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ABSTRACT.

This thesis consists of six chapters and deals with the
application of cuts as generated by the absorption model to both
Regge models, in chapters 1 to 4, and to Veneziano models in

chapter 5 and 6.

Chapter 1 consists of a discussion of the fixed pole
peripheral model together with the mo£ivation for the intreduction
of both a Regge form for the pole graph and an absorption model for
the cuts. In chapter 2, we start constructing our model with the
development of a form for the Regge temm which has couplings to inter-—
relate all two body processes. The required two-body kinematics are
given. This is followed in chapter 3 by a brief discussion of cut
models leading into the parameterization used for the cuts. Finally,
chapter 4 deals with the application of our model to O %' hypercharge

exchange procésses and the relation to other similar models.

In an attempt to form a Veneziano model out of 6ur previous
Regge absorption model, a general review of the subject is givén in
Chapter 5, with particular reference to RN and KN charge—exchange
reactions. In chapter 6, we give an 'improved' U(6,6) Regge formalism
which is then converted into a dual nbdel. The physical properties
required are discussed , followed by the application to RN and KN charge-

exchange reactions.

A review of the oomputér program is giVén in the appendix.



CHAPTER I. REGGE POLES AND CUTS.

In the origj_nal form of the peripheral model for two-body
meson-baryon scattering at high energies, it is believed that the
differential cross—sections at small momentum transfers are dominated

by the exchange of 'low mass' fixed pole meson particles in the

1
t—channel( )
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These lowest mass particles are expected to dominate as they lie
nearest the physical scattering region in the t;plane i.e. negative
t-region, ard lead to an amplitude T %—'—F where J defines
the spin of the particle exchanged in the process (2) . However, as
the quantum numbers of the external particles may allow more than one

'low mass' exchange, symmetry schemes, e.g. U(6,6) are essential to give

the ratio of the contributions fram the various Feynman graphs( )

23~2
For fixed pole exchange, we have d:b' ~ 5 ; SO

c{c‘

pseuwdoscalar exchange gives, e.g. in pr—np, Ac | ~ 7% which

tzg

is the correct s—dependence of the experimental data of the forward

peak, although the forward peaking is not obtained as conservation of
angular momentum makes the pseudoscalar contribution vanish at t=O.
However, for the exchange of mesons of J> 0, the energy dependence

in the forward direction is incorrect. For example, in mN charge-
exchange scattering, :((: (ex,wmm) ~ s , but as ve have p exchange

de
(J=1), 4d¢ e_guu,’)~ . The correction of this s-deperdence problem



is suggested by Chew-Frautschi plots of J against t, t > 0(4)

, for
particles of the same parity, strangeness and isospin. These come
out to be approximately linear for all plots, so if o¢(t) defines the
equation of the linear plot, ()=, + ot with o (MJ‘) = J P
where J is the spin of a particle of mass M. The exchanged poles
may therefore be thought of as 'moving', with a generalized spin «(t),
and the amplitude in the negative t region is generalized to T -~

w<(€)
. s
((iz‘""qn\)sg.\n«(e) . Hence, the 'moving' or Regge pole model gives

do 20tLE) ~2
v t:_0(1:heory) ~ S J . Thus, by choosing «, % O  for
i Lo -2
pseudoscalar exchancg(e, A€ t:oN S still and ®, % %’ for
o

vector exchange, Je ~ 57! , 50 solving the s-dependence problem.

L‘-‘_Q

In the Regge pole model, the necessity for placing the coupling
constants of the Reggeons, or exchanged Regge poles, within a symmetry

scheme e.xisi:sas in the fixed pole model.

Up to now, we have not discussed the t-dependence of the
differential cross—sections predicted by pole models. This is poor
with, in general, not enough damping at increasing [t| . However,
this can be overcome in the Regge pole model by the use of the t-dependent
spin together with a residue function which is taken to be a function
of t. However, similarly to the fixed pole model, no forward peaking
is obtained for pseudoscalar exchange. Hence, there are good reasons why'
cuts, as generated by the absorption model, should be used to correct the
momentum transfer deperdence rather than a t-dependent residue. These

are:

(1) That for elastic scattering at increasing energies, more and

more inelastic channels beccime accessible as required by unitarity. Thus,



as far'as'the elastic channel is concerned, absorption (or loss) of
a part_'icle occurs. This will tend to occur more at low partial waves,
or small impact parameters where the force is stronger, and leave the
- high energy scattering daominated by high partial waves, as .mdlcated
by the impact parameter representation(s) .

A similar idea exists for inelastic scattering with particles
being absorbed out of a channel containing the incident particles into

another one.

(2) That in some reactions where only one known pole can be

exchanged (e.g. the / pole in @ N charge-exchange scattering) or where
a pair of exchange degenerate poles are exchanged (e.g. the /a and A,
poles in KN charge-exchange scattering or the K*(’890) and KA$1420) poles

(6,7,8,9) . as

in IT +r - ‘K+:+) ; @ non-zero polarization exists
polarization is proportional to I ( <f>‘ ﬁ: ) where 56‘ and 751 are
the two independent 0% s—channel helicity amplitudes defined by

§ = <tolglned . ¢ = <kolgl-Lo>, asinglepole
or a pair of exchange-degenerate poles exchanged predicts zero

polarization for all scattering angles.

However, in N charge-exchange scattering where polarization
data exists, it turns out to be small ard positive at small [t].  Previous
explanations of this have used an unsubstantiated pole, the /_)' . but

recent experimental tests searching for this pole have shown that if it

exists, it has a very small coupling constant(lo) .

(3) That for pion exchange reactions where a pion peak of width

sot

~ m;' and slope ~ e occurs, the conservation of angular mamentum

leads to an evasive pole i.e. goes to zero in the forward direction, t=O.

A ‘proposed solution to this problem, not involving cuts, was conspiracies.



To see how these worked, consider, for example, pn charge-
exchange scatterj.ng(ll) . Here, quantum numbers allow the pion to

contribute to the s-channel helicity amplitudes,-
i -
o= <AAIPIA-L> 0 4= <L-504-4 5>

™ ™
with the pion contribution such that &1 = é‘_ . As 5{)4 is a

helicity flip amplitude, the conservation of angular momentum implies

f)“‘(ézo) = O . Hence, ¢zrr(£—=o) =_ ¢I+T'r((::o) =0 .

Defining the pion conspirator, e ' as the parity doublet

of the pion, positive pa.rity gives 515 = - (/) . Henceﬁ ¢ 56 +oen

v e 4T AT = 4T

Hence, by puttmg q5 ﬁ ' #u = o to agree with angular

i

mmomentum conservation, but the of associated with the pion
. p

does not vanish and so the forward peak is cobtained.

The undesirable effects of conspiracies are, firstly, that no
known meson exists of the required mass and parity. . Secordly, le Bellac(lZ)
showed that while experimentally, the reactions n IV >,4 K V> KA
and whN — foA exhibit peaks, conspiracies predic£ dips in the
forward direction.

The absorption model solves the peaking problem in the following
mmner. As before, the rotation functions ensure the flip amplitudes
such as éy in pn charge-.exchange scattering remain equal to zero in the
. forward direction. However, as {>7. ; in this reaction, is non-flip, the
rotation function does not put this amplitude equal to zero. Now,

| b7~ TE Fer t seall

“© =
l 2
™




R 1

The first tem is the high energy limit of the s-wave
term P, (ce2©)  and so violates unitarity at high energies. Absorption
T
mT

1l
has the effect such that él (absorbed) v [ i.e.

takes out the s-wave term, so allowing a forward peak.

(4) That the behaviour of total cross sections at energies

which have now became available through the advent of the Serpukov
accelerator which can give results up to 70 GeV/c for negative pion

and kaon beams. Barger and Phillips have shown that for My and Hp
elastic scattering(B) » the Regge pole graph does not explain the
flattening of the total cross sections at high energy and so to explain

the data, cuts are introduced.

(5) That cross-over effects, which might be due to zeros in
pole residues e.g. the @ in Kip elastic scattering and NN and NN
elastic scattering, do not appear to be consistent with factorization of
the residues of the poles (14) Returning to the example of the vanishing
of the @ in NN and NN elastic scattering to explain the 'crossover'
effect, factorization gives £ = L /éu,\wjz up to a sign. However,
in a reaction such as m V —D/c'\‘ which has a contribution from <
exchange, factorization gives /5 = /é n—/;‘, /4 www Which makes @e

L exchange amplitude of i V> /"ﬂ/vanish at the cross—over point
of NN and NN eiastic scattering. No such dip exists in the

experimental data.

The remedy is to use the destructive interference between the
absorption cut and, say, the o, to generate the required zero at the

cross-over point.
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(6) That in Regge amplitudés, which use the nonsense choosing
ghost-killing mechanism és predicted by the Veneziano model, zeros
occur which are not present in the data. However, dips which do not
go to zero exist at these poj_nts(ls) . Hence, cuts are required to

fill in these nonsense dips.

(7) That elastic p. F scattering has an expanding rather than

a shrinking diffractive peak. Cuts are réquired to explain this(l6) .

(8) That, besides the problem of the forward peak, pr—=>np

and FF ~> n N are difficult to reconcile in just pole models 16

Hence, we have a motivation for using a Reggeized absorption
model with couplings related by a higher symmetry scheme in an

attempt to explain the features of forward scattering data.



CHAPTER 2. THE REGGE FORMALISM

2.1 Introduction.

As discussed in chapter 1, a Regge form is necessary for
the pole graph in order to get the correct s—dependencé of two.-
body meson-baryon cross-sections. It was also indicated that the
couplings ought to be incorporated within a symmetry scheme, so
that the amplitudes for various exchanges in a given process are inter-
related as are the various processes. The fact that the known
baryon and meson particle spectrum is given correctly by the lower
SU(6) multiplets was used as a motivation by Watson et a1®® yiho used
a fixed pole ﬁlodel with couplings inter—rel;.ted by the relativistic
generalization of U(6), U(6,6). This has the advantage over SU(3)
that processes involving different baryon and meson vertices
simultaneously can be inter-related altﬁough it is of course more
badly broken. However, in this model only mesons lying in (6,6,0)
[notation is such that (6;5) describes the U(6) ® U(6) (the rest
symetry of U(6,6)) multiplet containing the SU(3) meson O -octet and

‘l_ nonet, and the 'O' is the Casimir of 0(3) describing the lowest

11.

angular momentum excitation] could be exchanged. In order to incorporate

such reactions as M P-> n where {:here is only 2F éxchange ; within
this model, it is necessary to include higher mmltiplets of U(6,6) or

U(6) ® U{6) © 0(3).

The SU(3) 2" nonet containing such particles as the A, and
the K (1420) 1lie in the U(6,6) 4212 nultiplet or the (6,651)
U{6) © U(6) © 0(3) multiplet. Hence, there are two methods of

indorporating higher spin exchanges into the model. These are either
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using higher U(6,6) multiplets or higher W/6)QU(6)® OG)multiplets
i.e. (6,6,N), N=0,1,2.. The latter method of using O(3) excitations
is preferable as here, only J‘P is altered and hypercharge and isospin
is left unaltered so avoiding exotic mesons. This latter approach was

~ +
used successfully by Shafi A7) 45 explaining 2+’ | and O+decay rates

and by Delbourgo et al.(l8) in a Regge pole model.

Taking these arguments into account leads us to use a
Reggeized U(6) ® U(6) @ O(3) model to construct the pole graph s-chammel
helicity amplitudes, which provide the most convenient form for
introducing absorptive cuts.

2.2.  U(6) U(6) ®O(3) Fields18:19)

The basic representation of U(6,6) is the 'quark' representation-
of dimensionality 12. However, this corresponds to no known pliysical
particles. Thus we have to construct higher irreducible representations

of U(6,6) in order to include physical parcicle . fields.

The lowest meson fields are constructed out of the product of

quark and anti-quark:

[

12 1

—

~
]
@
=~
W

|
|

(2.1)

where the 143 is the traceless meson field which reduces to (6,8)

under the rest group U(6) @ U(6) decamposition.

Similarly,the lowestbaryon fields are given by the product

of three quarks:

1 @12@n = 220® 3k @572 ® T2 2.2)

A————
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where the fully symmetric field 364 reduces to (56,1) under the U(6) @ U(6)

deccmpos ition.

The SU(3) composition of these fields can be seen under SU(3) @ 44&(.[2/21)
decamposition

3 o= (815 ® (L15) @ (£1) (2.3),

e,

366 = Ci020) @ (820) ® (1)¢) (2.4)

(2.3) shows that the 143 contains the SU(3) O octet and 1  nonet,

4
while (2.4) shows that the 364 contains the %¥¥ octet and g decuplet.

As SU(3) can relate mesons among themselves and also baryons among
themselves for a given (J)P, a sensible decamposition is U(6,6)=-U(2,2)

SU(3). Under this decamposition, the 144 generators of U(6,6) are:

B

(a’ﬂ 'TL )ﬂ where A,B=1l.... 12, (2.5)
W =) )a,:,ib}D’S.)?;,,\qﬂ}.y, R= ].--16 are the sixteen Dirac matrices

— 3 L
foming the generators of U(2,2), and = % >\ ; where the P

are the nine Gell'Mann matrices forming the generators of SU(3).

The traceless 143 meson field is constructed as follows :

L e ¢
Sacn= (5, T 6, (f)

(2.6)

where the ¢Iji (P) are the free particle meson fields of momentum P ard

mass I\A The U(6,6) fields satisfy the Bargmann-Wigner equations :
. A B — B C

A e

f’o = /(z, S:. .

; (2.7)
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ard taking the fields 'on-shell' gives

%

p2g® (p)

ACF)" )M jfn

(2.8)
(2.7) and (2.8) give:
écf’) 0

‘f,ncf (P)‘rcﬁ (e) | cr?&tw):prqfic,o)
Lf’rfﬁrvéf):f(év CF)} Lfcfrﬁf’)* rf fcf)(z .9)

Using (2.9) and the equation of continuity for a vector field

19 étCl"): 0O

iy (2.10)

gives
| 5
Ef(lf) = %F[C”Q‘/TL]‘)(@}CP,\U) h ”f?;m)]ﬁ (2.11)

where /f’/: f/«. XI" and é( P) :f/(p) are the free partlcle fields

corresponding to the SU(3) 1~ nonet and O nonet respectively.

Similarly, the symmetric (56,1) decamposition is

Wapey’ ™ Eane [Cx/b Ve Uf@dﬂ Vi *‘GB//*{-C)%/;
Vra’ ] + (b,rc),({r, D{;O’COLLL) ‘i’i/z'(o'r VC)A/LDI'VM“"‘-)
+[€“b°l ZC;LP N;‘f+ Cb}c)a(/l ma‘f* (13;% C}oz,g

d
N F 503 + cyclic permutations] : (2.12)

where o()/’, I=1.... 4 are the U(2,2) labels, a,b,c,d = 1,2‘,3 are the
) .
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S5U0(3) labels, and C_, is the charge oonjugatlon matrix. ARlse

VEBV, V= UV N G i o o Jp=o

2Applying the Bargmann-Wigner equation to (2.12)
- (pP) =
( l”—m>p Uenae) ) = o (2.13)

gives

V=0

(N, (P)= P Uep), cm D (e) = B (o) ~f) ,“((2'?4)

leading to

- { , . :
ucnsc()P) - zfm[ g(»ﬁmﬂ;(;}% galad‘ Nc 4{_,_
Cycl[c Fef’mw‘ta,e¢or~$- -+ 3 { C/F:—W\.)

« (2.15)
1 b,f"cg X(a&c)] |
where ch’ N (T)

with N ‘' and D X are the free particle fields corresponding to
3 .

the SU(3) ¥ octet and 2+ decuplet respectively.

