT(0=lor-lonly.Bothsr(z)ands.(z) are 

zero at all RZ's and CZ's of s(z). 
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It can easily be shown that, because the mapping 

w = e
jQz 

is conformal, constant magnitude and phase contours on 

the z plane are orthogonal. In addition, all constant phase 

lines may not intersect any others and must terminate at a 

pole and a zero. (The poles of s(z) occur for Im 

This behaviour is quite evident in Fig. 8.23. At Im[z] = 

± 0.5 seconds, the constant phase contours are nearly perpen- 

dicular to the t axis and nearly uniformly spaced, as predicted 

by equation (8-111). 

For example, at z = 0.62831 = 2n/10 seconds, (8-111) 

predicts that 

2nR 
	nC  

'Y(z) = nQt - nnR  - 0[ 	Ti/2 + 	TO 
1=1 	2=1 

if a is sufficiently great. In this example, 0 = 1; n = 1+14 = 
15; 1Ti/2 = n/2; and 1Tt  = 43.97 seconds. This results in 

T(z) 	-12.5r or 1.5n = 4.71 rad. The constant phase contour 

at z = 27r/10 ± 0.5 seconds is the 4.71 radian contour. But 

tanh--a 	tanh 0.25:0.24; cosh0a = cosh 0.5F-1.12 and costfflam 
= 

2 
cosh 0.2451.03 so that tanh - 2-aAl and coshOol cosifflam 

Thus, the fact that the phase function T(z) seems, for 

Im[zJ>0.5 seconds, to be almost exactly described by (8-111) 

is probably linked to the regularity of the complex zeros. That 

is, the conditions. (8-112), required so that (8-110) can be 

simplified to (8-111) are sUfficient but are probably not 

necessary. 

8.8 	Significance of Zero Based Signal Characteristics  
to Clipped Speech Studies  

We have seen that it is possible to describe a band- 
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limited signal completely in terms of its real zeros--zero 
crossings-- and complex zeros. Thus, the zero crossing inter-
val sequence constitutes only a partial description of the sig-

nal; it is only sufficient to construct the real zero com-

ponent, sRz(t). 

The bandwidth of sRz(t) is a fraction--[nR/(nR+nc)]--

of the bandwidth of the original signal, s(t). Therefore, in 

a sense, knowledge of the 2n. real zeros (of a bandlimited 

periodic signal) ostensibly constitutes information concerning 

the same fraction--[nR/(nR+nc)]-- of the total number of para-

meters necessary to completely describe the signal (to a mul-

tiplicative constant). 

Nevertheless, since sgn [s(t)] = sgn [sRz(t)], the 

RZ signal is sufficient to construct the clipped signal. It 

is in fact the minimum bandwidth signal which carries sufficient 

information to do so. 

We have also noted that operations which tend to 

convert CZ's to RZ's, viz., differentiation, addition of a 

sine wave carrier and (indirectly) high pass filtering, are 

associated with signals which-- when clipped-- are more intell- 

igible and/or pleasant than the original clipped signal. Such sig- 

nals--by virtue of their higher zero crossing count-- also 

contain a greater fraction of preserved information concern- 

ing the original signal in their clipped version. 

These observations seem to suggest that clipping is, 

among other things, a type of "imperfect" sampling process: 

the positions of the real zeros (zero crossings) are pre-

served--or sampled-- by the clipper while the complex zeros 

are preserved in number (if the clipped signal is re-band-

limited to the original signal bandwidth) but not (apparently) 
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in position. 

The imperfections in "sampling by clipping" are two-

fold then: 

i) Only a fraction, nR/(nR+nc), of the informa-

tion necessary to completely specify the original signal is 

exactly3  preserved by clipping. 

ii) The rest of the information, a fraction 

nc4nR+nc), is, apparently lost by the clipping process. 

The index of efficiency of clipping as an imperfect 

sampler is, therefore, lower bounded by the percentage of real 

zeros and this index may be increased by zero count preserving 

complex zero conversion processes. 

What remains to be explained is whether the complex 

zero information is truly lost in the clipping process. The 

high intelligibility of clipped speech suggests that it is not. 

3 	We shall see in sec. 9.5 that the bandlimiting opera- 
tion following clipping does not usually signifi-
cantly alter the RZ positions. 



9 	CLIPPED SPEECH II: CLIPPING AS A ZERO CROSSING SAMPLER 
AND A SPECTRAL OPERATOR ON THE COMPLEX ZERO SIGNAL-- 
A NEW APPROACH TO THE PSYCHOACOUSTIC PROBLEM 

9.1 	Review of the Product Formulation for Bandlimited  
Periodic Signals  

We have seen that factorization of the Fourier series 

polynomial enables a periodic bandlimited signal to be ex-

pressed-- except for a multiplicative constant--completely in 

terms of its real zeros (zero crossings) and complex zeros; i.e., 

2nR 	nC  

s(t) = (-1)nlc 
n 
 ITT 2 sin-2(t-r.) TT 2[coshOat-cosQ(t-Tt)]. t=1  

In chapter 8 we outlined some of the basic relationships and 

ideas concerning zero-based signal models and argued that clip-

ping, followed by re-bandlimiting, could be regarded as an op-

eration which may significantly alter only the complex zero 

signal. 

In addition we showed that those pre-clipping signal 

processing operations which have been observed to enhance the 

intelligibility of the clipped signal are those which tend to 

convert complex zeros into real zeros without altering the total 

zero count. 

In this chapter we will consolidate these ideas and 

develop a zero-based rationale for the intelligibility of 

clipped speech in terms of overall power spectrum feature 

preservation. 	 317 
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9.2 	Signal Spectra as a Function of Zero Positions  

9.2.1 	A Product Expansion for Sgn[s(t)]  

We noted in sec. 8.8 that s
RZ  (t) contains sufficient 

information to create sgn[s(t)]. That is, 

sgn[s(t)] = sgn[sRZ(t)] 	(9-la) 

2n 

= sgn cr-T 2 sini(t-Ti)] 	. 	(9-1b) 
i=1 

2nR  
= T sgn[2 sir4(t-Ti)] 
i=1 

(9-1c) 

2nR  
= TT sgn[t-1.1], ItkT/2. [V-11] 	(9-1d) 
1=1 

9.2.2 	The Fourier Series Coefficients of Sgn[s(t)] in Terms 
of its Zero Crossing Positions 

The Fourier series pair 

sgn[s(t)] 

T/2 

where 	 c 	= 71 k 	I 
-T/2 

Substituting (9-1d) in (9-2b), 

T/2 

	

c k = T 	j 
-T/2 

for sgn[s(t)] is 

CO 

= 	1 	ck .ejk0' 	(9-2a) 

k=-co 

f 	sgn[s(t)].e-

jkadt. 	(9-2b) 

2nR  f 	e-jkft t  sgn[t-Ti]ldt, 
i=1 

(9-3)  
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Integrating by parts, we let dv = e-jkOtdt (so that v = -e-.1katijk)  

2nR 	 2nR 
and u = Tr sgn [t-ri]. Then du/dt = 2 1 a

i• d(t-Ti), where a. 1 1=1 	 1=1 

is a polarity switching function and is equal to (-1)i-1. 

Thus 

[ T T/2 	/2  
uv 	I 	- 	

J 	
v du] 	(9-4a) 

-T/2 -T/2 

T/2 	2nR
- 

 2  
jkar 	L j e-Jk Oti  r a. - 6(t-ri)ldt, 100 	(9-4b) 

1 1=1 
-T/2 

1 
C
k T 

2  
JUT 

2nR  1 iSL e-jkari:  

i=1 
, W. 	(9-4c) 

T/2 
Note that uv 	is zero because of the periodicity in T of u 

and v. 	-T/2 

For k=0, 

T/2 2nR  1 = c_ 
u T J 

{ 
i=1 -T/2 

sgn[t-Ti]}dt 

 

2nR  
= 	- 1, 

i=1 
(9-4d) 

In summary, 

= net area under the square wave. 

 

sgn[s(t)] .= 

ck-ejkat  

k=-.0 

co + 2 	[akcoskOt + bksinkft] 
k=1 
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where Q = 27/T and T
1, T2' 

T
3'

T2n are the RZ's of s(t) R  

in -T/2<t<T/2. Then 

Tic
0  = -1 -2. 1 	(-1)i-1 T

V  T  = ri/T 	(9-5a) 
1=1 

2nR  
1 (-1)i-1  e-j2zrkTi  

ck = j7k 
 

i=1 

2nR  

ak 	2
-1  1 	(-1)i-1- sin27k; 7k 

i=1 

(9 -5b) 

(9-6a) 

1r b 	L 	cos27 . k; k 27k 

	

	. 	[V-11] 	(9-6b) i=1 

Previous work has emphasized zero crossing intervals 

rather than distance from reference point (e.g., t = 0). 

Letting 

T. = 1 Awhere Aq = Tq 	T
q-l' 1 q=1 q'  

(9-7) 

2nR  
c
o 
= -1 -2. y 	i 

(-1,1--. 	, 	A /T 	(9-8a) 
q q q 1=1 	q=1 

2nR  1 	v c 	 e-j27kAq = 	 (9-8b) k 	j27k .L  1=1 	q=1 

These results are analogous to those of sec. 8.4.1. In each 

case, the spectrum of the signal in question (sRz(t) or 

sgn[s(t)]) 	implicitly determined by the product expansion, 

(8-57a) and (9-1b), respectively--are explicitly expressed 

2nR  

2nR  

then 

and 
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as a function of the real zero (zero crossing) positions. 

Again, the results are qualitatively uninforming. 

Thus our method of attack will be to examine the 

effect of the clipping-bandlimiting operation on the positions 

of the zeros of the speech signals, particularly the complex 

zeros. 

9.3 	The Zeros of Speech Signals  

In this section, we will describe experiments and ob-

servations regarding the zeros of voiced speech signals. These 

experiments are the first step in applying the elements of 

zero based signal analysis to the speech clipping problem. 

9.3.1 Hybrid Factorization  

The speech signals to be factorized were single pitch 

periods of sustained vowels spoken by the author, a Canadian. 

Five second segments of sustained vowels were recorded in the 

Imperial College silent room, constructed by Sound Control, 

Limited. 

The silent room--of dimensions 6' x 7' x 8'--was 

isolated from the main building structure by nine rubber feet 

and was of doublewalled wooden construction lined with 

Bondacoust. The Bondacoust lining reduced reverberation time 

to less than 0.05 seconds and therefore allowed "dead" re-

cordings to be made. 

The speech was bandlimited to ±3 KHz, with a Krohn-

Hite filter, model 310-AB, having fully variable upper cut-off 

frequency and attennation of 24 db octave above cutoff fre-

quency, and then recorded on a Tandberg model 62 tape 
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recorder (#684744) operating at 71/2  ips via an AKG type D19C 

dynamic microphone (#19765). The tape was then played back at 

1 7/8 ips into a B & K type 7001 FM tape recorder (#204688) 

operating at 60 ips. Finally, the output of the B & K re-

corder, operating at 1.5 ips, was sampled 1250 times per sec-

ond by the Direct Data Channel of the Imperial College IBM 

7094 computer. The most significant fidelity limitation of 

this arrangement was the low frequency response of the Tand-

berg tape recorder. This response dropped off at about 30 

Hz thus effectively highpass limiting the 4x slowed down speech 

to 4x30 or 120 Hz. Comparison of this waveform with speech 

slowed down by recording at 60 ips on the FM tape recorder 

(response 0-20 KHz at 60 ips) and playing back at 15 ips 

(also a 4:1 speed reduction) revealed no significant changes 

in overt signal structure. 

The effective speech sampling rate was therefore 

1250x 1.8 7.500
75 	1. 

60 5 - 200,000 samples per second. 

Since only 6000 independent (Nyquist)samples per second were 

required, the effective sampling rate was 200,000/6000 or 33.33 

times the Nyquist rate. A detailed Calcomp signal location 

index was prepared, and selected "typical" pitch periods--

each showing no evidence of FM dropout--were located and read 

into storage arrays. The author's normal pitch period varies 

from approximately 8.5 to 10.0 milliseconds giving about 1800 

speech samples per pitch period. A linear interpolation was 

performed to increase the number of samples in a selected 

pitch period to 2048. A discrete Fourier transform was then 

implemented via the FFT to yield the complex Fourier series 

coefficients for the range 0 to 100 KHz. The original signal 
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had been "non-ideally" bandlimited to 3 KHz. In addition, 

noise in the 3 KHz-100 KHz region was assumed to have been 

introduced by the tape recording-sampling process. This 

spectral noise--observed to be very small compared to the 

passband coefficients--, along with the speech signal spectral 

components above 3 KHz, were eliminated and an inverse discrete 

Fourier transform (IDFT) resulted in a smooth, virtually 

noise free 2048 point signal waveform--"ideally" bandlimited 

to t3 KHz--with zero crossings defined to within 0.0048.milli-

seconds. (Note that Licklider's results (observation L8) showed 

that zero crossing position specification to 0.1 milliseconds is 

sufficient for high intelligibility.) It should be emphasized 

that the above procedure is equivalent to perfect sampling of a 

truly bandlimited signal, at the Nyquist rate, and then carry-

ing out a bandlimited interpolation [G-4, pp. 199-200] of the 

Nyquist samples. However, this method guarantees that aliasing 

errors due to insufficient sampling rate after (necessarily) 

imperfect bandlimiting to 3 KHz, and high frequency noise, are 

.eliminated. 

The positions of the zero crossings were further re-

fined by a linear interpolation between samples at which a 

signal polarity change occurs. sRz(t) was then synthesized 

from this positional information using (8-14): 

2nR  
s
RZ
(t) = 1-71=1 	2 

2 sin 11(t-Ti 
 ) . 	(9-9) 

sCZ (t) was then derived by division of s(t) by sRZ(0, each 

signal being defined at 2048 points. Since both s(t) and 

sRZ (0 have the same zero crossings, L' Hopital's rule was 

applied when necessary. The resultant scz(t) contains slight 

high frequency noise at the times corresponding to the zero 

crossings of s(t) [or sRz(t)]. However, a discrete Fourier 
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transform of sCZ  (t)--which has been derived from two signals 

sampled at 33 times the Nyquist rate--allows this noise to 

-be eliminated by lowpass filtering; only the Fourier co-

efficients which fall within the known bandwidth of s
cz' 

i.e., 

nc  = (3000/Fo-nR), where F0=1/T, (9-10) 

are used to form the polynomial which is factorized to yield 

the complex zeros of the signal. 

We shall examine the experimental findings regarding 

the complex zeros of vowels in sec. 9.3.3. 

9.3.2 Organization of the Experimental Observations  

Single pitch periods of the vowels /u/, /o/, /A/, /e/ 

and /e/ (boot, obey, but, hate, bet) were analyzed and graphical 

results are presented in groups of 6 pages per vowel. The 

"page" organization for each vowel is as follows: 

1/ 	The zero crossings of s(t), s'(t) and s"(t): 

Data concerning the real zeros of s(t), where s(t) 

is a single pitch period of the vowel in question, are given. 

Both the distance of the zero crossings from t = 0 and the 

distance between pairs of adjacent zero crossings are tabu-

lated (in milliseconds). 

2/ 	A graphical presentation (2048 pts) of s(t), s'(t), 
s" (t) and sm(t): 

The signals are periodic and bandlimited so that 

differentiation is easily carried out in the frequency domain 

using the FFT implementation of the DFT, i.e., 

dns t) . 01(2)n  S(cQ) [P-2, p. 16] • 
d to  

(9-11) 
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In practice, a 2048 point transform of s(t) was carried out, 

the complex Fourier coefficients altered as per (9-11) and an 

IDFT yielded s'(t). Note that only block capital letters are 

available on the Calcomp machine so that "T" = "t". The vowel 

/i/ is represented only by the original waveform and its 

first three derivatives. Factorization problems prevented 

further studies at the time. 

3/ 	"Page 3" of each vowel group shows 

a) s(t) 

b) s
RZ(t) for s(t) 

c) s
CZ 

 (t) for s(t) 

d) a root map showing the real zeros (zero cross-
ings)--signified by "0"'s on the real time 
axis--and the complex zero pairs--signified 
by "X"'s--of s(t). 

4/ 	"Page 4" of each vowel group is identical to page 3 
except that s(t) has been replaced by the signal 
BL{C s(t)} -- the clipped, then bandlimited (3 KHz), 
signal. 

5/ 	The amplitude spectrum of 

a) s(t) 

b) s
RZ
(t) of a) 

c) s
CZ 

 (t) of a) 

d) BL{C s(t)} 

e) s
RZ 

 (t) of d) 

f) s
CZ 

 (t) of d) 
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Here the amplitude spectrum is definied as [ak 	
k 

2 
+ b 

2
] 

where 

n 
s(t) = a0/2 + y [akcoskQt + bksinkft]. 

k=1 

The spectral line components have been interpolated with straight 

line segments in order to emphasize the spectral envelope features. 

6/ 	"Page 6" gives the positional data concerning the real 
and complex zeros presented on pages 3/ and 4/ 

Note the following concerning the overall presentation: 

i) The imaginary time (a) scale for the root map of the 

zeros of the clipped, then bandlimited, signal has been scaled to 

approximately match that of the original signal. This has been 

done for comparison purposes. In the case where a CZ of the 

clipped, then bandlimited, signal has an imaginary coordinate (a) 

significantly greater than the maximum a found in the original 

signal, arrows having the same real time position as the complex 

zero pair and labelled with the value of the a ordinate (in milli-

seconds) have been used. (e.g., /o/) 

ii) In one case, /o/, the bandlimiting operation following 

clipping has caused a real zero pair (consisting of two zero 

crossings very close together) to disappear. This phenomenon will 

be discussed in sec. 9.4.1. 



327 

iii) Due to the minute "ripple" error caused (in regionS 

where s
CZ 
 (0 is very small) by the filtering process used to 

remove the high frequency noise in scz(t) (sec. 9.3.1), there 

are instances of complex zeros falling on the real time axis. 

However, the method of hybrid factorization ensures that 

(Rz}*{Cz}-)-{c}, with small error. 

The figure numbers for the vowel diagram sets are as 

follows: /u/, Figs. 9.1-9.4; /0/, Figs. 9.5-9.8; /A/, Figs. 

9.9-9.12; /e/, Figs. 9.13-9.16; /6/, Figs. 9.17-9.20; /1/, 

Fig. 9.21. 

9.3.3 Experimental Observations: Original Signal  

i) Differentiation  

Table 9.12 shows the number of zero crossings per 

period for each of the six vowel pitch periods and their first 

three derivatives. Also listed are the fraction of the zeros 

which appear as zero crossings for each signal. Fig. 9.22 

summarizes the data. 

Note that the vowels /u/, /0/, and /i/ have a sig-

nificantly smaller percentage of zero crossings than the other 

vowels. These three vowels are those specifically singled 

out by Ahmend and Fatechand ([A-2] and sec. 5.1.3) as having 

the least resistance to post-clipping degradation by time 

domain truncation. 

ii) sRZ 
 (t) 

The real zero signal, as might be expected from its 

formulation [eq. (9-21)] is a smoothly varying signal al-

ternately changing polarity between successive zero crossings. 



328 

Indeed, the results obtained in sec. 8.5.2 lead us to believe 

that ripple in sRz(t) or even points of inflection, would 

suggest the presence of complex zeros. Points of inflection 

would, after a finite number of differentiations, give rise to 

ripple and then real zeros. Since aZZ derivatives of RZ 

signals are real zero (sec. 8.4), RZ signals may not exhibit 

points of inflection. 

