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ABSTRACT  

A steady, two-dimensional dynamical model of cumulonimbus 

convection in shear is developed, based on a particular 

observational description. 

A conservative quantity, fundamental in this type of 

finite-amplitude convective overturning is found and used to 

formulate an eigenvalue problem for the streamfunction, defined 

in terms of two nondimensional numbers - a Richardson Number 

and a density-scaling parameter. -  Solution of the asymptotic 

form defines the height of the steering-level and also the remote 

flow. 	Using real data to evaluate the nondimensional numbers, 

the height of the steering-level and the propagation speed of 

particular convective systems compare favourably with the 

corresponding observed values. 

The transformation between the compressible and incompressible 

solutions for finite-amplitude flow contrasts with that associated 

with linear theory. 

Heat and momentum fluxes are quantified and are contrary 

to the usual conceptions of mesoscale transport mechanisms. 

These could be used to parameterise cumulonimbus convection in 

global numerical models. 	A measure of the transport efficiency 

of cumulonimbus convection compared to smaller scale processes 

is obtained. 

The two-dimensional problem is approached from free-boundary 

and initial-value viewpoints, the main difficulty in the former 

being the prescription of appropriate dynamical boundary conditions 

at the updraught/downdraught interface. With pressure continuous, 

R“.  0.75 is shown to be a necessary condition for the 

existence of solutions to the free-boundary problem, and for 

steady, two-dimensional, wet-adiabatic overturning; this type 
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of overturning demands an interface sloping downshear. 

Using the initial-value problem as a guide, an alternative 

dynamic boundary condition is defined, modelling a physical 

process in the updraught/downdraught boundary layer; this 

process is associated with an interface which slopes upshear. 

A momentum budget indicates that further physical processes 

could be featured in an extension to three space dimensions, 

giving grounds for future research. 
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CHAPTER I — INTRODUCTION  

The recognition of structure in convective systems has 

led to significant developments in meteorology over recent years..  

For instance, the structure of large-scale slantwise convection, 

particularly in relation to the poleward transfer of heat and 

momentum, has been evident for many years and is important for 

the maintenance of climate on the global scale. 	Only comparatively 

recently however, in conjunction with the development of global 

atmospheric modelling, has a more precise theory of smaller scale 

transfer become necessary. 	The necessity arises because the 

fluxes of heat and momentum from low to high levels are crucial 

for the maintenance of the available potential energy of the 

global atmosphere and hence the maintenance of the large scale 

eddies which effect most of the large-scale heat and momentum 

transfer. 	This implies close interaction between all scales 

of atmospheric motion and indeed the models of cumulonimbus 

convection in shear developed in later chapters reflect this 

philosophy in that they are expressed in terms of parameters 

which can be measured on the synoptic scale. 

Before proceeding with the development of specific dynamical 

models of cumulonimbus convection in sheared flow, it is 

enlightening to review the problem from the meteorological 

viewpoint and also briefly discuss work which is mathematically 

relevant. 

1.1 — THE DESCRIPTIVE APPROACH  

Serious study of cumulonimbus convection from the 

descriptive viewpoint has been going on for the greater part 

of a century, among the earlier descriptive models being those 

by Moller (1884), Davies (1894), Wegener (1911), Brooks (1922), 
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Simpson (1924), Letzmann (1930), Suckstorff (1939) and 

Findeisen (1940). 	These were extremely qualitative and progress 

was hampered mainly due to difficulty in collecting data from 

upper levels. 	It was not until the development of aircraft 

robust enough to traverse storm areas and more particularly the 

application of radar to descriptive meteorology, that systematic 

and comprehensive data could be obtained. 

The first intensive study using these techniques was the 

Thunderstorm• Project, conducted in Ohio and Florida. 	The 

:results of this study published by Byers and.Braham (1949), did 

much to quantify-updraught and- downdraught speed and area, 

cloud-top height, storm propagation 'speed, time evolution etc. 

-However, the-storms examined during the Thunderstorm Project - 

were probably not typical of the more severe variety found in 

the mid-western states of America, which have a high frequency 

of very large hail. 	The storms studied in the Thunderstorm 

Project had a low proportion of hail, and were not so severe 

in terms of updraught speed. 	It is interesting to note that 

in general the shear was generally less than 10
-3 s-1, at least 

a factor of three smaller than that considered typical of severe 

storm situations. 

The mid-latitude severe storm, characterised by its 

giant hailstones, intense rainfall and strong squalls is 

distinctive from the more sporadic and less intense 'heat storm', 

a common feature of summer afternoons. 	Not only is the intensity 

of these severe storms much greater but also their duration, 

since they can.last for at least twelve hours often during the 

night, contrasting with the 'heat storm' which usually decays 

when the buoyant sources provided by solar heating of the surface, 

die out in the evening. 	These cumulonimbi characteristically 
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travel several hundreds of kilometres during their lifetime, 

while the 'heat storm' is a much more localised and slower 

moving phenomenon. 	Stationary severe storms are however found 

occasionally, but this feature will be discussed more fully in 

chapter III. 

Prohaska (1907) was among the first observers to record 

that mid-latitude severe storms are characteristic of frontal 

regions and that they travel at the speed of the usually 

substantial mid-level wind. 	Much later Wichmann (1951) noted 

from glider experience that updraught speeds as large as 20- 30 m s 
-1 

were maintained over a number of kilometres, and also that in 

such cases strong shear was usually present in the undisturbed 

flow. 	The correlation of strong mid-level winds with storm 

occurrence was noted by Fawbush and Miller (1953), who advised 

that strong winds at 500 mb and 700 mb was a reliable prediction 

of storm severity. 

Aided by rainfall data, Newton (1959) tracked the 

movement of individual storms over several hundred kilometres 

for periods of the order of twelve hours, noting that the storm 

tracks were on the average 20 degrees to the right of the mean 

850 mb 500 mb wind direction. 

Although the occurrence of severe storms had previously 

been correlated with strong shear in the troposphere, Newton (1959) 

was the first to include this feature into a descriptive model 

for the maintenance of a severe storm and the observed regeneration 

on the right flank. 	However, after a systematic study including 

intensive radar analysis of the Wokingham Storm of 9 July 1959, 

Ludlam and Browning (1962) produced the first descriptive model 

suggesting that not only is wind-shear important for the 

maintenance of the overturning, but also for the occurrence of 
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large hail and the intensity of the downdraught circulation. 

Since the description of the severe storm given by Ludlam and 

Browning suggested the form of the dynamical model developed in 

the following chapters, it is worthwhile presenting this 

description in some detail. 	Greater detail of the other 

descriptions can be found in papers by the particular authors 

listed in the references or in a more concise form in Meteorological 

Monographs, Vol.5. 

From their detailed observational study of cumulonimbi 

working and propagating in zones of marked wind-shear, Ludlam 

and Browning suggest that their detailed data is consistent with 

a quasi-steady, wet-adiabatic relative flow consisting of two 

distinct branches. 	In one branch, low-level potentially 

warm air enters the front of the system forming an updraught, 

where buoyancy is generated due to the latent heat released by 

the condensation of water vapour. 	The other branch is a 

downdraught of comparable intensity, maintained by the cooling 

of potentially cold mid-level air entering at high-levels from 

the rear, by the evaporation of rain falling from the updraught 

branch. 	It is also inferred from observational evidence 	that 

the updraught slopes backwards over the downdraught. 	This 

orientation is emphasised because rain falling from the updraught 

can fall directly into and maintain the downdratight by evaporative 

cooling, and moreover hail can circulate in the updraught and 

thus grow to the observed large size. 	Fig.(1.1) is a diagrammatic 

representation of this descriptive model. 	Consequently, 

cumulonimbi working in a sheared airstream is visualised as 

being an extreme form of steady, organised convection in which 

mixing is unimportant, in contrast with cumulus convection 

which is a process dominated by mixing. 
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FIG. 1.1.1 - THREE-DIMENSIONAL DESCRIPTION OF THE RELATIVE FLOW 

WITHIN THE WOKINGHAM STORM. 	THE PATH HOH IS THE . 

SUGGESTED TRAJECTORY OF A PARTICLE WHICH BECOMES A LARGE 

HAILSTONE. 	(FROM BROWNING & L UDLAM-,(1962) ). 

FIG. 1.1.2 - VERTICAL SECTION THROUGH THE WOKINGHAM STORM ALONG 

THE 	DIRECTION OF PROPAGATION 2  WHICH IS FROM RIGHT TO LEFT 

IN THIS FIGURE. THE FLOW IS RELATIVE TO COORDINATES MOVING 

AT 	THE STORM SPEED IN BOTH FIGURES. (FROM BROWNING & LUDLAM ). 
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Severe storms can persist in situations where the amount 

of available potential energy, as measured by the positive area 

on a tephigram is rather small, with an intensity comparable 

to those on occasions with a significantly larger amount of 

available potential energy. 	(For instance compare the tephigr•ams 

of the Wokingham and Horsham Storms in chapter III.) 	This 

suggests that the shear or the available potential energy alone  

may not be the important parameter for cumulonimbus convection 

in shear, but rather a relationship between these two parameters. 

Subsequently it will be shown that this is indeed the case, 

the important parameter being a Richardson Number. 

A dynamical model of cumulonimbus convection in shear 

based on the above descriptive model has at least to quantify 

the factors determining the propagation of the system and the 

important question of the orientation of the updraught/downdraught 

boundary. 	Moreover, as far as global atmospheric models are 

concerned, the main question to be answered is not the detailed 

formsof the individual cloud systems, but rather the effect 

which these mesoscale phenomena have on the synoptic scale, 

particularly their role in the vertical transfer of heat and 

momentum. 	These points define the main subject matter of this 

thesis. 

1.2 --THE MATHEMATICAL APPROACH  

Compared to observational work done on cumulonimbus 

convection in shear, the amount of work adopting a dynamical 

approach is small. 	Regarding convection in shear in general, 

theoretical approaches can be classified into two distinct 

categories. 

First, linearised perturbation analysis has been extensively 
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used to examine the dynamical stability of the basic flow, 

including the classical problem of the dynamical stability of 

statically stable shear flow and the more recent studies of the 

statically unstable problem. 	Since the resulting boundary-value 

problem is linear and usually analytically tractable some progress 

has been made on the analytical treatment. 

Second, the finite amplitude problem which is the most 

relevant in cumulonimbus convection because particles undergo 

vertical displacement comparable to the depth of the system. 

Due to the intractable nonlinearity of the equations, this 

problem requires some degree of numerical solution, whether it 

is a purely numerical initial-value problem or as in this thesis 

a partly numerical, partly analytic eigenvalue problem. 

Although only the finite amplitude approach is directly 

relevant to the cumulonimbus problem, a brief summary of the 

linearised theory is interesting because in both approaches the 

form of the convection is classified into regimes determined 

largely by a Richardson Number. 	However, the resemblance 

between the linearised and finite amplitude motion is superficial 

and the approaches really define distinct classes of motion. 

1.2.1 — SUMMARY OF THE LINEARISED THEORY OF CONVECTION IN SHEAR  

The dynamical stability of neutrally stratified, inviscid 

shear flow has been studied since Rayleigh (1880). 	If the 

velocity of an unbounded homogeneous fluid changes discontinuously 

at a free-surface, then this surface is dynamically unstable 

for perturbations of all wavelengths, but the short waves grow 

fastest. 	The introduction of a transition layer stabilises 

the short waves provided the undisturbed vorticity gradient 

changes sign across the shear layer, while if the vorticity gradient 
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does not change sign all waves are stable. 

