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ABSTRACT. 

This thesis consists of six chapters and deals with the 

application of cuts as generated by the absorption model to both 

Regge models, in chapters 1 to 4, and to Veneziano models in 

chapter 5 and 6. 

Chapter 1 consists of a discussion of the fixed pole 

peripheral model together with the motivation for the introduction 

of both a Regge form for the pole graph and an absorption model for 

the cuts. In chapter 2, we start constructing our model with the 

development of a form for the Regge term which has couplings to inter-

relate all two body processes. The required two-body kinematics are 

given. This is followed in chapter 3 by a brief discussion of cut 

models leading into the parameterization used for the cuts. Finally, 

chapter 4 deals with the application of our model to Co-1/2+  hypercharge 

exchange processes and the relation to other similar models. 

In an attempt to form a Veneziano model out of our previous 

Regge absorption model, a general review of the subject is given in 

Chapter 5, with particular reference to KN and KN charge-exchange 

reactions. In chapter 6, we give an 'improved' U(6,6) Regge formalism 

which is then converted into a dual model. The physical properties 

required are discussed, followed by the application to RN and KN charge-

exchange reactions. 

A review of the computer program is given in the appendix. 
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CHAPTER I. 	REGGE POLES AND CUTS.  

In the original form of the peripheral itudel for two-body 

. meson-baryon scattering at high energies, it is believed that the 

differential cross-sections at small momentum transfers are dominated 

by the exchange of 'low mass' fixed pole meson particles in the 

t-channel(1). 
PISsor., 	 HEN 

S --4 

Sal 	Iv 	 13A VioN 

These lowest mass perticles are expected to dominate as they lie 

nearest the physical scattering region in the t7lane i.e. negative 

t-region, and lead to an amplitude I " 	 

	

- 	where J defines 

the spin of the particle exchanged in the process(2). However, as 

the quantum numbers of the external particles may allow more than one 

'low mass' exchange, symmetry schemes, e.g. U(6,6) are essential to give 

the ratio of the contributions fran the various Feynman graphs(3). 

1- 2. 
For fixed pole exchange, we have kb" "6' 0 

AC"' 	< Z 
pseudoscalar exchange, gives, e.g. in 	) At- 	,which 

is the correct s-dependence of the experimental data of the forward 

peak, although the forward peaking is not obtained as conservation of 

angular nrmentun makes the pseudoscalar contribution vanish at t=0. 

However, for the exchange of mesons of j:70, the energy dependence 

in the forward direction is incorrect. For example, in rrN charge- 

exchange scattering, ke L(e.t.rzrir,t.f..) •-•• S 	, but as we have /0 exchange 

(3=1), fil (ik.6„),S°  . The correction of this s-dependence problem 
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is suggested by Chew Frautschi plots of J against t, t > 0(4), for 

particles of the same rarity, strangeness and isospin. These came 

out to be approximately linear for all plots, so if oat) defines the 

equation of the linear plot, ok:(0,-.Q(10 +04A with ocCti.):1) = 'J 	, 

where :r is the spin of a particle of mass Pls. The exchanged poles 

may therefore be thought of as 'moving', with a generalized spin odt) , 

and the amplitude in the negative t region is generalized to 7" ,,  

, 	- zmx(0) 	 5 
.cce) 

0* .e, 	/50,17,,,L0  . Hence, the 'moving' or Regge pole model gives 

do- 	 $ I 	_ -Lacte) —2 
- i bto(theory) .1.- . Thus, by choosing 0C.0  1,1, 0 	for Xi  

4.0- 
pseudoscalar exchange, kt, ^-' S -2.  still and 	cid.. I.: IL 	for 

kr 1 	
t=o 

vector exchange, ,fit 6,0'1" 5- 	, so solving the s-dependence problem. 

In the Regge pole model, the necessity for placing the coupling 

constants of the Reggeons, or exchanged Regge poles, within a symmetry 

schcaneexistaas in the fixed pole model. 

Up to now, we have not discussed the t-dependence of the 

differential cross-sections predicted by pole models. This is poor 

with, in general, not enough damping at increasing NI . However, 

this can be overcame in the Regge pole model by the use of the t-dependent 

spin together with a residue function which is taken to be a function 

of t. However, similarly to the fixed pole model, no forward peaking 

is obtained for pseudoscalar exchange. Hence, there are good reasons why 

cuts, as generated by the absorption model, should be used to correct the 

momentum transfer dependence rather than a t-dependent residue. These 

are: 

(1) 	That for elastic scattering at increasing energies, more and 

more inelastic channels became accessible as required by unitarity. Thus, 
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as far as the elastic channel is concerned, absorption (or loss) of 

a particle occurs. This will tend to occur more at low partial waves, 

or small impact parametprs where the force is stronger, and leave the 

high energy scattering daninated by high partial waves, as indicated 

by the impact prameter representation(5). 

A similar idea exists for inelastic scattering with particles 

being absorbed out of a channel containing the incident particles into 

another one. 

(2) That in some reactions where only one known pole can be 

exchanged (e.g. the c pole in rrN charge-exchange scattering) or where 

a pair of exchange degenerate poles are exchanged (e.g. the 	and and A2  

poles in 111\I charge-exchange scattering or the 4890) and 1‹,j1420) poles 
÷ 	If t-  

L in fT 	n 	), a non-zero polarization exists(67'89) . As 

polarization is proportional to 	412/9 where and are 

the two independent 071/2+  s-channel helicity amplitudes defined by 

<:.k 0  1 4, 1 k o> 	 < 1.1'.  0 1 4 1 - y  0> • , a single-pole 
or a pair of exchange-degenerate poles exchanged predicts zero 

polarization for all scattering angles. 

However, in TirN charge-exchange scattering where polarization 

data exists, it turns out to be small and positive at small(t1   . Previous 

explanations of this have used an unsubstantiated pole, theiol, but 

recent experimental tests searching for this pole have shown that if it 

exists, it has a very small coupling constant(10). 

(3) That for pion exchange reactions where a pion peak of width 

and slope 	e5-6t occurs, the. conservation of angular momentum 

leads to an evasive pole i.e. goes to zero in the forward direction, t=0. 

A proposed solution to this problem, not involving cuts, was conspiracies. 



To see how these worked, consider,'for example, pn charge-

exchange scattering(11). Here, quantum numbers allow the pion to 

contribute to the s-channel helicity amplitudes, 

8. 

Lt• 

with the pion contribution such that ci) 
r 	rr 	

As 04 is a 

helicity flip amplitude, the conservation of angular huuentum implies 

o . 	Hence, 	 irra-z- o) 	4 71- )v 	c") 

Defining the pion conspirator, a', as the parity doublet 
rrc 

of the pion, positive rarity gives 
ri w - 1547 

Hence = 
/ rr I 

and 	rr 
4 4 4 

4- 

r 	 f R (- 
Hence, by putting (pi_ 7: 10,2_ 0 	to agree with angular 

momentum conservation, but the part of 	associated with the pion 

does not vanish and so the forward peak is obtained. 

The undesirable effects of conspiracies are, firstly, that no 

known meson exists of the required mass and parity. Secondly, Le Bellac(12) 

showed that while experimentally, the reactions n~p , v iti.--W 4A 

and IT tv 	exhibit peaks, conspiracies predict dips in the 

forward direction. 

The absorption model solves the peaking problem in the following 

manner. As before, the rotation functions ensure the flip amplitudes 

such as 	in pn charge-exchange scattering remain equal to zero in the 

forward direction. However, as IZ , in this reaction, is non-flip, the 

rotation function does not put this amplitude equal to zero. Now, 

F o f' s 	I 
••••=, 
Mimm 

""' 'tnt K 
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The first term is the high energy limit of the s-wave 

term Potcc‘o) and so violates unitarity at high energies. Absorption 
ri' 	Ytt a 

has the effect such that 
'fit 

(absorbed) 'II 	 0-1- 

	

n 	
i.e. 

takes out the s-wave term, so allowing a forward peak. 

(4) That the behaviour of total cross sections at energies 

which have now become available through the advent of the Serpukov 

accelerator which can give results up to 70 GeV/c for negative pion 

and kaon beams. Barger and Phillips have shown that for inn and { 

elastic scattering(13), the Regge pole graph does not explain the 

flattening of the total cross sections at high energy and so to explain 

the data, cuts are introduced. 

(5) That cross-over effects, which might be due to zeros in 

pole residues e.g. the 4) in K p elastic scattering and NN and NN 

elastic scattering, do not appear to be consistent with factorization of 

the residues of the poles(14). Returning to the example of the vanishing 

of the 42 in NN and NN elastic scattering to explain the 'crossover' 

effect, factorization gives /4,= 	=lz  ,,  up to a sign. However, 

in a reaction such as n-11)---y C iU which has a contribution from co 

exchange, factorization gives /3= Sir, tc,INvy  whichmakes the 

4; exchange amplitude of rri10'" 0/vanish at the cross-over point 

of 	NN and NN elastic scattering. No such dip exists in the 

experimental data. 

The remedy is to use the destructive interference between the 

absorption cut and, say, the w to generate the required zero at the 

cross-over point. 



(6) That in Regge amplitudes, which use the nonsense choosing 

ghost-killing mechanism as predicted by the Veneziano model, zeros 

occur which are not present in the data. However, dips which do not 

go to zero exist at these points(16). 	Hence, cuts are required to 

fill in these nonsense dips. 

(7) That elastic f,  f, scattering has an expanding rather than 

a shrinking diffractive peak. Cuts are required to explain this(16). 

(8) That, besides the problem of the forward peak, 	Ai> 

and no -z> K n are difficult to reconcile in just pole models(16) 

Hence, we have a motivation for using a Reggeized absorption 

model with couplings related by a higher symmetry scheme in an 

attempt to explain the features of forward scattering data. 

10. 



CHAPTER 2. 	THE REGGE FOIALISki 

2.1 	Introduction.  

As discussed in chapter 1, a Regge form is necessary for 

the pole graph in order to get the correct s,dependence of two- 

body meson-baryon cross-sections. It was also indicated that the 

couplings ought to be incorporated within a symmetry scheme, so 

that the amplitudes for various exchanges in a given process are inter- 

related as are the various processes. The fact that the known 

baryon and meson particle spectrum is given coLlectly by the lower.  

SU(6) multiplets was used as a motivation by Watson et al(3)  who used 

a fixed pole model with couplings inter-related by the relativistic 

generalization of U(6), U(6,6). This has the advantage over SU(3) 

that processes involving different baryon and meson vertices 

simultaneously can be inter-related although it is of course more 

badly broken. However, in this model only mesons lying in (6,6,0) 

I
fotation is such that (6;..6) describes the U (6) ® U (6) (the rest 

symmetry of U(6,6)) multiplet containing the SU(3) meson Cr.octet and 

1 nonet, and the 'CO is the Casimir of 0(3) describing the lowest 

angular momentum excitationlicould be exchanged. In order to incorporate 

such reactions as IT - lit where there is only 2+  exchange, within 

this model, it is necessary to include higher multiplets of U(6,6) or 

U(6) 0 U(6) 0 0(3). 

The SU(3) 	nonet containing such particles as the A2  and 

the KN(1420) lie in the U(6,6) 4212 multiplet or the (6,6;1) 

U(6) 0 U(6) 0 0(3) multiplet. Hence, there are two methods of 

incorporating higher spin exchanges into the model. These are either 

11. 



12. 

using higher U(6,6) multiplets or higher (16)014(00  °(-3) multiplets 

i.e. (6,6,N), N = 0,1,2.. The latter method of using 0(3) excitations 

is preferable as here, only JP  is altered and hypercharge and isospin 

is left unaltered so avoiding exotic mesons. This latter approach was 

+ 
used successfully by Shafi(17) in explaining 2 / 	

+ 0 decay rates 

and by Delbourgo et al!18) in a Regge pole model. 

Taking these arguments into account leads us to use a 

Reggeized U(6) 0 U(6) 00(3) model to construct the pole graph s-channel 

helicity amplitudes, which provide the most convenient form for 

introducing absorptive cuts. 

2.2. 	U(6) 0 U(6) 0 0(3) Fields  (18,19) 

The basic representation of U(6,6) is the 'quark' representation-

of dimensionality 12. However, this coLiesponds to no known physical 

particles. Thus we have to construct higher irreducible representations 

of U(6,6) in order to include physical particle, fields. 

The lowest meson fields are constructed out of the product of 

quark and anti-quark: 

e) Z = 	t e 4 3 	 (2.1) 

where the 143 is the traceless meson field which reduces to (6,6) 

under the rest group U(6) 0 U(6) decomposition. 

Similarly,the lowestbaryon fields are given by the product 

of three quarks: 

11 	21 0 a 364, 572. 	C7Z. 	(2.2) 
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where the fully symmetric field 364 reduces to (56,1) under the U(6) ® U(6) 

decomposition. 

The SU(3) composition of these fields can be seen under SU(3) 0 4acz1) 
decomposition 

143 	(g)15--) © cis-) ® ce') 	
(2.3), 

364 = City()) 0 (82 20) a C,,4) 	 (2.4) 

(2.3) shows that the 143 contains the SU(3) 0 octet and 1 nonet, 

while (2.4) shows that the 364 contains the 1/2  octet and + 	3+ decuplet. 

As SU(3) can relate mesons among themselves and also baryons among 

themselves for a given (J)P, a sensible decomposition is U(6,6)-2-U(2,2) 0 

SU(3). Under this decomposition, the 144 generators of U(6,6) are: 

where A,B = 1.... 12, 	(2.5) 

= 1 )4(....lai-jc..1.0-ry, 1- - • /6 are the sixteen Dirac matrices 

forming the generators of U(2,2), and I 	=-2;., A L 	where the 

are the nine Gell'Mann matrices forming the generators of SU(3). 

The traceless 143 meson field is constructed as follows : 

I:Cf) = Ca;_? Ttj fe(  
(2.6) 

where the Oi  (P) are the free particle meson fields of morrentum P and 

mass tk. The U(6,6) fields satisfy the Bargmann-Wigner equations : 

C r-r 
	E g 

 Ce) 	
g 
 ce) cr4r ) 6  = 0 	

(2.7) 



L 

and taking the fields 'on-shell' gives 

r2V3C.e) =- t
t 
 ch 	Cr) 	

(2.8) 

14. 

(2.7) and (2.8) give: 

(P t̀e)---; 0 

rr 
)7- 

rr 4-ry Ce)  

C r  t,-5-(e )  = Pr qY ce)  

1; 	01)11,02.9) 
r r  

Using (2.9) and the equation of continuity for a vector field 

(2.10) 

gives 

CO =[ CIK4-r  ) 	CP) 	
(2.11) 

where /6 rit 	 and 4, C19),  ((10) are the free particle fields 

- corresponding to the SU(3) 1 nonet and 0-  nonet respectively. 

Similarly, the symmetric (56,1) decomposition is 

,s,L 	 f 	C)ote 	4.61);,.)'0,1  Cr) 

c) 	 > Cdr 	c 	" Ca-  6 d  ) 1) r  vrc ) 4  	L 

C 	4,4. C3-c 	x:(. + 

+ cyclic permutations 11 
	

(2.12) 

where vc 	are the U(2,2) labels, a,b,c,d = 1,2,3 are the 
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SU (3) labels, and C is the charge conjugation matrix./nso 

Applying the Bargmann-Wigner equation to (2.12) 

(r_v1,..)D  4  ( t CaeC. C) P) 	° 
	

(2.13) 

gives 

V = 0 

P ce) 	(19) r 	' 	ry Pr°(19— PY'r('914) 

leading to 

(4C R,c() 	z7z, IS (-49.-../.5-c-31[„1,ei 10( + 

where 

cychc 	 + 3 

aC Dr?)-(a4c.)] 
= AiLlr  (T 9:4  

(2.15) 

with 	and D 
r 
	tt y are the free particle fields corresponding to 

the SU(3) 1+  octet and 2  decuplet respectively. 3+ 

(2.11) and (2.15) collespond respectively to (6,670)and (56,1;0) 

multiplets respectively in U(6) U(6) e0(3). To construct higher 0(3) 

multiplets we take note of the fact that experimentally (6,6;N), N = 0,1, 

occur and (56,1;N), N = 0,2... occur in nature. Also, the knowledge 

c r) that the 2 fields etc. which lie in (6,6;1) are of the form 
Cr v)  

suggests that the fields for ON(3), N = 0,1,2.... are of the form 

(r20 
. These are symmetric,-but not traceless in their indices 



and satisfy conditions 

16. 