Examination of the RZ signals for /o/, Fig. 9.6b, 

and /e/, Fig. 9.14b, reveals that where there are relatively 

long periods of time without any zero crossings, sRZ  (0 has 

large excursions; conversely, closly spaced RZ's tend to cause 

signal amplitude suppression. These two effects are not un-

related. Irregularity of zero crossing spacing is apparently 

greatly magnified in the effect produced on signal excur-

sions. We shall discuss the relationship between zero spacing 

and signal growth in sec. 9.3.4. 

iii)  sum 
Since sCZ  (t)ccs(t)/sRZ' 

 then--assuming that s(t) 

exhibits no significant excursions from its rms value (sec. 

9.4.5)-- s
CZ 

 (t) will (intuitively) be "large" when sRZ(0  is 

small and vice versa. Observationally, this is indeed the 

case. The time segments during which sRZ(0  has amplitudes 

which are "visually" insignificant (compared to the seg-

ments of large excursion) correspond to time segments con-

taining large excursions of scz(t). Figs. 9.6c, d, 9.10c,d, 

9.14c,d, and 9.18c,d should be examined and the following 

points noted: 

Time segments of scz(t) containing large amplitude 

excursions correspond to time periods which have an absence 



[(coshOu+1) - (coshQa2  -1)] 

coshQat 

= 2 / coshQat  , 

A sCZ  (t) - 

329 

of CZ pairs (note especially Figs. 9.14c,d and 9.18c,d) and/or 

contain CZ pairs having large imaginary components (see Figs. 

9.10c,d and 9.6c,d). 

In accordance with the theory developed in sec. 8.5.2 

(concerning ripple and CZ's), we expect a CZ pair between 

adjacent maxima (or minima). This is, of course, observed. 

It is also noted that amplitude suppression effects of CZ 

pairs on s
CZ  (0 are, roughly, inversely proportional to the 

imaginary component of the CZ. This is to be expected from 

the formulation of sCZ(t), 
 

n
C  

sCZ (t) 
=T 2[cosh0a-cos0(t-T )] . 

t=1 

That is, for Qat  small, [coshQ 	scz(t) must become very 

small in the vicinity of t = r conversely, for Rat  very 

large, the percentage amplitude variation of [cOshQat-cosQ(t-Tt)] 

for variations in t, i.e., 

approaches zero rapidly. 

In Fig. 9.10c,d note the small ripple effect on scz(t) of 

the CZ pair at z = 2.2622 ± j 0.7646 milliseconds compared with 

the ripple effect caused by the CZ pair at z = 2.6883 ± j 0.2516 

milliseconds. Similarly, in Fig. 9.2c,d note the same type of 
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effect of the CZ pairs at z = 5.3525 ± j 0.0982 and z = 7.1571 ± 

j 0.2429. The former -- because of its very small imaginary 

component -- greatly reduces the amplitude of s
CZ 
 (0 while the 

latter causes only a small ripple effect to occur. Another ob-

servation to be noted (Figs. 9,10c,d, 9.14c,d and 9.18c, d) is 

that a succession of CZ pairs of "small" imaginary component 

reduces s
CZ 
 (t) to a very small value. This effect occurs in 

those time segments when sRz(t) is large and is quite analogous 

to the dynamic suppression caused in sRz(t) by a succession of 

closely spaced RZ's. 

iv) s(t) 

The original signal (s), s(t), possesses no apparent time 

segments, containing large excursions or of virtually zero ampli-

tude, similar to those observed in s
RZ 
 (0 and sCZ  (t). The rea-

sons for this will be discussed in sec. 9.3.5. 

Since -- observationally -- Significant gaps without RZ's 

produce huge amplitude excursions in sRz(t) and significant gaps 

without CZ's produce huge amplitude excursions in scz(t), then 

signal segments with no RZ's or CZ's must produce huge excursions 

in s(t). Thus, we would expect to find no significant time seg-

ments without either RZ's or CZ's since we observe no huge 

amplitude excursions in s(t). Observationally, this seems to be 

the case; where RZ's are sparse, CZ's are plentiful and vice 

versa. There are no "significant" gaps without either an RZ or a 

CZ pair. "Significant" means much greater than 

T/(nR+nc) = T/n = 1/W 	(9-13) 

That is, the zeros of vowel waveforms seem to occur regularly in 

real time. 
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PEAL ZEPOS- TIME/MILLISECONDS DELTA(N)=TAWN)--TAWN-1) 

N 

S(T) 

TAU(N) DELTA(N) 

S#(T) 

TAU(N) DELTA(N) 

S••(T) 

TAU(N) DELTA(N) 

1 ?.2766 2.2816 0.281 0.5499 0.0212 0.12.85 
2 1.7277 1.4511 0.7276 0.4425 0.1574 0.1362 
3 5.1405 1.412_8 1.1931 0.6295 0.3957 0.2383 
4 6.9873 1.8468 1.9999 0.6468 0.9616 0.1659 
5 7.4937 0.5064 2.1616 0.1617 0.6553 0.0937 
6 8.7190 1.2213 2.8340 0.6724 0.8765 0.2212 
7 3.1191 0.285/ 1.0255 0.1490 
8 3.3233 0.2042 1.2255 0.2000 
9 4.0953 (1.7320 1.4723 0.2468 

10 4.2510 0.1997 1.6723 0.2000 
11 4.6383 0.3873 1.8510 0.1787 
1? 9.2425 0.6042 260850 0.2340 
13 5.3574 0.1149 2.3702 0.2852 
14 5.9957 0.6383 2.6084 0.2382 
15 6.9999 0.6042 2.7319 0.1235 
16 6.7872 0.1873 2.9701 0.2382 
17 7.2808 0.4936 3.2127 0.2426 
18 7.7999 0.5191 3.5999 0.3872 
19 7.9403 0.1404 3.7148 0.1149 
20 8.4552 0.5149 3.8595 0.1447 
21 4.1446 0.2851 
22 3.3659 0.7870 
23 5.0255 1.6596 
24 5o2935 0.2680 
25 5.4638 0.1703 
26 5o5999 0.1361 
27 5.8127 0.2128 
28 6.2169 0.4042 
29 6.7106 0.4937 
30 6.9574 0.2468 
'31 7.4552 0.4978 
32 7.9148 0.4596 
33 8.1148 0.2000 
34 6442467 0.1319 
35 8.3743 0.1276 
36 866/27. 0.2384 

REF. FIG.9.1 
A 

NOTE DELTA(1)*(PERTOD+TAU(1))-TAU(LAST) 

Table 9.1 
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ZEROS- TIME/MILLISECONDS 
ORIGINAL SIGNAL 	CLIPPED AND B.L. SIGNAL 
.0329 J 0.1790 0.2927 J 0.1444 
.5345 +/- J 0.1246 0.5899 J 0,1692 
.7349 +/- J 060861 0.9161 J 0.1376 
1.0717 +/- J 0,1769 1.2800 J 0.1263 
1.6172 +/- J 0.1672 1.6375 +/- J 0.1461 
1.9654 J 065896 1.9587 +/- J 0.1534 
2.0111 +/- J 00863 202724 
2.2766 2.5911 J 0.1766 
2.6391 +/e.. J 0.2341 2.8317 J 0.5191 
3.0821 J 0.2222 2.9962 J 0.1956 
3.2890 +/- J 0.3895 3.3835 +/- J 0.1600 
3.6963 J 0.2383 3.7277 
3.7277 400936 +/-.* J 0.5764 
4.2034 J 0.2154 4.1807 J 0.1729 
4.5094 J 0,2804 4.4824 J 0.1763 
408362 J 0.3035 4.8297 J 0.1563 
5.1405 5.1405 
5.3525 +/•.. j 0.0082 5.4511 J 0.1626 
5.6682 +/- J 0.1449 5.7553 +/- J 0.2194 
6.0833 J 0.2929 6.0391 J 0.2042 
6.4079 J 0.1968 6.3647 +/- J 0.1775 
6.6337 J 0.2056 6.6841 J 0.1489 
6.9873 6.9831 
7.1571 +/+ J 0.2429 7.2491 +/- J 0.1418 
7.4937 7.5022 
7.6546 +/-- J 0.2547 7.8083 J 0.1295 
8.0076 J 0.1629 8.1190 +/- J 0.1641 
8.2986 +/- J 0.1484 8.4203 +/- J 0.1421 
8.7150 8.7150 

REF. FIG• 9.2 	REF. FIG. 9.3 

Table 9.2 
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PEAL ZEROS- 	TIME/MILLISECONDS 	DELTA(N)=TAU(N)-TAU(N-1) 

S(T) 	Si(T) 

N 	TAU(N) 	DELTA(N) 	TAU(N) 	DELTA(N) 	TAU(N) 	DELTA(N) 

I 0.0130 1.6327 0.2085 0.7244 0.3433 0.4376 
2 0.6171 0.6041 0.6475 0.4390 0.3694 0.0261 
3 0.6779 0.0608 1.2863 0.6388 0.5128 0.1434 
4 1.6079 0.40100 2•M208 0.7345 0.7779 0.2651 
5 266292 1.0213 2.6900 0.6692 0.8561 0.0782 
6 2.7465 0.1173 2.9898 0.2998 1.1212 0.2651 
7 3.2419 0.4954 3.6069 0.6171 1.5080 0.3868 
8 3.8242 0.5823 4.2.501 0.6432 1.5514 0.0434 
9 4.6108 0.7866 4.9758 0.7257 1.8295 0.2781 
10 5.2974 0.6866 5.4017 0.4259 2.1772 0.3477 
11 5.6538 0.3564 5.8797 0.4780 2.3858 0.2086 
12 5.9710 0.3172 6.4794 0.5997 2.5249 0.1391 
13 6.9010 0.9300 '7.1052 0.6258 2.8334 0.3085 
14 7.3703 0.4693 7.5311 0.4259 3.1506 0.3172 
15 8.1221 0.5910 3.3158 0.1652 
16 8.4741 0.3520 3.4592 0.1434 
14 3.8286 0.3694 
18 4.5282 0.6996 
19 5.1757 0.6475 
20 5.4930 0.3173 
21 5.6451 -  0.1521 
22 5.7928 0.1477 
23 6.1231 0.3303 
24 6.7967 0.6736 
25 7.4225 0.6258 
26 7.9613 0.5388 
27 8.3264 0.3651 
28 8.8957 0.5693 

REF. FIG. 9.5 
A 	B 	• C 

Table 9.3 
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/0/ - 	OREY 	PFRIOD=8.899 MILLISECONDS 	342 

ZEROS- TIME/MILLISFCONDS 

ORIGINAL SIGNAL 	CLIPPED AND B.L. SIGNAL 

.0130 	 0.0130 

.3553 J 0.2061 0.1886 +/- J 0.0105 

.6171 0.5349* 

.6779 0.6928* 

.9347 J 0.1713 0.9838* 
1.5396 J 0.6592 1.1145* 
1.6079 1.4397 +/-• J 0.0876 
1.6130 J 0.2707 1.6166 
2.3044 J 0.2411 1.9341 +/- J 0.0680 
2.6292 2442844 +/- J 0.1072 
2.7465 2.6074 
2.8099 J 0.7571 2.7378 
3.2419 2.9944 J 0.1885 
3.3041 J 0.2393 3.2419 
3.8242 3.3780 +/- J 1.5402 
3.8445 J 0.5273 3445449 +/- J 0.1372 
4.1837 J 0.3410 3.8286 
4.6108 4.1484 +/- J 0.1450 
4.7964 J 0.2721 4.4333 J 0.2458 
5.2974 4.6195 
5.3728 J 0.7092 4.9669 +/- J 0.1120 
5.6324 J 0.1117 5.2931 
5.6538 5.5107 J 0.2443 
5.9710 5.6625 
6.3957 J 0.3487 5.9623 
6.9010 6.2209 +IP... J.  0.1473 
6.9592 +/- J 1.0582 6.5414 +/- J 0.1324 
6.9592 +/- J 0.5801 6.8923 
7.2685 +/..• J 0.3531 7.0888 J 0.2569 
7.3703 7.3652 
7.8529 J 0.1817 7.3653 +/-• J 0.3610 
8.2461 J 0.1548 7.7532.  J 0o0470 
8.7147 +/••• J 0.2119 8.1305* 

8.2406* 
8.5674* 
8.6669* 

REF. FIG44 9.6 	REF. FIG. 9.7 
* COMPLEX ZEROS WITH if)* IMAGINARY COMPONENT.DUE TO 

IMPERFECT FACTORISATION 
NOTEITHTS SIGNAL HAD TWO REAL ZEROS CONVERTED INTO 
A COMPLEX ZERO BY THE LOW PASS FILTERING FOLLOWING 
CLIPPING • TOTAL NUMBER OF ZEROS REMAINS CONSTANT. 

Table 9,4 



/A/ - PUT 	PEP/00=10.23 MILLISECONDS 	343 

PEAL ZEROS- 

S(T) 

N 	TAU(N) 

TIME/MILLISECONDS 	OELTA(N)=TAWN)-TAU(N-.1) 

SO(T) 	 S•'(T) 

DELTA(N) 	TAU(N) 	DELTA(N) 	TAU(N) 	DELTA(N) 

1 0.0150 0.5045 0.4945 0.6643 0.1249 0.1549 
2 0.7143 0.6993 1.0240 0445295 0.3547 0.2298 
3 1.2887 0.5744 1.4636 0.4396 0.6743 0.3196 
4 1448782 04.5895 1.9981 0.4945 1.2938 0.5795 
9 2.0280 0441498 2.1679 0.2098 1.5685 0.3147 
6 '2442728 0.2448 2.4876 0.3197 1446784 0.1099 
7 2.7823 0.5095 3.0220 0.5344 1448282 0.1498 
8 1442568 0.4749 3.4017 0443797 2.0680 0.2398 
9 1401163 0.5595 3.9602 0449985 2.3177 0.2497 
10 4.0061 0.1898 4.0860 0.1258 2.8472 0.5295 
11 4.1909 0.1448 4.4117 0.3257 3.1869 0.3397 
12 4.7054 0.5545 4.9602 0.5485 3.4766 0.2897 
13 5.1749 0.4695 5.4896 0.9294 3.9865 0.1099 
14 6.1140 0.9391 5.8343 0.3447 3.7763 0.1898 
15 6.6985 0.9445 5.9991 0.1648 4.0011 0.2248 
16 7442229 0.5644 6.3438 0.3447 4.2508 0.2497 
17 7.8473 0.6244 6.9082 0.9644 4.8053 0.5545 
18 8.9816 0.7343 7.9027 0,9949 5.1200 0.3147 
19 0441610 0.9794 8.1870 0.6843 5.6745 0.5549 
20 9447409 0.8795 8.8364 0.6494 5.9192 0.2447 
21 9.4308 0.9944 6.1740 0.2948 
22 10.0602 0.6294 6.7534 0.5794 
23 7.0481 0.2947 
24 7.2229 0.1748 
25. 7.3228 0440999 
26 7.6775 0.3547 
27 7.7974 0.1199 
28 8.0022 0.2048 
29 8.3319 0.3297 
30 8.4318 0.0999 
11 8.6466 0,2148 
32 9.1961 0445495 
33 9.6906 0.4545 
34 9.8504 0.1998 
35 9.9503 0.0999 
36 10.2000 0.2497 

REF. FIG.9.9 
A 	B 	C 

Table 9.5 
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/A/ - RUT 	PER100=10•23 

ZEROS- TIME/MILLISECONDS -- 

ORIGINAL SIGNAL 

.0150 

MILLISECONDS 	348 

CLIPPED AND B.L. SIGNAL 

0.0200 
.1035 J 0.0001 0.1693 J 0.1217 
.5661 J 0.2942 0.5806 +/- J 0.2003 
•7143 0.7143 
1.0190 J 0.2422 1.0560 +/- J 0.0671 
1,2887 1.2375 
1.6263 J 0.1751 1.2376 J 3.1827 
1.8782 1.5990 J 0.0802 
2.0280 1.8632 
2.2622 +/- J 0.7646 2.0380 
2.2728 2.2678 
2.6883 J 0.2516 2.4934 +/- J 0.1100 
2.7823 2,7773 
3.2568 3.0054 J 0.1212 
3.4742 +/- J 0.952 3.2618 
3.4743 J 0.2079 3.5272 J 0.0912 
3.8163 3.8013 
4.0061 4.0011 
4.1509 4.1659 
4.5138 J 0.3938 4.4186 J 0.1244 
4.7054 4.7054 
4.7454 J 0.2506 4.8898 +/- J 0441326.  
5.1749 5.1848 
5.3596 +/* J 0.1025 5.4002 J 0.1410 
5.8015 +/- J 0.0821 5.7576 J 0.0995 
6.1140 6.1090 
6.3118 J 0.0851 6.3365 +/- J 0.0614 
6.6585 64,6585 
601334 J 0.1467 6.8469 J 0.1791 
7.2229 7.2229 
7.2653 4/- J 0.0941 7.2977 J 0.1192 
7.8273 J 0.0113 7.8608 J 0.1385 
7.8473 7.8472 
8.3198 J 0.1198 8.2818 J 0.1617 
8.5816 8.5816 
8.7979 4/- J 0.0647 8.8279 +/- J 0.0656 
9.1610 9.1610 
9.3388 J 0.1060 9.3933 J 0.1510 
9.7405 9.7355 
9,7963 J 0.1054 9.8317 J 0.1681 

REF. FIG. 9.10 	
Table 9.6 

	REF. FIG. 9.11 



/e/ 	HATF PEP/M=9443 MILLISECONDS 	349 

REAL ZEROS- 

S(T) 

N 	TAUtN) 

TIME/MILLISECONDS 	DELTA(N)=TAU(N)-TAWN-1) 

St(T) 	S'0(T) 

DELTACN) 	TAUtN) 	DELTA(N) 	TAUCN) 	DELTACN) 

1 0.0737 1.4090 041,p979 0.2580 0.1566 0.2026 
2 0.3868 0.3131 0.4881 0.2302 0.3776 0.2210 
3 045939 0,2071 0.6953 0.2072 045940 042164 
4 0.7919 0.1980 0.9347 0.2394 048058 042118 
5 1.6160 0.8841 1.1603 0.2256 1.0314 042256 
6 1.8970 042210 1.4919 0.3316 1.2616 0.2302 
7 2.1043 0.2073 1.7819 0.2900 146576 0.3960 
8 2.4588 0.3545 2.0030 0.2211 1.8924 042348 
9 2.7765 0.3177 2.2654 0.2624 2.1227 042303 
10 2.9192 0.1427 2.6154 0.3500 244220 0.2993 
11 342968 043776 2.8502 0.2348 2.7489 0.3269 
12 343935 0.0967 3.1034 0.2532 2.9837 0,2348 
13 3.6974 0.3039 3.3429 0.2395 342.185 042348 
14 4.4190 0.7166 3.5459 0.2030 3.4350 0,2165 
15 4.2546 0.1594 3.9460 0.4001 3.6652 042302 
16 4.5170 0.2624 44/993 0.2533 440842 0.4190 
17 5.4103 0.9933 4.71973 0.1980 4.3006 042164 
18 5,599 0,1796 4.6781 0.2808 4.5262 042256 
19 5.8063 0.2164 4.9084 042303 4.7703 0.2441 
20 6.1102 0.3039 5.1893 0.2.809 5.0695 042992 
21 7.4132 1 43030 5.4978 0.3085 5.3504 0.2809 
22 7.7355 0.3223 5.7050 0.2072 545991 042487 
23 7.9611 0.2256 5.9582' 042512 5.8339 0.2348 
24 8.0947 041336 6.2713 0.3131 6.0963 042624 
25 6.5015 0.2302 643864 042901 
26 6.7732 0.2717 6.6581 0.2717 
27 7.0219 0.2487 648975 042394 
28 7.1968 0.1749 7.1047 0.2072 
29 746204 0.4236 743027 0.1980 
30 7.8461 0.2257 744685 0.1685 
31 8.0302 0.1841 7,5329 040644 
32 842743 042441 7.7448 002119 
33 846012 043269 7.9381 041933 
34 848268 0.2256 8.1407 0.2026 
35 9.0432 0.2164 843525 042118 
36 9.1952 0.1520 844769 041244 
37 9.3241 0.1289 845229 0.0460 
38 944299 0.1058 847347 0.2118 
39 869327 0.1980 
40 9.1169 041842 
41 9.2596 0.1427 
42 943840 0.1244 

