THE ROLE OF ZERO CROSSINGS
IN
SPEECH RECOGNITION AND PROCESSING

Lawrence Robert Morris

1970

A thesis submitted for the degree of
Doctor of Philosophy, in the Faculty of Engineering,

University of London

Department of Electrical Engineewming,
Imperial College of Science and Technology,

University of London



ABSTRACT

The role of zero crossings in speech recognition and
processing is twofold: zero crossings define the clipped
speech waveform, and zero crossing interval sequences may
yield objective estimates of certain speech features or form

patterns representative of the original speech signal.

This thesis consists of four sections, two of which pro-
vide parallel treatment of the dual aspects of zero crossing

phenomena.

First, topics concerning signal theory and the special
nature of speech are considered. Included is a discussion of
the philosophy and implications of machine classification as

opposed to human perception of speech sounds.

Next, phenomena associated with the audition of clipped
speech are reviewed and efforts to explain the high intelligibility
of clipped speech are critically examined. The evidence which
justifies the consideration of zero crossings as useful input
parameters for automatic speech recognition 1s surveyed and

interrelated.

Then, two experiments employing a measure of average
rate of zero crossings and zero crossing interval histograms,
respectively, in limited vocabulary, adaptive automatic speech
recognition are described. The experimental results, though
encouraging, reinforce the belief that a lack of understanding

concerning the significance of zero crossings as parameters



representative of speech signals exists.

The final section approaches zero crossing-related speech
phenomena from a unified, zero-based point of view. The concept
of zero crossings as a subset of those zeros which are sufficient
to completely specify a bandlimited periodic signal is introduced.
It is shown that the clipping-bandlimiting operator effectively
samples the speech waveform at the real zeros (zero crossings)
and has limited ability to manipulate the complex zeros.' A
zero-based relationship connecting pre-clipping signal processing
and post-clipping intelligibility is proposed and related to un-
explained observations in psychoacoustic experiments. The
sufficiency of zero crossings as objective waveform descriptors
is then examined and it is argued that the zero crossings of
highly structured signals such as vowels may implicitly contain
sufficient information to almost completely reconstruct the

signal's power spectrum.



The real problem in formulating

a mathematical model 1s to find

an adequate compromise

between realism and mathematical convenience.

I. J. Good, 1958

I ean tell from your votce harmonics, Dave,
that you're badly upset. Why don't you
take a stress pill and get some rest?

HAL 9000 computer
in 2001: A Space Odyssey,
Stanley Kubrick and Arthur C. Clarke



PREFACE

The research reported in this thesis constitutes a con-
tinuation of investigations into the role of zero crossings in
speech recognition and processing. J.M. Dukes (1954), A.J.
Fourcin (1959) and V.J. Phillips (1961), for example, have
explored certain aspects of this subject in studies at the

Imperial College Communications Laboratories.

The form of this thesis was dictated by several factors,
one of which is that the thesis title implies that a comprehensive

treatment of the subject is presented.

First, it is necessary to review briefly some aspects of
signal theory in order to provide a firm basis for the establish-
ment of certain results in zero-based signal representation.
Similarly, various facts concerning speech and hearing in general
and the time-frequency characteristics of speech sounds in par-
ticular must be established in order to provide a foundation for
the understanding of the value of spectral features in human
recognition (perception) and automatic recognition (classification).
A common purpose of both these reviews is to clarify time-frequency

relationships in speech processing, analysis, and perception.

Next, the philosophy of automatic speech recognition is
discussed with the object of explaining the interactions among
the three stages of the recognition process: parameterization,
transformation of parameters, and decision making. This material

includes several examples of recognition schemes and provides an
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introduction to our own experiments.

In reviewing the literature on clipped speech and zero
crossing~related phenomena we reached at least one significant
conclusion: the published reports in this area are scattered
and relatively obscure. 'The lack of interrelationship among
extant results is such that several unfounded myths have arisen
regarding what has and what has not been shown regarding certain
aspects of zero crossing-related speech signal phenomena. For
this reason, two chapters are devoted to a detailed review and
critique of research in this area with a view to explicitly es-

tablishing just what is known and understood in this field.

The final section of this thesis treats zero crossing-
related speech phenomena from a zero-based viewpoint. That
zeros can be regarded as informational attributes of signals
(with zero crossings constituting a subset of the total zero
array) was formally established by H.B. Voelcker in 1966.
However, we expect that zero-based concepts will be essentially
unfamiliar to most readers of this thesis. Therefore, a sub-
stantial amount of space is set aside to provide the background
material necessary to create some feeling for these concepts and
essential to the understanding of our zero-based treatment of

speech clipping and zero crossing-related phenomena.

Zero-based signal theory may be considered novel and
perhaps unrealistic for many signal analysis problems. However,
the fact remains that vowels are most realistically represented
over a pitch period as a finite Fourier series, and that zero-
based product representations specify periodic signals in terms
of zero crossings and complex zeros. Thus, although this thesis

is ostensibly concerned with zero crossings, it is through the



clarification of the significance of these unfamiliar complex
zeros that the role of zero crossings in speech recognition and

processing is deduced.

L. Robert Morris
June 1970.
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GLOSSARY
Major Symbols and Definitions
Note: Arrangement in each alphabetical section is

in order of usage with the section of first occurence given
in parentheses.

{ak} ~ the Fourier series (cosine) coefficients of a
periodic signal, s(t) (2.1)

{b,} -~ the Fourier series (sine) coefficients of a
periodic signal, s(t) (2.1)

BL{ } - the bandlimiting operator (5.1.7)
comb - combES(t) = I s(nF)*s(t-n¥E) (2.4.1)
n=—c

C ~ the clipping operator. C x = sgn[x] (5.1)

cos ¢(t) - the phase function of s(t) (5.1.7)

{ck} - the (complex) Fourier series coefficients of a periodic
signal, s(t) (2.1)

CZ - complex zero (8.1.3)

{Czk} -~ the (complex) Fourier series coefficients of sCZ(t)
(8.1.3)

ij ~ Kronecker delta (2.1)

§(t) - delta function (distribution) (2.4.1)

E{ } - the expectation operator (5.2.1)

Fo - fundamental frequency of a signal periodic in T (T-l)
(2.1)

F{ } - operation of Fourier transformation (2.2)

(L) - the phase of s(t) (2.3.3)

f0 - carrier frequency of a SSB signal (2.3.3)
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- the nth formant and its frequency (4.3.1)
- instantaneous frequency of s(t) (6.3.2)
- average value of ¢'(t) over a specified interval (6.3.2)
- power spectrum (5.2.1)
- operation of Hilbert transformation (2.3.1)
- imaginary part (8.1.1)

- lower half plane (8.2)

analytic signal [m(t) = s(t) + j 8(t)] and its
Fourier transform (2.3.1)

-~ the envelope of s(t) (2.3.3)

-~ the analytic counterpart of the SSB translate of s(t)
(2.3.3)

~- number of real zeros (zero crossings) per period in
a periodic signal (8.1.1)

- number of complex zero pairs per period in a periodic
signal (8.1.1)

- number of zeros per period in a periodic signal (8.1.1)

— fundamental radian frequency of a signal periodic in T
(2.1)

— Cauchy principal value (2.3.1)
- rect[x] = 1 for |x| ¢ % , and zero otherwise (2.3.1)

- rest(t) = % s(t-nT) (2.4.1)

Tl===CO
— autocorrelation function, normalized autocorrelation
function (5.2.1)

— average time rate of zero crossings of a signal and its
first derivative (6.2.1)

~- average value of ¢'(t) for a signal and its first deriva-
tive, respectively, measured over a specified interval
(6.3.2)
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Re[ ] ~ real part (8.1.1)

RZ ~ real zero (zero crossing) (8.1.3)

{Rz, } ~ the (complex) Fourler series coefficlents of s__(t)
k (8.1.3) RZ

s(t),S(f) ~ general signal and its Fourier transform (2.2)

a(t) - Hilbert transform of s(t) (2.3.1)
sgn - sgn[x] = 1, 0, ~1'as x > 0, = 0, or < 0, respectively
(2.3.2)
S, (t) ~ single sideband translate of s(t) (2.3.3)
o

§(t), S(f)~ sampled version of s(t) and F{&(t)} (2.4.1)
sinc ~ sinc x = sin mx/(wx) (2.4.1)
SSB ~ single sideband (5.1.2)

s(t),{c, } - a signal periodic in T and its complex Fourier series
coefficients (8.1.3)

(t) {Rzk} - the real zero component of s(t) and its complex
Fourier series coefficients (8.1.3)

(t) {Cz, } -~ the complex zero component of s(t) and its complex
Fourier series coefficients (8.1.3)

T ~ period of a periodic signal (2.1)

¥ ~ sampling interval for a sampled signal (2.4.1)

T ~ location in time of the ith real zero (8.1.1)

Tzijoz - location in time of the ch complex zero pair (8.1.1)
U ~ unit step, U(x) = 1, x » 1 and 0 otherwise (9.4.1)
UHP -~ upper half plane

W -~ signal bandwidth (2.4.1)
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W ~ carrier frequency of SSB signal (2.3.3)

w - the polynomial plane variable (8.1.1)

x(n),X(k) - sampled signal and its discrete Fourier transform (2.5.1)

z ~ the complex time variable (z = t + j o) (8.1.1)

= - the z~transform variable, 3z = e-32“f¥ (2.5.2)
Miscellaneous

xky ~ convolution of x and y (2.3.1)

X~ - complex conjugate of x (2.1)

) - (f:‘) = n!/(o~r)!r! (8.4.1)
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Phoneme Symbols and Key Words

Vowels

/i/ eve
/I/ it

/e/ hate
/e/ met
/e / at
/a/ father
/>/ all
/o/ obey
/U/ foot
/u/ boot
/N up

/</ bird
Nasals

/m/ me

/n/ no

/m/  sing
Glides and Semi-Vowels
/il you
/r/ read

Frieative Consonants
/~v/ vote

/8/ then
/z/  =zoo0
/3/ azure
/£/  for
/o/ thin
/s/ See
/f/  she
/h/ he
Stop Consonants
/b/  be
/d/  day
/8! go
/p/  pay
/t/ to
/k/  key
/w/ we
/1/ let
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1 INTRODUCTION

1.1 The Problem: Manifestations of Zero Crossings
in Speech Recognition and Processing

This thesis is concerned primarily with the interpretation
and clarification of two phenomena associated with clipped speech
waveforms. First, clipped speech is highly intelligible.

Sgcondly, the same zero crossing interval sequence which defines
the clipped speech waveform can be manipulated so as to yield an

objective estimate of certain speech spectral features.

The intelligibility of clipped speech is a subjective
effect; it is a psychoacoustic phenomenon involving perception of
speech using the human auditory system. In contrast, the use of
zero crossings for extraction of information from the speech waveform
must be cast in an objective, signal theoretic context. Neverthe-
less, speech signal analysis and human speech perception are not

entirely unrelated.

Sections 1.2 and 1.3 are brief, introductory surveys
describing clipped speech phenomena and the use of zero crossings
as waveform descriptors, respectively. These ideas provide the
motivation for this thesis and they will be expanded in later

chapters.

24



1.2 Psychoacoustic Phenomena 26

Infinite clipping of speech results in a harsh sounding,
but highly intelligible, acoustic signal. This phenomenon was
first noted in 1947 by Licklider, Bindra and Pollack [L-13] who,
in an investigation of questions related to the information
carrying charactéristics of speech, performed a classic set of
experiments using clipping as a distorting operator on the

speech waveform.

They found that removal of all amplitude information,
except polarity, above one-~tenth of peak waveform level resulted
in discrete word articulation scores of 96% or more. Further
elimination of amplitude information until the waveform was
defined entirely by the times of polarity reversals (zero crossings)
reduced the word articulation scores to an average of 70%; although
for some listeners this score was as low as 507, conversation
could be carried on with.little difficulty. Pre-clipping
elimination of low frequency speech spectral components improved
post—clipping intelligibility. Other tests, conducted with
clipped and normal speech equal in peak amplitude and heaxd
against a background of spectrally flat ('white') noise, demon-
strated that for low speech to noise peak amplitude ratios the’
clipped speech was more intelligible than the original speech
signal, The subjects' ability to understand clipped speech
improved during the course of the experiments and the above scores

are the maxima noted.

In another series of experiments [L-14], Licklider and
Pollack examined the effects of pre- and post-clipping spectral
tilting (differentiation and integration) on the intelligibility
of the infinitely clipped speech signal. The figure below
(from [L-14]) graphically describes the effects on word articula-

tion of the various combinations of spectral manipulations.
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Fig. 1.1: The effects of various combinations of
differentiation, integration and infinite clipping
upon word articulation. The heights of the bars
of the column diagram indicate the overall average
for each of the ten arrangements. (From [L-14]).

Pre—clipping differentiation (6 db per octave positive spectral
tilt) of the speech signal significantly improved the intelligi-
bility of the clipped waveform while pre-clipping integration

(6 db per octave negative spectral tilt) was severely deleterious
under the same conditions. Post-clipping integration or different-
iation produced only minor changes in per cent word articulation;
however, the former operation lessened the subjective harshness

of the clipped waveform while the latter operation accentuated it.

Again, articulation scores improved with experience.

Finally, Licklider [L-15] showed that quantization of the
times of zero crossings to the nearest 'x' milliseconds produced
virtually unintelligible clipped speech if 'x' was greater than

0.2 milliseconds.

1.3 Objective Estimation of Speech Parameters

Automatic recognition--classification-- of speech sounds

has been a primary research target for over twenty-five years.



27
The first step in machine recognition of speech usually involves a
condensation of data so as to exclude ''mon-essential” information

and preserve '

'invariant'", or essential, data. The question as to
what is "essential" for objective sound classification is central

to the entire speech recognition problem.

For example, as we shall see, spectral features of certain
speech sounds (principally vowels) are prominent and to some extent
can characterize the sound; hence short-time estimates of ampli-
tude spectra have often served as input data to speech recognition
machines., Certain properties of zero crossing intervals and dis-
tributions may, after manipulation, yield an estimate of spectral
parameters. In addition, histograms of zero crossing intervals
have been found to possess prominent 'speaker invariant'
features [B-5].

For these reasons, and perhaps due to the simplified hard-
ware used for binary data processing, the infinitely clipped
waveform (possessing only zero crossing information) has fre-
quently replaced the original waveform as a data source to the
primary feature extractor of speech recognition automata. We
shall examine the implications of the use of zero crossing interval
sequences as waveform descriptors and the significance of zero

crossings as informational attributes of the original signal.

1.4 Unanswered Questions

Zero crossing interval sequences, evidently, carry
sufficient information to construct a highly intelligible speech
signal. They may also afford estimates of speech spectral
features or, as first-order histograms, be regarded as distinctive
attributes portraying the sound source. Yet, the exact signifi-
cance of zero crossings as a representation of the original

speech signal has been unclear. Good has conjectured, for example,
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that under certain circumstances zero crossings may completely
specify, or in some cases overspecify, a signal source [G-9].
Finally, no convincing answer has been proferred to the question,
"Is clipped speech intelligible because the original signal was
speech, or because clipping is a special type of transformation,

or are the two considerations inseparable?"

1.5 Zeros as Signal Descriptors: an Approach to the Role of
Zero Crossings in Speech Recognition and Processing

In 1966 H.B. Voelcker showed formally [V-6] that éeros
can be regarded as complete descriptions of bandlimited signal
waveforms with the proviso that covert, or complex, zeros be
included with the real zeros, or zero crossings, in the set of
signal descriptors. He employed Analytic signal theory and zero-
based concepts to unify many principles in the field of modulation

theory.

We shall apply these ideas, amongst others in this thesis,
to explore the role of zero crossings in speech processing and
recognition., Specifically, we shall focus on the problem of
accounting realistically for the high intelligibility of clipped
speech, and of justifying and explaining the use of zero crossings
as both an estimate of speech spectral features and a description
of the waveform itself. We also describe two short experiments,
carried out during the course of this research, concerning the
computer implementation of limited vocabulary, zero crossing

input speech recognition machines.

1.6 Organization of the Thesis

We conclude the introduction with a description of the

thesis organization, by chapters.

2: This thesis is cast mainly in the language of the telecom-

munication engineer, but it should be useful to psychologists,
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physiologists and others concerned with speech phenomena. There-
fore, in chapter 2, we briefly review the signal theory which

provides the mathematical basis of the entire thesis.

3: Chapter 3 is a survey of certain theories and experimental
evidence which provide the neéessary background for studies of
speech and hearing. In particular, we examine the physiological
and psychological aspects of theories of hearing, and the acoustic
properties of speech sounds. Since we shall build a theory of
post-clipping speech intelligibility upon a foundation of speech
spectral characteristics, we examine the problem of whether static
(time invariant) spectral information is sufficient for human
recognition (perception) without such cues as transitions or
context. In addition, we argﬁe that accurate extraction of

spectral parameters is not quite as straightforward as often implied.

4: Chapter 4 is devoted to preliminary studies of machine recog-
nition (classification) of speech sounds. We outline specific
problems relevant to the implementation of automatic speech recog-
nition machines. Brief descriptions of schemes using spectral
information directly as input to the recognition machine are

presented.

5: Psychoacoustic phenomena associated with audition of infinitely
clipped speech are reviewed in detail in the first section of
chapter 5. Attempts to justify analytically the intelligibility of

clipped speech are then described and critically evaluated.

6: Zero crossings per se can be viewed as informational attributes
of a signal. Chapter 6 briefly outlines current knowledge con-
cerning the statistics of zero crossings of random processes.

Then, the use of zero crossings as‘an estimate of spectral para-
meters in speech signals is detailed. Single sideband modulation
as a transformation affecting the zero crossings of the speech

signal is described, and the effects on subsequent extraction of
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spectral parameters are noted. The chapter is terminated by a
comprehensive review of automatic speech recognition schemes

based on zero crossings as imput parameters.

7: Chapter 7 is a description of two experiments in machine
recognition of speech carried out by the author. Both experiments
relied upon zero crossing information as source data. The results
of the experiments are discussed, together with the conclusions
which resulted in the theoretical and experimental investigation
of zero crossings as signal descriptors which constitutes the

remainder of the thesis.

8: In chapter 8 we elaborate upon a specific, quite general, zero-
based signal model. We then apply zero-based concepts to speech
signal models to construct a foundation, both theoretical and
experimental, for certain postulates and conjectures concerning

clipped speech phenomena and zero crossings as waveform descriptors.

9: Chapter 9 explores the phenomena associated with speech clipping
from a zero-based viewpoint. We discuss product formulations for
the original and clipped waveforms and examine the relationship
between low-pass and single sideband clipped speech. In conclusion,
the effect of clipping on a signal's zeros, and hence its spectrum,
is analyzed with some reference to critical band theories of

hearing.

10: 1In chapter 10 we examine the sufficiency of real zeros as
waveform descriptors, and the relevance of this idea to the use of
zero crossings as input to speech recognition machines. Methods of
signal processing which ensure that the zero crossings almost

completely describe the original signal are consolidated.

11: Chapter 11 is dedicated to a summary of ideas developed
throughout the thesis, a description of outstanding problems,

and recommendations for further research.



2 TIME~FREQUENCY ANALYSIS

In the first five sections of this chapter we outline .
some of the basic analytical concepts of signal theory which have
been adopted over the last 50 years as the primary tools of com-
munication theory. The basis of these concepts is time-frequency,

or Fourier, analysis.

Gabor, in a discussion of the physical significance of
Fourier analysis methods, noted [G-1] that "if the word frequency
is used in the strict mathematical sense which applies only to
infinite duration wave trains, a changing frequency becomes a
contradiction in terms as it is a statement involving time and
frequency." That is, "Fourier's theorem makes of description in
time and description in frequency two mutually exclusive methods."

"a new method of

In order to resolve this anomaly, Gabor presented
analyzing signals in which time and frequency play symmetrical
parts, and which contains 'time analysis' and 'frequency analysis'
as special cases." Section 2.6 is devoted, therefore, to an out-
line of theories, including Gabor's, on the interrelationship of

time and frequency in signal analysis.

Finally, we conclude the chapter by qualifying the use of
Fourier methods in the study of psychoacoustic phenomena. We defer
discussion of applications of time-frequency plane analysis in

speech and hearing to chapter 3.
31
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2.1 Fourier Series: Periodic Signals

Fourier series arise when the problem of describing a

time function s(t) on an interval [0,T} is considered.
The general series expansion

5,0 = ] s,8.(t) , OceeT (2-1)
k=1
involves N coefficients {sk} which depend only upon s(t) and are
not functions of time [S-3, p. 9]. The N functions of time,
{gk(t)}, are specified independently of s(t) and se(t) is an
approximation to s(t). In order to minimize the mean square error
between s(t) and se(t) for a given N, and have this error approach

zero as N increases, for any finite energy signal

T
i.e, J |s(t)|2dt < =,
0

it is necessary that [V-1, p. 170}, [S-3, p. 12]

T
%

s, = J s(t) g k(t) dat . (2-2)

0

If the functions gk(t) are chosen so that
T
* = =41 j=k -

0

they are orthonormal [S-3, p. 10]. ajk is the Kronecker delta.

The standard Fourier series form for signals periodic in
T arises if one chooses

cos(kéi Qt) Lk odd

gk(t) = k=1,2,...(2-4)
sin(—%— Qt) k even , @ = 2u/T.
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Since these g's are a complete set [S-3, p. 13], then over the inter-
val [0,T], se(t) = s(t) in the sense that there is no energy in the

error {s(t)—se(t)}, for N = = in (2-1). Then

s(t) = aO/Z + Z

(akcos kQt + b
k=1

ksin k), 0gt<T, (2-5)

which, using Euler's identities, yields the complex form

E o GHikat

s(t) = K . [S-3, pp. 15-16]
k=—o
(2-6)
T
Here C = %-J s(t) e_Jth dt . (2-7)
0
Note that ck can also be written in the form
- » je . —
ck Ick e’ 'k (2-8)
where |c, | = %[a, 2 + b 2]1/2 and 6, = tan—l[—b /a, ] (2-9)
k 2lay k k k%

It follows that (2-5) can be expressed in the alternate form

»cos (kQt + ek) . (Z—Sb)

s(t) = a./2 + 2 z |c
0 k=1 k

CZ
k
and power of the kth frequency (spectral) component of s(t) [L-6].

Ickl, ek, and represent, respectively, the amplitude, phase,

2.2 The Fourier Transform: Aperiodic Signals

The periodieity, with T, of eijt ensures that s(t) = s(t+T)
in (2-6). As noted in sec. 2.1, a periodic signal has a discrete
line structure in the frequency domain. If the period T =+ «, then
the signal s(t) becomes gperiodic and the spectral line spacing
Af = Q/27 = 1/T tends to zero. That is, when Af>0, kAf>f, a

continuous independent variate.
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Therefore, from (2-7)

lim S -+ c(f) = S(f) = s(t) e_jZthdt (2-10a)
T > oo J
kAf> £ -
f 03
and s(t) = | s(E) e 323 (a10b)

—00

so that s(t) and S(f) are a Fourier transform pair with (2-10)

defining the members. That is,

s(t) <« S(£f) . (2-11)

The preceding approach through limits, while intuitively
appealing, is not rigorous. In using the limiting conditions one
does not define the conditions which are necessary for the existence
and validity of (2-10a) and (2-10b) [P-2, p. 2]. In fact, satis-
faction of either of the following restrictions on s(t) is the
most important factor in assuring that S(f) exists and satisfies
(2-11): e
1. J|s(t)| dt < «=[P=2, p. 9] (2-12)

[=2]
2. J|S(t)|2dt [s-3, p. 31] (2-13)
- OO
Hence, an alternative is to define the Fourier transform pair with
their associated existence conditions and from them derive the

Fourier series [P-2, pp. 42-45], [B-16, pp. 204-208].

We shall use the notation F{ } to signify the operation

of Fourier transformation.
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2.3 The Analytic Signal

If s(t) is a real, aperiodic signal then the real and

imaginary parts of the complex spectrum S(f) are given by

Sk(f) s(t)+cos wt dt (2-14)

and SI(f) s(t)- sin wt dt (2-15)

I
I

respectively, where w = 27f. Consequently, S(f) has real, even,
imaginary, odd, symmetry about f=0. Thus, given S(f) for £>0,
S(f) for £<0 can be defined by conjugation.

2.3.1 Definitions

For convenience, we can define a signal m(t) having a

single-sided spectrum M(f) such that

28(£) , f£>0
M(f) = s , £=0
0 , f<o0. (2-16)

It follows, (using Woodward's operational notation, [W-9]) that
M(f) = lim 2S(f)-rect[(f-W/2)/W] . (2-17)
Woeo

Taking Fourier transforms, and using the "product-convolution"

relationship [S-3, p. 45], one obtains

m(t) = s(6) + 3 (1, [V-7] (2-18)

where s(t)*—%z = a(t) is the Hilbert transform of s(t). (2-19)
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(=]

That is, H{s(t)} = &(t) = P[ %— J Eé%% dr ], (2-20)

-0

where P[ ] denotes the Cauchy principle value [G~1].
The function
m(t) = s(t) + j &8(t) (2-21)

is termed the analytic signal representation [P-1].

2.3.2 Hilbert Transformers

In principle, since the definition of Hilbert transformation
involves a convolution, a Hilbert transformer could be realized by

a linear, time invariant network with impulse response

hH(t) = 1/t . ‘ (2-23)

Such a network would have a frequency response given by

HH(f) = F{hH(t)} = ~j sgn[f] , (2-24)
I x>0
where sgn[x] =¢( 0 , x =20
-1 x <0 .

This network does not affect spectral amplitudes but causes a phase
shift of -90° or +90° for positive or negative frequencies, respective-

ly.

In practice, such a network is unrealizeable because hH(t) is
non-causal and undefined at t=0. In addition, HH(f) has infinite band-
width. Implementations and limitations of Hilbert transformers are

discussed by Gouriet and Newell [G-11], and by Voelcker [V-8].
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2.3.3 Phase~Envelope Models 7

Since m(t) is a complex signal, it can be represented in

the form
m(e) = |me)[-e3%O (2-25)
where |m(e) |= Vs(£)Z + 5(t)2 (2-26)
is the envelope of s(t)

and $(t) = tan T[8(t)/s(t)] (2-27)
is the phase function of s(t) [D-15]. '

The real part of the analytic signal, s(t), can be expressed

in the form

s(t) = ]m(t) scos ¢(t) , (2-28)

the phase-envelope formulation for a bandlimited signal.

If a positive frequency translation, f0 = m0/2ﬂ , 1s applied

to m(t), then

m (6) = m(t) et | (2-29)

o
and the real part of m (t) is
o

Smo(t) = s(t)-cos mot - 5(t)+sin mot

il

Im()[-coslo_t + ¢(£)] . (2-30)

This, a model for a real single sideband signal (upper sideband
form), differs from (2-28), s(t), only in the addition of mot,

the frequency translator. It follows that the phase and envelope
of the signal are analytic signal attributes which are not affected
by frequency translations and (2-29) is a suitable model for
studying such processes. Phase-envelope relationships in speech

signals will be discussed in sec. 6.4.
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2.4 Sampling Theory

In 1928 Nyquist demonstrated that the number of "signal
elements" (i.e., telegraphic 'dots') which can be transmitted per
unit time over a bandlimited line is a function of the bandwidth[N-5].
Eighteen years later Gabor stated as the fundamental theorem of
communications that [G-1]: '"In whatever ways we select N data to
specify a signal in the interval T, we cannot transmit more than a
number 2(f2~f1)T of these data, or of their indgpendent combinations
by means of the 2(f2—f1) independent Fourier coefficients.'" Here
f1 and f2 were the limits of the frequency range in which the band-
pass signal was to be defined. Gabor's proof was based on Fourier
series expansions and he noted that "It leaves a sense of dissatis-

faction." (Italics mine.)

In the next three sections we briefly review the fundamental
concepts of sampling theory in order to provide a framework for our
work on specification via zeros. These ideas constitute a develop-

ment and rigorization of Gabor's "fundamental theorem."

2.4.1 Lowpass Sampling

A conventional approach to lowpass sampling is via Fourier

transform theory, again referring to Woodward [W-9].

The sampled version of s(t) can be represented as

o

8(t) = combgs(t) =} s(t)-8(t-nF) (2-32a)

n=-—c
where ¥ is the sampling interval in seconds. The Fourier transform
of 5(t) is

o

) S(f-n/%¥). [w—9]‘ (2-32b)

=-—00

1
T

=

S(f) = S(f) =

T ePy/g
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If S(f) = 0 for !fl > W, and if ¥ < 1/2W, then S(f) can be recovered

from S(f) by filtering since the repeated S(f)'s which constitute
§(f) will not overlap. That is,

S(£) = rect(£/2W) repy,pS(£), <1/ . (2-33)

Using the convolution-product theorem, and taking Fourier transforms
of both sides of (2-33) one obtains,

@

s(t) = ) s(nF)-sin[2nW(t-nZE)}/27W(t-nE) .  (2-34)

n:—ou
Or, using sinc x = sinmx/7x,

(o]

s(t) = ) s(nF)-sinc 2W(t-n¥) . (2-35)

n=-00
Hence s(t) can be completely recovered from (an infinite number of)
its samples, taken every ¥ seconds, by interpolation with sinc

functions [W-9], [K-10].

If s(t) is periodic in T, as well as bandlimited to *W Hz,

then
nj-1 sin [n(n—nlt/T)] ,
s(t) = ) s(nT/ng) : , (2-36)
n=0 n,*sin [r(n/n,-t/T)]
1 1
where n, = 2WT-1 [G-8]. Thus, a periodic signal having a finite

1
number of Fourier coefficients requires only a finite number of

samples for complete determination. In sec. 2.4.3 we will show

that these samples need not be taken at uniform time intervals.

2.4.2 Bandpass Sampling

If the signal spectrum occupies the band fO<|f|<fO+W then

only in special circumstances (i.e., when fo=cw, c=0,1,...) is it
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possible to reconmstruct s(t) from its samples at 2W equispaced
points per second. Generally, a minimum uniform sampling rate Rmin
--where 2W¢R , ¢4W--is required. The actual value of R _, depends

min min

upon the relationship of fo and W.

Second order sampling, which involves two interlaced
sequences of W equispaced sampling points per second, may be used
but the interpolation functions corresponding to this mode of

sampling are quite complicated [K-10], [L-17].

However, uniform sampling of a bandpass signal and its
Hilbert tramsform, at a rate > W times per second, suffice to

uniquely determine that signal [L-17].

2.4.3 Noniniform Sampling

J. L. Yen considered the problem of nonuniform sampling of
lowpass signals. He showed [Y~1] that if the signal s(t) is band-
limited to *W Hz, then it is uniquely determined by (and can there-
fore be completely reconstructed from) its values at recurrent sets

of N sample points taken at

Tom = G + mN/2W, p=1,2,....N
m= ..,-2,-1,0,1,2,...
That is,
)
s(t) = . s(t_ )Y (t) , (2-38)
M=o p=1 pm pm
N
TT sin %(t—tq)‘(—l)mN
where v (t) = 9=1 (2-39)
pm N g Q
I-ll sin -E(tp—tq) -E(t—tp—lezw)
q_.
#p

is the interpolating function. If s(t) is also periodic in T=N/2W,
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then, S(Tpm) = s(tp) for all m and only one set of N nonuniform

samples is required for complete signal determination.

2.4.4 Uniform vs Nonuniform Sampling

A major difference between the interpolating function for
uniform and nonuniform sampling of bandlimited signals should be

emphasized.

For uniform sampling the maximum value of the sime inter-
polating function occurs at the sample point and this value is unity.
For nonuniform sampling, however, the maximum value of the interpo-
lating function me(t) does not necessarily occur at the sample point.
While the value of the interpolating function at its particular
sample point s unity, its maximum value may become very large due

to bunching of sampling points [Y-1].

We shall examine the phenomenon of signal growth due to

"bunching of sampling points" in chapter 9.

2,5 Finite Sample Sets: the Discrete Fourier Transform

Signal analysis usiﬁg the digital computer as a tool--
either as a sophisticated calculator or as a simulator of a communi-
cation system—-requires that all signals be both sampled and
quantized; that is, defined only at specific instants of time or
values of frequency and specified only to some finite degree of

accuracy.

As discussed in sec. 2.4, bandlimited signals may be
completely specified by sampling at uniform rates exceeding twice
the highest frequency present in the waveform. However, quantization
implies introduction of noise. Quantization error is analyzed by

Gold and Rader [G-4, ch. 4], Papoulis [P-4], and Widrow [W-7].

We are concerned primarily with the properties of the

transform pair which apply to signals represented by finite sets
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of discrete samples in both the time and frequency domain. In the
next section, therefore, we briefly describe the discrete Fourier
trans form--DFT--for sampled signals and in sec. 2.5.2 we discuss

some of its properties.

2.5.1, Formulation of the Discrete Fourier Transform

If a continuous signal x(t) is sampled every ¥ seconds, the

sampled signal %(t) can be represented as

%(t) = ) x(nF)-s(t-nF) . (2-40)

n=—oo
If %(t) is defined only for t20 and we consider only a finite
number of samples—-N--, then, taking Fourier transforms of both
sides of (2-40),
3 Nl ~j2nfnE
X(£) = )} x(nF)-e ] . (2-41)
n=0

Since e~j2wfn¥

is a periodic function of f, the sampling operator
has "folded" the frequency axis so that frequencies greater than
1/2F Hz are discriminated only as aliases of themselves. Therefore,
it is imperative for accurate sampled signal representation that s(t)

be effectively bandlimited to *W Hz, where W = 1/2%¥ [B-9, pp. 31-33].

. We evaluate (2-41) at equispaced intervals of Q Hz.
That is, let f = kQ/27m where, by definition,

Q = 2n/NE = 27(W/0.5N) . (2-42)
Then, from (2-41),
) N-1 ik
X(kQ/2m) = X(k) = ) x(nF)ee - . (2-43)
n=0

It can be shown that X(k) = X(k+pN), p an integer [G-4, p. 163].
Therefore (2-43) yields a periodic sequence of complex numbers with

period N.

Letting X(k) -~ X(k) and x(nF) + x()/N ,
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then, using (2-42) in (2-43) we obtain the DFT of the time sequence

x(n):

N-1
x&)=% ) x(n)-e , k=0,1,... N-1.

n=0 (2-44)

The inverse discrete Fourier transform maps the {X(k)} back into the

-j2nwnk /N

{x(n)} and is given by
N-1
x(n) = X(k)+e n=0,1,... N-1.
k=0 (2-45)
That (2-45) is the inverse of (2-44) can be shown by substitution
[G-4, p. 165]. Equations (2-44) and (2-45) are the discrete

j2wnk/N
b

Fourier transform pair. That is,

{x(n)}={X®} .

2.5.2 Nature of the Discrete Fourier Transform

Summarizing, the discrete Fourier transform of a finite
sampled signal {x(n)} is a finite sampled complex spectral series
{X(k)}. Both series are periodic in N in their respective domains,

due to the cyclic nature of eJZ“nk/N.