Pr  

el 

(P) 	= 0 
-- pc--,,v) 

eitr(!'rw) (19) 
crs --1-0 

(2.16) 

Hence, the field for (6,6;N) is 

kr,.-r e) 
and for (56,1;2N), 

—7  B 

	

1.
) r [(A 4 _r )(y 	CP) —)"- __. ( 11) )1 (2.17) 

	

r 	Cr -to 	1-,. -1w) 

m 
C-P-4-..,) /5_ c 	vice., 	(2.18) 

L 'fro)  
3 _C-)940--)ir  C cv/4.  

(ft, ce) 
cisec)cp,--t,w) 

..•••••-•• 

24,h. 

+ cyclic permutations + 

Dtta'c,4c)Cr i .../i2si)] 
2.3. 	Three-point Functions.  

The present state of experiments enable us to carry out 

essentially two types of two-body scattering. These are 0-1/2+  + 

and 1/24.1/24.  4 ... using JP  notation, with the 0-  lying in (6,g;0) 

and the 1/2+  in the (56,1;0). As we are interested in 0 1/2+ + 0 1/2+, we 

need to compute two three-point functions for forward scattering 

invariant under the subgroup U(6) 0 0(2) 

(a) (c ) 6-)0 ) p2  C6, c)0-K, 	 e  
2  

(b) C 	- 0)p ) 
where the subscripts specify the field momenta. 

The Lagrangians are computed by carrying out the HU(6) 

decomposition of the U (6) ® U (6) 0 0(3) multiplets giving 



17. 

 

cc 

 

     

The decomposition for (6,6;N) is the same as (2.19a) but with 

the appropriate excitation labels on the fields. The construction of 

the Lagrangians is carried out explicitly as follows : 

(a) 	The two external multiplets give 

Ca e 	Le 3s) 	
(2.20) 

of which we want the 35 or 1 multiplets as these lie in (6,6;Ii) 

I 
(2.21) 

35-  6) 1 	= 	3 5_ 	
(2.22) 

I 	3C 2: 	3 5— 
(2.23) 

	

_ _ 	2 )( 35 0 I 	(2.24) 

The fields for the singlet are given by contracting the 

1 	A C momentum tensor 1  CP2 06 4-1 4 	rN4 4  ut 	copa  on the U (6,6) fields, 

i.e. taking the trace of the SU(3) labels. Thus the couplings for 

(2.21) and the singlet of (2.24) are given by 

(24-0 

4.(AN4 FA  6 	C- 	P  
- 67: 

P P 	c 

(2.25) 

and 

	

i'cr).47 c-e3r: 	(10,-0 -2_ 	A 	— 6 	' 	IV  C; 	cr. 	(2.26) 
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respectively where IA is A mass associated with the vertex and 

P' = (P2+P4) and we have saturated the 0(30 labels by momentum tensors 

to give the correct s-dependence in the T-matrix. The superscript (-) 

on the coupling constants satisfies the Bose requirement that the term 

is only non-zero for N odd and vice versa for (+). 

FLom the four 35's constructed in (2.22) to (2.24) we want an 

even and odd signature Regge pole eventually. Such a requirement is 

met by the two couplings 

Iv" 
t-IV 

L 	e ) (17  (- ) 4-  _FA  (-A) 

CP4-6) 
c fr, (2.27) 

and 
I- 

CT C PL gC 	 :c-ect) 

- ez) cr  •ro  
where. C15 couple to both 1 and 35. 

k`t-)  fro 
(2.28) 

+ 2 	
(0-) 	c_ 

r 	)re 

)C1/4  C 5, 4 
3c P11 	 C-Ct tv+1 	A o 6  p 

c 	 Lr, 8) ‘  

:  If" 

Hence the effectiveLagrangian is 

Z r  ItC9  (S c  e, •Zq't4'  

-r--- P P At, 8 0 

T (to e ) 
to 1) 

(2.29) 

where 	CP • P co ) 
by 

is the fully contracted (6;6;11) field and is given 



(2.34) 

P P 
r-v 	rv- 

cp 
CO 1)  

ri 	r 	rib (T, 19.09 	) fit 	Ptv 	al 	 6 	4 —  I-, (2.30) 

19. 

(b) 	Here, the two external multiplets give: 

5— C 	5-6 	 (2.31) 

fluit which we want 35 or 1. We get 

(2.32) 

Carrying out the arguments as in (a) , we get the effective 

Lagrangian to he: 

where 

-- 

m 

•ecij CP3) 
- (1") — (ACP) 	

c g 
Gt 	CP))13 	+2 I 

) 
1 110 

6 

(P1+P3). 

sv4-1 	 (6cp) 	A 0  
Z 

is a mass associated with vertex b and P = 

Fran now on, as we are only interested in 

charge-exchange scattering, we will neglect 0 I 

1+ 0 	hypercharge and 

C-)  and 0 	90 

2.4 	Supennultiplet Propagators  

To construct propagators colLesponding to the exchange of a 

(6,6;N) supermultiplet, the following heuristic argument is used. 

The propagator for two fields with one orbital label each is 

the vacuum expectation value : 

Where M is a mass associated with the fields. 



c
ce 

 

crt —rf))  

Generalizing to thel:N]representation of 0(3) gives: 

ez...1.72 	afl', I 	MI- 
p f 1- Pr t! 

r 

rot's) 
Pr-- 
tri Y(2.35) 

20. 

The propagator for (6,;0) is constructed using the Bargmann-Wigner 

Equations for the fields: 

4 
CP-  ri) cp CO a..4'0) 	P  n D  0 	 1-1 	 9 	 (2.36) 

and the ton-shell'condition: 

11 2  1:(19) 	
(2.37) 

A propagator satisfying these conditions is 
0' 	4  

<i7 0,6CP) Isfi,Cf-P)> 	Ce144-e)??4( r.:1-10)61 

(2.38) 

Combining (2.35) and (2.38) heuristically, we have for (6,6;N) exchange 

ea) I 
‘
4(49 > 

RCP-re )  13cr‘-rie )  
(— 	fr2r—L I 	 ) r Ire 	r 

•••• 	J.. • • 

-Lte--(4 P 	P 	C  Mvi-t) 
4to- (ez - 

(2.39) 

In the rase which we wish to consider (2.30) and (2.33) imply 

that we need to know the'fully contracted supermultiplet propagator 

A  CAI) 2 --1777.7) (2.40) 

i,z 4- 1°1, eV= e - 4 
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This is 

Acre) 
	p I )1V-4-1 	

z 	
(2.41) 

) tv-i- I , 	, 
vos 

— r1 -1- (2.42) 

for pair-wise equal mass kinematics where 9 is the angle between 

(P') and (P). 

In (2.42), (cost is the rotation function 	( 6)  for 
Cal] 

the U(3) representation of the supersinglet exchange, and cos& is 

a spin factor coming fictuthe U(6,6) rotation function of 	C6) 

The generalized rotation function 	(0) of ") (e) is  
L4/1E4/3 	cork,,j 

obtained by differentiation. Specifically, we are interested in 

 

(31 	 A 
+On( 

4 	41̀11  (-6 -/12) 
- 

ft I 	
N) 

A & 
(2.43) 

2.5. 	The Reggeized Invariant Amplitudes for 0-1+  Hypercharge 

and Charge-Exchange Scattering 

The covariant T-matrix is constructed according to the usual 

rules such that : 

T 	Coet.a) 2-k.6))1") 
	

(2.44) 

(2.45) 



for 0-1/2+  charge-exchange scattering: 	) 61  utcP)3) 	 1 

	

IA cg  c_ o
(A 	L ) 	 — 

	

e) 	5,@-)  1±cp,,) Pc-44) 
r-1064  
0 )  $. ce) -EC—r 	

6 
)] 	

A , 	 C 	01 + 	
09 f6 )128, 

where the D's are differential operators depending on the external 

quantum numbers at the respected vertices. Using (2.31) and (2.35) 

gives 

22. 

A) 

4- k(-1-1 
	

P tic 

using (2.43) and where 

Ig  

(2.46) 

(2.47) 

where I/ P - P3 . Carrying out the decomposition of the U (6., 6) 

neson tensors with respect to U(2,2) 0 SU(3) as shown in (2.11) , 

extracting the pseudoscalar part., and noting that : 

)3,A.(41) 	1.„2.31) 2 
)
9 	E 	

<And-) 	F 
(2.48) 

zr 	;1,(e, t) 	r 	344(1,1)C; 	) ?luc,1) (7 	(2.49) 

where ( , )Dand ( )Fare the SU(3) anticammutators and commutators respectively 



(2.53) 

and are given by 

23. 

(2.50) 

(2.51) 

with the extra tensor being implied by (2.38)7we obtain 

T z - 31 't 71- 2  4:ti 	 2 r9 Lk 

LC-Ce  ) (It  E 	(4)4, F  4- 	 (2.52) 

2- 

[ 017 Op  1-  (3 tiL4 117  

	

—E) 	 (V)  F 

	

( 	 7 

	

(1-  	 poi  F 3[ 
) (kr) 3 

To Reggeize (2

2

.53), we use a first-order Taylor expansion 

about the pole, t = 1/1, and obtain 

a( t- I 	r(x) 1-7(1- 
E-111 t.t/L 	 (2.54) 

where the + or - depends on the spin of the exchange. We also let 

	

3 	oe..— I 	 (2.55) 

and extract out of h(±) the signature factors 4.1_ 	 whose 

Similarly, carrying out the U(2,2) 0 SU(3) decomposition of the (56,1;0) 

fields as in (2.15) and extracting the 1+  octet part, gives 

pf 
iL 	,11 r 	(1÷ '2- 	vitr 
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presence is required to remoua wrong signature poles as demanded 

by the presence of exchange forces. 

To remove the nonsense poles at 4k = 	-3 	for h(+) 

and oc = o 	for L c-)  we need a 'ghost-killing' mechanism or 

else we have the violation of the conservation of angular momentum 

at these points. TO show haw this is done in 0 1/2+  scattering(11) 

consider, for example, the pole at = 0 in h". (We shall carry 

out the same mathematical operation on h(+) so that a nonsense dip is 

created in this contribution). The non-flip amplitude is a sense- 

sense one (no net helicity flip at both t-channel vertices) while the 

flip amplitude is sense-nonsense (helicity flip at the baryon vertex). 

Every nonsense vertex introduces a tb-i: , so to overcome branch points 

and to conserve angular momentum, a factor of a is introduced in the 

sense-sense amplitude and a factor of 4-t. in the sense nonsense amplitude. 

This is repeated at poles *4-2 	by replacing oc- in the above argument by 

&* j)..  

Thus to remove all 'ghosts' and to create nonsense zeros at 

the alternate integers in ac , we use the 'cell-Mann ghost killing 

mechanism' and divide the T-matrix by r (20. 

T 
Hence, the Reggeized T-matrix is 

	

( .4  LI....  \ i 	CI-  
Tr. 	1 	 1—r- 

	

L 	rl 	2 (- • .._, 
J 	, Cl 	V1 : 	

,
-- il)  )Jb 4 21 r 

,_ 1 (1 -.-) C I.  . . . .e-un - ,( , 	
.E. 5  4  -.-,-,,_  - 1  

1- s• - r  
s f ti  .... ,....  ;$. 	F CI-K 3. ) `-I 442 	.) LP +

, 1- 
 r 	)  

(2.56) 



where the exchange degeneracy oftq has been broken and the meson 

tensors dropped as they are just equal to unity and 

25. 

(2.57) 

As (2.56) was evaluated at t = M2, M must be replaced by 

in here; so leading to a branch point at t = 0 on the edge of the 

physical region. 

A solution to this problem was suggested by Gribov(20), where 
for t ID, a conjugate conspiring trajectory is introduced. Thus, 

using the natural doubling afforded by quarks and pseudoquarks within 

a multispinor framework, we consider for mesons two trajectories 

corresponding to (6,6) and (6,6)' where the prime indicates a pseudo-

quark composite. By analogy with Maodcwell symmetry for fermions, the 

(6,6)' has terms with-...) -A-. 

Taking the total T-matrix as 

T 	CTCT) Ta-,c)1 ) 	(2.58) 

to remove the singularity, we nccd oc,Cc ) 	+/ Cc> ) and At  Cc) 	1(0  ) / t 
By analogy with fermions, it is speculated that for small t, 

4 
.

) - e-s ci" C) 	(t) ± 	 Ct) fi Let t 	(2.59) )  

In (2.56), the 	spinors have both U(2,2) and SU(3) labels. 

However, the brackets around them imply SU(3) traces, so the SU (3) labels 

are completely saturated leaving the 'N' spinors to be treated as Dirac 

spinors. 
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Defining the covariant M-function, M by 

T_ ATI1111 
	

(2.60) 

nd writing 

1 1 	4 “v'g 	 (2.61) 

where 1 is the unit matrix, enables us to write (2.57) subject to (2.58) 

and (2.59), as 

f  
A E 	- 

• J P1F 7E 
 

_ 	

Crce- 

t rr-(  io,oci+e 	5+ 	

r) 1-,f, 

(14-tfr, )( 	q 	r• (1-0L-) -  c 

rte_ 
- d- v• e 	 3FDI 

• I 	 iZ <4. 
C 	 ia,ro 	(i+e 	L9 C 

/ 

r  r  
(2.62) 

where g and h are the SU(3) couplings at the baryon and meson vertices 

respectively. 

As explained in the discussion on 'ghost-killing' , (2.62) contains 

nonsense dips for 44:= 0, -2 .. and -‹+ = -1, -3.... . These are borne 

out experimentally, e.g. in a N charge-exchange scattering at GC., = 0. 



2.6 	S-channel Helicity Amplitudes and Experimental Quantities
(21) 

For the two-body process a + b 	+ d, the differential cross 

section is defined in terms of the s-channel helicity amplitudes by : 

27. 

rr 	 

  

  

K 	Q (2.63) 
helicity 
amplitudes 

where 5 -  is the spin of particle j; C040 is the initial (final) centre - 

of-mass three-momenta and 0. is a helicity amplitude. For 0 1/2+-90 1/2+  

goes fLuut 1 to 4 , and the individnal amplitudes are defined by 

, =- <-1. 0111--!,;0> 

0 	(2.64) 

where 

(2.65) 

where Iv: ti; and 	T 
	

is that spin component of the T-matrix. 

Conservation of parity gives 

XtI 	
t))' src..0534.5%- 5,-  Cc 

TktqL 	<X3 1/441 0,) 

where 1. is the intrinsic parity of particle 	t z 

L 

(2.66) 

For Cik+  scattering, 

)11Y4 
'I, 	 (2.67) 



and (2.66) gives 

28. 

(2.68) 

Thus, 

010- 	it 
02- 4 IV] 

(2.69) 

Similarly, the polarization of the outgoing nucleon is: 

loco 2_ 11 	0A-14,1 z  

 

(2.70) 

 

However, in order to use (2.69) and (2.70), we must write the pole term 

helicity amplitudes in terms of the invariant amplitudes A and B. 

Treating the N spinors as Dirac ones (in (2.56) N = 11C7--q 1*  

so the N is the Dirac spinor part), the relativistic boost condition 

is : 

N tq 

 

J r  

 

 

(2.71) 

where 4' is the Pauli rest spinor and 8- , I specifies the particle 
direction with respect to the positive z-direction. Similarly, 

c4) 	(/6-5) 01) 	) N 	(P3) -7 	6'4 (2.72) 

where for positive intrinsic parity 

(2.73) 

Using T. 	?r, where 0-  
o 	3  

(r. o 
0 cr- 0-  = Pauli spin matrices, 

(2.71) and (2.72) become 



(2.74) 

(2.75) 
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r5- 
6", pK, ‘4, 

respectively. 

In the centre-of-mass-frame, the following conventions which 

preserve rarity and forbid particle-antiparticle mixing are used 

3 

, 
y co-7-0) +`,!4/ ,, (C.D 44, SCR. 