(a) Statically Stable Flow  

If the undisturbed shear flow is stratified, then the 

mathematical problem of determing the stability criterion is 

much more difficult due to the singular form of the differential 

equation (of hypergeometric form). 	In the Helmholtz problem, 

where both the velocity and density change discontinuously at a 

free-surface, with the denser fluid underneath giving a statically 

stable flow, short waves of wave number X satisfying 

2g(P - pi ) > 	- 	 (u2 - 1)2  
(P1 -F- P2)  

are unstable, while the long waves are stable. 	(Subscripts [1] 

and [2] denote upper and lower fluid respectively.) 

Taylor (1931) considered the stability of shear flow in 

a semi-infinite region bounded below by a rigid surface. 	He 

dealt with constant shear and stratification in the undisturbed 

flow, finding that the flow is stable if the Richardson Number (Ri) 

satisfies Ri > 1/4, while if 0< Ri < 1/4 no harmonic waves can exist. 

Case and Dyson (1960), adopting an initial-value problem 

approach with the same undisturbed flow as Taylor, showed that if 

O<Ri< 1/4 an arbitrary initial perturbation behaves like 

t14[(1-4Ri)16-1] as t-,00, proving the flow stable. 

Goldstein (1931) was concerned with the dynamical stability 

of a three-layered, unbounded fluid having a continuous density 

and velocity profile, but with discontinuities in the undisturbed 

vorticity at the two free-surfaces. 	He found that the flaw is 

dynamically unstable if 0 < Ri < 1/4 and stable if Id > 1/4. 

Drazin (1958) considered flow in which the undisturbed 
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density, velocity and vorticity are everywhere continuous in 

an unbounded region. 	He obtained a critical Richardson Number 

of 1/4, agreeing with Goldstein's result. 	Presumably the 

vorticity discontinuities in Goldstein's model do not influence 

the stability criterion. 

Miles (1961) proved that sufficient conditions for the 
du 

stability of a heterogeneous shear flow that -(37# 0 and that 

the local Richardson Number satisfies Ri(z) > 1/4 at every point 

in a bounded region. 	Howard (1961) proved the more general 

result that a sufficient condition for dynamical stability is 

Ri > 1/4. 

Consequently, it is well established that a statically 

stable shear flow is dynamically stable for any velocity profile 

if Ri> 1/4, while if 0< Ri< 1/4 the flow may or may not be 

stable depending on the velocity profile. 	Moreover, the above 

brief summary indicates that the justification for having 

discontinuities in the velocity, density or vorticity is 

non-trivial at least from the point of view of dynamical stability. 

It will be seen later that prescribing a dynamical boundary 

condition which implies discontinuities of velocity, temperature, 

vorticity and pressure is not a trivial problem to justify either. 

(b) Statically Unstable Flow  

The meteorologically significant linear theory of unstably 

stratified shear flow was studied by Kuo(1963). 	He shows that 

if the stratification is unstable, three-dimensional perturbations 

are more likely to be dynamically unstable than two-dimensional 

perturbations, contrasting with stably stratified shear flow 

which exhibits the opposite effect. 	Consequently, in determining 

the stability criteria in the unstably stratified case, it is 
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necessary to include the transverse wavenumber. 	floreover, 

in order to explicitly determine the preferred scale of the 

transverse motion, Kuo finds it necessary to include the 

dissipation of heat and momentum in his analysis. 	He defines 

the stability regimes in terms of a modified Richardson Number 

, K 
T., (1 + --)Ri, where K1  and K2  are the wavenumbers in the Ki 

direction of and transverse to the shear respectively. 	Kuo 

shows that in unsheared, statically unstable, inviscid flow, 

perturbations of all wavenumbers are dynamically unstable, 

while in the sheared case provided that 0> J> -2, the short 

waves are stable. 	He also shows that :T< -2 is a sufficient 

condition for instability in a semi-infinite region with constant 

undisturbed shear — that is, all waves are unstable if J< -2. 

(Remember that Howard showed that all waves are stable if 

Ri>1/4.) 	For bounded regions an analogous result holds if 

-2 is replaced by -0.75. 	Fig. (1.2) shows the complete set of 

regimes of dynamical stability/instability for constant 

undisturbed shear. 

Thus for small negative Ri, two-dimensional perturbations 

(that is K2=0 with variations in the shear direction only) are 

stable, but three-dimensional perturbations (K2  / 0) are 

unstable if J = (1 + K2/K1)Ri < -2. 	In fact Kuo showed that 

the most preferred motion corresponds to large J, with the 

consequence that if -2 < Ri < 0 long roll-clouds (altocumulus) 

with K1 << K2  will develop, so that their axis will be parallel 

to the shear vector. 	If however -Ri is large, so that both 

the two- and three-dimensional perturbations are unstable, the 

growing disturbances will be characteristically three-dimensional 

with the clouds forming longitudinally and transversely spaced 

rolls, their orientation being dependent on the ratio K1/K2. 
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REGION 1 - Unstable long waves, stationary relative to 
the mid-level flow with a wavelength of 
Maximum amplification rate. 

REGION 2 - Unstable short waves, propagating relative 
to the flow at all levels with almost 
uniform growth rates . 

REGION 3 - Stable waves. No e igensolutions exist in 
this region and initial perturbations behave 
asymptotically like 

ti[p...Mt -
.
1
. 

REGION 4 - Neutrally stable internal gravity waves. 
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From the above discussion on the stability of shear 

flow, it is evident that if the flow is stably stratified 

with 0< Ri < 1/4 and d2u/dz2  changes sign in the shear layer, 

since two-dimensional flow (K2 = 0) is the most unstable, 

billow clouds with their axes perpendicular to the shear vector 

will be the dominant convective regime. 	If however, the flow 

is unstably stratified with -2 <Ri< 0 (-0.75 < Ri < 0 in bounded 

regions), then roll-clouds with their axes parallel to the 

shear vector will be the dominant regime. 

In later chapters it will be shown that within a limited 

range of Richardson Number, (-1.62 ‘. Ri 	0.75) when the 

convection is of finite amplitude, steady overturning with 

axes perpendicular to the shear vector is the preferred class 

of motion. 	This is one example of a contrast between finite 

amplitude and linearised theories of convection in shear, 

others will arise in later analysis. 

1.2.2 — FINITE AMPLITUDE APPROACHES TO CUMULONIVIBUS CONVECTION IN SHEAR  

A two-dimensional, numerical simulation of cumulonimbus 

convection in shear has been attempted by Takeda (1966). 	For 

initial conditions, Takeda assumes the existence of a model 

cloud stationary at 5 km with respect to flow of undisturbed 

a shear satisfying -1-,—(pu)-,  constant. 	This 'cloud' is of two oz 

distinct halves. 	The upshear half has a high liquid water 

content, with a maximum of 10 g m-3  at the same temperature as 

the undisturbed fluid. 	The downshear half has a water content 

consistent with a cloud droplet distribution (0.4 g m-3), and 

there is a constant temperature excess of 0.5°C over the 

undisturbed flow. 	Since the model equations include the effects 

of condensation, evaporation and the drag of water drops, this 
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initialisation is essentially equivalent to defining a heat 

source on the downshear side and a heat sink on the upshear 

side, stationary with respect to the undisturbed flow at 5 km. 

The use of cyclic inflow/outflow boundary conditions in this 

model means, however, that the simulated convection must not 

proceed for a time longer than that taken by the fastest internal 

gravity wave to travel from the source region to the lateral 

boundaries, otherwise the solution will be affected, especially 

the development of the steering level. 	Now if U and C are the 

speeds of the undisturbed flow and the phase speed of a gravity 

wave, then 

U ± C = gB  
x2  + v2+ 1/4H, 

34 

   

and the longest waves given by X = 2n/L , v = 2n/H, (where 

H = vertical scale and 2L = horizontal scale) are the fastest. 

For the model gB == 10-4  s-2  H/L = 1/2, so 

gB  
(u 	= 	 17 m s-1 

max 	2n 	H2/L2+ 1/1+1, 

Since Umax 
	30 m  s-1

5 this means that the simulated time should 

not exceed about 9 minutes. 	Consequently the solutions at 

10 minutes and more particularly 15 minutes should be treated 

with some suspicion. 	In fact the solution at 10 minutes does 

reflect interference due to the lateral boundary condition. 

Moreover the condensation occurring behind the downdraught is 

more likely to be caused by this effect than Takeda's proposed 

meteorological explanation. 

Takeda's conclusions are rather qualitative. 	He states 

that if the shear is too intense for a given amount of available 

potential energy then the development of the convective system 
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will be adversely affected, but some degree of shear is 

necessary to organise the release of potential energy, 

particularly by establishing strong horizontal convergence in 

the lowest part of the updraught. 	Takeda's solutions indicate 

that the updraught/downdraught boundary is almost perpendicular. 

However, although the evaporation of rain on the upshear side 

maintains a downdraught, a considerable part of this downdraught 

air consists of low-level air from the lowermost kilometre. 

This is very suspect because in the meteorological problem, 

this air is thought to form the main part of the updraught. 

He suggests that a connection between the intensity of the wind 

shear and the supply of available potential energy is possibly 

important, but unfortunately does not investigate this aspect. 

The first study introducing the concept of a Richardson 

Number in cumulonimbus convection in shear was that by Green 

and Pearce (1962). 	For an assumed steady, inviscid, two- 

dimensional flow, consistent with the descriptive model of 

Ludlam and Browning, Pearce calculates the vorticity distribution 

and by using the vorticity equation the distribution of 1-31  
ax ' 

and on integrating, the distribution of EY- 910  (where 	is the 

deviation of the potential temperature from the undisturbed value, 

and a'„ is the value at the interface) can be found. 	By assuming 

that the flow along a given streamline in the updraught conserves 

its wet-bulb temperature, it is possible to find the departure 

of the wet-bulb temperature from its adiabatic value along the 

other streamlines. 	Pearce found that the flow was broadly 

consistent with a wet-adiabatic updraught, together with 

evaporative cooling of the downdraught air, presumably by rain 

falling from the assumed backward-sloping updraught. 	It is 

interesting that Pearce found that the inflow air in the lower 
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part of the updraught has to be cooled in order to maintain 

steady flow. 	This aspect will be compared to the solutions 

obtained in chapter V. 

Green also restricts the problem to two-dimensional, 

steady, inviscid flow, finding that the incompressible problem 

is determined by a non-dimensional number of the form of, but 

not identically, a Richardson Number. 	He finds that the 

steering-level of the incompressible problem is determined as 

an eigenvalue of an eigenvalue problem (a special case of Eq.(3.6)), 

and that the remote flow is largely independent of the detailed 

flow within the storm. 	Without explicitly examining the detailed 

flow within the system, Green infers that provided continuity 

of pressure can adequately model the effect of the updraught/ 

downdraught boundary layer, the interface must be orientated 

with the updraught lying underneath the downdraught. 

Consequently the individual approaches of Green and Pearce 

give conflicting results regarding the orientation of the interface: 

Pearce assuming a backward sloping interface and deducing the 

heat sources and sinks necessary to maintain the flow, Green 

determining from dynamical considerations that with the pressure 

continuous, the interface must be orientated in the opposite sense. 

Resolution of the discrepancy between these two approaches is 

the subject of chapters IV and V. 