For {x(n)} real and N even, X(N/2) is real and represents
the amplitude of the real part of the highest frequency component of
{x(n)}, while X(0) represents the average value of the sampled time
function. {X(k)} possesses real even, imaginary odd symmetry about
X(N/2) with positive frequency complex Fourier coefficients indexed
by k=1,2,...N/2~1, increasing in frequency with increasing k and
the negative frequency complex Fourier coefficients indexed by

k=N/2+1, ..... . N-1,decreasing in frequency with increasing K.



44

Spectral Compopent (-) k (e)

. X(0) X(Q) X(20) ... X(IN/2-1]1R) X(Ne/2) X (IN/2-1]Q) ...

e 0 1 2 N/2-1 N/2 N/2+1
ceees X*(20) X*(Q) .
N-2 N-1 )

Fig. 2.1 Discrete Fourier transform output array.

The {X(k)} can also be regarded as the output at time (N-1)%F

of a linear digital filter whose unit sample response is

. [e732m/Ny(=1=n) 51, ...N-1
h, (n¥) =
0 , otherwise , (2-46)
and whose input is the segquence
ee0,0,....0,x(0),x(B),x(2F) oo . x([N=-11F),05r0r00cuna [B-22]

From (2-4l), the Fourier transform of hk(nQ) is

N-1

B ()= ] I

n=0

-3 N-1-n)k_;
o JZN/N]( n'e JZanQ. (2-47)

Letting e_32“f¥= 2, then, following some manipulation,
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-N
= - & z -1
B (B) = H @) = — o32m/Nk

z -

(2-48)

J2m/N 6.1, ... N1 |

which has N zeros located at zm = |

and one pole at z = eJZWk/N

which cancels the kth zero.

Then, evaluating (2-48) as a function of f, with fs =1/%=2W,

&, ()] = lﬁk<z=e32"f/f5)| = |sin(nNE/£ ) /sinln (£/£ ~k/M]].
(2-49)
|ﬁk(f)| is shown in Fig. 2.2 for N=8 and k=0,
l".l .
] | 1 1 | | | 1 — f/fs
-.50 -.40 -.30 -.20 -.10 .10 .20 .30 .40 .50

Fig. 2.2 Iﬁk(f/fs)l for N=8 and k=0 . (From [B-22].)
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Therefore, the discrete Fourier transform corresponds to

filtering the input signal x{(n¥) with N filters having center
frequencies fC = (W/N)[2k-N}, k=0, 1, ...N-1, and frequency
responses of the form sinlz/sin x. The outputs of the filters at
time (N~1)F are the Fourier coefficients [BR-22]. Figures 2.3 and
2.4 1llustrate the spectral distortion introduced by time and
frequency sampling of aperiodic and periodic signals, respectively,

and by truncation of aperiodic signals.

Direct evaluation of the N complex frequency coefficients
{X(k)} requires a number of operations (complex additions and multi-
plications) proportional to N2, The Fast Fourier transform, or FFT
[G-4, pp. 173-201], [M~14], enables computation of the DFT in a
number of operations proportional to N logzN if N = 2M, M a positive
integer. Much of the computer analysis of speech waveforms described
in chapter 9 was made economically feasible by using the FFT to

evaluate the DFT. We postpone description of some uses of the FFT

algorithm until section 8.5.1.

2.6 Energy Distribution in the Time-Frequency Plane

The time and frequency descriptions of signals can be
represented by orthogonal coordinates on a time-frequency plane [G-1].
A continuous sine wave, for example, exists for all time and is
represented on the positive frequency axis by a delta fuﬁction at its
frequency of oscillation; conversely, a time domain delta function
exists for a vanishingly short time but has equal energy at all
frequencies. Gabor suggested that the problem of describing the
frequency spectrum of a truncated sine wave be resolved by reference
to the response to such a waveform of a physical system, a bank of
tuned reeds, for instance. Such systems, he proposed, divide the

time-frequency plane into approximately rectangular areas whose
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APERIODIC SIGNALS

s(t) a
/fvﬁ&\\,uf\ A
\w— > t
s(t)--continuous, time
unlimited

~ sl(t)
¢e—— T ——>

C
<>
\\/'Nl\t
u 4

sl(t)=s(t)-rect[(t—T/2)/T]
continuous, time limited

TRUNCATE

Sz(t)

e
I
" >t

sz(t)= restl(t)

REPEAT

continuous, periodic

S3(t)

SAMPLE

SB(t)= combgsz(t)

discrete, periodic

|s(o)] b

s f
—w —
S(f)-~continuous, band-
limited

|5, (D)]

> £

S, (f)= S(f)*T~s:‘chf-eJTTTf

continuous, non~bandlimited

|5,

e

Sz(f)=-%combl/TSl(f)

discrete, non-bandlimited

S~

i
S, (£) | 1/T
3
¢ 1z 2 Ey

h

[t 1]

1
84(£)= grepy /55, ()

discrete, periodic

Fig. 2.3 The errors introduced by time and frequency sampling

of aperiodic signals.
i) Truncation implies spectral smearing via convolution (c,d).

ii) Sampling in time domain causes spectral overlap of non-—

bandlimited spectra (g,h).

iii) Analogue to digital conversion causes quantization error.

Note: Only positive spectral frequencies are shown.
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PERIODIC SIGNALS

2 (t) a |5(6))]

, 1/T

A K
M—é\f;\ V/\/‘ Kk _'9; — f

s (t)--continuous, periodic S(f)--discrete, bandlimited

SZ(t) Alsz(f)l
F c k——1/% ———————ﬂ
T [ i
5 v 1y e I Ifml[ I
R T K—y — 1/T
s,(t)= comb_s(t) 8, ()= (1/@)repl/¥s(f)
giscrete, periodic dlscrete, periodic

Fig. 2.4 The errors introduced by time and frequeqcy sampling

of periodic signals
i) Sampling in time domain implies no spectral overlap if

1/ > 2W. L
ii) Analogue to digital conversion causes quantization error.

Note: Only positive spectral frequencies are shown.



49
shapes are dependant upon the nature of the system, with the restriction

that no more than 2(f2—f1)T independant data can be obtained from the

'occupied' area, (fz—fl)xr, of the plane.

He argued that by making a function of time or frequency a
function of both time and frequency an arbitrarily exact analysis
with respect to either, but not both, of the variables could be made.
The product of the 'uncertainty of measurement' in time and frequency

is [G-1]

At-Af 2 %, (2-50)
where At = /’2’1?~Dt , Af = /i'TF-Df .
Here D, = [(t—E)?—]I/2 , (2-51)
and D, = [(f—f)z]l/z (2-52)

are the rms deviation of t or f from the mean epoch, E, or
frequency, f, of a signal. Equation (2-50), rather than expressing
a true 'uncertainty' effectively places bounds on the 'duration'

of a signal and the bandwidth of its Fourier transform. The
definition of 'duration' and 'bandwidth' is usually dependent upon

the nature of the signal being studied [P-2, pp. 62-74].

Gabor found that the signal which makes (2-50) an identity
is
: JEPW . 2 .
s(t) = Re [e % (E7E0)7, J(wotHd)y () 5qy

a sinusoidal signal with a Gaussian [normal] shaped envelope and

Fourier transform

s(g) = o= (M/2(E-£6)2 | ~J2mto(£-£0)40] (5 o4y

o, At, and Af are related by

At = /1/2 /o and Af = ofV2T . (2-55)
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Each elementary signal occupies an area of % unit, called a logon,

and an arbitrary signal could be expanded, approximately, in terms

of the elementary signal. However, since the elementary signals

are not orthogonal, this process is inconvenient. Slepian and Landau
(see [P-2, pp. 67-74]) generalized Gabor's uncertainty principle and
showed that the prolate spheroidal wave functions are the orthogonal,
time-limited signals which squeeze the most energy into a given

bandwidth.

Recently, Rihaczek derived an analytic expression for the
energy distribution of an arbitrary signal [R-11]. He showed that
the complex energy density function (on the time-frequency plane)

of a signal s(t), with analytic representation m(t), is defined by

-j2nft

%
ec(t,f) = m(t) M (f)-e (2-56)
with tle real form given by
e(t,f) = s(t)-Re[S(£)-e J2TEEY | (2-57)

This equation can be used, for example, to interpret Gabor's

question regarding a truncated sinusoid. If

s(t) = rect(t/T)-cosanot ,

then -
e(t,f) = %-rect(t/T)'[sinc2T(f+fo)+sinc2T(f—fo)]-[cos4nfot+l].

This function is illustrated in Fig. 2.5.

Equation (2-57) satisfies the requirement that its integral
over all t gives the signal energy density as a function of f--the
energy density spectrum——and that integration over all f gives the
energy density at time t--the energy density waveform. As expected,
integration over the entire time-frequency plane gives the total

energy in the signal, Et. Furthermore, the total energy in a
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e(t,f)

f =10/T
o

e(t,f)= %rect(t/T)-[sinCZT(f‘fo)+sinc2T(f-fo)]-[cos4wfot+1]

Fig. 2.5 Energy density function for s(t)=rect(t/T):cos2nf

t,
f = 10/T. °
o)
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particular cell, centnato, fo’ of the t-f plane is given by

- - * 1
J rectCETEQ)'rectciggﬂ)°m(t)-M (£) e 32y, g5 |

Ep,p = J
o (2-58)

However, if T and B~0, the resultant point value for the energy
e(to,fo) is not really a true measure of energy distribution since
neighbouring points might have energy densities which are nearly
equal in magnitude but opposite in sign and hence cancel. This
implies that, as Gabor suggested, a cell of minimum dimensions

should be 'used., Now (2-58) can be written as

I8 (E)-27EE] 4 e (959

M(£)

Ep,g = J J |m(e)

TB
For signals with strong phase modulation, (e.g., speech,
as we shall see) this is an integral which fluctuates rapidly under
a slowly varying envelope. Rihaczek noted that for these signals,
the significant contributions to the integral come from the time-

frequency areas where the phase,

O(t,£) = ¢(t) - 8(f) - 2mft , (2-60)

is stationary; that is, where its derivative goes through zero.

Then

It
1

R2C,8) L yr(e) - onf

- 4!
ot 0 when £ = ¢'(t)/2w

£, (0)

and égé%Lgl =-9'(f) - 2mt

0 when t =-8'(£f)/27

Tg(f).

Thus we have a concentration of energy, simultaneously, at fi(t)
and Tg(f) with the value of the energy dependent upon m(Tg) and

M(fi). If ¢(t) is linear about the stationary point, increases

Er B
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linearly with T; similarly, for 6(f) linear, E increases linearly

with B. In both these cases, the linear variazign of the term 2nft

is just offset. Rihaczek derived, using these concepts, an expression
for Tr’ the relaxation time (or interval within which the signal
energy is concentrated at a particular time) of the signal and for

Bd’ the dynamic signal bandwidth (or frequency band within which the

signal energy is concentrated) and showed that

T +B, = 1 (2-61)

and that the shape of the cell | on the t-f plane depends
upon the rate of change of ¢'(t), the instantaneous signal frequency.
This, effectively, is a more physically meaningful formulation of
Gabor's 1946 "mathematical identity which is at the root of the

fundamental principle of communication." (sec. 2.4)

2,7 Fourier Analysis in Speech Recognition and Processing

Gabor [G-1] explained the choice of sine waves in favour of
other orthogonal functions.for gk(t), (2-1), by noting that only
simple harmonic functions transmit the same amount of information
in equal time intervals. He also explained that only harmbnic
functions satisfy linear differential equations in which time does
not figure explicitly and that it follows that these are the only

ones which can be transmitted by linear, time invariant circuits.

However, we must justify the use of Fourier analysis in
speech processing, specifically clipping, analysis. Helmholtz,
in his classic work, On the Sensations of Tone [H-10, p. 35]
pointed out that Fourier techniques give convenient, but without
reference to auditory perception, arbitrary mathematical descriptions
of sounds. The study of speech clipping, using Fourier techniques,

might then appear to be a study of the phenomenon using an arbitrary
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mathematical description. However, when auditory perception is

understood as a form of spectrum analysis, then Fourier techniques

provide an analog description of the psychophysical process.

In the next chapter, we briefly review the nature and
theories of speech and hearing and attempt to show that the descrip-
tion of hearing as a form of spectral analysis is compatible with

both physiological evidence and psychophysical experimental results.



3 SPEECH AND HEARING

This chapter is intended to serve three purposes.' First,
it introduces some basic theories concerning speech and hearing.
This material is directed primarily towards readers of this thesis
familiar with signal processing concepts, but unacquainted with
the distinctive characteristics of the speech signal source, the
acoustic speech waveform and the human auditory system. Secondly,
the role, if any, of spectrum analysis in the perception of speech
sounds must be critically examined before we can discuss the effects
of clipping as an operator on the speech spectrum. Finally, we
provide a fealistic physical basis for the adoption, in chapters 9
and 10, of certain mathematical models of speech waveforms for use
in the study of the role of zero crossings in speech perception

and automatic recognition.

In outlining the characteristics of speech sounds we shall
make an important distinction between objective features and percep-
tual cues. First, we describe those features of the acoustic wave-
form which, either directly or indirectly (through a transformation),
enable speech sounds to be objectively categorized-—perhaps with
reference to the ultimate mode of production. Next, we consider
certain static and dynamic characteristics which have been shown
to be important cues for perceptual discrimination among speech
sounds. Finally, the role of various objective features as

perceptual cues will be emphasized.
85
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Similarly, in describing the nature of the auditory system

we shall differentiate between physiological characteristics and
psychoacoustic phenomena and models. The physical nature of the
peripheral guditory system—;and its response to external stimuli--
is known through objective observations, notably those of Corti

(see [H-10]) and Békésy [B-1]. Psychoacoustic phenomena are
subjective effects--that is, subjectively reported responses (of the
auditory system) to external stimuli. These phenomena often enable
researchers to postulate-—independently of structural detail--

models which describe aspects of auditory system behaviour.

3.1 Auditory Perception as a Form of Spectrum Analysis

Helmholtz, in his classic work On the Sensations of Tone
[H-10], investigated the physical nature of acoustic disturbances
and the physiological aspects of the mechanical sensing of these
disturbances in the ear. He began by exploring Fhe physical
characteristics and mathematical analysis of acoustic vibrations,
in consonance with the following law of G.S. Ohm:

Every motion of the air which corresponds to a composite
mass of musical tones is capable of being analyzed into a
sum of simple pendicular vibrations, and to each such simple
vibration corresponds a simple tone, sensible to the ear,
and having a pitch determined by the periodic time of the
corresponding motion of the air.

Helmholtz proceeded to justify the correctness of this law by empha-
sizing, with reference to Fourier analysis, that "the multiplicity

of vibrational forms produced by the composition of simple pendicular
[harmonic] vibrations is not merely extraordinarily great: it is

so great that it cannot be greater."

To demonstrate that the harmonics contained in complex
tones can be physically detected independently of the human ear,
Helmholtz introduced the idea of sympathetic resonance of physical

bodies. He extended this to the use of external acoustic resonators
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acting as analyzers of sounds with the ear serving merely to detect
whether or not the analyzer is excited, and to what degree. Next,
he attempted to show [H-10, ch. 4] that the ear itself was capable
of carrying out the analysis. In fact, he demonstrated that an
experienced observer can detect the presence of harmonics in tones
and speech, in some cases up to the sixteenth harmoﬁic. In addition,
Helmholtz emphasized that "the quality of the musical portion of a
compound tone depends solely on the number and relative strength

of its harmonics and in no respect to their differences of phase."

In further investigations [H-10, ch. 7,8], however,
Helmholtz found that audible beats were produced by simple tones
above a few hundred Hz when the frequency ratio of the tones is
less than five to six. As Goldstein pointed out [G-5], on the
basis of these and other experiments with interference of sound,
Helmholtz suspected, but neglected to state explicitly, that there
is the possibility of phase perception among tones which are not

separately resolved by the ear.

Thus, on the basis of psychoacoustical experiments only,
Helmholtz postulated a model describing sound perception as a form
of continuous, parallel, spectrum analysis with limited frequency

resolution.

3.2 The Nature of the Auditory System

In this section we briefly describe the structure of the
ear and its relevance to Helmholtz' psychoacoustic model. We then
examine more recent attempts to specify and describe the operation

of the auditory system.

3.2.1 Physiological Structure

The components of the ear can be divided Into three regions:
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specifically, the outer, middle and inner ear (Fig. 3.1).

Pinna

Fig. 3.1

Schematic diagram of outer, inner and
Middle ear regions. Not to scale. (From [K-7])
The outer ear, consisting of the visible pinna (or ear

flap), surrounds and protects the entrance to the meatus, or
external ear canal, which approximates a uniform tube. The meatus
is about 2.7 cm in length and, hence, one-quarter wavelength at
3000 Hz for acoustic sounds. Near this frequency, the resonance
effects provides a sound pressure increase of 5-10 db at the closed
termination, the eardrum or tympanic membrane, over the value at

the ear canal entrance [W-1].

The middle ear contains the ossicular bones, the malleus
(hammer), incus (anvil) and stapes (stirrup). This coupled assembly--
eardrum, hammer, anvil, stirrup--effects an upward acoustical
impedance transformation from the low impedance of the air to the
high impedance presented by the inner ear. A pressure transformation,
as much as 15:1 [F-8, p. 78], is accomplished through the lever
action of the ossicular chain and the large effective ratio of
input-output (eardrum-stirrup) surface areas. Besides having the

additional property of protecting the inner ear-by means of a
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change in mode of ossicular vibration--against very intense sounds,

the middle ear possesses a low pass amplitude transmission charac-
teristic [F-8, p. 80] whose effective "roll-off" frequency, though
on the order of 1 kHz, is subject to much variation. Helmholtz
described, qualitatively but accurately [H-10, pp. 129-135] the
form and function of the outer and middle ear relying mainly on
anatomical observations. It remained for Békésy, Zwslocki and
Moller (see [F-8, p. 79]) to quantify this description nearly

100 years later.

The complex inner ear (described as ''the lab&rinth" by
Helmholtz) consists of the vestibular apparatus, the cochlea and
the auditory nerve terminations. The vestibular apparatus comprises
three semi-circular canals used primarily in sensing spatial
orientation. The cochlea (see Fig. 3.1) proceeds forward from the
oval window and takes the form of a spiral "snail shell" filled
with perilymph, a colourless liquid. The spiral is divided into
two canals separated by a partition which is itself a channel
(Fig. 3.2). This channel, the scala media, is bounded by a bony
shelf and two membranes--the soft Reissner's membrane and the more

rigid basilar membrane (Fig. 3.3). The two canals, the scala

Fig. 3.2 A cross section of the cochlea. (From [W-6])
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vestibula and scala tympani, are connected only at the helicotrema
(a small gap where the basilar membrane and bony shelf terminate’
just short of the spiral's end) and hence form a continuous, folded

tube,

In operation, the stapes vibrates the oval window which,
acting as a pistbn,.produces a volume displacement of the cochlear
fluid. This displacement is relieved by the compliant covering of
the round window at the far end of the folded tube. The fluidic
vibrations are transferred to the basilar membrane which, via the
organ of Corti resting on the membrane [and coﬁtaining over 30,000
sensory cells which terminate the auditory nerve] provides the
mechanical to neural transduction. Therefore, it is the acousto-
mechanical properties of the basilar membrane which provide the key

to the first step in the analysis and perception of sounds.
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Fig. 3.3 Enlarged cochlear cross section. (From [F-8].)

Helmholtz belie&ed that the basilar membrane was tightly
stretched in its transverse direction (width), but rather 1limp along
its length. He also knew that the width of the membrane increases

about an order of magnitude from beginning (oval window) to end
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(helicotrema) [H-10, pp. 145-146]. Using this anatomical evidence,

he hypothesized that the basilar membrane acts approximately as a
system of parallel, independent, damped, stretched strings each
having a slightly lower resonant frequency than the one before.
Furthermore, he stated, the nerve cells in the organ of Corti
"will be the means of transmitting the vibrations received from
the basilar membrane to the terminal appendages of the conducting

nerve.,"

Helmholtz claimed that his hypothesis ."has reduced the
phenomenon of hearing to that of sympathetic vibration and thus
furnished a reason why an originally simple [compound] periodic
vibration of the air produces a sum of different sensations and
hence also appears as compound to our perceptions." [H-10, p. 148}
The hypothesis accounted for beats which are produced by single tones
""so near to each other in the scale that they both make the same
elastic appendages of the nerves vibrate sympathetically."

Helmholtz' hypothesis concerning the mechanism of the ear thus

accounted for his formulations based on psychoacoustic experiments.

Békésy performed extensive investigations concerning the
mechanism of the middle and inner ear, particularly the basilar
membrane [B-1]., He demonstrated that the place of maximum membrane
vibration in response to sinusoidal excitation of the stapes varies
as a function of frequency with lower excitation frequencies causing
maximum vibration at membrane locations further from the oval
window. As to the mode of vibration, Békésy concluded (from obser-
vations of both models and actual membrane motion) that "during
stimulation, a travelling wave is formed on the basilar membrane
and not standing waves." [B-1, p.425] This behaviour results from
the absence of reflections (at the helicotrema) which in turn is
due to the gradual variation of the membrane structural parameters

[F-8, p. 83].
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Let each place on the basilar membrane be identified with

the input sinusoidal excitation frequency causing maximum vibration
amplitude at that place. Békésy found that, for an input frequency
fi’ the amplitude of vibration at other membrane ''frequency' places
is analogous to the amplitude response of a broadly tuned bandpass
filter with center frequency fi' Place-amplitude response curves
for various excitation fredhencies have "bandwidths" (when places
are identified with frequencies, as above) which are a constant
percentage of the excitation frequency. The '"frequency" resolution
of the membrane is best, therefore, at the "low frequency'" end

1

(helicotrema) and the "time" resolution best at the "high frequency'

end (oval window).

Békésy's findings regarding the place (''frequency'")
—amplitude response of the basilar membrane, to sinusoidal signals,
were not in accordance with the auditory model postulated by
Helmholtz for the following reason: the limited frequency resolu-
tion of the human auditory system, as evidenced by Helmholtz'
experiments with beats, is much better than the mechanical "frequency"
resolution of the basilar membrane (see Fig. 3.4). In the next
section we first discuss attempts to quantify the frequency
resolving power of the "auditory spectrum analyzer.'" We then mention

some attempts to explain the discrepancy noted above.

3.2.2 Cochlear Analysis and Critical Band Theories

R. Plomp observed in 1964 [P-14] that the only quantitative
statements concerning the audibility of harmonics date from a time
when it was impossible to measure the objective strength of the
tones. To rectify this situation, he performed a series of
experiments to investigate the number of distinguishable "harmonics"
of signals composed of a series of simple tones with integer

(harmonic), and non-integer (inharmonic) frequency ratios.
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He found, for example, that with a fundamental of 250 ﬁz,

integer harmonics of frequency less than 1625 Hz (the '6.5th' harmonic)
could be distinguished from an independent test tome 125 Hz away

more than 75% of the time. This means that at 1625 Hz,-two harmonics
must be separated by a eritical frequency difference of more than

250 Hz in order to be distinguished, or resolved. The experiments
were duplicated for other fundamental frequencies and, to eliminate
the possibility that observers could recognize frequency ratios,
repeated for inharmonic tone complexes. Figure 3.4, from [P-14],
illustrates that the critical frequency differences for both harmonic
and inharmonic tone complexes agree quite closely. Note also the
fairly close correspondance with the lower solid curve, which rep-

resents the critical bandwidth of the auditory system as determined

by Zwicker et al.[Z-1].
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Fig. 3.4 Solid Line--Analyzing bandwidth of basilar membrane as
determined by Békésy [H-29].
Solid Curve--Critical bandwidth of auditory system [Z-1].
Dashed Curve--Frequency difference between the partials
of complex sounds required to hear them separately, as determined
by Plomp [P-14] using harmonic (.) and inharmonic (o) tome complexes.,
Dotted Curve--As dashed curve, but using two tone complexes
for test signal (x). (From [P-14])
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The concept of ceritical bandwidth is used to describe the
fact that the subjective response to auditory stimuli with a
frequency spectrum exceeding a certain Yeritical' bandwidth is
different from that when stimuli not exceeding this bandwidth are
used. J.L. Goldstein briefly deseribed [G-5, pp. 45-51] recent
experiments which were carried out to quantitatively measure the
actual size of the critical bands as a function of their centre

frequency.

As Helmholtz had suggested, the frequency resolution of the
auditory spectrum analyzer ¢s limited and tones sufficiently close

Y ecommon areas”

together (within the same critical band) excite
and give rise to anomalous perceptual phenomena, including beats.
In fact, Goldstein demonstrated through his own experiments that,
as Helmholtz had implied, perception of phase effects in monaural
sound is possible as a consequence of this limited resolution.
However, as we have seen, Helmholtz' belief that the " common areas"
were "elastic appendages of the nerves'" cannot, in the light of

Békésy's findings, accound for the observed degree of resolution of

Ythe auditory spectrum analyzer."

We now discuss one attempt to reconcile the anomaly of
broad cochlear bandwidth apparently giving rise to acute
perception of minimal piteh changes [S-15] and critical bandwidths
as little as one-tenth of the cochlear bandwidth at the same

frequency (see Fig., 3.4).

Huggins and Licklider [H-25] postulated mechanical and
neural mechanisms for supplementing the mechanical "frequency"
resolution of the basilar membrane. The several mechanical
hypotheses mentioned show that mechanical processes interposed
between the motion of the basilar membrane and the excitation of the
auditory nerve could produce a resolution sharpening effect;

conversely, or in addition, various neural sharpening mechanisms
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were proposed. In discussing the possible models for neural
sharpening, Huggins and Licklider emphasized that

one of the basic facts of neurophysiology is that the nervous
system works despite a considerable amount of disarrangement
of detail . . . Nevertheless it is important to keep in
mind that a statistical interpretation of details is required.
Thus, the hypothesis that the nervous system computes an
exact derivative, as by a digital process, is hardly to be
taken seriously. But the hypothesis that the nervous system
performs, in its statistical and analogical way, an operation
that may roughly be described as differentiation, and one
that we may represent by differentiation in a mathematical
model, seems to account economically for a considerable

range of facts.

In an analogical sense, we might reasonably justify--in the
light of''a considerable range of facts''-—-the performance of the
combined ear-brain system (the human auditory system) as a form
of "auditory spectrum analyzer.'" However, again quoting Huggins
and Licklider: 'The principle of diversity [i.e. that the peripheral
auditory processes may present a number of "transforms" to the
central nervous system, which may use one or all of them] suggests
that a simple description of the auditory process may not be

possible because the process may not be simple." (Italics mine.)

3.2.3 Auditory Analysis on the Time-Frequency Plane

If the human auditory system can be considered to effect
a form of spectrum analysis, then using the principles reviewed in
chapter 2, we should be able to quantify its action. Gabor [G-1],
for example, applied the concept of information on the time-frequency
plane in an attempt to calculate the minimum area on the time-
frequency "information diagram' which could constitute a datum of
information and to test the shape dependence of this threshold
value. He analyzed the experiments of Shower and Biddulph (concerning
frequency modulated signals) [S-15], and Biirck et al (concerning

truncated sinusoids) [B-23]}, and concluded that below 1 kHz, the
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performance figure of the auditory system is such that only SOZyof
the available information is rejected. This discrimination is the
maximum for an instrument, like the ear, which is effectively phase
insensitive. At higher frequencies the efficiency is much less.

In addition, he argued, the auditory system appears to have a
variable time constant adjustable 'at least between 20 and 250

milliseconds."

Finally, in order to explain the facility of the auditory
system for accurately defining the relative pitch of a prolonged
sinusoid (e.g. see [F-8, pp. 211-213]), Gabor stated that it is
necessary to assume a second mechanism (besides the mechanical
"analyzer'" constituted by the basilar membrane) ''which after about
10 milliseconds detaches itself from the mechanical resonator
curve and locates the centre of the resonance region with a pre-
cision increasing with the duration of the stimulus.'" Cherry
emphasized [C-7, p. 157] that if the action of ;he auditory system
is to be modelled as a form of spectrum analysis, then the para-
meters of the analyzer (bandwidths, for example) would be expected

to be variable, rather than fixed.

To conclude this section we ask the following question:
"Is it possible that the inner ear, rather than the auditbry system,
effects a form of spectrum analysis?'" Huxley recently pointed out
[H-27] that when certain physical features of the cochlea are taken
into account it becomes theoretically possible for a truly resonant
oscillation, the position of which shifts with frequency, to occur
in the cochlea. He showed that by taking into account both the
spiral shape of the basilar membrane (hitherto ignored in math-
ematical models) and the prestressed condition of the bony struc-
ture which supports the membrane, it is possible to postulate a
realistic model which incorporates a truly resonant mode of

oscillation rather than the travelling wave solution formulated
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by Békésy to explain his observations. Huxley states that Békésy,
by opening the cochlea and using an artificial stapes, may have
altered the mechanical conditions sufficiently to convert a
resonant mode which had existed during life into the travelling

wave observed.

3.3 Speech Production

Speech is the product of a highly restricted mechanism--
the human vocal system——which'can be modelled as a linear, time
varying acoustic system [F-2},[F-8],[F-9],[s-21]. Since the
attributes of the vocal apparatus determine the character of its
output, we begin with a short description of the system emphasizing
properties responsible for the distinctive characteristics of the

acoustic speech signal.

Some speech sounds (vowels, for example) are characterized
by spectrally prominent features which are relatively speaker in-
variant. Other sounds, some consonants, for instance, are spectrally
uninformative and may be perceptually unambiguous only in context.
In section 3.4, therefore, we discuss the spectral characteristics
of speech sounds, describe some methods of parameter measurement
and classification, and evaluate the objective and subjective
information conveyed by static and dynamic measures of spectral
features. Sections 3.5 and 3.6, respectively, are reserved for a
description of the statistical properties of speech waveform
amplitudes and a discussion of alternate modes of speech perception

and classification.

3.3.1 The Source

A basic outline of the speech production system is given

in Fig. 3.5.
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Fig. 3.5. The Human Articulatory System (From [F-81)

The source excitation for voiced sounds (e.g. vowels) is
the volume velocity output of the vibrating vocal cords, or folds.
Miller suggested [M-11] that, based on his experimental observations,
the most significant fact concerning the spectral structure of the
glottal waveform is that "uniform harmonic distribution . . . is a
rarity." However, the time variation of the glottal aperature
area is most aptly described as a quasi-periodic'triangular' wave.
The fairly constant pressure supplied to the glottis by the lungs
gives rise to a volume velocity wave which duplicates in form the
area wave and hence, due to the spectral qualities of triangular

waveforms, has a spectral envelope falling in amplitude as 1/£2.

The quasi-periodic nature of vowel acoustic waveforms
results from exciting a linear system, the vocal tract, with quasi-
periodic waves. The system output can therefore be calculated
using time domain convolution. Since time domain convolution

corresponds to frequency domain complex multiplication, the
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downward sloping (with increasing frequency) envelope characteristic
of most vowel spectra directly reflects the nature of the glottal

wave spectrum,

Two modes of glottal waveform time behaviour are observed:
As the period of the waveform (pitch period) is varied, the wave-
shape over the éycle may simply be uniformly stretched or the basic
triangular pulse duration may be invariant with an increase in
interval between pulsé occurence. In the former case the spectral
line components retain the same amplitude but their separation
changes; in the latter case the envelope of thé spectrum of the
basic triangular pulse is sampled at different points. Therefore,
as well as attenuating the vocal tract transfer function with
increasing frequency, the time characteristics of the glottal
waveform effectively specify the discrete frequencies at which the
continuous tract frequency transfer function is sampled to give the

line spectrum characteristic of a voiced sound [M-11].

Excitation for umvoiced sounds occurs not at the glottis
but between glottis and lips [F-8, pp. 47-51] and is created by
forcing air through a narrow constriction or across a barrier.
The resultant turbulent airflow is characterized by a random
pressure distribution which directly contrasts with the quasi-
periqdic, deterministic nature of voiced sounds. Stop consonants
result from pressure buildup and rapid release at a constriction

(e.g. teeth, lips) within the system.

3.3.2 The System

In 1928 Russell [R-17] accepted Alexander Graham Bell's
suggestion (1907) that "The quality or 'timbre' of the human voice
. . . is due in a very minor degree to the vocal cords and in a
much greater degree to the shape of the passages through which the

vibrating column of air is passed." Thirty years later Fant [F-2]
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reinforced the overall concept of the vocal tract system as a
filter with his theoretical studies and practical confirmation
(using X~-ray studies of Russian articulation) of the nature of the

vocal tract.

The human male vocal tract (Fig. 3.5) is about 17 cm.
long and has its cross section varied in area by the movement of
lips, jaw, tongue and velum--a small flap which connects the
nasal side tract to the main tract. The frequency response or
transfer function of the vocal tract is dominated by three or more
marked resonances which are manifested as formants, or peaks, in
the spectrum of voiced sounds. Finally, the radiation impedance
which terminates the vocal tract contributes a radiation resistance

directly proportional to frequency [F-8, pp. 33-34],[M-15].

3.4 Time-Frequency Characteristics of Speech Sounds

G.E. Peterson emphasized [P-10] that only a minimal amount
of the information required for the interpretation of speech is in
the signal itself and that 'the listener who is able to interpret
the speech of a particular language successfully has large quantities
of information about that language stored in his central nervous

' However, the first step in any speech processor involves
’ y

system.'
a reduction and extraction of information-bearing acoustical para-
meters from the waveform and knowledge concerning the nature of, and
bounds on, these parameters is essential to proper analysis. 1In
sections 3.4.2-3.4.8 we describe the information conveyed by the
short~term amplitude spectrum of‘speech sounds. We begin by

describing the process of short-term spectral analysis.

3.4.1 Short-term Spectral Analysis

The generalized short-term amplitude spectrum is defined

as [G-5, p. 90],[F-8, p. 121] the amplitude spectrum of the Fourier
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transform of a signal weighted so as to eliminate future values of
the signal and progressively attenuate past values.
That is, S(t,£.) |Fy {s(t-y) - h(y)}lf=fo (3-1a)

| J s(t-y) + h(y) - e32TEo¥gy|
0 (3-1b)

where w, = 21Tfo and h(t) = 0 for t <0 (Fig. 3.6).

Temporal window

Fig., 3.6 'Time limiting by weighting with finite impulse response'

Expanding (3-1b),

S(t,fo) = Is(t)*h(t)cosanot + 3 s(t)*h(t)sinanot[
= 7M@) [0 + 5 B
where hl(t) = h(t)coswaot > Hl(fj
and h2(t) = h(t)sinwaot > Hz(f) .