REF. FIG09.13 
A 	B 	C 

Table 9.7 
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/e/ - HATE 	PEPIOD=94,43 MILLISECONDS 

ZEROS- TIME/MILLISECONDS 

.0737 	 0.0829 

354 

.1600 J 0.1107 0.1645 +/- J 0.1428 
•3868 0.3776 
•5940 0.5940 
.7920 0.8012 
.9825 J 0.2289 0.9698 +/- J 0.1987 
1.3323 +/- J 0.0729 1.3634 J 0.0729 
1.6760 1.5062 J 1.1748 
1.7984 +/- J 0.6161 1.6668 
1.8971 1.8878 
2.1043 2.1135 
2.4588 2.3357 +/- J 0.2924 
2.4864 +/- J 0.2786 2.4588 
2.7765 2.7673 
2.9192 2.9423 
1.2968 34,0900 J 0.5957 
3.3935 3.2738 
344/2/ +/- J 0.9176 3.3889 
3.6974 3.6928 
3.8456 J 04,2101 3.8837 +/- J 0.1885 
4.1440 4.1394 
4.2546 4.2638 
4.5170 4.5216 
4.6746 J 0.1794 4.7369 J 0.1471.  
5.0672 +/- J 0.0524 5.0942 +/- J 0.0907 
5.4103 5.3965 
5.5899 5.5945 
5.6784 J 0.146 5.7657 J 0.3430• 
5.8063 5.8155 
6.1102 600963 
6.2159* 6.2375 J 0.1040 
6.2589* 6.7963 +/- J 0.1050 
6,7776* 7.3573 +/- J 0.1167 
6.8284* 7.4270 
7.4132 7.7170 
7.3552 -4*/ J 0.0074 7.9558 
7.7355 7.9599 +/- J 0.1699 
7.9611 8.1131 
7.9499 +/- J 0.0600 8.5112 J 0.1055 
8.0947 9.0838 +/- J 0.0965 
8.4905* 
R.5498* 
9.0454* 
9.1393* 

REF. FIG. 9.14 	REF. FIG. 9.15 
*COMPLEX ZEROS WITH .0* IMAGINARY COMPONENT•DUE TO 
IMPERFECT FACTORISATION 

Table 9.8 



.e. - RFT 	PFRTOD=9,4455 MILLISECONDS 	355 

REAL zrpos- 

S(T) 

N 	TAU(N) 

IlmF/m/LijsrcoNns 	DELTA(N)=TAU(N).-TAU(N-1) 

S'(T) 	S'f(T) 

DELTA(N) 	TAU(N) 	DELTA(N) TAU(N) 	OELTA(N) 

1 0482/9 0.9509 0.1062 0.1198 0.0508 0.1613 
2 1.0388 0.2169 0.3278 0.2216 0.2216 0.1708 
3 1.1911 0.1523 0.3970 0.0692 0.3647 0.1431 
4 1.7082 0.5171 0.6648 04,2678 0.5633 0.1986 
5 1.9349 0.2263 0.9237 0.2589 0.7987 0.2354 
6 2.1191 0.1846 1.1227 0.1990 1.0157 0.2170 
7 2.4700 0.3509 1.3666 0.2439 1.2281 0.2124 
A 2.9132 0.4432 1.8236 0.4570 1.4451 0.2170 
9 3.0148 0.1016 2.0314 0.2078 1.5328 040877 

10 3.3518 0.3370 2.2761 0.2447 1.7129 0.1801 
11 3.6058 0.2540 2.9577 0.2816 1.9298 0.2169 

12 3.7627 0.1569 - 2.6546 0.0969 2.1515 0.2217 
13 4.2798 0.5171 2.7793 0.1247 2.3869 0.2354 
14 4.4921 0.2123 2.9686 0.1893 2.5993 0.2124 
15 4.6860 041939 3.2087 0.2401 2.7193 0.1200 
16 5.0785 0.3925 3.4673 0.2586 2.8855 0./622 
17 549001 0.8218 3.6796 04,2123 3.1025 0.2170 
/8 6.7590 0.8587 4.1136 0.4340 3.3334 0.2309 
19 7.347 0.7757 4.3814 0.2678 3.5642 0.2308 
20 8.0425 0.5078 445892 04,2078 3.7766 0.2124 
21 8.1896 0.1471 448292 042400 3.9566 0.1800 
22 8.2964 0.1068 5.1186 0.4894 4.0490 0.0924 
23 9.1506 0.8542 5.5033 0.1847 4.2660 0.2170 
24 9.3260 0.1754 5.7295 0.2262 4.4876 0.2216 
25 5.9927 0.2632 4.7046 0.2170 
26 6.1681 4.9354 04,2308 0.1754 
27 6.3620 0.1939 5.1062 0.1708 
28 6.5098 0.1478 5.2170 0.1108 
29 6.6298 0.1200 5.4156 0.1986 
30 6.9530 0.3232 5.6233 0.2077 
31 7.1700 0.2170 5.8496 0.2263 
32 7.1593 0.1893 6.0712 0.2216 
33 7.6547 0.2954 6.2598 0.1846 
34 8.1026 0.4479 6.4312 0.1754 
35 8.2411 0.1385 6.5744 0.1432 
36 8e4858 0.2447 6.7960 0.2216 
37 8.8181 0.3323 7.0546 0.2586 
38 9.0398 0.2217 7.2715 0.2169 
39 9.2429 0.2031 7.5023 0.2308 
40 9.4414 0441985 7.7332 0.2309 
41 7.8717 0.1386 
42 8.0102 0.1385 
43 84/764 0.1662 
44 8.3704 0.1990 
45 8.5873 0.2169 
46 8.9705 0.3832 
47 9.1552 0.1847 
48 9.3445 0.1893 

REF. FtGo9417 
A 
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/6/ - BET 	PERI0D=94,49 MILL/SECONDS 	360 

ZEROS- TIME/MILLISECONDS 

ORIGINAL SIGNAL CLIPPED AND B.L. SIGNAL 

.4438 +/* J 0.1085 0.4261 +/- J 0.2322 

.6673 +/* J 0.5192 0.5238 +/* J 0.2518 

.8218 0.8125 
1.0388 1.0249 
1.1911 1.2003 
1.5090 +/* J 0.1676 1.4598 +/- J 0.1043 
1.7082 1.7082 
1.9144 1.9279 
2.1191 2.1238 
2.4699 2.4264 

'2.5403 +/- J 0.9121 2.4265 +/-m. J 0.2417 
2.6501 +/* J 0,0989 2.8783 +/* J 0.2822 
269131 2.8784 
1410147 3.0147 
3.3517 3.3471 
3.6056 3.5826 
3.7626 3.7626 
3,9839 +/* J 0.7113 4.0107 +/* J 0.1179 
3.9836 +/- J 0.1782 4.2751 
4.2797 4.4920 
4.4920 4.6258 +/* J 1.3757 
4.6899 4.7044 
4.8656 +/* J 0,1547 4.8716 +/- J 0.2405 
5.0784 5.0738 
5.3343 +/* J 0.1096 5.2812 +/* J 0.2045.  
5.9003 5.8462 +/- J 0.2123 
5.9040 +/- J 0.1271 5.9001 
6.4750 +/* J 0.1373 6.4219 +/- J 0.2109 
6.7988 6.7681 
7.0481 +/* J 0.1441 6.9990 +/* J 0.2100 
7.5345 +/* J 0.1490 7.5713 +/* J 0.2100 
8.0423 8.0515 
8.1895 8.1884 
8.1896 +/* J 0.1607 8.1285 +/* J 0.2528 
8.2962 8.3054 
8.7656 +/* J 0.1404 8.7172 J 0.1843 
9.1503 9.1503 
9.3257 9.2708 +/* J 0.2556 
9.3423 +/* J 0.1458 9.3534 

REF. FIG. 9.18 	REF. FIG. 9.19 
Table 9.10 



RFAL ZEROS.- 
S(T) 

N 	TAU(N) 

____ = 	• _ 
TTME/MILLTSFCONDS 	f)FLTA(N)=TAU(N)-TAU(N-1) 

S 4(T) 	SO 4(T) 
DELTA(N) 	TAU(N) 	DELTA(N) 	TAU(N) 	DELTA(N) 

I 0.0272 262102 061221 0.1852 0.0045 0.1358 
2 1.5669 165397 0.2490 061267 061902 0401857 
3 1.6666 0.0997 0.4619 062129 0.3623 0.1721 
4 1.8839 0.2171 0.6204 0.1985 0.9389 0.1766 
5 260289 0.1450 0401061 0.1857 067155 061766 
6 2.2779 0.2490 0.9782 0.1721 0.8876 0.1721 
7 2.4319 061540 1.1367 0.1585 1.0592 0.1676 
8 2.6765 0.2446 1.2997 0.1630 1.2182 0.1630 
9 2401214 06 1449 1.4356 0.1359 1.3722 0.1540 

1 0  360795 0.2591 1.6167 001911 1.5352 0.1630 
11 3.2335 0.1540 1407888 061721 167073 061721 
I2 1404293 0.1948 1.9609 0.1721 168794 061721 
13 560429 1.6142 2.1602 0.1993 2.0697 0.1903 
14 7.0830 2.0405 26.7149 0.1947 2.2644 061047 
15 2.5542 0.1993 264591 0.1947 
/6 2.7489 0.147 2.6939 0.1948 
17 2.9482 0.1993 2.8486 0.1947 
18 3.1520 0.2038 3.0433 0401947 
19 3.3286 061776 3.2335 0.1902 
20 365687 0.2401 3.4283 0401448 
21 3.6456 0.0769 3.6049 0.1760 
22 3.8087 0.1631 3.7272 0.1223 
23 3.9128 061041 3.9630 0.1358 
24 4.1297 0.2129 4.0306 0401676 
25 4.1250 0.1993 4.2253 0.1947 
26 4.5107 0.1857 4.4220 0.1967 
27 4.7371 062226 4.6193 0.1973 
28 4.9092 0.1721 4.8186 061993 
29 5.1764 0.2672 5.0269 062083 
30 5.3621 0401857 5.2670 062401 
31 5.6157 062536 5.5025 062355 
32 5.8104 0.1947 567153 0.2128 
33 6.0142 0.2038 5.9146 0.1993 
34 6.2135 0.1993 6.1094 0.1948 
35 6.3992 06 1857 663044 0.1947 
36 7.2098 0.8106 6.4988 061947 
37 7.1457 0.1399 606759 0.1767 
38 765721 0.2264 6.7977 0.1222 
39 7.7392 0.1631 6,9154 061177 
40 7.9164 0.1812 7.0921 0.1767 
41 8.1066 0.1902 7.2777 0.1856 
42 8.2741 0.1675 7.4635 061858 
43 8.7542 0.4801 7.6536 061901 
44 8.8311 0.0769 768257 0.1721 
45 960757 002446 8.0069 0,1812 
46 9.2111 0.1354 8.1836 0.1767 
47 
4a 

9,3692 
8,9141 

0.1856 
061449 

49 8.6455 0.7314 
SO 8.7949 0.1494 
91 8.9670 0.1721 
52 9.1437 0.1767 
REF. FM, 	A 6 C 9.21 

Table 9.11 
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Vowel 	s(t) 

Zero Conversion by Differentiation 

Table 9.12 

s' (t) 	s" (t) 	s"' (t) 
Total Zeros/ 

Period 

fu/ 6 
0.12 

20 
0.38 

36 
0.69 

46 
0.89 

52 = 2nR+2nC  

60/ 14 
0.27 

16 
0.31 

28 
0.54 

40 
0.77 

52 

(A/ 20 
0.33 

22 
0.37 

36 
0.60 

48 
0.80 

60 

(e/ 24 
0.43 

38 
0.68 

42 
0.75 

46 
0.82 

56 

(c/ 24 
0.43 

40 
0.71 

48 
0.86 

50 
0.89 

56 

(i/ 14 
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Fig. 9.22 [nR/(nR+nC)] for 6 vowel samples. 
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Figure 9.23 shows the constant T(z) contours [eq. (8-110)] 

for the vowel /u/, Fig. 9.2. Note that the linearization of phase 

with real time which must occur for large values of a [eq.(8-111)] 

occurs for a fairly small, as in the square wave and sawtooth 

examples, Figs. 8.23a and b. Again, we suggest that this is 

because of zero regularity in real time. 

9.3.4 Signal Growth and Zero Distribution  

We have seen that, observationally, real time segments 

without either CZ's or RZ's would correspond to areas of rapid 

signal growth. Also, time segments adjacent to areas with zero 

gaps experience a relative signal amplitude suppression. Is it 

possible to obtain a quantitative measure of signal growth in 

area of zero voids? 

For the simple example of a CZ signal in which aU CZ's 
are located at z = T/2 ± j 0.0, from (8-15), 

s(t) = TT 2 (1 + cos2t) 
	

(9-14a) 
1=1 

= 2n  • (1 + cosa)n 	'(9-14b) 

= 2
2n 

• cos
2n
Qt/2 	 (9-14c) 

n 
= 2[cosna 	1 + (2n)-cos(n-1)Qt + (

2 
 2
)cos(n-2)Qt+... 

+(
2n)cosft + 1/2(2n)] 	• 	(9-14b) 

The DeMoivre-Laplace theorem [P-3, p. 66] states that, 

for 2npq >> 1, 

-(k-2np)2/4npq 2n k 2n-k 	1  e 
k
) p  .q 	

VITITITFT 
(9-15a) 
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Fig. 9.23 Equal phase contours [T(z)] for vowel /u/, upper half z plane. 
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For p=q= 11, this reduces to 

2n 2n 	1 
( k)  e-(k-n)

2
/n (9 -15b) 

for n >> 2. Thus, for n large, we can write, 

n 	
n 22n+1 n _k2in  

2-(1 + cosE2t) = 	 klo  e 	' -coskOt 
(9-16) 

If we regard the line spectrum as the sampled spectrum of a sig-

nal consisting of one period of the periodic signal,-then,because 

Frr5 - ew
2
/4a 	e -at

2 
, [P-2, p. 25] 
	(9-17) 

the time function whose Fourier transform is normal, or Gaussian 

shaped, is itself the same shape. Indeed, the d.c. component of 

the "pulse" is 2
2n+1,(";-r-17. and the signal passes through zero at 

t = T/2 and 22n at t = 0. 

The problem of relating signal dynamic range to regularity 

of zeros is quite involved for more complicated signals. As noted 

by Requicha [R-7, p. 121] only qualitative observations -- those 

in the previous section, for example -- are thus far available. 

Nevertheless, it is experimentally true that abrupt changes in the 

"short-term zero density" -- i.e., zero gaps -- are associated 

with large excursions in signal amplitude. 

9.3.5 The Dynamic Range of Vowel Waveforms  

We observed in sec. 9.3.3 that, experimentally, vowel 

waveforms do not possess time segments containing either "huge" 

amplitude excursions or, conversely, prolonged time segments of 
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"negligible" amplitude. The descriptions "huge" and "negligible" 

must be considered as relative terms. In the RZ and CZ plots, for 

example, we might say that if linear scaling of waveform values 

with reference to the peaks results in significant time segments 

of signal which are essentially indistinguishable from the zero 

amplitude axis then these segments are of "negligible" amplitude. 

More formally, we could state that these conditions are 

present if Fourier series expansion of such waveforms -- from an 

amplitude spectrum viewpoint -- is heavily dependent upon the 

segments of large excursion and is not significantly affected by 

setting the waveform values in the segments of "negligible" 

amplitude to zero. 

Intuitively, the spectrum of sRz(t) in Figs. 9.10b, 

9.14b and 9.18b would not be significantly affected if the signal 

values in the relevant time segments (1.5-4.5, 0.5-5.7, and 

0.9-4.8 msec., respectively) were set to zero. That is, the 

contributions to the spectrum of sRz(t) may vary considerably 

over different portions of the signal. On an energy basis, for 

this type of signal, 

a T
( 

 

,2 
IsRz(t)1 dt 	IsRZMI

2dt + 
f 

IsRz(t)12  dt, 	(9-18) 

0 	0 

where a and b are the beginning and end of the segment of 

"negligible" amplitude. We wish to show that this type of be-

haviour is not characteristic of speech waveforms generally, 

specifically vowels. 

Fant has shown [F-2] that the Laplace transform relating 

volume velocity at the glottis to sound pressure at a distance t 
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from the lips for a 3 formant vowel is approximately 

P (s) [[ 

l 	

U 	
K(s)  

- 	(1° 	
[-P--- 

1-e 	71- 
	-sT11 4 	3 	KT(s] 

(1-sisr) T-T (1-sri)(1-s/A*) 472. 

	

r=1 	n=1 	
n 	

n  

where s is the complex frequency variable. 
4 

The first factor, [Uqo /T-T (1-s/sr)][1/(1-e
-sT

)] is the 
r=1 

Laplace transform of the glottal volume velocity waveform (see 

sec. 3.3.1) for a given voice effort and constant fundamental 

period T. According to Fant [F-2, p. 52) s
1
, s

2
, s

3
, and s

4 
are real poles having typical values -27.100, -27.2000, -27.4000 

and -27.5000 rad/sec. respectively. 

3 
The second factor, [K(s)/ 17(1-s/An)(1-s/§11)], is the 

n=1 
vocal tract transfer function relating volume velocity through 

the lips to volume velocity at the glottis. The effects of the 

three primary complex conjugate pole-pairs whose presence is 

revealed as Fl, F2, and F3 is directly included as CS' nn  , ;*1 while 

K(s) is a factor to correct for the presence of higher order 

poles [F-2, p. 42]. 

Finally, the third factor 0s.KT(s)/472 -- is the 

approximate transfer function from volume velocity through the 

lips to pressure in the sound field at a distance 2 from the lips 

[F-2, p. 44]. 0 is the ambient air density. 