) 
	

4' co = 
	

Co5 "*.i 0 0) 
0 

(2.76) 

Using (2.60), (2.61) and pair-wise equal mass kinematics gives 

co5 P F 	tv- 
(2.77) 

szk. G ic, ( q. 4- 1, 4 (kv— -:,) 1; 
(2.78) 

where 	, g are the mass and C.E6 energy respectively of the target 

nucleon. 



2.7 	t-Channel Trajectories 

As Chew-Frautschi plots of the meson trajectories in the 

resonance region show them to be approximately straight lines, it has 

long been traditional to regard Regge traejctories in the scattering 

region as linear extensions of the plots. However, except for certain 

specialized models such as the Veneziano model, this is not necessary 

if potential scattering and perturbation theory are to be believed. 

Generally, in potential scattering, the trajectories are 

dependent of the form of the potential employed in the scattering model 

and in most cases are certainly non-linear(22). However, what is most 

important is that a definite asymptotic behaviour is predicted. 

Taking the example of a potential formed by the superposition 

of Yukawa potentials of the form 

op 	rf  

tar ) (Cr) r0 	
r- 	) /4  6'  ;> 43 	(2.79) 

the trajectories 0((t) are non-linear with an asymptotic behaviour 

oca) 
	

k(tv4-1) ) -e---› -00 	
(2.80) 

where N is a positive integer defining satellite trajectories. The 

leading trajectory (N=1) thus has the asymptotic limit (23) 

oc ct) 	-e 	- 00 	(2.81) 

Other evidence for the existence of non-linear trajectories 

is the scattering region comes aciaperturbation theory in the relativ-

istic damain(24). If one evaluates a generalized Feynman ladder graph, 

which is well known to the equivalent to a Regge pole, we obtain : 

30. 



00 

C.e 	 E 5" 
where the Ka)are integrals associated with the self-energy loops 
contained in the ladder and the g's are 'end contributions'. N is an 

integer depending on the 'order' of the trajectory. Ihe asymptotic 

behaviour of (2.82) is such that 

(2.83) 

Again the leading trajectory has the asymptotic limit 

cc(k) 	) 	J —Go 	 (2.84) 

Dcperimental confirmation of the conclusions (2.81) and (2.82) 

Owen et al(25), who fitted the parametric form 

the ffsp elastic scattering data fluitthe foward 

They found (2.81) and (2.84) to be approximately 

Taking into account these facts, we parameterized our trajectories 

as 

o4 
°La) 	04. 0  + 04 )  fz. 

(2.85) 

which gives 

cd.E-) 	oc 0
) 
	 00 	 (2.86) 

The acuere found to be compatible with -1 to within experi-

mental error Coco chapter 4). 
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(2.82) 

has been carried out by- 
OtCrZGL(.0-1) T.& 5 to 

to the backward region. 

true. 



'lb show that our trajectory,  is not too remote from the general 

idea of linear trajectories, we see that in the peripheral region 

o( 	04.0-1-100 + 	oz,) 	 (2.87) 

i.e. linear. Continuing the trajectories into the resonance region 

using this limit, we see that the meson poles are acceptably close to 

the trajectory (Fig. 2). 

We further notice that I(CL)k/ is the scattering region 

considered in Chapter 4 so only one nonsense point occurs at cc= 0 

As we use the GelliNann 'ghost-killing' mechanisTi we have a zero in the 

pole graph of the odd-signature trajectory as this is a wrong-signature 

point. However, as otzo is a right signature point for the even-

signature trajectory, there is no dip in its pole graph at this point. 

32. 



CHAPTER 3. 	ABSORPTIVE CORRECTIONS.  

3.1 
	

Absorptive Cut Models.  

Later in this chapter, in fact in section 3.4, the equivalence 

of cuts in the J-plane and absorptive corrections to the pole graph 

are discussed, so we shall assume this equivalence in the precccding 

sections. 

Chapter 1 provided us with the motivation for introducing 

absorptive corrections to the pole graph. We are now faced with the 

problem of how to do this. Basically, there are two points of view 

which may be adopted for the introduction of the Pomeron-Reggeon type 

of absorptive cuts. These are: 

a) The weak cut model as used by us(26,27,28).  Here, the 

pole contribution is larger than the cut and dips in differential cross-

sectionsare obtained by using a 'nonsense choosing' mechanism as 

indicated by the Veneziano model. 

b) The strong cut model as used by the Michigan group(29). Here 

the Regge residues are featureless and do not have a nonsense choosing 

mechanism in then. Dips, and like features, are obtained by pole-cut 

interference, undoubtedly facilitated by the wealth of parameters present 

in this model. Phillips(3O) has stated that by suitable choice of 

parameters, dips can be obtained practically anywhere. 

In this version of the absorptive cut model the cuts are 

multiplied by a factor ..\ , where 

33. 
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= !inelastic cut + elastic cut' /elastic cut) 	(3.1) 

as a method of introducing particles other than Pamerons into the cut. 

X 	is typically taken to be of the order of 1.5, as inelastic cut ;1/2  

elastic ad:and thus gives cuts stronger by about 50% than the weak 

cut uudel which has )% =1. 

Up to the present, only Pomeron-Reggeon type cuts have been 

considered. No modelsfor Reggeon-Reggeon type cuts have been constructed 

as judging from the ratio of [elasticdt  / inelastic 	 l de 
dt 

which is just [Pameron2/Peggeon2  :1in the forward direction, 

Reggeon-Reggeon cuts are expected by an order of magnitude lower 

than Paneron-Reggeon cuts and so are only expected to be important at 

very wide angles or very low energies where the Paneron contribution is 

expected to have vanished. 

3.2 	Absorptive Corrections to the Pole Graph.  

To introduce these, the pole s-channel helicity amplitudes 

are first expanded in a partial-wave series(21)  . 

0a),i_ 44 ot> ( 
C2-341)< r3t\(( I 7.-c-c)h,0 r Ac')  (3.2) 

where 6 is the c.m. s-channel scattering angle, 	= 
where 1,2,3,4 describe the incoming baryon and meson, 

and the outgoing baryon and meson respectively. A• is the helicity 



- CaS 9) 	(3.6) e.fl  (cosi)) /z P (cos 6) /  
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of particle 	and <,(. \t.J  T.3.cs) 	\,› is the 

partial-wave amplitude. 

4- 	t+ 
In particular, for 0 '5;-. 	v S scattering, the 

two independent helicity amplitudes defined by equations (2.64) and 

(2.68) haVe the partial wave expansions 

if (5)0 	E (7.14.1) ck. 	T (5)1 a> et 	e) (3.3) 

1 
c s) -%:..41;› 	vi 	(&) (3.4) 01) Cs 6) -= 	(z5÷0 

t 

5 
where the rotation functions 01,..(0)are given in terms of Legendre 

polynomials by 

et. I 11() 
le rN 

cws 6') 4- p (c0504.  /0 (05 ;9).] 
• 

(3.5) 

ith 	J = +1/2. 

To write the partial-wave amplitudes in terms of the helicity 

amplitudes, we make use of the orthonormality relation : 

i 

w 

14.1 

of 	co) J. (&) 4(cosG) 	 ,,i  

tt (15 # 	
(3.7) 

),  
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Thus, we have for the partial-wave amplitudes: 
4-1 

< 3)‘ T TO I 0,z) = Z 	oLict /ON 2>d (&)ciacio
(3.8) 

These are determined in practice by numerical integration as explained 

in the appendix. 

To introduce the absorptive corrections, we approximate the 

modified production amplitude by the Watson formula to first order(5'31). 

\3\ ITCC10),* 	Li--<3.1S 
a I 1- 

czfri-r7c5)1 	+ <x,\ITTs) 
(3.9) 

( 
where .X3),(t ) / cs)/ 	is the production daplitude modified 

41  by ahsorptive corrections, and 	),5Nr I 	3-1 kti.) k and 4.(/5/ 5 12(1; 
 

are the S -matrix elements for single elastic scattering in the final 

and initial states respectively. To get nearer a true modification to 

the production amplitude, we really need to introduce all orders of 

elastic scattering in'both the final and initial states. 

In (3.9), we can write 

)‘ \(s41  s to p 	< >3 Vey) 4 	 (X-lz.0 	IT4  (5 1c( 
	

(3.10) 
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I < d-f  
and similarly for <ufil 	Az> , where (D is a phase- 

space factor. Hence, using (3.10) in (3.9) we obtain 

0,3\id -rJ) 	0.3\4t  1  T re. $) NO 1- 

(6)13c<pi T el Ih.,0 0,\, I 7 d  ove> 	(3.11)  

I 7-71 I X,\,,j 

The components of the right-hand side of (3.11) correspond to diagrams 

(a), (b) and (c) respectively of Fig.l. The elastic scattering elements 

in (3.11) are just equivalent to a fixed pole Pameron, so it is 

apparent immediately how Pomeron-Reggeon cuts arise. 

In the actual computation of the absorptive corrections, we 

make the following assumptions above the elastic scattering elements. 

1). That the elastic scattering in the final state is the same 

as the elastic scattering in the initial state purely for the technical 

reason that no-one has yet done, for example, t( 
	

elastic scattering 

experimentally, and our elastic scattering parameters are determined 

by the experimental data (see section 3.3). 

2). That the elastic scattering is purely non-flip. This assumption 

is based on the fact that for high-energy meson-baryon elastic 

scattering in the near forward direction, the non-flip amplitude is 

dominant. 

Under 1) and 2), (3.11) becomes: 



< 	IT (15) I ),\z = \,,>4_270.31/411-70).1.>(3.12) 

( 	Tt.5)btA)<X,\ s 1)-1)+1)(3.13) 

Having calculated the modified partial-waves in (3.13), 

these are then resummed to give the modified helicity amplitudes: 

(2.T4-1)631/41-r(7)1,\.) dTe)  (3.14) 

1 
The modified helicity amplitudes, 	, calculated as in 

1. 

(3.14) then replace the pole term helicity amplitudes, 	, in 
u 

(2.69) and (2.70) for the purposes of comparing al: and P (t) with 

experiment. 

A calculational point worth noting is that in the partial-

wave summations (3.2), (3.3), (3.4) and (3.14), the sum 
N 

is approximated by 	, where N is the smallest number 
,7 

such that the contributions to the (N+1)th partial wave from the helicity 

amplitudes are zero and: 

a) 1 .2.[ S41 Wi"t) 

	
(3.15) 

b) after using (3.8) to find the partial-waves, the application 

of (3.2) , using N as the upper limit of the sum, to these partial-waves 

yields the original pole helicity amplitudes. 

Both a) and b), of course, are taken to be true to an appropriate 

number of decimal places. 
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3.3 	Parameterization of the Elastic Scattering Elements.  

A parameterization for the elastic scattering elements 
r e! 

(matrix labels are dropped for the spinless case) is obtained 

by a non-relativistic method for spinless particles(2,3). A generalization 

to include spin is then made afterwards. 

The differential cross section for elastic scattering with 

equal mass spinless particles is 

39. 

(3.16) 

where tc) is the C.M. scattering angle. Here, we use a partial-wave 

expansion for 	f(o) in terms of the orbital angular momentum, e , 

(le+1)(5Q.el 	 Q 

  

 

(3.17) 

(.4.1 
where 	is the centre of mass 3-momentum and Je is the elastic 

led 
scattering S-matrix for partial wave Q., 0!1)015:140. 

In the peripheral region, & is small, so for 

(3.18) 

where J is the Bessel function of the first kind of order zero, 

b 	is a continuous parameter called the 'impact parameter' and 

jra ti Q & 	. b -is defined by the equation, 
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Ql, 	 (3.19) 

implying that b gives a measure of theldistance'of interaction. 

At high energies, we expect many partial-waves to contribute 

so we make the approximate replacement: 

0. 

e-1.0 

 

e _.-• 

 

 

(3.20) 

Hence, 

f ce)r.i_gfs‘°04 
[fr . 

 S ¢ct)] I (L Srg 	
(3.21) 

f 
For St  , a ca Alex Gaussian model is assumed, 

- eRii)bc1Q7 
SLIL 	- ci  e 

(3.22) 

implying that 

el 
5 t6) - 1- EC e 

61b, 2  1  /1-t- 111  C2 t 	 I /fit  141,101  
+. C Cy  t 

(3.23) 

where c1 and c2 are related to the opacity of the target i.e. strength 

of interaction, as shown below, and where Y, , V can be thought of 

as radii of interactions typically associated with a Gaussian model. 

This occurs as 

-1,1 /111 	-611K I  c i 	 4_CC-4.12, 	12- 	(3.24) 



where has the form for a given v, 

41. 

1 

J 

gib show how cl  and c2  are related to the mean opacity, 

we determine 0-4(  and a t  . 

Now 

.1 	..... 	TT- 62Q.4.4  i 5 zi  — 1 1 2 

	
(3.25) 

q z 	e f: o 
00 	

-2- L 1  Ivi a  t b Ka qz 	--2- 1.2  Al , /i,,,,i x . 
..----- 2  IT i t> al I, EC,' Q 	Q. 	4 c, fL 	it 

O 

-2_ 
2 	2. 

C celci," 	 (3.26) 

Similarly 

— 	2 Tr 	C 2 e+,) 	— e.(5 41 )] 
2=0  

00 	_ 1,1 	2 ce.  
.—__; Lt... Tr fej  010 C I  AL 	xL  

1/4-111Ce.  

(3.27) 

(3.28) 

Hence, 

Mean Opacity = 

 

cry. I 

  

(3.29) 

    

  

  

(3.30) 

     

7-Cs  ye tQ_ 



and as typically, V, - 4 , 

Abrvale 
P. `Mean Opacity = CI 	4- CI. 

 

4 Z 

As in practice, we put V = 

42. 

Mean Opacity = (3.33) 

 

2  ci  

The physical interpretation of mean opacity is that it 

represents the 'strength of the interaction' in the sense that it 

describes how much of the total scattering is elastic and so due to the 

short range forces in the completely black disc, radius 11 , area of 

the target. These particles are then lost to (or absorbed fran) the 

given inelastic channel which we are considering in the peripheral region, 

which occurs within a radius t^ . The situation is easily visualized 

for Ia.> vi  

but equally true for V, 7 r . 

1  At 
Neglecting JZ, 	again, (3.28) gives the expression 

for the determination of c1 fL 	 a given set of data. This is 

Crre  

  

(3.34) ► 

 

To determine le , we take (3.21), which gives 



(e) = 
1/011q1  

2. 1 	 2. 
C 	 e . ‘- -f-Lczv, 

I. 	1. 

12, 	it 

43. 

Q Pi+ 
filv 	- 

le  i M. 
(3.35) 

Hence, 
wor 

r 	liv4. 	q 
L cs cv I a, 	e, (3.36) 

In general, CL  GG ci  

C
1. " 2 It 

4- 

, so (3.36) reduces to 

vAl• - t 
.9, 	Q. 

 

(3.37) 

Hence, at a given centre-of-mass rrare.ntuca Q, 

r -̀'/I' 
	 0/2 

dtr aP 
lE=0 .ti otq 

 

(3.38) 

  

Bence, the slope of a log - linear plot of the elastic scattering 

differential cross-section, after normalization, gives 
	11  

Practically, we always take 11 zyl, giving 

S
QI 	

.a. 
—e(R+jit,?0(e Z 
	

(3.39) 
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• 

To include spin, we have an obvious generalization of (3.39). 
/ - 

Taking, as stated in section 3.2, the matrix element c.ke  - 

. the non-flip element is obtained by replacing e by J in (3.39) giving, 

\z ) 5  ti 	4=1—   (CI+ C c z12:1C".)A12412  
(3.40) 

We can think of this as being a weighted mean as 

e 	 (3.41) 

Judging purely on physical reasons, we see that (3.40) is 

just what we require for the absorption model, as neglecting c2  , 

we get 	< )•,),L1 0'1 	Ot.)  

i.e. attenuation of the low partial waves. 

It now just remains to determine c2. As we have assumed that the 

elastic scattering is pure non-flip, at t=0, 

f(P tC0 -CPT 

 

(3.43) 

 



Implying 

45. 

(3.44) 

Hence, 
k! 

1Z (f. (1-7_0) 

 

  

(3.45) 

e 	e/ l 
The ratio Rzetv (9/11~j CE-zo) has been measured 

experimentally for rr p elastic scattering, but not for n r elastic 

scattering. Thus c2 can be determined for fl r processes, but 

for processes where this data is missing, c2 is put equal to zero, 

making the elastic scattering purely imaginary.(c2=0 always in chapter 4). 