(2.11) and (2.15) correspond respectively to (6,630)and (56,1;0)
multiplets respectively in U(6) @ U(6) @ O(3). To construct higher O(3)
multiplets we take note of the fact that experimentally (6,6;N), N = 0,1,
occur and (563 :N), N = 0,2... occur in nature. Also, the knowledge
that the 2" fields etc. which lie in (6,6;1) are of the form ¢C (-'a)

suggests that the fields for ON(B) » N=0,1,2.... are of the form

4) ) ce) . These are symmetric, but not traceless in their indices
Cr‘ ’

)
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and satisfy conditions

il

| )
P/"“ 4)(}{"|"(}4‘1"r~)
| 3 T (2.16)
. _ - (f[l“"‘l’"”) ' /4 féc[f"\‘“i";u)

Hence, the field for (6, 6;N) is

)
= (p) - (¢) (2.17)
§9Cr\f r«w) [(;/P—ﬂ(’,")(y [f""fv) b;ﬁ’n rw)> :

and for (56,1;2N),

() - l % N 3
%cneo(r,.-hj - zJ‘m . (F+ ) J5 C 9«».( CJ(F‘ ;2 .18)
+ cylic permutations + 3 ZC/)@ M)X Cj‘

D’AJ’ Cos[vc)fr‘p-/«zv)]

2.3, Three-point Functions.

The present state of experiments enable us to carry out

éssentially two types of two-body scattering. These are 0_35+ >

and ¥'%T > ... using a notation, with the O lying in (6,6:0)

s e

and the ' in the (56,1;0). As we are interested in 0 %' » 0%, we
need to campute two fhree—point functions for forward scattering |

invariant under the subgroup U(6) © 0(2)
- . o~

(;,g}o)f,f (6,C)o)|ou , ((,6)M)Q_P

(b) Lgé,l)o)h~(§c,‘;°)p;~ U,é‘,rv)‘,)‘

where the subscripts specify the field mcmenta.

The Lagrangians are camputed by carrying out the SU(6)
decomposition of the U(6) © U(6) © O(3) multiplets giving
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7. _ ‘ (2.19a)
(¢,6:0) = 1 @ 35 .19

———

(s¢iy0) = 56 (2.19b)

The decamposition for (6,6;N) is the same as (2.19a) but with
the appropriate excitation labels on the fields. The construction of

the ILagrangians is carried out explicitly as follows :

(a) The two external multiplets give

(1035)0 (1635)

of which we want the 35 or 1 multiplets as these lie in (6,6;N)

(2.20)

1oL = (2.21)
O = 35 (2.22)
L @2 = 25 | (2.23)
25 @3 = - D2x35@L (2.24)

The fields for the singlet are given fy contracting the
B b _
momentum tensor l'}_ CP’L*Q)Q = ""—C{*{Z{, sa on the U(6,6) fields,
i.e. taking the trace of the SU(3) labels. Thus the couplings for

(2.21) and the singlet of (2.24) are given by
i

/..) ~(r+w) P | lp-—'C_ '
g 0PI GO

) C
i & — &
FE P (4P
r[/"'" Iw)

(2.25)
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respectively where /u\ is a mass asspciéted with the vertex and
P' = (P2+P 4) and we have saturated the 0(3) labels by momentum tensors
to give the correct s-dependenge in the T-matrix. The superscript (-)

on the coupling constants satisfies the Bose requirement that the term

is only non-zero for N odd and vice versa for (+).

From the four 35's constructed in (2.22) to (2.24) we want an
even and odd signature Regge pole eventually. Such a requirement is

met by the two couplings
/

-N — — _ — B b. — {
W [ Bl e + &) Ef ] By

Q .
& hn) (2.27)
C[r"-—-rd)
and
-n — { /
)& — 9 ¢ _a b = C -
h f‘”_z e, ) g, L4) inCJ‘*)i& Cm] fr ’Ii‘” (2.28)
A L ]
& )
¢ Cf"‘rﬁ

Hence the effectivéI.agrangian is .
' -V ~— B ~ D [(‘) C A ) <2 A ic
- ~f |
gw fom &, & CR LTS 6 + ho i P

pA
Wreed A s

L ol (gs wp go r;")
Gl 2

t 24 L‘l- CS@, 3(;39 . gD P

(2.29)

where iw )(f’l-) f.) is the fully contracted (6,6;N) field and is given
by N
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A ¥ /
;QS Cpl){)‘f): f’fh.\-.. P IOAB (f ,0) (2.30)

Cwv) hw
C,« --/“w)
(b) Here, the two external multiplets give:
760 56 (2.31)
from which wewant 35 or 1. We get
26 ® S6 = .-~ @ }_5:@__'- (2.32)

Carrying out the arguments as in (a), we get the effective

Lagrangian to be:

-CM‘)_(ﬁcp)
= 4 ™m f)
Ecu -—.i‘____ PO U )[jo +2 j oY ]f ( 3)

3
S (8¢ ) (2 33)

where m is a mass associated with vertex b and P = (P1+P3) .

- Fram now on, as we are only interested in O 5 hypercharge and

'SR INL
charge~exchange scattering, we will neglect L, o 4 L o and 30.

2.4 Supermultiplet Propagators

To construct propagators corresponding to the exchange of a

(6,6;N) supermultiplet, the following heuristic argument is used.

The propagator for two fields with one orbital label each is

the vacuum expectation value :
Y ) (- = 24 (- + E&f‘.’)
< zprm GEn> = i (-9, -

’-\71

where M is a mass associated with the fields.
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i A Generalizing to the [erepresentation of 0(3) gives:
)

-#) c+ b
<(?cr€f)r~> oy - - Z (Jrpe + 2
jl“”fﬂ 1% A2.35)

The propagator for (6,6;0) is constructed using the Bargmann-Wigner

Equations for the fields:

A_¢ —b )
(P-n) & ()= 8@ () =0 oo
and the 'on-shell'condition:

g
plgﬁc(}): M* &, ()

(2.37)

A propagator satisfying these conditions is
a' 8 ‘
. ) — # )> . La4®)a Cri= Py
<§2AC0 QE,C-P - GnTLPrn1) (2.38)
Combining (2.35) and (2.38) heuristically, we have for (6,6;N) exchange

Pp. b,
<2, C”)> 2 (5rvl"‘+'.i}7%)

e~ Bepiofi !

)2
| t Of C/"I*f) (f‘f—f’)b‘
C j Nrﬂ"- 1t ( (¢er-1Y)

(2.39)

In the case which we wish to consider (2.30) and (2.33) imply
that we need to know the fully contracted supermultiplet propagator

| YE (-
& S <&,y )fw( 1’)>/'

() (2.40)
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This is
Auv) - ( o E-r2 (2.41)
| n+?
- (£.2) Y (s ®
- A E-r* (2.42)

for pair-wise equal mass kinematics where € is the angle between

(') and ().
In (2.42), (cos®" is the rotation function OLEIJ{I%) for
the U(3) representation of the supersinglet exchange, and cos & is
6,6
a spin factor caming from the U(6,6) rotation function 0(07[69) .
Y 6,6
The generalized rotation function A (e ’ €O is

Cwilv'l  LwilvY
obtained by differentiation. Specifically, we are interested in

N ) A
W A = (_P-f) (119 (M +9/ )y
iy L ht* (¢ <11%)

(2.43)

2.5. The Reggeized Invariant Amplitudes for O-%'*' Hypercharge
and Charge—Exchange Scattering :

The covariant T-matrix is constructed according to the usual

rules such that :

T :€P+)T (og@q aﬁu,))/”? wp € a (2.44)

S - F“-hc G‘:cas

— D_p Dp' A'(vu) | (2.45)
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where the D's are differential operators depending on the external

quantum mubers at the respected vertices. Using (2.31) and (2.35)

gives for oy charge-exchange scattering: @ a’
o T~ (A (P) ey -V
' = (‘h:ﬁ—.),vﬂ W R(EG) u?&co; 3', E I" Ej‘}(f‘))g( (*) ,{Bi
"t
1}”’[ 4><m 9(—&)] 3 wa’*bP A

(h)
i &H 7 T
-t wr
L}“ [z 2] 3 L
(2.46)
using (2.43) and where | )3
Qﬂ)% : ( Mt 7’ A
7 z M (2.47)
where tj/: Fl - P-_; . Carrying out the decamposition of the U(6,6)
meson tensors with respect to U(2,2) ® SU(3) as shown in ('2.11) ]
éxtracting the pseudoscalar part., and noting that :
= ¢,)  +
2 Z ) gu(élé) - { p) gb‘-(l,l) ? D [— ]‘—L(z 1)
4 o (2.48)
an d

2L )]um =L, jm,ucf ) ¥ { )J?au,u(’. % (.19

vhere ( , )Jyand (, )Fare the SU(3) anticommutators and commutators respectivelw



23.

and are given by

6.6) - [6,6]° .
(és,(}g % 95;) (15 Z (2.51)

with the extratensor being implied by (2.38) we obtain

"j (mfmﬁ[ﬂfﬁ)(’t
[—LLT)C?%,@)F + l‘t( (é’/ 45;)9 ] ("" 1f) (2.52)

Similarly, carrying out the U(2,2) ® SU(3) decamposition of the (56,1;0)

il

fields as in (2.15) and extracting the %'*' octet part, gives

T 5 [T () R (+5f)

E %r)[ou ,U) 1—(/‘—* (WN) ]+/
Cl‘ 5;:1)(’\)/’9"‘/)17‘%;:3{ L‘H((ﬁ;)qj;)nf (2.53)

N Céﬁ‘{’s‘)ui

To Reggeize (2.53), we use a first-order Taylor expansion
about the pole, t = Mz, arnd obtain

L - % E{i/ F(@)PQ*&)

- A< (2.54)

where the + or - depends on the spin of the exchange. We also let

N — «- | | (2.55)

( ) *LFTO(

and extract out of h—' the s:.gnature factors / ([ e ) whose
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presence is required to removwe wrong signature poles as demanded

by the presence of exchange forces.

(+)

To remove the nonsense poles at o = -1, ~3) -.-. forh
andx =0 -2, ---- for L(~) we need a 'ghost~killing' mechanism or
else we have the violation of the conservation of angular momentum

at these points. To show how this is done in O_’{" scattering(ll) ’

consider, for example, the pole at ¢ = 0 in ). (e shall carry

out the same mathematical operation on h(+) so that a nonsense dip is
created in this contribution). The non-flip amplitude is a sense-

sense one (no net helicity flip at both t—channel vertices) while the

flip amplitude is sense-nonsense (helicity flip at the baryon vertex).
Every monsense vertex introduces a & , so to overcome branch points

and to conserve angular momentum, a factor of « is introduced in the
Sense-sense amplitude and a factor of J& in the sense nonsense amplitude.
This is repeated at poles x-= ..:) by replacing o in the above argument by

(o 3).

Thus to remove all 'ghosts' and to create nonsense zeros at
the altermate integers in o« , we use the 'Gell-Mann ghost klllmg

mechanism' and divide the T-matrix by ’ ().

Hence, the Reggeized T-matrix is

() () -3 o)

) (] g (5L (T,

g/g-!Cl ) (- -m«)L (sw- ) -1

+/g e« )('*‘Q \w‘) L (Sf—w‘ )%ﬂ

(2.56)
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where the exchange degeneracy of « ; has been broken and the meson

tensors dropped as they are just equal to unity and

N SR Ai/
ﬁi - "——"‘—'—" r( d‘t L=p™ (2.57)

As (2.56) was evaluated at t = M2 M must be replaced by ./_—
in here; so leading to a branch point at £ = O on the edge of the

physical region.

A solution to this problem was suggested by Gribov(zo) ' where
for t £ 0, a conjugate conspiring trajectory is introduced. Thus,

using the natural doubling afforded by gquarks and pseudoquarks within

a multispinor framework, we consider for mesons two trajectories -
corresponding to (6,6) and (6,6)' vhere the prime indicates a pseudo-
quark composite. By analogy with Macdowell symmetry for fermions, the

(6,6)' has terms with /T - ~J/E .

Taking the total T-matrix as
| . _— = {
L C T(éé R [(,5> ) (2.58)

to remove the smgularlty, we need o cc) = «/(¢) and /)f(°) /; [O)
By analogy w1th fermions, it is speculated that for small t,

/ {
2 (&)= 2, (€] /_t (€)= B (€)= consbart  (2.59)

In (2.56), the 'N' spinors have both U(2,2) and SU(3) labels.
Hovever, the brackets around them ii‘:ply SU(3) traces, so the SU(3) labels
are completely saturated leaving the o spinors to be treated as Dirac

spinors.
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Defining the covariant M-function, M by

T': R}- M N (2.60)

and writing
!
M'« F}i + /1,/’9/ 6 (2.61)

where 1 is the unit matrix, enables us to write (2.57) subject to (2.58)
and (2.59), as

=[O ce”‘f‘)ﬁf-"-(l v ij+zp7[/g Py (-77%)
b (), P((—@)(ue‘"‘)L LT )J

'Ll»\r

6 = ';'*ZCH’L/;)(/‘ - 301& [-/; F[(J)["‘ scr’«{)[\‘
.(s#%;k’l‘r .) ) + '@J_FCI-.(J_)(;.FQVLR‘() L (5+/-..h_ )

(2.62)

where g and h are the SU (3) couplings at the baryon and meson vertices

respectively.

As explained in the discussion on 'ghbst—killing' , (2.62) contains
nonsense dips for x =0, -2 .. amd <, = -1, -3.... . Thése are borne

out experimentally, e.g. in 0 N charge-exchange scattering at «_ = O.
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2.6 S~channel Helicity Amplitudes a.rxdfb{perjmental guantities(Zl)

For the two-body process a + b ~>c¢ + d, the differential cross

| s:ection is defined in terms of the s—channel helicity amplitudes by :

de . 0T L3 h)"
< ; 3 {2.63)
de T @K csmas) Q@ S ¢

amplitudes

where SJ‘ is the spin of particle j; QK) is the initial (final) centre-
of-mass three-momenta and ¢ is a helicity amplitude. For oyt —o%"

C goes fram 1 to 4 , and the individual amplitudes are defined by

¢-4'fol¢l'eo7 y 4= <Leldl-Lo>
(f - c-L_o 451 : 45% - <‘%0[<f/sl,to> (2.64)

where

{ - !

( cLol T4 o> (2.65)
5 9 ](/0 = . €. )

<Aol¢lio> P

where Wzvg and < X o Tf'/x0> is that spin component of the T-matrix.

Conservation of parity gives

P 534’5 -5 5
ARG = Q.\’—‘;L\i (-9 r“-\)» ¢ ERATTRR

(2.66)
where YL is the intrinsic parity of particle i, X: }\; )‘qand /t\ = \'_)l
C .

For O %' scattering,

ylzy\-‘r - l :
. o | (2.67)
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and (2.66) gives

| (&: fbi , ‘ ﬂ = 7 42 (2.68)
do _ i :
T 140141

Similarly, the polarization of the outgoing nucleon is:

Pee) s 2 T (462014171407 o

Hdwever, in order to use (2.69) and (2.70), we must write the pole term

Thus,

(2.69)

helicity amplitudes in terms of the invariant amplitudes A and B.

. . Y
Treating the N spinors as Dirac ones (in (2.56) N = N CT'“)Qt '

—

so the Nt_ is the Dirac spinor part), the relativistic boost condition

(2.71)

where (k is the Pauli rest spinor and & , % specifies the particle

direction with respect to the positive z-direction. Similarly,
~(),) '
- (2.72)
A S R o
where for positive intrinsic parity
7, k= b (2.73)

oo
Using Z’:K{,(r a’s vhere O~ = CO 0,) , 0~ - Pauli spin matrices,

(2.71) amd (2.72) become



Q) , s:f-faxfj q(z: 9()
N CP,):’ VE +w, [_' T E +wm, / (2.74)

—()D — ) T'Ox;)» L?:f /8
Y C%) = Gy Y Cojé)[/ - __E?}S (2.75)
respectively.