Although the analysis of the following chapters is primarily 

concerned with cumulonimbus convection in shear, the formulation 

of the problem makes this analysis relevant to other scales of 

convection in sheared flow, in particular regarding the 

propagation of mid-latitude squall-lines and precipitation belts 

associated with cold front regions. 	For instance, the description 

of squall-lines by Lempfert and Corless (1910) is remarkably 
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consistent with Ludlam and Browning's description of severe 

storms. 	Moreover, the observed steering levels of precipitation 

belts given by Harper and Beimers (1958) is consistent with the 

theoretical values obtained in chapter III. 	Another possible 

application of the analysis is in modelling the form and 

propagation of convective circulations in the sub-cloud layer, 

giving insight into the dynamical structure of this region, in 

particular in relation to the heat and momentum transfers. 
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CHAPTER II --THE GENERAL FORMULATION OF THE STEADY MODELS  

2.1 — THE EQUATIONS OF MOTION AND MODELLING APPROXIMATIONS  

In their general form, the equations of momentum, 

mass continuity and energy are difficult to solve analytically. 

In order to obtain solutions and yet retain the essential physics, 

it is necessary to simplify the equations rather carefully. 

The first part of this simplification results in the well-known 

Boussinesq equations. 	These are obtained from the full equations 

of motion by supposing, as is characteristic of tropospheric 

motion, that at a given point the deviations of p and p from 

the static state p0(z) and po(z) are small. 	Consequently let 

P(xa,z,t) = po(z) + op 

p(x,y,z,t) = po(z) + 6p 

)6(x,Y,z,t) = )60(z) + bid 

where the log-potential temperature iS satisfies 

	

ItS 	= 1
Y
ln p - ln p 

and po  and po  are in static equilibrium with 

	

0 	_ pog  
dz 

With the understanding that 112-I << 1 and 1j41 « 1 , 
Po 	P o 

_ 	 o 

	

6/3 	
az - -A- 	0(62) 

- 'YP0 p. 

and with these approximations the momentum equation, 

Dy 
Dt 	 + 1  Vp + a =0 

may be written as 

Dv 	 erc 
Dt 	

fkikv (7( 
p
- ) - (gb6 	' 	) k = 0( 62) 	0 40- - 	o 	dz 	po  

 

(1.2) 

 



Dv 
Dt + fkny + v(12.) - ge* = 0 

Po 

div(poY) = 0 

---Dt( 513)  + w-dAdz°  = 

To the same order of approximation the continuity equation, 

+ div(px) 	0 at 

may be written as 

  

(1.3) 

  

at
a  --(4) + div(poz) = 0 -(1.4) 

Similarly the energy equation, 
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(1.5) 

 

becomes 

Dt(1515) + w dz° = Q(x,y,z,t) 
	

-(1.6) 

In Eq.(1.4), 	
a TE(I5p) may be neglected compared to div(pov), 

eliminating the elastic compressibility and hence sound waves 

from the system. 	However, when this is done, the frequency 

equation for the linearised system is found to contain a spurious 

16' p term unless the term 	is negeicted as well. dz 
LT. 
o  

Consequently, the complete set of equations is now in 

the Boussinesq form, 

The Boussinesq approximation, in which the inertial 

effects of density variation are neglected compared to the 

buoyancy effects, has been analysed and the frequency given 

by their solution are in close agreement with the solution of 

the exact equations. 	Consequently, at least for tropospheric 
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motion, the Boussinesq approximation can be used with confidence. 

Now if in addition, the flow is restricted to a two-

dimensional (independent of the y-coordinate) and steady form, 

it will be shown that it is possible to integrate the fully 

nonlinear equations and obtain a general result which can be 

used to study a model of cumulonimbus convection in shear. 	It 

is not surprising that the problem is extremely nonlinear and 

therefore in conjunction with the analytic approach, numerical 

methods have to be used to obtain solutions. 

2.2 — FORMAL INTEGRATION OF THE BOUSSINESQ EQUATIONS IN STEADY, 

TWO-DIMENSIONAL, INVISCID FLOW  

In this section the fully nonlinear vorticity, continuity 

and energy equations are integrated in steady, two-dimensional, 

inviscid flow, a procedure which yields a conservative quantity 

which is extremely useful in the subsequent analysis. 

For the purpose of integration along streamlines, it is 

convenient to transform the variables from the (x,z) coordinate 

system to the (*,z) system, where * is a streamfunction. 

2.2.1 — THE TRANSFORMATION (x,z) 	(*,z)  

Because u and w satisfy the continuity equation Eq.(1.8), 

it is possible to define a streamfunction * to satisfy 

u 	1  at• Paz 
' 

w  _ 1 8* 
p ax (2.1) 

If h(x,z) is an arbitrary differentiable function of x and z, then 

fah\ ()
ax z 	z  ax ) z 	 P wkSTi)z  
212 	_ ( 9 (Lt  

and 

tahl 	( h 	/311\ 	_ fah\ 
jazix 	(az * 	kalf/z  lazykazhy 	pucgriz 
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The transformation is therefore defined by 

( x )z 	Pw.(4)z 
(17)x   = 	Pu(mz  

  

(2.2) 

  

  

  

   

The transformation given by Eq.(2.2) has been used in laminar 

boundary layer theory, but here it will be used in flows in 

which the baroclinic effect is important, rather than the 

viscous forces characteristic of boundary layers. 

2.2.2 --VERTICAL TRANSPORT OF AN ARBITRARY QUANTITY IN TERMS OF  

A TOTAL DERIVATIVE 

In later analysis it is convenient to write wh(ll,z) in 

terms of a total derivative, where h is an arbitrary function 

of z and *. 	Suppose that for steady flow, some function ellr,z) 

exists such that 

wh(* ,z ) 12E. 
Dt 

u(t) + „(t)x   , 

=-,( ) w[(t) Pu(0) 

 

 

2 by Eq.(2.2) 

   

w(t)*  
So g is defined by the simple partial differential equation, 

• • • 

Of)* = 
g(z,4r) = 

h(*l z) 
s=z / 

fn(*) 	ht*(x,z),$)ds , 
s=0 

where the integrand is understood to be at constant *, and fn(*) 
is an arbitrary function of 

• 
• • 

D s=z 
wh(lr i z) = — Dt 	hp(* (x i z),$) ds f s=u 

—(2.3) 



D'r) 	av 	!It 0 ax Dt +i)div 	 f dz ( 2. 5 ) 
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where hp  denotes the value of h following a particle of fluid, 

and the property, Tifn(1f) =0 in steady flow has been used. 

2.2.3 — THE FORMAL INTEGRATION  

Taking the curl of Eq.(1.7), the y-component of the 

vorticity equation can be shown to be 

3-2a +i)div v - (4.v)v-  + g 	= 0 	(2.4) ax  Dt 	-• 

(owov au Ow av au where = 	— 
ay 	az ' az 	ax' ax 	ay f) . 	Since the motion 

is assumed to be two-dimensional in the sense that it is independent 

of the y-coordinate, Eq.(2.4) simplifies to 

Now if f « Dt   , so that the flow is of large Rossby number, 

a condition which is satisfied by severe storms to an approximation 

of about 10%, Eq.(2.5) simplifies further to 

PM +.0divy 	 g 12A = 0 	 (2.6) Dt 	3x 

which by continuity can be written as 

1 s_3A 
.a.(P') + . -- p Ox = 0 	 (2.7) 

Since the flow is steady, ? constant defines a trajectory so 

the log-potential temperature can be written in terms of a function F 

such that 

gx,z) = f n(*,z) = F(*,z-z.) 

where z, (y) is the height of the inflow streamline 	remote from 

the storm. 	So using Eq.(2.2), 

.2) wtal 0  
Dt ( k p z 

 

(2.9) 

 



1) 
p 

G( V) 
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and further by Eq.(2.3) 

DiT) 
Dt p 

(_arifaF) 
zo 	z 

dzi = 0 	(2.10) 

Integrating Eq.(2.10),  

(aaFgr) dz  

zo  
(2.11) 

where G(*) is a function of * specified by the inflow conditions. 

Consequently Eq. (2.10) shows that in steady, inviscid, two- 

dimensional flow the quantity 

z 

P 
X 	

_ (aF 

a*
) dz 	(2.12) 

zo  

is conserved by a particle of fluid. 

One of the most useful conserved quantities in three- 

dimensional, inviscid, adiabatic flow is the potential vorticity 
4 

Q 	bilt in two-dimensional motion Q vanishes and is 

therefore useless. 	The quantity X can be thought of as the 

fundamental quantity which replaces potential vorticity in two- 

dimensional, steady overturning. 	Of the two terms in X, the 

first contains the effect of compressibility, which decreases 

the vorticity of a particle on rarefaction. 	The second term 

demands that the vorticity of a particle increases with the tilt 

of the isentropic surfaces relative to the particle path —a 

baroclinic effect. 	These two are in fact opposing effects in 

steady, buoyant, convective overturning, since on ascent the 

vorticity is increased by the baroclinicity, and decreased by 

the compressibility. 

Although X is not the potential vorticity Q, it is 

nevertheless closely related to it in the sense that the 
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baroclinicity and compressibility can be identified in both. 

In the subsequent analysis, particularly chapter III, the 

quantity X will be extremely useful in obtaining fairly general 

results for steady overturning. 

2.3 — THE GENERAL FORM OF THE BOUNDARY CONDITIONS  

The differential equation for the streamfunction 

obtained from Eq.(2.11) is elliptic and therefore along fixed 

boundaries, it is sufficient to prescribe the streamfunction. 

However one of the boundaries, the interface between updraught 

and downdraught, is a free-boundary and characteristic of 

free-boundary problems in general, in addition to the kinematic 

condition that the free-boundary is a streamline, an additional 

(dynamic) boundary condition must be prescribed. 	This constraint 

effectively determines the shape of the free-boundary. 	This 

dynamic boundary condition will be discussed at length in chapters 

IV and V, where the boundary layer between updraught and 

downdraught will be investigated in detail. 	A comprehensive 

treatment of free-boundary problems, including some existence 

and uniqueness theorems can be found in "The Encyclopedia of 

Physics" Vol.IX - Fluid Dynamics III pp.311-438. 

Throughout, rigid boundaries will be assumed at the top 

z=H and the bottom z= 0, and since models for which inflow 

and outflow are on the same side are discussed, the streamfunction 

is necessarily constant along z= 0, z=H and the free-boundary. 

The conditions at the inflow/outflow boundaries are 

determined as asymptotic solutions of the full two-dimensional 

problem, this partly being the content of chapter III. 	Further 

detail on the determination of this boundary condition will be 

discussed there. 
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CHAPTER III — ASYMPTOTIC SOLUTIONS  

In this chapter the conservative quantity X derived in 

the preceding chapter will be used to define an eigenvalue problem 

for the streamfunction, the asymptotic solution of which defines 

both the height of the steering.level (appearing as an eigenvalue) 

and the remote flow field. 	The speed of propagation of the 

system can be defined if the steering-level is known, since by 

definition the steering-level is the height at which the fluid 

speed equals the travel speed of the system. 	The propagation 

speeds obtained in this manner, using real data to define the 

relevant parameters, will be compared to the observed values. 

Moreover, it will be shown that the remote flow field and 

steering-level can be used to calculate heat and momentum fluxes 

by cumulonimbus convection in a form which could be of use in 

numerical simulation models of the global atmosphere, a field 

where it is becoming increasingly obvious that some such dynamical 

representation of these fluxes is essential. 