Hl(f) and Hz(f) can be interpreted as the frequency characteristics
of phase-complementary bandpass filters centered at fo [G-5, p. 92],
[F-8, p. 123]. (See Fig. 3.7) S(t,fo) can be regarded as the
detected temporal response of Hl(f) and Hz(f), found by taking the
square root of the sum of the squared responses of the filters. 1In
practice, for economy, S(t,fo) is approximated by detecting the
temporal envelope response of a bandPass filter having a frequency

characteristic identical to Hl(f).
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Goldstein noted [G-5, p. 93] that unless the relative band-

width of the bandpass filter Hl(f) is very small, the temporal
envelope response of the filter is not identically equal to s(t,f)
as defined above. The temporal envelope response of hl(t) to a
signal s(t) is
E(c,£) = |[FHs@®) (B () + 3 B,
where jH (£) = sgn(f)Hl(f).
Hl(f)

A

jH (f)

T/\ jH5(E) = sgn[£]-H, (£)
> £ St
~\\\\\‘_////’{ Positive

Frequengies

Hy(£) + 1 B,(£) Hy(£) + 3 Hy(£)

- :

l ]
a) Fourier Complement Filters b) Hilbert Complement Filters

Fig. 3.7 'Fourier and Hilbert Complement Filters' (From [G-5]).
1f jH3(f) = sgn(f)-Hl(f) (Fig. 3.7), then h3(t) ‘is equal to:-
hl(t)*l/ﬂt and hence time-unlimited. Therefore h3(t) cannot. be
the impulse response of a realizeable filter [G~5, p. 95]. However,

for a narrow band Hl(f), the short-term amplitude spectrum S(t,fo)

closely approximates the temporal envelope response of a bandpass
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Hence the
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referred to the first formant of /2/, for 33 men speaking the

common English vowels in a /h-d/ enviromment [P-11].

Fig. 3.8b
. 0
English Vowels -
i
3000
i)Formant freq . E fio B 159 [ens @ crs o crs dol leps a0
and Amplitudes re g"": 229 7 za19 -22] §50 2 2440 28] 12410 -34 R MEA ]
a - 1990 -23]
Fl1 of /D/. {.,.“‘j —q B [nse A
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.,.“ IR o o |wo o3| Port) [ “w -
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eve it bet at / up bird/ father all foot boo
Tongue Hump Position . . FRONT CENTRAL BACK
Degree of Constrict.. HIGH MED LOW MED HIGH LOW MED HIGH

Plots of Fl vs F2 for different vowels as spoken by one

person reveal a characteristic closed loop on the F plane; in

172
addition the areas occupied on the Fl—F2 plane by different vowels
uttered by various speakers are gemnerally non-overlapping [P-16,
Fig. 5], [P-11, Fig. 8]. These graphic phenomena suggested to some
researchers that articulatory interpretations might be accorded to
the frequency locations of the first three formants. In fact,
Delattre showed [D-7] that degree of maximum comstriction in the
vocal tract and position of the tongue hump possess striking
formant position correlates. For a given tongue hump position,
decreasing the degree of constriction raises the first formant
position; for a given degree of constriction, the further back

the tongue hump the lower the frequency of the second formant
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(see Fig. 3.8b). Other relationships were noted and later quantita-

tively analyzed by Fant [F-2].

3.4.3 The Information Conveyed by Vowel Spectra

Speech sounds convey linguistic informatidn——needed for
word identification purposes——as well as social-linguistic and
personal information [L-2]. The apparent objective vowel classi-
fication afforded by formant location and magnitude parameters
[P-11] has suggested that these parameters alone might be suffi-
cient for conveying the linguistic information of vowels. However
it has been debated whether static formant information alone is
sufficient to convey any linguistic information. Moreover, if
formant parameters are used as perceptual cues, are these cues
contained in the absolute values of certain formant properties
(especially frequencies) or in the relationship between these
properties and the values for other vowels pronounced by the same
speaker? Finally, the relative importance of each of the first
three formants as carriers of information has been questioned.

We attempt to illuminate these problems in the following subsectiomns:

i) The Intelligibility of Sustained Vowels

_ A, Jones remarked [J-1] that "if any chosen vowel is sung
steadily for some time, the lack of contrast soon makes the vowel
less easy to recognize . . ." Siegenthaler devised a set of
experiments [S-16] designed to test this assertion by answering
the following questions:

1. To what extent can . . . [subjects] . . . identify
vowels of English as spoken in isolation when the usual
elements of initiation and conclusion are eliminated, and
when all vowels are sustained for the same period of time?

2. Are certain sustained vowels more easily recognized than
others?

He found that experienced listeners showed an average correct
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perception of 57.67% for sustained, isolated vowels with the vowel

/i/ having the greatest intelligibility and the vowels /U/ amd /e/
being the least accurately recognized. For naive subjects the
score dropped to 47.27%. Most vowels incorrectly identified were
mistaken for vowels in close proximity, from a physiological .and
hence spectral viewpoint, to the presented vowels. The arrangement
shown in Fig. 3.8b minimizes articulatory steps between adjacent

vowels.

W. Tiffany approached the same problem from another view-
point [T-8]. He noted that vowels in connected speech vary con-
tinuously in fundamental frequency, are surrounded (and presumably
influenced) by adjacent sounds, and have varying durations. He
attempted to determine whether the specification of the physical
nature of a vowel solely in terms of its acoustic spectrum over a
few pitch periods was possible. '"To what extent,'" he asked, "are
variations inherent in the contextual speech pattern required for
a complete specification of the physical characteristics of vowel
phonemes?" Tiffany's results showed a mean rate of 71% to 77%
correct recognition for uninflected, electronically isolated short
vowel segments and a rate of 86% for short vowel segments spoken
in isolation. His findings that duration and context did influence
the recognition rate precluded any hypothesis that vowels are
physically specified solely in terms of spectra over a few pitch
periods. He also noted that some vowels are more stable than
others, and hence better understood, possibly because they represent
'limit' positions of the articulatory mechanism [P-11]. He suggested,
therefore, that '"standardization of [enunciated] phonemes is a much

more difficult task than might be supposed.™

Lehiste and Peterson, in a more recent study [L-7], showed
that sustained vowels can be recognized correctly between 90 and

100% of the time with trgining. Siegenthaler and Tiffany allowed
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no training period in their experiments; we note here, that as
mentioned in the introduction, a training period is required to

achieve maximum comprehension of clipped speech.

We conclude, that on the basis of the preceding experimental
evidence, nearly 100% recognition of sustained, uninflected vowels—-
i.e. on the basis of time-invariant spectral parameters—-is possible
with training. Ordinarily, in running speech, the availability of
other cues obviates the need for this training. Nevertheless, the
high rates obtained without any learning period whatsoever demonstrate
that the spectral parameters are doubtlessly a very important factor

in vowel perception.

ii) The Importance of Formant Structure

Ladefoged and Broadbent [L-2] attempted to discover whether,
as Joos had suggested [J-2], the information conveyed by a vowel
depends on the relationship between the formant frequencies of a
particular vowel and the formant frequencies of other vowels pro-
nounced by the same speaker rather than the absolute values of their
formant frequencies. Using synthesized sentences varying in formant
frequency ranges, followed by an unaltered reference word, they
showed that the auditory context greatly affected the identification
of the fixed word. Thus, Joos' theory was verified and the authors
concluded that "it is, therefore, only of limited service to look
for common points in the acoustic structure of equivalent vowels
spoken by different speakers." The consequences of this statement
will become evident when we discuss the use of spectrograms for
speech recognition in chapter 4. However, Haggard [H-2] cautioned
that "the hypothesis that relationships, not absolute values,
determine vowel quality . . . does not imply that vowel quality will
be unaffected by octave frequency transpositions [translations],
because human perception does not work with the mathematical

precision of a slide rule."
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Lehiste and Peterson [L-7], and Carterette [C-2], attempted
to define further the information conveyed by vowel spectra by
investigating, using lowpass and highpass filtering techniques, the
importance of individual formants in sustained vowel perception.
They concluded [L-7] that "one or more of the first 3 formants is
essential to the recognition of each vowel' and that their data
"did not support the thesis that any arbitrary portion of the

vowel spectrum is adequate for identification of all vowels."

iii) The Influence of Vowel Duration

Tiffany [T~8] also studied the relation between vowel
duration and recognition. Using vowel segments ranging from 0.08
to 8.0 seconds in length, he found that the nearer a given vowel is
to its 'matural duration' in connected speech (e.g. [Fig. 1, H-20])
the better the recognition score for that vowel. Nevertheless,
"differences in recognition attributed to duration were found to
be [statistically] significant for [only] four [of the twelve]
vowels" and the average recognition rate for uninflected vowel
segments 0.08 seconds long (<8 pitch periods) was 70% rising to

78% for a hundred-fold increase in duration.

3.4.4 Indirect Extraction of Vowel Spectral Parameters

The use of short-term Fourier analysis (or banks of band-
pass filters, [T-7]) as a starting point for estimating formant
frequencies, amplitudes and bandwidth (all system properties) is
quite common. Pinson [P-13] and Dunn [D-17], [D-18] stressed,
however, that there are effects which limit the accuracy of this

method.

First of all, little information is available about the
spectrum between the spectral lines caused by the periodic source
(sec. 3.3.1) so that spectral peak and bandwidth estimation require

interpolation. Secondly, as Miller suggested (sec. 3.3.1 and [M-11]),
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the envelope of the glottal waveform spectrum is a rapidly varying

function of frequency. If this spectrum has zeros near resonances
of the vocal tract then bandwidth estimation, in particular, is
difficult. These, and other problems-~such as deciding how to
define a measure of formant amplitude [F-3]--, have prompted

investigators to adopt other, more indirect methods of measurement.

The analysis-by-synthesis technique, for example, is an
attempt to specify parameters for a vocal tract which willlbest
synthesize a spectrum to "match" the sample spectrum [M-8], [B-2],
[P-8]. Suzuki et al.[S5-28] extracted formant frequency parameters
by calculating spectral moments. Synthesis of a waveform to fit
the sample signal has also been tried with damped sinusoids [M-3],
[P-13] and Gaussian (normal) shaped waveforms [H~22] among the
fundamental signals proposed. This type of analysis is often
Ypitch synchronous" and requires accurate extraction of pitch para-

meters, a difficult task [G-3], [H-6], [N-4], [w-4], [S-11].

Autocorrelation has also been suggested and used [F-1],
[B-241, [M-4], [S-23], [S-7], [P-6] as both a representation of the
speech sound and as a means of obtaining the power, and hence
amplitude, spectrum [L-6]. In addition, Kleinrock showed [K-8]
that the repeated autocorrelation of a signal eventually yields a
pure sine wave whose frequency corresponds to the location of the
maximum peak of the original signal spectrum. He demonstrated the

use of this method in accurate formant frequency estimation.

These indirect methods of spectral parameter estimation,
developed to overcome the deficiencies of short-term spectral
analysis, will be contrasted with methods using zero crossings in

chapter 6.
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3.4.5 Nasal Consonants

The nasal consonants /m/, /n/ and /g/ (sing) are voiced but
differ from vowels in two ways: first, the nasal side passage is
coupled to the vocal tract during production and second, the nasals
are all associated with dynamic movement of the articulatory system
[N-2], [F-18]. The former condition causes zeros in the system
transfer function at frequencies for which the transmission to the
nasal cavity is short-circuited by a zero impedance oral cavity.

The latter condition is responsible for the time variation of
nasal consonant spectra. The portion of a nasal consonant during
which the oral cavity is closed at a point is termed the nasal

"murmur' .

Fujimura found [F-18] that the nasal murmurs of /m/, /n/
and /7p/ are spectrally characterized by low (750-1250 Hz), medium
(1450-2200Hz) and high (>3000 Hz) positions of the spectral anti-
formant (zero), respectively. The cluster of the an and 3rd
(/m/), or 3rd and 4th (/n/), formants with the spectral zero
generates a flat spectral null between, roughly, 800 and 2300 Hz.
The first formant, he noted, is always low in frequency (=300 Hz)

and all formants are relatively highly damped.

Nakata [N-2] confirmed the importance of the wide band-
width of the first formant of nasals as a perceptual cue. He also
demonstrated, using a synthesizer, that the trajectory and frequency
of the second formant, often obscured by the spectral zero, is
quite informative, perceptually. Therefore, he concluded, second
formant transitions to the adjacent vowel play an important part

in human perception of nasal consonants.

3.4.6 Stop Consonants

The stop consonants, /b/,/d/,/g/,/p/,/t/,/k/, are produced

when, with the nasal cavity closed, "a rapid closure and/or opening
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is effected at some point in the oral cavity. Behind the point of
closure a pressure is built up which is suddenly released when the
closure is released." [H-4] 1f, during the closure, the vocal cords
vibrate, a voiced stop (/b/,/d/, or /g/) is produced; if not, a
voiceless stop (/p/,/t/, or /k/) results. However, Halle et al.
warned [H-4] that in English the essentiaql difference between these
two classes of stops is that the /p/,/t/,/k/ group result from a
more intense pressure buildup causing a higher intensity burst

than obtains with the other group.

Acoustically, stops involve rapid changes in the short-term
amplitude spectrum preceded or followed by a fairly long (=0.07 sgc.)
period devoid of all energy above the voicing component. When a
stop consonant is adjacent to a vowel, three cues--silence, burst,
transition or transition, burst, silence-—are present of which the
stlence is a mecessary, and--with either a transition or a burst--

a sufficient, cue for stop perception. For example, in the /k/ of
'tack'both transition and burst are present; in that of 'task' only
the burst is present; while in that of 'tact' the transition alone

is present [H-4].

Halle et al.,after investigating the spectral properties
of the stop spectral bursts, stated that the three classes of stops
(/b,p/,/d,t/,/g,k/), each associated with a different point of
articulation, have the following spectral characteristics:

/p/ and /b/, the labial stops, have a primary concentration
of energy in the low frequencies (500-1500 Hz).

/t/ and /d/, the postdental stops, have either a flat
spectrum or one in which the higher frequencies (above
4000 Hz) predominate, aside from an energy concentration
in the region of 500 Hz.

/k/ and /g/, the palatal and velar stops, show strong
concentrations of energy in intermediate frequency
regions (1.5-4,0 Khz).

Using observed spectral features only, the authors could classify

correctly and objectively 95% of their sample sounds.
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The very complex role of formant transitions and loci
(defined as a formant transition source or target frequency) as
acoustic cues in stop perception was also thoroughly investigated
by Delattre et al.[D-8], Harris et al.[H-8] and Hoffman [H-17], all
at Haskins Laboratories. Halle theorized on the nature of transi-
tions as follows [H-4]:

When a [system] resonance is changing in frequency, the
formant bandwidth increases. The more rapid the movement,
the broader the bandwidth. In the limiting case of
instantaneous movement, the bandwidth is infinite; . . .
the burst can therefore be considered as an extreme case
of transition in which changes in the short—term energy-
density spectrum are very rapid and the organization of the
energy in the frequency domain [as in vowels] is replaced
by organization in the time domain . . . . Formant
transitions might then be intermediate structures whose
assignments to the vowels or to the consonants is a
function of their bandwidth, which in turn is dependent on
their rate of change.

Summarizing, the cues for stop perception are quite
complex. However, short-term spectral structure--i.e., the burst
alone-=-is sufficient both for accurate classification, and=--as
Halle et al. found--for a high rate of recognition of /p/,/t/,/k/
in perceptual tests, with training [H-4, p. 108].

3.4.7. Fricative Consonants

The English fricative consonants, together with their
place of maximum constriction ('articulation'), are shown in

table 3.1.

Table 3.1 PFricative Consonants

Place of
Articulation Voiced Voiceless

Labio-dental /v/ vote /f/ for

Dental . . /8/ then /8/ thin
Alveolar . . /z/ zoo /s/ see

Palatal . . [}/ azure ]S/ she

Glottal . . /n/ he
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Fricative consonants are produced by a constant-pressure noise
source located in the vocal tract (sec. 3.3.2). Since the poles of
the vocal tract response are system properties and do not depend
upon the location of the excitation [H-9], [F-8, p. 63-64], the
energy density spectrum of fricatives, although continuous, may
exhibit resonance peaks resembling those of vowels of similar
articulatory configuration. In addition, spectral zeros appear at
frequencies for which the impedance, looking back from the source
towards the glottis, is infinite [H-9], [F-8, p. 64]?- Poles
(resonances) and zeros (anti-resonances) of the system may cancelj;
but the average spacing of the zeros is greater than that of the
poles and, therefore, the cancellation is not present throughout

the entire audio spectrum [H-9].

Hughes and Halle noted [H~26] that unvoiced fricatives
have little energy below 700 Hz. Conversely, above 1 KHz the
spectra of cognatel fricatives do not differ appreciably. By means
of a set of objective spectral measurements, they were able to
achieve 857 correct classification of unvoiced fricatives into
three categories, each associated with a distinct point of
articulation. 1In addition, using isolated 50 msec. portions of
/s/,/f/ and /// Hughes and Halle showed that 71% of the stimuli
could. be correctly perceptually classified with little training.
They emphasized that the perceptual errors were highly correlated
with the errors which occurred using the objective spectral methods
of classification. The physiological correlates of fricatives and
their spectra were investigated in detail by Strevens [S-27].

He showed that the bandwidth of voiceless fricatives (i.e., low,
medium, high) was correlated with the place of articulation (i.e.,

front, back, middle).

lCognates are pairs of consonants produced with the same articula-
tory configuration, but with different modes of excitation.

2y s . . .
This applies %o the series excitation model of the vocal tract
) [ 4
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Heintz and Stevens, in another study of voiceless fricatives

[H~9], demonstrated that "simplified versions of fricative consonants

generated in accordance with the theory [of pole-zero transfer func-
tions] are demonstrated to elicit responses that are in agreement
with the results of the spectral analyses [of actual fricatives]."

(Italics mine.)

Finally, the role of transitions in fricative perception
was clarified by Harris, who showed [H~7] that transitions in
fricative-vowel syllables are important for differentiating /f/ and

/8/ from their voiced cognates, /v/ and /&/.

3.4.8 Glides and Semi~vowels

Physiologically, the glides /j/ (you) and /w/ (we), and
semi-vowels /r/ (red) and /1/ (let), differ from the stops and
fricatives in the lesser degree of oral stricture present and from
the nasals in the absence of nasal coupling [0~1]. Phonetically,
only /w,j,r,1/ can constitute the third member of an initial three-
term consonant cluster—--for example, splint, skew, square. In
other consonantal clusters these consonants must occupy the
position immediately before (bread, slow) or after (melt, bird)

the vowel [0~1].

O'Connor et aql. [0-1] attempted to discover whether,
spectrally, these sounds were distinctive among phonemes. They
found, using spectrum synthesis and analysis, that the formants of
/w,j,r,1/ begin, as do those of voiced, final stops, at loci or
frequency starting points. However, they demonstrated, using
synthesized phonemes in psychoacoustic tests, that—--in contrast to
the stops-~the /w,j,r,1l/ formants must, if confusion with other
phonemes is to be eliminated, remain at the loci frequencies for
30 (/w,j/) to 50 (/r,1/) milliseconds before proceedingto the

steady-state positions in the following vowel (see also [L-8]).
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Discrimination among /w,j,r,1/ is accomplished using the transition
directions and extents of the second and third formants. The first
two formants of /r/ and /1/ have identical loci frequencies so
that a third formant is required to remove the ambiguity. In
contrast, /w/ and /j/ have different second formant loci so that
two formants suffice for unambiguous synthesis and perception.
Briefly, the low (600 Hz), medium (1200 Hz) and high (2400 Hz)
frequency of the loci for the second formant of /w/, /r,1/ and /j/,
respectively, distinguish among these sounds; the low (1500 Hz)
locus of the third formant of /r/ contrasts to the high (2900 Hz)
locus of /1/'s third formant.

3.4.9 Spectral Specification and Perception

of Speech Sounds: an Overview

In section 3.4 we have examined, briefly but in some detail,

the use of spectral features as deseriptors of speech sounds.

We have shown, using experimental evidence, that steady-
state spectral parameters are sufficient for vowel discrimination--
i.e., that sustained, uninflected isolated vowels are highly
intelligible, especially with training. Furthermore, we have seen
that perception of nasals, stops, fricatives and glides/semi—vbwels
is greatly dependant upon their frequency domain structure; manipu-
lation of certain spectral features of these sounds is directly

reflected by a change in perceived identity of the sound.

We do not underestimate the importance of speech dynamics,
especially transitions [L—l%], [S~25]. 1Indeed, as noted in 3.4.6,
certain stop consonants reqLire a minimal period of virtually zero
energy for correct perception! Neither do we fail to recognize the
importance of contextual cues, especially under non-ideal (e.g.,
noisy) conditions. OQur reference to Peterson's work (seec. 3.4,

introduction) emphasized the relevance of the linguistic store.
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What we have firmly established is that preservation of
overall spectral structure is necessary, sometimes sufficient, and

in any case desirable, for retention of high intelligibility.

3.5 The Statistical Properties of Speech Sounds

In section 3.4 we observed that certain portions of speech
waveforms, (vowels, for example) are quasi-periodic. However, in
general, extended observation of a speech signal does not permit
prediction of its future behaviour, on a long-term basis. In this
sense, speech is the result of a random or stochastic process.
Moreover, if the time during which the speech signal is observed is
not so long as to perﬁit a fundamental change in the character of
the speech source (e.g., fatigue) then stationarity (time invariance)

of the stochastic process may be assumed.

If these postulates—-set forth by Davenport [D-3]--are
accepted, and their conditions of wvalidity satisfied, then it is
possible to describe speech, on a long-term basis, as a stationary,

stochastic process [D-3; p. 4].

With these criteria in mind, Davenport made measurements
of long-term, first-order and conditional speech waveform instan-
taneous amplitude distributions. In the next two subsections we
consider briefly his findings and those of later investigations
concerned mainly with Russian speech sounds. This section provides
the necessary background material for the discussion, in chapter 5,

of certain aspects of speech clipping.

3.5.1 First—order Density Functions

The first-order probability density function fx(x) is
defined, for a stochastic process, as [D-3; p. 4]

+ 0 P{xlsx(t)sxl+Axl} /Axl . (3~2)

fX(x,t) = }1m Axl
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1f stationarity is assumed, then the definition becomes independent

of time.

Davenport measured fX(x) over extended durations of speech
(one-half minute to ten minutes) by sampling signal amplitudes
every 12 usec. He showed analytically that these measurements

would suffice to define fx(x) using the relationship
£ (x,) * = (n,/n) (3-3)
X1 Axl 1

where n = total number of samples taken and n, = the number of
samples in which the event {xl$x(t)sxl+Axl} occurs, Zf n is suf-
ficiently large and Axl is sufficiently small. In these studies,
nz2.5 x lO6 and Axl = 1/50 to 1/100 of the maximum peak-to-peak
signal amplitude. The experimentally determined density distribution
is shown in Fig. 3.9 for three different speakers, in an anechoic

chamber. o

[

w(wta)

oo

b - =2 [ 2 ve _X a¢

Figure 3.9 The first-order (normalized) probability density
- function for speech waveforms measured over long periods
(% to 10 minutes). Data for three speakers. (From [D-4].)
Note: Wl(x/o(x)) = fx(x).
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By trial and error, Davenport derived an approximate
expression for the graphical results. He hypothesized that "the
spike'" is due to both unvoiced sounds and system noise and that
the "overall exponential character'" is due to the vowels. Therefore,
the vowels were modelled as an exponential distribution occurring
0.6 of the time and the unvoiced sounds and system noise as a

Gaussian distribution occurring with probability 0.4, That is,

2
- 1 -V2x|/o1 1 -x" /209
fX(X) = 0.6[201 e + 0.4 77—?(_7—2— e | (3-4)
and, by curve fitting procedures, oy = 1.23 and 0y = 0.118.

Similar measurements on Russian speech [F-6], [R-13], [V-3] yielded

distributions quite close to those of (3-4).

A. Rimskii-Korsakov proposed [R-13] an extension of the idea
that the long-term probability density function of speech waveform
amplitudes is the sum of individual densities, each occurring for
some proportion of time. He hypothesized that, if, over a long
period of time (at least 2.5 minutes, according to Fersman [F-6] )
each different speech sound [vowel] has a Gaussian distribution

defined by a variance o,, and, if each of these sounds is present

T
for a proportion of time defined by another distribution, then the
long-term probability density function for speech waveform amplitudes

would be

o

fx(x) = J fT(x)'fG(oT) doT . (3-5)
0
2 2
where fT(x) = iOT e = /ZOT . (3-6)

a Gaussian density function with variance ¢ Furthermore, if the

2
T -
distribution of the variances, fo(OT)’ is Rayleigh, that is
2

2 o] 2/20
= . - T 0 —
fo(OT) (OT/OO Y e s Op%> 0, (3-7)
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then substitution of (3-6) into (3-5) yields

. 1 _-lxl/e _
fX(x) = 200 e o (3-8)

Equation (3-8), after substituting 01//2 for oo,is equal (except
for a multiplicative constant) to the experimentally determined
exponential distribution for vowels observed in (3-4). "In other
words,"'" he suggested, 'there are strong bases [sic] for assuming
that speech . . . signals are similar in their [long-term] sta-
tistical properties to a stationary random [Gaﬁssian] process

modulated in amplitude by other random processes [e.g., Rayleigh]."

3.5.2 Conditional Density Functions

Davenport also investigated the long-term conditional
density distribution of speech waveform amplitudes. For a
stationary stochastic process the conditional density function is

defined, using Bayes' theorem, as

By |y G230 = EyyGepmps /8, Gep)  £5(x)#0 (3-9)

P{xlsx(t)sxl+Axl;xzsx(t+r)sx2+Ax2} )
where fXY(Xl’XZ) = lim YY"
Axl+0 1 2
Ax2+0 (3-10)

Davenport showed [D-3, p. 26] that, for small Axl and sz,

leY(xllxz;T) = P(xl|x2;T)/Ax2 (3-11)
where P(xllxz;r) = P(xl,xz;r)/P(xl), P(xl)#O.
P(xl,xz;r) and P(xl) are, respectively, the numerator of (3-10)
and of (3-2). Therefore, for small Axl and sz, the conditional

R -
density function is leY(xllxz,T) = sz (nz/nl)~ , (3-12)
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+Ax1}

where n. = number of samples in which the event {xlsx(t)sxl

1
occurs and

n, = number of samples in which the events {xlsx(t)sx +Ax1}

2 1

and {x26x(t+1)sx +Ax2} occur.

2
Davenport measured the conditiomal probability P(xllxl;r)

for three different values of X% x1=-0.330, -0.650, and -~1.30,

where o is the rms speech waveform amplitude. These experimental

probability distributions are -shown in Fig. 3.10. Note that, in

1

Halen

Fig. 3.10 The conditional probability
P(xllx :sT). For three different values

of X Single speaker in anechoic chamber.
{From~ [D-5].)

Fig. 3.10, a peak occurs in the distribution for t= a pitch period,

and that the peak height is proportional to le . This peak reflects
the quasi-periodic nature of the voiced sounds which account for
most of the higher amplitude excursions in speech waveforms. Daven-
XlY(XlIX;T) for X, = -0.650 as a function of x
for several values of 1. The results of these measurements are

port also measured £

shown in Fig. 3.11; note the change of vertical scale among the

diagrams.
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Fig. 3.11 The conditional probability distribution le (x |x;T).
Measured data for six different values of T for a single'Spedker
in an anechoic chamber. (From [D-5].) Note: wl(x1/o|x/o,r)=fX|Y(xl|x;T).

Davenport showed analytically that

fle(xl|x;T) > £ .(x) as T > (3-13)

and leY(xl|x;r) > 6(x—x1) as T+ 0. (3-14)

Equation (3-13) obtains because, as T increases, the amplitudes of

the two points on the speech waveform tend to become statistically
independent. Note that, in Fig. 3.11, the locus of the intersection
of the line x/o(x) = xl/o(x) with fx|Y(xl|x;T) as a function of T
is——except for the proportionality constant l/sz—-equal to P(xl|x1;r),

Fig. 3.10.

|
3.5.3 . Joint Probability Density Functions

A. Rimskii-Korsakov, in conjunction with Lui Yung-Ts'un,
experimentally determined [R-13] the long-term joint probability
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density function for speech waveform amplitudes, i.e.,
1
fXY(xl,xz;T) . (3-15)
Using the same criteria as Davenport used to derive (3-14)--that
of independence of waveform amplitudes for large T —— Rimskii-
Korsakov argued that
fXY(xl,xz;T) = fX( x(t) ) fY( x(t+t) ) (3-16)
for large 1. Therefore, using (3-4), for 1 large,
L DR uluc /o,
%1

the product of two exponential distributions. Constant density

£y Uy 57) = (3-17)

contours of this function occur for |u|+|uT[ = a constant; l.e.,
squares with vertices on the u and u_ axes. Fig. 3.12, from [R-13],
shows that for 1>30 milliseconds, the distribution is close to that
predicted. The sharper corners of the experimeﬁtal distribution
result from the Gaussian component of (3-4) predominating at small
signal amplitudes. Rimskii-Korsakov showed explicitly that the
elliptical character of the equal density contours for small values
of 1T can be explained "if we assume that the signal once again can
be considered as a complex random process, randomly modulated in

amplitude.'" [R-13]

e T e e Sl
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) N5 NNIZ 77 SN
DUBINNNZ ZPISSN7
AN L~ NV 4
u / u / ¥
d V

Fig. 3.12 Constant joint probability density contours, experi-
mentally determined for varying 1, for Russian speech. (From [R-13].)
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3.5.4 Summary

The agreement between Rimskii-Korsakov's experimental
results and theoretical predictions for large t tends to confirm
what Davenport emphasized: that on a long-term basis speech can
be considered to be a stationary stochastic process only in the
sense that prediction of future speech sounds is not possible and
that the characteristics of the source are "invariant" if the
long-term period is short enough so that fatigue etc. does not

occur.

We shall see (in see. 5.3) that Davenport's models have
often been misinterpreted and misused in an attempt to apply the
powerful tools of stochastic signal theory to the analysis of
speech signals which exhibit formant structure. As we emphasized
in sec. 3.4, vowels——over the analysis period necessary to reveal
formant structure--are not stochastic processes but quasi-

periodic waveforms.



4 AUTOMATIC SPEECH RECOGNITION

What is the motivation behind attempts to realize automatic
speech recognition machines? What is the value of such automata?
What is their function? Are such machines simply an attempt to
duplicate the human facility of speech perception? Motivation, value,
function and method are important quantities to be considered in

respect to automatic speech recognition.

This chapter, therefore, is concerned mainly with the
philosophy of automatic speech recognition. Note that we do not
propose to generate a model for a general purpose speech recognition
system of the type described in some of our references. Instead,
we wish to outline some of the conceptually important ideas which
provide the foundation upon which such systems are constructed.

The purpose of this chapter, then, is to establish a framework for
the speech recognition experiments presented in chapter 7 and a
perspective concerning the role of signal processing in automatic

speech recognition.

4.1 Whither Speech Recognition?

J.R. Pierce, in a recent letter [X-2, October 1969] asked,
"Whither speech recognition?'" He implied that it is "not clear"
that speech is desireable mode for man-machine communication. '"In
fact," he emphasized, '"we do very well with keyboards, cards,
tapes and cathode-ray tubes." After presenting some indication of

94
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the extreme difficulties associated with automatic speech recognition,

Pierce noted that an undeniable justification for speech recognition
research is "that through such work we [can] learn something about
speech." He observed that this will be the case only if the
"learning" is made an immediate goal rather than one of a number
of means to a more important end. More often than not, he pointed
out, the i1nvestigation of the nature of speech becomes subservient
to "rapture for computers and for unproven schemes . . . for
recognition." D.B. Fry expressed the same sentiment when he
stated [F-16] that "It is disquieting to note fhe number of people
in various parts of the world who have embarked upon the task of
devising a speech recognizer without having learned anything at

alt . . . "

Thus, although the immediate value of a speech recognition
machine, per se, is questionable, the knowledge gained in the
investigations which should provide the prelude to, and basis of,
such ventures is invaluable. Unfortunately, the increase in
fundamentai knowledge which can be attributed to reported attempts
at automatic speech recognition is small; furthermore, these schemes
have been--until very recently--comparatively fruitless. "Why have
two or more decades of intensive research concerning automatic
speech recognition been rewarded with such apparent lack of success?"

[Hill; H-12] We shall attempt to provide some answers in the next

section,
4,2 The Philosophy of Automatic Speech Recognition
4,2.1 Function

In 1958 Fry and Denes described [F-17] the function of a
mechanical speech recognizer as ''recognition of linguistic elements
on the basis of the acoustic input and the re~encoding of this

sequence of elements in the form of a letter sequence." In essence,
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the recognition automaton serves to replace the human subject as a
transcription device. The availability of the phonemic string in
discrete, coded form is therefore inherent in the concept of a
phonetic typewriter. 1t 1s important to note that in 1958 the band-
width saving effected by a phonemlic encoder was considered as
important, perhaps, as the recognition aspect itself [F-17]. The
string of phonetic symbols could be transmitted over a narrow band-
width channel and a speech signal synthesized using a volce encoder,

or "vocoder" [5-6].

4.2.2 Speech Specification via Articulatory Parameters

The modelling of the human auditory system as a form of
spectrum analysis--and the success of short-term spectral analysis
in revealing certain physically meaningful features in speech
sounds——has prompted many researchers to adopt spectral analysis as
a first step in the recognition process (sec. 4.3). Nevertheless,
as early as 1950, Huggins proposed [H-23] that the auditory mechanism
may effectively analyze nmot the acoustic waveform but the system
[vocal tract] transfer function. "As far as the response of the
basilar membrane . . . is concerned, the mouth and ear may be
combined into a single linear system. In effect, the speaker’s
mouth is part of the listener's ear.'" [H-23] This idea, that a
human.perceives sounds (at one stage) by ''reference'" to the vocal
tract configuration which produced the sounds, was formalized in
1960 as the motor theory of perception. N. Lindgren summarized
the essence of this theory as follows [L-18], [L-19]: '"Because
perception seems to follow articulation rather than sound, the
speculation arose that the relation between phoneme and articulation
might be more nearly one-to-one than the relation between phoneme

and acoustic unit."
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4.2,3 Analysis, or Analysis-by-Synthesis?

We recall that an alternative to speech waveform analysis
by direct extraction of spectral parameters is the synthesis of a
pole-zero system whose transfer function approximates the amplitude
spectrum of the incoming signal. (sec. 3.4.4) K. Stevens proposed
a model for a speech recognition system which, in effect, involves
the synthesis of a spectrum to match that of a particular speech
spectrum in terms of articulatory parameters. He argued that
[5-24]" . . . the analysis thét leads to the articulatory descrip-
tion can be performed without reference to the partiéular language
or dialect of the speaker. Since the output of this analysis
stage provides, in effect, a description of vocal tract configurations
. . . results of the analysis preserve sufficient information [so]

that the original speech signal can be approximately recreated."

At a further stage in the analysis, articulatory configura-
tions are expressed in terms of phonetic symbols. A matching
process is used to select the phoneme which 'most likely' produced
the articulatory configuration which, as noted in the previous
paragraph, is determined to have produced the input speech spectrum.

Both matching processes necessarily incorporate feedback loops.