In the centre-of-mass—frame, the following conventions which

preserve parity and forbid particle-antiparticle mixing are used
!

g -
¥ 2
s .
(e=0) = g
+Cx
%) 0 - .6 9,
([’(9 o) = (o’) 5 ¥ o) = ~5;n/,._}(.05 Y 010)
o

.(2.76)
Using (2.60), (2.61) and pair—wisé equal mass kinematics gives
4) - [m b+ (c w- e, ) 8]
o c,rw (2.77)
¢_‘-'_..—SL“L—L[LA-+MCL/’ Bj
r GuW (2.78)

where m, , g' are the mass and c.m. energy respectively of the target

nucleon.
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2.7 . t-Channel Trajectories

As Chew-Frautschi plots of the meson trajectories in the
resonance region show them to be approximately straight lines, it has
long been traditional to regard Regge traejctories in the scattering
region as linear extensions of the plots. However, except for certain
specializéd models such as the Veneziano model, this is not necessary

if potential scattering and perturbation theory are to be believed.

Generally, in potential scattering, the trajectories are
dependent of the form of the potential employed in the scattering model
and in most cases are certainhly non-linear (22) . However, what is most

important is that a definite asymptotic behaviour is predicted.

Taking the example of a potential formed by the superposition

of Yukawa potentials of the fomm

Vr) = fr?‘r L) <

the trajectories o (t) are non-linear with an asymptotic behaviour

‘,'\_Y'
r

)] /"o>o (2.79)

w(£) —> '%(NH),-(:-% -0

(2.80)

where N is a positive integer defining satellite trajectories. The

leading trajectory (N=1) thus has the asymptotic limit (23)

< (t)—>-1 | £ > - (2.81)

Other evidence for the existence of non-linear trajectories

is the scattering region cames from perturbation theory in the relativ-

istic dcmain(24) . If one evaluates a generalized Feynman ladder graph,

which is well known to the equivalent to a Regge pole, we obtain :
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o0 .

e (£) = —-N + Z 3'ULKA_(€) (2.82)

h=y
* where the Kn({:)aie integralsl associated with the self-energy loops
contained in the ladder and the g's are 'end contributions'. N is an
integer depending on the 'order' of the trajectory. The asymptotic

behaviour of (2.82) is such that

K (e)—>o, &= -= (2.83)

Again the leading trajectory has the asymptotic limit

«(£) =>-1 | > —c0 O (2.89)

Experimental confirmation of the conclusions (2.81) and (2.82)

has been carried out by Owen et al (25) , who fitted the parametric form
de 2(ale)-1)
At 3 |
to the backward region. They found (2.81) and (2.84) to be approximately

to the T"p elastic scattering data from the foward

true.

Taking into account these facts, we parameterized our trajectories

' °<1..e.
o () = <, t <, 2
(2.85)
- which gives

o (£) = Xo, > - (2.86)

The « ,were found to be campatible with -1 to within experi-

mental error (see chapter 4).



To show that our trajectory is not too remote from the general

idea of linear trajectories, we see that in the peripheral region

(t) % (oco-Foz() + (°<|°<v)\6 (2.87)

i.e. linear. Continuing the trajectories into the resonance region
using this limit, we see that the meson poles are acceptably close to

the trajectory (Fig. ).

We further notice that IKCE) } <] is the scattering region
considered in Chapter 4 so only one nonsense point occurs at xT O .
As we use the Gell'Mann 'ghost-killing' mechanisy we have a zero in the
pole graph of the odd-signature trajectory as this is a wrong-signature
point. However, as £ =0 is a right signature point for the even-

signature trajectory, there is no dip in its pole graph at this point.

32.
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CHAPTER 3. ABSORPTIVE CORRECTIONS.

3.1 Absorptive Cut Models.

Later in this chapter, in fact in section 3.4, the equivalence
of cuts in the J-plane and absorptive corrections to the pole graph
are discussed, so we shall assume this equivalence in the preceeding

sections.

Chapter 1 provided us with the motivation for introducing
absorptive corrections to the pole graph. We are now faced with the
problem of how to do this. Basically, there are two points of view
which may be adopted for the introduction of the Pameron—-Reggeon type
of absorptive cuts. These are:

a) The weak cut model as used by us . Here, the

(26,27,28)
' pole contribution is larger than the cut and dips in differential cross-
sections are obtained by using a 'nonsense choosing' mechanism as
indicated by the Veneziano model.

b) The strong cut model as used by the Michigan group(?‘g) . Here
thé Regge residues are featureless and do not have a nonsense choosing
mechanism in them. Dips, and like features, are obtained by pole-cut
interference, undoubtedly facilitated by the wealth of parameters present

(30)

in this model. Phillips has stated that by suitable choice of

parameters, 'dips can be obtainéd practically anywhere.

In this version of the absorptive cut model, the cuts are

maltiplied by a factor A , where
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)\ = Iinelastic cut + elastic cut M elastic cut } (3.1)

,as a method of introducing particles other than Pamerons into the cut.
A is typically taken to be of the order of 1.5, as .inelastic cuty
elastic ctand thus gives cuts stronger by about 50% than the weak

cut model which has A =1.

Up to the preseﬁt » only Pomeron-Reggeon type cuts have been
considered. No modelsfor Reggeon-Reggeon type cuts have been constructed
as judging from the ratio of [ elastic 3& / inelastic &
which is just Pcmeronz/Reggeon2 ] in the forward direction,
Reggeon—Reggeon cuts are expected by an order of magnitude lower
than Pameron-Reggeon cuts and so are only eXpected to be important at
very wide angles or very low energies where the Pameron contribution is

expected to have vanished.

3.2 Absorptive Corrections to the Pole Graph.

To introduce these, the pole s-channel helicity amplitudes

are first expanded in a partial-wave series (21)

. — ' bg
O 60 10D, = Z s N TOIA> o o)

where © is the c.m. s—channel scattering angle, M = - >‘z ‘
= }.3_ N, where 1,2,3,4 describe the incoming baryon and meson,

and the outgoing baryon and meson re'spectively.' XL is the hélicity
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of particle ( and <\3\q,} vaer) I X.\z> is the

partial-wave amplitude.

. D RN A, ,
In particular, for 0 5 —> 0 4 scattering, the
two independent helicity amplitudes defined by equations (2.64) and

(2.68) have the partial wave expansions

47(5 €) = Z (25+1) </‘ o }T (s)} -,_o> ”{},/(9) (3.3)

oy

A
T

¢l($)(:) = Z F25+l) <}10, T)’(s) I"\f.‘,0> ‘/.("’52(9) (3.4)

5 :
where the rotation functions (il‘)( 6) are given in terms of Legendre

polynomials by

}}(9) [Peﬂ(f«os e) + (COsQJ/[Q_C)}U:s 9)] (3.5)
‘/,, 59) = "‘[P (cose) < P(Cosg)//’z(l' Cos 9)] (3.6)

with J= € +%5. -

To write the partial-wave amplitudes in terms of the helicity

amplitudes, we make use of the orthonormality relation :

+1 .
5 b '
o{f)(e) oLr)((t)) O{(Cos 9) = _7\_&['__ (3.7)

(13+1)
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Thus, we have for the partlal-wave amplitudes:

<}.)~ [TZ2o AND = & (r_y [dts, eI\ >&( Qﬁ»)o((ccﬁe)

These are determined in practice by numerical integration as explained

in the appendix.

To introduce the absorptive corrections, we approximate the

modified production amplitude by the Watson formula to first Order(5'3l) .

ONITE RN < 4 zﬁ RERNERIA
_ <o(/g T Cs)“,\,>+<>\ >\ s) 0(/;><o({g,15 [\ \ >] (3.9)

where < )\ \ } / (5 ) >\ & > is the productlon amplltude I"Ddlfled
by absorptive corrections, and {}\3\’!5 Ii}) and {qﬁ (\ }‘>

are the S—-matrix elements for single elastic scattering in the final
and initial states respectively. To get nearer a true modification to
the production amplitude, we really need to introduce all orders of

elastic scattering in both the final and initial states.

In (3.9), we can write

()\ dj °</> = <)) l~=</:>m,o<H IT* ’ot/g>(3.1o)
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T

/>‘i>‘z> ¢ where /° is a phase-

and similarly for <0£/5/ 5

space factor. Hence, using (3.10) in (3.9) we cbtain

'<>\3>\‘f’—réz)))\l>‘z>: <>‘3\‘r I‘TJ“)”)‘) * i/) é
, )

ONITElgl T A +CAN |7 ‘_”/ S o
<<p [T /)s,\>

The camponents of the right-hand side of (3.11) correspond to diagrams
(@), (b) and (c) respectively of Fig.l. The elastic scattering elements
in (3.11) are just equivalent to a fixed pole Pameron, so it is

apparent immediately how Pameron-Reggeon cuts arise.

In the actual camputation of the absorptive corrections, we

make the following assumptions above the elastic scattering elements.

1). That the elastic scattering inthe final state is the same

as the elastic scattering in the initial state purely for the technical
reason that no-one has yet done, for examplé, K+ Z ¥ elastic scattering
experimentally, and our elastic scattering paran\éters are determined

by the experimental data (see section 3.3).

2). That the elastic scattering is purely non-flip. This assumption
is based on the fact that for high-energy meson-baryon elastic
scattering in the near forward direction, the non~flip amplitude is

- daminant.

Under 1) and 2), (3.11) becomes:
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2T Cs)m ST /H>+2L/<H szs)}m@ 12
AWLIT IS

}}JT?;)H,\){)\'\ l SQHI),X)Q.B)

Having calculated the modified partial-waves in (3.13),

these are then resummed to give the modified helicity amplitudes:

< )))' ]qﬂéslé) [ M;> - ;(zfu) (’\;}‘4 ] T(lz) I ,\X) J/jée) (3.14)

[ .
The modified helicity amplitudes, (}9 , calculated as in
L
(3.14) then replace the pole temm hel:.c:.ty amplitudes, 5(1 , in
L

(2.69) and (2.70) for the purposes of camparing T and P(t) with

experiment.

A calculational point worth noting is that in the partial-
wave summations (3.2), (3 3), (3.4) and (3.14), the sum Z
is approximated by Z y where N is the smallest nurber
such that the contrlbutlons to the (M1l)th partial wave from the helicity

anplitudes aré Zero and:

' Y
a) <z\. \1.[ S ¢ h'&t> =l.c (3.15)

b) after using (3.8) to find the partial-waves, the application
of (3.2) , using N as the upper limit of the sum, to these partial-waves

yields the original pole helicity amplitudes.

Both a) ard b), of course, are taken to be true to an appropriate

nunber of decimal places.
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3.3 . parameterization of the Elastic Scattering Elements.

A parameterization for the elastic scattering elements
¢ d 3
9 (matrix labels are dropped for the spinless case) is cbtained
by a non-relativistic method for spinless particles(z’ 3) . A generalization

to include spin is then made afterwards.

The differential cross section for elastic scattering with

‘equal mass spinless particles is
do.) / . /2 .
= - (o)
4o ), F | (3.16)

where & is the C.M. scattering angle. Here, we use a partial-wave

expansion for  f£(e) in terms of the orbital angular momentum, € ,

e (3.17)

s y
F(Q)C Q_Z(ZQ“) _S_e__—-__l_) F(c»s@)

el

where Q is the centre of mass 3-mamentum and S ¢ is the elastic

o]
scattering S-matrix for partial wave ) . Oﬁlseiél‘ .

In the peripheral region, € is small, sofor $—Deo,

——
f lne) —s ) (b \“5‘)
£ (3.18)
"where J o is the Bessel funcfion of the first kind of order zero,
b is a continuous parameter called the 'impact parameter' amd
JEr X Q@ & . Db is defined by the equation,
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QL) = vk ‘ . | (3.19)

implying that b gives a measure of the'distance'of interaction.

At high energies, we expect many partial-waves to contribute

so we make the approxjmai:e replacement:

S [Cats —{qus...

€-o (3.20)
Hence, , .
20 .
fer=ca vl L1 ] T CLaw)
o | (3.21)

{
e
For S ¢ o+ a camplex Gaussian model is assumed,

[ —Q(Qh)/y"c\)fl ..e(&.)/vz’@j
|~ [ (3.22)

Sg’ = C, e L+, 8
Z

implying that |
o) N Y RO L o Y V‘Imj

3([,,)‘: [- [C,e s r €& R 3
(3.23)

where ¢, and c, are related to the opacity of the target i.e. strength

1l 2
of interaction, as shown below, and where V, , V. can be thought of

T
as radii of interactions typicélly associated with a Gaussian model.
' This occurs as

[ el )] ;"1/‘1’ et ~bl/»al(/m’”<?z
l.—-

= C, e 2 $C6 28 g (3.24)
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bt

where 2 has the form for a given y,

A

o

V’ (0"911)""

To show how cy and c, are related to the mean opacity,

we determine 0 and o e

o o -
0:‘ = I Z (20.4-1) [Sc ~1 lz (.3.25)
- -2 Ll/y,l ;/tv,ldl X ’LL/ (/1_,,; J
— 2774( LJL[C 3 2 +C, @ 2

T
= 7T fov'q? X t/zv__ Q
= [""c\z 2 th ¢ e (3.26)

<

or( = Z—_TEZ_ Z (20+) [lﬂ P, (5 ] (3.27)
ST N
— L fooloib C, = L p./“'zq

0
2.2
i /e v
= ?.FTC|7"1‘IL/ ‘1 | (3.28)
Hence,
Mean Opacity = z ::” (3.29)
' Tot

'/L".TQL 12 l/n"l}‘(t
vite: ¢ A G2 (3.30)
- by l/LrV'qu ¢
Zc, V.%o t
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As in practice, we put Vi =Y ,

2 2 4 Jevig?

‘Mean Opacity = ¢, _* ¢ 2 (3.31)

1, .
A/‘-tV.IQ’L

and as typically, “~& , qQ~2 , o ~ | (3.32)
+ T

Mean Opacity = €+l (3.33)
2 ¢,

The physical interpretation of mean opacity is that it
‘represents the 'strength of thé interaction' in the sense that it
ciescrjbes th much of the total scattering is elastic and so due to the
short range forces in the completely black disc, radius Y , area of
the target. These particles are then lost to (or absorbed fram) the
givén inelastic channel which we are considering in the peripheral region,

which occurs within a radius Il The situation is easily visualized

for w2V
> Y,
but equally true for V|, > /'4 .
' et ‘
Neglecting & again, (3.28) gives the expression

for the determination of < from a given set of data. This is

C = O 7.6

To determine V. , we take (3.21), which gives
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g - Hu o lenet oy
°I[C“’. e e & Fie, VY, ¢ 2 &

L (o)
: . e WIS (3.35)
V(::p:f-._ L% [C'+ k(q] V' « ‘ .
1
(de) = [f]
Hence, Ibz‘
L v 1 2//) '
= —@ [C.z"d]"»q’aj/‘tv‘ “e f (3.36)
Ly .
In general, (<<, ; so (3.36) reduces to

o) o M@y e =N,
2| - ¢

a’:’n’ 4 . (3.37)
Hence, at a given centre-of-mass mamentum Q,
~V."ll:(/z
[ de T o, = o
do |- =~ = vt €l | -
[ / b2o Jal 2 (3.38)

Hence, the slope of a log - linear plot of the elastic scattering

. v
differential cross-section, after normalization, gives ﬁ: .
Practically, we always take W =V, giving
' 2z
o ) — Ce, +1¢) -e@ )/
S = ' v (3.39)

A
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To include spin, we have an cbvious generalization of (3.39).
Pl

=

Taking, as stated in section 3.2, the matrix element S Elep © ,

» the non—-flip element is cbtained by replacing E by J in (3.39) giving,

< \(\1 ) S el 3 [\‘\1’> =] - (Cl.’.cct)pj:rCT-h)/y‘de

(3.40)
We can think of this as being a weighted mean as
-y
0 = 7404 A (3.41)

2

Judging purely on physical reasons, we see that (3.40) is

just what we require for the absorption model, as neglecting Cy
: 13
we get < PR N E R B % V)

“\

i.e. attenuation of the low partial waves.