21 

For small momentum transfers, we can also determine 

as here it is fair to assume the complete dominance of the non-flip 

amplitude. EXtending (3.44) to small t 	0, 

4/ 
19, to 	(E) 	) 6 s.-.,11 

Hence, from (3.35), 

<&0 fiC5M 0> 
S: 112 EZ.ci 

(3.44a) 

(3.35a) 

where 
	"le 

I/1;1S 
As 	and 	R.. 	ti I 

el 	 vi7-161/4r 
A-cd (i)“/°1 1-`)/ 	%)-' 	(..c 

'sr
I (3.35b) 



On comparison of .(3.35b) with(2.77), we see that for 

small 6 , the s-dependence implies that our elastic scattering 

Gaussian is equivalent to a fixed pole of spin J=1. 

3.4 	Regge Cuts and Absorptive Corrections.  

Here, we aim to discuss both Regge Cuts as discussed by 

Amati, Fubini and Stangellini (AFS)(32) 	(33) and Mandelstam 	and 

Absorptive corrections as applied to Regge Poles and show that they 

have sufficient features in common for us to believe that Absorptive 

Corrections generate cuts in the complex j" plane. 

The introduction of cuts as opposed to absorptive corrections 

follows from the work carried out by AFS, who considered an amplitude with 

a 'crossed Regge Pole' behaviour 

—17s,0 Vat') 

L CD) 
("I- rine. 

(3.46) 

and found that when this was inserted into the right-hand side of the 

elastic unitarity equation: 

Tc6o fi:Lzeo 61J" Tcc,c()Tcsv) 	(3.47) 

sfic== 

and a dispersion integral taken over 1(5,-E)e a behaviour more 

complicated than (3.46) was obtained which AFS put down to diagrams of 

the form: 

Ion 

1.4 

4.1 

46. 
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Although Mandelstath showed that when all dispersion graphs 

were added to form the Feynman graph, no cut resulted in the J-plane, 

the idea was enough to generate modified graphs, which do give cuts. 

Mandelstam showed that the simplest graph which gives cuts 

is : 

 

s 

  

  

   

where 	is an effective trajectory 	i 	1 i  . 

As this graph has a third double spectral function i(1,0  a cut 

results in the J-plane. 

The absorptive corrections give diagrams similar to that 

obtained by AFS as shown by Figs 1(b) and 1(c), but as shown by equations 

(3.8) and (3.12), the equation evaluated is of the form: 

TC5, fl:La ICs/ft) (s,E-1 9 	
(3.48) 

AFS and Mandelstam diagrams give a similar energy behaviour 

as does the absorption model(34,35,36),  but the latter two have the 

opposite sign so the pole term and cut term have desctuctive interference 

which seems to be experimentally verified. 

Symbolically, we can write (3.12) in the following form 

g (3.49) 

where R defines the pole term, P, the Pomeron (or elastic scattering) 
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term, and a and b, two-particle states. In this notation 

Caneschi(37) showed that there may not be a 'phase contradiction' 

after all. Frum (3.47), extracting the elastic intermediate 

state, we write 

T:6 	(C407,
_T.  

÷12b 0  /at?) 4- i7t(LA K  'a  ,,_ (3.50) 

  

Putting , and as s oo 

/,, 	 + low-lying cut, 

we have, with P pure imaginary, 

T,R ika_Crok) (3.51) 

which has the sign disagreement with (3.49). If however, for n a,b 

we apply absorptive corrections to the inelastic intermediate amplitudes 

according to the Watson formula, (3.9) (neglecting absorption in 

intermediate states). 

T yaw (3.52) 

we obtain (3.49). 

As far as the energy behaviour is concerned, we first show an 

expression for a leading Regge cut derived for a spinless case. A 

Somerfelfl-Watson transform is first taken for the t-channel partial 

wave decomposition of the amplitude: 

C2-"S+i) 
j.o 

1sc0 Pi ( cose) (3.53) 

rClik") P, toss)  01:5 
S tri a 

(3.54) 



where the contour c encloses integers along the real axis of the 

J-plane. 

Assuming cuts and poles only exist in the right-half of 

the J-plane, the contour can be deformed as follows frc-c 	zkc-kik 

49. 

re3' 

to obtain 

1(5,6) 

 

Pkc—te60  
STA. 

 

PO (—cos0) 
o4  T—Cct/G tt‹.  

 

C. is 

+ left-hand contour integral 	(3.55) 

I C 
/5(4.0 So e 

8-47 

 

ci(C) 

( 5  
S C 0%. Cr 0C 

1(011  doc 
(3.56) 

 

Fbr a leading order Mandelstan cut near or c  

Tc.;,-e) 	17C-t) 	 (3.57) 

giving an asymptotic cut contribution : 

5 \ f c4
.
)  rqt) 50)  -r-,,E)-v 	( ,L5)) (3.58) 
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An expression similar to (3.58) is shown in Moriarty
,s
(38) 

thesis for the absorption model, using spinless particles in the impact 

parameter representation; 

Thus the evidence seems to indicate that the absorption 

ucdel does indeed lead to a cut in the J-::plane. 



   

APPLICATION OF THE REGGEIZED ABSORRLIONMODEL 

TO 0 1/21-  HYPERCHARGE-EXCHANGE REACTIONS.  

51. 

 

fbi a./ Di. 

  

    

    

       

4.1 	Discussion of Results.  

In this section, we apply the Reggeized U(6) 0 U(6) 0 0(3) 

absorption model to the 0-1/2+  hypercharge-exchange reactions(28) 

147\ (1°) 

(ii) TIp -4 K ° A 

rr -- 

(iv) iCy. 	° 

(v) p 

(vi) V - t 

The model, as applied to these reactions, consisted of 

the Reggeized U(6) 0 U(6) 0 0(3) pole term as developed in Chapter 2, 

to which was added the absorptive corrections as .shown in chapter 3. 

In the above reactions,' we have both 0890)/1 "S.P:z 	,odd-signature1 

and KN(1420)r-S
P+ 

,even-signature J exchanges, neither 

of which can be isolated in a single reaction due to the absence of 

G-parity. Hence, we cannot determine the parameters for a given trajectory 

separately from the other. Thus we chose the reaction with the best 

statistics in the differential cross-section data over a wide range of 

energy and carried out a 	minimization using MINUITS (CERN Program 
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Library No: D506) to fit the theoretical pole + cut differential cross-

section to the experimental data and so determine the parameters. The 

reaction chosen was r ii -r  1{ ° `/° E n `r j OA (i.)3 where the Y°  

includes both A's and 1 's as the resolution of the experiment 

was not sufficient to differentiate these. The parameters determined 

in this way were Ag , 04 , 	, ac and c 	. oeo  and a-04 ► p 

were fixed by the knowledge of the values of d, , 	, a." and ctz 

respectively and the constraint that the K(890) and KN(1420) trajectories 

must pass through their respective poles. This latter condition was 

imposed using equation (2.87). Pair-wise equal mass kinematics were used 

in the calculation with 1,N.= 1.15-6.42, the average mass of the + 

octet, and tk= 0,42 GA Vic, the average mass of the 0 noAet. 

The SU(3) D- and F-type couplings used in this analysis are 

shown in Table 1, and the elastic scattering absorption coefficients as 

determined by equations (3.34) and (3.38) are shown in Table 2 (Since 

no differential cross-section data exists for Kn elastic scattering 

(required to determineIl ), Kp elastic scattering coefficients are used). 

In Table 3, the results of the minimization for the parameters of the 

trajectories are given. 

As stated before, Fig.l displays diagramatically the scattering 

amplitude in its components specified by equation (3.11). Fig.2 shows 

the Chew-Frautschi plot for the K(890) and KN(1420) trajectories. The 

trajectories turn out to be almost degenerate although this was not imposed 

as a condition. This agrees with the absorption models discussed later, 

although they use the strong form of exchange degeneracy which was found 

not to be valid in our rase (Table 3 shows j(se. )=-1A4.4 1 ). 



We will now discuss the results of each reaction 

separately and after in Section 4.2, compare our model with others 

applied to 071/2+  hypercharge-exchange. 

(i) 7p ± E°A(E°) 

As stated earlier in this section, the mass resolution 

of the recoil hyperon in this experiment was such that the /1 and 

could not be distinguished. Since, in principle, these are distinguishable 

reactions: 

. \ 	0.1 
64dre  n-- 	eliCi."9.1 rjrr 	

) (1 
f 

(4.1) 

Using this condition, we minimized on the data, to get the momentum 

transfer distributions shown in Fig.3. The s- and t-dependence are 

extremely well represented. 

Having determined the Regge parameters, we calculated the 

following reactions and compared the predictions with experiment. 

(ii) w-p K°A.  

Differential cross-section data for this process exists at 

7.91 GeV/c. Figures 4, 5 and 6 illustrate the momentum transfer 

distributions obtained with the various possible exchanges using the 

parameterization determined using (i). The 4890) + KN(1420)) 'pole + 

cut' distribution forms a good representation of the data. All three 

figures show the various pole, cut, and 'pole+cut' distributions, the 

last formed ftosu the destructive interference of the first two. 

53. 
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In detail, we see that in Fig.4, the pole graph has 

a nonsenqp zero, caused by i(e."-: 0 , at around EX ̂0.35-(6e1Q2  

' The cut has a kinematic dip slightly further in at tz -0.3 (GeV/c)2. 

Fig.5 displays the KN(1420) contribution . Here we have no nonsense 

zeros or dips as Ody =0 is a right-signature point. Fig. 6 in/ 

shows the K'(890) + KN(1420) contribution which is canpared with 

experiment. The data exhibits a daminance of the non-flip amplitude 

in the forward direction, and this is correctly reproduced by our 

model. 

Similarly figures 7,8, and 9 show the contributions to the 

Polarization for irroiriel at 6 GeV/c. As expected, all pole 

contributions are zero, and for the ii(890) exchange, the cut graph 

has a dip in approximately the same place as the cut contribution to 

the differential cross-section. Hence, we get a corresponding dip 

in the 'pole+cut' graph. 

Fig.9 shows the 'pole+cut' contribution for(4890) + KN(1420),) 

exchanges canpared with experiment. Agreement Is obtained for itl 

< 0.3 (GeV/c)2, but we fail to obtain the turnover required to get 

the negative polarization at t -0.35 (GeV/c)2. We notice that we 

have K(890) daminance in the 'pole+cut' graph. 

(iii) 	Kn + TrA. 

The theoretical prediction for the differential cross section 

for this reaction is plotted against the experimental data at 4.25 GeV/c(45)  

in Fig.10 . The normalization in the forward direction is reproduced, but 

the theory predicts too much scattering for large t. 
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In Fig.11 the theoretical and experimental polarizations(45)  

compared. The theory does not represent the data. 

(iv) Kn -4- TT Eo.  

Fig. 12 shows a comparison of the recent data(45)  on the 

differential cross section for this reaction at 4.25 GeV/c with the 

prediction of this model. The agreement is most encouraging. Both 

the forward normalization and the t-dependence are well reproduced. 

The polarization distribution for which no data exists at 

present is shown in Fig.13. 

n
tp 	E+ (v)  

The high energy experimental data on da/dt for this reaction 

9 ) has been measured by two experimental groups (8,  . In Fig.14 the 

results of our calculations are compared with the data of Ref.8. Both 

the normalization and t-dependence of the model are consistent 

with the data. A plot of thermanentum-transfer distributions and the 

corresponding experimental data of Ref.9 is shown in Fig.15. We observe 

that in this case we do not obtain the correct normalization. The right 

t-dependence is obtained out to about t = -.4(G6V/c)2, but beyond 

this there appears to be some structure which is not reproduced by our 

model. Since much of this data is at low energy, and this structure 

is not present at the highest available energy, we do not take this 

disagreement in t-dependence too seriously. 

In Fig. 16, 17, 18 the polarization predictions are compared 

9,10).  with the available data"' 	Fig. 16 and 18 show that the 
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polarization is small and negative for Iti< .3 . However, between 

t = -.3 and t = -.5 the data shows a dramatic change to a large 

positive value of about .7 at all energies, and this persists to 

• larger values of t. Our model correctly reproduces the polarization 

for It) < .3, which corresponds to the forward peak region in the 

differential cross-section but beyond this the model fails. 

(vi) 	K7p i Tr E+. 

Our prediction Of the differential cross section for this 

reaction is compared with the available experimental data (.46, 47) in 

Fig.19. As in the previous reaction, (v), we fail to obtain the 

correct normalization, although the t-dependence is reasonable. Since 

reactions (v) and (vi) are related by charge conjugation at the meson 

vertex, the K (890) contribution simply changes sign from one reaction 
* 

to the other. However, the K (890) residue is approximately twice 

the Km(1420) residue and therefore this change in sign produces little 

difference in the forward normalizations of these two reactions, and 
d 0- r r 

in the forward direction 	."-r 7  n 	) 	Lq-91rfg.)experirrentally 

Fig. 20 shows the prediction for the polarization of reaction (vi) at 

8.0 GeV/c. The only data existing for this is at 3 GeV/c. This data 

has the opposite sign to our prediction. 

As explained circa equation (3.15), in the numerical work 

involving the partial-wave expansion, a finite number of partial-waves 

was employed. 20 were used together with a 48-point Gaussian 

quadrature for the numerical integration. This was checked using 

30-partial waves together with a 512-point Gaussian quadrature. The 

results did not alter significantly. 
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4.2 	Other phenomenological models applied to 0 1/2  ypercharge-

exchange reactions.  

We feel that within the limitations and restrictions of 

our model, the agreement with experiment is satisfactory except for 

1/ the polarizations of Tr-r'0(°/1 	P(r1.. ---OR-4 and ri t'r> ri 1-1-+  

for I 	0.3(6-2.02.-  These crossover effects have been obtained 

in 3 other models, but in 2 this is a somewhat artificial effect. 

We shall now discuss these models in detail. 

A previous model was that of Reeder and Sarma(39), who used 

a pure Regge pole model with SU(3) symmetry for the residues. As 

this symmetry is not large enough to relate the F/D ratios for K*(890) 

and KN(1420) exchanges, these were left free and not related by SU(6) 

as in our model. In fact, the SU(6) relations were not verified 

by Reeder and Sarnia. The detailed breakdown of the model was as 

follows. They had 17 free parameters of which 8 were residue ones 

corresponding to vector and tensor exchanges in the non-flip and flip 

amplitudes of the A and 
	

reactions; 4 were the 'so-called' scale 

parameters for vector and tensor exchanges and flip and non-flip amplitudes; 

4 were the F/D ratio parameters for vector and tensor exchanges in the 

flip and non-flip amplitudes; and finally, a 'crossover' parameter 

in the form ( ifL  . Their trajectories were not varied, but obtained .) 

from those of the 	and A2  determined in 0 1/2+  charge-exchange 

scattering by breaking SU(3) symmetry. They just displaced them to make 
* 

them pass through the K (890) and KN(1420) poles expectively. However, 

the K
* 
 (890) trajectory was linear while the KN(1420) one was 

quadratic. Of course, with this number of parameters they could not 

help, but be reasonably successful in explaining the data. 
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The other two models were both Reggeized absorption 

models and were published after our work. They were both constructed 

. using non-flat Panerons in the cut, and were specifically constructed 

to explain polarizations, mentioned in the first paragraph. 

The first model was that of Krzywicki and Than Thanh Van(40), 

who used both strong exchange degeneracy for their trajectories and 

a non-flat Paneron of slope 0.4 (GeV/c) 2. Absorptive corrections were 

introduced using an impact parameter representation, but their model 

was rather limited in the sense that they just tried to predict one 

polarization given another. In fact, they considered just four 

reactions. They fitted the 3 GeV/6 polarization data, including the 

cross-oven of /1-7 	Pr°/1 and 11-4T 	
FAIf< 

4-  f  and from this, 

they predicted the reactions which have the same SU(3) couplings, 

but the sign of the vector contribution reversed,Kn->e/1 and 

Kp--)(TIt with considerable success. 

A more complete analysis was carried out by Myers, Noirot, 

Rimpault and Salin (41), who again used strong exchange degeneracy 

for the K (890) and KN(1420) trajectories, but this time the Pomeron 

had a shallower slop of 0.28 (GeV/6)-2. They had essentially one 

free parameter, which was a SU(3) mixing one in the B invariant amplitude. 