The inverse transform of P(s) represents the sound 

pressure vs. time waveform of a sustained (ideally) vowel. For 

stationary (sustained) conditions, a single period can be ex-

pressed as 
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4 	3 
p(t) = 	Al.esrt + 	(-1)n.A"eant.cos[271.(Fn

t + (Pn)], 
r=1 	n=1 

0 4 	T 	(9-20) 

where 

Ar = A r
(1-esrT)-1 
	

(9-21) 

A' = A (1-2-ean -T  -cos2uFT+e
2anT)-1/2 

n n 	n 

and 

n 	2 7  
= --tan-1  [sin 27F11  T/(e

-anT-cos27Fn
T)] . 	(9-23) 

Note that
n 
= -7B

n
, where B

n 
is the formant bandwidth. Because 

Bn 
< 45 Hz for vowels, then,for Fo 

= 100 Hz, 	10nI  < 14° • 

If the poles are moved onto the jw axis (9-20) reduces 

to 
4 	3 

P(t) = 	At.esrt + 1. (-1)-A'..cos 2u(Fnt + (1)n) . 
r=1 	n=1 

(9-24) 

In reality, the poles are quite near the jw axis [D-18], 

[F-8; p. 152], [F-2, p. 51] so that a
n 

<< w
n 

= 27rF
n
. Reducing 

the {an} to zero eliminates the damping on each sinusoidal com-

ponent of p(t). 

Equation (9-20) involves specification of only 3 para-

meters per formant -- A
n
, F

n 
and a

n 
-- and 8 parameters for the 

voicing source. Since an  is highly dependant upon Fn[F-8, p. 152], 

the number of necessary parameters for complete vowel specifica-

tion is reduced further. This model, therefore, is a less re-

dundant method of specifying the speech waveform than the general 
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Fourier series representation. Briefly, this is so because once 

the formant amplitudes and locations are known, the Fourier series 

is basically determined becau-e the form of the resonators is 

known. 

More important, (9-20) demonstrates that the dynamic 

range of p(t) must be small compared to the dynamic range possible 

for an arbitrary signal with the same bandwidth. The upper bound 

on the amplitude of p(t) is IA; + IA' but because of the phase 

relationships which give rise to the (-l)' factors in (9-20), and 

because the phase perturbations0
n 

are small, this bound is not 

approached. The upper bound on any signal with the same amplitude 

spectrum as (9-20) and arbitrary phase spectrum is simply the sum 

of the absolute values of aZZ the Fourier series coefficients of 

the signal represented by (9-20). The AI!,  factors, as per (9-22), 
are proportional to the formant amplitudes, An, which are simply 

the value of the amplitude spectrum of p(t) at the formant 

frequencies. It is easily shown that, for the an, T and Fn  com- 

binations associated with vowels, A' < 2A 
n 	n

. 

Therefore, vowels can be modelled realistically as the 

summation of a very small number of damped sinusoids, each of 

which has amplitude not much greater than that of the single 

Fourier coefficient nearest the relevant formant frequency. For 

this reason, we do not expect, and indeed, do not observe, vowel 

waveforms with time segments of-either "huge" or "negligible" 

amplitude. It follows that, because gaps devoid of both RZ's and 

CZ's must give rise to "huge" amplitude excursions, we should not 

(and did not, in out experiemntal work) expect to find such voids 

in voiced speech sounds. We will discuss this contention further 

in sec. 9.5.3. 



372 

9.4 	The Zeros of Bandlimited Clipped Speech Waveforms  

9.4.1 	The Effects of Bandlimiting on Sgn[s(t)]  

In this section we will attempt to show that bandlimiting 

a clipped, periodic signal should not significantly affect the 

zero crossing positions provided that certain bandwidth-related 

zero crossing separations are satisfied in the clipped signal. 

A clipped, periodic signal may be expressed in the form 

(9-1d) 
2nR  

C s(0=sgn[s(0]=71- sgn[t-T], Itl .5 T/2. 	(9-25a) 
i=1 

2nR  

= 2 	(-1)i-1  U(t-T.1) -1 
	(9-25b) 

i=1 
0 t T, 

nR 
= 21 [U(t-T2i-1) - U(t-T2i)] - 1 , 

1=1 
0 t T . (9-25c) 

Here U(x) is the unit step, 

1, x 0 
LT(x) = 

0, x < 0 . 

We wish to predict the effects of bandlimiting C s(t). 

Invoking the Fourier series relationships, equations (2-6) and 

(2-7), we may write [P-2, p. 46]: 

T/2 

BL
n 
(C s(t)} = 1 C s(T) T.sin[Q(t-T)/2] 

sin[(n+1/2)0(t-T)] dT, 	(9-26) 

-T/2 
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where BLn {C s(t)}is bandlimited to ± W = ± nS1/2Tr Hz. Combining 

--(9-25c) and (9-26) 

T/2 
nR 

BLn{C s(t)} = 2ff 	I 	
sin[(n+1/2)Q(t-T)] [U(T-T21-1)-U(T-T2i)]-  T sin[0(t-T)/2] 

dT1-1, 
i=1 -T/2 

0 < t < T. 	(9-27) 
i) Ripple 

For convenience, we write 

sin[(n+15)Qt] kn(t) T sin[S2t/2] 

where kn(t) is the Fourier series kernel [P-2, p.44]. 
Then 

(9-28) 

nR  

BLn{C s(t)} = 
2{ I  
i=1 0 

= 2 	yR  
i=1 

= 2/ IR  
c=1 

T 

T
2i 

T2i-1 

nR 
kn(t-T) dT - I 

i=1 T2i_l 

k
n
(t-T) d- 1, 2i-121 

f [U(T-T
2i-1).kn

(t-T)-U(T-T2i).kn
(t-T)]d4-1 

(9-29a) 

I k (t-T) dr}-1 
n  
2i (9 -29b) 

1 < 	T 	, . (9-29c) 

1 	The 2nR RZ's may arbitrarily be arranged into nR pairs 

with one member of each pair greater than the other. 



d BLn{C s(t)} 	nR 
dt 	 = 2 X [kn(t-r21.-1)-kn(t-T2i)] 	(9-30a) 

i=1 

Differentiating both sides of (9-29c) with respect to t, 
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because 
3 kn(t-T) 	a kn(t-r) 

3t 	 a T 	  . For convenience, we 

will write 

d BLn{C s(t)} 	nR 

2 X k dt 1=1 -n 'k (9 -30b) 

where k .(t) = sin((n+1-1)Q(t-T2i-1)]  sin[(n+11)S1(t-T2i)] T1, 1 T.sin[0(t-T2i-1)/2]  T-sin[R(t-T2i)/2] 

(9-31) 

We contend that, if (n+1)E2 >> 0/2, then--because 

sin [(n+11)Sit] varies so much more rapidly than sin(Qt/2)-- 
during time segments of approximate duration .T/ (n-+i2) seconds 
which are located at least T/(n+1/2) seconds away from 
T2i...1  or T2i  we may write 

k 	.(t) 	K.cos[(n+1/2)Qt + 0.] 	(9-32) 
-T1 1 	1 	 1 

in the sense that--over this time interval--zero crossings are 
occuring regularly at the rate of one every T/(2n+1) seconds. 

K. and 0. are constants which are calculated by assuming the 

denominators of (9-31) to be constant over the interval in 

question. In summary, over short time segments [on the order 

of the ripple period, T/(n+11) seconds] kni  (t) is approximately 
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a sinusoid of frequency (n+1/2)S2/211.  Hz provided that the time 

segment is located "far enough" from the zero crossings which 

define k ,i(t). 

Now, from (9-30), 

d BL
n
{C s(t)} 	nR 

dt - 2 k (t) 	(9-33) 
i=1—n'i  

so that we can similarly extend the contentions of the pre- 

vious paragraph and state that, over short time segments [on 

the order of the ripple period, T/(n+11) seconds], d BLnIC s(t)}/dt 

is approximately a sinusoid of frequency (n+1/2)W27 Hz provided 

that the time segment is located "far enough" from any of the 

zero crossing positions of C s(t).2  

Thus, since (9-33) is the derivative of BL
n
{C s(t)} 

we would expect to find ripple of "frequency" (n+1/2)0/27r Hz in 

time segments of BLn{C s(t)} "far enough" away from zero 

crossings of BLn{C s(t)} if the criterion that (n+12)D>> Q/2 

is satisfied. For voiced speech, Q is typically 271-100 

radians/second and a reasonable minimum bandwidth is 3 KHz, 

i.e., n = 30. 

Examination of Figs. 9.3a, 9.7a, 9.11a, 9.15a, and 

9.19a shows that, experimentally, this is the case. The 

ripple is nothing more than a manifestation of Gibb's phe-

nomenon [P-2, pp. 30-31] and by measurement, has a frequency 

close to (n+11)Q/2Tr Hz, where C s(t) has been bandlimited to 

n0/27 Hz. 

The question of whether bandlimiting causes signi-
ficant changes in the positions of the zero cross-
ings of C s(t) will be examined in subsection ii) 
of 'this section. 
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ii) 	Migration and Annihilation of Zero Crossings  

At the 2j-1th zero crossing of s(t), from (9-30a), 

BLn IC s(t)} 
	 = 2 kn(0) - 2 kn(T2j_i-T2j) 

t=1.2j_i  

at 

n
R 

+ 2 	y [1, (, 	- T . ) 	kn(T j- 1=1 n 2j-1 21-1 	2 1-T2i)3  

1.0j 	 (9-34a) 

2nR  

= 2(n+10/T + 	Ki- cos[(n+h)QT2j_1  + 
1=1 
i0j 	(9-34b) 

= 2W + K • cos[(n+k)QT2i_l  + 0) 
	

(9-34c) 

for • r2j-1 

9.24a). 

- T/(2n+1)>T.>T2 
1  + T/(2n+1), i 	2j-1 (see Fig. j - 

Now, as t+T/2, the value of the envelope of kn(t)41/T. 

In fact, for T/6<t<5T/6 the value of the envelope of kn(t) lies 

between 2/T and 1/T. Therefore, the value of K in (9-34c) is 

upper bounded by 2(2/T)*(2nR-1)--at t = T2j..1--if the other zero 

crossings of s(t) are located more than T/6 seconds away from 

t = T2i-l. 

Note that for n "large", 

2(n+11)/T " 2W , 	(9-35) 

where BL
n{C s(t)} is bandlimited to ±n0/27 = ±W Hz. Thus, for a 

given T, the value of the derivative of BLn(C s(t)} at a zero 

crossing of s(t) is the sum of a factor, 2W, which is propor-

tional to the highest frequency present in the signal, and a 

factor whose upper bound is proportional to the number of zero 

crossingi. 
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f1  (t)=kn(t-T2j-1) 
	

f2
(t)=K-cos[(n+11)Qt+6], 

T
2j-1

-T/n<t<T
2j-1

+T/n.  

BLn{C s(t)} = f1(t) + f2(t) , near t = T2j-1 • 

slope = 2W  KR (n+1-1)0] 
I 

	}t 

2j-1 

g1(t) = 2W(t-T2j-1
)' g2(t)=(K/[(n+11)Q]l• 

sin[(n+k)Ot+0], 

and BL
n
{C s(t)} = g1(t) + g

2 
 (0, all for T

2j-1
-T/n<t<T

2j-1
+T/n. 

Fig. 9.24 Approximating 	BLn{C s(t)} (a) and BLn{C s(t)} (b) 
near t =, and (c) geometry illustrating zero crossing 

T2j-1 
annihilation by bandlimiting_(see text). 

b) 

c) 
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Under the above conditions, near t = T2j_1
, 

-BL
n
{C s(t)} = 2W(t-r

2j-1) 
 + [K/(n+1/2)0] • sin[(n+1/2)nt + 0] (see 

Fig. 9.29b) . 	(9-36) 

Then, for BLn{C s(t)} = 0 near t = 

using K =.K 	= 4(2n -1)/T, max 

t =- [K/{2(n+k)PW1] T2j-1  • sin [(n+1/2)0t + 0] (9-37a) 

= 2j-1 - [(2nR-1)T/lrn2] • sin[(n+1/2)2t + 0] . (9-37b) 

Experimentally, for speech signals, nR < 0.3n. Thus, for n 

"large", the maximum value of the coefficient of the sine func-

tion in (9-37b) is approximately 

(0.6/n) • (T/n) . 	 (9-38) 

For the speech signals we are concerned with n 30 and, ex-

perimentally, the average value of the real time interval be-

tween the zeros of s(t) is T/n (see sec. 9.3.3, eq. (9-13)). 

Therefore, the factor in (9-38) -- the coefficient of the sine 

function --represents a maximum zero crossing perturbation of 

less then 20% of the average inter-zero spacing. 

Thus, to a good approximation, for the signals we are 

concerned with, the zero crossings of BLntC s(t)} should be 

relatively undisturbed if the zero crossings of C s(t) are 

farther apart than T/n seconds. 

A visual superimposition of the s(t) and BL30{C s(t)} 

diagrams and a similar comparison of the sRZ 
 (0 signals corres-

ponding to s(t) and BL
30
{C s(t)} shows that experimentally ,the 

effect of the bandlimiting operations on the zero crossings of 
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C s(t) -- for speech vowels -- is almost negligible -- except in 

one case (Fig. 9.7a), where two zero crossings of the original 

signal (Fig. 9.6a, t = 0.6177, 0.6799 cosec.) have been converted 

to a complex zero pair by the bandlimiting operation. In this 

instance, the two relevant zero crossings of s(t) are very close 

together. Assuming that the arguments of the previous paragraphs 

can be extended to consider the effects of bandlimiting on two 

adjacent zero crossings, then -- using geometrical arguments --

there is indeed the possibility that the two RZ's will'be con-

verted to a CZ pair by the bandlimiting operation if they are 

closer than 0.25(T/n) seconds apart. 

From Fig. 9.24c, [si(t) - s2(t)] <1/2  if A < 1/4W = 0.25(T/n) 

seconds. Figs. 9.25a, b, c demonstrate zero crossing annihila-

tion by bandlimiting in the practical case. 

9.4.2 Experimental Observations: Clipped, then Bandlimited  

Signal  

i) sRz(t) 

As per the previous section, sRz(t) appears to be little 

changed by the bandlimiting operation except in the one case 

[Fig. 9.7] where a zero crossing pair 0.08 milliseconds apart 

(:0.17/W) in the original signal have been converted to a CZ 

pair by bandlimiting. 

ii) sCZ(t) and the complex zeros 

As shown in the previous section, ripple is associated 

with the bandlimiting operation following clipping. Since a 

complex zero pair must fall between pairs of successive maxima 

in the waveform (sec. 8.5.2), the complex zeros occurring between 

zero crossings in BL{C s(t)} should be "regular" in real time, at 
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t 

Fig 9.25 Loss of zero crossings by bandlimiting a clipped signal. 
Zero crossing pair to right of centre line is lost as pre-bandlimiting 
spacing is decreased. 
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intervals of approximately T/n. This is observed in Figs. 9.3, 

9.7, 9.11, 9.15, and 9.19 except for a few cases corresponding 

to time segments where scz  was extremely small and hence some-

what inaccurate (sec. 9.3.1). In all (real) time segments 

where sCZ 
 (0 is not of negligible amplitude -- i.e., visible 

on the experimental diagrams, resolution 0.001 " -- the CZ-

ripple correspondence is exact. 

In summary, the following observations were noted: 

First, because of the ripple, the CZ pairs are "regular" 

in real time. Secondly, because smaller imaginary parts of CZ 

pairs are associated with larger amplitude ripple (sec. 9.3.3 

iii), and because the ripple amplitude is largest near the dis-

continuities of the clipped waveform, the CZ configuration for 

the bandlimited rectangular waveform exhibits a characteristic 

"arced" configuration (see Figs. 8.2, 8.3). 

Thus, for regular ripple to occur, the CZ's must be 

regular in real time. The larger the ripple amplitude, the 

closer the CZ's must be to the real time axis. In effect, the 

post-clipping and bandlimiting positions of the CZ's are highly 

restricted by the nature of the bandlimited clipped waveform. 

9.5 	The Geometry of the Zeros of Polynomials  

We have shown that, although the precise positions of the 

real zeros and compleX zero pairs on the complex time (z) plane 

may be determined by factorization of the Fourier series polynom-

ial representing s(t), certain explicit relationships obtain be-

tween waveform characteristics and zero Locations. 

The RZ's of s(t) may be located by bandlimited inter-

polation of s(t) in the time domain (sec. 9.3.1). In addition, 

the real time positions of the CZ pairs are often "signalled" 



then 
2n 

g(w) = w
-n 	

ck -n • w
k 

k=0 
(9-40) 
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by overt signal characteristics such as ripple. However, this is 

mot always the case and the imaginary time positions of the CZ's 

are not at all obvious. 

Since the finite Fourier series of s(t) or BL{C s(t)} --

both periodic signals bandlimited to ± W = n0/27r Hz -- can be 

represented by a polynomial of degree 2n in w = ejRt, it is of 

interest to ask whether the significant features of f(w), the 

Fourier series polynomial, are of value in determining the 

character of its roots (or zeros) and therefore the nature of the 

zeros of the signal. 

For this reason, this section is devoted to a study of 

the zeros of f(w) as a function of its coefficients, which are 

the complex Fourier coefficients of the signal. 

9.5.1 Self-Inversive Polynomials  

As noted in chapter 8, because 

n 
s(t) = y ck  • w , w = ei°t 	(9-39) 

k=-n 
 

and the zeros of g(w) are the zeros of 

2n 
f(w) = y 

ck-n. w  
k  

k=0 
(9-41) 

Due to the complex conjugate symmetry of the Fourier coefficients, 

i.e., c_k  = 	 (9-42) 
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f(w) possesses zeros which are either on, or reflected in,1  the 

unit circle, 1w1  =1. Polynomials satisfying this criterion have 

the property that f(l/w*) has the same zeros as f(w) [B-15]. 

Such polynomials are called self-inversive and we shall deal with 

them exclusively. 

Since vertical strips in the z plane map into sectors of 

the w plane (eq. (8-12)) our concern with z plane distribution in 

real time is transformed into an interest in the angular distri-

bution of zeros about the origin of the w plane. Similarly, a 

horizontal strip in the z plane maps into an annulus in the w 

plane. Due to the self-inversive nature of the Fourier series 

polynomial, investigation of the maximum distance from the 

origin at which roots may be found on the w plane is equivalent 

to determining the minimum distance. The above relationships are 

illustrated in Fig. 9.2.6. 

9.5.2 	Circle Theorems  

Real zero signals have roots only on the unit circle 

in the w plane. That is, 

f(w) = 0 for w = ei6. 	(9-43) 

A.Kempner has shown [K-2] that, if f(w) has real coefficients 

only, then the roots which lie upon the unit circle become real 

roots of 

(w) = (2+1) 	• f(Vi) • f( jf) - 0, 	(9-44) 

which contains only even powers of w. Letting 

gw) = T(12) = T(w') 
	

(9-45) 

1 	This means that a root at r ei  must be accompanied by 

another at eje/r. 
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then the necessary and sufficient condition that all roots of 

f(w) = 0 are of the form el' is that W(w') has only real, posi-

tive roots. Tests for real positive roots are outlined in 

chapter 9 of Marden [M-6]. However, most of the polynomials we 

are concerned with have complex coefficients. Although other 

tests for "real zero" spectra are possible [B-15], [M-6, p. 206, 

ex. 3] they are qualitatively uninformative. 

i) Loose Bounds  

We are specifically interested in establishing bounds for 

the magnitude of the zeros of the polynomial 

f(w) = ao+alw+ 	. +a2n-lw +a w 2n
2n 

 (9-46) 

as a function of the (2n+1) complex coefficients. Marden deals 

with this problem at length in his Geometry of Polynomials [M-6, 

pp. 122-165]. For example, it can be shown that all the zeros 

of f(w) lie on or outside the circle 

1w = minfla01/(1a01 	lak1)1' 
	

(9-47) 

k = 0, 1, .... 2n. 