Stevens justified the choice of spectral parameters as
primary data by reaffirming the belief that "a . . . process
similar to spectrum sampling . . . exists in the auditory mechanism,"
The use of an intermediate articulatory representation reflects
the possibility that "a similar representation may likewise exist
at some stage during the . . . process of speech recognition.”
Finally, D.M. MacKay summarized the arguments for the use of
analysis-by-synthesis models in speech analysis as follows:

. . . three distinct arguments are possible for the
usefulness of 'active matching' or 'analysis-by-synthesis'
in speech perception.
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The first is that since speech is the product of a
generative process with few degrees of freedom, and the ear,
being a general purpose organ, converts it into a represen-
tation with many degrees of freedom, it would be economical
to represent speech internally by a model of the generative
process rather than the product. As it stands, however,
this argument could equally apply to the perception of
non-speech sounds with few generative degrees of freedom.

This leads to the second argument, that since speech
is something we produce, we have a suitable internal
generator ready made and can economically use it. Moreover
'delayed feedback' experiments have shown the existence of
the necessary coupling from the ear to the organizing
system for speech.

The third argument is of a different kind. In per-
ceiving speech as such we are concerned not only with the
classification of phenomena, nor even with the internal
imitation of sounds. Our object, in part at least, is to
discover what the originator is up to, as another agent
like ourselves. Here, I suggest, is the chief reason for
entertaining seriously the idea that perception of speech
(as speech) requires the running of an internal active
organizer matching that of the speaker in relevant
respects; for it is, I think, the success of this ongoing
enterprise that constitutes 'following' him. [M-1]

4.2.4 Segmentation: the Gating Problem

Speech is a continuous process. Yet the output of a speech
recognition machine must be a series of discrete symbols. Speech
is produced by a vocal track which has inertia. Thus, phonetic
transitions are generally gradual rather tham abrupt. J. Damman
noted that [D-2] "one of the fundamental contrasts between the
phonemic sequence and its physical manifestation is that, while the
former is discrete, the latter is quasi continuous." In continuous
speech, furthermore, the target configuration representing a
certain phoneme is barely reached before motion towards the next is
initiated; hence a given configuration may be the result of a
motivation to produce more than one phoneme [H-3] and it may be

impossible to establish a one-to-one correspondence between an
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acoustic utterance and a phoneme. ©P. Denes emphasized that
[D-10; 1963]

the basic premise of . . . automatic speech recognition

. +. . has always been that a one-to-one relationship

exists between the acoustic events and the phonemes , . . .
there was a deep seated belief that if only the right

way of examining the acoustic signal was found, then the
much sought-after one-to-one relationship would come to
light. Only more recently has there been a wider
acceptance of the view that these one-to-one relations

do not exist at all . . ."

Indeed, experiments have shown that human recognition of phonemes
may be dependant upon cues derived from several acoustic segments

[F-17].

Segmentation--and the related problem of time scaling and
normalization due to variability of speech rate [B-10]-~is a major
hindrance to successful automatic speech recognition. But, assuming
that segmentation is somehow possible, the choice of acoustic unit
(i.e. phoneme, word) presents a series of formldable, interrelated
decisions [S-14]. For example, phonemes may not be combined in
any order to form syllables [D-19]., Therefore the longer linguistic
units (e.g. words) incorporate linguistic constraints which should
make identification easier. Yet recognition presumably depends on
matching a pattern defived from the incoming acoustic unif with one
of a set of reference patterns; if so, the number of word patterns
that would requlire storage seems prohibative. And even the largest
practical store would not prevent forced, erroneous decisions on
unknown words. Phonemes, however, would presumably form a compact,

inclusive set [F-16].

4.3 Automatic Speech Recognition: An Overview

We discussed--in section 4.2--some concepts directly
relevant to the implementation of automatic speech recognition

machines. Specifically, we dealt with some aspects of speech
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production and perception which, to many researchers, seem desirable

to imitate in automatic speech recognition machines.

The extraction of ''patterns' from source data--or para-
meterization of the signal--~is a central problem in this thesis.
In particular, we will consider the role of zero crossings as a
representation of the signal for speech recognition purposes. How-
ever, we believe that before this can be done a review of some
actual implementations of (non-zero crossing) speech recognition
machines should be presented. This review will serve a number of

purposes.

First, most of the schemes described parameterize the’
speech signal via a well known and physically meaningful method--—
the features revealed in a short—term speech spectrogram. For this
reason, the nature and purpose of processing applied subsequent to
the initial parameterization, which we will define as pre-processing,
should be reasonably clear. In contrast, the nature of the estimate
of the source afforded by zero crossings is, at this point, some-
what obscure. This subject will be discussed in detail, and

clarified, in chapter 6.

Secondly, the review will be logically organized in that
we will describe, in turn, attempts at vowel, word and continuous
speech recognition. In this manner the difficulties and limitations
associated with the recdgnition of each speech unit should become
apparent. Similarly, the complexity of the system associated with
each mode should become clear. The brief description of the system
used in each case should, we hope, provide some idea of the actual

processes which may constitute a speech recognition machine.

Finally, we wish to demonstrate a key concept in automatic
speech recognition. Hill argued that the lack of success in

machine recognition of speech "is not due to a lack of means of
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analysis for the acoustic signal." [H-12] "What is difficult,' he
claimed, "is telling the machine what to do with the results of the

analysis."

We contend that, as these examples will demonstrate,

the recognition phase~~telling the machine what to do with the
results of the analysis—-may fail not through lack of technique but
because the signal parameterization does not provide a sufficient
basis for signal classification. Note that we do not claim that
correct signal parameterization is the key to successful automatic
speech recognition. However, correct parameterization is vital in
the following sense: Mechanical speech recognition can be divided
into three phases--measurement (or parameterization), transformation
of measurements or parameters, and decision making (or recognition).
The decision is made on the basis of information extracted from the
signal via measurement or parameterization and presented to the
decision functionl through the transformation. We shall see that
information is often lost or obscured when the parameterization is
neglected in favour of premature excursion into the recognition

stage without sufficient attention being given to transformations.

4.3.1 Vowel Recognition

J.W. Forgie and C.D. Forgie based their recognition system
upon !'the interpretation of the two-dimensional patterns of amplitude
and frequency which exist during steady state portioms of . . .
vowels."[F~11] The envelope detected outputs of a bank of 35
contiguous bandpass filters covering the 115-10,000 Hz region were
sampled 180 times per second and quantized versions fed into a
computer. The vowels were extracted from a /b/-/t/ context; energy

considerations provided the basis for a vowel-consonant decision.

The role of decision theory in pattern recognition will be
discussed in chapter 7.
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The first operation in the detailed analysis of each
frequency sample array was to estimate, roughly, the locations of
Fl and F2; The experimenters noted that:

outstanding among the problems encountered 1n attempting

to set up a formant-tracking programme were (1) a voicing

harmonic which was high enough in frequency to be F, and
higher in amplitude than F1, (2) a low frequency F2 which
was confused with Fl because the former was higher in
amplitude than Fl, and (3) an F1-F2 combination peak which
might appear as Fl only or F2 only.

A somewhat complicated subdivision of the F plane, into rectan-

-F
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gular regions, resulted in which "as many as six vowels could have
the same Fl and F2 locations." In order to eliminate confusion

among vowels having similar F1~F2 configurations, sets of "

confusion-
elimination" operations were devised using empirically determined
thresholds based upon ratios of areas under arbitrary regions of
the spectral cross—sections. These measurements were an attempt to
more accurately determine the formant frequencies and the authors
remarked that "information about true formant locations can be
obtained more reliably from measurements of the type used here than
from measurements of peaks using a formant tracking technique."

The final technique was to locate Fl and F2 approximately, resolve
confusions associated with 9 of the 11 Fl—F2 combinations and

hence identify the unknown vowel. The overall performance of the
system for 21 subjects (11 male and 10 female) was 88Z correct
classification. Application of vowel duration information (e.g.
[H-20]) raised the average score to 93% correct. The Forgies
concluded that 'the development of the recognition process in the
form of a tree, where rough operations are followed by more
detailed ones 'tailor made' for the particular confusions which
remain, results in a comparatively efficient program since only

applicable operations need be executed inm any particular case."

A question which might have been relevant to this investi-

gation is '"Can a precise Fl—F2 mapping provide sufficient informa-
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tion for accurate vowel recognition?" In other words, the trans-
formation stage has been overlooked completely and the decision

process appears needlessly arbitrary and unjustifiably confusing.

J.D. Foulkes questioned the sufficiency of raw Fl—F2 data

for automatic classification of vowels [F-12]. He noted that Welch
and Wimpress had shown [W-5] the necessity of retaining data con-

cerning Fo’ the voicfﬁg frequency, and F the third formant

3’
frequency 1if maximum separability using objective techniques is
desired. Foulkes. therefore applied a series of transformations
to the raw data. Figure 4.1, from [F-12], shows the scatter

diagram of F. vs F2 for isolated vowels as measured by Peterson

1
and Barney [P-11]. Foulkes observed that the dotted lines in Fig. 4.1

1 J ! L '
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4 SECOND FORMANT FREQUENCY, Ty

Fig. 4.1 Plot of f1 [Fl] Vs f2 [Fz] for nine vowel types. From
[F-12], using the data obtained by Peterson and Barney [P-11].
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are members of a one parameter family of parabolas with a common
origin at Fl = 200 Hz and F, = -500 Hz. Using the coordinate

2
translation

X = F1—200 and y = F2+500

he transformed x and y into a and b, as shown in Fig. 4.2.

5.8
3 i
s.e} g U i
i
= 1 H i
5.4 1 il 1
w i
5 R 1
S.2F
w 1 O T S
B 1o i 8 .
R LI 1 O PR
1 i i
s.o} i 1 T T
i { ‘i 'R
- 3 1 “i T }‘( !i ‘ ! i 1
i, 1 ot f
uw It ] T ]t 1
4.6 - u i1 1
- 111 1 1 i 1
< u 1 ! I
e | v : g ' o3 i i i
(1] 1 1 11 | & O §
G4sp u ot ' r o 1M B L
PR P LR i L9
L u w « 1t It} if 1 1 t 1
* s b ft g T g1 teres 1 1 1 1
uw Wy ) LN e T Te
44 u L U w 1 e c tc
IR A B ¢
¢ e
»
Q
H 1 1 1 1 1 1 e 1 ! 1 1 1 i 1 H 1 1 1 1 .4 1
800 1000 1200 1400 1800 1800 2000 2200 2400 2600 2800 3000
: b

Fig. 4.2 Plot of log10 a vs b for nine vowel types. (From [F-12].)

We note that the isophonemic regions of Fig. 4.1 have become roughly

rectangular in Fig. 4.2. However, there is still overlap, especially
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of /A/ and /e /. Foulkes therefore used data concerning Fo to apply

a correction, transforming b to B.

eliminates most of the overlaps.

factor in a manner similar to that used to incorporate Fo.

Finally, F

3

The result, shown in Fig. 4.3,

data can be used as a further correctional

The

total effect of the transformations is to substitute a simple

matrix representing the boundaries in Fig. 4.3 for the extremely

large table which would be required to describe those in Fig. 4.1.

The penalty paid is the time required to effect the transformation.
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Recognition results using the transformed data were 887 correct.

This exchange of computing time for store is, Foulkes noted, the
"sole justification for the transformations . . . and the tempta-
tion . . . to speculate on the subjective significance [of the

transformed parameters] . . . is worth resisting."

We have outlined the techniques employed by Forgie and
Forgie, and by Foulkes, in order to emphasize the difference
between recognition procedures using raw data and those using
transformed data. Forgie and Forgie considered the preproéessing
to end with spectral analysis. Their classification program was
relatively complicated and the amount of data storage space
required quite large. Foulkes transformed the input data and
employed a relatively simple final classification criterion. Both
efforts yielded precisely the same average rate of correct clas-

sification.

4,.3.2 Word Recognition

H. Dudley and S. Balashek described a word recognition
machine conceived as an extension of Audrey, an early (1952)
spoken digit recognizer [D-6] which--since it used zero crossing

information--will be reviewed in chapter 6.

Dudley and Balashek initiated their analysis with a set of
10 contiguous bandpass filters [D-14]. The filter outputs were
envelope detected and the "patterns' thus generated then effectively
cross correlated with a set of stored reference patterns derived
by prior experiment. A continuous indication appeared at the
output of this ''phonetic pattern recognizer'" and indicated which
of six vowels /i,I,e,a,o,u/, a semi-vowel /r/, a nasal /n/, or two
fricatives /f,s/ was present. The next stage was a ''word pattern
recognizer". During a learning phase, the duration of each of

the ten phonetic patterns was observed as each of the ten digits
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was spoken repeatedly. A resistor matrix was constructed--taking
account of the variation in nominal duration among the spoken digits
but not the sequence of appearance of phonemes within each spoken
digit-—-such that the actual digit spoken is correctly identified
via a capacitor charging operation. Dudley noted that in actual
tests ''the operation was invariably successful [i.e. correct more
than 90% of the time] when the apparatus had been adjusted to the
speaker’s voice and he was careful to utter the digits just as he

did in setting up the memory patterns."

We wish to emphasize two points concerning the results of

this experiment:

First, in contrast to the vowel classifiers described in
the previous section, this scheme was successful only for a single
speaker—--the speaker whose voice set up the machine. It seems
probable that the explanation of this discrepancy (all schemes use
spectral data) lies in the fact that, while the Forgies concentrated
on defining differences and similarities between significant
spectral features (e.g., formants), Dudley attempted a more gener-
alized approach which seems to ignore spectral structural detail
except in a general sense. That is, the resistor matrices treat

all spectral areas with equal priority.

Secondly, the attention given to the duration information
is not justified in view of the insufficient analysis performed to

discover phoneme identity at a spectral level.

P. Denes and M., Mathews were among the first to programme
the classification phase of an automatic speech recognition machine
[D~11]. Although they were aware that '"automatic speech recogni-
tion is probably possible only by a process that makes use of
information about the structure and statistics of the language
being recognized" they felt that "by restricting the library of

words . . . to the relatively small number of 10, the acoustic
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redundancy of the speech waves will be increased to a level where
linguistic information is no longer required for successful

recognition."

The source data for thelr recognizer also consisted of the
envelope detected output of a filter bank, 17 channels in this
case. Sixty sweeps of the filter bank outputs (=.85 sec) yielded
1020 analogue samples, each subsequently quantized and represented
by a 10 bit number. Reference patterns were formed by adding
together corresponding array points (after time normalization) from
a group of utterances of the same digit and then normalizing so that
the sum of the squared point values in each reference array equals
unity. Recognition was accomplished by cross correlating input
patterns with each reference pattern. The results were quite
similar to those of schemes previously mentioned: correct
recognition (classification) of words spoken by the speaker whose
utterances were used to form the reference pattern set averaged
greater than 90% while the rate of errors increased to 33% for

other speakers.

P. Sholtz and R. Bakis dispensed with all analogue appara-
tus and inserted digitized speech directly into a computer [S-13].
However, the first computed operation was simulation of a filter
bank (40 channels) giving a spectral cross section output every
10 milliseconds. The next step, the first in the recognition
process, involved a vowel--non-vowel decislon using energy consid-
erations. Segmentation into phoneme strings was accomplished
by observing changes in the spectral cross sections. Those
segments deemed 'non-vowels' were further classified by means of
an elaborate tree structure which incorporated many of the known
time-frequency characteristics of speech sounds (chapter 3).
Vowels were similarly separated into one of 11 categories using

spectral energy measurements, time variation of spectral information
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and durational characteristics. Following word termination, the
sequence of classified segments were referenced to a "diectionary',
constructed during the learning phase, and the word identified or

rejected.

The overall performance of this system was 967% correct
recognition, 1.7% incorrect classification and 1.87% rejection.
The authors emphasized that it is difficult to draw conclusions
from these comparatively successful results but note that their
procedure seems to be '"more tolerant of interspeaker variafions

than other . . . procedures previously reported.”

A final example of spoken word recognition using spectral
primary data is the experiments of King and Tunis [K~6]. They
claimed that their work "extends the results existing in the
literature in that it deals with significantly larger sample
sizes than have commonly been used, with a limited number of
different vocabularies, and with the effect of transformations of

the primary measurement space on recognition performance."

This scheme also commenced with envelope detection of the
outputs of a set of (fifteen) contiguous bandpass filters. However,
prior to sampling by a computer, an analogue ANDing operation
sensed peaks in the spectral corss sections. The result was a
recora of the formant positions only. A separate highpass circuit
detected energy associated with unvoiced sounds. The training and
recognition algorithm used was a basic linear, adaptive decision
function; this class of recognition algorithms will be considered

in chapter 7.

King and Tunis are unusual in that they actually explicitly
presented a rationale for their methods. ''The hypothesis has been
made," they stated, 'that the spectrum analysis of a speech wave-
form provides measurements that contain, if they are not themselves,

statistically invariant measures of the spoken words." The correct
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recognition rate for each of two 15 word vocabularies was greater

than 97% for testing using the same speaker during algorithm
training and recognition phases. An attempt to recognize words
spoken by a person other than the 'trainer' resulted in a drop in
correct recognition to 557 and 85% in two separate tests. Mixed
training (samples from two speakers) raised the recognition rate

to 99%.

We now summarize the results of the experiments described:
Features extracted from short-term spectral analyses of speech
appear to be sufficient only for recognition of a limited vocabulary.
Training, or setting up of the machine, requires a vocabulary sample
drawn from more than one speaker if multiple speaker recognition
is to be successful. Recognition can be accomplished through cross-
correlation with a set of master patterns [D-14)], [D-11], decision
trees based upon known time-frequency characteristics of speech

sounds [S8-13] or via adaptive classification algorithms [K-6].

To close this section, we note that W. Hillix achieved a
high rate of spoken digit recognition using ''monacoustic measures"
of speech information. These nonacoustic measures include 1lip and
jaw movements and "wind velocity" in the vicinity of the mouth

[H-13], [H-14].

4.3,3 Automatic Recognition of Continuous Speech

At this time (1969) only one significant attempt at
continuous speech recognition has been reported in the literature.
D.R. Reddy first described one solution to the problem of achieving
primary sementation of continuous speech [R-4]. His techniques were
determined "in an ad hoc way by the visual inspection of the wave-
form." The speech waveform--sampled, quantized and inserted
directly into a computer--was divided into a succession of minimal

segments using the variation or stability of sound intensity levels,
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with zero crossing counts used as an aid in resolving ambiguities
and in error correctionz. Minimal segments of similar characteristics
were later combined to form larger segments and these, in turn,

could be classified as sustained or transitional segments.

In a later paper [R-5], Reddy reiterated the problems
encountered when a one-to-one correspondence between phonemes and
their acoustic representation is attempted. He noted that Sanskrit
grammarians often consider allophones (variant forms) of certain
phonemes to fall into differeﬁt phoneme classes. In English, for
example, /f/ and /6/ are often acoustically closer to.stops than to
fricatives. This occurs when the turbulent airflow is deemphasized.
And, as noted in section 3.4.5, except for the coupling of the
nasal passage the vocal tract configuration for nasal murmurs is
close to that of stops. It is therefore imperative, Reddy noted,
that "any grouping scheme for automatic speech recognition that is
mainly dependent on the acoustic parameters for its classification
cannot require that a given phoneme belong toone and only one
phoneme group'" and that 'the grouping should be such that the
acoustic parameters required for associating segments with a phoneme
group are few and easily obtainable.'" Reddy's scheme was to group
the sounds into four nonmutually exclusive subsets—-stoplike
sounds, fricativelike sounds, nasal-liquidlike sounds and vowellike
sounds. The actual method of classification into the subsets was
quite complicated and was based upon intensity and zero crossing
measurements. We emphasize that the criteria incorporated in the
flow graph which constitutes the classification system were ad hoc
derived from the known characteristics of speech sounds. The main
value of this phaée of Reddy's automatic recognition system is

undoubtedly in his interpretation of nonexclusive phoneme grouping.

2This phase will be elaborated upon in chapter 6.



112
Reddy's complete system for computer recognition of con-

nected speech (single speaker) was described in detail in 1967
[R-6]. He noted that "any attempt at simulating the approaches that
require the use of filters would have required excessive computer
time3" and that he therefore sought "new and different solutions to

the problems of speech processing.'" The prime objective of the

system was to obtain a phoneme string from continuous speech.

The system is an extension of the segmentation method
described in his earlier papers. Spectral analysis aids in
classifying the segments; formant amplitude and frequency are among
the spectral parameters extracted. Zero crossing information
supplemented the spectral information (sec. 6.3). Classification
within each of the four subsets (stop-, fricative-, nasal-liquid-
and vowel-like) was accomplished using a tree-~like flow net. The
criteria for branching within the nets were, as before, based
upon observations concerning the time-frequency characteristics of
speech sounds. The results of a test on 287 phonemes gave 817%

correct segmentation and classification.

Reddy's system was based on an extensive knowledge of
speech characteristics and judicious application of these properties
to the design of flow (decision) mnets. No fundamentally new methods
of speech processing were used., Nevertheless, this scheme, above
all others in the literature, seems to hold the most promise for

success in the near future.

3The fast Fourier transform algorithm (sec. 2.5 and 8.5), which
obviates this problem was published in 1965. A lag of nearly
two years in adoption of FFT techniques followed.
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4.4 Barriers to Successful Automatic Speech Recognition

We have briefly examined a number of partially successful
attempts at automatic speech recognition. Most of these systems
made use of the envelope detected output of a bank of contiguous
bandpass filters (or a variation thereof) as the source of primary
data. For narrow bandwidth filters this method of processing
approximates short-term spectral analysis (sec. 3.4.1). This
reveals features which can be interpreted in a physiologically
meaningful and conceptually attractive manner. However, except for
a single speaker, spectral features do not seem to possess sufficient
invariance to serve as a useful measure of the acoustic waveform in

automatic speech recognition machines. By useful we imply successful.

We now explore one of the major problems in this chapter:
should we expect any automatic speech recognition machine to be
successful on the basis of acoustic information alone? Fry warned
[F-16} that, "It is no use . . . looking . . . for acoustic
invariants which characterize each sound that occurs in a given
language. A language is a system of relations, at the level of
acoustic recognition as at other levels, and what characterizes a
sound depends entirely upon what other sounds it has to be

distinguished from." (Italics mine.)

4.4.1 The Contextual Problem

D.B. Fry has repeatedly emphasized the inadequacy of acoustic
information for automatic speech recognition. '"In the case of the
human listener," he explained [F-16], 'the classifying is done on
the basis of a vast store of knowledge about the language system,
and such is the degree of redundancy of natural languages that the
weight the listener attaches to the incoming acoustic information
is low compared with the weight given to the stored linguistic

information. It is only in this way that we are able to make sense
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of running speech.'" He observed that limited vocabulary speech
recognition schemes are somewhat successful only because in such a
small ensemble acoustic information may be significantly more
important than linguistic constraints. Thus, the design criteria
for a word recognition machine would certainly be a function of the

number of words in the vocabulary.

Contextual relationships——a knowledge of language statistics
in general and the sequential probabilities of phonemes in particu-
lar—-appear to be a key to the human facility of continuous speech
perception under conditions involving varying speakers and conditions.
A mechanical speech recognizer incorporating a linguistic store and
able to simulate the use of statistical information at various
levels would "undoubtedly work successfully even if its acoustic
recognition was far from perfect.'" (Fry and Denes; [F-17]) Why
then is a large portion of this thesis (chapters 6,8,%9 and 10)
devoted to the investigation and clarification of the significance
of a particular type of acoustic signal processing (zero crossing

extraction) to automatic speech recognition?

Fry and Denes answered this question by stating [F-17]:

"It is clear that a certain level of accuracy in acoustic
recognition is necessary if the use of a sequential probability
n

<8 not to lead to an increase rather than a decrease in errors . . .

(Italics mine.)

4.4.2 The Future of Automatic Speech Recognition

In a discussion of problems relating to the study of
language, N. Chomsky recalled the situation which prevailed in the
speech recognition field only a few years after the introduction
of the speech spectrogram [C-10]:

The interdisciplinary conferences on speech analysis
of the early 1950's make interesting reading today. There
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were few so benighted as to question the possibility, in
fact the immediacy, of a final solution to the problem of
converting speech into writing by available engineering
techniques . . .

. « . there is little trace today of the illusions
of the early postwar years.

Chomsky feels that as far as "automata-theoretic models" for
language use (and related problems in perception) are concerned,
there is a fundamental inadequacy in the systems of concepts and
principles that have been advocated. He cautioned that

'extrapolation' from simple descriptions of language
processes cannot approach the reality of linguistic
competance; mental structures are not simply 'more of the
same' but are qualitively different from the complex
networks and structures that can be developed by elabora-
tion of the concepts that seemed so promising to so many
scientists just a few years ago. What is imvolved is not

a matter of degree of complexity but rather of quality of

complexity. Correspondingly, there is no reason to

expect that the available technology can provide signifi-
cant insight or understanding or useful achievements; it
has noticeably failed to do so . . . (Italics mine.)

If Chomsky is correct, then the possibility of immediate,
large-scale success in automatic speech recognition using conven-
tional analysis techniques seems remote indeed. Nevertheless, the
task of knowledgeably exploiting the only easily accessible
evidence of human speech communication-—the acoustic waveform—-
requires that the significance of any measure of information
extracted from the waveform be fully understood., Therefore, the
remainder of this thesis--with the exception of two experiments in
automatic speech recognition described in chapter 7--is concerned
with exploring and clarifying the role of zero crossings in speech

recognition and processing,



5 CLIPPED SPEECH I: PSYCHOACOUSTIC PHENOMENA

The central theme of this thesis is ''the role of zero
crossings in speech recognition and processing." ''Recognition' is
intended to encompass both human recognition--perception--and
machine recognition--classification--; '"'processing' signifies those
operations on the speech signal which precede the "recognition' phase.
In order to provide a foundation for these investigations, we have
devoted the introductory portion of this thesis to a review of the
more fundamental concepts of signal theory (chapter 2), a detailed
description of some aspects of the nature of speech and hearing
(chapter 3) and an outline of ideas, problems and experimentation

in automatic speech recognition (chapter 4).

We now propose to establish the link between zero crossings
and perception-classification which provides the basis for the

direction and parallel structure of this and the next chapter.

A rectangular waveform which switches polarity at each zero
crossing (instant of zero pressure) of a speech waveform is
intelligible. In this chapter we describe in detail the key
experiments which established this result and delineate certain

"

phenomena associated with the intelligibility of '"clipped speech'.
We then review some attempts—-using conventional signal theoretic
ideas~~to account for these phenomena. Zero crossings per Se can
be, and have been, considered as informational attributes of signals.

116



117
In chapter 6, after a brief discussion of the zero crossings of
random processes, we review some of the key papers concerned with
the value, nature and use of zero crossings in speech processing.
Then, after establishing the basic characteristics of a zero-based
signal model in chapter 8, we will apply this model to speech
clipping phenomena (chapter 9) and the use of zero crossings as

waveform -descriptors (chapter 10).

5.1 Experiments Concerning the Intelligibility of Clipped Speech

We have seen that certain prominent spectral features (e.g.,
formants) appear to contribute to the intelligibility of speech in
the following sense: manipulation of these features causes a
change in the perceived identity of a speech sound. Shortly after
the introduction of the speech spectrograph as a tool for speech
analysis, J.C.R. Licklider, D. Bindra and I. Pollack1 asked [L-13]
the following questions: '"Upon what characteristics of the speech-
wave does intelligibility depend? Are certain characteristics of
the speech-wave of paramount importance for intelligibility? Are
other characteristics perhaps irrelevant insofar as intelligibility
is concerned?" Licklider proposed to operate upon the speech wave-
form in an effort to eliminate irrelevant characteristics and thus
reveal essential features. Peak clipping was chosen as the primary

operator.

Mathematically, an infinitely clipped signal C s(t) can be
defined in terms of the original signal s(t) by the following

relationship:

1For convenience, we shall refer to Licklider as the investigator
in describing the papers by Licklider, Bindra and Pollack [L-13],
Licklider and Pollack [L-14] and Licklider alone [L-15].
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C s(t) = sgn [s(t)], (5-1)
1, x>0
where sgn{x]=< 0, x=0
"'1, x<0 .

That is, a rectangular waveform of absolute value unity and having
the same polarity as the original signal is <nterpolated through

the zero crossings of the original signal. Practically, we speak

of degrees of peak clipping. The term infinitely clipped is applied
to a signal which has undergone some minimum degree of peak
clipping.2 The degree of peak clipping, or clipping level in

decibels, may be defined as

= 20 loglo(Plle) (5-2)
where P1 = peak value of original waveform
and P, = level of original waveform at which

clipping takes place.

Progressive peak clipping of a signal is illustrated in Fig. 5.1.

!
° [

Fig. 5.1 Progressive peak clipping: A) original signal
B,C) clipping at progressively lower signal levels.
(From [L-13]).

21n practice, the highly peak clipped waveform is transformed into
a truly rectangular waveform by a non-linear circuit (e.g., Schmidt
trigger).
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5.1.1 Licklider's Experimental Observations

Licklider's first experiments were designed to study the
intelligibility of discrete words after the application of progressive
peak clipping. For peak clipping less than 20 db, the articulation
scores—~the percentage of discrete words correctly identified--were
greater than 967%. As the clipping level was increased, the articu-
lation scores decreased; for clipping levels greater than 60 db
([Pl/PZ] = 1000), the 'word articulation score' vs 'peak clipping
level' curve approached a minimum or flattened out (Ll)3. This
minimum varied from 507 for more difficult words to about 75%
maximum, Licklider noted that 50% word articulation corresponded
to about 90% sentence intelligibility for his tests, and that under
these conditions, conversations could be carried on with little

difficulty [L-13].

In order to prevent interword system noise from appearing
at the output as clipped noise, a 25 KHz bias signal was added to
the speech signal prior to clipping. The strength of this bias was
such that clipped circuit noise was replaced by a 25 KHz inaudible

square wave, and the speech signal was, ostensibly, unaffected.

Further tests involved the addition of white noise to the
clipped speech signal. For comparison purposes, the original and
clippéd signals were made equal in peak amplitude. Figure 5.2
shows per cent articulation scores for various speech—to-noise
ratios. It is apparent from these results that for low speech-to-
noise ratios the clipped speech is more intelligible than the

original speech (L2).

3For future reference, certain observations associated with observed
phenomena will be labelled. The letter identifies the experimenter.
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Fig. 5.2 Effect of added white noise upon the intelligibility
of speech and clipped speech. (From [L-13].)
Licklider also noted that the frequency response of his
record-playback system was uniform within *5 db from 250 to 7000 Hz
and that "severe peak clipping appears to be less deleterious if

the low frequency components are supressed . . .'" before clipping (L3).

During the conduct of these tests, over a period of 30 days,
Licklider observed that the percent word articulation scores for
both unclipped and clipped speech gradually increased (L4). The
values for percent word articulation in Fig. 5.2 were the maximum
noted. Although some of the improvement was attributed to the
finite set of recorded words repeatedly used, introduction of new
word sets showed that about 66% of the 'learning' (roughly 20
percentage points on the articulation scale) was indeed an increased
ability to understand clipped speech. Licklider's analysis of the
results also showed that the deleterious effects of clipping were
least for more experienced subjects. In addition, the learning
factor for the original speech plus noise was only apparent for

intermediate noise levels.
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In a further series of experiments [L-14], Licklider
introduced "frequency-selective circuits" into the speech channel
at various points. Specifically, a differentiator or integrator
could be used to operate upon the original or clipped waveform.
The differentiator introduced a 6 db per octave positive spectral
tilt to frequencies between 1 and 16 KHz and the integrator a 6 db
per octave negative spectral tilt to frequencies above 16 Hz. The
following arrangements were used in word articulation tests:

1) No distortion--original speech

2) Differentiation only

3) Integration only

4) Differentiation + clipping

5) Differentiation + clipping + integration
6) Clipping + integration

7) Clipping

8) Clipping + differentiation

9) Integration + clipping

10) Integration + clipping + differentiation

A total of 250 word articulation tests were made: 25 with each of

the 10 arrangements, 10 with each of 5 scramblings of 5 phonetically

balanced (PB) word lists. The results of these experiments are
summarized in Fig. 5.3 (a repeat of Fig. 1.1) and can be divided

into four operational groups:
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Fig. 5.3 The effects of various combinations of differentiation,

-integration and infinite clipping upon word articulation.

The

heights of the column diagram indicate the overall average for

each of the ten arrangements. (From [L-14].)
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Speech processed using the arrangements of the first group,

(1,2,3)--all of which do not involve clipping--had virtually 100%
intelligibility. However, Licklider emphasized that ''this result
concerning their intelligibility is in marked contrast to the
observations concerning their naturalness and timbre. Differentia-
tion, because it greatly emphasizes the fricative consonants and
weakens the low pitched vowels makes the speech sound overly crisp.
Integration emphasizes the low pitched vowels, weakens the consonants,

and makes the speech sound muffled and 'boomy'."”

The second group of operations (4,5)--both members involving
differentiation before clipping--resulted in articulation scores
of over 90%, "even for unpractised listeners (LS);" The effect of

post-clipping integration was to improve intelligibility slightly (L6).

Group three (6,7,8) all involved clipping as the initial
distorting operation. We record Licklider's impressions of the
quantitative results shown in Fig. 5.3: '". . . it is evident that
the process that follows clipping has but little effect on intel-
ligibility (L6) and again it is true that the articulation scores
fail to reflect différences in quality and timbre that are quite
striking to the listener. The . . . integrator makes the effect of
infinite clipping sound less noticeable . . . the differentiator

made the clipped speech sound even worse . . . .' (Italics mine.)

The final group (9,10), involved pre-clipping integration
and produced such subjective distortion that it was pronounced

"incompatible with clipping." (L6)

The same learning effect observed in Licklider's first
experiments appeared here. He noted that "the skill developed by
the listeners during the tests is . . . only in part specific to
the words of the test vocabulary. It is to a considerable extent

a general skill, an ability to identify words correctly despite
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severe distortion." In discussing the value of an ultrasonic bias
in eliminating interword noise, Licklider cautioned that "if the
-intensity of the speech is not well above that of the ultrasonic
tone, there is danger that a spurious effect, a 'duty-cycle
modulation' of [the] ultrasonic rectangular waves, would make the
rectangular waves [clipped speech] more intelligible than they

would be with infinite clipping per se." (L7)

In a final set of experiments [L~15], Licklider investigated
the effects of quantizing the time scale in clipped speech. This
process allows the rectangular waveform to switch polarity only at
"predetermined instants." The following switching rules were
formulated: The output waveform (rectangular) switches polarity at
the end of a time interval if, during the interval, the input
speech waveform has--rule A--one or more zero crossings or--rule B--~
an odd number of zero crossings. Word articulation tests were carried
out using pre~clipping differentiation and post-clipping integration.

The results of the tests are shown in Fig, 5.4. Licklider noted
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Fig. 5.4 Results of articulation tests. For the two methods
of time scale quantization, average word articulation scores
are plotted against the number of thousands of quanta per
second. (From [L-15]).

that "with fewer than 2000 quanta per second, the listeners under-

stood essentially nothing. The quantized speech sounded like an
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impure tone in the case of method A or like static in the case of
method B (L8) . . . with either method vowels were the first to

become intelligible . . . .