However, an interesting feature of their model that they chose their B 

to be crossing symmetric as the antisymmetric solution gave too large a 

non-flip amplitude. Hence, an extra (s-u) factor was required external to t 

B. 

Meyers et. al successfully fitted the differential cross-section 

data of the 6 reactions named in (4.1) and ICA.-i› rru 	and fr.() 

and also successfully explained the experimental fact 



vfz÷) 2 dt. 	r  
(4.2) 
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which is difficult to obtain for exchange-degenerate trajectories 

without cuts. FLQU these differential cross-sections, they 

successfully predicted the polarizations for ii-f --,X°Aat 3.1 GeV/c, 

and rr4-to —4,414-f! between 3 ci•A 7614, but failed for 

14'n. 	at 	3.1 and 4.25 GeV/c, where a non-existent 

crossover is predicted. 

4.3 	Conclusion. 

We feel that the great virtue of our model is that we have 

a large enough symmetry scheme to relate all non-exotic two-body meson 

baryon scattering processes and also that the integration involved in the 

absorptive corrections is carried out numerically. This latter point 

means that we can avoid approximating such functions as the /7-function 

or trignametric functions, which are not expressible as polynomials 

or exponentials, in the Fourier-Bessel transform so as to do this 

integral analytically. The P -function and trignametric functions, 

as appearing in the Regge formalism, are an essential part of the physics. 

However, largely from 'hindsight', we are able to make 

several suggestions for the improvement of this model. Firstly, 

the diagrams show that a considerable relative normalization problem 

may exist, in spite of the fact that normalization errors in the data, 

typically of the order of 20-30% (e.g. as shown in Figs. 14 and 15) 

are present. This normalization problem may be related to the fact that 
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considerable difficulties are known to exist in the determination 

of the AKN and KN coupling constants and their agreement with 

SU(6) symmetry. However, SU(6) seemed to work well for K*  (890) 

exchange in the U(6,6) absorptive peripheral model as applied to 

photoproduction reactions, but not in the Reader and &anima's analysis of 071/2+  

hypercharge-exchange reactions. Also the KN(1420) remains largely an 

unknown quantity, so a considerable amount of work needs to be carried 

out in this field. 

Secondly, we put the final state absorption parameters 

equal to the initial state ones as no elastic scattering data exists for 

+ K+ 5.1 elastic scattering etc. Obviously, resolution of this questionable 

solution must await data. 

Thirdly, the use of unequal mass kinematics may have been 

important. This was certainly the case in the Reggeized U(6) 0 U(6) 0 0(3) 

absorption model as applied, using the vector daninance model, toir->ii-r. 

In the differential cross-sections, the forward turnover was due completely 

to the unequal mass kinematics. 

Finally, as discussed before, a Gaussian using a bravelling.woul 

pole could have been used. 



6 1 . 

Reaction Baryon vertex  Meson   vertex 
p 	. 

* 
K (890) and KN(1420) KN (1420) 

* 
K (890) 

D + F F D--type F-type 

n p t leA 

0„,0 
IT p + .A c. 

Kn 4- .1rA 

K7n 4- irE° - 

+ 	+ + 7rp+KE 

Kp .. TrE
-1- 

-V3 

1 
5 

-V3 

1 

V2 
5 

12 
5 

43 

-1 

-V3 

1 

-V2 

-12 

i 

V2 

V2 

12 

V2 

12 

. /2 

-12 

-12 

/2 

V2 

-V2 

./2 

TABLE 1.  

D and F couplings. 
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. 

Channel vt1 
Plab 

. 
(GeV)* ci 

+ 
Trp 3.00 .27 .89 

3.25 .27 .87 
4.00 .27 .84 
5.05 . 	.27 .82 
5.40 .27 .81 
7.00 .27 .79 

Tr p 6.00 .26 .79 
7.91 .26 .76 

- 	8.00 .26 .76 
10.00 .26 .74 
11.20 .26 .73 

• . 

Kp 3.50 .26 .79 
4.07 .26 .78 
4.25 .26 .77 
5.47 .26 .73 

TABLE 2.  

Absorption coefficients. 
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I 

Trajectory K (890) KN(1420) 

a
o - 0.829 - 0.984 

al 

a2(GeV/c) 
-2 

1.098 

0.840 

1.177 

0.761 

13 (GeV/c)-1  - 7.162 4.712 

No. of data points 76 

X
2 65 

TABLE 3.  

Regge parameters. 
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FIGURE CAPTIONS  

Figure 1. 	The pole + cut diagram. 

Figure 2. 	Plot of e<(t) against t for the K*  (890) trajectory (—) 

and the KN  (1420) trajectory (------) . Parameters from Table 3. 

Figure 3. 	Differential cross section for IT p --)IN(2.9) . 

Data from ref. 42. 

Figure 4. 	Contributions fran the pole (----) , cut ( 

and pole + cut (---) to the differential cross-section for 

ttp 	K°A using only the Klc  (890) exchange with parameters 

fran Table 3. 

Figure .5. 	Contributions from the pole (-----) , cut 

and pole + cut (—) to the differential cross-section for 

rrp --) 	using only the KN(1420) exchange with parametPrs 

fran Table 3. 

Figure 6. 	Contributions from _the pole (----) , cut 	, and 

pole + cut 	to the differential cross-section for 

crp 	using the K*  (890) + EN  (1420) exchanges with 

parameters fran Table 3. Data from Ref .43. 

'Figure 7. 	Contributions fran the pole (---) , cut 

and pole + cut () to the polarization for i-rp -3K°4 

using only the K (890) exchange with parameters fran 

Table 3. 



Figure 8. 	Contributions from the pole (---), cut (— - — -) 

and pole + cut (—) to the polarization for TIP --)K°4 

using only the Ki'i(1420) exchange with parameters fran 

Table 3. 	. 

Figure 9. 	Contributions fran the pole (---), cut (— — -), 

and pole + cut (—) to the polarization for rtp --31<°/) 

using the K* (890) + KN(1420) exchanges with pgrameters 

fran Table 3. Data fran ref. 44. 

Figure 10. Differential cross-section for Kn->nA . Data 

fran Ref.45. 

Figure 11. Polarization for Kn n-1 . Data fran ref.45. 

Figure 12. Differential cross-section for Kn->ir-e. 

Data fran ref .45. 

Figure 13. Polarization for Kn 

Figure 14. Differential cross-section for rr+p 	++ . 

Data fran ref.8. 

• Figure 15. Differential cross-section for n±p-)K+1+. 

Data fran ref. 9. 

Figure 16. Polarization for fr+p K+1+. Data fran ref.l0. 

Figure 17. + + Polarization for Tip -)K1 . Data frcm ref.8. 

65. 
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Figure 18. Polarization for a p --)K++  . Data from ref.9. 

Figure 19. Differential cross-section for Kp---) 

Data fruit refs. 46 and 47. 

Figure 20. Polarization for Kp 
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CHAPTER 5 	DUALITY, EXCHANGE-DEGE\TERACY AND VENEZIANO MOD'F'TS 

5.1 	Duality and the Veneziano Model 

It is generally believed that at low energies, the forward 

scattering cross-sections are dominated by s-channel resonances. This 

arises as at these low energies, cross-sections indicate peaks and dips 

which are readily explained by using a resonance saturation within 

either a fixed t-dispersion relation or a partial-wave expansion. The 

non-resonating background is of course neglected. However, as explained 

in Chapter 1, at higher energies and small momentum transfers, the 

forward scattering amplitudes are believed to be daninated by poles (to 

obtain the correct s-dependence, the poles must be Regge poles) in the 

crossed channel, neglecting the background integral and, at first, cuts 

in the t-channel. This latter fact is shown, for instance, inifl;-17°A. 

where there are no non-exotic u-channel exchanges and so no backward 

peak. Vice versa, Arp- Trtt-has no t-channel exchanges and so no 

forwardpeak(1)  

An obvious advantage would be to find same sort of continuity 

between the two and this is provided by duality, which leads into the 

Veneziano model with its equivalence of infinite sets of s-channel 

resonances and t-channel Regge poles. 

The concept of duality can be shown easily within the concept 

of finite energy sum rules auu048)  . Suppose, for example, that the 

amplitudes -1. Cv 	4- (-) means that the amplitude is even (odd) 

under s r'"->1.1 crossing and 1, =. 	J satisfy fixed t dispersion 

relations : 



e(iCE) 	
(5.4) 

" 1 

• ± 	i 4  
1 cy)6- 	

" 
) 	- 	of v' 	TC vre- 	y-t v 5.1) f 

 

where the integral has poles for 0G v iG Ve  and continuum 
contributions for v' 2 44._  where 	1.- 1*.  is the threshold. Again, 

assume that for some 14 	, Tici t.) can be written as an 

expansion of t-channel Regge poles 

1 v I7 1,1  

C— bet. 	o(• 

(5.2) 

DefiningAd C'  .) 6) 	 ) 	(); Qthe dispersion relation for this 

difference vanishes for 114 > .1/1  as does the integrand for Iv 'I> v . 

r Yr 
For 	> vr 	expanding the integral in powers of L --17; I for 

acIlfr) leads to the FESR: 

_c 1,1  
citv 	r_ 	icy, 	= 	v Y 19‘ is* gtvi t) 

0 	 d 	 (5.3) 

where n is even (odd) for T(T4-). Carrying out the integral on the 

right-hand side of (5:3) leads to : 

88. 

vi 

Jo eivv 

Hence, as the left-hand side is saturated with low-energy s-channel 

resonances while the right-hand side just has t-channel Regge poles, we 

have the concept of 'global duality'. The unknown here is -1,e,  , the 

point at which the amplitude beccres 'Regge-like'. 



77+ (5.6) 

rQc s 	 \ 
*Z_ 3- 	- co) 

(5.7) 5=o 

simultaneously i.e. 

&Cs, 
r oak) -I-5 	 - -1 

-5-  ) 	.4.(s) 
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Of course, this concept can be shown the other way round. We 

can take t-channel Regge poles, partial-wave analyse them and then plot 

the partial-waves in the complex plane(49). These are typically in the 

form of circles so that at one point, we obtain a peak In:T;04;where 

is the s-channel partial-wave amplitude. This is just what is expected 

from an s-channel resonance. 

An even closer correspondence between direct channel resonances 

and cross-channel Regge poles comes fran 'local duality'(50)  where the 

infinite set of poles coming fioutthe partial-wave analysis of s-channel 
as t) 

resonances may give a Regge behaviour S 	. The converse also applies. 

The Veneziano model has the features of both global and local 

duality, crossing symmetry; analyticity in s, t, and u, and the inclusion 

of poles ficxuall contributing channels. Invoking the idea of duality 

enables us to look at the model as either an infinite set of t-channel 

Regge poles or an infinite set of s-channel resonances. 

This can be seen as a typical meson-meson scattering Veneziano 

amplitude consists of Euler functions of the form, for the s and t 

channels 

J 

L,...„, 
Pc-occo)P6-c4(0) 

8(5,0 = rc—cus)—a(,te)) (5.5) 

A similar expression exists for any two channels.(5.5) can be expanded, 

in terms of either s-channel poles or t-channel poles, but not both 



so showing the equivalence of an infinite set of s-channel poles and 

an infinite set of t-channel poles. (5.6) and (5.7) show that each 

infinite set consists of the rArent and its daughters, all spaced by 

one unit of angular momentum. 

In the Veneziano model which we will construct in Chapter 6 

for KN and KN charge-exchange scattering, we take the asymptotic 

Reggeized U(6,6) model for 0 111-  charge-exchange scattering in the 

forward peripheral region and obtain a Veneziano formula which agrees 

with this to leading order in s (center of mass energy squared). Tb 

this form for the pole graph, we add absoLp 	ive corrections as described 

in Chapter 3. These are still necessary with the Veneziano formalism as: 

a) In the asymptotic limit of s-oo, we still obtain a Regge 

formalism with all its inherent difficulties. 

b) Nonsense zeros are still present in the pole graph, and 

these must be filled in. 

c) The first daughter of the f0, for example, the /a', lies one 

unit of angular momentum down in the Veneziano model(51). 

However, when the 	is used as a phenomenological cut, for 

example in TrN charge-exchange scattering, it turns out to be 

about half of a unit of angular momentum down. 

The absorptive corrections of Chapter 3 may be regarded as 

'duality-preserving'(52)  in the sense that as the real Gaussian para-

meterization of the elastic scattering is equivalent to a fixed pole 

exchange of spin 1 (equation 3.35b). The amplitudes predicted to be 

real by the absence of non-exotic s-channels (e.g. en•->K°p) remain 

real after the addition of absorptive corrections. Similarly, those 

90. 
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predicted to be camplex bydnality, remain camplex. However, the 

introduction of absorptive corrections in the t-channel destroys the 

crossing symmetry in the cut terms, but of course it still remains 

in the pole term. 

fro,&AAs 
The retention of the Veneziano form for the pole tern bimE one 

obvious problem. This is that the amplitude diverges at the s-channel 

resonances as we are above threshold in the s-channel. A remedy for 

this, which also agrees with unitarity, is to introduce an imaginary 

part into the s-channel fermion trajectories above threshold. As shown 

in Chapter 6, this is done in such a way as to give each resonance 

approximately the correct total width. However, the introduction of an 

imaginary part has the following difficulties : 

a) 	The signature in the t-channel becanes Fe-x-rEGLrl° (̀5)/S-Crr)°±3 
oat) 3  

instead of 	(53) and so moves dips away from the 

nonsense points with resulting charges in the differential cross-

sections. 

b) The imaginary part gives all resonances at the same.  mass, the 

same total width(48), but partial wave analysis gives the 

daughters very different elastic widths from the parent. 

c) Crossing symmetry is upset. 

However, we will see that for the fermion trajectories used 

in the problem, the imaginary parts are small and we also do not have 

the explicit signature. Hence, we still use the Veneziano form with an 

imaginary part intx(s) in an effort to get a model valid for a wide 

range of s and t. 
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5.2 	Regge Trajectories in the Veneziano Mbdel  

It has long been known that within the context of the Veneziano 

.model that the real part of the Regge trajectories must be taken to be 

linear with the slope independent of the trajectory and the channel 

although the intercepts may be different. This violates the predictions 

of both potential and perturbation theory as discussed in section 2.7. 
Col.

"5 Also in the limit of real linear trajectories, 	 

	

r c 	,.(5d 	 5 
 

if s is real as we obtain infinitely many poles in taking this limit and 

so the limit is unattainable. However, as mentioned in 5.1, this is 

overcame with complex trajectories. 

After making these criticisms, we will now discuss why, for real 

trajectories, it is necessary to make them linear with a common slope. 

As we have only introduced an imaginary part above threshold in one 

channel, we shall just note where this modifies the conclusions. There 

are three reasons, other than the many Regge pole fits, which have been 

successful in using linear trajectories, which indicate that the adoption 

of a linear parameterization may be sensible : 

a) The Chew-Frautschi plots, which indicate, particularly in the 

case of fermions, that trajectories are linear(4). 

b) If we take a dispersion relation with two subtractions for the 

trajectory : 
ao 

AcC5) 	cts 	+ S
Z  

 ac S /  
rr 	So  (Y-5) c s')'- 	(5.8) 

(54) --L). S 4- 	for real trajectories 	. 

c) As seen fran (5.4), global duality indicates a sum over Regge 

poles in the crossed channel. If one uses (5.4) within a 
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bootstrap scheme, this can be saturated with a /0 for Trr+74) and get 

olk.mo at a point consistent with that required for rrN charge-

exchange scattering. However, if more and more resonances (e.g. g)are 

included in the left-hand side of (5.4), the bootstrap stability 

is upset and one trajectory cannot sustain itself. This is 

rescued by Schmid's Partial-Wave projections of Regge exchanges 
KOlLLPc .. 

which circle as the energy increases
N
more resonances. These can 

be identified as daughters of spacing d J = 2 and in order to 

get good results they must be linear and parallel to the parent(55). 

The introduction of the imaginary part to the s-channel trajectory 

only affects b) and c). The introduction of a linear imaginary part to 

(5.8) just bootstraps itself i.e. we get a linear imaginary part out to 

leading order, while the imaginary part implies the resonances in the low 

energy part for (c) have a finite width. 