The Fourier series kernel, kn(t) (eq. (9-28)), has ak=. 1 so that 

lwl >  min 
1/2 and 11.41 

max 
< 2 . (9-48) 

Note that 

kn(t) sin(n+1/2)0t (9-49a) 

 

T.sin(Qt/2) 

 

2.sin(2n+1)0't  , where 52'=2/2 
and T'=2T TI -sinWt 

 

-49b) 
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4n+1 
0' K 1 2.sin-- [t-iT'/(4n+2)] 

i=0 

  

(9-49c) 

 

1 ' T' TT 2.sin02 [t-iT1 /2] 
i=0 

4n+1  K 
I 	

1 	n,  
2 2•sin-- [t-iT'/(4n+2)] T  

i=1 
i2n+1 

(9-49d) 

so that kn(t) possesses 4n real zeros per period T' -- or 2n RZ's 

per period T.-- and is bandlimited to ±2n(0/2) = ±n0 rad/sec. 

Thus k
n(t) is an RZ signal and the bounds given by (9-47) are 

very conservative. 

ii) The Lehmur-Schur Algorithm and its Repercussions  

The Lehmur-Schur algorithm [L-9], [R-2, pp. 355-359] is 

used directly to determine whether or not a given polynomial, 

f(w), has roots within the unit circle.' Unfortunately, the 

basic algorithm breaks down for self-inversive polynomials. 

However, if the polynomial f(r.w), r<1, is substituted for f(w), 

the algorithm may be used to determine whether f(w) has roots 

within the circle Iwi = r. 

In appendix A, we show that the Lehmur-Schur algorithm 

can be modified so as to derive close bounds on the minimum 

radius (and hence, because of the self-inversive nature of the 

Fourier series polynomial, the maximum radius) at which roots of 

the polynomial representing a three-tone vowel model are found. 

The example used is 



387 

f(w) = a3 r
50+2N

.1•7
50+2N

+a2r35+2N.w35+2N+a
1 
r
29+2N

•Na
29+2N 

+a*
1
r
21
w
21
+a*
2
r
15
w
15
+a*
3  . 
	(9-50) 

This represents a three-tone vowel model with fundamental or 

voicing frequency of 100 Hz and formants (tones) located at 

(400 + 100-N) Hz, (1000 + 100.N) Hz and (2500 + 100-N) Hz, 

respectively. Thus N represents an SSB modulation (translation) 

of 100.N Hz, with N=0 corresponding to the original lowpass vowel 

model. The complex amplitudes of Fl, F2, and F3 are a
l' 
 a2, and 

a3, respectively with the usually valid assumption being made 

that la
1 
I>la

2
Ida

31. As noted in sec. 9.3.5, the three-tone model 

lacks the damping present in actual vowel sounds. 

It is shown in appendik A that the minimum radius r at 

which roots are found is 

r = [1a21 • 1a31]-1115 	(9-51) 

the approximation being more exact as N'is increased from zero, 

i.e., as the signal is SSB translated upwards in frequency. More 

generally, for (F3-F2), = p(0/20 Hz -- 5 < p < 15, for vowels 

then for 

lailda21 > 1a31 , 	(9-52) 

r = [1a21 • 1a31]-1/P 	• 	(9-53) 

Again, SSB modulation improves the estimate. 

For the two-tone model the results are similar with p 

being (F2-F1)27r/S2 and 1a31 replaced by 1a11 in (9-53). We have 

tested this extension of the Lehmur-Schur algorithm for the 

two-tone signal. The results are as follows: 
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i) Signal: s(t) = 3singt + sin3Qt 

ran (predicted) = (3)
-1/2 

= 0.576 

ran  (actual) 	= 0.517 

ii) SSB Modulation: translation of i) by 352. 

s(t) = 3 sin4Qt + sin 6Qt 

rmin'(predicted) 	= 0.576 (same as i) ) 

r
min 

(actual) 	= 0.5807 

iii) SSB Modulation: translation of i) by 50 

s(t) = 3sin6Qt + sin8Qt 

r
min 

(predicted) 

r
min 

(actual) 

iv) Increased Separation of Tones 

s(t) = 3sinQt + sin5Qt 

= 0.576 (same as i),ii)) 

= 0.5777 

ran (predicted) = (3)-l/4 = 0.769 

✓ (actual) 
min 

= 0.735 

v) SSB Modulation: translation of iv) by 2Q 

s(t) = 3sin352t + sin7Rt 

✓ (predicted) 
min 	= 0.769 (same as iv)) 

rmim.  '(actual) 	= 0.751 

vi) Increase of "First Formant" Amplitude in iv) 

s(t) = 5sinQt + sin5Qt 

✓ .
n
(p redicted) = (5)

-1/4 
= 0.669 

mi 

r
min 

(actual) 	= 0.645 



389 

Table 9.13 

Roots of experimental two-tone models 

i) s(t) = 3sina + sin3Ot 

Roots on w plane: ±1, 0.0 ± j 1.9319, 0.0 ± j 0.5176 

ii) s(t) = 3 sin 40t + sin6Qt 

Roots on w plane: ±1, ± j 1, 0.0 ± j 1.7221, 0.0. ± j 0.5807 

±0.7587 ± j 0.6514 

iii) s(t) = 3sin6Qt + sin8Qt 

Roots on w plane: ±1, 	j 1, 0.0 ± j 1.7310, 0.0 ±± j 0.5777 

± 0.5481 1-  j 0.8364, 10.8844 ± j 0.4668 

iv) s(t) = 3sinc1t + sin5Ot 

Roots on w plane: ± 1, ± 0.4588 ± j 0.5661, 10.8641 ± j 1.0661 

v) s(t) = 3sin3Qt + sin7Qt 

Roots on w plane: ±1, 1'0.9759 ± j 0.9047, ±0.4021 ± j 0.9156, 

10.5511 ± j 0.5109 

vi) s(t) = 5sinQt + sin5Qt 

Roots on w plane:,1"- 1, ± 0.4149 ± j 0.4968, ± 0.9904 ±j 1.1858 
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Thus, as predicted, both SSB modulation and increasing the tone 

separation increases the accuracy of the predicted rmin. Again 

because of the self-inversive nature of the polynomials, r max 

1/r
min. 

This model predicts that, for three-tone models of vowel 

sounds, the complex zeros will be located "near" the unit circle 

in the w plane and hence close to the real time axis in the z 

plane. This is because (x)lip±1 for "large" p, Ixl<1. . In table 

9.14, we have ac- ed the data of Peterson and Barney [P-11] to cal-

culate the maximum value of a = IIm[z]I for three-tone vowel 

models.Thecalculntedvaluesofrinin range from 0.81 to 0.94 

while the corresponding values of a -- assuming T = 10.0 msec or 

F
0  = 100 Hz -- are 0.07 and 0.34 milliseconds, respectively. We 

observed that, in the experimentally factorized vowels, the 

majority of the CZ pairs were located within 0.3 - 0.4 milli-

seconds of the real time axis. 

It should be noted that in the experimental factorizations, 

the third formant was generally not located at the upper band-

limit of the factorized signal. However, assume that 

s(t) = a
1
sin n

1
Qt + a

2
sin n

2
Qt + a

3
sin n

3
Qt + esin n

o
Qt, 

n
o
>n
3
>n
2
>n
1 • 
	 (9-54) 

If c<<< minial,a2,a31, then the behaviour of s(t) should be, 

intuititively, almost unaffected by the presence of the term 

esin n
o 
Qt. 

However, by dimensionality arguments, s(t) must possess 

a number of zeros per period equal to 2n 
0
. Thus the effect of the 

esin n
o
Qt term must be to add (n

o
-n
3
) CZ pairs in such a way so 

as to leave the signal behaviour essentially unchanged, so that 

the original 2n
3 
zeros still determine the net signal behaviour. 

It would be then expected that the "extra" CZ pairs forced into 

the signal by the esin n
oQt term would appear relatively far from 



(2) 	(3) 

IF2]-1F31_ 
db 

(4) 	(5) 	(6) 

-=r x min 
. , ,msec 

a   thin 

(1) 

Vowel 

(7) 

51  • 
(F3-F2/Fo X= 	 10x  

(3)/20 

/1/ 8 4 0.2 1.6 0.945 0.0565 0.089 

/I/ 6 4 0.2 1.6 0.926 0.0768 0.123 

/E/ 7 7 0.35 2.24 0.89 0.116 0.185 

/aa / 16 10 0.50 3.16 0.93 0.0726 0.0726 

/a/ 15 23 1.15 14.0 0.838 0.177 0.282 

P/ 16 27 1.35 22.4 0.823 0.195 0.310 

/u/ 12 22 1.10 12.6 0.81 0.211 0.339 

/u/ 14 24 1.20 15.8 0.82 0.199 0.318 

/A/ 12 17 0.85 7.1 0.85 0.163 0.260 

/g/ 3 5 0.25 1.78 0.825 0.186 0,297 

Table 9.18  

Calculation of Radius of Smallest CZ for Three-tone Vowel Model 

Data of Peterson and Barney EP-11] Modified 
Lehmur-Schur Algorithm 
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the real time axis so as not to cause any perceptable change in 

the signal (sec. 9.4.3 iii) ). 

9.5.3 Angular Distributions  

The problem of determining the positions of the real zeros 

and complex zero pairs in real time requires an investigation into 

the angular distribution of zeros about the origin in the w plane. 

i) Loose Bounds  

P. Erdos and P. Turin have shown [E-1, 2, 3] that for the 

polynomial 

f(w) = aealw+a2w
2+ 	 

a2n
w2n 

 ' 	
(9-55) 

if 	max If(w)I = M, 	 (9-56) 

lwl = 1 

then for arbitrary fixed 0 a < 6 	27r, an "Index of Regularity", 

Iv 
can be defined such that 

Iv  = I Iv  1-2w[(6-a)/21r]l 

a< arc v
<6 

<16[2n.log(M/Ilao.
a2n'

1)]1/2 	(9-57) 

A verbal statement of the Erdos-Turin theorem is that "the 

absolute value of the difference between the number of roots in 

a given sector 	a< arc w v
<6 -- and the number of roots that 

would be found in the same sector if the roots were uniformly 

distributed about the origin (i.e., 2n[(8-a)/21r]) is less than 

16[2n log (M/ 	ao a2n I ) )1/2  ti 



f(IwI =1) = f(eje) = aealej0+a2ej28  + . . . . +a2n
ej2n0 

(9-58a) 

Note that 
393 

ejne(a0e-jn0+ 	4.a ejne) (9-58b) 2n 

e
jr10 

• s(0) 

	

= 	 (9-58c) 

if f(w) is a Fourier series polynomial. Since 0 = Qt in this 

case, 

max If (w)1 	= max 1s(t)1 . 	(9-59) 

kill = 1 

Finally, M can be replaced by P, where 

P = la01 	la11 	la2n1 

	
(9-60) 

and 	P 	M • [E-3] 
	

(9-61) 

In the Erdbs-Turan theorem, I
v 
represents an index of 

regularity for the angular distribution of zeros about the origin 

in the w plane. However, the angular distribution of the zeros 

of the polynomial representing the Fourier series kernel, 

k
n(t) -- eq. (9-28) -- is nearly uniform, yet, because Is(t)1 = 

(2n+1)/T, I
v 
represents a rather poor bound; i.e., 

	max 

Iv < 16{2n log[(2n+1)/T]}' 
	

(9-62) 

In summary, the theorem of Erdas-Turin represents a rather con-

servative bound on zero regularity about the origin in the w 

plane. 

ii) Kempner's Planetarium Theorems  

A.J. Kempner also considered the problem of angular 

distribution of zeros in the w plane [K-3, -4, -5]. He studied 

the general polynomial equation, replacing ak  and w in 
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f(w) = anw
n
+a
n-1

w
n-1 

+ . . . . +a
1
w+a

0 
= 0 

with 
jTk 

Rce 	O<T <27 
' Rk4  

and 
r-eJo, 	r>0 , 

respectively. 

(9-63) 

(9-64) 

(9-65) 

Kempner described his first theorem as follows [K-5, p. 

816): 

"In the [w] plane of complex numbers, mark from the 

origin the . . . vectors Tk. The vector To  is to remain in its 

original position. The vector TI  is to rotate in a positive 

sense with a constant angular velocity c, while for k = 1, 2,..n 

the vector T
k 

rotates with a uniform angular velocity k times 

that of T
1
. Vectors 'P

k 
for which Rk  = 0, that is, for which the 

coefficient ak=0,are to be ignored. At any moment the vectors 

give the directions of the vectors representing the terms 

ak • w
k 

= Rk  • r
k 

• e
j(Tk+k8) • 

These directions depend only on e and the Tk  of the coefficients. 

Most of the theorems [presented] are immediate consequences of 

the fact that the sum of vectors from a common point can certain-

ly not vanish when it is possible to draw a line through the 

point such that all vectors lie on one side of the line." 

(Italics mine.) 

Thus, Kempner emphasized, it is impossible to have roots 

of f(w) = 0 in any sector (vertex at the origin of the w plane) 

tirs04(3 for which all vectors lie on one side of a straight line 

through the origin. He noted that such e intervals -- if they 

exist -- "are determined by simple inequalities which in many 

cases enable us to determine sectors [which may have zero width], 
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depending only on the arguments of the coefficients, not on the 

absolute values, and which are free of roots."2  

The sectors which interlace the "forbidden sectors" 

-- the sectors which may not have zeros -- must have at least 

one root per sector IK-3]. 

Kempner's theorem can be couched in more familiar terms 

if we immobilize the middle term of the Fourier series poly-

nomial -- i.e., the d.c. component -- instead of the constant 

term. Then we have the common visualization of sinusoids being 

composed of pairs of contra-rotating vectors or phasors with 

angular velocity equal to their radian frequency. It then be-

comes clear that Fourier series polynomials represent special 

cases of the "planetarium". Because of the symmetry involved, 

the only possible "straight line through the origin that all vec-

tors can be on one side of" is effectively in the line 0 = 190°. 

And there is only a choice with respect to the half-plane when 

the d.c. component is zero. When the d.c. component is positive, 

then all vectors must lie in the half-plane -90°  < 0 90°  for a 

zero void to occur. Conversely, when the d.c. component is nega- 

tive, zero voids may only occur for 90° 	0 	270°. The other 

possible case for a zero width occurs when all the vectors fall 

along the 0° phase line, colinear with the d.c. component. 

Substituting (9-64) and (9-65) into (9-63) we find that 

f(w) = u(r,0) + j v(r,0) 	(9-66) 

n 
where 	u(r,0) = 	Rk-r

k
-cos(ke + T

k
) 

k=0 
(9-67a) 

2 	Classically, a planetarium is an instrument with dials 
rotating at different angular rates. 
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n 

	

and 	v(r,6) = 	Rcr
k
•sin(k6 + Yak). 	(9-67b) 

k=0 

For the Fourier series polynomials, 

f(w) = a
n
w2n+

an-1w
2n-1+...+a
0n  
wn+....a*

-1 
 w+a* 	(9-68a) 

n 

= w
n
(anw

n
+an-1w

n-1
+...+a0....a*n_lw-(n-1)+a*w-n) . 

(9 -68b) 

After substitution of (9-64) and (9-65) into (9-68), 

Owl = 1) = u(1,6) + j v(1,6) 

= cos ne.s(6) + j sin ne.s(0) , 	(9-69) 

where 6 = 2n(t/T) = Qt. (see (9-58) ) 

Thus, 

u(1,6) = cos nS2t•s(t) 	 (9-70a) 

	

and 
	

v(1,6) = sin rat.s(t), 6 = - t 	(9-70b) 

Kempner's second theorem states [K-4, p. 80]: 

Plot u(r,0), (9-67a), and v(r,0), (9-67b), against 0, 0.;015,27, 

for a given radius r. Name the points of intersection of the 

u-curve with the 6-axis al, a2, a3, .., and the points of in-

tersection of the v-curve with the 0-axis 
S1' 2' • • • 

Consider the combined sequence of the a, 0, in their natural order 

of magnitude. Assume the sequence closed cyclically, and let 

c
2, 3, . . . v 

respectively be the number of R between 

two consecutive a; then the number of roots of f(w) = 0 for which 

I w I < r is given by 
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N = 1/2  (-1)(s1+1)+(c2+1)+ . . . +(ck+1) 	(9-71) 
k=1 

 

Kempncr's second theorem is simply a recasting of the Principle 

of the Argument [M-6, p. 1]. This principle states that if f(w) 

is analytic to a simple closed Jordan curve C, and continuous and 

different from zero on C, then the net number of times that f(w) 

encircles the origin of the f(w) plane as w traverses the closed 

curve C on the w plane equals the number of zeros of f(w) interior 

to C. 

Figure 9.27illustrates Kempner's second theorem and the 

Principle of the Argument for sRz(t) of the vowel /u/, which has 

6 RZ's. (see Fig. 9.2). For r = lwl = 1.05, the u vs v curve 

encircles the origin of the f(w) =u+jvplane 6 times (Fig. 

9.27a). For r = lwl = 0.95, there are no net encirclements of 

the origin; sRZ(t)'  of course, has all its zeros on the unit 

circle (Fig. 9.27c). When r = lwl = 1.0, the curve passes through 

the origin 6 times (Fig. 9.26b). Application of the second 

theorem to Figs. 9.27d, e, f) yields the same results (see [B-21]). 

Figure 9.28 shows the application of the theorem to the 

signal s(t) for the vowel /u/. Note - that as we traverse the unit 

circle on the w plane, f(w) passes through the origin on the f(w) 

plane 2nR times (6 in this case) and encircles the origin n 

times (23 in this case). 

Due to the cos rift and sin nQt factors in (9-69) --

which result from the nature of the Fourier series polynomial --

encirclement of the origin of the f(w) plane by f(w), as w tra-

verses the unit circle in the w plane, will be regular between 

unit circle zeros of f(w) (i.e., between RZ's of s(t) ). This 

is demonstrated vividly in Fig. 9.28 and obtains whether or not 
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Fig. 9.27 u(r,e) vs v(r,e) for r = 1.05 (a), 1.00 (b) and 0.95 (c) 
for sRZ  (0 of vowel /u/. 

u(r,0), v(r,O) vs 0 = Qt for r = 1.05 (d), 1.00 (e), and 
0.95 (f) for sRz(t) of vowel /u/. 



1 

Fig. 9.28 a) u(1,6) vs v(1,0) for s(t) of vowel /u/. 

b) u(1,0), v(1,0) vs 0 = Ot for s(t) of vowel /u/. 
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the CZ's of s(t) are regular in real time between the RZ's. 

Note, in Fig. 9.28b, that the RZ's of s(t) occur when u(1,0) and 

v(1,0) simultaneously pass through the time axis. 

Our objective now is to discover whether or not there is 

reason to believe, as a result of Kempner's theorems (the Prin-

ciple of the Argument), that the, polynomials which interest us 

have zeros which are regularly distributed about the origin in 

the w plane. Consider the following path on the w plane: 

1) along the arc of unit circle from e+ff to e. 

ii) along the diameter from w = eje  to w = 0 to w = eJ(e+7)  

This is a closed path on the w plane. Assume, for convenience that 

the signal we are interested in is entirely CZ. Then n = nc. 