It now just remains to determine Cye Aswe have assumed that the

* elastic scattering is pure non-flip, at t=0O,

0" 4

(ﬁ) | (o0 - | “lomof*

(3.43)
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Implying
el - |
’ @ (=) = [ (& ) (3.44)
Hence,
C, _ ]22 ﬁQICF:O)
< T T 4;‘“'(&-_@) ~ (3.45)

[ o
The ratio R:uf'g (t=0) I...¢ (t:0) has been measured

+ x
exXperimentally for 1T F elastic scattering, but not for K r elastic

+

scattering. Thus ¢, can be determined for T F processes, but

2

for processes where this data is missing, c¢, is put equal to zero,

2
making the elastic scattering purely imaginary. (02=0 always in chapter 4).

el
For small mamentum transfers, we can also determine 4
[]

as here it is fair to assume the camplete dominance of the non-flip
amplitude. Extending (3.44) to small t% 0,

§ = (O [t el G

Hence, fram (3.35),

Lhol §itsp 450y = *‘%

- s -Vt e
Y I“‘—C‘]‘L 2 (3.35a)

3.
N
| Coifvs
As C1<<C' a.nd 5 ’ :’(,l [}

|
<L¢OI 4’¢CS,E)1L'»"> = %Vz «C z‘VHH//* ~ (3.35h)
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On comparison of (3.35b) with (2.77), we see that for
small & , the s—dependence implies that our elastic scattering

Gaussian is equivalent to a fixed pole of spin J=1.

3.4 Regge Cuts and Absorptive Corrections.

~ Here, we aim to discuss both Regge Cuts as discussed by

(33)

Amati, Fubini and Stangellini (aFS) %) and Mandelstam and

Absorptive corrections as applied to Regge Poles and show that they

 have sufficient features in camon for us to believe that Absorptive

Corrections generate cuts in the camplex J plane.

The introduction of cuts as opposed to absorptive corrections
follows fram the work carried out by AFS, who considered an amplitude with

a 'crossed Regge Pole' behaviour

— - )
1 (&) = _LE) (%@)d ' (3.46)

$Cn 'Tﬂﬁ.(t)

and found that when this was inserted into the right-hand side of the

elastic unitarity equation:

L. Tese) = Vi da T (5¢9 T(glk‘j (3.47)
: phase ‘
Spxce
ard a dispersion integral taken over I‘m 4 $,t); a behaviour more
camplicated than (3.46) was obtained which AFS put down to diagrams of

-the form:
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Although Mandelstam showed that when all dispersion graphs
were added to form the Feyrman graph, no cut resulted in the J-plane,
the idea was enough to generate modified graphs, which do give cuts.
Mandelstam showed that the simplest graph which gives cuts
is :
j:—_é |
.t-
where ~..., is an effective trajectory = II 1T .
As this graph has a third double spectral function /tul a cut
results in the J-plane.

The absorptive corrections give diagrams similar to that

obtained by AFS as shown by Figs 1(b) and 1(c), but as shown by equations
(3.8) and (3.12), the equation evaluated is of the form:

Te) = f d
Pl

a, Tt T (56
spuce /J ’ ’

. (3.48)
AFS and Mandelstam diagrams give a similar energy behaviour
as does the absorption model

(34,35,36)

, but the latter two have the

opposite sign so the pole term and cut term have desctuctive interference
which seems to be experimentally verified.

Symbolically, we can write (3.12) in the following form
oy

R+2€P®le

(3.49)
where R defines the pole term, P, the Pomeron (or elastic scattering)
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tem, and a and b ’ two—particlc_a‘states. In this notation
Caneschi‘(37) showed that there may not be a 'phase contradiction'
after all. From (3.47), extracting the elastic intermediate

state, we write

I.7., = E( Tb®T[,) % ja(!Z«/,\ 1;, aw (3.50)

Putting,ra.&'-' .Tl,,b = F ' T,\g = R , and as s ~Doo

.f;,(‘m o Ly L.\ = 1o R 4 1omying cut,
r+a . .

we have, with P pure imaginary,

I,w’[:L = B zKLCl’”@K) (3.51)

which has the sign disagreement with (3.49). If however, for n # a,b
we apply absorptive corrections to the inelastic intemmediate amplitudes
according to the Watson formula, (3.9) (neglecting absorption in

intermediate states).

Tz T.o0(nif) + Lok sy

we obtain (3.49).

As far as the energy behaviour is concérned, we first show an
expression for a leading'Reggé cut derived for a spinléss case. A
Samerfeld-Watson transform is first taken for the t-—channel partial

wave decamnposition of the arrplituié:

Tew = 2 3 T 6) Plee) oy
3-o

(3.54)

i:/' Clj«r\) 1 Cj£> ("Co;@)
s f St T -5 ﬂ(J
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where the contour ¢ encloses integers along the real axis of the

J-plane.

~ Assuming cuts and poles only exist in the right-half of

the J-plane, the contour can be deformed as follows }re~c o cnclede c .

ATLY 5
y
s/
=
4 ¢ ¢ ;..h...&_.c yRed

to obtain /,’[o( E) pak["’tos@) P [—ccs 9
Tls, &) = i— SCn ST + ; Tsina Sorw— 1 s ) "(04'
«ts
Cwtg
+ left-hand contour integral ‘ (3.55)

Legh ( -cn)x 4((:) ..1)
. Leghe ‘“"1"; (a.x) L, P

Lint Z Ad :uu: = + Z Sc:ﬂoe( DL“ T(d &)O(OL

<L tuts (3.56)

For a leadmg order Mandelstam cut near o« ¢ J

Disc_j ! (J',{:') ~ V[fc) (3.57)
giving an asymptotic cut contribution :

5 \<iE)
5 v
o ((aj (/ +/‘ ))

(3.58)



An expression similar to (3.58) is shown in Nbriarty's(38)

" thesis for the absorption model, using spinless particles in the impact

parameter representation.’

 Thus the evidence seems to indicate that the absorption

model does indeed lead to a cut in the J*plane.
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CHAPTER 4. APPLICATION OF THE REGGEIZED ABRSORPTION MODEL

TO 0 %" HYPERCHARGE-EXCHANGE REACTIONS.

4,1 Discussion of Results.

In this section, we apply the Reggeized U(6) @ U(6) © O(3)

absorption model to the 0 % hypercharge-exchange reactions (28)

(i) m7p = V\°/\(Zo)
(i) Ap KN

i) Kn =2 a-/\

(i) kqn—%n‘zo
@ TP S KsT
(vi) K_F -> rr‘2+

The model, as applied to these reactions, consisted of
the Reggeized U(6) ® U(6) @ O(3) pole termm as developed in CImptér 2,
to which was added the absorptive corrections as shown in chapter 3.
In the above reactions, we have both K(890) [ T - 1=, d—signature‘]
and KN(1420) [ ':fp =2t ,even-signature] exchanges, neither
of which can be isolated in a single reaction due to the absence of
G-parity. Hence, we camnot determine the parameters for a given trajectory
separately from the other.' Thus we close the reaction with the best
statistics in the differential cross—-section data over a wide rarge of

energy and carried out a L% minimization using MINUTTS (CERN Program
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Library No: D506) to fit the theoretical pole + cut differential cross-
section to the experimental data and so determine the parameters. The
reaction chosen was 17 7p =Y [l’l‘r% u N (£°)J vhere the ¥°
includes both f\'s and Zo's as the resolution of the experiment
was not sufficient to differentiate these. The parameters determined
+

. . -— ~— + ——
mthlsvaywereﬁ_,/g+,o¢’ roX, 1 %, and X, . «,and <o

-+

were fixed by the knowledge of the values of w”, « ™, « and ]

*
respectively and the constrairnt that the K (890) and K (1420) trajectories
must pass through their respective poles. This latter condition was
imposed using equation (2.87). Pair-wise equal mass kinematics were used
' +

4
in the calculation with m = I.IS 5'21/,4‘, the average mass of the 2

octet, and p= 0-42 (eV4® the average mass of the O nonet.

The SU(3) D- and F-type couplings used in this analysis are '
shown in Table 1, and the elastic scattering absorption coefficients as
determined by equations (3.34) and (3.38) are shown in Table 2 (Since
no differential cross-section data exists for K n elastic scattering
(required to determine v ), K p elastic scattering coefficients are used).
In Table 3, the results of the minimization for the parameters of the

trajectories are given.

As stated before, Fig.l displays diagramatically the scattering
aﬁplittxie in its components specified by equation (3.11). Fig.2 shows
the Chew-Frautschi plot for the K (890) and K (1420) trajectories. The
trajectories turn out to be almost degenerate although this was not imposed
as a condition. This agrées with the absorption models discussed later, |
although they use the strong form of exchange degeneracy which was found
not to be valid in our case (Table 3 shows ](6‘{,. ’>|15K”l ).
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We will now discuss the results of each reaction
separately and after in Section 4.2, cawpare our model with others

, applied to 0% hypercharge-exchange.

(i) T p + KA(z°)

As stated earlier in this section, the mass resolution
o
of the recoil hyperon in this experiment was such that the N\ and S

could not be distinguished. Since, in principle, these are distinguishable

reactions: .
o_‘% (n=p>UN(E)) = ”(—az—”;(rr',o ~>ih) %é%(“’ po¥ ey,

(4.1)

Using this condition, we minimized on the data, to get the mamentum
transfer distributions shown in Fig.3. The s- and t-dependence are

extremely well represented.

Having determined the Regge parameters, we calculated the

following reactions and compared the predictions with experiment.

(ii) 7 p > KA.

Differential cross-section data for this process exists at
7.91 GeV/c. Figures 4, .5 ard 6 illustrate the mamentum transfer
distributions obtained with the varigus possible exchanges using the
parameterization determined using (i). The (K(890) + K (1420)) 'pole +
cut' distribution forms a good representation of the data. All three
fiqures show the various pole, cut, and 'fnle—kcut' distributions, the

last formed from the destructive interference of the first two.



In detail, we see that in Fig.4, the pole graph has

_ 2
a nonsence zero, caused byq‘{": O ,ataroud €Ex "‘0-35_(6""‘//6}.
The cut has a kinematic dip slightly further in at tz -0.3 (Gev/c)2.
Fig.5 displays the KN(l420) contribution . Here we have no nonsense
zeros or dips as & Kv: O. is a right-signature point. Fig. 6
shows the K¥(890) + K (1420) contribution which is compared with
experiment. The data exhibits a daminance of the non-flip amplitude
in the forward direction, and this is correctly reproduced by our
model.

Similarly fiqures 7,8, and 9 show the contributions to the
Polarization for 7p-> u a/l at 6 GeV/c. BAs expected, all pole
contributions are zero, and for the K'(890) exchamje, the cut graph |
has a dip in approximately the same place as the cut contribution to
the differential cross—section. Hence, we get a corresponding dip

in the .‘pole+cut' graph.

Fig.9 shows the 'poletcut' contribution for(K?890) + KN(1420))
exchanges campared with experiment. Agreement is cbtained for |t
< 0.3 (GeV/c)Z, .but we fail to obtain the turnover reguired to get
the negative polarization at t7% -0.35 (GeV/c)Z. We notice that we

have K*(890) daminance in the 'poletcut' graph.
(1ii) Kn > A.

The theoretical prediction for the differential cross section
for this reaction is plotted against the experimental data at 4.25 GeV/c(45)
in Fig.10 . The normalization in the forward direction is reproduced, but

the theory predicts too much scattering for large t.
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In Fig.1l the théoretical and experimental polarizations 45’

campared. The theory does not represent the data.

(iv) Kn -1 1o,

@5) . the

Fig. 12 shows a camparison of the recent data
differential cross section for this reaction at 4.25 GeV/c with the
prediction of this model. The agreement is most encouraging. Both

the forward normalization and the t-dependence are well reproduced.

The polarization distribution for which no data exists at

present is shown in Fig.13.

v) p > Kt

The high energy experimental data on do/dt for this reaction
has been measured by two experimental growps ®*° ). In Fig.14 the
results of our calculations are campared with the data of Ref.8, Both

the normalization and t-dependence of the model are consistent

"with the data. A plot of the mamentum—transfer distributions and the
corresponding experimental data of Ref.9 is shown in Fig.15. We observe
that in this case we do not obtain the correct normalization. The right
* t~dependence is obtained out to about t = -;.4 (GeV/c)z, but beyond

this there appears to be same structure which is not reproduced by our
‘model. Since much of this data is at low energy, and this structure

is not present at the highest available enerqgy, we do not take this

disagreement in t-dependence too seriously.

In Fig. 16, 17, 18 the polarization predictions are campared
with the available data 87 9429 pig. 16 and 18 show that the
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polarization is small and negative for lvtl < .3 . However, between
—-.3 and t=-.5 the data shows a dramatic change to a large
positive value of about | .7 at all energies, and this persists to
larger values of t. Our model correctly reproduces the polarization
for ] t] < .3, which corresponds to the forward peak region in the
differential cross-section but beyond this the model fails.

(vi) K-Q - ﬂ_E+.

Our prediction of the differential cross section for this
reaction is compared with the available experimental data (46,47
Fig.lQ. As in the previous reaction, (v}, we fail to obtain the
correct normalization, although the t-dependence is reasonable. Since
reactions (v) and (vi) are related by charge conjugation at the meson
vertex, the K (890) contribution simply changes sign from one reaction
to the othef. However, the K* (890) residue is approximately twice
the KN(1420) residue and therefore this change in sign produces little
difference in the forward nomalizations of thelase two reactions, and
in the forward direction o—fii (u p=n"2 a7t lr pohz f)experimentally.
Fig. 20 shows the prediction for the polarization of reaction (vi) at
8.0 GeV/c. The only data existing for this is at 3 GeV/c. This data

has the opposite sign to our prediction.

As écplained cifca equation (3.15), in the numerical work
involving the paftial-wave expansion, a finite number of partial-waves
was érployed. 20 were used together v;ith a 48-point Gaussian
quadratufe for the numerical integration. This was checked using
30—partial waves together with a 512-point Gaussian quadrature. The

results did not alter significantly.
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4,2 Other phenanenological models applied to O_%+ hypercharge—

exchange reactions.

We feel that within the limitations and restrictions of
our model, the agreanent- with experiment is satisfactory except for
the polarizations of iT-f~>l'(°A , M “)ﬂ“/] and ﬁ*,o-% uts?
for [E1 D 0.3 (Gel/ﬁ)% These crossover effects have been cbtained
in 3 other models, but in 2 this is a somewhat artificial effect.

We shall now discuss these models in detail.

. A previous model was that of Reeder and Sanra(39), who used

a pure Regge pole model with SU(3) symmetry for the residues. As

this symmetry is not large enough to relate the F/D ratios for K (890).
and KN(1420) exchanges, these were left free and not related by SU(6)

as in our model. In fact, the SU(6) relations were not verified

by Reeder and Sarma. The detailed breakdown of the model was as

follows. They had 17 free parameters of which 8 were residue ones
correspondmg to vector and tensor exchanges in the hon—flip and flip
amplitudes of the A and S reactions; 4 were the "so—calied' scale

" parameters for vector and tensor exchanges and flip and non-flip élrplitudes;
4 were the F/D ratio parameters for vector and tensor exchanges in the
flip and non—flip amplitudes; and finally, a 'crossover' parameter

in the form ( lf' %9“ . Their trajectories were not varied, but obtained
from those of the o and A, determined in 0% charge-exchange

" scattering by breaking SU(3) symmetry. They just displaced them to make
them pass through the X (8%0) and K(1420) poles expectively. However,
the K" (890) trajectory was linear while the K (1420) .one was

quadratic. Of course, with this number of parameters they could not

help, but be reasonably successful in explaining the data.
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The other two models were both Reggeized absorption
models and were published after our work. They were both constructed
using non-flat Pamercons in the cut, and were specifically constructed

to explain polarizations mentioned in the first paragraph.

The first model was that of Krzywicki and Tran Thanh Van (40) '

who used both strong exchange degenefacy for their trajectories and

a non-flat Pameron of slope 0.4 (GeV/c) —‘2. Absorptive corrections were
introduced using an impact parameter representation, but their model
was rather limited in the sense that theY just tried to predict cne
polarization given another. In fact, they considered just four
reactions. They fitted the 3 GeV/c polarization data, including the
cross-oversof IT~f = U°/N  and ﬂ"‘f"‘s uts* and frotﬁ this,
they predicted the reactions which have the same SU(3) couplings,

but the sign of the vector contribution reversed, K n->1 /1 and

K p>7 2" with considerable success.