Having established the linearity of trajectories, it has to be 

shown that they have a common slope. There are five indications of this : 

LW(1. I►A a) For a typical spinless Veneziano amplitude '  L-a'-b) 	
, 

or else as s or t----)00 in the physical region with the scattering 

angle fixed and within a certain region, this diverges(56). 

b) In certain reactions, such as rrNcharge-exchange scattering, 

signature is impossible in such models as Igi's(57)  unless 

trajectories have a linear common slope. 

c) Wagner(58) showed that if we expand the amplitude in a series of 

poles as in equation (5.6), and assume the positivity of the partial-
oat)4--T).  / 

wave projections of 	7S J and a universal slope, no ghosts 

(particles of negative decay width) exist. 
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d) Applying the Adler self-consistency' condition to 117+A -7,18-FC 

i.e. Fr% - 1-7 	whereli7trix = 0 4. Veneziano amplitude 

= 0 which happens at a pole in the denominator of the Euler 

functions. If the assumption of linear trajectories is now 

made, consistency implies a universal slope(59). 

e) TO avoid infinitely degenerate levels, the slope must be 

universal (60)  

Of course, with the introduction of a linear imaginary part 

to one trajectory above threshold, all except b) are rigourously upset. 

However, in the region of scattering that we consider, t is small so 

problem a) never arises as we do not have an (s,u) term present. 

5.3 	Exchange Degeneracy in K N andWN ScattPrin  

In connection With the general discussion on the Veneziano 

model, we must discuss the idea of strong exchange (or signature) 

degeneracy of Regge poles. As we will apply our model told N andb(N 

processes, we will discuss exchange degeneracy specifically in the 

context of these. In these processes, one channel has exotic exchanges. 

However, as the existence of these are not definitely established, we 

assume no exchange exists in such a channel. 

Fran potential theory, it is known that both ordinary and 

exchange forces exist between scattering particles leading to even and 

odd signature trajectories in the crossed channels(22). The breaking 

up into even and odd amplitudes is made necessary to avoid violating 

the Somerfeld-Watson transform i.e. alternately exponential increasing 

and decreasing in different parts of the complex e -plane and also the 

destruction of unitarity except for real e. Considering just spinless 



particles, before reggeization, potential theory gives: 
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(v.) T ea.) re  (z)4, re(-?)] 

 

2. 

 

(5.9) 

 

 

where Todd is generated by the potential VPdd  = ordinary - exchange 

and only has odd e values physical which in turn implies odd signature 

trajectories. A similar argument exists for  ven. Now one assumes 

that in the relativistic case that these forces for a given channel 

are built up of intermediate states in other channels. We use the 

convention that the s- and t-channel intermediate states generate 

direct forces while those associated with the u-channel generate 

exchange forces for forward scattering. 

If we discuss RN charge-exchange scattering, the comments of 

the first paragraph implies no u-channel exchange which in turn implies 

that the forces governing this scattering in the near forward scattering 

are direct. Hence, both even and odd angular marentum values are 
b„,,, 	s• 

physical so we Nersignature6  Thus the t-channel meson trajectories 

are exchange degenerate, and similar arguments dhow that the s-channel 

fermion trajectories are also exchange degenerate. Similar arguments 

apply to en 

Lastly, we can use the assumption of dmlity together with the 

absence of resonances in a given channel to obtain the sign between the 

exchange degenerate t-Channel exchanges(48). Thus, for forward scattering, 

this will either give a real amplitude or a complex one with t-dependent 

phases. Duality implies that an imaginary part as shown by resonances 

at low and medium energies, goes along with an imaginary part at high 

energies. Therefore, RN charge-exchange scattering has an imaginary 

part for t-channel exchanges which implies that we have the addition of 

the ie and A2. Similarly, KN charge-exchange scattering is almost 
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completely real so we have the cancellation of imaginary parts. 

5.4 	Veneziano Models for Meson-Meson Scattering 

As mentioned in 5.1, these models have to exhibit duality, 

analyticity, crossing symmetry etc. and can be applied in its most 

simple form to pseudoscalar meson-meson scattering where only one spin-

state exists. The Regge trajectories are here chosen in three exchange- 

degenerate sets according to the number of strange quarks which their 
(61) 

constituent particles contain 	• This is carried on into the case 

of meson-baryon scattering. The sets are : 

) e; 	 and (..0 where the f*  is often identified with the Pt. 

b) K (890) and Ku  (1420) 

c) and f! 

These are well verified by Chew-Frautschi plots. 

The grouping is done in this way to comply with the requirements 

of various processes. To obtain (a), the first step is that the 

+ + 
absence of a non-exotic u-channel in IT implies 

r 
 -f°  exchange 

degeneracy(50). Then it is noticed that for elastic KK scattering, the 

s-channel is exotic and as the Ii= 0,1 are separately constructed fran 

the Is  = 0,1, we get L.)-rand(Y-112exchange degeneracy. b) is implied 

by the absence of an I = 3 exotic exchange in nrK elastic scattering(50,62) 

while c) comes straight fran Arnold's exchange degeneracy scheme 

The generalized Veneziano formulae for meson-imeson scattering 

are : 

P 	.(0) P  (IV - aC(E) 

F Cc-Gus) —t4 (e)) 

 

IV:a R=N (5.10) 
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for symmetry in s and t, and 

04 so 	R. 

a-o - 

Nrifrot(0)  170141 -oet0 

PC e-oas)- °do) 

(5.11) 

for antisymmetry in s and t. etc. 

When these are applied to processes, the results have the 

following features : 

a) Agreement with the Adler condition, A(s,t) = 0 at s = 
2 (64) 

given by at(  (1,A1/1) 

b) Good fits to the widths of the mesons 

c) Inability to use higher energy behaviour as the Pomeron has 

to be neglected to avoid the opening of many inelastic channels 

as the energy increases 

d) The I = 0 s-wave has a large effective range and the/0 has 

a large width in agreement with Other rrodels(5°). 

e) In pm—) Tr 4-efT-  at rest, the initial state is a 'So  state 

and so is considered as an 'off-mass shell pion', and so this 

can be treated as a four pion process. The camparison with 

experiment is striking (64). 

5.5 	Extension to Meson-Baryon Scattering 

The first problem encountered here is that linear trajectories 

for fermions imply, by Macdowell symmetry, that parity doubling is 

present. (The introduction of a linear imaginary part does not alter 

this). Explicitly, the MacdOwell symmetry for fermion exchange (11) says 
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that the partial wave of total angular women-4E1J, signature t', and 
parity P, taken at a given values of the total energyVV=trs'is connected 

with the partial wave amplitude of total angular momentum T1, signature-C, 

and parity -P, taken at a given value -IV, by the relation 

T -s  (-Iv) 
(5.12) 

Typically, suppose the fermion exchanges are Reggeized, and consider the 
:r 

pole at c07) 5, in the partial wave 	then, 

f 

Hence, (5.12) implies : 

(5.13) 
- 

(5.14) 

and 

ac p  Cw) 
	

o<-p  C ta) 
	

(5.15) 

As the trajectories used in the Veneziano model are linear in 617 (5.15) 

is always satisfied so the fermion trajectories are automatically parity 

doubled. 

The second thing to be done is to modify Veneziano terms of the 

form r  (Ai-  at (5)) 1 ( /1)-,4(0)  N and R integer, so that the fermion 
r, c 	„co  -701(0) 

trajectories now have poles at odd half-integers. It is also necessary 

'to adjust these constants so that the correct Regge asymptotic behaviour 

is obtained in all amplitudes and in both the forward and backward 

directions, e.g. in 0-4,01- scattering, the invariant amplitudes A 

and B have a different asymptotic behaviour in S. (see for excutyle, 

equation 2.62)). This is obtained very often at the expense of all terms 
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in a given amplitude having poles at all the particles on a given 

trajectory. 

Having established the above facts, we will now give a short 

discussion of previous meson-baryon scattering Veneziano models. These 

have been applied toTiN scattering, Fri>-,retand KN and RN scattering, the 

latter two processes being particularly simple due to the presence of 

an exotic channel. 

In the trN scattering models (65) , subsidiary terms were found to 

be necessary to fit the data. However, the greatest problem arising was 

with the A trajectory which is the sole contributor torr-pbackward 
scattering. Previous Regge-pole fits have shown that there are difficulties 

in obtaining the correct differential cross-section at 110,non-existent dip at 

0414.): -J. and the extrapolation to the pole. With the Veneziano form 

as described by Berger and Fox, these difficulties still remain with the 

added problem of the inability to obtain the n- 11111 coupling constant. 

These difficulties led Miyamural 66)  and Blackmon and Wali(67)  to 

consider Tr-r> V1LYL where the A trajectory does not contribute. Signature 

conditions provide relations between the parameters, but the usual 

condition of taking the asymptotic limit to campare with experiment is 

still used. 

( The last class of models are those for KN soattering53' 65, 68, 69)  

Here, as stated before, one channel is always exotic implying exchange-

degenerate trajectories in a given channel. These models have, in most 

cases, few satellites and are so constructed that the experimental absence 

of parity doublets is used to provide relations between the residues of 

various terms. The remaining parameters are fixed by a variety of methods, 
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ranging fluut the normalization at t = 0 of A'- in Inami's model, the 

elastic widths of resonances in Lovelace's and Igi's, to the use of 

the differential cross-section data in Berger and Fox's. The last 

flared were the only ones to use a full Veneziano formulation in any 

of the differential cross-sections. However, as they used a zero 

width approximation at all times, the Veneziano, as opposed to the 

Regge, formulation could only be used in cases where the fermion 

poles were in the u-channel, e.g. in EN charge-exchange and ep back-

ward scattering. Otherwise, the Regge form with an added Pomeron, if 

necessary, was used. The usual difficulty of correlating K -10-.›k?0, 
Lei, 	0 

and rivc- poccurred. 

All authors, with the exception of Lovelace, used just pole 

terms. Lovelace used the asymptotic form of the Veneziano amplitude 

in an absorptive K-matrix formulation to employ cuts of the form used 

by imperial College and Argonne groups, i.e. choosing nonsense with 

small cuts, and to unitarize the model. However, crossing symmetry is 

completely lost, but considerable success at fitting the data was 

obtained. 



CHAPTER 6. 	A. VENEZIANO MODEL WITH ABSORPTIVE CORRECTIONS 

FOR KN AND KN CHARGE-EXCHANGE SCAFFERING.  

6.1 	The Reggeized U(6,6) Model.  

Previously, the application of models such as the 

Reggeized U(6) 0 U(6) 0 0(3) and the Reggeized U(6,6) models, both 

with absorptive corrections, to E7p 	and en lep have 

been successful at 5 GeV/c and above, but not below this energy, 

particularly in the case of E7 
1-n 4.  Eap (26).  In an effort to improve 

this situation, we take note of the statement in 5.1, that cross-

sections at law energies are dominated by direct channel resonances 

and so construct a Veneziano amplitude which agrees with that of the 

Reggeized U(6,6) to leading order in s when the asymptotic 

form of the Veneziano amplitude is used. However, to do this, we 

must first construct the Reggeized U(6,6) model. 

This model is used in preference to the Reggeized U(6) 0 U(6) 

0 0(3) model, as derived in Chapter 2, as the latter has certain problems 

associatdd with it. This first is that as we have a supermultiplet 

exchange with all possible meson multiplets included and evaluated 'off-

shell', to avoid branch-point at t = 0, we have to add, rather 

artificially in the mode of fermions, a pseudoquark conspiring trajectory. 

The supennultiplet exchange principle gives the correct couplings i.e. 

and (RN), which we expect fran vector and tensor particle 

exchanges, for 071/24---> 0-1/2+  scattering. However, for higher spin scattering 

e.g. 1/24-1/24--Wk+  or photoproduction, we obtain pseudoscalar couplings 

101. 
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(El y5  N) to nucleons as well as the above(76,70)  for even - and 

odd - signature Regge poles, which we identify with trajectories 

of which the A2  and ,prespectively are the lowest members. 

In general, the pseudoscalar coupling (to whatever 

trajectory) leads to serious difficulties. When the invariant M-function 

for high spins is evaluated, we get a factor t associated with this. 

coupling. Reverting to our arguments of chapter 1, when we considered 

1/2-1-1/244  IA+  scattering, we see that now for the unabsorbed amplitude, 

- 	 (6.1) 

for small t. 

However, O r= on' so that as E-." 	 r-A 20 , which 
violates the the conservation of angular momentum. An obvious solution, 

is to multiply the M-function by 	, but this leads to an unusual 

angular dependence for the non-pseudoscalar terms, which makes the 

reproduction of the differential cross-sections difficult. Hence, we 

are led to consider the Reggeized U(6,6) model for near forward scattering. 

Here, we take the U16,6) currents(19)on shell for the external 

particles and saturate with a fixed spin t-channel propagator. We then 

Reggeize the M-function. In the specific case that we consider  

i.e. iN and K charge-exchange scattering, we have both spin 1 and spin 2+  

fixed pole propagators to consider. Hence, we will first construct the 

T-matrix for spin 1 exchange. The invariant 3-pointeffective Lagrangians are 

in the notation of chapter 2: 

/) Tr 
 

"or 
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(a) 	Meson-Meson-Meson Vertex.  

 

, c 
co, 	et , 

(6.2) 

where h. is the coupling constant and 5/7. Pt- 
(6.2) is unique as under charge conjugation, 

EVI:1-5 7 
	

ti Tr [I I  f_E,1-17 	
(6.3) 

where the trace is over U(6,6) indices. 

This comes about as under charge conjugation: 

' 

(cs"I( 5_ Yfi.  ( 	= CY54 (c-94WCoz —  g(6.4) 

Carrying out the U(2,2) 0 SU(3) decomposition as in equation (2.4) 

and retaining only pseudoscalar external mesons, we obtain for (6.2), 

( 14.42)10 ,(1. 
t- 1-14T/ tA T5-)Ts-iF 1,1 (6.5) 

where q'2  is interpreted 'on-shell' and the SU(3) couplings are 

defined equivalently to (2.50) and (2.51) as 



4f-5 1 (PS-) 	E Ck E T YP577 

4 and 
/ ) Lc p 

t..-.8. 

(b) 	Baryon-Baryon-Meson Vertex.  

(6.6) 

(6.7) 

104. 

     

ca6c) r 	--qj6 )7,{  ( P,) 4, (A. 	 r • 	ri 	Cned) 
6 	(6.8) 

where q = -q' and g is the coupling constant. Again, carrying 

out the U(2,2) 0 SU(3) decamposition as in equation (2.15) and 

retaining only the spin k+parts for the baryons, we get, after 

introducing the mass splitting of section (6.5), 

r r 
ceco  IL 

where r' 

Upon evaluation, the kinematics given for 'on-shell', 

a 

4 t-ki2r r (6.10) 

'12 1- )r 7; 4 r` (6.11) 

where M is a mass associated with the exchange. 



Hence, 

105. 

(4-1t-) (147)/04))4.2.1F] 

- 	; -7 i 

(14.11 	) r 	 jr  1tr  c- cid (6.12) 

Defining the spin 1 propagator as in equation (2.34), we construct 

the T-matrix as in equations (2.44) and (2.45) to give 

(14, 	r.pr 

(14-1:2-̀) Cic) ib) r  	L 

cicr4friN)0'41.r 

(6.13) 

where pM  r-wise equal mass kinematics give P. 	P r  = © . 

Hence, following chapter 2, we have for the invariant amplitudes: 

n 	 (s4 	-1-I -t-i)(14.--12)k r- 	
(1.1-1-t901 

p 	t )46.14) 

-- 	L F p 4-1? F 	Ir2:1)( 3 (6.15) 

TO construct the amplitude for spin 2+  exchange, we note 

that the A2  lies in the (6,6,1) multiplet whereas ther,  was in the 

(6,6;0). Hence, the field for the exchanged particle is '  siv(r,)  

and to saturate the extra 0(10 label, we take the currents for the 

vector exchange and multiply them by 'r  as in chapter 2. Thus, we 



.\1( 1***-, 

4- C (4 

are led to the Lagrangionsiwith. -the app. 	priate mass splitting: 

106. 

Meson-Meson-Meson Vertex.  