Now as w traverses the semi-circle arc from 0+7r to 0, f(w) must 

encircle the origin of the f(w) plane n/2 times whether or not 

the n zeros interior to lwl = 1 are distributed uniformly in 

angle about w = 0. Again, this is due to the cos nOt and sin rift 

factors in (9-70). 

If the n CZ pairs are uniformly distributed in 0, then, 

when the path w = e
je3(e-1.1° 

-- a diameter of the unit circle 

-- is traversed, the closed path on the w plane is completed and, 

by the Principle of the Argument, f(w) must have circled the 

origin of the f(w) plane n /2 = n/2 times. But this was already 

accomplished during the semi-circle traversal. Therefore, the 

trajectory of f(w) as w moves from one end of the diameter to 

the other must be simply to close the path on the f(w) plane 

without incurring more encirclements of the origin. 

If the nC  CZ pairs are not uniformly distributed --

say there are nc/2 + p zeros in the semi-circle considered and 

n /2 - p in the other semi-circle -- then when the diameter is 
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traversed in the w plane, f(w) must encircle the origin of the 

f(w) plane p more times before the path is closed. Similarly, 

if there are n /2 - p zeros in the semi-circle considered, f(w) 

must "un-encircle" the origin p times as the diameter is tra-

versed on the w plane so that the net encirclement is n /2 - p. 

In summary, for absolutely regular angular distribution 

of zeros (about the origin of the w plane) in a Fourier series 

polynomial, it is sufficient that traversal of any diameter of 

the unit circle in the w plane does not cause encirclements of 

the origin in the f(w) plane. The preceding arguments also 

apply to RZ-CZ signals if every other RZ is moved slightly out-

wards from the unit circle and the others are moved slightly 

inwards. Then the number of zeros within the unit circle is 

2nR
/2 + n = U. 

We now ask, "What type of signals have this property?" 

Consider s(t) = cos rift. Then 

f(w) = w
n(wn/2 + w-n/2) 

and f(r,e) 	= 
rn.ejne(rn.ejn0/2 	r7n.e-jne/2)  

= r
2n
.e
j2n0

/2.+ 1 . 

Then u(r,e) = 11r2ncos 2ne + 1 

and v(r,e) = Ilr2nsin 2ne 

(9-72) 

(9-73a) 

(9-73b) 

(9-74a) 

(9-74b) 

Thus as a diameter of the circle 1w! = 1 is traversed, u(r) 

and v(r) tend to values unity and zero, respectively, quite 

rapidly -- as r becomes less than unity -- with the actual 

rate being dependent on the value of n. Table 9.15 demonstrates 

that rn  tends to zero quite rapidly with increasing "n" even for 
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"large" values of r, r < 1. 

0.95 0.90 0.85 0.80 

5 0.767 0.590 0.444 0.328 

10 0.599 0.350 0.197 0.107 

15 0.463 0.205 0.088 0.035 

20 0.358 0.122 0.039 0.011 

25 0.277 0.074 0.025 0.0038 

Table 9.15 

Value of rn  as a function of r and n, r<1. 

In this case,f(r.eje) does not exhibit origin encircling behaviour 

as r varies from +1 to -1 along a diameter. Indeed, the zeros of 

cos nett are regularly distributed around the unit circle in the 

w plane at intervals of 27r/2n radians. 

Now consider a three-tone vowel model, 

s(t) = alcos(nia+y + a2cos(n2Qt+4)2) + a3cos(n3Qt+4)3) 

where the a. are real and4
1  .7. i.7 (sec. 9.3.5). Then 

2n3  j2n30 	n
2
+n
3
-j(n

2
+n
3
)6 	n

1 
 +n
3 
 j(n +n )6 

f(i.ejej) air=e /2-a2r 	/2+a1r 	e 1 3  /2 

n3-n1  j(n3-ni)0 	n3-n2 j(n3-n2)6 +a r 
1 	/2-a2r 	/2+a3/2, 

(9-76) 

where 6 = Qt. For r = 1, (9-76) = ejn3e.s(6) as per (9-69). For 

actual vowels [P-11], (n3-n2)min 
	3 and (n3-n2)max  = 15. The 

minimum values of 2n3,  n2+n3,  n1+n3, and n3-n1 are approximately 

33, 30, 21, and 12, respectively. As r becomes less then unity -- 

(9-75) 
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i.e., as a diameter of the unit circle is traversed -- the higher 

powers of 'r become small and a
3/2 quickly becomes the dominant 

term. The relevant question is whether it can be shown rigorously 
that the three-tone structure is truly sufficient to ensure, via 

(9-76), that f(r-eie) does not make multiple encirclements of the 

origin as r varies from +1 to -1 for fixed 8; that is, as an 

arbitrary diameter of the unit circle in the w plane is traversed. 
This question is left open for future studies. 

However, limited experiments on actual vowels have demon-

strated that the implied behaviour of f(r.eje) for the structure 

of (9-76)does occur. As r decreases from unity, f(r.eje) rapidly 
tends to c

n, the highest frequency Fourier coefficient of the 

signal. This occurs in a "simple" manner; that is with zero, 

or perhaps one, encirclement(s) of the origin. 

Thus, experimentally at least, Kempner's origin circling 
theorems (really the Principle of the Argument) provide a further 

plausibility argument for zero regularity (in real time) of 

speech vowels. 

This argument, and the contentions made on the basis of 

signal growth (sec. 9.3.4) and time-domain vowel structure (sec. 

9.3.5) tend to support the assertion that the observations made 

in the limited experimental studies of actual speech vowels 

(regarding zero regularity) are typical and can be qualitively 

predicted. 

9.5.4 	Summary  

In summary, observationally, vowels have zeros which 
occur "regularly" in real time and are "near" the real time 
axis. Theoretically, we have shown,, using three-tone models 

and the theory of the geometry of polynomials, that this be- 
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haviour is to be expected because the formant structure (modelled 

using the three tones) is sufficient to allow this type of be-

haviour to occur. Specifically, the inter-formant (tone) gaps 

of low (or zero, in the case of the model) energy seem to be of 

prime importance in the derivation of both sets of results (sec. 

9.5.2, 9.5.3, respectively). 

9.6 	Single Sideband Clipped Speech  

In section..5.1.7 we noted that Marcou and Daguet ex-

perimentally determined that the phase function, cos gt), is 

perceptually the same as s(t). That is 

cos (1)(t) = Im(01 cos (1)(t) . 	(9-77) 

cos 4(t) has been defined as "single sideband clipped speech" 

and is obtained by clipping the SSB translate of s(t), bandpass 

filtering and then retranslating to the baseband (see sec. 5.1.7). 

9.6.1 The Relationship between C s(t) and cos 4(t)  

Since 

s(t) = s
RZ 

 (t).sCZ  (t) = Im(01 cos (P(t) , 	
(9-78) 

ignoring the multiplicative constant, it is clear that sRZ(t)  
and cos 4(t) have the same zero crossings. Thus 

C s(t) = sgn[s(t)] = sgn[sRz(t)]= sgn[cos (1)(t)] 
	

(9-79) 

Expanding (9-76) in a Fourier series gives [S-3, p. 171], [V-11] 

sgn[cos (1)(t)] = 	
cos(2k+1)(1)(t) 	. (-1)k . 	(9-80) 

k=0 	
2k+k 
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1 Therefore, sgn[s(t)] m cos 4(t) 	--c - os34(t)--c + os5gt)- 
3 	5 

(9-81) 

It is clear then that lowpass clipped speech is related to SSB 

clipped speech; lowpass clipped speech effectively results from 

the addition to SSB clipped speech of odd order harmonics of 

cos 4(t) -- with the proper polarity,and attenuation. 

9.6.2 	Clipping and Critical Band Theories  

So far we have not referred to critical band theories of 

hearing (sec. 3.2.2) in our discussions of the extent of power 

spectrum preservation in speech clipping. A. Rimskii-Korsakov, 

in a paper concerning the audibility of non-linear distortion 

[R-12], noted that in order to calculate "the probability of dis-

tortion being audible in the band wIAw/2 [a critical band] . . . 

we must take into consideration the masking effect created by 

the fundamental signal . . .[in that band] . . . which tends to 

mask the distortion . . ." He further noted that "it is evident 

from the masking curves of pure tones (e.g., [K-7], p. 407) that 

for masking tone intensities that are not too great [i.e., less 

than 80 db] the audibility threshold of the masked tone in a 

band of frequencies surrounding the frequency of the masked tone 

is approximately 20 db below the level of the masking tone." 

In effect, the masked waveform is audible if it is less than 20 

db below the level of the masking wave form. 

Rimskii-Korsakov added that two subsidiary effects must 

be noted. First, the masking tone must be present over "a suffi-

ciently long period of time" before it begins to have an effect. 

Second, even when no tone is present to be masked, the masking 

tone itself must exceed some threshold value before it becomes 
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audible [K-7, p. 391]. 

For these reasons, the subjective effects of clipping are 

related not only to the extent to which clipping preserves the 

speech power spectrum, but also to the extent to which the 

"harmonics" created by clipping are masked by the original speech 

signal. Specifically, clipping "harmonics" (see eq.(9-81) ) 

which fall into formant regions will tend to be masked by the 

formants and the deleterious effects of clipping will be less 

than objective estimations -- ignoring masking effects -- might 

predict. 

In this respect the effects of zero conversion by differ-

entiation before clipping are twofold. First, as noted earlier, 

the intelligibility of the clipped signal is apparently improved 

by increasing the amount of information (i.e., zero crossings) 

which is "perfectly" sampled by the clipping operator. Secondly, 

the higher order formants are increased in amplitude so as to 

facilitate more substantial masking of "clipping harmonics" 

falling into the relevant spectral region.*  

However, the detailed consideration of the effects of 

masking phenomena on the intelligibility of clipped speech are 

reserved for future studies. 

9.7 	Clipping: A Zero Based Model  

9.7.1 	Clipping as a Manipulator of Complex Zeros  

We have shown -- experimentally, and to some extent 

theoretically -- that, for vowel-like signals, clipping follow-

ed by re-bandlimiting to the original signal bandwidth does not 

usually materially affect the RZ signal, sRZ(t). Thus, from a 

time domain point of view, clipping can be considered to be a 

*".Repeated differentiation, however, will eventually degrade the 
original speech spectrilm to the extent that the benefits afforded 
by the increase in the number of zero crossings available to the 
"clipping sampler" are nullified. 
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member of that class of operations which significantly affects 

only the CZ signal, sCZ(t)* That is, clipping is a complex 

zero manipulator. 

We have also noted that those pre-clipping operations 

which yield the most highly intelligible clipped speech signals 

are those which tend to convert complex zero pairs into real 

zeros. This action allows more information to be "preserved" 

by the clipping operator, in the sense that the RZ's (zero 

crossings) are preserved by the clipping-bandlimiting operation. 

It is nevertheless clear that unrestricted manipulation 

of one CZ pair could significantly change the character of the 

spectrum of the signal. The examples discussed and illustrated 

(Figs. 8.19 and 8.21) in sec. 8.6.5 vividly illustrate this 

assertion. What then, we ask, is special about the nature of the 

clipping-bandlimiting operation as a CZ manipulator? 

First, we note that the n complex zero pairs possess 

2n degrees of freedom -- the real and imaginary component of 

one member of each CZ pair. The bandwidth of s
CZ 

 (t) is n C-2/27LHz 

so that the ICzkI are specified by 2n +1 numbers -- n complex 

Fourier coefficients and :the real d.c. component. Again, the 

"extra" parameter is lacking in the CZ signal because the n CZ 

pairs and the 2nR RZ's specify s(t) only to a multiplicative 

constant. 

i) The Real Time CZ Positions  

In this chapter we have observed, experimentally, that 

the zeros of vowels are "regular" in real time. We have also 

tried to justify this theoretically by noting that 
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a) vowel waveforms consist basically of the sum of a 

few damped sinusoids and exponentials and that this type of 

signal does not have "huge" excursions which would result from 

zero gaps and that 

b) the vowel formant structure may be sufficient to 

assure -- via interpretation of the Principle of the Argument 

that the zeros of vowel-like models are regular in real time. 

We have likewise noted that, between the RZ's of clipped 

then bandlimited signals, ripple appears if the RZ's are farther 

apart than, approximately, a period at the ripple frequency. 

The "ripple", a.manifestation of.Gibb's phenomenon, is associated 

with regularly spaced CZ pairs. 

Thus, primarily because of the formant structure of vowel 

waveforms, the zeros of vowel waveforms are distributed "uniformly" 

in real time. Because of the "constant amplitude" nature of the 

combined clipping-bandlimiting operator, the CZ's of BL {C s(t)) 

are distributed "uniformly" between the (almost) unchanged RZ's 

of BL {C s(t)}. Therefore, experimentally and for the theoretical 

reasons noted (all of which depend upon the formant structure of 

vowels), the real time positions of CZ's are effectively un-

changed by the action of clipping and re-bandlimiting. For 

this reason, clipping apparently has, effectively, no degree of 

freedom to manipulate the CZ's in real time. 

However, there still remain nc  degrees of freedom in 

sCZ 
(t) -- the n,, complex zero imaginary time positions. 

ii) The Imaginary Time CZ Positions  

We observed in sec. 9.3.3 that, experimentally, most of 

the CZ's of the vowels factorized were located within (roughly) 

0.35 milliseconds of the real time axis. This figure is about 
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1/30 of the average pitch period, 10 msec. Note that the 

vowels were bandlimited to 3 KHz and therefore contained about 

30 zero pairs per period, depending, of course, on the actual 

voicing frequency. We attempted to justify this observation 

theoretically by applying a modified version of the Lehmur-Schur 
Algorithm to the three-tone Fourier series polynomial. Using 

the data of Peterson and Barney for English vowels, we found 

that -- based upon formant amplitude and frequency information 

the range of maximum distance of CZ's from the real time axis 

in three-tone models is 0.17-0.36 milliseconds. These figures 

certainly concur with those experimentally observed. 

We similarly noted that, experimentally, the CZ's of the 
clipped, bandlimited signal are "near" the real time axis. In 

fact, we purposefully matched the vertical scales of the BL 

{C s(t)} root maps to emphasize that the imaginary CZ positions 

before and after clipping are certainly within the same range, 

specifically less than about 0.5 milliseconds. We attempted to 

justify this observation theoretically by pointing out that, in 
order to produce the ripple characteristic of BL IC s(t)J, the 

CZ's must be "near" the real time axis. Again, (due to Gibb's 

phenomenon and the "constant" amplitude nature of the clipped 

signal) we noted the characteristic "arced" configuration of the 

CZ's which produce a bandlimited rectangular waveform. 

Therefore, both before and after clipping -- for different 

reasons -- the CZ's are "near" the real time axis. For this 

reason the clipping operator is somewhat restricted in its ability 

to manipulate the imaginary parts of the CZ's. We emphasize 

that this restriction is not nearly as stringent as that apparent-

ly imposed upon the real time positions of the CZ's before and 

after clipping. 
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In summary, from a time domain viewpoint, the clipping-
bandlimiting operator has 

i) effectively little or no ability to modify the {Td 
ii) restricted ability to manipulate the {ad. 

For these reasons we believe that clipping is not as destructive 

to the spectrum --- and hence, power spectrum -- as its "complete 

destruction of all amplitude information except for polarity" 

might suggest. 

9.7.2 Clipping as a Spectral Smearing Operation  

The amplitude spectrum of the vowel /u/ is almost --

as far as formant structure is concerned -- unrecognizeable 

after the clipping-bandlimiting operation. Clipping does, after 

all, have some ability to manipulate CZ's, particularly their 
imaginary parts, the {ad. As previously noted, the less the 

number of RZ's, the greater the number of CZ's available for 

manipulation. For this reason, as we pointed out in chapter 5, 

pre-clipping CZ conversion results in more intelligible clipped 

speech. Additionally, the post-clipping "robustness" of the 

speech sound is related to the percentage RZ's (sec. 5.1.3). 

From a frequency domain viewpoint, the connection between 

RZ-CZ balance and post-clipping power spectrum preservation be-

comes apparent if we re-examine the product convolution relation-

ship, 

sRZ(t) .sCZ(t) 
	

{Rzd * {Czk} . 

When the RZ's predominate,the bandwidth of sRz(t) is "wide" and 

that of s
CZ 

 (0 is "small". By the discrete convolution relation- 
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ship, eq. (8-19b), {ck} then results from the "smearing" of {Rzk} 

by {Czk}. Now sRz(t) is physically somewhat like s(t) in that it 

has the same zero crossings. Thus, when RZ's predominate we might 

expect that the amplitude spectrum of sRz(t) is "like" that of 

s(t) in that it could exhibit peaked structure which, when 

"smeared" by the convolution operation, would result in the 

formant structure of Ockll. This effect can be observed in Fig. 

9.16 although in no sense can we say that the RZ's predominate 

in undifferentiated le/. However, subsequent experiments in-

volving spectral deconvolution of {Czk} from {ck} by {Rzk} of the 

first, second and third derivatives of the vowel pitch periods 

used in sec. 9.4 have shown that as the proportion of RZ's in-

creases, {111zk
I} acquires a "peaked" structure. 

Conversely, because sCZ 
 (0 is not "like" s(t), a pre-

dominatly CZ vowel signal should not be expected to exhibit 

"peaked" structure in its amplitude spectrum. Again, this be-

haviour has been noted in limited, qualitative experimental 

studies. 



10 	ZEROS II: THE SUFFICIENCY OF REAL ZEROS AS WAVEFORM 
DESCRIPTORS-- A NEW APPROACH TO THE USE OF ZERO CROSSINGS 
FOR OBJECTIVE ESTIMATES OF SPECTRAL PARAMETERS 

In the introduction to chapter 8, we contended that three 

basic questions remain unanswered concerning the role of zero 

crossings in speech recognition and processing. 

The first, concerning the effects of clipping on the 

power spectrum, has been explored in chapter 9. 

The second queried the quantitative nature of the inform-

ation contained in the zero crossings of a speech signal specif-

ically. An answer to this question was also proferred in chapter 

9. That is, in bandlimited signals, zeros occur at the Nyquist 

rate and the percentage of zeros which are real--i.e., zero 

crossings-- might be regarded as an indication of the amount of 

signal information actually carried by zero crossings. The fact 

that a special type of "real zero interpolation", bandlimited 

clipping, yields a signal whose apparent intelligibility far 

exceeds that which might be predicted on the basis of percentage 

information carried by zero crossings is, we feel, attributable to 

i) the sufficiency of the spectral characteristics 

of the original speech signal in assuring that the zeros of 

vowel-like signals are both regular in real time and close to 

412 
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(or on) the real time axis and 

ii) the special nature (from a zero-based viewpoint) of 

the "rectangular" interpolating waveform. 

The third question concerned the existence of transforma-

tions which ensure that almost all the information contained in 

a bandlimited signal is available in its zero crossings. In 

chapter 8 we observed that differentiation and sine wave addi-

tion convert complex zeros to real zeros and therefore, after a 

finite number of differentiations or the addition of a sine wave 

carrier of correct frequency and "sufficient amplitude", zero 

crossings will occur at the Nyquist rate. 

A signal having such an RZ rate is completely determined 

to a multiplicative constant by its zero crossings and, follow-

ing clipping, may be reconstructed (to a multiplicative constant) 

by Real Zero Interpolation (sec. 8.4.2). 