A more complete analysis was carried out by Myers, Noirot,

(41) » who again used strong exchange degeneracy
. * .
for the K (890) and KN(1420) trajectories, but this time the Pameron

Rimpault and Salin

had a shallower slop of 0.28 (GeV/c) =2, They had essentially one
free parameter, which was a SU(3) mixing one in the B invariant amplitude.
However, an J'_ntefestj_ng feature of their model that they chose their B
to be crossing symmetric as thé antisymmetric solution gave too large a
| non—-flip amplitude. Hence, an extra (s-u) factor was required external to ths

B.

Meyers et. al successfully fitted the differential cross-section
e v - - Cs @
data of the 6 reactions named in (4.1) and A A>T 2 and /T p-‘)"l/Z
and also successfully explained the experimental fact
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_%{(%}an‘é‘?i‘cz% [ﬂ+f~> VL+Z-‘)

(4.2)

which is difficult to obtain for exchange-degenerate trajectories
without cuts. Froam these differential cross—sections, they
successfully predicted the polarizations for i1 p=># Nat 3.1 cevy/e,
and [THp >UTST petucen 3 and 7 Calf, but failed for

M -?ﬂ"n at 3.1 and 4.25 GeV/c, where a non-existent

crossover is predicted.

4.3 Conclusion.

We feel that the great virtue of our model is that we havé
a large enough symmetry scheme to relate all non-exotic two-body meson
baryon scattering processes and also that the integration involved in the
absorpt;ive corrections is carried out numerically. This latter point
means that we can avoid approximating such functions as the /' -function
or trignametric functions, which are not expressible as polynamials
or exponentials, in the Fourier-Bessel transform so as to do this
integral analytically. The P -function and trignametric functions,

as appearing in the Regge formalism, are an essential part of the physics.

However, largely from 'hindsight', we are able to make
several suggestions for the improvement of this model. Firstly,
the diagrams show that a considerable relative normalization problem
may exist, in spite of the fact that normalization errors in the data,
typically of the order of 20-30% (e.g. as shown in Figs. 14 and 15)

are present. This normalization problem may be related to the fact that



considerable difficulties are known to exist in the determination

of the/\KN and$ KN coupling constants and their agreement with

SU(6) symmetry. However, SU(6) seemed to work well for K" (890)

exchange in the U(6,6) absorptive péripheral model as applied to
photoproduction reactions, but not in the Reader and Sarma's analysis of oL
hypercharge-exchange reactions. Also the K (1420) remains largely an
unknown quantity, so a considerable amount of work needs to be carried

out in this field.

Secordly, we put the final state absorption parameters
equal to the initial state ones as no elastic scattering data exists for
K+£+ elastic scattering etc. Obviously, resolution of this questionable

solution must await data.

'ihirdly, the use of unequal mass kinematics may have been
important. This was certainly the case in the Reggeized U(6) © U(6) © 0(3)
absorption model as applied, using the vector daminance model, to ¥p=> i7" A",
In the differential cross-sections, the forward turnover was due campletely

to the unequal mass kinematics.

Finally, as discussed before, a Gaussian using a twavelling Mvcmj

pole could have been used.
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Reaction Baryon vertex Meson vertex

K' (890) and Ky (1420) K (1420) X" (8%)

D + %F F D—type F-type
m p -~ KA -/3 -/3 V2 -2

- RO5© 1
mTp > KL 3 -1 V2 -v2
Kn->n N\ -/3 -/3 /2 V2
Kn - n° -3 1 /2 /2
"o > Kot "% -/2 V2 -2
Kp->nz "% ~/2 /2 )
TABIE 1.

D and F couplings.
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Channel P V,—l (GeV) c,
mp 3.00 .27 .89
3.25 .27 .87

4.00 .27 .84

5.05 .27 .82

5.40 .27 .81

7.00 .27 .79

TP 6.00 .26 .79
7.91 .26 .76

8.00 .26 .76

10.00 .26 .74

11.20 .26 .73

Kp 3.50 .26 .79
4.07 .26 .78

4.25 .26 .77

5.47 .26 .73

TARLE 2.

Absorption coefficients.



*
Trajectory K (890) K (1420)
0 - 0.829 - 0.984
o 1.098 1.177
a, (Gev/c) ™2 0.840 0.761
B (Gev/c) L - 7.162 4.712
No. of data points 76
x> 65
TABLE 3.

Regge parameters.
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FIGURE CAPTIONS

+ Figure 1. The pole + cut diagram.

_ *
Figure 2. Plot of ex(t) against t for the K (890) trajectory (—)

and the KN(1420)» trajectory (-———- ) . Parameters fram Table 3.

Figure 3. Differential cross section for I p ~>KNED) .

Data from ref. 42.

Figu.re 4. Contributions from the pole (-—-), cut (——m — —— ),
and pole + cut (—) to the differential cross-section for
- *
Mp> KN using only the K (890) exchange with parameters

fram Table 3.

Figure 5. Contributions from the pole (-——-), cut (— —-—-),
and pole + cut (—) to the differential cross-section for
mp->K° N using only the Ky (1420) exchange with parameters
fram Téble 3. '

Figure 6. Contributions from the pole (——-), cut (———-), and
pole + cut (—) to the differential cross-section for
M p—>K° N using the K (890) + K (1420) exchanges with

parameters fram Table 3. Data from Ref.43.

Figqure 7. Contributions from the pole (——-), cut (— — —— =),
and pole + cut (—) to the polarization for iT p —=K°N
using only the K*(890) exchange with parameters from

Table 3.
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Contributions fram the pole (-—), cut (———-)
and pole + cut {—) to the polarization for iT p ~>KY]
using only the Kﬁ(l420) exchange with parameters from
Table 3. '

Contributions from the pole (-———), cut (— —=-—-),

and pole + cut (—) to the polarization for I p -k
* .

using the K (890) + K(1420) exchanges with parameters

from Table 3. Data fram ref. 44.

Differential cross-section for K n—=>8 /l. Data

fram Ref.45.
Polarization for K n->ir /}. Data from ref.4s.

Differential cross-section for K n—> .T-Zo.

Data from ref.45.
Polarization for K n =T 2°.

Differential cross-section for rr+p ->K+2'+.

Data fram ref.8.

Differential cross-section for rr+p-> K+i+.

Data fram ref. 9.

- Polarization for rr+p—->K+1+. Data fram ref.lO.

Polarization for ﬁ p —>K+§+. Data fram ref.8.



Figure 18.

Figure 19.

Figure 20.

Polarization for TT+P9K+Z+- Data fram ref.9.

Differential cross-section for K p->iT 3 .

Data from refs. 46 and 47.

Polarization for K p2m s .

66.
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CHAPTER 5 DUALITY, EXCHANGE-DEGENERACY AND VENEZIANO MODELS

5.1 Duality and the Veneziano Model

It is generally believed that at low energies, the forward
scattering cross-sections are daminated by s-channel rescnances. This
~arises as at these low energies, cross-sections indicate peaks and dips

which are readily explained by using a resonance saturation within
either a fixed t-dispersion relation or a partial-wave expansicn. The
non-resonating background is of course néglected. However, as explained
in Chapter 1, at higher energies and small momentum transfers, the
forward scattering anﬁ:litudes are believed to be daminated by poles (to
obtain the oorréct s—dependence, the poles must be Regge poles) in the
crossed channel, neglecting the background integral and, at first, cuts
in the t-channel. This latter fact is shown, for instance, in K F‘-)['f. n
where there are no non—e;.xotic u-channel exchanges and so no backward
peak. Vice versa, K p>1T *Z "has no t-channel exchanges and so no
forward peak.(l)
An obvious advantage would be to find same sort of continuity

between the two and this is provided by duality, which leads into the
Veneziano model with its equivalence of infinite sets of s-channel

rescnances and t-channel Regge poles.

The concept of duality can be shown easily within the concept

)(48). Suppose, for example, that the

of finite energy sum rules (FESR
aplitudes Tuihlv)f:) [ 4+ (-) means that the amplitude is even (odd)

' ' s-w v
under s <> u crossing and V= T ] satisfy fixed t dispersion

- relations :
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. AR _: L,
TCV,(,-) = -ﬁ‘f‘: dvi L [ CviE) >ty 3 ayf(5e1)

’

where the integral has poles for o6& v/ <& V,, and continuum
 contributions for vio> v, where V., 1is the threshold. Again,
assume that for same VI >V, , TtCyjt) can be written as an

expansion of t-channel Regge pdles

R +
I tv®) = R7(vE) ivi>v
. -(€) - L
= > P_(e) v’ €= eot £ o
J) J ' { <L v (5.2)

"

Defining A (v,¢e) LESA R R (‘); t)the dispersion relation for this

difference vanishes for !v/ > V, as does the integrand for tviisy .
. »
For !vl >V, , expanding the integral in powers of (T;)for
-~ A(vt)leads to the FESR: |

Vl | i Vl " i.
n ’ .
j O(VV I.“T C\gé)f f Av r I.,,R(,\qé)
0 o (5.3)
where n is even (odd) for T (TV). Carrying out the integral on the
right-hand side of (5.3) leads to : |

V( ’ + (J‘(t)&ﬂ-{(
A = - "
JVV'\_LW l (\;&') = Z h/lgj(e) 4

) 43(6)+n+1

(5.4)

Hence, as the left-hand side is saturated with low-energy s—channel
resonances while the right-hand side just has t-channel Régge poles, we
have the concept of 'global duality’ - The unknown here is v, , the

. point at which the amplitude becomes 'Reggé-like' .
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Of course, this concept can be shown the other way round. We
can také t-channel Régge poles, partial-wave analyse them and then plot
the partial-waves in the camplex plane ). mhese are typically in the
form of circles so that at one point, we cbtain a peak infmzwhere Te
is the s-channel partial-wave amplitude. This is just what is expected

from an s-channel resonance.

An even closer correspandence between direct channel resonances
and cross—channel Regge poles comes fram 'local duality' (50) where the
infinite set of poles caming fram the partial-wave analysis of s-channel

selt) '
resonances may give a Regge behav:.our s . The converse also applies.

The Veneziano model has the features of both global and local
duality, crossing symmetry; analyticity in s, t, and u, and the irclusion
of poles from all contributing channels. Invoking the idea of duality

enables us to look at the model as either an infinite set of t-channel

Regge poles or an infinite set of s-channel resonances.

This can be seen as a typical meson-meson scattering Veneziano
amplitude consists of Euler functions of the form, for the s and t

channels orifh Licea, brqu(,\:n.»c%

_ Tean U atw)
BG;E) ("(-uus)-_aue)) ’ (5.5)

A similar expression exists for any two channels, (5.5) can be expanded,
in terms of either s-channel poles or t-channel poles, but not both

simultaneously i.e.

B(s,£) = S,Z“; (oC(UU) C'S‘atls))

(s)+
(% S) ’ (_'Y c((e))

(5.6)

= 3‘ (5.7)



so showing the equivalence of an infinite set of s-channel poles and
an infinite set of t-channel poles. (5.6) and (5.7) show that each
infinite set consists of the parent and its daughters, all spaced by

one unit of angular momentum.

In the Veneziano model which we wiil construct in.Chapter 6
for KN and KN charge-exchange scattering, we take the asymptotic
Reggeized U(6,6) model for 0°%' charge-exchange scattering in the
forward peripheral region and obtain a Veneziano formula which agrees
with this to leading order in s (center of mass energy squared). To

this form for the pole graph, we add absorptive corrections as described

in Chapter 3. These are still necessary with the Veneziano formalism as:

a) In the asymptotic limit of s-»o0, we still cbtain a Regge

formalism with all its inherent difficulties.

b) Nonsense zeros are still present in the pole graph, and

these must be filled in.

c) The first daughter of the £9, for example, the f', lies one
wnit of angular momentum down in the Veneziano model 1),
However, when the /'I is used as a phenamenological cut, for
example in TN charge-exchange scattering, it turns out to be
about half of a unit of angular momentum down. |

The absorptivé corrections of Chapter 3 may be regarded as
'dﬁality—preserving' (52) in the sense that as the real Gaussian para-
meterization of the elastic scattering is equivalent to a fixed pole
exchange of spin 1 (equation 3.35b).. The amplitudes predicted to be
real by the absénce of non-exotic s—channels (e.q. K'n —;"Kop) remain

real after the addition of absorptive corrections. Similarly, those
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predicted to be camplex by duality, remain camplex. However, the
introduction of absorptive corrections in the t-channel destroys the
crossing symmetry in the cut terms, but of course it still remains

in the pole term.

frulwcés
The retention of the Veneziano form for the pole term kss one

obvious ‘pfoblem. This is that the amplitude diverges at the s-channel
resonanceé as we are above threshold in the s-chamnel. A remedy for
this, which also agrees with unitarity, is to introduce an imaginary
part into the s-channel fermion trajectories above threshold. As shown
in Chapter 6, this is done in such a way as to give each resonance
approximately the wﬁect total width. However, the introduction of an

imaginary part has the following difficulties :

a) The signature in the t-channel becames Eu-p [(‘“‘j *(‘)/s’c” )'u")]i ‘3
~inalt) (53) .
instead of 2 E ~and so moves dips away fram the
nonsense points with resulting changes in the differential cross-

sections.

b) The imaginary part gives all rescnances at the same mass, the
same total width(48) ; but partial wave analysis gives the

daughters very different elastic widths fram the parent.

c) Crossing symmetry is upset.

However, we will see that for the fermion trajectories used
in the problem, the imaginary parts are small and we also do not have
the explicit signature. Hence, we still use the Veneziano form with an

imaginary part in s(s) in an effort to get a model valid for a wide

range of s and t.
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5.2 Regge Trajectories in the Veneziano Model

It has long been known that within the context of the Veneziano
model that the real part of the Regge trajectories must be taken to be
linear with the slope independent of the trajectory and the channel
although the intercepts may be different. This violates the predictions
of both potential and perturbation theory as discussed in section 2.7.

Also in the limit of real linear trajectories, l(au-cz(s) -;L) (o S)
re b"'-“-(s)) S -“Doo

if s is real as we obtain infinitely many poles in taking this limit and
so the limit is unattainable. However, as mentioned in 5.1, this is

overcane with camplex trajectories.

After making thése criticisms, we will now discuss why, for real
trajectorieé, it is necessary to make them linear with a common slope.
As we have ohly introduced an imaginary part above threshold in one
channel, we shall just note where this n‘odifies the conclusions. There
are three reasons, other than the many Regge pole fits, which have been
successful in using linear trajectories, which indicéte that the adoption

of a linear parameterization may be sensible :

a) The Chew-Frautschi plots, which indicate, particularly in the

case of fermions, that trajectories are linear ) .
b) If we take a dispersion relation with two subtractions for the
trajectory :
a(s) = as+b + S° f J,:k“(s, >,_ As’
o J)g_(s=5) ¢s7) (5.8)
—> & +b for real trajectories (54
c) As seen fram (5.4), g}lobal duality indicates a sum over Regge

poles in the crossed channel. If one uses (5.4) within a
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bootstrap scheme, this can be saturated with a Vsl for mmmw ard get

&= at a point consistent with that required for ;7 N charge-

exchange scattering. However, if more and more resonances (e.g. g)are
included in the left-hand side of (5.4), the bootstrap stability

is upset and one trajectory cannot sustain itself. This is

rescued by Schmid's Partial-Wave projections of Regge exchanges

which circle as the energy increasesf;l;g;;c}esonances. These can

be identified as daughters of spacing 4 J = 2 and in order to

get good results they must be linear and parallel to the parent (55) .

The introduction of the imaginary part to the s-channel trajectory

only affects b) and c). The introduction of a linear imaginary part to

(5.8) just bootstraps itself i.e. we get a linear imaginary part out to

leading order, while the mlaglnary part implies the resonances in the low

~ energy part for (c) have a finite width.

Having established the linearity of trajectories, it has to be

shown that they have a camwmon slope. There are five indications of this :

a)

b)

c)

'7 - - - i - i L
For a typical spinless Veneziano amplitude as-b) Meates) , =
C P ugrbmalesb')

or else as s or t —>= in the physical region with the scattering
(56)

angle fixed and within a certain region, this diverges

In certain reactions, such as i Vcharge-exchange scattering,

(57)

signature is impossible in such models as Igi's unless

trajectories have a linear cammon slope.