3.1 — THE EIGENVALUE PROBLEM 

Since the y-component of the vorticity is given in terms 

of the streamfunction as 

a  (2..W 	Lilt) — 	ax k p ax) 	az k p az / 

using Eq.(2.11), this gives a partial differential equation 

for the streamfunction as 

z 
1 	

az 	azO)  +1.  (5) dz 	(3.1) P 7-c P 	p 12— (p, = G 1  ") 
a ( .1 a* 

The functions F and G are in fact determined by conditions remote 

from the storm. 	Suppose that the height of the steering-level z* 

zo  
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is known, and that fluid below z*  has not been through the 

convective system. 	If the undisturbed shear is known, the 

asymptotic streamfunction V  (x= co ,z) can be constructed, starting 

at z= z*. With these values of Iti,F(*,0) can be found from the 

,t distribution and also F(Ilf,z-z0 ) if for instance, wet-adiabatic 

ascent is assumed for each particle. 	Since G is simply 

asymptotically equal to the undisturbed shear, the determination 

of 	is the crucial part of the problem. 	Fig.(3.1) shows 

F(*,z) for a particular occasion. 

Following each streamline through the system and out to 

large distances again, assuming that gravity waves are smoothed 

out or absent, then the x-variation can again be neglected, 

and Eq.(3.1) becomes a differential equation for the outflow 

z 

P az \ p 
I 	

az 	G(t) 	(—)dz -----{3.2) ( .1 22i.) 	 ap 

za  

(where 	is taken as representing asymptotic equality). 

The boundary conditions are that * and pu = az  should 

be continuous at z= z*  , the first by definition and continuity, 

and the second from considering the energy of a particle entering 

just below and leaving just above z= z*. If the fluid flowing 

in at the bottom z= 0 is to flow out at the top z=H, then * 

must take the same value at these limits, a condition that can 

only be satisfied in general if z*  is correctly chosen. 

Consequently, z*  is determined as an eigenvalue of the differential 

equation (3.2). 

3.2 — FINAL INTEGRATION OF THE ASYMPTOTIC VORTICITY EQUATION  

In principle Eq.(3.2) could be solved numerically for 

quite arbitrary functions F and G, but fairly general results 

	

can be obtained for simple forms of these functions. 	Consequently 
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FIG. 3.1 — ILLUSTRATIONS OF THE PARCEL LOG-POTENTIAL TEMPERATURE F 04,Z-Z.) 

IN 	OBSERVED AND MODEL CONDITIONS FOR Yr - A 4. 
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it is assumed that the shear and the static stability of the 

inflowing undisturbed fluid remote from the system are constant, 

with 13.2  - - 2A and 	- B where A and B are constants. 	Then az. 	az. 

Bz. + /3(x=co ,z=0) 	and 	Ili 	2Ap(z.- z*) 
. az 

Thus assuming that p(z)= psexp(-z/H.) , with ps  constant, and 

using the boundary conditions * 	(2i-- 0 at z0  = 	, az 

tir 	2ApsH. t(H. - z. - z*) exp(--z./H0  ) - H. exp(-z,./11. )1 	-(3.3) 

which defines z.(*). 

Now suppose that as any parcel is displaced upwards, its 

gradient of log-potential temperature is positive and constant. 

This is a crude way of representing a wet-adiabatic process 

simulating the release of potential energy. 

gx,z) = F(*,z-z.) 	+ fn(*) 

and since the inflow log-potential temperature is feS.Bz. +IS(x.co,z=0) 

F(11r,z-z.) = Bz. + )/(z-z.) + constant 	(3.4) 

Substituting into Eq. (3.2), 

G(r).1 	(1 Li 	 az,. 
P az p az) 	g(B—^y) 	--- az a* 

zo  

	

where z is any point on * remote from the system. 	Putting z = z. 

defines G as 
G(*) = 2A/p(z.) 

Consequently, 

1 a (1 a*) r‘i  2A 	g('Y —13)(z —z0)  
p az p az 	p. 	2Ap(z.)(z * —z0 ) 

where zo  is the function of c  defined by Eq.(3.3). 

(3.5) 

(3.6) 
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Together with the boundary conditions given in section • . 3 1 _ 	9 

Eq.(3.6) defines the eigenvalue problem explicitly. 

3.2.1 — INCOMPRESSIBLE SOLUTIONS  

Due to its extreme nonlinearity, the eigenvalue problem 

defined by Eq.(3.6) and its boundary conditions has in general 

to be solved by numerical methods. 	If, however the gross 

variation of density with height is neglected, analytic solutions 

exist in a simple form. 	In this case the inflow streamfunction 

is defined by 
* 	A(z.- z,)2  

 

  

giving the inflow height z.(*) as 

zo 	3*  - Ai 

 

(3.8) 

 

Substituting for zo  in Eq.(3.6), but keeping p constant, shows 

that this equation is satisfied if on outflow 

where 

p2A(z z*  )2  

P 
1) F B 

4A2 

)  = R (say) 

and this solution satisfies the upper boundary condition if in 

addition 
-0) 	 (3.11) 

The parameter R is a measure of the available potential to 

available kinetic energy of the system (i.e. a measure of the 

Richardson Number). 	However, it is important to realise that 

even when the Richardson Number is defined as the ratio of 

available potential to available kinetic energy, it is still 

dependent on the nature of the process which defines availability. 

If, for instance, the momentum and potential temperature of a 

slab are thoroughly mixed by interchanging parcels of air 
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it can be shown that the ratio potential to kinetic energy is given 

2  by 2Ri where Ri=g// 11 ' but if the momentum is smoothed out az 	az 

(by pressure forces say) while the temperature is advected then the 

ratio is given by 4Ri. 	This distinction is brought out in the 

discussion of the maintenance versus generation of shearing turbulence. 

Taking the scalar product of v and the momentum equation, 

it can be shown that 

1 2 1 2 
7 Y-2 e".  2 Y-1 

,,z 

+ 	g(Ap  /6) dz 

zo  

 

(3.12) 

 

where v1 	- and v2  are the inflow and outflow velocities respectively, 

and A and A are the parcel and undisturbed log-potential temperatures. 

The Richardson Number for steady overturning is defined as the 

negative of the ratio of the two terms 'on the R.H.S. of Eq.(3.12). 

(The choice of sign is to make Ri < 0 if the flow is statically 

unstable, in order to be consistent with convention.) 	In general, 

Ri will be a function of zo , and R and Ri are not simply related. 

For instance, for the incompressible problem Ri = -RH/17E, but 

this is inconvenient and therefore the relationship corresponding 

to z4, = 0 is chosen, i.e. Ri= 

If the flow is neutrally buoyant (isentropic and dry-adiabatic), 

then R=0, p= 1 and the steering-level is at the middle of the layer 

(z* =1&11), with flow symmetrically approaching and receding below and 

above this level, with no vorticity generation. 	This picture 

suggests that there might be quite a vigorous convective overturning 

even with no available potential energy (see chapter IV, section 4.3). 

If the flow is buoyant, R> 0, p >1 and the outflow at the 

top is faster and more sheared than the inflow at the bottom, 

because of the work done and the vorticity generated by the 

buoyancy forces (but note the qualification of section 3.2.2), 

and the steering-level is raised above the middle level. 	It is 
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remarkable that the outflow shear is constant in this special 

case, and convenient both from the point of view of finding as 

well as describing the form of the solution, because the asymptotic 

flow can be completely described by z,/H and the ratio of outflow 

to inflow shear p2 as a function of Ri. 

3. 2. 2 — COMPRESSIBLE SOLUTIONS  

In this section, the modification that the gross variation 

of density with height has on the solutions is discussed. 	Although 

incompressible models give insight into the dynamics,_ it. is 

usually necessary to take the variation of density with height 

into account when making bomparisons with _the atmosphere. 

The only two effects that.can. change the y-cbmponent of the 

vorticity of a particle in two-dimensional, inviscid overturning 

(the baroclinic and compressibility effects) are found to be equally 

important - when the height-scale of the convective overturning is 

comparable with the density scale-height (H.= 7.3 km). 	In the 

analysis of severe convective storms, which usually extend at least 

up to the tropopause, H/110  1 and it is therefore essential to 

take the height variation of density into account. 	This- section 

is therefore concerned with the solutions of the compressible problem. 

Sometimes the .effect of density stratification can be accounted for 

by a scaling procedure. 	For instance, linearised perturbation 

solutions for an incompressible model of gravity waves give realistic 

predictions provided that the dependent variables are first multiplied 

by p. 	In this section the fully nonlinear, compressible problem 

is .solved, and it is interesting to observe that in the resulting 

finite amplitude overturning, this F:Y1/2  transformation between the 

compressible and incompressible solutions is not appropriate. 	A 

transformation that is valid for this finite amplitude motion 

will be presented later. 
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3.2.2.1 — DENSITY VARIATION FOR NEUTRAL STRATIFICATION  

The effect of density variation can be demonstrated 

simply when the stratification is neutral (B =Y). 	In this 

situation, the kinetic energy of the updraught is derived from 

the kinetic energy of the inflow fluid, the baroclinic effect 

vanishes and Eq. (2.11) shows that 17/0 is conserved along streamlines, 

and the outflow shear is therefore reduced by a factor of p(zo)  p (z) 
Consequently, the general effect of density stratification is 

to decrease the outflow shear, in the opposite sense due to 

the action of buoyancy, while at the same time the steering-level 

must be lowered in order to satisfy mass continuity. 	The 

implicit relationship between the variables zo , z and t makes 

analytic completion of the solution difficult, so this is 

approached numerically. 

3.2.2.2 — A LOCAL ANALYTIC SOLUTION IN THE NEIGHBOURHOOD OF z=  

From the numerical point of view, the nonlinearity of 

the eigenvalue problem defined by Eq.(3.6) and its boundary 

conditions is not in itself a great complication since there is 

no difficulty in finding accurate, convergent, iterative 

numerical schemes for solving elliptic equations. 	However, 

being second order in *, Eq.(3.6) requires starting values 

defined at z= z*  and z=z* +h, where h is the mesh length. 

*(x=0,,z=z*) can be obtained direct from the boundary condition 

on *, but it is not easy to get *(x=co sz=z*+h) accurate to better 

than first order, (which is easily obtained using the boundary 

conditions, continuity of * and — az at z and a first order 

Taylor expansion around z*) because z= z*  is a singular point 

of the differential equation and so it is not possible to get 

a second order correction by direct use of the equation. 	Since 
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it is important to get the starting values as accurate as 

possible in numerical work, a local analytic solution was 

found for * in the neighbourb,00d of z = z*. 	The solution is 

given to the approximation that the flow is incompressible in 

the neighbourhood of z*  —that is h/Ho  << 1 where h is the mesh 

length, and this is a justifiable approximation since h was 

chosen so that h/H0  = 0(0.01). 	It may be argued that h could 

have been made small enough to make the first order starting 

condition acceptable, but in that case the accuracy of the 

starting values is purely numerical in nature, whereas in the 

procedure adopted here the dynamical nature of the approximation 

is explicit. 	(incompressibility in the neighbourhood of z= z* ) 

Now from Eq. (3.6), the differential equation for the 

streamfunction is 

1  a (1 alf) 	1  	[1 	2 
p az \fa az 	p(z0 ) 	(z* — zo) 

 

(3.13) 

 

and taking p(z) = ps  exp(-z/Ho  ) , where Ps is  constant, 

a 2 v H av 
az2  + Ho az 

 

(z - zo  )1ex  (zo  - 2z\ 
(z*- zo  )) Pk Ho  

  

1 + R 

 

3.11+ ) 

 

    

In the range z*  < z z*+ h , where h is the mesh length 

z - zo 	h+ k 	1+ r 
z*- zo  

 

(3.15) 

 

where r =k/h and z*-k is the inflow height of the streamline 

*(x 9 Z z*+h). 	Note that if the flow is incompressible over 

the whole range 0.< z H, then r =13 where p is defined by Eq. (3.11). 