In this chapter we will consolidate the role of zero 

crossings as carriers of information in speech signal processing 

specifically. First, in sec. 10.1, we review a conjecture made 

by I. J. Good concerning the information lost by clipping a 

Gaussian signal. Then, in sec. 10.2, we will examine some bounds 

on the RZ rate of SSB translates of lowpass signals as estab-

lished by Voelcker. In sec. 10.3 Good's contention regarding 

signal specification by zero crossing is explored. 

Finally, in sec. 10.4, we show that because of the for-

mant structure of vowels, the zero crossings of vowel-like sig-

nals may contain more objective information about the amplitude 

spectrum of the vowel than might be inferred directly from the 

arguments given in sec. 8.1.3 regarding RZ rate and information. 
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In particular, we show that, under certain conditions, the ampli-

tude spectrum of a vowel-like signal is completely "encoded" 

within the RZ component of that signal. 

10.1 	Good's Conjecture 

I. J. Good presented [G-9] "an intuitive argument for the 

measurement of the fraction of information that is lost, if any, 

when Gaussian noise is clipped." 

He observed that white Gaussian noise, bandlimited to 

[WW
2
] Hz-- a bandwidth W

2
-W
1 

= W Hz--possesses 2WT degrees of 

freedom in time T. Thus, the noise is completely determined by 

its values at "an enumerable number of instants whose mean den-

sity is 2W per second, even if the instants are not uniformly 

spaced." [G-6, p. 35] 

10.1.1 A Gaussian Noise Example 

Good noted that the expected number of zeros per second 

for a white Gaussian noise signal bandlimited to [141
1
,W
2
] Hz is 

(sec. 6.2, eq. (6-2) ) 

 

1 
2 

 

1 [  1423-W13  2• 	
W
2 
-W
1 

(10-1) 

  

He further noted that, since 2(W
2
-W
1
) observations are required 

per second to determine the signal completely, "it seems reason-

able to say that the zero crossings provide a fraction 

-11  
(10-2) 
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of the entire information in the noise." For example, when 

Aili=0, the zero crossings provide only 1/IT-  of the information. 

Expanding 

For I = 1, 

(10-2), 

I = 

W2 

1 
14.7 

= (7 

W
2
2 
+ W

1
W
2 + W1

2 31 

(10-3) 

. 	(10-4) 

(1072-W1)
2 

[ 	
I 

+ 33)/4 	= 	3.186 
1 

Therefore, Good contended, the noise is overdetermined by its zero 

crossings if 

W2 < 3.186 W1  . 
	(10-5) 

Thus "when the noise is overdetermined by its zeros, then an 

adequate proportion of the zeros will, in particular, determine 

the remaining zeros. Hence in narrow-band noise we would expect 

to find a strong correlation between the lengths of adjacent 

zero.crossing intervals. This is borne out by looking at ex-

amples of narrow-band noise." 

10.2 	A Zero Based Exposition of Good's Conjecture  

In sec. 8.3.2 we noted that a periodic signal s(t) band- 

limited to n
1 
 Q/27 <If' <n0/27 Hz, 	can be written as 

s(t) = Re [m(t)] 

= Re [einl2tImLp(t)leiqP(t)  ] 
	(10-6) 
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and exhibits a number of zero crossings per period, 2nR, 

such that 

2n
1 
 < 2n

R 
 <2n 	(10-7) ` 

It can be similarly shown (see [V-10] ) that the number of zero 

crossings of an SSB signal is dependent upon the phase charact-

eristics of the Zowpass signal which we may regard as having 

been translated to yield the SSB signal. 

For example, if mu(t) is MP, 

m142,f (t) 	ej2711
o
t 	nW 

i=1 

= e
j2wf0t

•Immp(t)I'e3cibMP(t) 

where ME f (f) = 0 for 	f o 
	o 
>f>f +W, 

' 
 

and nw  = 211-W/Q. 	Then 

nw  

q(t) = 2711 
o
t + 	cp.(t) 

1=1 

= 27f t + MP
(t) 	. 

], a.<1 (10-8a) 

(10-8b) 

(10-9) 

(10-10a) 

(10-10b) 

Note that for f
o 

= 0 [lowpass signal] the zeros of cos (P(t)--

and hence s(t)--occur whenever (Pmp(t) goes through a multiple of 

1-(2p-1)1T/2 radians, p an integer. As fo  increases from 0, it is 

clear that, for some critical fo  such that 



MNMP,f (f)  = 0  

Then qb(t) = 2ufot + (1)12(0 	6 'MaxP(t)  • 

, fo > f > fo+W 
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cr(t) = 2ufo + MP(t)>0 , for all t, 
	(10-11) 

the passage of q(t) through odd multiples of ±7/2 radians will be 

governed entirely by the carrier. That is, for f
o 

greater than 

some critical value, 4)(0 will be a monotone increasing function. 

Thus, although the number of zero crossings per period of 

Re[mie f  (t)], nR(f0), is bounded by 
' o 

2fo< nR(fo) . 2(fo
+W) , 	(10-12) 

for fo "large enough" , 

nR(fo) 2f0 
	 (10-13) 

If mix(t) is NMP--that is, it contains a mixture of UHP 

and LHP zeros--then 

pimp f (t) 	ej2ufot.immip(01.ejcpLi,(t) 

' 	
(10-14a) 

0 
. 	[(I) (0+4

)MaxP 

 (0] ejTufot.
I mMP(t)1.1mM„P(t)l'ej  MP 	(10-14b) 

where 

Now, as per sec. 8.2.4, 

T

r crmaxp(t) dt = 2unuHp  , 	(10-17) 
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where n 	is the number of UHP zeros per period of mNHP(t). UHP 
Hence, 

2(fo+nule) 	nR  (f o 	o
+n ) < 2(f 	) , 
UHP LHP 

(10-18) 

where n +nLHP  =W. As in the MP case, there exists a critical UHP  
frequency, f

o
, such that 

2fff + 0' 	+ 0'MP 	> 0. 	(10-19) MaxP  

Therefore nR(fo) 	2(fo+nule) = 2(fo+W[nuHp/(n'utenuip)]) (10-20) 

as fo becomes "large enough." 

It follows that 

,i) a periodic lowpass signal s(t) of bandwidth ±W Hz 

will have at least 
2nUHP 

 real zeros per period and at most 2W = 

2(nme+nue) real zeros per period, where n 	and nLHF  are the UHP 
number of UHP and LHP zeros of the analytic counterpart, m(t), of 

s(t). 

ii) SSB translation of s(t) will eventually--when 

fo exceeds some critical value-- yield a signal with 2(fo
+nUHP) 

zero crossings (RZ's) per period. 

The relationship of these results to Good's conjecture 

can be exposed by rewriting (10-1) with W1=fo 
and W

2
=f
o
+W: 

(f +W)3-f 3  ][ 
nR(fo) = 2 

3E(f0+14)-fo3  

(10-21a) 

= 	
2 

2 [fog + f W + W
2/3]  (10-21b) 
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= 2f0[1 + W/f0  + W
2
/3f

o
2]2 

(10-21c) 

= 2 [f + W/2 + W
2
/6f + 	] 
° 

 
(10-21d) 

Observe that as f
o 

becomes "large", 

nR(f0) -' 2 [fo  + W/2] . 	(10-22) 

If it is reasonable to suggest that white noise has equal numbers 

of UHP and LHP zeros, then the W/2 term corresponds to the 

W[nulip/(nalp+nuip)] term in (10-20) and the higher order terms 

in W correspond to LHP zeros which do not cause zero crossings 

of (1)(t) when f
o 

exceeds some critical value [V-10]. 

10.3 	Application of Good's Conjecture to  
Bandpass Periodic Signals  

Good's conjecture implies that, provided the number of 

zero crossings, per period, of a bandpass periodic signal is 

greater than twice the actual signal bandwidth, the complete set 

of signal parameters (i.e., Fourier coefficients) can be extract-

ed, in some manner, from the zero crossing positional information. 

In sec. 10.2 we noted that SSB modulation of a lowpass signal 

with carrier frequency fo  results in a signal which possesses a 

minimum of 

2(f
ol-nUHP

) 
	

(10-23) 

zero crossings per period. Here,,nuHp  is the number of UHF zeros 

in the analytic version [s(t) + js(t)] of the lowpass signal, 

s(t). Therefore, SSB modulation of a speech signal of bandwidth 

W Hz such that the number of zero crossings per period is not 

less than 2W should enable a complete "recovery" of the signal 



cn 

In matrix form, with Xm  = e itm 

-2'cos w t 	 1c  -(wo+nQ) .. X -(wo+Q)  X(wo
+Q)

... X 
(w

o
+TIM' 

o 1 	1-(w ..im2) 	1 	1 
X
1
(wo+TIM -2 'cos wot2 X2 o 

-2 'cos w t 	X -(wo+.11Q) 
O 3 	3 	. 	 X2(w01-110) 

3 • 

cn 

C
l 

c
1 

.0 	 . 

(10-26) 

• • 
• 

• 
• 

(w +n2) 
X2n  

-(wo+11Q) X 
2n 

-2'cos wot2r. 

420 

parameters via zero crossing information. 

A direct approach is to write the conventional expression 

for sw (t), 
o 

 

sw (t) = s(O'cos wo
t - s(t)"sin wo

t 
0 

n 
= Re{eiwo' 	cu'ejt} 	. 

k=0 x." 
(10-24) 

Letting t = tm, a zero crossing of sw  (0, then, 

0 = Vc*.e J(Wo+n2)tm+ t c
*
1  -e 

-j(w
o+Q)tm 

+ c 'ej(wo+Q)tml_ 1 	
4j(w+110)t

m 

+ 2c
0 
 'cos wot

m
]. 	(10-25) 

If the determinant of the X matrix is non-zero, then we can solve 

for the Fourier coefficients, {c}. Good has shown [G-7], [G-10] 

that this is generally so. Thus, theoretically, we can use the 

zero crossing positions of s (t) to resynthesize s 	and, by U 
"demodulation", s(t). 	 0  
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It should be noted that certain classes of signals exist 

which provide a counter-example to Good's conjecture. The obvious 

example is AM-type signals where the only information conveyed by 

the zero crossings is the carrier frequency. 

10.4 	Overspecification in Vowel-like Signals  

We have seen that SSB modulation of bandlimited signals 

theoretically allows, under the conditions outlined in sec. 10.3, 

complete reconstruction of the signal--to a mutiplicative con-

stant—using zero crossing information only. A necessary condi-

tion is that the SSB signal translate possess.a number of zero 

crossings greater than twice its lowpass bandwidth. 

However, an important question remains concerning the 

nature of the information contained in the zero crossings of 

vowel-like signals. That is the following: 

The percentage of zeros per period which are real--i.e., 

zero crossings--is usually on the order of 25% or less in speech 

vowels (sec. 9.3.3). In chapter 9 we offered an explanation of 

why the power spectrum of such signals is less altered by clipping 

than might be expected if clipping is simply considered as a mem-

ber Of that class of transformations which is capable of affecting 

only the complex zero signal. We demonstrated that clipping, ef-

fectively, has very little freedom in manipulation of the real 

parts of the complex zeros. Furthermore, we contended that, for 

vowel-like signals, the imaginary parts of the complex zeros be-

fore and after clipping are somewhat related. Before clipping, 

the CZ's are "near" the real time axis because of relationships 

which depend upon the formant structure (sec. 9.5.2). After 

clipping and bandlimiting the CZ's must remain "near" the real 
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time axis in order to produce the ripple which is characteristic 

of the clipped, bandlimited signal (sec. 9.4.1). We also noted 

that, intuitively and observationally, the greater the percentage 

of real zeros, the higher the expected post-clipping intelligi-

bility. 

However, we have not yet proferred an explanation as to 

why objective estimates of speech spectral parameters made using 

only zero crossing information are apparently capable of convey-

ing what seems to be an inordinate amount of information. In 

particular, zero crossing histograms (ch. 6, sec. 6.6) exhibit 

features quite analogous to formant structure. 

Thus we ask whether it is possible that the real zeros--

the zero crossing interval sequence--of a vowel-like signal might 

contain information concerning the complex zero component of that 

signal. In the next two sections we show that,. for vowel-like 

signals, under certain conditions sCZ 
 (t) may effectively be almost 

completely derived from sRz(t). 

10.4.1 Matrix Formulation  

The basic equations relating s(t), sRZ(0  and s (0 to CZ 
their Fourier series expansions are given in sec. 8.1.3.. These 

relationships may be expressed in matrix form as follows: 

c = Rz • Cz 	(10-27) 

where c and Cz are (2n+1) element column vectors consisting of 

the Fourier series coefficients of s(t) and scz(t), respectively, 
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n 
cn-1 

0 

0 

Cz  c  • 

Cz = C 

Cl 
Co  

2nC+1 

Cz 

Cz0  

Cz_i  

cz 

0 
-nC  

c-n+1 
(10-28a) 

c-n 0 

T 
R 

-51c. 
(10-28b) 

and OW is the (2n+1)x(2n+1) square matrix 
- 

Rz0 Rz1 
• • . . Rzn 0  	0 

Rz z -1R  0 	
R Rzi  • • . 	Rzn 

.
R 0 Rz0  

. Rz0 	Rzn 

. 
R 

Rz0  
. 

. Rz0  
Rz-nR 	Rz 0 

Rz0  
0 	 Rz2  

. Rz0 Rz1 
Rz-n 
	 Rz -1 Rz0 

R 
 0 0 0 0 

k ------A nR+1 

. (10-29) 
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Note that [Rz] is Hermitian; that is, ERa]
t 
= [$ ]  

uRz]  represents the information contained in the signal sRz(t). 

Equation (10-27) actually represents a set of (2n+1) 

equations in (2n+1) unknowns and therefore has a unique solution 

provided that IRzl 0 0. For vowel-like signals many of the ck  

can be considered to be zero; that is, the formant structure 

significantly dominates the spectrum. Specifically, for the 

three-tone model of vowels, all ck 
except those at the tone fre-

quencies are zero. In effect, this means that (10-27) represents 

(2n+1) equations, 6 of which are non-homogeneous with the re-

mainder being homogeneous. Thus the existence and number of 

Zinearly independent Cz vectors may be studied via rank con-

straints.1  

Effectively, the gaps in the c vectors may impose depend-

encies of the Cz vector on the values of Rz. The problem becomes 

clearer if (10-27) is rewritten in recursive form. 

10.4.2 Deconvolution  

The problem of finding Cz given c and Rz can also be 

formulated as one of deconvolution of {ck} with {Rzk}. As per 

sec. 8.5.1 ii, 

1 This approach was suggested by A. Requicha. 
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Czk  

c-n +k - :E: R 	j=-nC  ' -nC  <k <0 

-j-nR 

Rz-n 

-k ' 0<k*nc  . 	(10-30) 

Now, let s(t) = alcos(27Tit+0 )+a2cos(27F2t+02)+a3cos(27F3t+03), 

(10-31) 

where F1=n11/27, F2-Fln22/27 and F3-F2=n352/21T 	(10-32) 

and 03 are approximated as per sec. 9.5.3. This is a 4)1' 4)2' a  
three-tone vowel model. 

Examination of (10-30) shows that, for this model, if 

nc+1 = n-nR+1 < n3 (10-33) 

then all components of {Czk} may be derived using only {Rzk} and 

c-(n R _Fn C): viz., 

Czk 

-(nRtnC)/Rz-nR 
k-1 

-ECzj.Rzk-j-nR j=-nc  

Rz-n 

k=-n 

-n
C  <k<0 

(10-34) 

* 
Cz k -k ' 0<k ;pc  . 
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Furthermore, if c
-(n 	) is assumed to have unit amplitude and 

R C 
zero phase-angle, then 

1/Rz_ nR  k=-n c  

 

k-1 

 

    

Zz-Rz 
k-j-nR  j=- 	j n 

-n
C 
 <k<0 	(10-34) 

Rz 
-11R 

Cz
k -4 

Zz k 	0<kric  , 

where iCz
kI are estimates of {Czk}. Thus 

tzk = Czk -n 

so that 

minfn
R'  k+nC  1 

Rz.Czk-n 
Ck  = 

n=max{-nR,k-n 
n 1 . 

(10-35) 

(10-36a) 

'Therefore, 

= ck/c-n 

Ick i = (10-37) 

and the power spectrum of s(t) is determined to a multiplicative 
constant entirely by deconvolution of the RZ signal with unity. 

In effect, this has demonstrated that if the percentage 

of zeros (in a three-tone periodic signal) which are real is 
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sufficiently large, i.e., for a given F3  = nFo, from (10-33) 

if 	n
R 
> F

2
/F
o 
+1 
	

(10-38) 

then the RZ signal contains sufficient information to reconstruct 

the power spectrum of s(t) to a multiplicative constant. 

For this method to be implemented the location of F
3
--

the effective signal bandwidth--must be known. The number of 

zero crossings per period is countable. However, the value of 

n
3 
=(F

3
-F
2
)/F

o is usually unknown and, except for the fact that 

ICz_kl = ICzki 	, 	Ikl<nc 	(10-39) 

there is no way of knowing when to stop the deconvolution. In 

practice, then, although it may be theoretically possible that 

the power spectrum of a three-tone signal be calculated (to a 

multiplicative constant) entirely from the RZ signal, it may not 

be possible to do so because of a lack of information. Neverthe-

less, under the aforementioned conditions, tracking of the loca-

tion of F2, F
2'
and the location of F3, F3, would enable --using 

zero crossing information, i.e., sRz(t)--"exact" estimation of 

the location of Fl, F1, and the amplitudes (to a multiplicative 

constant) of Fl, F2, and F3. 

As we have mentioned before (sec. 9.3.5), the three-tone 

signal is unrealistic in the sense that each sinusoidal component 

lacks the damping which is present in actual vowel signals be-

cause the poles are not on the jw axis, but slightly to the left 

[F-2, p. 51]. However, the same arguments can be extended to a 

more realistic model involving, for example, a 3-component re-

resentation for each formant. 'The phase angle of the components 
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on either side of the spectral component nearest F
3 
can be 

effectively evaluated using the formant resonator model (sec. 

6.3.3). The 3-component F3 complex can then be deconvolved with 

{Rzk} as before. 



11 	CONCLUSIONS, MAJOR PROBLEMS, AND 
RECOMMENDATIONS FOR FURTHER RESEARCH 

11.1 	Zero Crossings, the Intelligibility of Clipped Speech, 
and Objective Estimation of Speech Spectral Parameters  

11.1.1 Voiced Sounds  

In chapter 3 we briefly reviewed the spectral and time-

domain characteristics of the sounds of speech. We noted that 

voiced sounds, including vowels, are quasi-periodic and are most 

accurately represented over a pitch period by a finite Fourier 

series. We also observed that voiced speech sounds are charac-

terized by spectral features (formants) which are (experimentally) 

sufficient to enable a high degree of correct perceptual classifi-

cation when peripheral cues such as onset, duration and context 

are absent. In addition, we showed that formant positions possess 

meaningful physiological correlates and that manipulation of 

formant positions results in changes in the identity of the per-

ceived vowel. Thus, we argued that preservation of overall spec-

tral structure is, at least, desireable for retention of in-

telligibility. 