Wagner(ss) ' showed that if we expand the amplitude in a series of

poles as in equation (5.6), and assume the positivity of the partial-

: o (E)+TY .
wave projections of ( < and a wniversal slope, no ghosts

(particles of negative decay width) exist.
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d) Applying the Adler self-consistency condition to +A —2 B+C
w

i.e. Pr = O where Tﬂatrlx =0 ._:> _Veneziano amplitude

= O which happens at a pole in the denominator of the Euler
functions. If the assumption of linear trajectories is now

made, consistency implies a universal slope (59) .

e) To avoid infinitely degenerate levels, the slope must be
(60)

~universal

Of course, with the introduction of a linear imaginary part
to one trajectory above threshold, all except b) are rigourously upset.
However, in the region of scattering that we consider, t is small so

problem a) never arises as we do not have an (s,u) tenn'present.

5.3 Exchange Degeneracy in KN and N Scattering

In connection with the general 'discussion on the Veneziano
model, we must discuss the idea of strong exchange (or signature)
degeneracy of Regge poles. As we will apply our model toK N andK N
processes, we will discuss exchange degeneracy specifically in the
.oontext of these. In these processes, one channel has exotic exchanges.
However, as the existence of these are not definitely established, we

assume no exchange exists in such a channel.

Fram potential theory, it is known that both ordinary and
exchange forces exist between scattering particles leading to even and

(22) . The breaking.

"odd signature trajectories in the crossed channels
up into even and odd amplitudes is made necessary to avoid violating
the Scmerfeld-Watson transform i.e. alternately exponential increasing
and decreasing in different parts of the camplex e—plane and also the

destruction of unitarity except for real ¢. Considering just spinless
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particles, before reggeization, potential theory gives:

RQvin
sdd

' 4

where o3 is generated by the potential v - Vordi = Ve change
and only has odd ¢ values physical which in turn implies odd signature
trajectories. A similar argument exists for Vo1, Now one assumes
that in the relativistic case that these forces for a given channel
are built up of intermediate states in other channels. We use the
convention that the s- and t-channel intermediate states generate
direct forces while those associated with the u-channel generate

exchange forces for forward scattering.

If we discuss KN charge-exchange scatteriné, the caments. of
the first éaragraph implies no u-channel exchange which in turn implies
that the forces governing this scattering- in the near forward scattering
are direct. Hence, both even and odd angua.ar momentum values are
physical so we be&gr signature; ’ 'Eflc';lswtlfx'e,c T:-—Zhannel ﬁeson trajectories
are exchange degenerate, and similar arguments show that the s-channel
fermion trajectories are also exchange degeneraté. Similar arguments

apply to K'n + Kp.

Lastly, we can use the assumption of duality together with the
absence of resonances in a given channel to obtain the sign between the
exchange degenerate t-channel exchanges (48)  mmus, for forward scattering,
this will either give a real amplitude or a camplex one with t-dependent
phases. Duality implies that an imaginary part as shown by rescnances
at low and medium energies, goes a_long with an imaginary part at high
energies. Therefore, RN charge-exchange scattering has an imaginary
part for t-channel exchanges which ﬁplies that we have the addition of

the /o and A2 Similarly, KN charge-exchange scattering is almost
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canpletely real so we have the cancellation of imaginary parts.

5.4 Veneziano Models for Meson-Meson Scattering

As mentioned in 5.1, these models have to exhibit duality,
analyticity, crossing symmetry etc. and can be applied in its most
simple form to pseudoscalar meson-meson scattering where only one spin-
state exists. The Regge trajectories are here chosen in three exchange-
degenerate sets according to the number of strange quarks which their

(61) . :
constituent particles contain * This is carried on into the case
of meson-baryon scattering. The sets are :
- °
& p, B, [° ad ¢ where the £° is often identified with the P'.
*
b) K (890) and KN(1420)

o p andf!

These are well verified by Chew-Frautschi plots.

The grouping is done in this way to camply with the requirements
of various processes. To obtain (a), the first step is that the

absence of a non-exotic u-channel inTi' i implies Ve -£° exchange

degeneracy ®® . Then it is noticed that for elastic KK scattering, the

s-channel is exotic and as the I4= 0,1 are separately constructed from

" the Is = 0,1, we get w-ﬁc’and/-ﬂzexchange degeneracy. b) is implied

by the abseﬁoe of an I = % exotic exchange in ITK elastic scattering(so’sz) ,

while c¢) comes straight fram Arnold's exchange degeneracy scheme(63) .

" The generalized Veneziano formulae for meson-meson scattering

are :
o 2w

Z Z— (‘I)e/gm P(N"'-iCS)) F(N'o((e))

Nzo R=w R F(Q—i(s) ao((e)) (5.10)




97.

for symmetry in s and t, and

o TN -
Z Z (—[)K/bz { P(N'a(($)) F(NH [oe)l;)) - ( ((—-b(:) ; |
veo RV re-x(s1- «e

(5.11)

for antisymmetry in s and t. etc.

When these are applied to processes, the results have the

following features :

a)

b)

c)

d)

e)

5.5

, (64)

Agreement with the Adler condition, A(s,t) = O at s = m.

given by olf ‘:"‘;) = 'fr, .
Good fits to the widths of the mesons (50) .

Inability to use higher enerqy behaviour as the Pameron has
to be neglected to avoid the opening of many inelastic channels
as the energy increases

'IheI=Os-wavehasalargeeffectiverangeandthe/g has

a large width in agreement with sther models (50) .

In pr— rr"n*n' at rest, the initial state is a 'So state
and so is considered as an 'off-mass shell pion', and so this
can be treated as a four pion process. The camparison with

experiment is striking (64) .

Extension to Meson-Baryon Scattering

The first prodém encountered here is that linear trajectories

for fermions imply, by Macdowell symmetry, that parity doubling is

present. (The introduction of a linear imaginary part does not alter

(11)

this). Explicitly, the Macdowell syxrmetry for fermion exchange says
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that the partial wave of total angular mamentum J, signature T, and
parity P, taken at a given values of the total energy W=V%is oonnected
with the partial wave amplitude of total angular momentum J, signatureT,
. and parity -P, taken at a given value -W, by the relation

5 3
T ?(U) = — _T:C,-? (-w)

T, (5.12)

Typically, suppose the fermion exchanges are Reggeized, and consider the
pole at (W) = F, in the partial wave T‘C fc,w) , then
. )

m——

3 Cw)
lt P(W) = /5’ ' (5.13)
) 3 - «PC\—\/)

Hence, (5.12) implies :
£p (v) = -~ /g_P (-w) - (5.14)

°<f’ CW) - °<.-p (_“l‘/) (5.15)

As the trajectories used in the Veneziano model are linear in W2 (5.15)
is always satisfied so the fermion trajectories are autamatically parity
-Goubled.

The second thing to be done is to modify Veneziano terms of the

form 7 (NV-4(5)) r’CN“‘(‘-’)) , N and R integer, so that the fermion

P R~-Lle) =(t))
trajectories now have poles at odd half-integers. It is also necessary

‘to adjust these constants so that the correct Regge asymptotic behaviour
is obtained in all amplitudes and in both the forward and backward

3 -1+ -1+ . . . .
directions, e.g. in 0 § —> 0 4 scattering, the invariant amplitudes A
and B have a different asymptotic behaviour in S. (see for example,

equation 2.62)). This is obtained very often at the expense of all terms
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in a given amplitude having poles at all the particles on a given

trajectory.

. Having established the above facts, we will now give a short

d iscussion éf previous meson-baryon scattering Veneziano models. These
have been applied to[iN scattering, IT p->nand KN and KN scattering, the
latter two processes being particularly simple due to the presence of

an exotic channel.

In thelTN scattering models(ss)

; subsidiary terms were found to

be necessary to fit the data. However, the greatest problem arising was

with the A trajectory which is the sole contributor tog- P backward
scattering. Previous Regge-pole fits have shown that there are difficulties
in obtaining the correct differential cross-section at u=O,rnion—existent dip at
x,(u): =% and the extrapolation to the pole. With the Veneziano form

as described by Berger and Fox, these difficulties still remain with the

added problem of the inability to cbtain the MV A coupling constant.

These difficulties led Miyamura'®®) and Blackmon and Wali‘®”) to
consider ﬂ"'{)—> AN where the A trajectory does not contribute. Signature
conditions provide relations between the parameters, but the usualr
condition of taking the asymptotic limit to compare with experiment is

still used.

The last class of models are those for KN scattering(53' 65, €8, 69) .

Here, as stated before, one channel is always exotic implying exchange-
degenerate trajectories in a given channel. These models have, in most
cases, few satellites and are so constructed that the experimental absence
of parity doublets is used to provide relations between the residues of

various terms. The remaining parameters are fixed by a variety of methods,
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ranging from the normalization at t = O of A* in Inami's model, the
elastic widths of resonances in Lovelace's and Igi's, to the use of
the differential cross-section data in Berger and Fox's. The last
named were the only ones to use a full Veneziano formulation in any
of the differential cross-sections. However, as they used a zero
width approximation at all times, the Veneziano, as opposed to the
Regge, formulation could only be used in cases where the fermion
poles were in the u-channel, e.g. in KN charge-exéhange and K+p back-
ward scattering. Otherwise, the Regge form with an added Pameron, if
necessary,was used. The usual difficulty of correlating # p—=># %

and Wt;*)%?o occurred.

All authors, with the exception of Lovelace, used just pole
termms. Iovelace used the asymptotic form of the Veneziano amplitude
in an absorptive K-matrix formulation to employ cuts of the form used
by Imperial College and Argonne groups, i.e. choosing nonsense with
small cuts, and to unitarize the model. However, crossing symmetry is
canpletely lost, but considerable success at fitting the data was
Obtained.
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CHAPTER 6. A VENEZIANO MODEL WITH ABSORPTIVE CORRECTIONS

FOR KN _AND KN CHARGE-EXCHANGE SCATTERING.

6.1 The Reggeized U(6,6) Model.

Previously, the application of models such as the
Reggeized U(6) © U(6) © O(3) and the Reggeized U(6,6) models, both
with absorptive corrections, to Kp + Kn and K'n ~ K%p have
been successful at 5 GeV/c and above, but not below this energy,
particularly in the case of K'n » K%p 2®), 1In an effort to improve
this situation, we take note of the statement in 5.1, that cross—
sections at low energies are daminated by direct channel resonances.
and so construct a Veneziano amplitude which agrees with tﬁat of the
Reggeized U(6,6) to leading order in s when the asymptotic
form of the Veneziano amplitude is used. However, to do this, we

must first construct the Reggeized U(6,6) model.

This model is used in preference to the Reggeized U(6) © U(6)
® 0(3) mode]l, as derived in Chapter 2, as the latter has certain problems
associated with it. This first is that as we have a supermultiplet
| exchange with all possible meson multiplets included and evaluatéd 'off-
shell', to avoid bra‘nch-point at t = 0, we have to add, rather
artificially 'in. the mode of fermions, a pseudoquark conspiring trajectory.
The supermultiplet exchange principle gives the correct couplings i.e.

(N II“ N) and (\N), which we expect fram vector and tensor particle
exchanges, for oxtsoxt scattering. However, for higher spin scattering

€eg. yhtsht o photoproduction, we cbtain pseudoscalar couplings
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(76,70) for even - and

N Y. s N to nucleons as well as the above
odd - signature Regge poles, which we identify with trajectories

of which the A2 and /o respectively are the lowest members.

In general, the pseudoscalar coupling (to whatever
trajectory) leads to serious difficulties. When the invariant M-function
for high spins is evaluated, we get a factor %: associated with this.
coupling. Reverting to oﬁr arguments of chapter 1, when we consideredl

% 1Y soattering, we see that now for the unabsorbed amplitude,
L |

for small t.

“-sothatas(':—bo ’ ¢:r7é)o , which

. However, 56‘:: <,é
violates the conservation of angular mamentum. An cbvious solution,
is to multiply the M-function by € f¢mpe , but this leads to an unusual
angular dependence for the non—pseudoscalar terms, which makes the
reproduction of the differential cross-sections difficult. Hence, we

are led to consider the Reggeized U(6,6) model for near forward scattering.

(lg)on shell for the external

Here, we take the U{6,6) currents
particles and saturate with a fixed spin t-chamnel propagator. We then
'Reggeize the M-function. In the specific case that we consider
i.e. KN and KN charge-exchange scattering, we have both spin 1 and spin2t
- fixed pole propagators to consider. Hence, we will first construct the .
T-matrix for spin 1~ exchange; The invariant 3-point effective Iagrangians ar=s

in the notation of chapter 2:
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(a) Meson~-Meson-Meson Vertex.

m)‘ e [(f"f/’) 7 45(‘7/)] ZfCr’)ﬁ( }7

(6.2)

where "h- is the coupling constant and %li Pz- 'Z .

(6.2) is unique as under charge conjugation,
(=7 . L 7 1 ¢+ 5
TIE—Q{QQ:(- “ [r[g {i)fg] 6.3)
. , 3

where the trace is over U(6,6) indices.

This comes about as under charge conjugation°

56"9‘# p) ?9 - -—¢
@‘d)(ﬁ(}) (C)IS C):) (C )P(J)(C)dg | )g(s 4)

Carrying out the U(2,2) ® SU(3) decamposition as in equation (2.4)
ard retaining only pseudoscalar external mesons, we obtain for (6.2),

fca) = | L, (14'4-'-%;‘2:‘) 6‘/(&5‘)(&'); ¢;(‘7()(5,5)

where q'2 is interpreted 'on-shell' and the SU(3) couplings are

defined equivalently to (2.50) and (2.51) as



(’ &5') (P;)Lr— ) 7’( [;465’[7;1 cﬁg]j (6.6)
64, - I«M (43] .

(b) Baryon-Baryon-Meson Vertex.

— (pél)
Loy = %«“ccf’s)fﬁb“?”?' (7)] Uopass 2

(6.8)

where g = —q' and g is the coupling constant. Again, carrying
out the U(2,2) @ SU(3) decamposition as in equation (2.15) and

- N R ‘
retaining only the spin % parts for the baryons, we get, after
introducing the mass splitting of section (6.5),

cy) 3[2»«. Hi )(NN) (‘ (N‘t ”j”" ]¢ &)

e (s, 9)

where le = ir'vk)‘ py C";{ X) ys*

Upon .. evaluation, the kinematics given for 'on-shell',

Yl - lozb’,~ f)’

Q‘.\‘?— wm > T ’Lw, (6.10)
- 12 )X - P
= (1 T )rt T

' (6.11)

where M is a mass associated with the éxchange.
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};ence, chz 3[%&[61“;‘};)()’5,!\/)’:)d ((+1/i“”)(%7;ﬂ))ﬁi%’:]
+CH}7~) ”)H} W) i ]5{”7/) 6.12)

Defining the spin 1 propagator as in equation (2.34), we construct

the T-matrix as in equations (2.44) and (2.45) to give

T g (o) L[ (o8 )y
._Cp»-/)CN ﬂ’wr] + (,:,%’)(,-%}) | (6.13)
CAT/(IN)‘;%] 4 ¢c> ¢; >F

where pair-wise equal mass kinematics give P4, P14 'z 0.

Hehce, following chapter 2, we have for the invariant amplitudes:

H _ :ﬂl\- LF (54—311‘_‘1-,'—1)(”%:2 ))-‘[[41"_“) H%)%%J(G.M)

e-n*

B= —23> h N 30+1p({+j‘" )( +«~)(zv~»-.)

b Mt (6.15)
To construct the amplitudé for spin ot exchange, we note
that the A, lies in the (6,6,1) multiplet vwhereas the /° was in the
(6,6;0). Hence, the field for the exchanged particle is 45: ()‘¢ D,
rv
and to saturate the extra O(?Sl) label, we take the currents for the

vector éxchange and multiply them by P p as in chapter 2. Thus, we
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are led to the Lagrangians,with. the appropriate mass splitting:

a) Meson-Meson-Meson Vertex.

fm): L,(l ) .L‘_.. (cf)s.)?ﬁ) 45(6 )

FO (6.16)

b) Barvyon-Baryon-Meson Vertex.