Consequently in the range z* .< z< z*+h , the approximate equation, 

(exact for the incompressible problem) defines the local streamfunction: 

a 2.4, 
az2  

H a* 
+ Ho  dz 

+ R (1 + r)}  exp  (z° 2z\ 
Ho ! 

  

(-1 	R  (1 +r) -1  ex  (-h(l+r)- z) 
J P  

 

(3.16) 
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Since h << Ho 	a condition that can always be satisfied by 

appropriate choice of mesh length, the local streamfunction 

is given by the following standard second order linear differential 

equation. 
a2* 	H 

Ho  az 	C exp(—z/Ho 

 

(3.17) 

 

where C= C(R i z* ) = 1 +R (1 + r)  
r With starting conditions, 

continuity of ic  and 24/az at z = z* , this solution is 

where 

a + (b - CzHo  ) exp(-z/H0 ) 

a 	= 	lif(x = m ,z = z* ) 	C1.1 exp(-z*/H. ) 

b 	= 	CH. (z -Ho ) 

 

(3.18) 

 

Consequently, provided that r(R,z* ) can be defined as a 

function of R and z* , the local solution is explicitly defined. 

Determination of r(R,z* ) 

The value of r for a given R and z*  is determined through 

the use of the energy relationship given by Eq. (3.12). 	In the 

context of this section 

f

("(-B)(z-z0) 

(1/ - B){zo 	z* ).} 

0 4, z 4 z*  

z*. < z < H 

3.19) 

After some manipulation it can be shown that 

2 
- 

1..rz  

	

1 + R(1 + zr2 	2r) 
v2 	 H- z* -1 

Since continuity of mass, together with the assumption of 

incompressibility in z*-k z z*+h requires that 

 

(3.20) 

 

(3.21) 
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it follows that r is given by the appropriate root of the quartic 

equation. z 
ci — (1 + R)q2 - 22q +R H- z = 0 

For the range of R and z*  of interest, Eq.(3.22) has two real 

roots, one less-than unity and the other greater than unity. 

The former is physically acceptable if R< 0, and the latter if 

R> O. 	If R=0 then it is physically obvious that the roots 

are equal. 

z 
Note that in particular if r -H - 

	
Eq. (3.22) reduces to 

q3 - (1 + R)q - R = 0 

i• e• q2 =1 + P(1+ 1/q), the solution of which is r =p , where 

f3 
 
is as defined by Eq.(3.11) in the solution of the incompressible 

problem. 

3.2.2.3 rilp CONSTANT ON INFLOW  

If the inflow vorticity satisfies /)/p = 2A, with A 

constant, and if in particular the fluid is neutrally stratified, 

(y=B) Eq.(3.6) reduces to the linear form 

a 1 Lt.  
--p—aE,VF az) — 2A  

 

(3.23) 

 

With the density profile given by p(z)=ps  exp(-z/H0) 

the solution of Eq.(3.23) subject to the usual boundary conditions 

is 	
* 	{exp(-z/Ho ) - exp(-z*/11. )1 2  

2exp(-z*/fle ) = 1 + exp(-H/H0) 

Therefore in this particular case, the steering-level is located 

at the height where the density is the arithmetic mean of the 

extreme outflow and inflow densities. 	Moreover, the compressible 

solution can also be expressed as a modification of the incompressible 

(3.24) 



solution. 	Letting 5z*  and 5u denote the difference between 

the compressible and incompressible solutions: 

5z* 	ln(cosh H/2H.) 

,- 
6 	( 	) = 2AHOtexpirt 

z
7 4, 

(z 
	H.  

z*) 
 

 

(3.25) 

 

This is the only case where an analytic solution to the compressible 

problem has been found. 

5.2.2.4 — INFLOW VORTICITY CONSTANT  

The full eigenvalue problem represented by Eq.(3.6) and 

the boundary conditions was solved numerically for a representative 

range of values of the parameters H/H. and R= g(); -B)/4-A2. 	The 

results of the computations are displayed in Figs. (3.2, 3.3, 3.4). 

Remarkably, the effect of density variation is in the 

opposite sense to that in many deep systems. 	It is well established 

both theoretically and by observation, that the specific kinetic 

energy pv2  is practically independent of height, in particular 

for sound waves propagating upwards, for gravity waves extending 

to great heights as in tidal oscillations and for the large-scale 

motion - particularly that of very great wavelength that extend 

up to very high levels. 	Thus in these systems, the decreasing 

density allows larger velocities at upper levels, whereas here 

the velocities relative to the incompressible system decrease 

upwards. 	The main distinction between these two classes of 

system is that in the first the vertical displacement of fluid 

particles is not comparable with the density scale height 

(whereas the penetration of energy is), but in the system at 

present under discussion, the fluid particles themselves undergo 

vertical displacement comparable to the density scale height. 
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These solutions are accurate to about 0.1%, but at the 

expense of trivial accuracy, empirical formulae for the 

compressible solutions in terms of the incompressible solutions 

have been obtained. 	Examining the solutions in Fig. (3. 2) in 

the range 0.4 H/H0  4. 2 and for 0.4 R < 5, the depression of the 

steering-level by the density stratification is to good 

approximation a linear function of H/H0  and independent of R. 

Moreover there is a close relationship with Eq. (3.25), where 

bz*  -H2/8114, + 0(1113/811). 	However, the inflow vorticity is 

different in this case, and in fact the following empirical 

formula for the depression of the steering-level is more accurate 

bz *  = -0.11 H2/110  

The corresponding outflow speeds are of the form of a 

linear function of height, divided by a power of the density. 

After some manipulation it is found that: 

-2/16z*  0-4 z 	z*  

bu(z) = 2A[ (z - z * )((32  exp(-z/2H0  ) - 1 ) -Oz* ] 

2A(32[ ( z - z* ) (exp ( -z/2H0  ) 	1) 

z*  4 z 5 Z* -f- 152 *1 

z*+ 15z *1 4 z < H 

(3.26), 

where 132  is the ratio of the outflow to inflow shear given in 

the incompressible solutions by Eq. (3.10). 	The accuracy of the 

above empirical formulae is about 1%- 5% for 6z*  and about 

5% - 10% for bu, for a range of 0 4 R 4 5 and 0 4 H/Ho  4 2. 	These 

empirical formulae are theref ore of acceptable accuracy for 

application in severe storm conditions. 

3.3 - A MODIPT,  FOR SYSTEMS WHERE H >> Ho 

Here the extreme effect of density variation on the system 



If? 

is examined, contrasting with the incompressible solutions 

dealt with in section 3.2.1 which demonstrated the extreme 

effect of baroclinicity on the motion. 	It can be seen from 

Eq. (3.6) that the outflow shear is of the form of exp{ -Cz r---211 H. 
multiplied by a bounded function of z and *. 	Therefore for 

z 	H and H>> H., au -•• 0 —that is there is block outflow in 

upper levels. 	This suggests the model shown in Fig. (3.5), 

for the extreme case where H>> H.. 

z1\ 

FIG. 3.5 - SCHEMATIC DIAGRAM OF 

REMOTE FLOW FOR H >> H. 

If for this model u(x = co ,z =H) can be determined, then 

the steering-level z = z *  may be directly obtained by integrating 

the mass-continuity equation. 	The solutions of section 3.2.2.4 

suggest that u(x = co ,z = H) = u.(x= co l z = 0) = 2Az. is a reasonable 

gppr oximati on (i.e. the effect of density on the extreme outflow 

speed almost exactly counteracts the gain in outflow speed due 

to the work done by buoyancy forces on ascent). 

The steering-level is therefore given by the solution of 

the following simple integral equation for z*• 
2z*  

z*  exp(-z/H.)dz = 	(z-z* ) exp(-z/HO )dz 
2z * 	 0 

(3.27) 
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That is, the solution of the following transcendental equation 

in z.; 	
exp(-2z./Ho  ) + z./Ho  (1 - exp(-H/Ho  )) - 1 = 0 	(3.28) 

Comparison of the solution of this equation for H=4110  with 

the numerical solution of the exact equation, Eq.(3.6), shows 

that the steering-level is given to an accuracy of about 5% by 

the above simple model for extreme compressibility. 

3.4 - APPLICATION OF COMPRESSIBLE SOLUTIONS: CASE STUDIES OF  
CONVECTIVE SYSTEMS  

In comparing with a real, observed system it is more 

convenient to determine the Richardson Number‘.. using an 

appropriate ascent curve on a tephigram and the wind profiles, 

rather than try to directly estimate an equivalent value for R. 

The theory has been used to estimate the height of the steering-

levels and consequently the propagation speeds of severe convective 

storms, squall-lines and the precipitation belts associated 

with cold fronts by using real data to calculate Ri and HAL and 

subsequently using the solutions given by Fig.(3.2) to find the 

corresponding value of z.. 

3.4.1 — THE WOKINGHAM STORM 

This storm, which occurred on the 9th July 1959 over 

S.E. England, was the subject of intensive analysis including 

detailed radar studies by Ludlam and Browning. 	The details of 

this study are given by Browning (1962), and in a more condensed 

form by Browning and Ludlam (1962). 	The thermodynamic state 

and the velocity profile of the undisturbed flow are shown in 

Fig.(3.6) and from these data, Ri = -2.3 and H/He = 1.5. 	(For 

real storms H is defined as being the height of the intersection 
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of the undisturbed temperature profile with the wet-adiabatic 

corresponding to the mean ew  of the surface boundary layer of 

depth one kilometre.) 	Note that for this occasion the low-level 

inflow air cannot become positively buoyant until it has ascended 

to a considerable height (-= 3 km), and consequently in the 

updraught below this level, the kinetic energy of the inflow 

air is converted into potential energy - in fact some 75% of the 

inflow kinetic energy is disposed of in this way. 	This negative 

area must of course be included in the calculation of the 

Richardson Number. 	Moreover, detailed theoretical study of 

flow within convective storms (chapter V) suggests that this 

region is of considerable importance in determining the orientation 

of the updraught/downdraught boundary layer and hence to 

maintenace of the steady overturning. 	The predicted height of 

the steering-level, 4.85 km, and the predicted propagation 

speed 17.5 m s-1 compare favourably with the observed values of 

5 km and 18 m s-1. 

3.4.2 —THE HORSHAM STORM  

The detailed synoptic analysis of this storm, which 

occurred over S.E. England on 5th September 1958, and was most 

intense in the vicinity of Horsham in Sussex, is given by 

Carlson (1965). 	The data shown in Fig.(3.7) defines a Richardson 

Number of -14.5 and a density-scaling parameter HA, = 1.6. 