« « » the amplitude and time quantized speech sounded worse
than the articulation scores suggest . . . and considerable training
was required before . . . the level of proficiemcy . . . [observed

was attained]."

We will now summarize Licklider's most significant
experimental observations regarding the intelligibility of clipped
speech:

L1. Progressive clipping: Increasing the clipping level

on a speech waveform results in decreased word articulation
scores. For infinite clipping (C>60 db) minimum word artic-
ulation scores of 50%, corresponding to 907 sentence
intelligibility, were observed.

L2. Addition of noise: In the presence of white noise,
clipped speech is more intelligible than the original
speech for small speech/clipped speech-to-noise ratios
(¢ < 4db).

L3. Highpass filtering: Severe (e.g., infinite) peak
clipping is less deleterious to intelligibility if the
original speech is filtered so as to remove low frequency
components.

L4. Learning: Repeated exposure to clipped speech enhances
a subject's agbility to understand it.

L5. Pre~clipping differentiation: Pre-clipping speech
differentiation results in higher word articulation scores
(> 90%), even for unpractised listeners.

L6. Post-clipping integration or differentiation: Integra-
tion of the clipped waveform has little effect on intel-
ligibility but greatly improves the quality of the signal.
Similarly, differentiation of the clipped waveform has
little effect on intelligibility but worsens the quality.

L7. Ultrasonic bias: Unless the level of an ultrasonic
bias--applied to the speech waveform before clipping--is
"small" compared to the speech signal level, the resultant
clipped speech will be more intelligible than it would

be per se.
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L8. Time quantization: For rule A or B, a quantization
interval of 0.1 millisecond or less does not impair
intelligibility of the clipped waveform but does cause
degradation in quality. Quantization intervals less

than 0.5 milliseconds results in an "impure tone'" (Rule A)
or "static" (Rule B) for speech input.

5.1.2 Licklider's Conclusions

Licklider offered explanations for some of the observed

clipped speech phenomena:

L1. Progressive clipping: Licklider stated that "instead

of asking why infinitely clipped speech is not as unintelligible as
its wave-form would suggest, it is probably better to compare an
intensity-frequency-time pattern [i.e., short-term speech spectro-
gram] of infinitely clipped speech with a corresponding pattern of
- normal speech.'" He did this and observed that "although many
details of the pattern are changed by infinite peak clipping, the
genergl . . . structure . . . is by no means rendered unrecognize-
able, ., . . only the details of the intensity-frequency-time

pattern are modified."

L3. Addition of noise: Licklider asked, '"What character-

istic of square speech gives it an advantage over normal speech at
low speech-to-noise ratios?" He quite rightly noted that clipping--~
by virtue of its rectangular interpolating waveform-~distributes the
power equally among the consonants and vowels, whereas in normal
speech the consonants are relatively weak and therefore easily
masked by noise. However, as the speech-~to-noise ratio increases,
the power advantage of clipped speech is balanced by the deleterious
effects of distortion and, since more of the weak consonants pass

the masked threshold, the ordinary speech becomes the more intelligible.

L8. Time quantization: Licklider noted that for long quanti-

zation intervals the probability that the speech waveform has at
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least one zero crossing approaches unity whereas the probability

"in the neighbour-

that it has an odd number of zero crossings is
hood of 0.5." Therefore rule A yields an impure tone (one output
polarity change per time quanta) and rule B yields a "noise"
(probability of polarity change in time quanta 0.5). The degrada-
tion in quality of time-quantized clipped speech over clipped
speech, even for small quantization intervals, was--Licklider
suggested--probably due to the fact that the reciprocal of the

time quantization interval is usually unrelated to the fundamental

frequency of voiced sounds.

In summary, Licklider suspected that the high intelligibi-
lity of clipped speech could be attributed to overall preservation
of the speech amplitude-power spectrum structure. He offered no
explanation for this preservation nor did he prove that it always
did occur. Explanations for the other phenomena (L2,L4,L5,L6,L7)

were not suggested.

5.1.3 Ahmend and Fatechand

R. Ahmend and R. Fatechand extended Licklider's experiments
by examining the intelligibility (percent articulation) of vowel
and consonant segments after differentiation or differentiation
and clipping [A-2]. We shall 1list the effects observed:

Al. Initial consonant suppression: The removal of the
initial consonant of a consonant-vowel-consonant (CVC)
word has little effect on vowel recognition for either
the normal or clipped versions.

A2, Final consonant suppression: Provided the initial
part of the vowel portion of a vowel-consonant (VC) word
is present (= 40 msec. gives 80% articulation of unclipped
VC words), the presence of the final consonant does not
materially alter the articulation of the original, or the
clipped, vowel. In all cases, the articulation of the
clipped vowels was less than that of the unclipped vowels.
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A3. Initial part of vowel suppressed: If the initial part
of a VC word is suppressed (for less than 100 msec.), there
is little impairment of the percent vowel articulation.

As the suppression time increases, anomalous effects are
noted. Both clipped and unclipped /a/ and />/ remain
highly intelligible until almost the entire vowel is
deleted. The articulation of /o/,/u/ and /i/, however,
falls rapidly even while a reasonable portion of "vowel"
remains. We note, for future .reference, that (see Fig. 3.8YH
/a/ and />/ are the only vowels having substantially less
than an entire octave between F. and F, while /u/ and /i/
have, respectively, 1% and 3 octaves bétween F. and F..
Ahmend and Fatechand concluded that, since the first

40 msec. of a VC word always provides high intelligibility
(A2) "it would seem that the ends of the vowels, as
modified by the final consonants [including transitions],
provide much poorer recognition clues than 'pure' portions
of equivalent lengths."

A4, Clipped consonants: The experimenters found that
clipped initial consonants are not only less intelligible,
but are also more susceptable to a degradation of intel-
ligibility due to duration shortening. Clipped final
consonants also appear to contain less redundant infor-
mation than their unclipped counterparts.

The experimental evidence presented by Ahmend and Fatechand
suggests, therefore, that clipping may cause both a decrease in the
intelligibility of speech sounds and a decrease in the resistance
of the speech sounds to degradation of intelligibility by alteration
of durational cues. Clipped consonants, particularly, appear to
lack some perceptual cues which, though normally of little use,
are needed for identification purposes when durational information

is destroyed.

5.1.4 Ainsworth

W. Ainsworth augmented Licklider's findings by investigating
the intelligibility of transforms of clipped speech [A-3]. These

transforms include:
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1) the clipped waveform itself

2) pulses (delta function approximations) which indicate
the occurence and direction of each zero crossing

3) pulses of the same polarity at all zero crossings

4) pulses which indicate only the zero crossings in one
direction

5)-8) same as 1)-~4) but using the zero crossings of the
differentiated waveform.

Following the convention established in section 5.1, we

can represent the signals used by Ainsworth as:

1) sl(t) = C s(t) “(5-3)

2) 5, (t) = * sI(t) = i{ga‘(t—rir(—l)i} (5-4)

3) s4(t) = *[s, () ]= i{gﬁ(t—ri)} (5-5)

and 4) s,(t) = t{Za(t-ri)} or i{Zﬁ(t-—Ti)} . (5-6)
i odd i even .

Signals 5)-8) parallel signals 1)-4) with s(t) replaced by s'(t).
Here C g(t) = sgn [s(t)] and T is the time of occurence of the

ith zero crossing. Figure 5.5 summarizes Ainsworth's results

using standard PB word lists. The signals which retain zero
crossing position and 'polarity' (i.e., signal goes from + to - or
from ~ to + at a zero crossing) information (group 2) are the

most intelligible, while the signals retaining only positional
information (group 3) are the least intelligible, Signals consisting
of pulses only at alternate zero crossings (group 4) have a percent
word articulation between that of groups 2 and 3., The transformed
signals derived from the differentiated speech are, in most cases,
more intelligible than their counterparts derived from the

original signal.
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Normal speech pE

-ve &t eve 2c

ve Bt -ve 2c

-vo 8t ~ve IC

ove Al eve zcC

-va &t &l 2¢

eve at all 2¢

-ve at eve, +ve xut -ve

evs &t sve, -ve at -ve

infinitely clipped 2peech

Difforentiated speech

~y6 at minima

evo at minima 5
i

-ve at maxima E

cve of maxima F

-ve 2t extrema

sve at extrema

-ve at min, «ve at max

eve at min, -ve at max
Ditf. end clipped speech

0z
or
09
08
004

Fig. 5.5 Average (black bars) and standard deviation

(white bars) of percent word articulation for normal

and differentiated speech, and their clipped versions.

-ve at +ve zc etc. means negative pulse at positive

going zero crossing. (From [A-3].)
Ainsworth interpreted his results by anmalytically demonstrating
that, if s(t) is a sine wave, then the clipped signal (a square
wave) contains only odd order harmonics, SZ(t) and s4(t) contain
both odd and even order harmonics, s3(t) contains only even order
harmonics and lacks a fundamental. A ranking according to number
and/or type of harmonics correlates with the intelligibility
results. For example, SZ(t) and s4(t) have the most harmonic
distortion and therefore should be least intelligible. The

applicability of this analysis to speech clipping is somewhat dubious.
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Finally, Ainsworth presented the results of experiments
showing the confusion among clipped phonemes. He did not use an
ultrasonic bias to prevent clipped noise in the silent intervals
of stop consonants and he stated that this factor could have
contributed to the observed confusion of voiced stop consonants and
semi-vowels., Generally, in these experiments, vowels were least
often confused with other sounds. However, Ainsworth further
stated that "clipped vowels heard in isolation are not at all
easy to recognize." Since the results of Ahmend and Fatechand are
not referenced, we must assume that Ainsworth was unaware of

these contrary findings (A2).

5.1.5 Thomas

I. Thomas' experiments were an investigation of the
influence of F1 and F2 on the intelligibility of clipped speech
[T-4]. He passed speech through one of two bandpass filters and
clipped the resultant signal. One filter had minimum attenuation
at the centre of the second formant frequency range for a male
adult, = 1500 Hz. Thomas noted that, for this filter, '"spectrograms
of the resulting clipped speech . . . show . . . that the first
formant and voicing bands are entirely missing." However, the
dynamic range of a spectrogram is only 12 db [P-17] and Thomas'
"second formant filter" is 12 db down at 1200 and 2000 Hz; thus
his claim that "only the second formant band and higher bands
identifiable as its harmonics are present in the [filter] output"
is highly suspect. Similarly, the observation that speech filtered
by the "first formant bandpass filter'" (centre frequency 500 Hz,
attenuation = 60 db per decade away from centre frequency) and
then clipped, revealed only "occasional presence of [a] residual

second formant" in spectrograms is inconclusive,



131
Thomas' two filters resulted in the following changes in
formant amplitudes:

First formant filter: F1l, unchanged; F2, = 20 db down;
F3, = 30 db down.

Second formant filter: F1l, = 20 db down; F2, unchanged;
F3, = 20 db down.

His results showed an average word articulation score of 7.6% for
speech passed through the first formant filter and then clipped.
Speech passed through the second formant filter, and then clipped,
yielded average word articulation scores of 71;1%. Thomas
summarized his findings as follows:

It is evident that [clipped] speech in which all formants but
the second have been suppressed is still highly intelligible
« « « « It is equally evident that speech in which all
formants but the first have been suppressed is virtually
unintelligible . . . it is [therefore] reasonable to attribute
the high intelligibility of differentiated [then] clipped
speech to the survival of the second (and possibly higher)
formant frequency information through the clipping operation.
We remark here that, as will be noted in subsection 5.3.3,
Vilbig [V-5] showed that clipping a predominantly Fl speech signal
model yields distortion products which must fall in the frequency
band below or within the F3 region-—and therefore may mask any F2
or F3 present-—-whereas a predominantly F2 signal, when clipped,
produces distortion products below the F3 region (= 3000 Hz) only
for the vowels />/, /U/ and /u/. Considering the nature of the
filtered, unclipped signals (i.e., first formant filter gives one
formant 20 db down and one formant 30 db down while second formant
filter gives two formants 20 db down) and the location of the
distortion products produced by predominantly Fl or F2 signals,
Thomas' conclusions regarding the importance of the second formant,
per se,--"that the overall intelligibility of speech which has been
subjected to amplitude distortion, frequency distortion . . . is

largely determined by the extent to which second formant frequency
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information survives the distortion process''--are not justified.
P J

Thomas attempted to further justify his "second formant
theory" by referring to other experimental results. He noted, for
example, that "intelligibility of speech which has been passed
through either a lowpass or a highpass filter should [and does;
see [L~7}, for example] change from a very low value to a very
high value as the passband of the filter is increased to imclude
the entire second formant frequency range.'(Italics mine.) However,
such a signal then includes both Fl and F2 or F2 and F3. In another
experiment [K-11], Thomas noted, "for a single bandpass filter of
500 Hz bandwidth, the highest articulation score is obtained when
the passband extends from 1250 to 1750 Hz for a male spegker."
Thomas neglected to point out that, first, this "highest articulation"
is only 37% and second, that the articulation vs centre frequency
of passband curve is double-peaked, with another peak of 32%
occurring for passband 500 to 1000 Hz.

L.R. Focht noted [F-10], in describing a set of experiments

"all possible combinations of

in which the perceptual response of
[three] formant amplitudes and frequencies were studies," that two
formants were required to specify the‘pefceptual value of 'a vowel
and that "these two formants were not always the same pair but
depending upoen the perceived vowel jumped between combinations of
the first, second and third formants.'" Therefore, although the
second formant may be relatively important, we prefer to recall

the results of Lehiste and Peterson's experiments on filtered

volwels [L-7], that "one or more of the first three formants was -

found essential to . . . recognition."

In a further set of experiments [T-5], Thomas carried on
Licklider's work on the perception of clipped speech in a neisy
environment, Thomas showed that suppression of Fl prior to

clipping increases post clipping intelligibility in the presence
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of noise. However, in this paper, Thomas correctly concluded that
a predominant F1l is deleterious in that it creates clipping
distortion products in the F2-F3 region. Thus, the high intelligi-
bility of this clipped speech results from the suppression of F1l
relative to F2 (below 700 Hz, Thomas' filter for these experiments
is essentially a triple differentiator with a positive slope of
20 db per octave) rather than being due to the preservation of an
ostensibly "most important" second formant. We shall clarify the
correlation between spectral features and the intelligibility of

clipped speech in chapters 8 and 9.

5.1.6 Rose

H. Rose's investigations were concerned with achieving
maximum performance in clipped speech communication channels by
determination of optimum combinations of spectrum shaping and
clipping level as a function of relative levels and spectral

shape of ambient noise at the speaker and listener positions [R-14].

For example, can we predict the percent articulation of a
speech plus Gaussian noise signal which is clipped at an arbitrary
level? To answer this question, Rose defined Nw as the average
noise at the clipper output which can be attributed to the
addition of noise to the speech signal prior to clipping.
Physically, Nw is the output of a lowpass filter fed with the
difference between the clipped speech signal and the clipped
speech plus noise signal. By plotting S/N--the signal-to-noise

ratlo at clipper input--vs Sout/Nw——where S0 is the output signal

level, and S/N vs AI, the articulation indexuﬁknown from Licklider's
experiments), a new curve of Sout/Nw vs AI can be determined. For
other (non-infinite) clipping levels, Rose claimed that measurement
of SouthW will enable the articulation index to be predicted.

He assumed here that both noise created by clipping and noise due
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to perturbation of speech zero crossings before clipping are
effectively Gaussian., He did not, however, document his reasons
for believing that "it is known that clipping . . . [of voiced sounds]
« « . creates so many intermodulation products . . . that the added

IM [intermodulation] noise power is essentially Gaussian . . . "

Rose also investigated the effects of pre-clipping dif-
ferentiation and noise at the listening position on the intelligibi-
lity of clipped speech. The results presented may be valuable for
predicting performance levels in clipped speech communications but
do not offer any insight into the basic problem of expiaining

clipped speech-intelligibility phenomena.

5.1.7 Marcou and Daguet

P. Marcou and J. Daguet applied the tools of analytic
signal theory to speech clipping-zero crossing studies [M-5]. They

asked the following question:

I1f the phase-envelope representation of a speech signal
is considered,

i.e., s(t) = |m(t)| cos ¢(t) (5-7)
then what perceptual information can be attributed to |m(t)|, the

signal envelope, and to cos ¢(t), the phase function?

They presented a conceptually simple scheme for physically
analyzing s(t) into |m(t)] and cos ¢(t): s(t) is translated in ‘
frequency by a carrier of frequency W, using single sideband
modulation. That is, as in (2-30), we consider

S, (t) = Im(t)l cos [wot + ¢(t)] . (5-8)

e
If w0>>2nw, where s(t) is bandlimited to * W Hz, then envelope

detection of s, (t) yields |m(t)| [S-3; p. 155] and infinite
o
clipping of S, (t), followed by bandpass filtering--elimination of
o
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all frequency components for which wo—2nw>|wl>wo+2nw——and demodula-
tion, yields cos ¢(t). Marcou and Daguet reasoned that the latter
result obtains since SSB modulation, with-wo>4nw, assures that all
harmonics created by clipping fall outside of the translated speech
band. That this procedure does indeed yield cos ¢(t) is shown by

Sakrison [S-3; pp. 171-172]. Therefore,

D[BL{C SwOSSB(t)}] = cos ¢(t) , for wo>>2nw ] (5-8b)

D, BL and C are the demodulation, bandlimiting and clipping

operators, respectively.4

Marcou and Daguet implemented this system and found that,
for speech signals, "If |m(t)| is used to drive a loudspeaker, an
output is obtained which is essentially made up of a succession of
loud and soft auditory impressions. If cos ¢(t) drives the loud-

speaker, the output gives essentially the same aural sensation as

"

the original signal . . . . (Italics mine,) That is,

M1l. '"Single sideband clipping': The envelope of a speech
signal is not perceptually recognizable as speech; the
phase function of a speech signal is, perceptually,
essentially the same as the original signal.

We shall complete our description of Marcou and Daguet's experi-

ments with single sideband modulation in section 6.4.

4The approximation is due to the fact that cos ¢(t)--being an FM
signal--is not strictly bandlimited [D-15], [S-3; p. 168]. Thus

the bandlimiting operation necessary to eliminate clipping harmonics
results in a deviation of the envelope of cos ¢(t) from its nominal
value of unity. The approximation becomes progressively better if
the carrier frequency is increased so that it is much greater than
twice the width of the band of frequencies over which the spectrum
of cos ¢(t) is appreciable in magnitude.
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5.2 The Mathematics of Clipping as a Spectral Operator.

Licklider suggested that the high intelligibility of
clipped speech is due to the overall preservation of the short-
term speech power spectrum structure. In the next section, we will
examine several attempts to quantitatively justify this statement.
First, however, we will survey the methods used to predict the
effects of clipping on the powef spectrum of random and determin-

istic signals in general.

5.2.1 Random Processes

J.H. Van Vleck and D. Middleton remarked [V-2] that "the
problem of determining the intensity spectrum of a disturbance
subject to extreme clipping is closely related to that of finding

the zero crossing points of the [time] axis) . . ." They showed
that if a signal s(t) is subjected to a limiter of transfer
characteristic as shown in Fig. 5.6, then, if s(t) is a wide sense
stationary, Gaussian, random process with zero mean, autocorrelation
function R(t), and normalized autocorrelation function

p (1) = R(t)/R(0) , (5-9)

Output

Fig. 5.6 Transfer function of a
progressive clipper. {From [V-2].)
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then the autocorrelation function of the output of the limiter is

=~ on+1 2,072
R (1) = 0% (erf (b/V2)) + 2 :'%§E$I§%l [ﬁZH_l(b)-e b /%] , (5-10)
n=1 )
x 2
where erf(x) =‘)% Je_x dx (5-11)
0

and Hn(x) is the Hermite polynomial,

x2/2 -x2/2

e -(—l)n°dn(e )/dxn. - (5-12)

If b » =, then the limiter is a linear amplifier and Ry(r)+ p(1),

as expected.5 If b » 0, then

R (1) > 2 p2esin N (n) (5-13)
Normalizing (5-13) to unity mean square amplitude after clipping
gives

R (1) = %-sin_lp(T) , the arcsine law. (5-14)

The power spectrum G(f) of the output of the clipper is then obtained
by using the relationship [W-2], [P-2, p. 240]:

G(f) = F{R(1)} . (5-15)

Van Vleck and Middleton applied (5-10), (5-14) and (5-15)
to examine the effect of clipping on the shape of various input
signal power spectra. For example, when a Gaussian process with a
rectangular power spectrum of centre frequency W, and bandwidth

iwa/21r Hz (white noise) is clipped by the limiter of Fig. 5.6 (b=0),

5The mean square amplitude of s(t) is normalized to unity before
clipping.

6Divide (5-13) by R _(0) = b?-/2/7*b+e
Ry(O) = b2 for small b .

2
-b /2+ (1-b2) cerf (b/v2).
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the output power spectrum is given by
2 -1, .
G(f) = 2 7 sin [(sin wat/wat) cos wct] . cos wt dt . (5-16)
0
The shape of the "fundamental' component of G(f) after s(t) is

clipped is given in Fig. 5.7, for various values of b. The

2woEw

S 1] S b=oo  (URCLIPPED UNIFORK SPECTRUN)
T T

I 105

_....
T ~{e0  (EXTRENE CLIPPINE)

CLIPPING LEVEL
RNS NOISE LEVEL BEFORE

A s YU At cLIPMNG

-5 -40 =30 -20 10 [ 1.0 29 0 A 0 50

Fig. 5.7 The fundamental component of
the post-clipping power spectrum of a Gaussian
process. The total power in the spectrum in
normalized to unity before and after clipping.
(From [V-2].)

qualitative effect of infinite clipping (b = 0) on the original
power spectrum is to diffuse a certain amount of power--317%-—outside
the limits A = i(w—wc)/wc and to make the power spectrum less
uniform within these limits. Twelve percent (12%) of the diffused
power is located in the "wings" of the "fundamental" power spectrum

component (see Fig. 5.7).7 The other 197 is located in harmonics

7L.R. Wilson has recently (1969) investigated the asymptotic
behaviour of the '"tails" of the power spectrum of the output of an
infinite clipper when the power spectrum of the Gaussian input
signal can be expressed as a rational fraction [X-3]. See also
[X~4] and [C-1].
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of the fundamental band, the first two of which are shown in Fig. 5.8.

n .

wc 3 wc 5 WC

Fig. 5.8 The gross power spectrum structure
of clipped white Gaussian noise. (From [V-2])

In fact, it is shown [V-2; p. 14] that the distribution of energy
among the harmonic bands and the fundamental band is exactly the

same as occurs if a sine wave of frequency w, is clipped.

Derivation of the autocorrelation function of the output
of a non-linear device--a clipper, for example--involves evaluation

of the definite integral

Ry(tl’t2) = E{y(tl), y(t,)}

I

where h(x) is the transfer function of the non-linear device (h(x) =

J h(xl)°h(x2)-fXY(xl,x2) dxldx2 , (5-17)

hc(x) = sgn[x] for an infinite clipper) and fXY(xl’XZ) is the joint
density function of the input signal.8 The arcsine law, (5-14), for
example, results from manipulation of (5-17) with fXY(xl,xz) a

jointly Gaussian density function.

8 . . = - =
For a wide sense stationary process Ry(tl,tz) = Ry([tl t2] =1).
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In certain applications, where the transfer function h(x)
has a simple Fourier transform, it is convenient to evaluate
Ry(tl’tZ) using the '"characteristic function method." It can be

shown [T-6; pp. 284-285] that

-1
Ry(tl,tz) = W J J @AB(wl,wz) H(wl) H(wz) dwldw2 . (5-18)
j(wlxl+w2x2)
Here @AB(wl,wz) = E {e }
= F_l{f (x,,x.)}
XY 1’72
and H(w=2nf) = F{h(x)} . (5-19)
For the infinite clipper, Hc(f) = -j/nf . [8-10] . (5-20)

It follows immediately from (5-19) that the output of a

non-linear device with input x can be expressed as

h(x) = 5};—J n(ey -e3 2™ gy |

which, using (5-20), gives

h (x) = —;'2; J sin2nfx/f df (5-21)

]

sgn[x] , for an infinite clipper [5-18].

5.2.2 Deterministic Signals

Equation (5-21) defines the output of an infinite clipper

in terms of an infinite Zntegral involving an arbitrary input "x'".

"x" may represent--as x(t)--a periodic signal, for example.
F. Vilbig noted [V-5] that, for |x|sw, the output of an infinite

clipper can also be expressed as an infinite series:

ie., h_(x) = ‘*E zin_(n-l)x (5-22)
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W. Solfrey analyzed [S-18] the effect of clipping on the

members of either a three-tone (two of equal amplitude) or a four-
tone (amplitudes equal in pairs) complex under the assumption that

the tone frequencies are incommensurable.9 The signal model used was
s(t) = a cos (wlt+el) + b [cos (w2t+62) + cos (w3t+e3)]

where wl, wz, and w3 are incommensurable. This is inserted into
(5-21) and expanded using Bessel functions. Solfrey's results
showed that for b/a small (weak double input component), the output
single component (at w=ml) tends to amplitude 4/m while the output
double component amplitude vanishes as 2b/wa. For b/a large (weak
single component) the double component amplitude tends to 8/m?2
while the single component amplitude vanishes as (2a/m2b)s
(loglOle/a + %). If b=a=1 both single and double output components
have output amplitudes of 0.67. Thus, as a single component
becomes greater in amplitude than the double component at the
input, the effect at the output is to rapidly suppress the relative
amplitude of the double component.

Using sout(t) = ¢ cos(w1t+el)+d[cos(w2t+62)+cos(m3t+63)],

Solfrey defined a suppression ratio "y,

d
where Yy = E§§ R a/b >1 ,
and Y, ='§%% s a/b <1 .

He showed that Yl tends to a value of 2 for very large a/b. For
b>a the suppression ratio Yos for large b/a, tends asymptotically
to Yz[db] = =20 10810[0.818+0.576 1og10(b/a)]. This suppression

%5 three-tone model for a vowel could satisfy this requirement
provided that the fundamental, voicing frequency is not Fl.
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is a negative suppression as it grows much more slowly than b/a.
For example, when b/a = 106 {120 dbl, Yy is only -12.5 db. 1In
effect, clipping then enhances the weaker single component with

respect to the stronger double component for large b/a.

5.2.3 Summary

The methods available for analysis of the spectral effects
of clipping appear to lack the power and generality desired for
predicting, qualitatively, the spectral consequences ‘of clipping.
This is especially true for deterministic signals. In the next
section, we review some attempts to apply these methods to speech .

clipping.

5.3 Why is Clipped Speech Intelligible?:
Some Contemporary Viewpoints

This section is devoted to a detailed review of three
attempts to explain the intelligibility of clipped speech in terms
of Licklider's suggestion of overall power spectrum feature

preservation.

5.3.1 Dukes

J.M. Dukes explained that the object of his paper [D-16]
was "to examine to what extent the spectral content of the [clipped,
and differentiated, then clipped] speech waveform . . . is similar
on the average to that of the original signal. More important
still, however, is the degree of coherence between the two spectra
under consideration, i.e., the extent to which corresponding
regions of the spectrum [spectra] are phase-related in a fixed
rather than a random manner." Dukes stressed that his method is
"only valid in so far as it relates to averages over long periods

of time" and that "further work is still required to show what are
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the important invariants in the case of individual sounds." (Italics

mine.)

In the first section of his paper, Dukes treated time-
quantized, strictly-stationary, random signals completely
specified by their first order probability density function~-what
he terms a totally random signal-—and having zero mean. Dukes
calculated the normalized crosscorrelation function between the

input and (normalized) output of an infinite clipper and showed

that it is
2AX (At-|t])
DXY(T) == AT for [t] g At
* (5-23)
= 0 for |t| > At
where Ax = I x-fx(x) dx ,
0

xz'fx(x) dx ,

Q
N
¥
Il
|
8 ——38

and At is the quantizing interval. Dukes noted that the cross
correlation function pxy(r) is "a measure of the average in-phase
energy of the two signals [input-output]” and defined lpxy(T)lmax

as "the first coherence coefficient"-= n. If Ax and o, are
considered for the Gaussian and exponential distributions (represent-
ing, respectively, the long-term amplitude density functions for

consonants and vowels, as noted in sec. 3.5) then

n Gaussian p (0 =/57; 0.798 (5-24)
Xy Xy

0.707.(5-25)

and U exponential
Xy

p_ (0) =v1/2
Xy
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Note that these results are independent of At, the quantizing
interval. Dukes further showed that the coherence coefficient

for the differentiated clipped waveform is

W = V2 Afo_ . (5-26)

That is, post-clipping differentiation reduces the coherence

coefficient by a factor of /2. Finally, the relationship between
the normalized autocorrelation functions at clipper input [pxx(r)]
and output [pyy(T)], the cross—correlation function [pxy(r)], and

the first coherence coefficient can be expressed as follows:

Pry (T = (1) = (r)y , |t|<ae . (5-27)

H H
xy Pxx xy Pyy
Therefore, the two autocorrelation functions and the cross—correla-
tion function are identical in shape (for |t|<At) and differ only
by a proportionality constant~—uxy. Note that as At»0 (the contin-
. 0. T
uous case), pxy(T), pxx(r) and pyy(T)+0 except for t=0 hus,

nothing is really stated about the post-clipping shape of pyy(T).

The second section of the paper treats partially constrained
time—quantized random signals; that is, signals whose density
function at a point is conditioned by the preceding samplé. Dukes
noted that since the instantaneous output of a clipper is a function
only 6f the instantaneous input, the first coherence coefficient
is independent of statistical constraints between successive values
of the input signal and is therefore unchanged. However, (5-27) no
longer obtains and, in general, clipping a partially constrained

signal may modify its power spectrum considerably.10

oo

loR. Luce showed [L-25] that signals for which S xl'fXY(xl,xz;T) dx, =

1

P * i i d = .
(xl) Q(t) satisfy the relationship pxy(r) k pxx(r)
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In his conclusions, Dukes emphasized that '"the results only
have significance in respect of very long samples [of speech sounds]
and that with this formulation nothing can be deduced about the
intelligibility of individual sounds, except . . . that deviations
below the average must be relatively infrequent.' 'He remarked that
although the values of the coherence coefficients calculated are
near the overall intelligibility of clipped speech, "the principle
difficulty is the unknown relationship between the coherence

coefficients and intelligibility." (Italics mine.)

5.3.2 Fawe

A. Fawe's paper [F-4] purports to include "a theoretical
study of the phenomena [phenomenon] [that severely clipped speech
is intelligible].” Yet Fawe almost immediately states that
"whispered, as well as normal speech is intelligible after clipping;
in this study we shall consider them only "since'" voiced sounds
that appear in normal speech are not easily described." (Italics
mine.) In fact, Fawe strongly implied that he used whispered
rather than normal speech for a model because he wished to apply

the statistical theory of signals.

Fawe commenced his analysis of whispered speech by
expanﬂing the arcsine law, equation (5-14), into a power series

and taking the Fourier transform of the result. That is

_2 . -1|R(T)
F {Ry(T) = = sin [g(oi]}

©

G(£)

2 (2n)! -G-2n+1(f) (5-28)
T h=0 (n!)2°22n-(2n+l)'[R(0)]2n+l

©

where gm(f) = F{[R(T)]E} = J [R(T)]Ele“j2ﬂder . (5-29)

-—00



146

Note that the first term in the summation--n = 0--in (5-28) is

simpl& §1(f) =F{R(t)/R(0)}, the power spectrum of the original signal.
From this Fawe correctly concluded that "the infinite clipper adds a
[spectral] noise and [also] suppresses the dynamics of the [Gaussian,
random model for the speech wave.'" He also stated that 'the [spectral
structure of the] noise due to the clipping operator is very similar
to [that of] the input signal; indeed, since m is odd, R(7)Z is like
R(t) and gm(f) like El(f)'" We agree in that R(f)ﬂ3 m odd, has the
same zero crossings and polarity as R(t). Also, since the maximum

value of p(t) = R(t)/R(0) is unity, then |[R(7)/R(0)IZ| <|R(7)/R(0)].

Fawe gave an example for the clipping of white, Gaussian
noise. Although the mathematics in (F-4) are very unclear,
some valid conclusions were reached . - He demonstrated that
the real (apparent) noise power is only 15.87%7 of the expected
noise power because '"The [spectral structure of the] noise due
to the clipping operator is very similar to [that of] the input

signal [white Gaussian noise]."

He then extrapolated from these results for élipped, white
Gaussian noise: 'The [power spectrum] minimum [at f=W0, 1.886] is
about 5 percent below the [power spectrum] maximum [at £=0, 1.982].
Since the differential sensitivity of the ear for amplitude is 0.13
(or 0;26 for power) at a level of 40 db above threshold, the spectrum
appears perfectly flat to the hearing mechanism, and elipped .
[whispered?] speech is highly intelligible." (Italics mine.) We
would rather say that clipped white Gaussian noise might be percep-
tually indistinguishable from white Gaussian noise. Fawe further
extrapolated by stating that "it is [now] evident that a flat
spectrum is the optimum one, when the signal is passing through a
nonlinear circuit and when the highest signal-to-noise ratio is
desired an equalization of the mean speech power spectrum is

required before clipping' and that, for speech, "a derivation
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[differentiation] of the signal before clipping . . . will be the
best way to achieve the purpose.'" Pre-clipping differentiation,
as Licklider noted (L5), does improve the intelligibility of
clipped speech, but not--as we shall show in chapters 8 and 9--
for the reasons Fawe extrapolates from a study of white Gaussian

noise.

Fawe next noted that, as shown by Crater, clipping
causes only small changes in the power spectrum of a Gaussian wave-
form with an original power spectrum resembling that of a single

formant,11

. _ R(0) a a
Le€es G(f) = 27 [ a2+(f—F152 + a2+(f+Fl)?]' (5-30)

He claimed that 'this latest approach tends to prove that results
for the ensemble of speech sounds are valuable for isolated

utterances too."

Fawe then rederived the results of Dukes [equations
(5-24,25)] concerning the coherence coefficients12 and reworked
Dukes' results with respect to Luce's theorem (see footnote 10;
also [L-251).

We do not believe that Fawe's final conclusion "that we
have shown an infinite clipper has very little effect on the
power spectrum when first flattened so that clipped [whispered?,

see [M-9]] speech is highly intelligible" is justified.

11Velechin [V-4] apparently repeated Crater's experiments for

Russian speech,

lelthough Dukes' paper is referenced, direct credit for the

results (5-24,25) is not given.
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5.3.3 Vilbig

F. Vilbig used the expression (5-22)

_ 4 sin(2n-1)x _
h (x) = WE : T , |x|gm ,  (5-31)

n=1

to examine the effect of clipping on two-tone speech models [V—?].

If x = s(t) = arcosw; t + b'coswzt , then

h (x) = é‘} : l{ sin(ma'coswlt)°cos(mb-cosw2t)
¢ = (5-32)

m odd + cos(ma'coswlt)'sin(mb'coswzt) ] .