P 0. ‘ o N
oo 402 [ [ )0 ()00

F(u =)(1- 2 (7, N)WN )

rv) (5.17)

where the D-type coupling in (6.16) cames about as under charge

conjugation (}[)Cry). - ¢CFV) so we need a coupling of the form

%T«[ﬁ’[flfjj . X 1is a quantity, which can be, in

principle, detemmined by the observed decay rates of Vi T andﬁ.,_-ﬂ\ﬂ'.
: P : X

.The 'saturation factors' ‘x"'); ¢w (6.16) and '{:’" in (6.17)
(71)

are cl'bsen as Sharp and Wagner have demonstrated in the concept of
: A2 universality that if the A, system is strongly coupled to both the

v\'n’ and NN systéms, in the limit of zero mass, then for coupling constants

+VN (6.18)
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Generalizing to the U(6,6) case, we may write

§(ho18) = = g4, )

(6.19)
so giving our saturation factors.

The spin 2" propagator is (72.) s

- o g(f},.r G o= 290G
[" jr' t3 ﬁr'f 7.9, jr‘r 1%
“3ed “jr-vw PR DRI ”

In the construction of the invariant amplitudes, pair-wise equal

A,w v (34

TR
mass kinematics are used giving p. 11, : P. 0;/‘ =0 . Applications

of the Bargmann-Wigner equations as in (2.13) gives such terms as

N(?;)A*/NCP.) = 2m

(6.21)
‘leaving
f = fl; i n#)[w* SR A O
'_T:l;’rv ][('*wr,%w('*f} 5"*”5] (6.22)
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Mt ) ' (6.23)
l-—” A 7—" ' .
( i) 047 |

Using the inass~sP1j.tting of section 6.5,

[(ﬁ g )O_ ‘r/« ) '»2 o (6.24)

ard this, together with the knowledge that the lowest energy we
consider is S+ 6.0 (GeV)2 and the largest momentum transfer

t A~ -1,5 (GeV/c)2 gives,

(S“r—g—-»:"-r})m}(?, .-5- m z(‘ T )( ”21)4—0-1

Hence, the second term in A can be neglected.

To Reggeize the invariant amplitudes (6.14), (6.15),
(6.22) and (6.23), we shall use a method similar to that of chapter 2,
and in particularly equations (2.54) and (2.55) and the associated
text. The Gell'Mann 'ghost—killing' mechanism is again used. We first
see that both the A amplitudes ~ s7 and the B ones~ & % ; SO we
"use the prescriptiOn that

T > L)

(6.26)

and using a Taylor expansion, we have:



109,

for spin 1 exchange,

i Y

- iti"'/ scnﬂ'(:é_
e‘-n’_ e ,11. t

—> ~ (-4 (6.27)

for the Gell'Mann mechanism and linear trajectories.

Similarly, for spin 2" exchange
e (.4-4‘) (6.28)

vFinally, the signature factors for spin 1 and 2'." exchanges
are taken to be ’!1,(“ .Qﬂ:ﬂuﬂ and .}—LCH £~c“°9respectively. As
explained in chapter 2, these are necessary to remove wrong signature
poles as required by the presence of exchange forces.

Hence, canbining (6.14) with (6.22) and (6.15) with (6.23)
and taking common group theoretic masses and exchange degenerate
trajectories, we have :

A= gl\_ Pa—m CoLS) (“ )[(' Limp 5r‘('+k)ﬂo+%_5
[L (- ) 4 ' Lﬁ('*e-mdv] o0

B - 3L ((-ae) C,U (w Q)(Hl‘:)(, )‘(

[k;(t-imd*) *ﬁ;&. ks (H.e“f“*j]

(6.30)

u\"’
[™'N ‘
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In the application of (6.29) and (6.30) to RN
and KN charge-exchange scattering, f: 7/‘1 , and as explained in
. section 5.3, strong exchange degeneracy is required. This implies
that

I

2 !
X m, r,d (6.31)

(1

which is acceptable as X2 cannot be determined fram the ratio
s 2n T
/.Nm / ¥ Ay f\fl’ as the#e branching ratios aa: largely unknown.

Hence,
-K"E—-a»?ov\.
A= 2al Q,LWJ‘FO-‘,()(‘*S) (“ f‘)[(HﬂL f(H (6]32)

™,

B - Lg_gL P ch )(a.s)(t (IJ/ )(H/)( M)

'3 (6.33)
Krn— U5

Vv

A - —ﬁ}; F(""( )Cd5) (kg ‘t’ )[[H ~f g(”’%y(s.&;)

B :”2'3"3LPC‘ "‘t)u 5) ('4'% )(”:)[’ m) (6.35)

These amplitudes are camplex for K p~Kn and real for K'n=> Kb

as required by duality.
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Lastly, we have to determine the coupling constants g and
. h. These are calculated for fixed spin exchange, and as the lowest poles
on the Regge trajectory are expected to daminate, we leave g and h

untouched during Reggeization.

Firstly,to calculate g, we use the Chew-Low Extrapolation

which gives:

G’mwv ’L(’a[

In the U(6,6) model, we write a 3-point ‘coupling -, similar

to (6.8), but for a (56,1;0) - (56,1;0) - pseudoscalar meson interaction:
~(ﬁ6(.) ( c)D cp) ¢

f_ = -—3- ) (FV‘fr) 3 %ﬂ&p}_‘ 4;67/) (6.37)

which reduces to, under U(2,2) @ SU(3) decamposition and mass splitting:

§ = q(w3)(1-BR) Ty bt eg) o

: - ‘3 [~ ’ Lt g Df‘%r S "(i,) (6.38)

Taking the [TP P vertex, (6.38) becomes

P =950 )0 )W;f’)r -

In an ordinary space-time theory, the Lagrangian would be :

£ = Grw C?b’;?)ﬂ‘ | | (6.40)
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where P » pand [T are Dirac fields as in (6.39). On
canparison

N 4 2 N\ f1;L‘).z
e= 2 (5) () (<)

h is determmined froam the /-9211' decay width as obtained fram the

Novisibirsk colliding beam experiment (73) £+2"->/°-7 mhmT giving

|’1p s = 122NV for .= 0.764 Gev/c®. The decay width is
determined by:
—_ 2
I
I/' = ‘L-;\_—; Ll'Tr &vlvrngQ . (6.42)
2;;:5

where | _f | is the C.M. 3-momentum for the decay products. The factor

. . _ { = L
for spin averaging = 1%“ = -3 . For oE ; WEe use

equation (6.5). Hence,
T - ik (s Ve ) le1t

lT‘ - o) — (6.43)
giving

(6.44)



6.2 A Veneziano Extension. ' -

. We have now constructed Regge amplitudes for the high
energy behaviour of KN and KN charge exchange scattering. In
converting these into dual amplitudes, we use the form of TInami,
and are this led to :

i1 Z - | —)[l' FCL\_" Y:{
R\[S,é,"d - Anl (1~ »(e)f'( :zi) + /\n [ :(e) ds)
Rw J(3 -~ x5 L SRV
Z M=) 7% 'xsl)
* ' l’)( 2 "‘(& ‘( ‘ )

113.

(6.45)

8-‘“”&) - n P(c @)f’(*m ) Z ("__-!_-_ 6 °(\:)P(}‘-rz5)
kn ! -

d p(}ﬁ"‘k"“s\'j L5 g -a%)

where numerically,

fy,- 22 (o B)LCe ) -5 0% by A

s ' |
A%: X /\Irn n#, 2 Za’%? Aa,

4

-/\3‘ = ‘2—323‘\ (l’rgl)@\kz;_)(g—g—ii) <

g .
i s

M

i

(6.46)

(6.47)
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Y

and «, is the exchange degenerate o~ A ¢ ‘t-channel trajectory, e

o
is the exchange degenerate fﬁ* v S s-channel trajectory and g Yo

is the exchange degenerate A -/| y s—channel trajectory. In common with
other authors, we have neglected A/s - /lg and 5« -5 y trajectories
as experimental analyses éhow no evidence for their presence. In

[ ’
(6.47), < ,_A,ﬁ, A, X and N are parameters, which are reduced to

2 independent ones, ( %\) and N by the following methods:

(i) The removal of the % parity partner on the Y:; trajectory
T-o0) (%)

97, PC }Z;"(&“ qsy;)

-must be included to remove the above parity doublet, to get the correct

relates X to (4 ). 1n fact the amplitude inf/]

’

relation for the removal of the %*parity doublet on the ‘I: trajectory,
and to make the amplitude diverge at the /\(1115) pole. This term

gives the asymptotic behaviour — /] A, (- <) e—:nxe (4L {S)a(t.,and SO

is a subsidiary term. However, its presence will not upset our required
asymptotic limit of the Reggeized U(6,6) model, as at the lowest energy

considered, Sv 6 (GeV)z, /l,,; "—;7; /[4 .
. ' .

+

(ii) The removal of the % parity partner on the Y:; trajectory

relates Ct/n“)to (%)

The term proportional to (.‘%I) is also not present in our
desired asymptotic limit. To make this negligible, the condition that
NY)1, is imposed. The presencé of this term is necessary in order to
obtain the 'correct' behaviour of the Y; trajectory in the backward

direction for- K+n—> Kop.
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We stated that the parameters were equivalent to the U(6,6)

(74)

factors numerically as, according to Kugler , factorization may

~, not be true for the Veneziano model. He considered 3 scattering

processes:

@ mepe—> i°n’ - g} exchange in the t-chamel.

(ii) fa°pn° =D oo -~ I or A exchange.in the t-chamei.
(iii) 0o => o0 - £° exchange.in the t-channel.

A partial wave projection of the Veneziano formula
gives for ¢ < Js. .,

l(tz0) =1

jg“") = S ¢ (£ =W
b, sn

Hence, for the above scattering interaction, factorizatio_n gives:

(6.48)

Q) Git) _ G ) 2

f)e.“") ‘)QCSJ = [3¢ £s.) (6.49)
implvi = | (6.50)
implying ozFo(o) J-e(F,(o) Zdn(o) :

B () vt . xgle)lx 0, (6.50) implies

ey

DC ‘—'l »
o(f 0) T3 | (6.51)

which is untrue. Thus the conclusions are that either £° decouples

fram (iii) or factorization fails.
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For (6.45) and (6.46), we can obtain the KN charge-exchange

amplitudes by $<sU crossing and time reversal. This is because the

-

s—channel k'f~> l(® is the time reversed u-channel of Ut °r .
Under time reversal, the helicity amplitudes behave as (using the

notation of section 2.6):

<M (p( o,f)/ \l\z>__}vz7_ z‘uch‘)é M pl o,4+0) M 52

where yl is a phase factor and so can be neglected as it does
T .
not affect experimental quantities. As we evaluate owr amplitudes

at f:o , (6.52) gives

4).9(15 + S - 4) - é (by parity invariance) (6.53)
[ (I 3 2

Now as (6.52) does not affect any of the energies in the s~channel
helicity amplitude decomposition as given by equations (2.77) and

(2.78) , the amplitudes A and B are invariant. Hence, the amplitudes

for Ku—= b{oto in terms of those for l(‘,aﬁl.{—%by

H“NCS":)M.) = n}.{.m(&.}els) ) (6.54)
Bl{m(s/ (7" w) =7 BEW(U.(E' S) (6.55)

satisfying our required asymptotic limit.
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We canclude this sectic'm by writing the asymptotic limit
for K’n->p W° backward scattering, which will show the importance
» of the (%) term for the )’,)tr contribution to B. We must first
remark that for temms such as I (1 =% ) , when we take the

f’l 3 ‘n(e"{ °)
asymptotic limit for A fixed, % ~> o0 + we would pass through an

infinity of poles. Hence, the limit must be taken off the real s-

axis. Thus, the backward i ,\—.jrl/{ asymptotic limit is: Vo _',
A‘{cs ,a) = [/]n [(3-4,°) + ﬂn D) )](o(s) ’
o "i,
+ 2, T2 - ) (u's) " (6.56)
a(Yo ...l
B Lsku) = A 17(/ —°<\’°)(x )
' (6.57)
3 I
o2, o) e e @
V!

6.3. Regge Trajectories.

As we consider only forward scattering in this chapter, both
't and u are § O for the energy range considered. Thus, no
prablems ex:.st with poles in the t and u channel exchanges. Thus we
can write down the real linear trajectoriés with a common hlepe for the
t and u channel exchanges in K p-» n and K'n-—sK’p in such a
way that.the first few poles on each trajectory as given by a Chew-
Frautschi plot, lie on the trajectory. Thus the t and u channel

trajectories are :
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£~ A, E.ru)'zc(:m’“[" ez 046 F oast - (6.58)

N 7\ Eeajeckery: « =m0+ 0951 (6.59)
.‘1‘( |

ZI&" Z/S_f:ru.jec(:ot‘[‘. °¢U.‘.: -0.33+ 0.a5U (6.60)

However, as explained in sectioh 5.2, the s—channel exchanges
in K'p-=> % have s 32 S thresholg’ SO We need an imaginary part to the
fermion trajectories to give approximately the correct width to the
resonances and to avoid the divergences. We choose our trajectories
so that ﬁz (s °‘) and P (o(;,") are given by 5 €> W crossing from (6.59)
and (6.60) respectively, but the addition of the imaginary part must upset
the crossing symmetry. Hence, for both the Yy and ‘/,Js-channel
trajectories, we choose a form above threshold as follows :

-

. | .
e T %+ s +C g (6-5,) (6.61)
where « . 2 © and §_ = Gyt )’s the s—channel threshold.

To construct a simple model for «_, we see that near a pole
at RQU,) = 3 » the partial wave amplitude is of the form:
(for exanplé, see the Veneziano decamposition in équation (5.6)).

T3 r(s,5)
A 'S"‘ 0(5

v~($; 3)
S, -0y~ et (55 (6.62)
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The resonance would have a pole at

,
T = Xt (6.63)

on the real axis. Assuming that the resonance is of a Breit-Wigner
form, at half-width'’) ,
o(I (gr.,-'so) = _)"’(o - S

t
-
T

- OL‘( g,,e..,‘s}»)

: AN L (6.64)

=7 C""Jv—'v" Ss)

For the purpose of the model, a(T is determined for each of the first
few resonances on a given trajectory and then avefaged as shown in |
Table 4. Thus, the first few resonances have approximately the

correct total width. Canbining Table 4 with equations (6.59) and (6.60)
the s—channel fermion trajectories for X p-> {° above threshold

are:

)

v . R
’\-(‘ Aa, tf‘a.)nc‘?o""y N O= -0-674—0.Q§$ + L 0-0‘4(S~S°) (6.65)

&

oy , .
Zﬁ —{skra:’ece‘f\‘: oy = =-0.33+0-US+ LO—'S'(S'Sa) (6.66)

As explained in section (5.1) the introduction of an imaginary

part to the s-channel trajectories modifies the asymptotic limit. For

K-p-> K°a , the limit for fixed t, § > oo s iS nowW:
P



120.

e {1 (~ ) g )

sfl-i‘
(o(’S) /I (l t— (d 5) e (6.67)

i

A (st w)
Kiv _

-Cne(; ol | L d b
Bq,\; ) I"\) = -~ F['“"(e)ﬁ CO‘(S) [ﬂﬁ, (l‘r L:j)
e~ -
+Z (,~.,.)(l w(I ) i (6.68)

-(
o t
Expanding factors such as ( 14 Y% /by a binemial
oy
expansion allows us to recover the desired asymptotic limit to
first order. However, the real part of this factor remains close '

to unity, but we get a small t—dependent imaginary part.

: *
6.4 - Removal of parity doublets on the Y, trajectory.