C 
D 	„) rjY ri 	- 	cr./ 	(6.16)  

Baryon-Baryon-Meson Vertex.  

plziP  17114 	) (4 ,110 
rb‘ L r 	Fi 5 

— 	OF 

0';2PfF k 1 60 
vi (6.17) 

where the D-type coupling in (6.16) comes about as under charge 

conjugation (I co,) 	kv) so we need a coupling of the form 

1/2, Tr DICI,i3 

.The 'saturation factors' 

principle, determined by the observed decay rates of f --317/1" andac3rj 
P' 
)(dm.

. 	
*N. C 	(6.16) and y 1 	in (6.17) 

are chosen as Sharp and Wagner(71) have demonstrated in the concept of 

A2  universality that if the A2  system is strongly coupled to both the 

X is a quantity, which can be, in 

TT and NN systems, 

211.421I. 
YK fij 4, N 

the limit of zero mass, then for coupling constants 

(6.18) 



A , q/9 
) 

2: 
51"104,1  3  

514r ) 5"' 

5r ii  

1r 

(Irr I l'44v / 

(6.20) 

Generalizing to the U(6,6) case, we may write 

_3 A 

( 	t (Pc) Si( (pc A  
hit t  

NN 

107. 

(6.19) 

so giving our saturation factors. 

The spin 2+ propagator is(72): 

In the construction of the invariant amplitudes, pair-wise equal 

mass kinematics are used giving P 	1° I- 	7.1b 	. Applications 

.of the Bargmann-Wigner equations as in (2.13) gives such terms as 

• leaving 

= 

fv- (e3)-(Nced 

v__ lc +42,p  )1Lt.  (54k_ 

rig )][( tiz- )1_ - (14-12--) get. 413_ 	r  



(1448 
E-r-12  
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( 	1p411--- 
	 (6.23) 

Using the mass-splitting of section 6.5, 

)(1 tri"7" (6.24) 

and this, together with the knowledge that the lowest energy we 

consider is S-v6.0(GeV)2 and the largest momentum transfer 

t AO -1.5 (GeV/c)2  gives, 

(6.25) 

Hence, the second term in A can be neglected. 

To Reggeize the invariant amplitudes (6.14), (6.15), 

(6.22) and (6.23), we shall use a method similar to that of chapter 2, 

and in particularly equations (2.54) and (2.55) and the associated 

text. The Gell'Plann 'ghost-killing' mechanism is again used. We first 

see that both the A amplitudes ,, e and the B ones-, SJ-1  , so we 

*use the prescription that 

-3" 	
(6.26) 

and using a Taylor expansion, we have: 



for spin 1 exchange, 

.1•10 

rfz- 
dui 

i=re 

rt 
04 I  fl CI -94) 

(6.27) 

s otrro4t  

109. 

for the Gell'Mann mechanism and linear trajectories. 

 

  

Similarly, for spin 2+  exchange 

P (6.28) 

  

Finally, the signature factors for spin 1 and 2+ exchanges 

1. 
I I 	4I 

—Cfroct 	
j 

) 
are taken to be 	LI— 	and :LCI+ .4a-n9 .-- respectively. As 

explained in chapter 2, these are necessary to remove wrong signature 

poles as required by the presence of exchange forces. 

Hence, combining (6.14) with (6.22) and (6.15) with (6.23) 

and taking common group theoretic masses and exchange degenerate 

trajectories, we have : 

	

N6tt 	4,12  --1 ) - 	IM- 0/0 a's) (i+ -7---1.0)[1 14tr) 	L r 3013F 

LF 	+ 	, 	(14;cadt) 
•-lt-tcc 	 (6.29) 

• g 	L r(i_oe.e) Coca 	1+-1.tJ 	 xt--(2 „.1) 

] f 4- 	L A
V 
 (11- 42:4fiCti 

)(11,„1/4( ti  a I  

(6.30) 

J 



In the application of (6.29) and (6.30) to KN 

and KN charge-exchange scattering,/ 
it 
 , and as explained in 

. section 5.3, strong exchange degeneracy is required. This implies 

that 

110. 

I 

(6.31) 

which is acceptable as X2  cannot be determined from the ratio 

f/rigor as theme branching ratio4 mac largely unknown. r  rr a 

Hence, 

kp  —a> K °h. 

	

441  / 	1 .f/-:4c4  116-,et) (tes) 	1 -t 5- -)[( 14-1 4-  -5(1 +").7 

	

r 	3 	

(6.32) 

Pia  
P-I6 Zs  -5 	(*4  	 Cl-cy La. -n• r  .3 	 (6.33) 

k÷K.--4) tf °p  

1-7,)  cas)6444-,i[04-1-: )- 3  0*-1-V r 	( 6.34) 

)0( /  lailYC(-4t) 	s 	 r  1,  
3 	 - t's 	(6.35) 

These amplitudes are complex for Kp--)ien and real for en----)lep 
as required by duality. 

'411 

= 



Lastly, we have to determine the coupling constants g and 

. h. These are calculated for fixed spin exchange, and as the lowest poles 

on the Regge trajectory are expected to dominate, we leave g and h 

untouched during Reggeization. 

Firstly,to calculate g, we use the Chew-Low EXtrapolation 

which gives: 

 

rr (6.36) 

In the U(6,6) model, we write a 3-point coupling similar 

to (6.8), but for a (56,1;0) - (56,1;0) - pseudoscalar meson interaction: 

I. —4 	cAgc) 	y,r9ct (P)' . 	 c  p 	 r 
3) 	ir • 	0619` 	5-61, (6.37) r 

which reduces to, under U(2,2) @ SU(3) decomposition and mass splitting: 

 

ik:12)(IcY- C  
3 

(6.38) 

 

Taking the O'Ff)  vertex, (6.38) heccmes 

t 	 (6.39) 

In an ordinary space-time theory, the Lagrangian would be : 

c-rrnto C 	e) 
	

(6.40) 



where p , p and if are Dirac fields as in (6.39). On 

canparison 

 

112. 

2. 1.(1-  or 3 	tv (6.41) 

 

h is determined fran the/0-'2Tdecay width as obtained fran the 

Novisibirsk colliding beam experiment(73) 	gip ° 
	+rr - giving 

re„).trt. = 122 MeV for Yty = 0.764 GeV/c2. The decay width is 
determined by: 

       

tfl 

      

       

41r :17
Sf 

/4  
(6.42) 

where if' is the C.M. 3-momentum for the decay products. The factor 

= 	ce for spin averaging 	I . For 3 	, we use 

equation (6.5). Hence, 

16 L-t 	) !Piz 
,trj  (6.43) 

giving 

(6.44) 

I 



6.2 	A Veneziano Extension.  

We have now constructed Regge amplitudes for the high 

energy behaviour of KN and KN charge exchange scattering. In 

converting these into dual amplitudes, we use the form of Inami, 

113. 

and are thlis led to : 

ii ( s ,.) — _ 4  Po-40[7( 3/4 -4 
krt,' 	 Al PC& --.‹,— acs.") 

< 	Pc (--.‹0  riCk -0(5V0) 

4. 	44, PR ---4-< -; ,̀*) 

A 	PC(-.(e- )17( k- -oes°7.) 
"61 PC k-.4 t  -acs'‘,*) g (5KID

k)  

co...Q(0[11,4e  
r Os- 4— cesve7 

(6.45) 

(N+111/1--01-7(k-4 
13, `" 	Pc 

(6.46) 

where numerically, 

A4, - —2.41 (i+  $ )[(14  

x Ci- A')  
11 4, 	A' 	41 

_  

Sa. A  
r 	1 4-/1` 

A' 
/1 4  

4 —20 	1722 
 3 	k (1+ e  ) 	1-'-̀ ) - -L 	t  

2- 
6 

 
1 1

5, 

(6.47) 
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and cq is the exchange degenerate 	t-channel trajectory, ocs  

is the exchange degenerate ffr- 	s-channel trajectory and ots 
YO 

 as-

is the exchange degeneratekt-Ar  s-channel trajectory. In common with 

other authors, we have neglected Arlqc, andio<  1), trajectories 

as experimental analyses show no evidence for their presence. In 

(6.47), 1;: (01','4E,1), X and N are parameters, which are reduced to 

2 independent ones, (..1) and N by the following methods: 

(i) The removal of the xi parity partner on the Y: trajectory 

A Po-a.) rk-wi'01) 
relates X to 00. In fact the amplitude inglit, • A z  
rust be included to remove the above parity doublet, to get the correct 

relation for the removal of the rparity doublet on the Yom  trajectory, 

and to make the amplitude diverge at the /\(1115) pole. This term 
'et-1  

gives the asymptotic behaviour -- fi A  rcr-a ),z.-cq.( -̀  Cd(s) and so 

is a subsidiary term. However, its presence will not upset our required 

asymptotic limit of the Reggeized U(6,6) model, as at the lowest energy 

considered, Si,6 (GeV) 2  44 j 	n4i  

relates 

(ii) The removal of the 	parity partner on the Yo trajectory 

c )to c. ). 
	3+ 

r 4? ) 
The term proportional to LIV-/ is also not present in our 

desired asymptotic limit. To make this negligible, the condition that 

W>2)1, is imposed. The presence of this term is necessary in order to 

obtain the 'correct' behaviour of the Y1 trajectory in the backward 

direction for en K°p. 



1' :•••• 

(6.49) 
Li) 	C;() 
(s,,) l e ts,,) 

115. 

We stated that the parameters were equivalent to the U(6,6) 

factors numerically as, according to Eugler(74), factorization may 

not be true for the Veneziano model. He considered 3 scattering 

processes: 

(i) Orr 	n 0 	

- "[exchange in the t-channel. 

(ii) a 	) 0- 0-- 	- fl or Ai  exchange in the t-channel. 

(iii) 0- —=) cr. 0— 	 f°  exchangedn the t-channel. 

A partial wave projection of the Veneziano formula 

gives for e G 	, 

 

  

(6.48) 

 

cf5 41  Cbs  

 

Hence, for the above scattering interaction, factorization gives: 

implying 	.e.(a) 	.(0) 
	

104 rt 
to) 
	 (6.50) 

As 	ocrfo) 1,0 
1.„, 
	 oC ir  (0) 1  0 	(6.50) implies 

(6.51) 

which is untrue. Thus the conclusions are that either f° decouples 

from (iii) or factorization fails. 



For (6.45) and (6.46), we can obtain the KN charge-exchange 

amplitudes by 5<z:,G,L crossing and time reversal. This is because the 

s-channel k--10-90.1..is the time reversed u-channel of k(4,,(01. . 

Under time reverc1, the helicity amplitudes behave as (using the 

notation of section 2.6): 

\k  I (PC e) / ) A 2.)--" 12T --  1 	 2̀1Pq4-11)1Vi)(6.52) 

where is a phase factor and so can be neglected as it does 

not affect experimental quantities. As we evaluate our amplitudes 

at tfzo 1(6.52) gives 

 

(by parity invariance) 	(6.53) 
(1)1 1 2 4 

3 z.  

 

Now as (6.52) does not affect any of the energies in the s-channel 

helicity amplitude decomposition as given by equations (2.77) and 

(2.78), the amplitudes A and B are invariant. Hence, the amplitudes 

for V4%.--, ler in terms of those for Ar -19-tj(cithy 

cs1LI LA.) aCu. s ) kiti 

- 	8_ cu. 
KN 

(6.54) 

(6.55) 

satisfying our required asymptotic limit. 
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We conclude this section by writing the asymptotic limit 

for Priir 11(c'  backward scattering, which will show the importance 

. of the C-€-i-0 term for the r contribution to B. We must first 

)  remark that for terms such as 	(ci—wt 	, when we take the 
-k-d E--.44.Y 04) 

asymptotic limit for (A- fixed, 5 ->010, we would pass through an 

infinity of poles. Hence, the limit must be taken off the real s- 

axis. Thus, the backward leh.--:),,tr" asymptotic limit is: 	\Gt.! 

A (5161k) 	 ti ai r(-t—atc. ;) 	riCA. ct,(Y.°16)] (0(15 ) (4.
°( 

Kw 	
ic• 

g4  
t 	Y ) Cot s) 	 (6.56). 

(4- 

v 
= p Y6'.) s  c<L, 

8, 	1- 	tt. 
(6.57) 

t44-3 
4- Et3 4 C 	(ct  f 5)ctittVP— 

Nat 

6.3. 	Reqqe Tralectories.  

As we consider only forward scattering in this chapter, both 

t and u are 	0 for the energy range considered. Thus, no 

problems exist with poles in the t and u channel exchanges. Thus we 

can write down the real linear trajectories with a common slope for the 

t and u channel exchanges in 1Cp--)R% and en-.4ep in such a 

way that the first few poles on each trajectory as given by a Chew-

Frautschi plot, lie on the trajectory. Thus the t and u channel 

trajectories are : 

117. 
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e 

/1- 

- I- E e.7jac or/• 

oe 	0 4 4- 0.c(ct 

oC~° =0.67.+   0• qS (4. 

°C u_ 	- 0.33 4. o.eiSCA.  

(6.58) 

(6.59) 

(6.60) 

However, as explained in section 5.2, the s-channel exchanges 

in knc.----> Te°,. have 5 % 5 threshold' so, we 'need an imaginary part to the 

fermion trajectories to give approximately the correct width to the 

resonances and to avoid the divergences. We choose our trajectories 

so that Pt CAsY64) and Pe (cr) are given by 5 	UL crossing fruit (6.59) 

and (6.60) respectively, but the addition of the imaginary part must upset 

the crossing symmetry. Hence, for both the \e]mmi `es-channel 

trajectories, we choose a form above threshold as follows : 

KS 	K a 4 	c oz.s ( 5 -So ) 	 (6.61) 

where dl 7 (9 and 5 a -.-- C)--1,4-.,f )1, the s-channel threshold. 

To construct a simple model for 041.1 we see that near a pole 

at /4(1s) = 	, the partial wave amplitude is of the form: 

(for example, see the Veneziano decomposition in equation (5.6)). 

--r ti 

	r- 05,3- ) 
ti 04s 

,,- 	,T) 
-S— cc, 	.Z 	- 	 (6.62) 



The resonance would have a pole at 

cc. o  + ot.L . 	 (6.63) 

on the real axis. Assuming that the resonance is of a Breit-iligner 

form, at half-width(75): 

c(I 	 0 ) ) °C o 

119. 

— S 

T 
(6.64) 

For the purpose of the model, oer  is determined for each of the first 

few resonances on a given trajectory and then averaged as shown in 

Table 4. Thus, the first few resonances have approximately the 

correct total width. Cambining Table 4 with equations (6.59) and (6.60) 

the s-channel fermion trajectories for Arir› 17(7°,Labove threshold 

are: 

• 4,;.s°-4.- -0.674-0.4S-S 	C.O.OtICS -50) 	(6.65) 

Lg  — 	Eyo.3 ejael 	- 0.33 } 0- cirs 4- C., 0- is-  (5-54) 	(6.66) 

As explained in section (5.1) the introduction of an imaginary 

part to the s-channel trajectories modifies the asymptotic limit. For 

Way, , the limit for fixed t, 5 -1>ap is now: 



120. 

(5 	LA_ 
Knt " 

f76-  cc 	1141(11 t (if.lr, 	4-2- 
4 
 0-i i-c<z-  j 
, 	04' 

- Yc)ce --1  d  1 _04, (ol is)̀(t .... 4 6  ( 1  +. Cctx 	t I  , E-1 
Co1 SI 	e 	(6.67) 

Z 	06( 

PCF-c(e) 
-ZnotL 

12. 	 (5)c4 	°4--1  

YiL  

+2-
_C 

 0  j 
41  14t-i  

Cf 	 (6.68) 
e 	

0 

Expanding factors such as ( 1 4  
Ye°,)rt C.tx.r -- 	by a binamial 

a. 

expansion allows us to recover the desired asymptotic limit to 

first order. However, the real part of this factor remains close 

to unity, but we get a small t-dependent imaginary part. 

6.4 	Removal of parity doublets on the 4 trajectory. 

Taking the case of the azimuthal angle = 0 and using the 

notation of section 2.6, we can define the s-channel helicity amplitudes 

as 

) 405 	 (6.69) 

- 	 (6.70) 

Then, the s-channel partial wave amplitudes with et=,. 	is the 



.../
orbital angular mcmentum ' and definite parity can be written 

as : 

121. 