The largeness of the Richardson Number is due to a combination 

of a very large positive area and relatively small shear on 

this occasion. 	Despite this rather untypically large Richardson 

Number, the theory gives the height of the steering-level as 

6.8 km and a propagation speed of 12 m s-1 precisely the observed 

values. 
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On these and the following four figures, the velocity component in the direction of propagation is written 
alongside the ew=constant line (the mean Ow  of the lowest kilometre). 	The height in kilometres is shown 
alongside the temperature sounding. 	When available, the maximum cloud top height is shown. 
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3.4.3 — A SQUALL LINE  

This case concerns a squall-line, occurring in the 

form of a Nor'wester (a convective system associated with 

Indian pre-monsoonal conditions). 	The relevant atmospheric 

conditions are shown in Fig.(3.8) and these give a Richardson 

Number of -3.2 and H/1-10 = 1.25. 	This particular squall-line 

was tracked on a P.P.I. radar and it can be seen from Fig.(3.9) 

that during most of its duration was over 200 km in transverse 

dimension and only about 20 km in cross-sectional width - a 

markedly two-dimensional system. 	The speed of propagation 

measured from the P.P.I. record was 14.5 m s-1 to which the 

14 m s-1  predicted by the theory compares very favourably. 

3.4.4 - A PRE-MONSOONAL SEVERE STORM  

A severe storm typical of the premonsoonal period in 

N.E. India was analysed. 	Fig.(3.10) shows the thermodynamic 

state of the atmosphere and the velocity profile relevant to 

this particular situation. 	From these data the Richardson 

Number was found to be Ri= -3.8 and the density scaling parameter 

H/110 =1.5. 	With these values the propagation speed was predicted 

-1 to be 13 m s 	and the steering-level 4.2 km, compared to 

the observed values of 10 m s-1 and about 3.5 km. 

3.4.5 - A SEVERE UNITED STATES STORM  

This is a case study of a storm occurring in the mid-western 

states of America. 	More information relevant to this particular 

storm can be found in a report by Browning and Fujita (1965). 

The tephigram and wind profile relevant to this occasion are 

given in Fig.(3.11). 	The Richardson Number was calculated 

to be Ri= -5.6 and the density scaling parameter H/Ho= 1.7, 
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predicting the propagation speed to be 21 m s-1 and the steering- 

level 5.5 km. 	It is interesting that this is an example of a 

case which gives a very poor prediction of the storm motion, 

since the observed propagation speed was 10 m s-1 and the 

observed steering-level 4.3 km. 	However, this particular 

storm was what Browning and Fujita term a "severe right-moving 

storm", in that it moved at a greater angle to the right of 

the mean wind than is considered typical of severe storms. 

Since the error in the observed propagation speed is unlikely 

to be more than a feu metres a second, it is possible that the 

theory of this chapter is inapplicable to storms of this type, 

and that there is some additional mechanism (perhaps of three- 

dimensional nature) responsible. 	It is not possible to resolve 

the question at present, but it is hoped to study the effect of 

three-dimensionality in the future, and perhaps this will 

provide some insight into the reason for the anomalous prediction 

given by the present theory. 

3.4.6 — A COLD FRONT  

A cold front which crossed England on 1st December 1966 

has been analysed in considerable detail by Harwood (1969), 

who from analysis of autographic records, found that the general 

pattern of the wind field was fairly uniform along the length of 

the frontal system - in fact a crudely two-dimensional situation. 

Moreover, Harwood evaluated the normal velocity relative to 

the frontal axis, and the resulting relative flow pattern is 

of a form similar to the cumulonimbus circulation of Fig. (1.1). 

Consequently the theory previously developed was used 

to predict the steering-level and hence the propagation speed 

of the frontal system. 	Fig.(3.12) gives the relevant state of 



FIG. 3.9 - MOVEMENT OF THE SQUALL- LINE CONSIDERED IN 

SECTION 3.4.3. (AS RECORDED ON A P, P. I.) 
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the atmosphere, from which data the Richardson Number was 

found to be Ri=-1.6, and the density scaling parameter H/H.= 

The steering-level and propagation speed were predicted to be 

1.5 km and 20 m s-1  respectively. 	The observed values were 

1.2 km and 18Y2 m 8-1, a favourable agreement. 

3.4.7 — GENERAL POINTS  

Although storms in mid-latitudes usually travel quite 

rapidly relative to the surface, this is by no means necessary 

but is a consequence of the strong mid-tropospheric winds 

characteristic of these latitudes. 	Slow moving systems are 

capable of generating a considerable amount of precipitation 

at one place and are therefore particularly important. 	If a 

storm is to be stationary, the wind relative to the ground 

must vanish at the steering-level. 	Consequently the surface 

wind must at least oppose the direction of the shear. 	In 

frontal zones, where the shear is usually about 3x 10-3  s-1 , 

a typical severe storm with Ri = -2 say and WH. =1.4, will have 

zero propagation speed if the 'surfacd windspeed (in a frictionless 

model) is 13 m s-1 and opposed to the shear. 	This is a fairly 

strong surface wind, and in any case in frontal zones the shear 

and the low-level wind are usually in the same general direction, 

so frontal storms rarely move slowly. 

Stationary storms can, however, be found on the 

poleward side of depressions, where the shear is typically 

about lx 10-3 s-1 and the surface wind is usually opposed to 

the shear. 	For the above values of Ri (note that although 

the shear is smaller than in frontal regions, the positive 

area is often smaller as well so it is valid to consider the 

same size of Richardson Number in the two regions) and H/H., the 

57 
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surface wind needs only to be about 4 m s-1 and opposed to the 

shear to ensure stationarity. 

The theory might also be applied to the movement of 

precipitation belts associated with cold fronts. 	Harper and 

Beimers (1958), studied 51 cases of this type and concluded 

that the steering-level was typically about 700 mb, with a 

standard deviation of about 50 mb. 	It is unfortunate that the 

temperature soundings are not available from Harper and Beimers 

studies, and so it is not possible to calculate Ri for their 

case studies. 	However with Ri= -1.0 and H/Ho =i0.75, fairly 

typical values for such occasions, z*  = 0.48H. 	This gives a 

steering-level of 3.5 km or 660 mb, not inconsistent with the 

observational value of 700 mb quoted by Harper and Beimers. 

3.5 - HEAT AND MOMENTUM FLUXES  

At the present time there is great emphasis on the 

numerical simulation of the atmosphere on a global scale, and 

one of the problems raised by this is the difficulty of feeding 

the fluxes of heat and momentum arising from sub-gridscale 

processes into numerical models in a dynamically realistic 

manner. 	It is essential to take account of these fluxes if 

the equations of motion are integrated over a time-scale comparable 

to the lifetime of the large-scale eddies which transport the 

greater part of the heat and momentum on the global scale, 

otherwise it is likely that the model eddy kinetic energy will 

be too small because the available potential energy of the 

mean flow, from which the eddy kinetic energy is derived, 

cannot be maintained. 

The contents of this section may be useful in the above 

context, because expressions for the transfer of heat and 
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momentum by cumulonimbus convection in sheared flow are obtained 

in terms of parameters which can be measured on the synoptic 

scale. 	In formulating these fluxes it is desirable to 

distinguish two extreme cases. 	First, where the compensating 

descent, necessary to preserve mass balance, takes place over 

an area large compared to that of the updraught. 	Second, 

where the downdraught and updraught are of comparable intensity 

and area. 	This latter case is probably closer to reality for 

severe storms, although the dominant regime must be closely 

related to the maintenance and organisation of steady overturning, 

a subject which will be attempted in chapters IV and V. 	(The 

content of these chapters deals with the details of the 

overturning process, whereas in this chapter the effec=t of the 

convection on the environment is considered.) 

3.5.1 — HEAT FLUXES  

3.5.1.1 — DESCENT AREA » ASCENT AREA  

Suppose that Fig.(3.14) schematically represents a 

cumulonimbus updraught cell. 

REGION 2 
UPWI,RD+ D OWNW ARD 

TBAN-SPORT 'TRANSPORT 
OF LO3 e 	OF LOG 8 _ - 

-131rtTP DRATGITIT  
COMPENSATING 
DESCENT 

z-H 

 	FLUX OF LOG() 
OUT OF STORM 

Z=Z 

RE GION 1 

	 -0 

dy 

FIG. 3.14 — SCHEMATIC REPRESENTATION OF HEAT TRANSPORT BY 

CUMULONIMBUS CONVECTION IN SHEAR WHERE UPDRAUGHT 

AREA « DOWNDRAUGHT AREA 
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pcpw/5 dx 
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GENERATION IN REGION (2) 

If F2 
is the net flux of /3= loge into region (2) of this 

figure, then 

F2 =.s pcpw,r3 dx dy 	p.cpw./S*, 	+ 

l X=0 

 

A 

NET UPWARD TRANSPORT OF j3 
THROUGH THE STEERING-LEVEL z = z*  

(3.29) 

where 	is the descent speed of the compensating current at 

the steering-level, A, is the log-potential temperature of this 

air and A is the area of descent. 	In fact F2 can be rewritten a 

rll F2 =
j 

pc uy3 dx dy 
z*  

FLUX OF 13 
OUT OF STORM 

ir
p*cpw*A, dA 

A 
FLUX OF iS THROUGH THE 
STEERING-LEVEL BY 
COMPENSATING DESCENT 

(3.30) 

Since the ascending and descending air must satisfy mass continuity, 

- p w dA = p w dx dy = pu dy dz 

fH 
p cpu (13 - 13* )dz dy 

 

(3.31 ) 

 

Using the incompressible model of 3.2.1 as an example, 

15- /3*  =t•y+ Pey- 	(z - Z * ) and u = 2/1132(z - z*) , 

so that the net flux of 13 into region (2) is 

3  -2  H F2  = 2Apcp  -3- fy+ f3e1 - 	. 	 dy 
(1 + 

 

(3.32) 

 

H In Eq.(3.32), the term fl = 2Apc
P 3

3 
(1 
0 
 03

(), B:) dy is the net 

transport of /3 through the steering-level, and being a transport 
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term it is dependent on the temperature difference between the 

ascending and descending air and independent of the static 

stability. 	The term f2  
0 , p 2 

= 2Apcp  3 	+ p)3 
 dy 
 in this same 

equation is a generation term and unlike f1  it is directly 

dependent on the parcel lapse 	The total flux F2  is, however, 

directly related to the static stability of the outflow air, 

T= 'y+ (3('y' -B). 	Note that the outflow shear 2Ap2 appears 

explicitly in this expression, emphasising its importance in 

estimating the heat flux. 	Fig.(3.15) shows the profile of /S 

before and after the passage of the model cumulonimbus, in the 

case where the descent is dry-adiabatic and covers an area much 

larger than the updraught. 

The net flux into region (1) can also be calculated since 

it is given by the flux generation in region (1) less the net 

transport through the steering-level, and 

F1 R3  = 2Apcp -5113B 	+  (3  )3 
 dy 
	 (3.33) 

Note that F1 and F2 are of similar form and their ratio is given by 

F1i 	 B: 
F2 - 

 

3.34) 

 

that is, proportional to the ratio of the static stabilities 

of the inflow and outflow air, and to the square root of the 

ratio of outflow to inflow shear. 	Incidentally this proves 

that if the motion is dry-adiabatic and neutral (N=B), although 

there is no net transport of loge through the steering-level, 

there is an equal heating of both layers measured by 

H3  F1  = F2  = 2Apcp  77 dy 

 

(3.35) 

 

It is interesting to find the relative magnitude of the fluxes 

F and F2. 	However Eq.(3.34) is an implicit relationship and 



1-03 1.0 	1.01 	1.02 

.4.1f•v4  

1.03 1.0 	1.01 	1.02 

FIG. 3-16 ••••- PROFILE OF d? WHERE UPDRAUGHT AREA 	DOWNDRAUGHT AREA. 

1.0 

0.8 

0.6 

WHERE UPDRAUGHT AREA a' DOWNDRAUGHT AREA. 