The Bessel function expansions can then be introduced: i.e.,

sin(z+*cosh) ézz:(—l)n-Jz +1(z)-cos[(2n+l)6] (5-33)
n=0 .

and cos(z*cosh) Jo(z) + 2 2 : (—1)n-J2n(z)'cosK2n)e].(5—34)
n=1
Unfortunately, expansion of these functions involves much calculation

and the results are qualitatively unsatisfying.

Vilbig's graphical data concerning the frequency distortion
caused by clipping three-tone vowel models probably represents the
most comprehensive published data in this area (Fig. 5.9). He
noted that when one formant is much larger than the other two, the
distortion generated by clipping lies mainly at the third harmonic

of this dominant formant--i.e., 3F1, 3F2, or 3 £ Bandlimiting

the clipped signal to 3000 Hz eliminates clippinz harmonics due

' to any but a dominant Fl, or F2 of />/, /U/, or /u/. (see Fig. 3.8b)
If two formants, Fm and Fn (m=1,2; n=2,3; m#n) are approximately
equal in amplitude and much larger than the other formant, then—-
using results from a two-tone model--the lowest frequency clipping

distortion harmonics appear at two frequencies,

wl = 1.5 f(wm+wn) + O.S-(wn—wm) and
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Fig. 5.9 Distribution of the formants of various vowels and
position of the distortion frequencies created by the clipping
process. (From [V-5])



150

w, = 1.5 °(wm+wn) - 0.5-(wn—wm) .
The areas in which these frequencies may fall for three-tone models

of vowels are represented in Fig. 5.9 as a, and a, (m=1, n=2), b

1 1
and b2 (m=1, n=3), and ¢y and <, (m=2, n=3). In this case, only
the ranges a; and a, fall within the 0-3000 Hz region.

In summary, only clipping harmonics from a dominant F1, a
dominant F2 for />/, /U/ or /u/ only, or a dominant (equal amplitude)
F1-F2 complex can fall within the 3 KHz passband for the three-tone
model. Vilbig argued that the third harmonic of a dominant Fl--—
falling between Fl and F2 or between F2 and F3, depending on the
vowel-—-produces the most perceptually degrading distortion. The
a;-a, distortion regions interfere predominantly with F3. He
added that "for vowels . . . all the newly created [distortion]
frequencies are harmonics of the pitch frequency and . . . are less
noticeable than if the frequency had been arbitrary." Finally,
Vilbig stressed that pre~clipping attenuation of frequencies in
the Fl region will weakeﬁ the otherwise strong clipping harmonics
of F1l (3Fl) and thus yield a less distorted clipped signal. Actual
pre-~ and post-clipping spectral Cross sections of actual vowels

modified in this manner objectively support his assertiom.

5.3.4 Summary

Dukes and Fawe, and Vilbig, provide arguments which
support conjectures suggesting overall power spectrum preservation
© in clipped random processes and three-tone periodic signal models,
respectively. However, the explanations proposed are somewhat

unsatisfactory:

First, they do not satisfactorily explain why a process
(infinite clipéing)'which ostensibly destroys all waveform amplitude

information and preserves only zero crossing positional data does
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not yield changes of similar apparent magnitude in the frequency

domain.

Second, there is no indication of whether the nature of
the original waveform and the extent of post-clipping power

spectrum preservation are correlated in any manner.

Finally, although Vilbig suggests a method for processing
the speech signal before clipping in order to enhance post—clipping
power spectrum preservation, the technique-—although intuitively

justifiable--is somewhat ad hoe.

We will show, in chapters 8 and 9, that certain types of
waveform processing (and the spectral transformations associated
with such processing) will produce signals of extremely high post-
clipping intelligibility. Furthermore, we will produce arguments
that certain waveform attributes are highly correlated with post-
clipping power spectrum preservation. Finally, we will argue
that clipping preserves other waveform attributes in addition to

zero crossing information.



6 ZEROS I: ZERO CROSSINGS AND AUTOMATIC SPEECH RECOGNITION

6.1 Evidence for Consideration of Zero Crossings
as Input Parameters for Automatic Recognition of Speech

Rectangular interpolation of speech waveform zero crossing
sequences yields a highly intelligible signal. Can this sequence
of zero crossing intervals be used independently- of the auditory
system to provide an estimate of the spectral features of the
original signal? 1If so, then presumably, zero crossings could
serve as input data for automatic speech recognition schemes.
Furthermore, can zero crossing interval sequences be interpreted
meaningfully without explicit reference to the frequency domain and,
are sgch interpretations useful for automatic speech recognition

purposes?

In this chapter we discuss these, and other closely
related problems from the viewpoint of conventional signal theoretic
ideas. The related problems include manipulation of zero crossing
" information via single sideband (SSB) modulation and, finally,
examples of automatic speech recognition machines using zero

crossing information.

152
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6.2 The Zero Crossings of Random Processes

In our review of the acoustic properties of speech sounds
(ch. 3) we noted that some speech sounds—-unvoiced fricative and
stop consonants--result from excitation of the vocal tract by a
noise source. Davenport observed (sec. 3.5.1; [D-3,4]) that the
amplitude distribution of these sounds could be represented by a
Gaussian model. Spectrally, these sounds often resemble "white"
noise bands with different frequency location and bandwidth para-
meters (secs. 3.4.6,7; [F-14],[H-4,9,26],[S-27]). It is impera-
tive, therefore, to briefly state some results--derived by S.0.
Rice [R-10]-~concerning the characteristics of the zero crossings -

of random processes.

6.2.1 Average Rate of Zero Crossings

Rice showed that the expected number of zero crossings,
per second, of a Gaussian random process is completely determined

by knowledge of the power spectrum G(f) of the process:
5

2
f G(f) df

I
N

i.e., P . (6-1)

G(f) df

o
Q *—— § |0 *——m—

For bandpass white Gaussian noise such that
K, O<f <|f|sf
G(f) = { a b
0 , otherwise ,

eq. (6-1) becomes

1
by = Z g2 £ 4217, (6-2)

)
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When fa=0 (lowpass, white Gaussian noise), (6~2) becomes
P, = 2fb//'§ . (6-3)

In this case P, 18 v1/3 times the Nyquist rate, Zfb.

Finally, it can be shown that for the mth derivative of

lowpass bandlimited white Gaussian noise,

Py = 2fb Y (2m+1) / (2m+3) (6-4)

-> Zfb for m large.

These properties form the basis of much of our discussion
of the zero crossings of speech signals. Extensions of Rice's

work are detailed in Cramér and Leadbetter [C-11].

6.3 Zero Crossings as an Estimate of Frequency
Information in Speech Signals

H. Dudley noted the possibility of extracting frequency
information indirectly from the speech waveform in 1965 [D-13].
In an example, he reproduced a portion of an oscillogram of the

vowel /a/ (Fig. 6.1) and analyzed it as follows:

BEAT NODES _
J- _I_ [T7350 ]- Times in

-~ nds.
W seconds

1/980
1/108

Fig. 6.1 Oscillogram of the vowel /a/. (From [D-13].)

"We note a high frequency ripple . . . [of approximately]

2700 cps for F A clear beat shows up separating strong

3. .. * -
sections . . . the separation corresponds to 350 times per second.

If we measure a period of the strong wave itself we get a correspond-
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ence to 980 cps which is presumably F2 and Fl is then (980-350) or
630 cps.”" Dudley then tabulated some waveform characteristics
which may be related either directly, or indirectly, to the spectral
features of the speech sound. He emphasized that 'there can be no
change in the sound spoken and heard without a corresponding change

« + «» [in the waveform]."

Dudley's estimates of spectral information involved,
indirectly,measures of zero crossing data. 1In the following
subsections we shall review and evaluate attempts to directly use
zero crossing information to estimate spectral pérameters in

speech signals.

6.3.1 Chang
S. Chang et al. [C-3],[C~4] considered the problem of

"the representation of speech sounds and some of their statistical
properties." They noted that, while the Fourier transform of a
signal contains both amplitude and phase information, the time

autocorrelation function, R(t), defined as [T-6; p. 90]

T
R(T) = lim'i% f s(t) s (t+1) dt " (6-5)
T-r0
=T

for a random process,l discards phase information. That R(1)

contains no phase information about s(t) is made clear by noting that
[}
R(T) = F_l{G(f)} = J G(f)+cos2nfr df (6-6)
o

and G(f) = |s(£)|? . | (6-7)

1
The same definition applies to a periodic signal if T+T0/2,
where T0 is the period of the signal [L-6, p. 11].
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The usefulness of R(1) as a representation of speech sounds is
inferred from the relationship between R(t) and |S(f)|, the amplitude
spectrum, via G(f). In fact, the short-term autocorrelation function

can be defined (S-7) and used (B-8) for automatic word recognition.

Similarly, they noted, clipping--another time domain opera-
tion involving s(t)--discards amplitude information. The usefulness
of zero crossings in obtaining estimates or representations of
speech sounds is to be inferred, ostensibly, from the fact that
clipped speech is intelligible. Chang2 pointed out that more direct
links between zero crossings and signal spectral features can be
established. Rice's classic relationship for the average number of
zero crossings per unit time--in a stationary, random process
n(t)--can be written as [C-4]:

()2

o = k42

(6-8)
o N To?

while the average number of zero crossings per unit time, of

n'(t) is

o =k n''()° . (6-9)
m oy o2 ,

The value of ko and km is 1/m when n(t) is a Gaussian signal. The

nth moment of the power spectrum of n(t), G(f), is defined as
M= J £ G(f) df . (6-10)
0]
Since R(0) = Mo and -R"'(0) = 4n2M2 (from (6-6)), then, using

2For convenience, we shall refer to the authors Chang, Pihl and
Essigman [C~4] and Chang, Pihl and Wiren [C-5] as "'Chang".
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(6-6) and (6-10) in (6-1), we can write

P, = ano JEZ/MO = ko vY-R'' (0)/R(0) (6~11a,b)
and, similarly,
oy = 27k »’EAIM‘?’ = k. /~R'TTT(QY/R'' (0) (6-12a,b)

In this manner the average (expected) rate of zero crossings per
unit time can be related, through the autocorrelation function, to
the power spectrum of the sighal. However, as Chang pointed out
[C-4], "application . . . [of these relationships] .. .toa speech
sound assumes that it can be regarded as a stationary time series

. . . and the extent that this requﬂrément 18 met can only be

eonjectured at the present time [1950]." (Italics mine.)

Chang presented limited experimental results which implied
that "there is a close similarity between the shapes of the P~ and
p_~grams and the first two bars [formants] of the spectrogram."

He explained that '"since the frequency components in the first bar
[formant] are usually strong enough to cause zero crossings, the
p,gram is a close approximation of this bar [formant]. The
frequency components in the second resonance region may not be
strong enough to cause extra zero crossings, but they will affect
the slope of the wave [~form s(t)] and may, therefore, contribute

extra maxima and minima which are included in pm."

6.3.2 E. Peterson

Soon after Chang's conjectures and limited experiments
concerning the utility of the average time rate of zero crossings
as an estimate of formant trajectories in speech spectrograms,

E. Peterson published [P-9] an excellent experimental and
theoretical study of such techniques. Peterson first described

an accepted method of estimating Py for a speech signal: an
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impulse is generated at each zero crossing of the signal and these
impulses are averaged for a time interval greater than the fundamental
period of voiced sounds (=10 msec.) and less than the phonemic
utterance rate (=10 per second). [This type of estimate will be
defined as 60 to distinguish it from Py the true average rate of
zero crossings per second.] In his experimental work, Peterson

used a lowpass filter with a 30 Hz cutoff frequency to implement

the averaging process. Experimental results for two-tone signals

are shown in Fig. 6.2.
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Fig. 6.2 Response of an Impulse averaging § -meter to
a two-tone input. Ordinate is the "counter" reading in
KHz and abscissa is 20 loglo(Az/Al), the ratio of the input

amplitudes in db. The three curves apply to the pairs of
input frequencies noted. (From [P-9])
Note that Lobanov [L-24] derived an expression for the

true number of zero crossings per second for a two-tone signal.

| If
s(t) = Ajsin w t + Azsin Wyt , w0, (6-13)
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2 A
then ;-(2F2—2F1) sin [Al/AZ] + 2F1 , OsAz/Algl
Py = (6-14)
2F2 , A2>A1

where Fl=wl/2n and F2=w2/2n. Peterson's experimental results for

p0 estimates, 50, and Lobanov's expression for actual IS both suggest
that when the amplitude of the higher frequency signal dominates,
then all (zero crossing) indication of the lower frequency tone

is lost. However, when the low frequency tone has the larger
amplitude, the indicated "frequency" lies between the two input
frequencies over a very extended amplitude ratio range. Peterson
emphasized that this anomalous behaviour is not due to the nature

of the '"counter'"; it is, he showed, fundamental to operation of

this type of "counter" in the audio band. His explanation was as

follows:

The envelope of s(t), (6-13), is
5

[m(t)| = [Al2 + A22 + 244, cos(w -w )t]* (6~15)
the phase is
-1 Al-A2
= 1 - -
p(t) = %[w1+w2]t + tan A1+A2 tan[/é(w1 wz)t].,(ﬁ 16)

and the instantaneous frequency, the time derivative of the phase,

is

2. _
A ~A } 1 + tan [1(w1 wz)t]

$'(£) = Jlujto ] + %[wl'“z]{;l+A2 A <A :
172 1+ 12 tan [%(w,-w,)t]
A1+A2 1 72

(6-17)
. The value of ¢'(t),averaged over a half-period, is
zTT/2 A=Ay
! = = ' 1 - =1 - . N
' (t) = = J ¢'(t) d[z(wl wz)] —ieﬁfwz + (wl wz) sgn KA, )
0

(6-18)
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That 1is, : ;
vy » Ay Ay
— 3
[ =]1 =
¢'(t) 4[wl+w2] » A=A
© , A <A . (6-19)

Fig. 6.3 shows a plot of ¢'(t) for w.= w, w,= 3w and (AZ/Al) = q.

Freguency —

" FUNDAMENTAL PERICD OF INPUT 5(012‘55.

Time

Fig. 6.3 ¢'(t) waveforms for
s(t) = coswt + g-cos3wt.
(From [C-9].)
Note that "W" is a frequency translator, considered equal to zero
for our purposes. The average values of ¢'(t), ¢'(t), are the dotted
lines labelled "W+3w'", for q>1; "Wt+w'", for gq<l; and the solid line
labelled "W+2w", for q=1. From Fig. 6.3 and equation (6-17), it is

apparent that

¢'(t) as
< q=1 < 1, (6-20)

¢'(t)

Nal
[]

and that for %<q<2 , q # 1 , the instantaneous frequency,¢'(t),

3That $'(t) = %[wi+w2] for Al = A2 is shown by Cherry and Phillips

[C-9, p. 1070]; it also follows directly from (6-17) with A1 = A2.
This situation is very unstable.
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exhibits very sharp peaks.

*
The problem is to show why the output of the 5o-meter,

shown in Fig. 6.2, does not indicate the readings predicted by (6-19).
We assume here that this type of "meter''--i.e., impulse averaging-—-

should indicate ¢'(t).

Peterson showed that the answer lies in the bandwidth
required to transmit ¢'(t), the instantaneous frequency function.

From (6-17),
A_+A

6! (t=1/[w)=u,1) = klotu,] + %[wl-wzl{ﬁ} . (6-21)

and ¢'(1T/[w1—w2])maX + tw 3g A1+A2 or, equivalently, as q-1.
Therefore, when t = n/[wl—wz], ¢'(t) + o« or -» as g approaches
unity from a value greater than 1, or less than 1, respectively.
In the practical case, for q small, but greater than unity, the
positive peaks of the ¢'(t) function are attenuated due to the
bandwidth limitations incorporated in the 6O-meter. This lowers
the value of ¢'(t). Conversely, for q<l but near unity, ¢'(t)
"attempts" to become very small and much less than w, its theoretical
average value. When ¢'(t), a positive quantity, "attempts" to
become negative, it is reflected positive. This substantially
raises the average value of ¢'(t), ¢'(t). These effects are both
evident in Fig. 6.2, A solution to this system deficiency is to
translate the audio band upwards (using SSB modulation) in order
to eliminate the source of the greatest errors, the positive

reflections of ¢'(t) for q<l. Figure 6.4 shows the results of

*
5OE¢'(t); 5m5¢'(t) for s'(t). Note that Py is average rate of
. , -1 - U
zero crossings and has dimensions of sec whereas po or pm is
average value of instantaneous frequency and has dimensions of

radians/sec.
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SSB modulating a 1 KHz--4 KHz tone complex with a 60 KHz carrier

(W = 60 KHz in Fig. 6.3) and then measuring ¢'(t) via the ﬁameter.
4.4

. [
NE |

2.8

0.8

CARRIER COUNTER INDICATION IN KILOCYCLES PER SECOND

0.4

94 -3 -2 -l o 1 2 3 4
RATIO OF HIGHER FREQUENCY TO LOWER FREQUENCY
INPUT AMPLITUDE IN DECIBELS
Fig. 6.4 Response of a 50-
meter to a SSB modulated 1 KHz=4 Khz
tone complex. Carrier frequency is

60 KHz. (From [P-9].)

The transition region has been substantially reduced, especially

for the A2<A1 (negative db) range.

Peterson summarized his analysis by stating that the audio
band is badly situated for obtaining an accurate estimate of the
average value of the instantaneous frequency of a two-tone signal
and that SSB modulation must be used to insure an accurate indication.
He concluded his investigation with experimental tests, using the
SSB 5o—meter on speech waveforms. He found that the 50 trajectory
was generally higher than that of the first formant, F1l, and was
located between the first and second formant spectrogram bars.

For differentiated speech, the 2 trajectory closely paralleled,

but was somewhat higher than,the second formant spectrogram bar.
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He concluded that "the average axis crossing rates [as estimated by
$'(t)] cannot be trusted in general to follow specific [formant
spectrogram] bars, whether the speech is normal or differentiated"
and that "the [formant] bars higher in the spectrum affect the
axis crossing averages.'" Finally, tests with SSB 50- and 5m—
meters using bandpass filtered speech provided a fairly accurate
estimate of Fl (bandpass = 0.2-1.0 KHz) and F2 (bandpass = 1.0-
4.0 KHz). Estimation of F2 was made more accurate by introducing
a 6 db per octave attenuation in the 1.0-4.0 KHz bandpass filter.

Three questions arise after consideration of Chang [C-4]

and Peterson [P-9]:

1: Of what value are simple zero crossing measurements
(e.g., precise 50~ or 5m— meters) in obtaining accurate estimates

of formant frequencies?

2: Is there any zero crossing measurement which can provide
accurate estimates of formant frequencies?

3: Is 50 [ 2¢7(t) ] = LAd:N ? That is, is the average
value of the instantaneous frequency proportional to the average

rate of zero crossings?

Peterson and Hanne, Focht, and Scarr have provided some answers to

questions 1l: and 2:. Question 3: is considered in sec. 6.5.

6.3.3 Peterson and Hanne

We first consider Peterson and Hanne's answer to question 1:.
They analyzed the ideal case where, by filtering, it is possible to
isolate a single formant and, by deconvolution (e.g., [M-11]), the

effect of glottal excitation may effectively be removed [P-12].

1
!
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The transfer function of a resonator model for a single
formant is [F-2, p. 53]

F12 + (B/2)2

;o 2
{[(Fl—f)2 + (13/?.)2][(F1+f)2 + (8/2)2]}
(6-22)

|H(E)| = 0

where Fl is the formant frequency4 and B is the formant bandwidth.

If F, > B/2 (usual for vowels), then IH(f)Imax occurs for

f = [F12 - (B/Z)z]% . '(6-23)

The result of periodically exciting this resonator with an impulse

(delta function) of period T is

-mB(t-nT)

s(t) = J U(t-nT)-a-e sin[21F, (t-nT)+21¢] , (6-24)
n=0

- - -1
where a [1-2-e TrBT-cos ZWFlT + e 2mBT 12,

]

tan 2md [ sin 21rF1T/(eTrBT -~ cos ZnFlT) 1,

and U(x) is the unit step,
U(x) {

Peterson and Hanne showed that for

Zn-l o . 2ohl , 03 1, (6-25)
Fl ~ Fl Vg

s(t) will exhibit 2n zero crossings per period. Then the average
- counted rate of zero crossings per second is Po = 2n/T. For

T = (2n+1)/F1, there is a discontinuity of magnitude 2Fo (Fo=l/T)

4 Fl represents an arbitrary formant frequency here, not necessarily

the first formant. Our notation is that of [P-12] and Fig. 6.5.
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in po. Figure 6.5 shows po ( the zero crossing counter estimate of

F1 is po/2) vs T, the period of resonant cavity excitation. The

envelopes of the CH output are given by

E(T) = 2F, *F_ , F_ =1/T. (6-26)

4R

O L N s S

(o]
1 3 5 i 9 nooon ]
2R, 2R 2R 2F, 2R F 2R 2R,

. Formant frequency estimated by zero crossing counter

Fig. 6.5 Steady state zero crossing
frequency estimation of a single formant (f=Fl)
resonator as a function of the period of
impulse excitation. (From [P-12].)

Therefore, the error in estimating formant frequency using an
accurate zero crossing counter method can be as much as FO/Z.
Furthermore, this estimate is the nearest harmonic of FO to Fl
rather than--as is often suggested--the strongest harmonic of FO.
Since the resonance peak of |H(f)| does not occur exactly at F1

(see equation (6-23) ), the strongest harmonic of FO is not

necessarily the nearest to Fl.

~ Peterson and Hanne also calculated the estimate of formant
frequency afforded by a harmonic tracker which indicates the frequency
of the strongest harmonic of Fo‘ They showed that, in contrast to

the maximum frequency magnitude error of the zero crossing counter--
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O.SFO——the strongest harmonic tracker has a maximum frequency magni-
tude error which ranges from O.550F0, for Fl = 2.55F0, to 0.515F0,

for F1 = 8.5F0. Nevertheless, it turns out that the strongest har-

monic tracker is a slightly better Fl estimator on the basis of

maximum percentage error.

In summary, both methods of formant frequency estimation
yield approximately the same large percentage maximum error in
estimating formant frequency as long as the actual formant frequency
is less than about 17F0 ( error = 3% in this case ). . Thus, even in
these ideal circumstances ( single formant, glottal waveform influence
removed) a simple zero crossing formant frequency estimator is
potentially as inaccurate as a more conventional "highest energy"

harmonic tracker.

6.3.4 Focht

One answer to question 2: is provided by L. R. Focht [F-10].
In a study of the perceptual identity of various combinations of
formant amplitudes and frequencies, for three-formant sounds, Focht
found that only two formants (F1-F2, F1-F3, or F2—F3); depending on
the particular vowel, were required to specify the perceptual
value of a vowel. A plot of Fd (the frequency of the larger
amplitude or dominant formant) vs Fr (the frequency of the lesser
amplitude or recessive formant) revealed that all isophonemic areas
on the F -Fr plane intersect the F

d d
different single equivalent formant (SEF) frequency can be specified

= Fr line. In other words, a

to evoke the perceptual response of each vowel. The frequencies of
vowel SEF's are shown in Fig. 6.6. Moreover, Focht stated that "it
was observed that the zero-axis crossing period of the first excursion
for the speech wave after glottal . . . excitation is proportional
to the half-period of the largest amplitude formant. The value of

the SEF was also found to follow closely the dominant formant
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frequency. Thus a reasonable approximation of the SEF parameter may
be made by the measurement of the first zero-axis crossing period
after each excitation pulse." 1In section 6.5 we shall describe a

limited vocabulary speech recognizer based upon the SEF principle.

3rd FORMANT

3000(
L?.nd FORMANT
1000
: x
STIMULUS -
FORMANT -
FREQUENCY |
( Hz ) -
L\ Llst FORMANT
SINGLE EQUIVALENT
FORMANT
ool 1L 1 L1t 1111t
UUODAaa2e3ETI
PERCEIVED RESPONSE

Fig. 6.6 Single equivalent formant
(SEF) frequencies (heavy line) for English
vowels. Conventional F., F2, and F3 are
shown by light lines. (From [T-2]:

6.3.5 Scarr

R. W. Scarr's work [S-4] represents a theoretical and
experimental extension of that of Peterson and Hanne [P-12] and

Focht [F-10].
Equation (6-22) can be rewritten as

|u(£)| = 1 (6-27)

2%
{[1—(f/Fl)2]2 + [£B/F,1%}

_ f
with arg [ H(f) ] = tan 1 ( /F1) ~ (6-28)
: QL(f/F )% - 1] ’
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This criterion is generally

and Q = /?12 + (8/2)?/8 if (B/2)%2 << F

satisfied for English vowel formants.

1°

Using this simplified version of the single formant model,
Scarr analyzed the expected waveform zero crossing pattern when the

excitation is a bandlimited sawtooth waveform, 3

g(t) = K (sinQt + sin2Qt/2 + sin3Qt/3 + . . . ). (6-29)
"K'" is an arbitrary constant and F0 = Q/27 = 1/T is the excitation
or voicing frequency. Scarr considered only the second, third and

fourth harmonics of (6~29). The output of the resonator is then

s(t) = AzsinZRt + A_sin3Qt + A, sin4Qt

3 4
+ BZCOSZQt + B3c0539t + Bacoséﬂt s (6~30)
[ 1 - (nF /F.)2?]

where A.n =-§ _— o 1 Tk . (6-31)

{[l—(nFO/Fl) 14 + [nFOB/Fl 14}

nF B/F 2

B_ =.§ - 2° 1 — ,  (6-32)

{[1-(oF_/F})2]2 + [nF B/F 212}
and tannl[Bn/An] = arg [ H(nFo) 1 . (6~-33)

Equation (6-30) was solved (iteratively) for s(t) = 0 for varying
Fo’ ;30 Hz g F0 < 200 Hz with Fl = 500 Hz., Figure 6.7 shows

contours which represent the position where the zero crossings of
s(t) occur as a function of the phase angle Y. The time interval
At between any two adjacent contours separated horizontally by Ay

degrees is

At = (A¢/360)-(1/F0) = (Ay/360)°T. (6~34)

\

'

Peterson and Hanne [P-12] dealt only with the case of periodic
delta function excitation of the resonator.
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Fig. 6.7 Zero crossing pattern for equation
(6-30) as a function of voicing frequency, for
F; = 500 Hz. Each number represents Ay, in
degrees, for the intersection of the contour
lines (on either side of the number) with the
horizontal line immediately below that same
number. (From [S-4].)

Scarr calculated the frequency f represented by the average zero

crossing interval AE,

He also found that the frequency f. represented by the phase interval

1
separating the two vertical contours at the left of Fig. 6.7,

ice., £,= (360/09)-(F_/2) (6~36)

where the Aw—Fo pairs are 46°-130 Hz, 49°-135 Hz . . . 83°-200 Hz,

gave the best estimate (of all pairs of adjacent contours) of Fl.
His results showed that while f varied as much as +70 or -110 Hz

from Fl for varying Fo’ fl remained within +10 and -65 Hz of Fl'

Scarr also noted that fl varies smoothly with Fo' In contrast, £,
as well as being a poorer estimate of Fl’ is a discontinuous function
of FO. The calculations also showed that the peak amplitude of s(t)
always fell between the pair of vertical contours at the right of

Fig. 6.7. 1In summary, Scarr stated that--for this model--a measure
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of frequency based upon the zero crossing interval following that
interval containing the maximum value of s(t) is a better estimate
of Fl than that derived from the average zero crossing interval
length.

Scarr also showed that the following conditions govern the

number of zero crossings per second——po——of a slightly more complicated

version of (6~13):

s(t) = Alsin nt+ Asin (m t+6) , m> n. (6-37)

2

1: If A >A =2mf , f = w/2m.

271 Po
2: If A2=Al’ Py is usually 2mf but may be, depending
on 0, (ntm)f. ’

3: If m/n>Al/A2>1, po=2pf, where n<p<m.

4y If m/n=Al/A2, po=2nf, including (m~n)f triple zeros if
0

= 0 or 2w.

5: If Al/A2>m/n, po=2nf.

Clearly, these results represent an extension and confirmation of
those of E. Peterson and Lobanov. For example, note that if SSB
modulation is applied to s(t) then, for a carrier frequency W,
such that w, = kw >> mw, (mtk)/(n+k) - 1. Then, as Peterson noted,

regions 3: and 4: are narrowed and

2mf + wo/n s A2>Al

2nf + wo/n , A1>A2 . (6-38)

Scarr's experimental work consisted of a comparison of
formant frequency estimations derived using the ''second crossing
interval' (equation (6-36) ) of bandpass filtered speech sounds
[passband = 250-1200 Hz, 950-1500 Hz or 1500-3000 Hz] with those
extracted from a 13 channel third-octave filter bank [290-6000 Hz]
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by "peak-picking" techniques. The true formant positions were
visually determined by inspection of speech spectrograms. Scarr
summarized his results by referring to physiological vowel

correlates (see Fig. 3.8b):

For "front" vowels (/i/,/1/,/e/,/2 /) both methods gave

good Fl-Fz estimation and separation.

For "central" vowels (/>/,/A/,/al,/8/), F, and F, fall
within the same (250-1200 Hz) region and the zero crossing estimate
gave the average frequency of F1 and F2. This result is in overall
agreement with Focht's SEF findings (see Fig. 6.6), and both
Peterson's [P-9], Lobanov's and Scarr's predictions concerning two~

tone signals.

For "back" vowels (/U/,/u/), having closely spaced Fl—F2
and large Fl, zero crossing estimates indicated the position of
F1, Fl.
Generally, in close agreement with the analysis of
Peterson and Hanne [P-12], both the zero crossing and '"peak-picking"
methods were subject to large errors and neither was entirely

satisfactory.

6.3.6" Summary

Before closing this section, we note that Lavington
demonstrated experimentally that--for synthesized speech sounds--
the following zero crossing-formant frequency correlations can be

observed [L-4]:

1) The number of zero crossings "T" per 10 msec. of the
differentiated waveform shows a close correlation with the average

value of F, and F,_, i.e., "T"=0.05(F2+F3)/2 -73.

2 3’

2) Plots of the number of waveform zero crossings per 10
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msec., "Z", vs "T"--for various phonemes--ostensibly divided the

Z-T plane into isophonemic regions.

However, the measurements seem quite arbitrary and no
rationale is given for using them.

Finally, Ahmed showed [A-1] that if the number of zero
croseings in a short time interval, "n'", is plotted against the
time interval duration, At, for a sustained vowel, then a straight
line approximated by n=kAt results. The slopes "k" for different
speakers uttering the same vowel are more similar than for one
speaker uttering different vowels. This report, however, is not

conclusive.

In summary, the use of zero crossings for formant frequency
estimation is, theoretically, well founded and, experimentally,
reasonably successful Zf prefiltering excludes other formants. If
two formants are present then the frequency of either formant can
be estimated closely by zero crossing methods ©f suitable pre-
emphasis ensures that the amplitude of the desired formant is

dominant, and SSB counting methods (e.g., sec. 6.3.2) are used.

6.4 Frequency Division by Zero Crossing Manipulation

We have already briefly discussed a specific type of
speech signal transformation, single sideband modulation (SSB), and

two phenomena associated with it:

1. Single Sideband Clipping (M1, sec. 5.1.7):

The envelope of a speech signal——|m(t)]——is not perceptually
recognizeable as speech; the phase function of a speech signal~-cos
¢(t)--is, perceptually, essentially the same as the original
signal. That is,

cos ¢(t) 4 |m(t)|cos o(t) ,

where "P'" denotes "perceptually.”
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2, Single Sideband Frequency Estimation (sec. 6.3.2):

Estimation of the average value of the instantaneous
frequency-—¢'(t)--of a two-tone signal (one approximation to Py the
average time rate of zero crossings) is ambiguous for a wide range

of tone amplitude ratios unless SSB modulation methods are used.
In summary, the phase of s(t), ¢(t), yields both cos ¢(t),

and cos ¢(t) 3 s(t) . (6-39)
and ¢'(t),

where ¢’ (t) = 50 . (6-40)

6.4.1 Bandwidth Compression Techniques

Marcou and Daguet reasoned that if the constant amplitude

signal

SwOSSB(t) = cos [wot + ¢.(t)] (6-41)

is frequency divided by '"n" to yield

s = cos{[wot + ¢(£)]/n} ,  (6-42)

n,u ssB(t)
(o]

then, provided that ¢'(t)max<w0, "the spectrum of cos{[w0t+¢(t)]/n}
will be effectively narrower than that of cos [w0t+¢(t)] by the
factor n." They implemented this system and found that, for speech
input, the signal obtained by frequency division, transmission

over a channel, and frequency multiplication 'was evidently of high
intrinsic intelligibility but . . . difficulties are encountered
when it ig required to pass the divided signal through a narrow

. band filter which cuts off sharply." (Italics mine.) [M-5]

Cherry and Phillips explained this phenomenon. They noted
[C-9] that equation (6-17), describing ¢'(t) for a two-tone signal,
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can be rewritten as

2 . -
g + q W, + q(wl+w2) cos(w2 wl)t

$'(t) = , (6-43)

1+ q%+ 2q'cos(w2—wl)t

with q = AZ/Al' From (6-43), it is clear that ¢'(t) is a periodic
function, pericd T = 2w/(w2—wl). In Fig. 6.3, for example, T = 7/w.
Therefore, although the frequency divided signal, cos{[wot+¢(t)]/n},
has its major component at frequency (wo+wl)/n——assuming that A1>A2——,
the second harmonic occurs at

w = (wo+wl)/n + (wz—wl . (6-44)

This demonstrates that although the major (i.e., greatest amplitude)
signal component 78 divided down in frequency, the inter—tone

spacing, is preserved. Frequency division is, therefore, a

w,=w
2 1

bandwidth preserving transformation. In the case of unvoiced
sounds the argument given against bandwidth reduction by frequency

division is less convincing.

Marcou and Daguet's alternative suggestion, that ¢'(t) be
divided and manipulated directly for bandwidth compression purposes,
neglects the fact that-—-as shown by Peterson——¢'(t) is not band-

limited.

R. Bogner experimentally confirmed that, for more complicated
signals, frequency division has two major effects. First, it trans-
lates the entire signal spectrum downwards in frequency, with the
spectral component of largest magnitude being the only component
that is truly frequency divided [B—ll].5 Second, it suppresses
[relatively] minor spectral components and tends to produce a
spectrum which is symmetrical about the largest magnitude component.

In addition, he demonstrated analytically that the recovery of the

5Bogner showed that, similarly, frequency multiplication produces
an upward frequency translation of the signal spectrum about the
largest amplitude frequency component. [X-1]
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original signal after remultiplication depends upon the cancellation
of several terms, so that very accurate preservation of the phase
and amplitude characteristics of the frequency divided signal is
important. Bogner also explained that the distortion noted by
Marcou and Daguét when a lowpass filter was inserted into their
frequency division system was undoubtedly attributable to phase

errors incurred by fréquency division during time periods of small

minima of |m(t)|. Although "jumps" in phase of 2m/n (in an imper-
fectly frequency divided signal) are audible oﬂly as a series of

faint clicks, insertion of a narrow bandwidth filter modifies the
clicks so as to produce "chirps", following signal multiplication.