After reviewing Licklider's classic experiments on the 

intelligibility of clipped speech, we noted that Licklider con-

cluded that the intelligibility of clipped speech could be 

justified by observing that "although many details of the 

429 
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[speech spectral] pattern are changed by infinite clipping, the 

general . . . structure . . . is by no means rendered unrecognize-

able . . . only the details of the intensity-frequency-time 

pattern are modified." Thus Licklider implicitly accepted the 

assumptions concerning intelligiblity and power spectrum preserva-

tion which we felt necessary to establish, in some detail, by 

reference to extant experimental results. 

Using the concepts associated with zero-based periodic 

signal models, we observed (in chapter 8) that zero crossings 

generally permit only a partial description of a bandlimited 

periodic signal. The total information necessary (and sufficient) 

for complete signal specification is apparently shared by the 

zero crossings (RZ's) and the complex zeros (CZ's) which, via the 

product formulation, specify the signal completely, to a multi-

plicative constant. We further noted that certain operations 

(e.g., differentiation and sine wave "carrier" addition) tend to 

convert CZ pairs to RZ's and thus provide more information in 

the form of zero crossings. 

Thus, the fact that pre-clipping differentiation (which 

affects only the quality but not the intelligibility of the 

original speech signal) yields a clipped speech signal which 

is more intelligible and/or of higher subjective quality than 

,the clipped then bandlimited original speech signal may be 

attributed, in part, to the fact that a greater percentage of 

zeros -- in the form of zero crossings -- are available for "per-

fect" sampling by the clipping-bandlimiting operator. Similarly, 

Licklider's passing remark concerning the improvement in post-

clipping intelligibility resulting from overly large ultra-sonic 

bias and/or highpass filtering at 250 Hz may be explained in 

terms of zero conversion processes. 
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At the conclusion of chapter 5 we contended that clipping 

preserves other waveform attributes in addition to zero crossing 

(RZ) positions. In chapter 9 we showed experimentally, and to 

some extent using the theory of polynomials, that the nature of 

the clipping-bandlimiting operator is such that the real time 

positions of the complex zero pairs -- which are waveform 

attributes -- are effectively preserved by "clipping". Further-

more, the ability of the clipping-bandlimiting operation to 

manipulate the imaginary positions of the CZ's is somewhat 

restricted because of the constant amplitude nature of clipping 

and the fact that the formant structure of vowels is sufficient 

to ensure that their CZ's are "near" the real time axis. 

Irechapter 6 we reviewed, in some detail, a number of 

schemes for obtaining objective estimates of speech spectral 

parameters from zero crossing measurements. We emphasized that 

methods which effectively count zero crossing rates give poor 

estimates of formant frequencies unless pre-filtering is used 

to isolate the formants. Even then, the possible errors are as 

great as those encountered in spectral "peak picking" formant 

trackers. In effect, pre-filtering is a method of increasing the 

number of zero crossings available as information carriers. 

That is, the waveform emerging from each bandpass filter has a 

number of zero crossings bounded as per equation (10-7). It 

follows that the total number of zero crossings utilized in the 

estimates may exceed the number which we know is capable of 

specifying the signal completely (to a multiplicative constant). 

Thus, the question of how to process speech, using zero crossing 

methods, so as to obtain the best possible estimates of the 

speech spectral parameters may be answered rather straightforward-

ly. That is to say, there is a minimum number of zero crossings 

(depending on the highest frequency present in the speech signal) 
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which are sufficient to completely reconstruct the signal and 

therefore (via the discrete Fourier transform) completely 

specify the speech spectrum. 

The question of how to force the speech signal to 

exhibit the requisite number of zero crossings is clear, but 

does not present a practical solution. Multiple differentiation 

is associated with noise problems and when the required zero 

crossing count is obtained, it is the multiply differentiated 

signal which is completely specified by its zero crossings.* 

Sine wave addition entails similar problems. When the amplitude 

is sufficient to convert all CZ's to RZ's, the resultant signal 

is effectively a sine wave whose zero crossing positions are 

"phase modulated" by the original signal. In both cases, the 

total zero count necessary for complete signal specification is 

apparently identical to the number of Nyquist samples required 

for the same purpose. 

We say apparently because Good's conjecture states that 

the number of zero crossings actually needed is numerically 

equal to twice the signal bandoidth rather than twice the highest 

frequency present in the signal, as the product formulation 

implies. As noted in sec. 10.2, SSB modulation provides a 

signal with the requisite number of zero crossings -- according 

to Good -- if the carrier frequency becomes "large enough". 

Such a signal contains CZ's as well as RZ's. Good's conjecture 

implies that these CZ's are entirely specified by the RZ's. At 

present, methods of recovering these CZ's are under investigation. 

Voelcker has shown experimentally that CZ recovery is, in some 

instances, entirely possible. 

The notion that CZ's may be completely determined by 

RZ's has its analogy in the lowpass speech signal case. Again, 

*Thus, real zero encoding of salient perceptual features of 
the original signal is not necessarily equated with preservation 
of original signal attributes (e.g., the original ar-nlitude sIpctrum). 
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we noted (in chapter 6) that various researchers have experimental-

ly demonstrated that the information contained in the zero cross-

ing intervals of speech signals, especially vowels, can be dis-

played (as a histogram) so as to exhibit information similar to 

that seen in a short-term speech spectrogram. Furthermore, Focht 

and Scarr have presented convincing evidence that all zero 

crossing intervals of vowels may not be equally informative (the 

SEF concept, for example). (These ideas are in consonance with 

the findings of Stover; he reported that deletion of all but the 

first 3 msec. of each pitch period of a voiced sound leaves a 

highly intelligible signal.) 

Finally, in chapter 10 we showed that for three-tone 

vowel models, at least, the zero crossings (via sRz(t) ) may 

contain "encoded" information which specifys the power spectrum 

of the signal to a multiplicative constant. Thus, it is apparent 

that for highly structured signals such as voiced speech, the 

statement that the amount of information carried by the zero 

crossings is proportional to the percentage RZ's is not strictly 

correct. The RZ's and CZ's are determined by the signal spectral 

structure (via the Fourier series polynomial) and it appears that 

the RZ's (as per the arguments of 10.4.2) do contain CZ informa-

tion. 

In 1959 A.J. Fourcin demonstrated that, from an informa-

tion theoretic point of view, the (experimentally determined) 

long-term probability of finding a zero crossing interval length 

nT in a time quantized, clipped differentiated speech sample 

(quantizing interval T = 10
-4 sec) was such that the zero crossing 

interval information is transmitted at about 80% of the maximum 

rate possible for a two-level, time quantized signal [F-13]. 
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It appears that the zero crossings of speech waveforms are dis-

tributed so as to produce efficient transmittion of information 

via a zero crossing mode. Again, this implies that in speech 

signals the RZ's are highly CZ dependent. 

11.1.2 Consonants  

As noted in sec. 3.4, the consonants are characterized 

by changing, rather than relatively stable, vocal system con-

figurations and spectra. In addition, the characteristics of 

the signal models which realistically describe consonants are 
varied and generally different from those of vowels. Fricatives 

and stops, for example, are most aptly described as noise-like 

and the long-term experimental amplitude distribution for the 

consonants is Gaussian (sec. 3.5.1). 

We believe that the methods employed by Dukes and Fawe 

(sec. 5.3) in an attempt to explain the intelligibility of 

clipped speech (e.g., the arcsine law) provide a realistic 

basis for the belief that the power spectrum of speech sounds 

which may realistically be represented by bands of Gaussian 
"white" noise may not be significantly altered by clipping. 

Howeer, the details are far from complete and the treatment 

of sounds which involve voicing and noise production (the 
voiced stops) deserves attention. 

11.2 	Zero Crossing-Related Speech Processing Schemes  

Various schemes have been implemented in order to in-

crease the naturalness of the clipped speech waveform for 

speech transmission purposes. We have already described the 

attempt of Sobolev ([S-17], sec. 8.4.2) to use a modified 

rectangular waveform for zero crossing interpolation. In 
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addition, schemes for augmenting zero crossing information have 

been investigated. 

Mathews showed that transmission of the amplitudes of a 

speech signal at its extrema (i.e., at the times of the zero 

crossings of the signal's derivative) as well as the times of 

the extrema produces a subjectively better signal. The penalty 

paid is a threefold increase in channel capacity over that re-

quired to transmit the zero crossings of s'(t) alone [M-7]. 

Spogen [S-20] attempted, with little success, to use envelope 

information to weight the clipped speech signal. Further 

attempts involved amplitude sampling the original speech signal 

at times at extrema and holding that amplitude until the follow-

ing extremum. In this manner, a signal was obtained, which 

when filtered, produced a waveform significantly more intelligible 

than clipped speech. 

In a sense, these schemes simply supplement the RZ in-

formation (of s'(t) ) with information culled from the CZ com-

ponent (of s(t) ) in a somewhat arbitrary manner. 

11.3 	Problems and Recommendations for Future Research  

11.3,1 Phase Distortion  

No report (known to us) on speech recognition and process-

ing using zero crossings has seriously mentioned the most critical 

obstacle in this field, phase distortion. Experimentally, speech 

passed through an all-pass network (e.g., a Hilbert transformer) 

and then clipped is as intelligible as speech which is clipped 

without deliberate phase distortion. In addition, limited experi-

ments (again using a Hilbert transformer) have shown that the 

long-term (3-5 minutes) average rate of zero crossings is approxi-

mately unaffected by the network. 
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However, our own experience and that of others,1  has 

shown that those schemes based on zero crossing interval dis-

tributions are extremely sensitive to any change in the phase 

characteristics of the speech transmission components. The 

problems of phase distortion appear then to present an insurmountable 

barrier to the use of zero crossing histograms in automatic 

speech recognition machines. After all, the power spectrum is 

unaffected by phase distortion. However, the success of the 

schemes of Teacher et aZ. and others in using zero crossing 
information for automatic recognition suggests that phase dis-

tortion is simply an unsolved problem which should constitute an 

area of future research. 

11.3.2 	Zero Crossings and Spectral Estimation  

Zero crossings have been used in two ways for automatic 

speech recognition: they have yielded estimates of formant position 

and, via interval histograms, patterns representative of the original 

signal. 

However, it has been demonstrated (experimentally) that 

spectral features alone are not sufficiently invariant to give 

high. rates of automatic recognition if, for example, more than 

one speaker must be recognized. In any case, the usefulness of 

zero crossings in this respect apparently depends upon their ability 

to yield formant frequency estimates in a simpler manner than more 
conventional methods. Peterson and Hanne, for instance, have 

shown that even under optimum circumstances (i.e., an isolated 

formant) simple zero crossing spectral estimates are subject to the 

1 	Personal Communication, R. W. Scarr. 
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same large error as "peak picking" techniques. Thus, the question 

arises as to whether zero crossing techniques are relatively 

complicated methods of estimating feature parameters which may be 

evaluated more directly by conventional DFT-FFT operations. 

The utlity of zero crossings as"sufficient statistics" in 

speech recognition schemes is, we feel, intimately related to 

Good's conjecture regarding the information contained in zero 

crossing interval sequences of structured signals. 



Appendix A; Bounds on the Imaginary Parts of Complex Zeros --
the Lehmur -Schur Algorithm  

We derive a rather close approximation for the minimum 

radius (r < 1) at which the zeros of the Fourier series poly-

nomial which represents the three-tone vowel model are found. 

First we state the algorithm upon which the proof is 

based. Then we work through an example which demonstrates the 

use of the algorithm. This example suggested the manipulation 

which allows the above mentioned bound to be derived. 

A.1 	The Lehmur-Schur Algorithm  

The Lehmur-Schur algorithm is used to determine whether 

or not a zero of a polynomial lies within the unit circle on the 

w plane [L-9, R-2, pp. 355-359] . 

Given 

f(w) = anw
n
+an-1w

n-1
+ . . . . +a0 	

(A-1) 

then define 

f*(w) = a*w
n+a*wn 	n . 

-1+ 	 + a* 	(A-2) 
0 	1  

Further define an operator 

T[f(w)] = a*0  .f(w) -an
f*(w) , 	(A-3) 

so that 	T[f(0)] = a0*.a0  -an  .a* 	
(A-4a) 

= 1a012 - lani2 (A-4b) 1 	. 

438 
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Note that T[f(w)] has no term in wn, 

T{T[f(w)]} has no term in wn-1, 

so that 
	

Ti[f(w)] = T{Tj-l[f(w)]).  has no term in wn+1-.1  or higher. 

Let k be the smallest integer for which Tk[f(0)] = 0 . 

The basic theorem is as follows [R-2, p. 355]: 

Suppose f(0) # 0. If, for some h such that 0<h<k, 

Th[f(0)]<0, then f(w) has at least one zero inside the unit 

circle. If instead T[f(0)] > 0 for 1<i4c and T
k-1  [f(w)] is a 

constant, then no zero of f(w) lies inside the unit circle. 

We are concerned exclusively with self-inversive poly-

nomials so that 

T[f(0)] = 1 a012 
	

l an I2 . 0 	
(A-5) 

Thus, for useful results we must apply the Lehmur-Schur algorithm 

to the function f(rw), r<1, and establish whether f(w) has a root 

within the circle Iwl = r. This is the key to our method. 

A.2 	Demonstration: the Two Component Square Wave  

Factorization of the polynomial representing the two 

component square wave. 

f1  (w) =- 1 (jw6  + j3w4 -j3w2 - j1) = 0 	(A-6) 

reveals zeros at w = 	±j 1.9319, ±j 0.5176. Application 

of the L-S algorithm to f(0.80 should therefore yield a positive 

result: 

f1  (0.8w) = j0.26w
6 
+ j1.23w

4 
- j1.92w

2 
 -j1 	(A-7a) 

ft(0.8w) = 	jw
6 
+ j1.92w

4 
- j1.23w

2 - j0.26 	(A-7b) 
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(A-7a)x(a6) 	= -0.26w
6 

- 1.23w
4 
+ 1.92w

2 
+ 1.0 	(A-8a) 

(A-7b)x(-an) 	= 0.26w6 + 0.50w4 - 0.32w2 - 0.068 	(A-8b) 

Add (A-8a) and (A-8b), giving 

f2(w) = -0.73w4  + 1.62w2  + 0.93 	(A-9a) 

and 	f2(w) = 0.93w4 + 1.62w2 - 0.73 . 	(A-9b) 

(A-9a)x(0.93) = -0.68w4 + 1.48w
2 
+ 0.87 	(A-10a) 

(A-9b)x(0.73) = 0.68w4 + 1.18w
2 

- 0.55 	(A-10b) 

Add (A-10a) and (A-10b), giving 

f3(w) = 2.66w
2 
+ 0.31 	 (A-11a) 

and 	f3(w) = 0.31w
2 + 2.66 	• 	(A-11b) 

(A-11a)x(0.31) = 0.83w
2 
+ 0.31

2 	
(A-12a) 

(A-llb)x(-2.66)=-0.83w2 - 2.662 
	

(A-12b) 

Add (A-12a) and (A-12b), giving 0.312  -2.662  < 0. 

Therefore, there is a root of f(0.80 inside the unit 

circle or a root of f(w) inside the circle 1w1 = 0.8, as ex-

pected. It is, of course at w = t j 0.5176. 

Evaluation of the set of derived functions corresponding 

to r = 0.55 yields a constant term of 0.94
2 

-1.12
2 

< 0 after the 

same number of operations as above. A similar evaluation for 

r = 0.48 yields a constant term of 0.97
2 -0.80

2 
> 0. Thus, as 

the "test" radius approaches the radius at which the actual root 

of smallest magnitude is located, the sign of the constant term 

remaining after p-1 "T" operations (where p is the number of non-

zero terms in the original self-inversive polynomial) changes 

from a negative quantity (indicating at least one root inside of 
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the test radius) to a positive quantity. 

Algebraically, our problem is to find the radius at which 

the remainder term is identically equal to zero after the pre-

scribed number of operations. We shall demonstrate the algebraic 

derivation of our criterion using a three-tone model having 

"formants" at 400, 1000 and 2500 Hz (assuming a fundamental 

voicing frequency of 100 Hz). The tone complexes have been SSB 

modulated upwards 100.N Hz, where N is a positive integer (or 

zero for the lowpass signal). 

i.e., f(w) = a3r50+2Nw50+2N+a2r
35+2N

w
35+2N

+a1r
29+2N

w29+2N  

+a*r
21
w21+a*2r

15
w
15
+a* 

where a
l > a2 > a3 

Then 

f*(w) = a w
50+2N

+a2r
15
w
35+2N

+alr
21
w
29+2N  

3 

+a*1r
29+2Nw21+a*

2r
35+2Nw15+a*r50+2N  

(A-13a) 

(A-13b) 

(A-13a)x(a3) = a3
2
r
50+2N

w50+2N+a
2
a
3
r35+2Nw

35+2N
+a
1
a
3
r
29+2N

w
29+2N 

21 21 	15 15 + 	12 +a a*r w +a3qr wla31 3 

(A-13b)x(a3r50+2N) 

(A-14 a) 

= a3
2
r
50+2N

w
50+2N

+a2a3r
65+2N

w
35+2N+a 	71+2N 29+2N 

3a 1r 	w  

+ a
31 
a*r

79+4N
w
21
+a
32 
a*r85+4Nw15 

	
la 31 

121J00+4N . (A-14b) 

Subtract (A-14b) from (A-14a): 

r2Na
3a2(r

35
-r
65
)w

35+2N 
+r

2N
a1a3(r

29
-r
71
)w

29+2N 
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+a31 
a*(r

21
-r

79+4N
)w 

 21 
+ a3q(r

15
-r
85+4N

)w
15 

+ a3
2
(1-r

100+4N) 
	(A-15) 

Therefore, 

f2(w) = a3a2r
35+2Nw35+2N+a1

a
3
r29+2Nw29+2N 

+ .a 3al 	+ 
*r21w21. 

 a3a2 
*r15w15 	1 a312 

 
	(A-16) 

if r35>>r
65 , r29>>r

71
, r

21 
 >>r

79+4N,  r15>>r
8514N, 1»r100+4N 

or, equivalently, r30, r42,  r58+4N r70+4Nand  r
100-1.4N are all much less 

than unity. Because we are concerned with self-inversive poly- 

nomials, r < 1. If r = 0.91, r
30 = 0.05, and as r becomes much 

smaller, r
30 -- and all higher powers of r -- become negligible 

compared to unity. The observed minimum value of r for actual 

vowels was r = 0.72, corresponding to au of 0.5 msec. with R = 

27.100 rad/sec. Thus, if the zero structure of the three-tone 

model is similar to that of the actual vowel -- as far as minimum 

radius at which a complex zero may be found -- the approximations 

of (A-16) should be valid. 

If reduction of (A-16) by the "T" operations is continued, 

then using assumptions similar to those in (A-16) (i.e., for 

r < 0.9, high powers of r become very small) we finally find that 

the radius at which the zero of least magnitude is found is given 

by 

1 , 
r = (1a21 	la31J-1/15 	 (A-17) 

where 15.100 Hz is the separation of F2  and F3. More generally, 

if the distance between F2 and F3 is p(P/27) Hz -- 5<p<16 for 

vowels, generally - then 
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r = [1a21 . la311-1/P , 	(A-18) 

The estimate becomes better as the degree of SSB modulation or 

signal translation increases from 0 Hz and for a given degree 

of SSB modulation is best for larger p. We emphasize that the 

estimated r is a function only of p so that as SSB modulation 

is applied, the estimate remains the same but the actual root 

of least magnitude approximates the estimate more precisely. 
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