2 

41 

A (cr.D0) [0(1),(0) p 
(6.71) 

+-) 
cif

ot  ta/9/ Eat,o)(1), (6.72) 

with parity tiL-1./ 	respectively. Combining (6.69), (6.70), 

(6.71) and (6.72) and using equations (3.5) and (3.6) gives: 

(2t 
(6.73) 

J(4., 	re(c0 01-1 Pe00) , R±r.] 

ere [I  + 6 Ctiv-1,.) (6.74) 

and 
	11 	g ( + 

rity 
I) (6.75) 

1.4 
where _ 

 1  
1.1/17= S and 0%, and rA, 	are the 

11_ 1^/ 
.masses of the initial nucleon and meson respectively. 

The Yo  trajectory lies in the Trie-k.  partial wave, and the 

poles on this are defined with the mass W = -m(11) 	. The discussion res. 
of Macdawell symmetry in section 5.5 then puts the parity doublets in 

the 	partial wave with mass V= .- . Ibnce, to remove 



unwanted parity doublets(i.e. ones not appearing in nature), it 

• is necessary to make the residue of (6.73) vanish for the( wave(69). 
e- 

This implies that 

(t.,) ).=. 0 
	

11/ = vet, red 	 (6.76) 

. 	Taking (6.76) and (6.74), the condition for the removal of a Yo parity 

doublet of mass 	is: 

122. 

(6.77) 

6 

There are 2 particles that we want to remove. These are the 

* /1 	(115)k-  particle (3
01
) and the A (1520) 3  particle (P03)  . 

The relations between the parameters in the amplitudes given in 

equations (6.45) and (6.46) obtained from the .1.aiLlval of these are: 

a) 	Elimination of the /1 (1115)k-  particle (S01). 

The term in A and B considered are those containing /7a2  
‘lo  

, as these only have the .e, 	pole. (6.77) gives: 
and 	/1  6, 

— 0_ 7 
(6.78) 



_(14tz4,0)/ini 	44= 

n6, 	 (6.79) 

b) 	
4 

Elimination of the A (1520) 
3 
 particle (P03). 

Y* 3 
The .Z.5 6  = 	pole is contained in the tems 

proportional to n 	/1  R i  and 	/16,  . Hence (6.77) gives 

123. 

Hence neglecting the small imaginary part, 

(6.80) 

The relations between L 	 and (n1 obtained from 

these are given in Table 5. Hence we have specificAlly removed the 

doublets for k r TAF°m , but crossing also removes then from 

. 

6.5 	Discussion of Results.  

The previous part of the chapter was concerned with setting up 

a Veneziano form for the pole graph in the hope that the lower energy 

behaviour of our model would be improved. Absorptive corrections are still 

required as explained in section 5.1, but as they are introduced just in the 

t-channel, as explained in Chapter 3, we destroy crossing symmetry in the cut 

terms. Thus,for the purposes of this model,we are forced to interpret the 



Veneziano contributions to the cut terms just as an infinite set 

of Regge poles. The importance of this inclusion of the daughters 

can be seen fzoiu the fact that the first daughter in the /741  term 

has a larger effect than the subsidiary term 	. 

The absorption coefficients for elastic Kfscattering are 

given in Table 2, but as no elastic leh. scattering data exists, 

elastic scattering absorption coefficients were used for Art---40? 
and these are given in Table 6. 

Fran previous sections, we see that our model is left with 

two free parameters, Wand N. These were determined, as in 

chapter 4, by fitting the 'pole+cut' amplitudes in the differential 

cross-sections to the data using a I,- minimization and MaNUITS. 

The results are displaypd in Figs. 21 to 24. These fits were remarkably 

insensitive to N, when it was chosen such that N >7 1, so N was 

1 chosen as 20. c7.,-/ came out to he 0.0423 so giving a y- of 617 on 101 A 

data points. 

The mass splitting used in determining the U(6,6) factors 

involved in the parameters /14  etc. was 

i.e. 'on-shell' 

m = 	average of kl- Sb(l)octet and -31,SUCAdecuplet = 1.27 GeV/c2. 

= average of 0 Nonet, 1 and 2+  nonets = 0.88 GeV/c2. 

M = average of 1 and 2+  nonets = 1.115 GeV/c2. 

Mi = average of 0 nallet = 0.42 GeV/c2. 

mi r average of 1/24-  octet ='1.15 GeV/c2. 

/A2  = average of thert35 SU(6) multiplets= 0.63 GeV/c2. 
	(6.81) 
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This was motivated as follows. In the coupling constants, 
ri  

with the exception of the kinematic factor 4.4' , 51410 masses 

were used. These were preferred as at the meson vertex, both 0 and 

1 particles are involved and these compose the SU(6)1.35 multipletS. 

Thus, for consistency, we use the SU(6) 56 nultiplet at the baryon 

vertex. The kinematic factor 	k. 	was conveniently 

interpreted in terms of SU(3) masses. 

For masses external to g and. h, the same form of mass 

splitting must exist by consistency, but the meson masses must be 

modified to include an effect from the 2
+ exchange with equal weight 

as the 0 and 1 exchange as we have used exchange degeneracy. 

The figs. 21 toA 24 show that reasonable success was obtained, 

but we still failed to reproduce the low energy normalization for 

k4p..--,115 although this was an improvement over our previous fits 

for this process. As shown by Berger and Fox, the introduction of many 

satellites might solve this problem. The diagrams also show,  that at 

wide angles, the differential cross sections for kr? 	0--- - ri 

were too large whereas those for 144-K.---0?? were too small. This is 

a factor in common with our previous Reggeized absorption models, 

although we are rather better here probably due to the inclusion of other 

channels, so indicating that this is a 'cut' effect. This seems to be 

borne out by figures 21 and 23 which shows that the cut is probably 

too steep in k-r-,WDA and too shallow in Pri-p,--) prof  , so 
giving too little destructive interference in the first case and too 

much in the latter case. We also see that the cut shape is non-flip 

as expected. 
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-2z , 

(6.83) 

/116, = -13g-7) 

Aft 	.3 ( C-QV)" 

The trajectories were : 

("S a f ~ra 11)-2 

(6.84) 

Yd" 
s 	.74 4- 5 

t* 04. 	o- 4 4 5 

0 • 5" 4- -E 

The defects in the 'cut' are not really unexpected as 

this is an essentially high energy parameterization and pure non- 
. 

flip. We expect the flip contribution to give an effect at wider 

angles so its introduction. to the absorption maybe important. 

The comparison of our model with Inami 	, who used a 

similar pole form, but without absorptive corrections, is interesting. 

Our parameters turn out to be : 

/1 4. -2 -64: 4-, 	A p t z zg _ 1 	) 	f a-, .*. 	— J q, I 	L., (..... jc or L 

A 6, 7. --15q-c, 	2-6 	- 6.7Z1 	 .......: (-c 	of: Cc; AO — 2 

Zo. 0 	C(rt V)2 
	

(6.82) 

Those of Inami are 
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cF 

His relations J / 
	

and N were obtained by the requirement 



fi (4—lo -:-) *am% •••• 
• 

43,(110)  
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of removal of the n384nd "1"  daughter, which we did not 

attempt to do because of restrictions on the 2:e term. The 

overall normalization was obtained fran KN and KN total cross 

sections. 

Our model gives a larger Yf term, but a much smaller Yid*  
term than Inami's. We require an increased normalization as we have a 

destructive effect between pole and cut, which of course is not present 

yo in Inami's model so this must be given by the yo  term. The smallness 

of the 	contribution is not unreasonable as if we treat our model as a 

pure phenomenological one, the kt  can be treated as an exchange-degenerate 

f _n t — 	— c..0 trajectory and thus, by using isospin and crossing 

arguments, generate K+p backward scattering amplitudes at high energies 

(where the Pameron contribution would be negligible). Barger(76)  fitted 

this data with aYoj4-  contribution only and neglected the rterm 
by SU(3) and dispersion relation arguments. However, resolution of 
this problem must wait for en elastic backward scattering data. 

Using the same phenomenological argument for a (— 4,— ca,—E 

trajectory being equivalent to 401Lp we can generate the Prrelastic 

scattering amplitude fran that of 14p-i7v, by isospin i.e. for 

pole terms only 

(6.85) 

(6.86) 

where the superscripts define the s-channel isospin terms. (B similar) 



= 	44 	 b- f) Ab47 
/ 	a at_ I  wvi 51.  

Thus we can obtain the low energy resonance properties. 

The first is the coupling constants, for which we have to make the 

questionable assumption of factorization. Assuming that, we have(53) 

(6.87) 

and 
	2 

cr3gs-) 
	 r  LAS  

rr 	 rr 	(13g5.  
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(6.88) 

giving 	ck 2  : 	Li" C 

J j'fCM?5)  = O. 3 C 
/*Tr 

compared with 5.5 and 0.77 respectively for Inami's model. 

The next thing we wish to calculate are the elastic widths 

of the s-channel resonances. Again we use the pole graph contribution 

only. Fran equations (6.69), (6.70), (6.71) and (6.72) 

we can Write : 

F, 
A  I 
r to] - 	 (6.89) 

p (c.$ (9) 5.44,  re* 	r
T- L 
 (ce.56))1 

(6.90) 

st- 
ls.bw the Y 

x,
o  particles lie in 3 Q iwave, and the \i, ones in T.: 

wave. Hence, for large t, the to lies almost entirely in 	while 

the si is in 	. 

Considering a pole at -1-zj on the e-  trajectory 

(6.91) 



For large t, 

( 	c4, ) ti z  PC; t') 
r(k)1704-kj 1. 
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(6.92) 

 

 

where cz is the C.M. momentum at the resonance pole. Again, f.240 _ 
is approximatedby a Breit=Wigner at the pole, giving (77) 

(6.93) 

oi 
where 11 is the elastic width and 

resonance. 

is the total width of the 

p( (0,0) 	t 17(34-,)  (0 (6.94)  
k4ii- 	Vir-  1-7  c j+ 	C 	6..41- - 

Near  the pole, fran equation (6.64); 

1".%. 	^ 5 — 

 

(6.95) 
Ot. 

and 

c 	
tit ;6") P - 47) 

- J s (6.96) 

-Using equations (6.75) gives: 

Co) (e.) ) 	Cc-  - mr)  
icTr Wcett)j'ihra, 	Pti--)- 

  

  

(6.97) 

L ncp) _ 	co 1 	 
C"'"40 J [Icy") 



[tal 16 T 1,,Or, C d r )k 	1-1) 
-Ord EC 14+0) -4.  'if Ca  4)  2) 

(6.99) 

Taking the asymptotic limit for fixed s, t-s.)044 , at the pole 

Y6 	• 

	

ocs  -7=  ) 	with 1%, = 1", (4, (this way round or else we obtain 

. the condition for vanishing .f2): 
• 

r1(0))- 
Ck•y1+ RT*1-  -IN]  (01 V)?  

— 	 Paz' 	' ) 
' 14 rr 	cco)k rcjto 

6,7 

Similarly for the Y.s.widths, 

130. 

(6.98) 

Ct-04,-Iwd 
co 

The widths are displayed in Table 7. They are too small 

in common with Inami's analysis and provide a powerful argument for 

the introduction of satellite terms. 

In conclusion, we can make the following comments: 

a) The arguments for the introduction of satellite. are powerful, 

but not feasible within the restrictions of our model. 

b) A 'low energy' form for the absorptive corrections appears 

to be necessary. 

Instead of using imaginary parts to trajectories to avoid 



singularities, a 'smoothing' Veneziano form as suggested by 

Martin(78), where one takes the Veneziano amplitude We) 1-) and 

. creates a new one, 

4(x) 1/Lt ry--) 	°Li (6. 1C0 ) 

where ylx) is an averaging function, may provide an effective 

solution with cuts. 
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Trajectory Resonance JP  Contribution to a
I  

* 
Yo Aa(1115) 

AY (1520) 

Aa(1815) 

A Y (2100) 

+  1 

3-  
5 

5+ 

i 

7-  
5 

below threshold 

0.075 

0.099 

0.084 

Average 	 0.09 

* Y1  (1385) E8(1385) 

EEs(1770) 5  

E8  (2030)
5  

3+ 

2  

2 

7+ 

below threshold 

. 	0.186 

0.110 

Average 0.15 

Table 4  

Contributions to the imaginary parts of the trajectories. 



Parity Partner Relation obtained. 

A 	(1115)1/2  X = - 
0.362 

E 
A 	+1 

A (1520) + 3 - 2 
A 1  + 	1 

= 0.829 

.El• 
A' 

+ 1 

Table 5.  
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Relations given by absence of parity partners. 



plat V1 (GeV) 1 C1 

2.3 0.38 1.00 

2.97 0.36 0.91 

5.5 0.31 0.68 

Table 6  

Absorption coefficients for lep elastic 

scattering. 
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Resonance A
Y 
 (1520)D03 Aa(1815)FC6  Ay  (2100)G 07 

ret(ileV) 
experi - 
mental 7.2 52 42 

theore-
tical 2.16 11.6 15 

Yo Elastic Widths. 

Resonance 

_ 

za(1770)D 15 

. 

E6(2030)F17 

retOW 
experi- 
rental 

45 12 

. 
• 

. 

theor-
etical 5.5 

i 

4.9 

Y1  Elastic Widths. 

135. 

Table 7.  



FIGURE CAPTIONS.  

Figure 21. Contributions fran the pole (---), cut 

and pole + cut (—) to the differential cross-section 

for Kp Kan. Data fran ref. (79). 

Figure 22. Differential cross-section for KTED 

Data from ref. 79 and 80. 

Figure 23. Contributions fran the pole (---), cut (----------), 

and pole + cut (-) to the differential cross-section 

for en ep. Data from ref. 71. 

Figure 24. Differential cross-section for en -+K°p. 

Data fran refs. 71 and 82. 
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APPENDDC 

Numerical Analysis of the Problem(83) 

As in the above analyses, we have free parameters, it was 

necessary to use a standard minimization program to determine these. 

This program was MINUITS (01TM Program library No. D506). 

Tb this was added sub-routineS which presented the parameters 

to be minimized on to MINUITS and carried out the Pegge calculations, 

which involved partial-wave analysing the helicity amplitudes for 

the pole graph, modifying them with absorption corrections to obtain 

the cut graphs and then resuming the modified series and comparing . 

the theoretical results with the experimental data by means of a 1- 

where 

( 	
I 	2.  tv-rari,--e......

4. 
 af 31-  — ... 

4.1 
....4 0,-st

4. 
 iccti

4 
  7.E 

Errol& 0... emp2ei....t.f41 1.97t  

Many passes were made through MINUITS which altered the parameters 

for each pass until this rfound a minima. 

The partial-wave analysis of the helicity amplitudes were 

carried out by means of the equation : 

•.5\4+  Tics)) c 'x .1,-) 
	4 I 

•3\ CS, 0/ VI> A (0) J(c0,0 

As this cannot be done analytically, the integration was carried out 

using an N-point Gaussian ouadrature which says that for a range of 

integration symmetrically placed about the origin 
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+ 1  
(73 oetx 	V,.1 

This would integrate exactly a polynomial of degree 2N. In our case, 

this becomes: 

e , (1 1 (iitsIOIXAt.> P Lose) 1(c.,0 
1")' 

 

  

3\t  I if,  (Si  cos G,) 1\ > ( 	8I..)  Lx,/ 
rt), 6" 

  

where W is the quadrature weight associated with the point cos Ct_ 

Clearly, the rotational matrices are independent of energy and depend 

only on the value of the angle 01,,,which in turn, depend only on.the 

order of the Gaussian quadrature. 

This enables us to write the integration in terms of new weights 

1 

tli 1 	
..... ,,,k ( c.$ 0, 	.1/ 4  ) 1/ d

i 	I's 

which need to be evaluated only once, so saving much computing time. 

The checks involved were for the given no. of partial waves and 

given order of Gaussian quadrature : 

a) Re e became 1.0 within the allowed number of partial waves 

i.e. no absorption is taking place outside this region. 

b) The contributions from the helicity amplitudes must be zero by 

the time the last partial wave is reached. 

c) Resummation of the unmodified partial-waves must give the 

original pole graph helicity amplitudes. 

The structure of the program is shown in the flow diagram. 



NO 
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