Frequent chirps produce a characteristic "burbling" distortion.

Bogner noted that rooting the envelope as well as dividing
the phase,
. 1
i.e., sl/n(t) = |m(t)| /n cosf[¢(t)/n] (6-44)

effects an apparent expansion of the dynamic range of the frequency

divider and may make the system less amenable to phase errors.

J.L. Daguet had used (1963) signal rooting (n=8) in each
of the three, separated speech formant ranges (300-700 Hz, 700-2000
Hz, and 2000-3400 Hz) to implement a practical bandwidth compression
system [D-1] using SSB modulation. Schroeder, Flanagan and Lundry
later [1967; S-8] simulated a four-channel, bandwidth compression
system--using '"signal rooting"--directly, without SSB modulation.
They showed that, for n=2, (6-44) can be written as

51/5(t) = (1/2)1/2 [m(t)| + s ()12 , (6-45)

and noted that the phase ambiguity inherent in taking the square
root can be avoided by changing the sign of sl/Z(t) whenever ¢(t)

goes through an integer multiple of 27 radianms.



276

6.5 The Relationship between the Spectrum and
the Instantaneous Frequency of a Signal

Both ¢'(t), the instantaneous frequency, and S(f), the
Fourier transform or "spectrum', are derived from the same source--
the signal s(t); both constitute, in different senses, descriptions
of that signal. In section 6.3.2, for example, we noted that for a
two-tone signal, ¢'(t) indicates the spectral frequency of the tone
having the larger amplitude. Can direct, more generalized,
relationships be established between ¢'(t) and S(£f)? We pfovide some

answers to this question in this section.

6.5.1 Fink's Theorems

We first define j w G(w) du
0
wr = - , (6-46)
J G(w) dw
0

as the mean frequency, or centroid, of the power spectrum G(w).
Here, G(w) = |S(w)|2, where S(w) = F{s(t)}.

The mean-square frequency of G(w) is defined as [B-16,
p. 155]

~ 8

w? G(w) dw

R (6-47)

~ 8 |O~-

II
G(w) dw

o

- while the mean-square width of G(w) is [B-16, p. 156]

[=-]

(w—wI)2 G(w) dw

—

= w__~w 2., (6-48)

2 _
(bw)© = 11 %1

- 8 {O

G(w) dw
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L. Fink defined the following measures of the instantaneous frequency,

¢'(t), of the signal s(t) having envelope Im(t)l and phase ¢(t) [F-7]:

The mean instantaneous f?equency:T

J o' (t)+ m(t) ]2 dat

2, = Lim 'TT (6-49)
T
J [m(t) |2 at
-T

The mean-square instantaneous frequency:

T
J (6" (£)12+|m(£) |2 dt
2 = %ii 'TT (6-50)
J [m(t) |2 dt
~T

The mean-square width (or deviation from Q) of ¢'(t):

T
J (6" (©)-0;12+ |m(£) |2 at
(42)2 = 1im ‘TT (6-51a)
Troo :
J lm(t)l2 dt
-T
or (A0)2 = Q7 - 912 . (6-51b)

Note that for signals periodic in T, all integrals need only be

evaluated over [0,T].

Fink established the following results:

1: QI = w; (6-52)

11 € 917 (6-53)

(Aw)?2 (6-54)

2 Q

3: (AQ)2

/A
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These results are subject to the existence of wp and Wrg and are

valid for the signals we shall consider. It can be shown that

equations (6-53) and (6-54) become equalities for |m(t)| constant.

6.5.2 '(t) and Q

Fink's theorgms establish direct links among QI, ¢t (),
Im(t)l, and G(w). However, how do we interpret the definition of QI?

For example, is Q. related to ¢'(t)? In order to establish a

I
relationship between Q

et al. [H-16].

I and ¢'(t), we turn to a result of Hiramatsu

Specifically, they proved that the mean value of ¢'(t),

¢'(t), over an arbitrary time T is:

(1)

7O = el - mm @ /2117 - Rem® /31172 + M@ /41773 | .

J w S(w) dw (6-55)

" where M(l) = 2 s (6-56)
J S(w) dw
0
J [m—M(l>]n S(w) dw

and M(n) = 2 , n>l . (6-57)

J S(w) dw
0

*
CIf S(M(1)+Aw) = 8 (M(l)—Aw), and if 7 is "small" (e.g., T = 30 msec.

for speech signals, as per sec. 6.3.2), then the contributions of

M(n)

the higher order moments, , in (6-55) are negligible and
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~ 8

w S(w) dw

. (6-58)

~ 8 |O-

S(w) dw

Furthermore, the assumption that S(w) possesses "symmetry" about its
mean guarantees that ©
.
w S(w) dw w G(w) dw

Re

. (6-59)

~ 8 O~

S(w) dw G(w) dw

o— 8 |O—— 38

Combining (6-46), (6-52), and (6-59) we find that, when the "symmetry'
conditions on S(w) are satisfied,
Ty ~ = -
¢' (t) wy QI . (6-60)
In summary, Hiramatsu had shown analytically that the
centroid, w1 of the power spectrum, G(w), is a reliable estimate
of ¢'(t) only when S(w) satisfies the amplitude—phase symmetry
criteria. Fink's first theorem tells us why:
i.e., for periodic signals,

r T
¢' (t)*|m(t) |2 dt

wy =8 = 5
|m(t)R at
0
1 T -
and for QI = T ¢'(t) dt = ¢'(t) , it is sufficient
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(but not necessary) that the symmetry conditions be satisfied. Thus,
when the symmetry conditions are satisfied, Fink's second and third
theorems establish bounds onlthe mean-square deviation of the
instantaneous frequency from its average value., More important
perhaps, the first theorem implies that ETzzy,--for signals which
satisfy the required amplitude~phase criteria--is independent of

the absolute value of the phase spectrum of S(w) provided that

the required phase symmetry is present.

For the simple example of the two-tone signal [s(t) =

Alsinwlt + Azsinwzt] substitution of |m(t)|, (6-15), and ¢'(t), (6-43),

into (6-49) yields

Q. = + (6-61)
Tong® 1472

where q = A2/A1. When the symmetry criterion is satisfied,
i.e., @>>1 or 0<q<<l ,

(6-61) yields Qléngfy = w,
ment with (6-19). For example, when q = 4 or 1/4, then QI = 0.94w2 +
0.06wl or 0.94(»l
although (6-49) is fairly difficult to evaluate directly, Fink's

oT W, respectively. This is in agree-
+ 0.06w2, respectively. It should be noted that,

theorgm 1, equation (6-52), enables (6~-61) to be calculated by

simple, direct reference to the power spectrum of s(t).

As another example, the bound on the deviation of ¢'(t)
from QI (for the two-tone signal) can be calculated directly using
(6-48) and (6-54):

f.e., (M)2€ (Bw)? = [q/(1+4*)]? (w;-w,)? . (6-62)

Then, for values of q such that QIﬁ¢'(t), we would expect that

(26" (1% = e ¢ [0/ rgh)) P ? (6-63)
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where (86" (©)1% = 0" (0)% - T (D)2 (6~64)
is the mean~square deviation of ¢'(t) from ¢'(t).

The actual value of [Acb'(t)]2 is calculated by using ¢'(t),
(6-17), in (6-64). This yields, after much manipulation,

(86" (1% = [(Jk]-D?/8]k|] (w-u)? , (6-65)
with k = (Al—AZ)/(A1+A2) | ~(6-66a)
= (1-q9)/Q+aq . (6-66b)

Rewriting (6—52) with q = (1-k)/(1+k) gives

ew)? = (k5 /204317 @)’ .

Hence, for the approximate range [1/2<|k]<1]—-i.e., [0<q<1/3] or

[3<q<w]——¢'(t)=QI and, from (6-63), we expect that

(86" (£1% = (oy0,) 21 ([k]-12/8]K] 1 (0, ) 211D /24517 = (aw)?

or [(k]-1)%72|k | 1sL K2y /14212 . (6-67)
This is indeed the case.

The two-tone signal is, spectrally, somewhat simple, How-
ever, the single formant resonator satisfies the symmetry criteria
(see sec. 6.3.5, equations (6-27) and (6-28) ). We would therefore
expect that the value of $' (t) would accurately approximate Fl’ the

frequency of maximum resonator output (= formant frequency).

Experimentally, Hiramatsu found that the estimate of formant
frequency afforded by ¢'(t) was invariably more accurate than that

" resulting from the calculation of w_, equation (6-46). For unfiltered

I
vowels (i.e., multi-peaked spectra) the maximum error in estimating
the frequency of the largest amplitude formant using ¢'(t) --pro-
vided the amplitude of this formant was at least 6 db above the

others—--was F0/2, half the voicing frequency. This is exactly the
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the maximum error predicted by Peterson and Hanne for measuring the

formant frequency of a periodically pulsed single formant resonator
. . 6

(sec. 6.3.3) using "average rate of zero crossings'! In contrast,

the maximum error of w. based estimates was Fo' When bandpass

I
filtering was introduced to insure that only the first formant, F1,

was present--thus satisfying the symmetry conditions--both the

¢'(t) and o estimates had a maximum error of Fo/2. Generally, the

¢'(t) estimates were more accurate than the Wy estimates.

In summary, we have shown that the average value of the
instantaneous frequency ¢'(t) —4$TTEFF— of a signal provides an
accurate, reliable estimate of the centroid of the power spectrum
G(w) only when the spectrum S(w) possesses amplitude-phase symmetry
about the centroid w.. When the symmetry criteria are not
satisfied, then T

¢’ ().

m(t) |2 dt

I
W, = QI = OT # ¢'(t), by definition.
j Im(e) |2 dt

0

Therefore, in the case when the symmetry criteria are
satisfied (again using a periodic signal)--e.g., the single formant

resonator-—-,

wy = QI = ¢'(t)

and, since w_ = 2ﬂfI, we obtain an expression for the average rate

of zero crossings, G using the results of Peterson and Hanne

(sec. 6.3.3):

Py = 2fI . (6-68)

Here, fI is the nearest spectral component to fI. Therefore, for

6.,
Hiramatsu was apparently unaware of this work,
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the periodically excited single formant resonator,

o
i
[N+
Hh
1
[+
Hh
i

1= B /= o' (t)/m

or p =¢'(t)/m =5 [/m . (6-69)

It follows that (as Hiramatsu experimentally observed) the best

zero crossing estimate of F,, for an isolated formant, is

l’

o' (t)/ 2w = P [2n = f_ . I(6—70)

6.6 Zero Crossing Interval Sequences as
Descriptors of Speech Sounds

In section 6.3 we described methods of processing 'zero
crossings" so as to yield an objective estimate of speech formant
frequencies. The interpretation of zero crossing interval sequences
as patterns, without explicit reference to the frequency domain, is

of great relevance to automatic speech recognition studies.

6.6.1 The Intervalgram

S. Chang proposed [C-5] that if the interval, At, between
adjacent zero crossings of a speech waveform or its derivative is
displayed as a function of time, then the number of points per
unit area on the At-t plane~~defined as the intervalgram--could be
interpreted in a manner analogous to the spectral energy density
displayed in a spectrogram. Figure 6.8 shows the method of
generation of intervalgrams. Figure 6.9 a,b,c shows intervalgrams
- for the vowel /u/, while Fig. 6.10 shows an intervalgram for the

words "one, two' spoken in succession.
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Fig. 6.8 Generation of "Intervalgram."
(From [C-5].)

Fig. 6.9a Intervalgram for vowel /u/, speaker LRM.
Sweep = 2 msec/cm.
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: | | v}' ,

Fig. 6.9b Intervalgram for /u/.
Sweep = 10 msec/cm.

Fig. 6.9c Intervalgram for /u/.
Sweep = 50 msec/cm, with beam
suppression as per Fig. 6.8g.

Fig. 6.10 Intervalgram for words "one, two"
spoken in succession. Sweep = 500 msec/cm.
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We recall here that the bandwidths chosen for the "analyzing
filters" in the speech spectrograph are invariably a compromise
between frequency resolution and time resolution. M. Lecours has
shown, for example, that Cherry's suggestion (sec. 3.2.3) regarding
variable bandwidth filters in models of the auditory system is
applicable to automatic speech recognition [L-5]. Is it possible
(as Chang suggests) tﬁat zero crossing intervals, which may be
measured with arbitrary accuracy, are in some respects superior to

short-term spectral analyses as an estimate of the speech waveform?

Chang also noted that other functions can be substituted
for the linear ramp--which gives a vertical axis gradation linear
with respect to time. A hyperbolic wave generator, which can be
approximated by an exponential source, gives a vertical axis
gradation linear in frequency. Finally, Chang argued that the
centre of gravity of the intervalgram, with respect to the At scale,

approximates the Py function.

T. Sakai and S. Inoue suggested that the zero crossing
intervals of speech waveforms be classified into a number of
channels [S-1], each channel corresponding to a range of zero
crossing interval lengths. This is equivalent to dividing the
vertical axis of the intervalgram into a number of discrete,
contiguous segments, or "bins'", and projecting the '"dots" representing
the lengths of the zero crossing intervals occurring over some
larger time interval--corresponding to a vowel, for example--
horizontally, i.e., into the "bins". The array of numbers
representing the number of interval lengths falling into each
" "bin", or channel, can be defined as a zero crossing interval

histogran.

More specifically, Davenport defined a first-order density

distribution associated with measurement of zero crossing intervals
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over a time interval T [D-3]:

i=1,...¢c , (6-71)

where n, is the number of zero crossing intervals falling into the
ith of ¢ channels,
Ari is the time interval difference between the upper and

lower limits of the ith channel,

and Tmi is the time representing the midpoint of the ith
channel.
In equation (6-71), ft(rmi) is defined by [D-3]
ft('tmi)-A'ti = P(rmi) s (6-72)

where P(Tmi) is the probability that a given instant of time ¢,

the duration of the zero crossing interval falls within the limits
[rmi-Ari/Z, rmi+Ari/2]. Strictly speaking, (6-71) obtains only for
T+~ and Ari+0.

Sakai and Inoue measured ft(rmi) for Japanese vowels and
found that characteristic peaked distributions resulted (Fig. 6.11).
They noted that "the peaks in longer intervals seem to correspond
to the first formants of /i/, /e/, /o/, and /u/, but the peak of
/a/ is probably a combination of the first and second formants.
The peaks in shorter intervals are the second or third formants of
/i/ and /e/." [S-1] They further observed that "if the peak in a
[the] shorter interval is removed from /i/ by a low-pass filter,
" the distribution of the zero crossing wave turns to that of /u/.
Such an /i/ is misheard by listeners as fu/ . . . It was found
that filtered [low~ and high-pass] vowels that generate similar
distribution patterns were often confused with each other in

listening tests made at the same time." It appears, therefore,
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that zero crossing interval distributions ‘mplicitly relate back to

the spectral nature of the source signal.

pd
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-
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o

— Wi (Twmi)
>

1 2
X 2 M)

a: original signal b: differentiated signal
Fig. 6.11 First-order density distribution Wl(rmi)

[ft(Tmi)] vs T [Tmi], for a male Japanese speaker. (From

[s-13.)

Histograms, or first-order distributions (which are really
weighted histograms), fail to retain information concerning the
sequence in which different zero crossing interval lengths occur.
Experiments relating to the digram siructure of the zero crossing
intervals of speech waveforms (specification of the relative
frequencies of occurence of different pairs of interval lengths in
succession) have been carried out by MacKay et al. [M-2]. They
found that digram displays discriminate among vowel sounds that
generate almost identical histograms, and that articulator move-

ments are reflected in "corresponding movements of major points of

the display.”
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6.7 The Use of Zero Crossings in Automatic Speech Recognition:
Some Examples

In section 4.3 we described in detail some schemes for
using spectral speech data in automatic recognition. Besides
considering the measure of spectral information used, we also
briefly described the method of training the machine and carrying
out the recognition phase. This description was intended to
familiarize the reader with conventional methods prior to the

introduction of adaptive algorithms in chapter 7.

Therefore, in this section the discussion of the use of
zero crossings in automatic speech recognition will be limited to
a description of the measure of zero crossing information used, and
the rationale for the particular choice. We shall group the schemes

according to the measure of zero crossing information used.

6.7.1 Average Rate of Zero Crossings

"Audrey'--an automatic digit recognizer--was one of the
earliest attempts at automatic speech recognition [D-6, 1952].
Audrey used the average rate of zero crossings in 1) the 200-900 Hz
band and 2) the 800-3000 Hz band (presumably detected by 5o—meters)
as input to the X and Y axes of an oscilloscope. The time varying
trajecfory displayed for each spoken digit was then regarded as a
pattern representative of that digit. Training and recognition was
effected by measuring the time occupancy, of the trajectory, im each

of 30 squares of a 6x5 grid superimposed upon the oscilloscope screen.,

Subject to the criterion that only one formant was actually
‘present in each of the two channels, Audrey's input consisted of
zero crossing estimates of Fl and F2 of the type described in
sec. 6.3.3 and 6.5. Effectively, then, this was an Fl-F2 tracker
and the results (=987 correct classification for a single speaker)
are about the same as those of other systems of the same genre(e.g.,

sec, 4.3.1).



190

Seventeen years after "Audrey'", Ewing and Taylor [1969, E-4]
suggested that "a display of averaged zero crossing rate of the
original waveform versus that of the differentiated waveform should
be of interest . . . it would be a pattern defined by the first

and second formants. . . ."6

C. Howard also used a 5O-meter to track F, in bandpass

1
filtered (300-1000 Hz) speech [H-21]. He then used this first 50
estimate to tune an active filter so as to more accurately define

the actual position of F

1° A second ﬁo-meter was applied to the
active filter output and a final, ostensibly more accurate, Fl
estimate resulted. Finally, the accurate F, estimate was used to

1
tune another active filter so as to ensure that no Fl1 energy entered

the F2 50—meter.

Lobanov showed that average zero crossing rates could also
be used to separate phonemes into various classes [L-24]. We recall
his expression, equation (6-14), for the average number of zero

~ crossings per second of a two-tone signal (equation (6-13) ):
2(oF, -2F. ) sin T[A /A ] + 2F, , OgA /A <l
T2 T 271 1 Y2

2F2 s A2>Al . (6=73)

If this function is plotted and compared to the (imperfect) estimate
of the average value of instantaneous frequency obtained by an audio
band ﬁo-meter (Fig. 6.2), it is clear that the two curves are equal

for A >A

] and are identical in shape for A >A,. However, Lobanov's

12

) 6They also claimed that "we have found no indication in the litera-
ture. . . to show that anyone else has attempted to verify Chang's
conclusions [regarding the similarity of Po and Fl’ and P and F2]

for speech sounds." Peterson (sec. 6.3.2), of course, quantified
Chang's conclusions [C-4] in the same year Chang's work was published.
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function has a slower rate of fall for decreasing AZ/Al'

Lobanov, and Howard, argued that unvoiced fricatives (/f/,
/6/, /s/, ///) can be modelled as a band of white Gaussian noises of
"proper center frequency and bandwidth.' [H-21] Such a signal, having
bandwidth Af and centre frequency fo, has an average time rate of zero

crossings given by (from equation 6-2):

pe =2 [£.% + A£2/121% . (6-74)
Finally, Lobanov suggested that an acceptable model for
certain voiced fricatives (e.g., /z/) is a sine wave of having
randomly distributed amplitude and phase (but not frequency) super-
imposed upon a white Gaussian noise background. In this case
(see [B-3, p. 384]),
£ 2:Q2/2 + M
=2 |[—— 21 .. . (6-75)
Q?/2 + M,

Here the sine wave is r(t) = Q'sin(ZHfst + ¢) and r(t), Q, and ¢

pvf

have (respectively) Gaussian, Rayleigh, and uniform distributions.
Q=E{Q} and MO’ M2 are defined by equation (6-10). For Q~0,
(6-75)+(6~11); for G(f)=0, (6-75) = 2fs, as expected. If A2>Al’
po>pvf; if A1>A2, a value of [AZ/AI] can always be found such that
Pyt Por

Lobanov showed that by proper use of pre—emphasis, fricatives
(both voiced and unvoiced) can be separated from vowels using average
zero crossing measurements and equations (6-73), (6-74) and (6-75).
For example, good separation of vowels from unvoiced fricatives is
ensured by pre-emphasizing the first formant region; then p°=‘2Fl
while Pe is very large. However, since fS=F1 for speech sounds
(equation (6-75) ), this type of filtering can lead to a low value

of p_ .. In summary, Lobanov found that--for Russian speech sounds—-
vE
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a simple differentiating network with a time constant of 48 usec.

.produced maximum separation of vowels from voiced and unvoiced

fricatives when the average zero crossing rate criterion was used.

A scheme somewhat analogous to that proposed by Lobanov had
been used by Wiren and Stubbs [W-8] to separate voiced-unvoiced
sounds in the first stage of a phoneme classification system based
upon 'distinctive features" (e.g., Cherry et al., [C-8]). They
generated a sawtooth voltage between zero crossings (see Fig. 6.8)
and allowed only sawtooth peaks greater than some arbitrary height
to be amplified and gated through to a "voiced-unvoiced" relay coil.
This system depends upon the greater average zero crossing interval
in voiced sounds predicted as a consequence of equation (6-~73) and

observed by Chang (sec. 6.3.1).

Histograms showing the total number of zero crossings for
a large sample of unvoiced fricatives and stops suggested to Wiren
and Stubbs that these sound classes might be objectively distinguished
using a measure of average rate of zero crossings. In fact, an
estimate of phoneme energy during the time required for the first
40 zero crossings was ultimately chosen. Unvoiced fricatives have
low average energy and a high average zero crossing rate (in
equation (6-74), fo>2000 Hz as per sec. 3.4.7 and [H-9], [H-26] ).
In contrast, the unvoiced stops have greater average energy and more
energy in the low frequency regions--hence a Zow expected zero

crossing rate (sec. 3.4.6).

G. Tsemel found that the general features of the spectral
noise structure of unvoiced Russian fricatives can be characterized
* by using measurements of the mean duration of zero crossing intervals
during periods of = 25 msec. and the variance of the interval lengths
[T-10]. 1In an earlier paper [T-9], Tsemel had experimentally
n_t

determined that, for the unvoiced stops (/p/, /t/, /k/) a plot of '"n"--

the number of zero crossings in the first 10 msec. of the sound--
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vs "t"-~the total sound duration--divided the n~t plane into isophonemic

regions.

H. Resnikoff discovered that the third-order moment (about the
mean) of the reciprocals of the zero crossing interval lengths for /s/
and /z/ (alveolar fricative consonants) are negative; the same measure

is positive for all other speech sounds [R-8, 9].

Finally, D. Reddy used the mean [R-4] and: standard deviation
[R-4, 5, 6] of zero crossing counts over 10 msec. periods to aid in
resolving ambiguities in segmentation of speech sounds into sustained

and transitional segments.

In summary, we note that the known acoustic properties of
speech sounds (reviewed in chapter 3) enable models to be formulated
which, in turn, suggest certain correlation of average zeroc crossing
rates with spectral features. Additionally, experimentally determined
characteristics of zero crossing interval lengths (and variance of
interval lengths) have been used in creating tests for discrimination

among phonemes.

6.7.2 Zero Crossing Interval Sequences

The simplest zero crossing interval measure is 'The zero-
axis crossing period of the first excursion in the speech wave after
glottal . . . excitation." [T-2] The reciprocal of twice this zero
crossing interval is a measure of the Single Equivalent Formant, or
SEF, frequency (sec. 6.3.4.). C. Teacher, H. Kellet and L. Focht
constructed a compact, limited vocabulary speech recognizer using

_three parameters: SEF frequency, SEF amplitude (maximum waveform
amplitude during SEF zero crossing interval) and state-of-voicing.
Performance of the system on the spoken digits, for members of the

design or "teaching" group, averaged 90% correct classification [T-2].
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W. Bezdel and H. Chandler carried out an exercise in

sustained vowel recognition by measuring zero crossing interval
histograms [B-6]. The histogram vector (row matrix) for the jth

vowel sample is defined by

Cc
. —1, -~
% - [ iz}ii] [Xl’ Xz’ e » 0 XC] (6 76)

where X, is the number of zero crossing intervals of length Ty

such that [rmi—Ari/Z <ty < Tmi+ATi/2]. Here, as in (6-71),

ATi is the width, and T the midpoint, of the ith channel.

i
Equation (6-76) is an unweighted version of ft(Tmi), equation (6-71).

During the learning phase, Bezdel and Chandler established

reference sets, éj’ for each vowel. Recognition involved comparison

of unknown histogram vectors, X, with each reference vector by such

methods as dot product [Cj = X°X., with j for Cj max identifying the

=] —
unknown class] or weighted Euclidian distance [D , = W.-(X. - X),
= _ -1 -1 w3-1]=3 Lo 3
where Ej _.éﬁ or gj (gj = [olj s °2j s o e e Ocj s an Oij is

the standard deviation of the ith element of the jth reference
vector) ]. For these tests, using c=16 and 5 different vowels
(jmax= 5), the best recognition scores were 97, 95, and 94% for
women, men, and mixed groups of speakers, respectively. These
W =S,.
=3 7]

T. Sakai and S. Doshita extended the ideas presented in

scores were obtained using the ij criterion, with

-

sec., 6.5.1 [S-1] by periodically measuring ft(rmi) for both the

F1 (0-1500 Hz) and F2 (800-2500 Hz) regions of Japanese speech [S-2].

They argued that peaks in ftLP(Tmi) and fth(Tmi) should correlate

with Fl and Fz, respectively. A fairly complicated hardware system
was provided for speech segmentation and phoneme identification.

The recognition rate claimed was 90% for the vowel part, and 70% for

the consonant part of Japanese monosyllables.
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W. Bezdel and J. Bridle also used broad (LP, HP) filtering
as a prelude to zero crossing analysis [B-4,5,7]. In their system,
zero crossing intervals are sorted into different channels, as in
other systems mentioned. However, the channel boundaries are
moveable and a separate digital interval filter is used for each
sound class to be detected. These filters are dynamically adjusted

to maximize discrimination against sounds outside of the design class.

Finally, R. Purton implemented a limited vocabulary word
recognizer using the autocorrelation functions of lowpass and highpass
filtered, then clipped, speech (0-1 KHz, 1-4 KHz) as patterns to

form master matrices for training and recognition.

6.8 Summary

In this chapter we have reviewed, related and evaluated
some methods of extracting "useful"” information from the zero
crossings of speech signals. ''Useful" implies that the measure of
information extracted is valuable for automatic recognition of
spéech processing purposes. The relationship among the various

techniques described is shown in Fig. 6.12.
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7 EXPERIMENTS IN AUTOMATIC SPEECH RECOGNITION USING ZERO
CROSSINGS

7.1 Motivation

This chapter is intended to give the reader some feel for
the actual mechanics involved in implementing a speech recogni-
tion machine. To do this we will briefly review the literature
associated with adaptive pattern recognition and then describe
in more detail two different methods of pattern recognition,
their structure and implementation. The vehicle for this des-
cription will be two short experiments in limited vocabulary
speech recognition using zero crossing data. These experiments
were originally intended to form the nucleus for the implementa-
tion of a large scale but limited vocabulary speech recognition
machine. As will be noted in sec. 7.9, this goal was abandoned
in order to carry on the studies concerning the nature of zero
crossings as signal informational attributes which comprise the

remainder of this thesis.

7.2 Pattern Recognition

We noted in Chapter 4 that the first step in recognition
is parameterization of the signal. The analogy to parameteriza-
tion in the jargon of pattern recognition is the receptor which

"has as its input a physical sample to be recognized, and as an
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output a set . . . of quantities which characterize the physical
sample. These quantities will be called measurements of the
sample . . . " [H-11].

The output of the receptor is the input to the categoriz-
er, which is "a device which assigns each of its . . . inputs to
one of a finite number . . . of categories." [H-11] As Nilsson
emphasized, adaptive pattern classifiers or learning machines
are concerned with categorization only and that "we shall hence-
forth assume that the . . . measurements yielding the pattern to
be classified have been selected as wisely as possible while re-
membering that the pattern classifier cannot itself compensate

for careless selection of measurements." [N-3]

Some methods of adaptive pattern recognition are taken
from classical detection theory [G-12], [T-1], [V-1]. Tor ex-

ample, if n classes—--§ Sn-— are to be identified and

1° SZ’ o« .
thereby correctly categorized, a cost Cij can be assigned to the
decision that a member of Si is identified as belonging to Sj
[G-12]. That is, Cii is the cost of correctly identifying a
member of Si whereas Cij’ i#j, is the cost of incorrectly‘identi—
fying a member of Si as a member of Sj' Cio could be the cost of
rejegtion, or failure to assign a class when the pattern belongs

. -1 -
to Si Generally, Cij>Cio>C It can be shown ([G-12], [H-11],

ii°
for example) that if the a priori probability of occurrence of a
pattern of the class i, 1lgi¢n, is Py then the optimum Bayesian

categorizer is the implementation of the decision function which

minimizes the expected loss

I
c(s) = ] C..vps- fMlS(mlsi).leM(dj |m) am (7-1)

i=1 j=0 ™

| o~
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where

fMlS(m|Si) is the conditional probability that a certain
measurement m will be made, given a pattern from class i at the
receptor
and

6D|M(dj|m) is the probability that the decision function
or categorizer will make the decision dj, 0 <&jgn, given the mea-

surement m, with j = 0 corresponding to rejection.

1f we let

n
z, (m) = izl (Ci4=Cyo) Py iy s ISy) > Lsiem (7-2)

where Zj(m) measures the excess of the cost of identifying a pat-
tern which gives rise to the measurement m as belonging to Sj
over the cost of failure to make any identification (Zo(m) = 0),
then it can be shown that C(8) is minimized by associating with
m the class Sj for which Zj(m) is least: that is, let GDIM(dﬁlm)
= 1 if Zj(m) < Zi(m), i#j, and zero otherwise. If the cost of
any error is equal and greater than the cost of rejection, and
if fhe cost of correct recognition is zero, then minimizing the
expected cost is equivalent to minimizing the error rate for a
given Yejectionrate [H-11], [V-1, pp. 46-52] and this type of
processor is called a maximum a posteriori probability computer
[v-1].

However, as Highlyman pointed out [H-11], fMIS(mISi) is
usually unknown to the designer of the machine and therefore
"categorizers based on the optimum decision function are not, in

general, practically realizable.'" Highlyman also asserted that
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a key factor in realizing a pattern classifier is economic
feasibility. A possible procedure is "to make no assumptions
about . . . the particular distributions involved but rather
make certain restrictioms on the structure of the categorizer.
Then search through all possible structures of this type to

find the categorizer which is optimum with respect to a sampling
of patterns from the real world." Furthermore, he emphasized,
"if the designer can limit his search to those structures which
are economically feasible, and if the optimum structure in this
class works well enough for the given purpose, then a techni-

cally feasible solution has been found."

7.2.1 Linear Decision Functions

Because the decision criterion is non-random--that is,
every point in the measurement space 1s, effectively, preassigned
to a particular category or rejected--the decision function can
be represented by the boundaries of the regions which comprise
the measurement space. If the measurement space is considered
to be a vector space of dimension N (N measurements per sample),
then a linear decision function is simply a partitioning of this
hyperspace by one or more hyperplanes, each of dimension #-1.
Then, - ""the effectiveness of a linear decision function in identi-
fying a given family of patterns is contingent upon the possi-
bility of specifying an adequate linear decision function in
terms of an economically reasonable number of hyperplanes."
([G-12], Italics mine.) We emphasize that the repeated refer-
ence to economy of implementation is vital primarily because
" published accounts of applications involving large-scale computer
simulation of decision functions frequently overlook this factor

either as a direct cost, or, because of complexity-time factors,
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as a barrier to real time implementation of the recognition

scheme.

Highlyman noted that the question of whether or not a
linear decision function is useful is partially answered by the
fact that "for any categorizer based upon minimizing a Euclidean
distance to a set of reference points there exists a categorizer
based upon a linear decision function which is at least as good.
This includes categorizers which maximize a normalized cross-

correlation function . . . "

Linear decisiqn functions are discussed in detail in
[A-4], [Dp-12], [F-19], [N-3], [P-7], [R-15], and [S-9]. Piece-
wise linear decision functions [D-12], and higher order surface
decision functions (e.g., quadratic) are similarly described in
[B-18], [B-19], [N-3], [S-9], and [S-19]. Methods of establish-
ing the positions of hypersurfaces-—training the machines--are
also detailed. We shall limit our description of training meth-
ods to those algorithms associated with the speech recognition
machines we have implemented. A useful comparison of various

recognition algorithms is given by Nagy [N-1].

7.3 Perceptual Units in Automatic Speech Recognition

The problem of deciding upon a size of perceptual element
to utilize in practical speech recognition investigations is
quite important. It is often tempting to work with the simplest
units of speech~--the phonemes--initially and then attempt to ex-
tend any progress in recognition to more complex units. Although
all acoustic information must be channelled through the same set
6f physiological transducers, the method of processing or attend-
ing to the neural signals probably varies with the difficulty

and/or the circumstances of the recognition task involved.
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Certainly we can recognize nonsense syllables under varying sets
of conditions; but the mode of recognition has been shown to vary

greatly-—there is no continuum for acoustic recognition.

For example, in one experiment (see [F-8], p. 228) four
groups of stimuli, varying in their similarity to speech, were
presented in isolation to listeners who were to learn to identify
the sounds in a certain manner. The tests showed that the great-—
er the dimensionality of the stimulus (the dimensions being fre-
quency, amplitﬁde, and time) the more rapid the learning. How-
ever, actual speech sounds were learned most rapidly of all,
with the 7least speech-like of the other tri-dimensional sounds
being the next most ''learnable" of the group. It was concluded
that the method of identification of sounds which are not speech
is completely different from the method utilized on actual

speech.

Thus, unless a sound is speech it will not elicit re-
sponse from the mechanism which identifies speech. The fact that
a stimulus is '"speech-like'" (as some of the experimental stimuli
were designed to be) apparently is not taken into account in the
recognition process until we are sure that it is actually speech.
Probably, then, the first step in hwman speech recognition is
that of deciding that the stimulus is speech. Once this decisiop
is made the recognition process can make use of the enhanced

efficiency it demonstrates when dealing with actual speech sounds.

It has also been suggested that the mechanisms involved
in the processing of isolated stimuli, even isolated speech
sounds, may be considerably different than the "running speech"
recognition mechanism. Flanagan has stated that "items such as

syllables, words, phrases and sometimes even sentences may have a



\

208

perceptual unity'" and that "attempts to recognize speech in terms
of brief acoustic units may be of little or no profit." [F-8,
p. 238].

In the experiments described in the following sections
it was necessary to restrict the size of the vocabulary. The
spoken digits were chosen for the limited vocabulary for two
reasons. First, they contain 18 of the 40 English phonemes and
therefore represent a non-trivial set as far as complexity is
concerned [S~14]. Second, this set has been chosen for many
published experiments in automatic speech recognition because
its elements represent a useful restricted vocabulary for ver-
bal machine instruction. Thus, some comparison may be made (in
a restricted sense because of differences in data rates and para-

meterization) to published results.