Taking the case of the azimuthal angle é: ¢ and using the
notation of section 2.6, we can define the s—channel helicity amplitudes

as

‘fl = (F"*Fx) cros Q/z | (6'69)
éz = (L~ £ sin & (6.70)

Then, the s-channel partial wave amplitudes with T:Qi‘r,,[ ¢ is the
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orbital angular momentum ] and definite parity can be written

as 3

+1 ' 35 l Y
L, =%j’ o((Cwe)[”(}‘k(o)(f' 1 dce) c}i] 6.7

Ly
v o4

t)
(“cem‘:"mf, ',um)[ot >4> o(«‘;‘f“ 451] (6.72)

>

1y ‘
with parity .i*:("!)- 1're5pectively. Cambining (6.69), (6.70),
(6.71) and (6.72) and using equations (3.5) and (3.6) gives:

3

- %f J(‘me)[{_' Pe((d,g)fh Pei,(“"’):] (6.73)

were [z Eem g4 p () | e
am L, = S,mv [Fr BCV“M)] (6.75)

2_, _ 1
where £ = ot X y Wlz g and M, ad g, are the
1T W !

.masses of the initial nucleon and meson respectively.

) *
The Y, trajectory lies in the PE; Q" partial wave, and the

poles on this are defined with the mass W = -m(ll)

oS, The discussion

of Macdowell symmetry in section 5.5 then puts the parity doublets in

the 7= e"/i partial wave with mass W= m . ZIence, to remove
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unwanted parity doublets(i.e. ones not appearing in nature), it

is necessary to make the residue of (6.73) vanish for the wave(69) .

e -
This implies that

o

| A(W)“—‘D for W = - (6.76)

: L
Taking (6.76) and (6.74), the condition for the removal of a Yo parity

doublet of mass W/ = o, is:

.ﬂ.— = "‘C’*r%" ™, ) | (6.77)
B

There are 2 particles that we want to i‘emove. These are the
- +
A\ (15)% particle (Sy;) and the N (15200 3 particle (P,3).
The relations between the parameters in the amplitudes given in

equations (6.45) and (6.46) obtained fram the removal of these are:

a) Elimination of the /| (1115)%” particle (s ).

The term in A and B considered are those containing ng
\I*

©
s

2

N

ard /15 , as these only have the « (41' pole. (6.77) gives:

{

(6.78)
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Py
, b) Elimination of the /\ (1520) % particle (PO3) .

\ . . .
The «,° = "2 pole is contained in the terms

proportional to N B, ' n% and /lﬁ « Hence (6.77) gives

__([mma})/]a, + AA,_

= - 0. $§2

nsl :
Hence neglecting the small imaginary part,
N
& = 0- kos
Ng,
(6.80)

The relations between (/' )X and ( v obtained from
these are given in Table 5. Hence we have specifically removed the
doublets for kp-> K ~ , but crossing also removes them from-

K+w "‘?V(OF .

6.5 Discﬁssion of Résults .

The previous part of the chapter was concerned with setting up
a Vereziano form for the pole graph in the hope that the lower energy
behaviour of our model would be improved. Absorptive corrections are still
required as explained in section 5.1, but as they are introduced just in the
t-channel, as explainea in Chaptér 3, we destroy crossing symmetry in the cut

terms. Thus,for the purposes of this model,we are forced to interpret the
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Veneziano contributions to the cut terms just as an infinite set
of Regge poles. The importance of this inclusion of the daughters
can be seen from the fact that the first daughter in the /IA, tem

has a larger effect than the subsidiary term ﬂ,;z .

The absorption coefficients for elastic K"p scattering are
given in Table 2, but as no elastic XN scattering data exists, #'p
elastic scattering absorption coefficients were used for 4 & —sK °f

and these are given in Table 6.

Fram previous sections, we see that our model is left with
two free parameters, (%)and N. These were detemmined, as in
chapter 4, by fitting the 'poletcut' amplitudes in the differential
cross—sections to the data using a f-z minimization and MINUITS.
The results are displayed in Figs. 21 to 24. These fits were remarkably
insensitive to N, when it was chosen such that N>>1, so N was
chosen as 20. R%) came out to be 0.0423 so giving a ¥ of 617 on 101

data points.

The mass splitting used in determining the U(6,6) factors
involved in the parameters n 3 etc. was
. \

?/_ = r\.t ' i.e. 'on-shell'»

; ' 1+ 3t 2
m = average of 4 SWQ3)octet and 3 Su@)decuplet = 1.27 GeV/c”.
M = average of O nonet, 1~ and 2+ nonets = 0.88 GeV/cz.

M= average of 1~ and 2" nonets = 1.115 GeV/cz.

Ml = average of 0 nehet = 0.42 GeV/cz.

™
2= average of ther35 SU(6) multiplets= 0.63 Gev/c2. - (6.81)

average of 1t octet ='1.15 GéV/cz.

n
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This was motivated as follows. In the coupling constants,
rl
with the exception of the kinematic factor Al |, Sul) masses
were used. These were preferred as at the meson vertex, both O and
1 particles are involved and these compose the SU(6)1435 multiplets.
Thus, for consistency, we use the SU(6) 56 multlplet at the baryon
4

r .
vertex. The kinematic factor T2 = (l Qﬁ) was conveniently

interpreted in terms of SU(3) masses.

For masses external to g and. h, the same form of mass
splitting must exist by consistency, but the meson masses must be
modified to include an effect from the 27 exchange with equal weight

as the O and 17 exchange as we have used exchange degeneracy.

The figs. 21 to. 24 show that_ reasocnable success was cbtained,
but we still failed to reproduce the low energy normalization for
4*~ - U% although this was an improvement over our previous fits
fbr this process. BAs shown by Berger and Fox, the introduction of many
satellites might solve this problem. The diagrams also show that at
' wide angles, the differential cross sections for K "~ LN
were too large whereas those for ut. ~71(°f were too small. This is
a factor in common with our previous Reggeized absoi'ption models,
although we are rather better here probably due to the inclusion of other
channels, so indicating that this is a 'cut' éffect. This seems to be
- borne out by figures 21 and 23 which shows that the cut is probably
too steep in k“r-;v?"h and too shallow in U Tw Molo , SO
giving too little destructive interference in the first case and too

rmach in the latter case. We also see that the cut shape is non—flip

as expected.



The defects in the 'cut' are not really unexpected as
this is an essentially high energy parameterization and pure non-
flip. We ekpect the flip contribution to give an effect at wider
angles so its introduction to the absorption may be important.

The comparison of our model with Inami , Wwho used a
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similar pole form, but without absorptive corrections, is interesting.

Our parameters turn out to be :

Np ==t /Ih: 28. |

Ne = -1515, 2, = -¢72,

'

R Zﬁ SRS | | e g be

. LG-}_@-'
¢ “~~'6§ oF LG-QV)-‘Z
awdk N:io.o (C-e_[/)z

(6.82)
Those of InamJ. are
AQ‘ ;‘$§‘§> /)4L:2(F.(f) th = 4‘17_,(‘— C-\u»:['s .
. (Gev)
Ne - ~138-7, S =228, i ik ofGaW)?
' |  (6.83)
a-d Wz 2-3 (L’Q'V)l ‘ .
The trajectories were
v 4
L. = =024 45
Y
°<.s - - O-C& “‘S (6.84)

Ole = ov'; +.E

His relations f,,, / Zg and N were obtained by the requirement

e
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2 (8 ma LT . ,
of removal of the £ (13$5]and ~ daughter, which we did not

attempt to do because of restrictions on the fg term. The
. [
overall normalization was cbtained fram KN and KN total cross

sections.

our model gives a larger Y term, but a much smaller Y,
term than Inami's. We require an increased normalization as we have a
destructive effect between pole and cut, which of course is not present |
in Inami's model so this must be given by the Vf term. The smallness
of the \/‘,’ contribution is not unreasonable as if we treat our model as a
pure phencmenological one, the « can be treated as an exchange-degenerate
f-R- f° - o trajectory and thus, by using isospin and crossing
arguments, generate K+p backward scattering amplitudes at high energies

(76) £itted

(where the Pameron contribution would be negligible). Barger
o5

this data with a \/o contribution only and neglected the \/,"’ term

by SU(3) and dispersion relation arguments. However, resolution of

this problem must wait for K'n elastic backward scattering data.

Using the same phenamenological argumeni: for a /- ﬁ,_- c«-/o
trajectory being equivalent to o ¢ we can generate the U™ p elastic
scattering amplitude from that of &« 'Pg[(- 9, by isospin i.e. for

pole terms only

A kg icon) = LAY +/Y)

(6.85)

_ _ ) () '
A (o> np) = £ (A t A ) (6.86)

where the superscripts define the s—channel isospin terms. (B similar)
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-Thus we can cbtain the léw energy resonance properties.
The first is the ooupling constants, for which we have to make the

, Questionable assumption of factorization. Assuming that, we have (53)

Ay, = Comptrg) Mo,

jn. - 6 1T ol mp (6.87)

2
and 52(,3?5‘) - -"' Mtl fﬂl

L B MiC(&i’s’)

(6.88)

. 2 - r |
giving 3 1 T 64l and ﬂiuzss) = .36
41t

campared with 5.5 ard 0.77 respectively for Inami's model.

The next thing we wish to calculate are the elastic widths
of the s—channel resonances. Again we use the pole graph contribution
only. Fram equations (6.69), (6.70), (6.71) and (6.72)

we can write :

£ [h oo o]

[‘1 = %‘ [ €’+‘)*P (COSGJ N { r‘S °59)](6 a0)

. x N
Now the \/ particles lie inJ= e—} wave, and the Vg ones in J= Q+£—
wave. Hence, for large t, the /o lies almost ent:Lrely in { while
the \} is in [ .

' &
Considering a pole at J=; on the Y, trajectory

| ol
= co .91)
ACW) .-\/ é(@{\)‘ r):“( $ 9) (6.91

Y
~



For large t,
P( H) "'L

Pileer v B0 (& )
where Q is the C.M momentum at the resonance pole. Again, [‘(e“)-
is approximatelby a Breit-Wigner at the pole, giving(77)

5 e
# e el s
(ex)~ Qm2-5-¢ Mmg) (6.93)

©) ()

where | 4 is the elastic width and [7"is the total width of the

resonance.
)

/( P (we) = 7-[7()“) J e L (6))‘:-(6.94
"= ek oV Tey) (@) -5l

Near the pole, fram equation (6.64);

. ‘ e
M~ o -5—.,)7,..,5 ~ _‘,; C)‘-ds"), " (6.95)
3
and
L TGt Pl )
J-a; (6.96)

- Using equations (6.75) gives:

Co)

o ‘ )
M7 M%) (&) (c.-~))
T W' (£) ™ me,  [(-21) M=3=5) (6.97)

W) o ) !
[ﬁ - CW"'M())E J PCJ-P().

129.
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Taking the asymptotic limit for fixed s, t-o5= , at the pole

* ) . -
ocsYd = ) with W =wmge, (this way round or else we abtain

. the condition for vanishing -f2) :

PW)-“ J,—T-[(m,,‘+62‘)"'“-v~rj (d'.al)) [/19 ~ (j-'q) n,a

T e v 0% peen

= (e +"‘(’>.A6.] (6.98)

Similarly for the ‘[;" widths,

0. ' )
[ N =~ RELA @) e ] (2'0Y) [ 5
4,

ol T way (YA [7(Ge) ' (6.99)

4 (w,q,‘me Z ‘]

The widths are displayed in Table 7. They are too small
_ in common with Inami's analysis and provide a powerful argument for

thé introduction of satéllite terms.
In conclusion, we can make the following caments:

- a) The arguments for the introduction of satellite.are powerful,
but not feasible within the restrictions of our model.

b) A 'low energy' form for the absorptive corrections appears

to be necessary.

c) Instead of using imaginary parts to trajectories to avoid
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singularities, a 'smoothing' Veneziano form as suggested by

(78)

Martin''®’, where one takes the Veneziano amplitude Vi 0, T) and

. creates a new one,

' |
\/[9,6:) = (‘. G(x) VC( o, 1 ‘C) ”(1 (6.100)

where ¥(x) is an averaging function, may provide an effective

solution with cuts.
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Trajectory " Resonance a¥  |contribution to o
* : +
Y A, (1115) ] below threshold
A_ (1520) 3 10.075
Y 2
st
A (1815) 5 0.099
a 2
A_ (2100) z_ 0.084
Y 2
Average 0.09
* 3t
Y, z B(1385) 5 below threshold

5
z 5 (1770) 2 0.186
7+
I 8 (2030) 5 0.1l10
Average ‘ | 0.15
Table 4

Contributions to the imaginary parts of the trajectories.




Parity Partner

Relation obtained.

- 0.362
A (1115)% X = = e—
b
i + 1
| 3t 241
A (1520) > = 0.829
z + 1
A!
Table 5.

Relations given by absence of parity partners.

133,
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: -1
Plab V7 (Gev ) C,
2.3 0.38 1.00
2.97 0.36 0.91
5.5 0.31 | 0068
Table 6

Absorption coefficients for K+p elastic

scattering.
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Resonancel AY (1520)D03 lAa(1815)F05 AY(ZIOO) Go7
experi~
rez (MeV)| mental 7.2 52 42
theore-
tical 2.16 " 11.6 15
*
YO Elastic widths.
. & t.
Resonancel ZB (1770) D15 Lg (203O)Fl7
, experi~| 45 12
r__ (MeV)| mental
et
theor-
etical 5.5 _ 4.9

*
Y

1 Elastic Widths.

Table 7.



Fiqure 21.
Fiqure 22.
Figqure 23.
Fiqure 24.
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FIGURE CAPTIONS.

Contributions fram the pole (-—), cut (— — — -)
and pole + cut (—) to the differential cross-section

for K p - K°n. Data fram ref. (79).

Differential cross—-section for K-p + Kn.

Data from ref. 79 and 80.

Contributions from the pole (——), cut (———-),

and pole + cut () to the differential cross-section

for K'n -+ Kop. Data fram ref. 71.

Differential cross-section for K'n - Kop.

Data from refs. 71 and 82.
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APPENDIX

Numerical Analysis of the Pmblen(83)

As in the above analyses, we have free parameters, it was
necessary to use a standard minimization program to determine these.

This program was MINUITS (CERN Program library No. D506) .

To this w‘;r!added sub-routines which presented the parameters
to be minimized on to MINUITS and carried out the Regge calculations,
which involved partial-wave analysing the helicity amplitudes for
the pole graph, modifying them with absorption corrections to obtain
the cut graphs and then resuming the modified series and camparing .
the theoretical results with the experimental data by means of a 767'
where

rx’z _ z u-,’znna..fa}fl(_ - U\.oe z('.cu’ O{O_ z

Errgr On ?."f%fiuseweal ";[‘e

date Paiuts

Many passes were made through MINUITS which altered the parameters

for each pass until this .[ found a minimum.

The partial-wave analysis of the helicity amplitudes were

carried out by means of the equation :
| - 4! v 3
< NN TN = %J‘Cg\@lq{@,t)) Mo ”(rfe)a((w;@)

As this cannot be done analytically, the integration was carried out
using an N-point Gaussian quadrature which says that for a range of

integration symmetrically placed about the origin
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31 , N :
S ﬁ(x) de = 2 W .{(x,‘)
I\.\
- N S
This would integrate exactly a polynamial of degree 2N. In our case,
this becanes:

+1 |
3
[_'C \)q\qg(sé)’}\.\t7 Jr)[Cos o) dlcse)

) |
3 Z<’\}_\q, QS(SI»(OSQ,_)“‘\I> V{:A[Cos@h) L\/M‘.

oy

where W is the quadrature weight associated with the point cos o..
Clearly, the rotational matrices are independent of energy and depend
only on the value of the angle &, which in turn, depend only on.the

order of the Gaussian quadrature.

' This enables us to write the integration in terms of new weights
: ‘ (1 3
W = dle o) Ve

which need to be-evaluated only once, so saving much camputing time.

The: checks involved were for the given no. of partial waves and

given order of Gaussian quadrature :

a) Re SL becane 1.0 within the allowed number of partial waves
i.e. no absorption is taking place outside this region.

| b)  The contributions fram the helicity amplitudes must be zero by
the time the last partial wave is reached.

c) Resummation of the uhﬁodified partial-waves must give the
original pole graph helicity amplitudes.

The structure of the program is shown in the flow diagram.
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