0.2 

FIG-3 	— PROFILE OF 

as 

0.6 

0.2 
Ri •-1.62 

SC  r 4 
4 Al  

62 



1 + R + (1+ 4R)14  
if R> 0 

if -1/4 < R < 0 

gB  

4A2  

1 + R + (1 + 4R ) (3.36) 

The net flux of 

H -2--z*  

x=-H I Z=Z* 

H 	
1 ( 

I pc ultS dz 
P 	PcpwA*u dzi 

x=-2--z*  

H 2fz*  

peru/S*Ddx-

x=-H Z=Z* 

it is more convenient to formulate the problem in terms of the 

nondimensional number R. 	It can be shown that F1  > F2 if the 

following inequality is satisfied: 
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Typically B= 10-7  cm-1  and 2A= 3x 10 3 s-1 so that gB/4A2= 10.9 

and by Eq.(3.36) F1>F2 if R lies in the range 0 < R< 5.9. 
Consequently, for conditions typical of severe storms, if the 

compensating descent is dry-adiabatic and takes place over an 

area large compared to the updraught, there will be a net 

heating of the whole troposphere with the greatest heating in 

the layer below the steering-level. 	This is in the opposite 

sense to the case where the updraught and downdraught is of 

comparable intensity, for in the latter case the air in the 

lower layers of the atmosphere is cooled by the evaporation of 

rain. 	This second case will now be dealt with. 

3.5.1.2 — ASCENT AND DESCENT AREAS EQUAL  

The downdraught in this case is supposed to be maintained 

by evaporative cooling by rain falling out of the updraught. 

In evaluating the generation and transport of IS, it is convenient 

to consider the three distinct layers shown schematically in Fig.(3.16). 

Note that in this ideal antisymmetric regime there is no net input 

of heat over the region as a whole, only a redistribution of 

the form shown schematically in Fig.(3.17). 

into region (2) is given by 

TRANSPORT OF 40 THROUGH GENERATION OF its IN 
THE STEERING-LEVEL z=z*  UPDRAUGHT SECTION OF 

REGION (2) 

GENERATION OF Is IN 
DOWNDRAUGHT SECTION OF 
REGION (2) 

(3.37) 
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where subscripts [U] and [D] refer to updraught and downdraught 

respectively. 	Using mass continuity and for convenience the 

asymmetry condition 

f
H 

F2  = 	pcpu(ISI,u -/5.D)dz 

1 z=z*  

H 

+ 	peru(iefu -i6,,u)dz + 

z=z*  

H-z, 

peru(15,,D -i5D)d 

zo =0 

0  dy 

(3.38) 

z=H 
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AND DOVTNDRAUGHT ARE OF EQUAL AREA 



Using the incompressible model of section 3.2.1 as an example, 
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= 	-z*) z* 	) 

u = 2AP
2
(z z*) 

ua  = 2A(zo  z,) 

After some calculation the heat flux is found to be 

3  H 2  	̀ "Y(1-   3 +21 . 
F2= 2Apcp 3 (1

p
+03 	 p 	p ) 	(y-B) 2 

3)} 

(3.39) 

From the symmetry of the problem obviously the net flux (F
1
) 

into region (1) is F1= F2  , and the net flux (F3) into region (3) 

is zero. 	Fig.(3.18) shows the profile of 8 before and after 

the passage of the model cumulonimbus, in the case where the 

descent and ascent cover an equal area. 

Consequently this is a system which cools the lower layers 

of the troposphere, warms the upper layers but leaves the 

middle layers unchanged - distinct from the process outlined in 

section 3.5.1.1 which warms the whole troposphere. 	Although 

these are both processes of stabilisation in the sense that the 

mean static stability is increased, there is an important distinction. 

This distinction is most important over the sea because in the 

latter regime, the lower layers are cooled and thus the air/sea 

temperature contrast increased with the result that the fluxes 

of heat and moisture across the air/sea interface are enhanced. 

Therefore this antisymmetric type of system defines a process 

which is not only efficient in releasing available potential energy, 

but by cooling the lower layers and (at least over the sea) 

maximises the surface fluxes of heat and water vapour. 	That 	7 

it also ensures that the best possible conditions are available 
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for the smaller scale convective processes to recharge the 

available potential energy of the mean flow on which fresh 

cumulonimbi can feed. 	Over land, the situation is probably 

more complicated since the small-scale convection must be initiated 

by surface heating, a factor which depends on larger scale 

processes in general, and the amount of cloud cover in particular. 

The distinction between the regimes of this and the 

previous section is probably relevant when considering the role 

cumulonimbus convection plays in the growth and maintenance of 

hurricane circulations, because over warm tropical oceans, a 

very efficient way of enhancing the surface heat flux is by 

depositing a layer of cold air over it. 	The former case, 

(3.5.1.1) where there is large-scale, dry-adiabatic descent 

and the lower layers are heated by the cumulonimbus convection, 

has the opposite effect of inhibiting the heat transport from 

the sea surface. 	The distinction between the effects of the 

contrasting downdraught processes at least indicates that care 

is needed in the parameterisation of cumulonimbus processes, 

for instance in global numerical models. 

3.5.2 — DEaIVATION OF HEAT TRANSFER COLklq'ICIENTS FOR STEADY  

OVERTURNING  

The evaluation of convective heat transfer, particularly 

in small scale turbulence studies, is classically by means of 

dimensional analysis, a process yielding a constant of 

proportionality which must be found empirically by observational 

measurements often requiring sophisticated apparatus. 	Here, 

the heat transfer coefficients are determined on a dynamical 

basis without the necessity of empiricism, essentially by 

rewriting the flux equations of section 3.5.1.1. 	The motivation 
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for this is not only because of general interest, but when 

rewritten in a certain form, the equations yield a coefficient 

which is useful as a measure of the efficiency of cumulonimbus 

convection compared to the smaller scale boundary layer processes 

which are instrumental in modifying the large scale thermodynamic 

structure into a form favourable for the development of 

cumulonimbus convection. 

Suppose the heat transfer coefficient is defined as the 

ratio of the heat flux to the gradient of potential temperature. 

K
H 

= 	ae 
paz 

With the heat flux given by Eq.(3.32) the heat transfer 

coefficient corresponding to region (2) is 

H2 	p 2 
Kr, 	= 2A 

3  ci + (3)3  

 

(3.40) 

 

from which equation it follows that K
H 

is uniquely determined 

by R and the undisturbed shear, both of which can be measured 

by routine synoptic observations. 

 

With typical values of 2A= 3x 10-3 s—I  , H= 10 km and R= 1 

substituted into Eq.(3.40), K
H
1=4x10

8 cm2 s-1, which is four 

orders of magnitude greater than the transfer coefficient typical 

of the shallow layer where the flux is nearly constant, and nine 

orders of magnitude greater than the molecular diffusion coefficient. 

(Incidentally note that the transfer coefficient for steady 

overturning given by Eq.(3.40) is of the same form as the molecular 

diffusion coefficient v=—cl, where c and 1 are the r.m.s. speed 

and mean free path of the molecules respectively.) 	The magnitude 

of the transfer coefficient for steady overturning compared 

to that of the eddy processes in the constant flux layer can be 

interpreted as a measure of the relative efficiency of steady 
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overturning and eddy diffusion as heat transfer mechanisms. 

The efficiency difference is in fact almost as great as that of 

eddy compared to molecular diffusion'. 	Moreover, since the 

surface heat transfer is associated with a transfer coefficient 

which is much smaller than that of steady overturning, the 

time-scale required by the surface transfer processes to charge 

the lower atmosphere with potential energy necessary for the 

cumulonimbus regime must be correspondingly large. 	This infers 

that over any given area, the fraction of the time that convection 

assumes the cumulonimbus regime must necessarily be small. 

Similarly, the heat transfer coefficient corresponding 

to region (1) in section 3.5.1.1 can be shown to be 

  

 

2AH2 	03  K
H 3 	(1+ (3)-3 

 

(3.41) 

  

Similar conclusions can be drawn when the heat flux 

formula Eq.(3.40) is compared with the so-called bulk aerodynamic 

formula, 

EH 	= PCrCH(u - u. )(e - 0. ) , 	(3.42) 

where uo , 00  are the speed and potential temperature at the surface. 

The 'drag' coefficient C
H' usually obtained empirically as a 

function of z, has a typical value of about Ix 10-3 at a height 

of 10 m in near neutral conditions. 	The 'drag coefficient for 

steady overturning can be evaluated theoretically from Eq.(5.40) 

since 	
um-u(z.) = 2A132w(1 -Fp) 

e(H)-e( 	riv(1 + p) 

giving C
H 

corresponding to region (2) as 

1  C
H 3(1+0 

This coefficient is consequently uniquely determined by the 

 

(3.43) 
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value of R for the undisturbed flow. 	If R=1, (3 =1.62 so that 

CH = 0.125, that is two orders of magnitude larger than the 

coefficient associated with the turbulent heat transfer -close to 

the air/sea interface, leading to the same conclusions about 

the efficiency of steady overturning as a heat transport mechanism 

as was given before. 

An analogous argument gives CH  for region (1) to be 

C
H - 3(1 + 

The main value of the flux formulae given by Eqs. (3.32, 

3.33, 3.39) arises because they express the total heat flux in 

terms of parameters which can be readily calculated from standard 

synoptic observations. 	The undisturbed stratification and 

wind field can be obtained from radiosonde ascents, and the 

parcel potential temperature from assuming adiabatic ascent at 

a mean 61w for the surface boundary layer. 	This gives sufficient 

information to enable IR to be calculated and consequently z*  

and P by Eqs. (3.10, 3.11). 

3.5.3 — MOMENTUM FLUXES  

The solutions on Figs.(3.3, 3.4) show that buoyant 

overturning acts to increase shear above the steering-level and 

transfers momentum into the mean flow above this level. 	The 

amount of momentum transferred into this layer can be calculated 

since the outflow speed and the steering-level has been 

calculated for a given undisturbed state. 

This momentum transfer is given by 

pu
2 dz dy p u.2  dz dy 

oz  

where u, is the undisturbed speed. 	For example, in the 
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incompressible problem, u = 2A z - ) and u. = 2A( z - z*) and 

so for this case, 

f

H 

FM 	= 	4A2((31+- 1)p(z - 
z 

z*  )2  dz dy 

F 	4A2  (131+ - 1)  H3 d
M 	3  (1+ 03  P 	

, 

 

(3.45) 

 

Eq. (3.45) represents the amount of momentum transferred into 

the upper levels both in the case where the updraught area is 

much smaller than the downdraught area and where these areas are 

equal, the difference being that in the latter case an equal 

amount of momentum is removed from the surface layer of depth H- z*. 

The cumulonimbus therefore redistributes momentum. 

For typical severe storm conditions with H= 10 km, 

2A= 3x 10-3 6-1 and R= 1 so (3= 1.62. 	Therefore where there is 

cumulonimbus convection, the amount of momentum transferred 

into the layer above the steering-level is 

F = 750 dyne cm M 
	 -2 

This is a very large value compared to the momentum transfer,: 

in the surface layers by turbulent eddies, because in this 

region the corresponding value is about 0.5 dyne cm-2 

Cumulonimbus convection is therefore an important momentum transfer 

mechanism. 	The implication will be discussed in chapter VI. 

3.5.4 — DERIVATION OF A MOMENTUM TRANSFER 00E1FICIENT FOR STEADY  

OVERTURNING  

An effective way of comparing the relative efficiency 

of heat and momentum transfers is to obtain an expression for 

the ratio of the corresponding transfer coefficients. 