7.4 Experiment I: Motivation

Experiment I constituted an initial attempt at limited
vocabulary speech recognition using zero crossing information.
The motivation for this ﬁndertaking was the set of experiments
described in sec. 6.7.1 associated with average rate of zero
crossings. We wished to combine this measure of information with
a siﬁple, adaptive type recognition algorithm in an effort to

test the possibility of recognition at very low data rates.

The basic limitation on the experimental procedure at
this time was data gathering and handling. The only "automated"
data gathering system was a combination digital voltmeter, (DVM)
eight-hole paper-tape punch capable of punching 50 two decimal
digit (4 bits per digit) numbers per second. The paper tapes
could be transcribed via the Atlas Computer at the University

of London and cards punched for use in the Imperial College IBM
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7090 computer. The direct data facilities into the 7090 (later
7094 Mk II) used for the experiments of Chapter 9 were not avail-

able until a later period.

For these reasons, as a first attempt at low data rate
(500 bits per second) adaptive speech recognition we chose the
only zero crossing measurement compatible with the above limita-
tions, a measure of average number of zero crossings per 20 msec.
interval. The zero counting method chosen was a staircase gen-
erator incremented at each zero crossing and quenched to zero
every 20 msec. This combined zero crossing counting with count-
to—analog (voltage) conversion. A brief description of the data
gathering assembly follows. A block diagram of the apparatus is

shown in Fig. 7.1.

7.5 Experiment I: System Description

7.5.1 First Stage: Speech Clipper

The speech waveform is first "infinitely clipped.” This
action is accomplished b& a modified Schmidt trigger which pro-
vides for adjustment of both the base level about which clipping
occurs and the effective sensitivity. The base level is set so
that Elipping takes place about zero voltage; the effective gain
adjustment is used to desensitize the device with respect to
background noise. It is important that the position of the zero
crossings be specified extremely accurately. However, due to
the inevitable presence of noise it is obvious that "infinite"
sensitivity of the zero crossing detector would entail noise

induced clipping and hence erroneous zero crossing indication.

Previous investigators have tried to solve this problem
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in a number of ways. An ultra-sonic bias of amplitude "just
greater” than that of the noise present in the system will en-
sure that noise does not actuate the clipper (sec. 5.1.1). How-
ever this preventative measure results in“distortion”and errors

on low amplitude signals [F-13].

For this reason, noise interference was avoided by adjust-
ing the level at whiéh clipping occurred to be the minimum which
would prevent the clipper from operating on noise, and by feeding
in a speech signal which was of sufficient magnitude to ensure
that clipping was effected very near, or at,the actual position
of axls crossing. In the equipment used, the clipper responded
only to voltages greater than 5 millivolts (peak). With a sig-
nal voltage of 5 volts (peak), a clipping ratio of 60 db is ob-
tained. A certain amount of hysteresis with respect to actual
zero crossing location is inevitable with this system. However,
since the present experiment involves counting the number of
zero crossings in intervals much greater than the period of the
lowest frequency present, the errors due to hysteresis will be

negligible and, more important, non-cumulative.

7.5.2 Second Stage: Zero Crossing Counting

The square wave output of the Schmidt trigger is fed to
a gate which produces positive pulses of fixed duration and ampli-
tude at each zero crossing. The duration of these pulses is con-
- stant and of length shorter than half the perod of the highest
frequency speech component to be encountered. In the present

apparatus the pulses are of magnitude 10 v. and 40 usec duration.

The positive pulses are fed into a linear staircase gener-

ator, each "step" of which is 0.05 volts. The staircase output
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is returned to zero (quenched) every 20 ms. For a sine wave
frequency of 5 KHz the output is 10 volts, the maximum voltage
desirable if 100 steps of 0.1 volts are to be "resolved" on the
available digital voltmeter. The sample period of 20 msec (50
samples a second) was also chosen because of inherent limita~
tions and characteristics of the digital voltmeter/readout com-

bination.

7.5.3 Synchronization

In order to maintain maximum accuracy it is desirable that
the first sample period should always terminate 20 milliseconds

following the onset of each spoken digit.

7.5.4 Readout

The problems of readout into the digital voltmeter/punch

device are two-fold.

First, the voltmeter requires that the voltage to be
read is present for approximately 5 msec. Since the desired
voltage-—-the peak (or final) voltage of the staircase generator——
is present for a minimum time of approximately 40 usec, the short-
est '"possible" step, it is necessary to store this peak voltage

for a delayed read/printout.

In this device, the staircase voltage is sampled just
prior to quenching and stored for the next 20 msec in a capaci-

tor designated capacitor 2 (C2).
Hence the procedure is:

(1) Quench capacitor 2.
(2) Transfer the voltage on the staircase store

(cap. 1) to cap. 2.
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(3) Quench cap. 1.

This sequence should take place as rapidly as possible
so that cap. l--the staircase store~—is ready to receive the
first zero crossing pulse of the new sample period immediately
after it is quenched to zero. A chain of monostable delay

elements provides the necessary sequencing.

Unfortunately, this storage facility is inadequate in
that it is synchronized with the voice input whereas the digital
voltmeter/punch is synchronized with the mains and may only
sample at a specific point with respect to the 50 Hz mains wave-
form. Therefore it is probable that the digital voltmeter will
often attempt to sample the voltage on cap. 2 when cap. 2 is be-
ing quenched, thus causing an erroneous 'zero" reading. A second
store was added to remedy this situation; synchronized with the
mains, this store {(capacitor 3 or C3) receives Fhe reading from
cap. 2 fifty times a second and is quenched at a time when the
digital voltmeter is recycling for a new reading. This results
in a store which always contains a reading at a time convenient
fo the digital voltmeter. If the transfer [2-3] circuitry tries
to operate when capacitor 2 is quenched, a "guard" pulse 'delays

the transfer until cap. 2 contains a new reading.

7.5.5 Overall Operation

(i) Capacitor 1 is incremented by 0.05 volt at each zero
crossing, and is quenched to zero 20 msec.,after the first zero
crossing of a speech sample and every 20 msec. thereafter for

the duration of the spoken digit.

(ii) Capacitor 2 contains, for a period of 20 msec., a

voltage equal to the peak voltage on capacitor 1 (i.e. the volt-
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age present just before quenching) in the previous 20 msec.

period.

(iii) Capacitor 3 contains, for a period of 20 msec. and
in synchronism with the mains, a voltage equal to the voltage

on capacitor 2 at the commencement of the 20 msec. mains period.

The overall "sine wave" transfer characteristic of the
Zero Crossing Sampler (ZCS) is shown in the accompanying graph,
Fig. 7.2. 1In practice, the upper limit to the'output is deter-
mined by the ZCS voltage supply (10 v). Because of character-
istics of the circuits used, a minimum input of 150 Hz (6 zero

crossings per 20 msec. period) is necessary.

7.5.6 Speech Sample Recording Procedures

The subject (in the soundproof booth) records the desired
speech sounds on the external tape recorder.! Following this,
the data is played back via the line (600 ohm) output of the tape

recorder into the Zero Crossing Sampler.

Subjects were instructed to speak the digits zero %o
eleven in sequence a number of times, The numbers zero and
eleven were included to help eliminate the alterations in empha-

1

sis at the beginning and end of the "sentence." Only the numbers
1-10 were actually used. The subjects were asked to speak at a
normal conversational level and to pause momentarily between
digits. The microphone (AKG D19C) was positioned about 15-18"
from the speaker's lips and a B & K voltmeter used to monitor

speech recording level.

1 A more detailed description of the experimental record- -
ing apparatus will be found in Chapter 9.
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7.5.7 The Adaptive Recognition Algorithm

The algorithm used for adaptive recognition was that due
to Braverman [B-17], [B-19, ch. 3], and is of the Linear, Non-
Iterative type. The basis of this algorithm is the following

hypothesis:

Let the observed data be represented in
terms of N binary (1 or 0) digits, where N is the number of bin-
ary digits necessary to represent each speech (or arbitrafy
species) sample. (In optical character recognition, the data
might be represented by projecting the character on a matrix
of N photocells each of which outputs a 1 if more than half of
the cell is beneath the projected character and a 0 if not.)

Then each set of 1's and 0's corresponding to a sample can be
represented by a vector from the origin to a vertex of a hyper-
cube in N~dimensional space. There will be ZN vertices of this
N dimensional unit hypercube.

About each vertex belonging to a given
category of optical character, or digit (e.g. the set of vertices
belonging to the category 'x') we describe a unit hypersphere; we
then term the vertex "internal" if all vertices lying on the sur-
face of the hypersphere belong to the same category (as the ver-
tex at the centre of the hypersphere.) Otherwise the vertex is
termed "boundary".

Then the set of vertices ﬁelonging to a
given category is compact if the ratio of boundary vertices to
the number of internal vertices is very small. This algorithm

18 designed to operate upon compact sets.

In the case where each dimension of a sample is an arbi-

trary number, between 1 and 100 in the present experiment, then
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the sets of samples belonging to different categories can be
said to form "clouds" in hyperspace. A cloud can be said to be
compact if the number of points lying near the edge of the cloud

are much fewer than the number of points within the cloud.
The algorithm proceeds as follows:

(i) Training Phase

The first two known sample points are arbitrarily of dif-
ferent categories. The computer constructs a hyperplane perpen-
dicular to the "line" joining the two points and midway between
them. The coordinates of each point are substituted into the
equation of the hyperplane. One point will produce a positive
output and will be given a "1" output with respect to this plane
(plane 1). The other point, being on the other side of the hyper-
plane, will produce a negative output and be assigned to "0'" with

respect to this plane.

As each new "known'" point is read into the computer, its
coordinates are substituted into the equation(s) for the exist-
ing hyperplane(s). If the output n-dimensional "binéry" vector
x (where n is the number of hyperplanes existing, and X is the
output of the point with respect to hyperplane 1, X, the output
with respect to hyperplane 2, etc.) is different from all pre-
vious output vectors or if the output vector is the same as that
of a previous point belonging to the same category, nothing is
done and a new point is read into the computer. If, however, the
output vector is the same és that of a previous point belonging
to a different category then a new hyperplane is constructed per-
pendicular to, and through the midpoint of, the "line" joining
the two conflicting points. The output is calculated for all

points with respect to this new hyperplane. It is clear that,
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since the two conflicting points are on opposite sides of the
new hyperplane, the outputs of these points will be different
with respect to this new hyperplane and hence the output binary

vectors of the two points will no longer be the same.

Thus, after all training (known) points have been read
into the machine, there will exist an n dimensional vector of 1l's
and 0's for each point, where n is the number of hyperplanes the
machine has found necessary to construct in order to effectively
partition the hyperspace into different regioné, or "clouds", for
the different categories. If the categories do indeed form com-
pact sets, then the n dimensional vectors corresponding to mem-—

bers within a given category should be somewhat similar.

Following the hyperplane construction, the computer
methodically tries to eliminate hyperplanes without allowing

"conflicting points"

to arise. This may be possible since the
construction of any given hyperplane during the sequential read-

in of points might have made an earlier hyperplane redundant.

It is interesting to note that if there are n different
categories to which a point may belong, then the maximum number
of hyperplanes necessary to separate the different categories if
the categories form compact sets is n(n~1)/2. This is because
each of the n categories must be separated from the other n-1
categories; however the hyperplane separating category i from
category j can be the same as the hyperplane separating category
j from i; hence the factor of 1/2. In practice, this number of

hyperplanes is usually not required.

As each point finally produces an n dimensional vector of
1's and 0's, the number of possible vectors is 2"-1 . Because

this number is inevitably much greater than the number of cate-
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gories, or the number of different »n vectors which were produced
by the training points, the machine must index un-named regions

so that they will be identified with the category of an adjacent
named region. When this is done, any input sample will produce an
n dimensional vector of 1's and 0's and be classified into some
known category. The accuracy of classification will depend upon

the "closeness" of the "unknown" to a particular region.

(ii) Recognition Phase

"Unknown'" points are entered into the algorithm by sub-
stituting their coordinates into the equations for the existing
hyperplanes, as in the training phase. Due to the algorithm
construction, the "hypervolume" into which this point falls must

correspond to a known category.

7.6 Experimental Results

One hundred samples, ten of each of the digits (1-10),
[S-14] were prepared on punch cards from the data secured from
each of two speakers. Each sample consisted of a category iden-
tification number (1-10) and then the 47 samples (range 0 to 9.9
volts in steps of 0.1 volt) punched out by the Zero Crossing
Sampler via the digital voltmeter/punch. If a spoken digit pro-
vided less than 47 samples (i.e. was less than 47/50 sec. long)

the remaining sample positions were termed "O0".

The algorithm was programmed in Fortran IV and executed

on the IBM 7090 computer at Imperial College.

(i) Recognition of Subject One from Subject One

The machine was given five samples of each of ten digits

spoken by subject one (LRM, Canadian) and, after the learning
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algorithm had been implemented, asked to recognize another 50

unknown digits (five of each).

Results: The machine correctly identified 31 out of 50,

i.e., 62 percent. 1t constructed 13 hyperplanes. -

(1i) Recognition of Subject Two from Subject Two

Same conditions as 1. (Speaker RLW, British)

Results: Correct recognition of 36 out of 50---72 per

cent. Constructed 9 hyperplanes.

(iii) Recognition of Subject Two from Subject One

The machine was given 100 samples (ten per digit) of
digits spoken by subject one and asked, after the learning pro-
cess, to identify 100 samples (ten per digit) spoken by subject

two.

Results: Correct recognition of 51 out of 100---51 per

cent. Constructed 15 hyperplanes.

(iv) Recognition of Subject One from Subject Two

Reverse cf (iii).

Results: Correct recognition of 45 out of 100---45 per

cent. Constructed 12 hyperplanes.

(v) Mixed Recognition

The machine was given both groups of 50 samples used for
learning in (i) and (ii). The machine implemented the learning

algorithm without knowing which samples were from which speaker.

The machine was then asked to identify 100 samples (five
of each digit from each of the two speakers) without knowing

which speaker had spoken the digit.
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Results: Correct recognition of 65 out of 100-65 per

cent. Constructed 16 hyperplanes.

Individual Results: Speaker 1: 29/50
Speaker 2: 36/50

]

58 per cent

72 per cent

7.6.1 Remarks and Analysis

(i) and (ii). The machine found less "variance'" within
categories of the spoken digits of speaker 2 than speaker 1 since
it constructed fewer hyperplanes and recdgnized a larger percent-
age of unknown samples. If the Confusion Matrices are examined
it will be noted that the percentage correct recognition was not
evenly distributed over the field of digits. The machine was
very accurate in recognizing the digits 1, 2, 6 and 8 for both
speakers (and 10 for speaker 1), less accurate on 7 and 9, and
inaccurate in recognizing 3, 4, and 5. Examination of the pat-
terns for the digits 3, 4 and 5 shows very little basis for sep-

aration in any case, (See Fig. 7.3).

(ii1) and (iv). In accepting 50 additional samples from
speakers 1 and 2 the machine constructed 157 and 33% more hyper-
planes, respectively. This indicates that the machine was adjust-
ing its boundaries to the further refined positions dictated by
the additional information. Although the percentage accurate
recognition dropped to about 50, it is still high enough to state
that the categorical distributions encountered when learning on
the samples from one speaker were sufficiently invariant to rec-
ognize unknown samples from another speaker. In fact, the confu-
sion matrix shows 80% accuracy in recognizing the digits 1, 6, 9,
10 as époken by subject 2 after having heard only 10 samples of
each digit as spoken by subject 1. It should be noted that the
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machine mistook all of speaker 2's fives for nines. Speaker

2's fives do look like Speaker 1's nines when the source pat-
terns are examined, due to a suspected fault in the recording/
punchout wherein the initial fricative was lost. Also, it is
interesting that"“hearing”speaker 1 saying ten enabled the mach-
ine to accurately identify all of speaker 2's tens but the re-
verse was not the case. This might be expected since, if the re-
gion (or volume in hyperspace) containing speaker 2's tens is
within a larger region containing speaker 1l's tens, then being
trained on speaker 2 will not allow recognition of speaker 1 even

though the reverse will be true.

(v) . When the machine was trained with 50 samples from
each of the two speakers, it recognized about the same number of
unknown samples from each speaker as it did when trained by the
50 samples only from one speaker as in experiments (i) and (ii)
It did not, and this is most important, achieve this proficiency
by constructing twice as many hyperplanes as it had required, on

the average, for each of the speakers individually.
In fact, the machine operated as follows:

In constructing the hyperplanes for the 50 samples from
speaker 1 only, (part i) the machine erected 16 hyperplanes and
later eliminated 3 as being redundant. Since the same 50 samples
(of part i) from speaker 1 were "learned" first in part v, ini-
tially the same 16 hyperplanes were constructed. After the next
50 points (from speaker 2) had been examined, 10 more hyperplanes
were found necessary. However, the machine later eliminated 11
of the 27 total hyperplanes to leave 16, only 3 more than were
needed for speaker 1 alone. Thus we may conclude that, although

the machine was roughly as efficient in identifying the unknown
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samples of both speakers, the memory required was only slightly

larger than that needed for identifying one speaker only.

7.6.2 Conclusions

The correct recognition rate for parts i, ii, and v of
experiment I (62%, 727 and 65%, respectively) exceeded the chance
rate (10%) by at least a factor of 5. Nonetheless, because of
the limited amount of experimentation done, no statistical sig-
nificance can really be attached to the results. The remarks in
sec. 7.4.9 concerning the significance of variations in the num-
ber of hyperplanes constructed for different teaching sets are
basically an interpretation of the algorithm behaviour. The drop
in correct recognition rate when the machine was trained using
the samples of one speaker and asked to identify those of another
speaker is similar to that observed in other speech recognition

experiments (see chapter 4).

It was decided that, despite the existence of the data
gathering limitations, an improvement should result if zero
crossing interval lengths could be '"sampled" and encoded within
the basic punch machine structure. The scheme described in the

next section successfully accomplished this goal.

7.7 Experiment II: Motivation

The technique used in experiment I preserved information
concerning only number of zero crossings per 20 msec. time inter-
val. In sec. 6.6 we discussed the use of the intervalgram, or
histogram, of zero crossing interval length distributions for
automatic speech recognition. Figures 6.9 and 6.10 illustrate

the fact that displays somewhat analogous to the time-frequency



282

intensity display of a short-term speech spectrogram can be
derived from zero crossing interval lengths by linear (or ex-
ponential) ramp generators. This was first shown by Sakai and
Inoue [S-1]. Figure 6.11 shows the 'peaked" structure of the
first-order density distribution of zero crossing interval

lengths.

That these results obtain for English vowels were con-
firmed by Bezdel and Chandler ([B-6], sec. 6.7.2), who showed
experimentally that such information is sufficient for a high
degree of success in sustained vowel classification. Our own
experiments (Figs. 6.9 and 6.10, and Figs. 7.3, 7.4, and 7.5
below) further demonstrated that zero crossing interval histo-

grams are highly structured.

Fig. 7.3 Zero crossing intervalgram, /J/.
Sweep = 50 msec/cm.



Fig. 7.4 Zero crossing intervalgram, /e/.
Sweep = 50 msec/cm.

Fig. 7.5 Zero crossing intervalgram,/i/.
Sweep = 50 msec/cm.
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The aim of the system described in the next section--

based upon zero crossing interval histograms--was twofold:

First, the peaked structure of the histograms suggested
that amplitude quantization could be employed to reduce the bit
rate required to describe them. An analogous technique had
been successfully employed by King and Tunis [K-6] in respect

to classification of short-term speech spectrograms.

Secondly, it was decided to make use of the total sequence
of "short-term" zero crossing histograms which constitutes a
spoken digit. The order of the sequence members as well as the
econstitution of each member was to be taken into account in the

training and recognition process.

In the next section the equipment constructed to produce
quantized zero crossing histogram sequences in the form of paper
tape output will be described. Then, in sec. 7:5.3, we will
briefly outline the algorithm used; this algorithm incorporates

the sequential aspects noted as being desirable.

7.8 Experiment II: System Description '

~ The basic limitation on the rate of data flow was still
the paper tape punch output of 8 binary digits per 1/100 second;
the voltmeter reduced this rate by 50%. Thus it was decided to
bypass the voltmeter and output 32 bits of information every 40
msec. or 1/25 second. We recall that the 33.3 msec. averaging
time used for the lowpass filter in Peterson's work [P-9] was
based on the desirability of averaging over a time interval less
than the phonemic rate~-10 per second-- and greater than the

pitch period--1/100 second.
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A block diagram of the system is shown in Fig. 7.5. The

system is composed of three sections:

7.8.1 Pulse Production and Gating

Spoken digits were recorded using the setup described in
Chapter 9 (Soundproof booth, AKG dynamic microphone and Tandberg
62 tape recorder at 7 ips). The speech was bandlimited to 4600
Hz by a Mullard switched filter (60 db per octave attenuation
out of passband) and then clipped by a cascade of three balanced
(long-tail pair) limiting amplifiers. The output of the final
amplifier is transmitted by a balanced gate through to a Schmidt
trigger which, in turn, drives a monostable multivibrator which
thus produces short pulses at each zero crossing of the band-

limited signal.

The gate is controlled by an envelope detector which con-
sists of an a.c. signal amplifier, a diode detector, a d.c. ampli-
fier and a three-stage RC lowpass filter,? The gate serves two
purposes: First, pulses due to clipped system noise are com-
pletely eliminated. Second, an internal clock which controls the
operation of the following stages is turned on at the start of
each spoken digit and remains on for a set period of time after
speech ceases to be detected by the envelope detector. This
"turn-off delay" is necessary to inhibit system turn-off during
intra-word energy gaps. We recall (sec. 3.4.6) that stop con-

sonants, for example, are often preceded by periods of near

2 The detector-gate was developed by R. L. Wiley of Imperial

College for speech-noise switching purposes. It was capable of
distinguishing between speech (even weak, unvoiced fricatives)
and system noise with minimal onset delay.
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silence. During intra-word energy gaps, the .system noise zero
crossings are inhibited but the internal clock remains running
since the "silent" interval is necessary to the word structure.
The maximum delay time needed to allow for intra-word energy

gaps was experimentally determined to be about 1/25 second.

7.8.2  Zero Crossing Interval Sorting

'The zero crossing pulses enter the first of a chain of

13 monostable multivibrators, M, to M,,, having "on times" T,

to T13. Each monostable in the chain is triggered by the "off"

edge of the preceding monostable. Thus monostable Mi turns on

Ati milliseconds after the first monostable is triggered, where

Aty = ) T (7-3)

T, is 0.1 msec. and At13 is 3.33 msec. (1/300 sec.) If a zero

crossing occurs at a time t,
3.33 msec. < t < 0.1 msec, (7-4)

after a previous zero crossing, one of the monstables M.l--M12
will be on. The output of this monostable is ANDed to the input

of one of 12 divide—by—Ni digital circuits. All of Ml_MIZ are

then rapidly set to "off." Monostable M., 0.1 msec. after the

0,
zero crossing which initiated the ANDing operation, initiates

the start of a new pulse chain down M Thus each zero

1™Mp0¢
crossing interval is classified into one of 12 channels, accord-

ing to the interval length.

' Each divide—by—Ni circuit emits an output pulse after

every Nith input pulse. These pulses, in turn, enter a set of
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two binary counters (12 sets, one per channel). These counteré

are inhibited from returning to the (0,0) state after the (1,1)

state has been reached. Every 40 msec., all 12 sets of counters
are parallel shifted to 12 corresponding sets of storage bi-

stables and then returned to the (0,0) state.

Hence, during a given 40 msec. period, the two storage
counters for channel p, p=1,..12, will contain information as to
whether there have been less than 1 (0,0), between 1 and 2
(0,1), between 2 and 3 (1,0) or more than 3 (1,1) groups of Ni
zero crossing interval lengths between

p-1 P
'f Ti < Arp < -Z Ti (7-5)
i=4 i=0

milliseconds. This yields a weighted and quantized (by the Ni
counters), twelve channel zero crossing interval histogram con-
sisting of 24 bits every 40 milliseconds. The "histogram" is
punched out onto 4 rows of eight-hole paper tape. Actually,
only 7 holes of each of the an, 3rd, and 4th rows may be used
for the histogram. The first 4 holes of row 1 are used to indi-
cate start of word and/or start of 4 row sequence. The first

hole-of rows 2, 3, and 4 is always blank.

The divide—by—Ni circuits in each channel consist of
binary counters which may be adjusted to zero after any count
up to 64. We recall that, from sec. 6.6.1, ft(Tmi)’ the first
order density distribution associated with measurement of zero
crossing interval distributioms, is actually a weighted histo-
gram. The dividerby—Ni counters are adjusted to approximate this
function. The channel boundaries themselves can be adjusted to

simulate the various ramp functions as used by Chang et al.
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(sec. 6.6.1).

7.8.3 The Adaptive Recognition Algorithm

The adaptive recognition algorithm used was actually
chosen in conjunction with the design of the data collection
system. The paramount requirements for the recognition algorithm

were that

(i) the algorithm should cater to data in binary form
(i1) the sequential aspect of the short—-term speech histo-
grams be taken into account in the training and recognition

phases.

In Braverman's algorithm (experiment I), each 20 msec.
estimate of the zero crossing count was assigned to one dimen-—
sion of a multidimensional space. It can be shown (see [H-11],
for example) that the performance of a linear decision function
is unaffected by a non-singular linear transformation, followed
by a translation. Therefore, the sequential aspects of the pat-

terns are not really utilized in this class of algorithm.

The algorithm chosen was devised by R. E. Bonner [B-14].
Besides satisfying conditions (i) and (ii),Bonner's algorithm

possesses the following desirable attributes:

(1) 1If a new category or class is added after initial
training occurs, excessive revision of the original structure is

not required. This was not the case in Braverman's algorithm.

(ii) The algorithm is capable, during recognition phases,
of prediction. That is, at a certain point during the read-in
of the sequence of sub-patterns constituting the spoken word, the

machine should be capable of predicting the rest of the sub-patterns
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which will follow.

(iii) The algorithm provides for the existence of "local
stability" in the input sequence of binary sub-patterns. This
means that the closer the éub-patterns occur in time, the more

correlation there is apt to be between them.

Bonner emphasized that his implied allusion to human per-
formance characteristics (i.e., prediction, correlation of spoken
sub-patterns) "has been used only as a source of requirements in
an interesting problem situation; there is absolutely no reason
to believe that the scheme to be described in any way explains

actual human functioning."

The algorithm is described below, as in [B-14], with

reference to Fig. 7.6.

At the left is a shift register consisting of M connected
segments, each n bits long; these are labelled as 'present,"
"past I", etc. At the start of the test-forming procedure, the
first sub-pattern (n bits) of the sequential pattern is intro-
duced into the '"present" portion of the register. The ORing pro-
cedure is then followed. Here, when bit Z in the "present" reg-
ister is one, the test Ik for output bit © is updated. When up-
dating is necessary, the contents of the entire shift register
are used to OR to a test. This means that nxM bits of étorage

are required per test.

After updating the tests, the first sub-pattern is shifted
to "past I" and the next subpattern is entered into the "present"
segment. Updating again takes place, as before. The process of
shifting and updating continues until all the sub-patterns in the
sequenfial pattern have been exhausted. Sub-patterns shifted past

"past M-1" are lost. The shift register is then cleared and the
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procedure repeated for the next sub-pattern. An example of this

process is given in Fig. 7.6a.

At completion of formation, test 7 contains the informa-
tion on which bit positions in all sequences of sub-patterns of
length M were ever one when bit 7 of the "present segment" was
one. The test is therefore designed to reproduce at the output
the sub-pattern contained in the "present" portion of the shift
register. The tests following training, for this example, are
those in Fig. 7.6b, and consist of an (n.M)x(n) matrix of binary
digits. To use the tests for recognition, the input is intro-
duced into the shift register one sub-pattern at a time, exactly

as during test formation.

Sequential pattern used for test formation
in Figure 7.6 ;

# 1 Subpattern

# 2 Subpattern Time .

~ o o
o r O
= o K
O M M
= O O

# 3 Subpattern
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EXAMPLE TRACING TEST FORMATION FOR A
SEQUENTIAL PATTERN (M =2, n=5)

- register

coocoe coooo COCOO COO0O | mOmOm OmO—O
3
] COm~D COOOO Crtrtri @ CO™MmHO [ OO OCO—mO
3
&0
g .
m S
@ m COCme—O COOOD COmmO OOQOCO | O OwOw—O
bl
m. =
0
m cooeo oo OO COmmO OO0 OCw—O
COOCOO OOCOO - |OCOOOC CCOOD | OO m OmOw~o
o858
ses Present Past 1 Present » Past 1 Present Past I
%@m COwmwmoO |ooOOO CrOmO | OO0 | mO—Ow |O-O~o
¥
B g e
ﬂ.lto
= -
2838
CELEM|T ™ =
¥
uupm
[

a) Training Procedure

O O™ OO wO
]
I Owrivi i O OO ™™O
-~
&0
] .
S| .0
-
El&
£
B QOO OO
(=}
OO OO
Present Past [
HO O w | OmOwmO

g training

b) Tests followin

Fig. 7.6 TIllustration of Bonner's algorithm. (From [B-14].)
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The sequential pattern used to demonstrate the test or recogni-
tion procedure is .

Subpattern #1 1 1 0 0 1

I I I

To commence the test, subpattern #1 is introduced into shift
register 1, shift register 2 being empty (see Fig. 7.7). The M
shift registers--M = 2 here-— are ANDed to Test No. 1 of Fig.
7.6b. The number of one's in the result, divided by the number
of one's in the M shift registers gives the "match number" for
the test. 7 match numbers are calculated and an n bit output
results with one's wherever the match number exceeds some thresh~-
old (0.6 in the example) and zero's otherwise. This # bit number
is then ANDed to the “present'" segment of the input register and
gives the output in column 5 of Fig. 7.7.

Subpattern| Shift "Match | Qutput formed by
nun‘:aber in | regis- | . [[num- | using threshold =6 r}\::‘tggr
. 7 present ter- | N ber and then ANDing for sub-
. Fig. 7. segment of | condi- “| for to “present” seg- pattern
v . register tion test | ment of input reg.
Bonner's algorithm,
o 2 1
recognition procedure, 1 } ! /3
0 2 1/3 0
(From [B-14].) 0 /
1 3 2/3 0 0.667
0
g 4 1/3 0
0 5 | 2/3 1
0
2 g 1 3/5 0
(1) 2 | o/5 0
1 3 3/5 1 1.000
, 1
1 4 1/5 0
0
0 3/5 1
1
‘ 3 ; 1 2/5 0
! 1 2 | 2/5 0
' 0
0 | 3| 25 0 0.000
0
0 4 3/5 0
1
0 5| 2/5 0
1 e
- Average
=(.556
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Finally, the number of one's in this output divided by the number
of one's in the '"present" segment of the input register gives the
"match number" for the subpattern. This procedure is repeated as
each subpattern of the word enters the '"present" register forcing
previous subpatterns into past I, past II, .... past M-1. The

average ''match number" for the sequence of subpatterns constitut-
ing the "word" gives an indication of the overall match of the

unknown word to the (m.M)x(n) matrix of one's and zero's which is

the result of "learning" a particular category.

The key to the practical implementation of this algorithm
turned out to be the use of the machine dependent (i.e., non-
Fortran) AND and OR operations on the 7094 computer. If each
spoken digit constitutes p subpatterns of n binary digits each
(n & word length of machine, 32 in this case), then only (M.n)
words per storage table (one storage table per category) are
needed. In our case, M was varied from 3 to 9, n = 24, and the
number of categories was 5. The algorithm description has been
necessarily brief and more of the philosophy behind the algo-

rithm development is described in [B-14].

7.8.4  Experimental Procedure

In order to conserve computer time--both in the paper-
tape to.punched card transcription phase and in the learning-
recognition phase-—~the vocabulary in the tests reported was
limited to the spoken digits one, two, three, four, five. Three
hundred and five samples (61 of each digit, the author speaking)
were recorded using the same equipment setup as in Experiment I.
Following tape editing to eliminate inter-word "extraneous noise',

the quantized histograms were punched out using the apparatus de-
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scribed earlier. The time and difficulty in tape editing and paper-

tape to card transcription (carried out by the University of
London Atlas computer) proved to be one of the factors which
caused the project to be abandoned when direct input to the 7094

became feasible,

7.9 Experimental Results

The boundaries for the twelve channels in these experi-
ments corresponded to sine wave frequencies of 150, 295, 400, 540,
630, 770, 920, 1130, 1450, 1700, 2380, and 3400 Hz. As mentioned
earlier, the shortest zero crossing interval length which could
be counted corresponded to a sine wave frequency of 5000 Hz. The
divide-—by—Ni counters were set so as to produce an approximation
to ft(rmi). The variable in the learning-recognition phases was

the memory length, M.

The results of the limited tests carried out are shown in
the confusion matrices of Fig. 7.8. The percentage correct recog-
nition varied from 77%, for M = 3, to 88% for M= 7 or 9. The
recognition reached maximum at this point for the noted conditions.
For M = 9, the recognition of digits 1, 2, 4, 5, reached over 95%.

The digit 3 was mistaken for 2 nearly 357 of the time.

7.9.1 ~ Conclusions

At the conclusion of these initial tests we were faced
with a difficult decision. The results were very promising (very
comparable to those reported in the literature for other pre-
processing methods but with similar or higher bit rate) and other
variables which could possibly increase the accuracy were still

available for manipulation. Histogram weighting (divide—by-Ni



236

7.9 ACTUAL DIGIT

1 2 3 4 5

27 1 1 3
27 |10

2 |18 1

2 26 6

2 19

7.8 ACTUAL DIGIT
1 2 3 4 5
24 2 1 7
27 7
2 | 19 1
5 1 26 5
2 | 16
Training digits: 160
Unknown digits: 145
% Correct: 77 M=3
7.10 ACTUAL DIGIT
1 2 3 4 5
29 1
27 9
1 20 1
28 1
1|24
Training digits: 160
Unknown digits: 145
% Correct: 88 M= 17

Figs. 7.9-7.11 Confusion matrices for Experiment II.

Training digits: 160
Unknown digits: 145

% Correct: 81 M=5
7.11 ACTUAL DIGIT
1 2 3 4 5
28 2
28 |10

1 18 1
1 1 |28 1
1|2

Training digits: 160
Unknown digits: 145
% Correct: 88 M=29

Speaker: LRM.
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circuits) could be varied and signal preprocessing (particularly

differentiation) was intended to be applied.

However, three factors suggested that this course of
action might not be the most fruitfﬁl. First, the paper-tape to
card transcription was proving difficult because of erratic Atlas
computer service. The paper tape input promised for the 7094 did
not become available. Second, an FM tape recorder was acquired
so that the Direct Data Channel, with its limited sampling rate,
might be employed for effective high speed speech input and
magnetic tapglinput. Finally, it was suggested--both by the de-
tailed review of the literature which now constitutes Chapters
5 and 6, and by conversations with Professor H. B