A momentum transfer coefficient Km  is defined in a form 



analogous to the heat transfer coefficient defined in section 
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3.5.2 
i.e. KM  

au 
8z 

 

(3.46) 

  

where 8u is  az 
the outflow shear. 

au 
In the model -6E 2Af3

2
, and 

FM  is given by Eq.(3.45), so it follows that for steady overturning, 

KM  is given by 
KM 	2AH2 3  p)3(41:114 )3 	(3.47) 

The ratio of the heat and momentum transfer coefficients is 

therefore p4 

KH 	p5 

 

3.48) 

  

Therefore for steady, buoyant overturning (R > 0, p >1), 
K
H 
 > K

M' 
 for instance if R = 1, p .1.62 and Km/KH. 0.53)  so 

heat is more readily transferred than momentum. 

3.5.4 — HEAT AND MOMENTUM FLUXES FOR PARTICULAR STORMS  

The flux formulae are used to estimate the heat fluxes 

by severe storms using actual data to calculate the values of 

the various parameters. 	The origin of these data has been 

discussed in a previous section. 	The particular values obtained 

for F
H 
and FM  quantify the importance of the storms as heat and 

momentum transfer processes, compared to surface processes. 

(a) Wokingham Storm  

The surface wet-bulb temperature observed after the 

passage of this storm suggested that there must have been considerable 

evaporation of rain into the downdraught, which was vigorous 

judging by the strength of the gusts behind the squall-front. 

Therefore, the regime in which the updraught and downdraught 

are of comparable area is used to estimate the heat flux. 	From 

the data the value of the variables are estimated as 



2A = 3 x 10-3 s-1 

B 	= 	1.01 x 10-7  cm-1  

1: 	= 1.13x 10-7 cm-1 

11 km 

giving the following (incompressible) values for R, p and z*. 

R = 0.86 

p = 1.43 

0.59 

Using Eqs.(3.39, 3.47) the heat and momentum fluxes in the 

incompressible model are found to be 

FH  = 68 cal cm-2  min-1  

Fm  = 2.2x103  dyne cm-2  

(b) Horsham Storm  

The observations in this case also suggest that the 

updraught and downdraught were of comparable area and intensity. 

Using observations) data 

2A 	= 1.8 x 10-3  s-1  

B 	= 0.99 cm
-1  

1.29 cm-1  

H 	= 11.5 km 

giving the (incompressible values of R, p and 	as 

R = 10 

p = 3.74 

= 0.79 
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The heat and momentum fluxes in the incompressible model are thus 
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F
H 

= 95 cal cm-2 min-1 

F
M = 2.6x 10

3 dyne cm-2  

3.6 — EFFECT OF NON-HYDROSTATIC PRESSURE ON STEADY FINITE-AMPLITUDE  

OVERTURNING 

1 	LE The quantity --v2  + 	-I 2 

	

	 gb15 dz is conserved along - p zo  P 

streamlines in steady flow and may be used to find the kinetic 

energy at a level in terms of the potential energy release, the 

inflow kinetic energy and the nonhydrcstatic pressure field. 

Using the fact that if the remote flow is horizontal, 

then the pressure must be hydrostatic and therefore, 

P 
= co ,z0  ) g5i6 dz 	(3.49) 

0 

  

and if the x -component of the momentum equation is integrated 

at constant z, 

L2-(x z) = 	=00 ,z) 	Du 
P 	

--t-D  dx , (3.50) 

together with z 
1 2 	 1 2 122.  —v + -6-R 4 goig dz = --u0  + 2 - 	P 	P 	2 	P ' 

zo  

 

(3.51) 

  

it can be shown that 
jiz 

2-  
v2 = 2 

1 
"° g(E0 - EyS)dz 

zo 	 x=O 

 

(3.52) 

 

Eq.(3.52) indicates that the effect of non-hydrostatic pressure, 

measured effectively by the (positive) term on the extreme R.H.S. 

of this equation, has the effect of decreasing the updraught 

kinetic energy thus acting against the enhancing effect of the 

1 inflow kinetic energy. 	The residual 7  u? 	Du - 	x is in fact 

a measure of the departure of the updraught kinetic energy from 

the parcel theory value. 	It is interesting to deduce a rough 

measure of this departure. 	In particular for the limiting 



streamline defined by zo = 0 at the steering-level z = z* , since 

	

au 	au 

	

at this level u— ax 	az 
<< w— 

' 
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CO 

f Du , x 	H . w --- 
Dtu rz

- au ---% z=z. 

ou z= z  * ----s o  u o z. az 
x=0 

(by continuity) 

u(x=m,z0=0) 	u(x=c0,zo=0) 
z 2z* 	* 2  

2 u (x=m ,zo  =0) 
4 

2, kx=01z=2*) 
2, u kx=c0z0=0) 

4 + 	g( 616p- 6;01)dz 

 

(3.53) 

 

0 
The updraught speed deduced by parcel theory will be in error 

by about 13(2 'z°=0)  at the steering-level when the pressure is 
./T 

non-hydrostatic within the storm, as against u(x=00,zo =0) if the 

pressure is assumed to be hydrostatic everywhere. 

Generalising from these results, non-hydrostatic pressure 

reduces the updraught speed, and therefore will reduce the 

growth rate of the developing storm, as compared to that 

assuming the pressure hydrostatic within the storm. 	Moreover, 

the effects of non-hydrostatic pressure and relative inflow 

kinetic energy are in opposition so the result is to bring the 

updraught speed close to that estimated from parcel theory. The 

updraught speeds in the nonhydrostatic and hydrostatic problems 

are'related by 

R+ O.5  
R+'1 ICI  

where the prime denotes the nonhydrostatic value. 
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CHAPTER IV  — TWO-DIMENSIONAL FREE-BOUNDARY (DISCONTINUOUS) MODELS  

The main problem in representing the detailed flow 

within the storm with a free-boundary approach arises in modelling 

the boundary layer between updraught and downdraught by suitable 

boundary conditions. 	Since observations suggest that in many 

storms there is a rapid transition from updraught to downdraught 

over a distance small compared to the length-scale of the storm, 

boundary conditions implying discontinuities in the dependent 

variables at an interface between the draughts is a possible 

way of modelling this boundary layer. 	The justification of 

the validity of this discontinuous model is far from trivial. 

In chapter II, the fully nonlinear vorticity equation 

was integrated along streamlines, giving an expression for the 

vorticity in terms of z and ' and a corresponding partial 

differential equation for the streamfunction (Eq.3.1). 	This 

equation is elliptic and provided appropriate boundary conditions 

are defined, the resulting problem is of the free-boundary type 

in which both the streamfunction and the shape of the updraught/ 

downdraught boundary can be determined. 	Kinematic boundary 

conditions determine the streamfunction for a given interface 

shape, while the shape of this interface is determined by the 

dynamic boundary condition. 

The form of the boundary layer between the draughts, and 

consequently the nature of this dynamic boundary condition, is 

crucial to the following analysis. 	This thesis will be concerned 

with four distinct forms of boundary layer. 	The two types 

examined in this chapter are discontinuous in the sense that 

the velocity or both the velocity and the temperature are 

discontinuous at the updraught/downdraught interface. 	The 
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distinction between these two forms is important because where 

the velocity is discontinuous and temperature continuous, there 

is a finite generation of negative vorticity, a feature which 

must always be present in the physical problem. 	However if 

the temperature is also discontinuous, the interface defines 

a vorticity generating sheet as well as a vortex sheet, with 

the result that vorticity of positive sense only is developed 

within the body of the flow. 	It -will be shown that the validity 

of a boundary condition having a discontinuity of temperature 

and velocity is determined by the size of the Richardson Number. 

In chapter V, another two types of boundary will be 

examined. 	First, where all the variables are continuous - 

distinct from the discontinuous models of this chapter since 

vorticity and vorticity generation are everywhere finite. 

This model leads to the determination of an equivalent discontinuous 

model for the interfacial boundary layer, a boundary condition 

which not only implies discontinuities in temperature and velocity 

at the interface but also a discontinuity of pressure. 

4.1 -- THE FUNCTIONS F AND G USED  IN  THE DISCONTINUOUS MODELS  

In principle, the free-boundary problem defined by Eq.(3.1) 

and its boundary conditions can be solved numerically for arbitrary 

functions F and G, but only at the expense of added labour. 

Since too much generality only obscures the picture, simple 

forms for F and G are used to illustrate important features. 

Subsequently, the function G, the vertical shear of the undisturbed 

flow remote from the storm, will therefore be taken as G(*)= 2A, 

where A is constant. 	In mid-latitude severe storms, the 

windspeed does in fact increase approximately linearly with height 

(although the wind direction, especially in the lowest kilometre, 
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is far from constant due to the Ekman effect), so in two-dimensional 

models there is some justification for this simplified form for G. 

The function F, the parcel potential temperature, is 

not so justifiably represented in simple form. 	The effects of 

the wet-adiabatic process require representation particularly 

the release of potential energy, preferably without having to 

bother about the actual details of the process. 	If the parcel 

potential temperature is assumed to be a linear function of height, 

then this release of potential energy can be at least crudely 

represented. 	This form has already been used in chapter III, 

and this asymptotic case gave acceptable results for the remote flow 

field, the height of the steering-level, propagation speed 

and a measure of the heat and momentum transports. 	Encouraged 

by these results, the same formfor F is used in the determination 

of the detailed flow within the storm. 

i.e. 	F(11,z- zo ) = bzo  + 'y(z- zo) 	, 

 

(4.1) 

 

where b(z0 ) is the static stability of the undisturbed flow 

and 'Y is the (constant) parcel lapse. 	In the model where the 

temperature is allowed to be discontinuous at the updraught/ 

downdraught interface, it is assumed that b=B , a constant. 

Where the draughts form an antisymmetric system, this gives a 

log-potential temperature discontinuity of ('y- B)H at the 

interface. 	Fig.(4.1) schematically shows the remote log-potential 

temperature, before and after convective overturning has 

taken place. 

Since a model having the temperature continuous at the 

interface is also required, a particular form is taken for the 

static stability. 	In the main part of the flow b=B but in 

H a boundary layer of asymptotic inflow depth E, b =11  + CY -  B) (2E 1 
I ) 
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—a form illustrated in Fig.(4.2). 	Therefore in this case, 

the temperature is continuous at the interface between updraught 

and downdraught. 

4.2 — THE KINEMATIC BOUNDARY CONDITIONS  

Since Eq.(3.1) is elliptic, for a given interface shape 

it is sufficient to prescribe Dirichlet boundary conditions on * 

to obtain a solution. 	The convective system studied here is 

characterised by the inflow and outflow being on the same side, 

so at the rigid boundaries z = 0 and z=H and at the free-

boundary defined by the updraught/downdraught interface, the 

streamfunction must take the same constant value. 	At these 

boundaries it is convenient to let 4r
2 	The outflow/inflow 

boundary condition utilizes the asymptotic solutions obtained in 

chapter III, or in the case where the temperature is continuous 

those of section (4.4.1). 	This completely defines the kinematic 

boundary conditions shown schematically in Fig.(4.3), and 

together with Eq.(3.1) these are sufficient to define the 

streamfunction for a given interface shape. 

However, the definition of the additional (dynamic) 

boundary condition at the interface is the most difficult, and 

this is the essence of most of the remainder of the analysis. 

4.3 — A PARTICULAR ANALYTIC SOLUTION  

In general Eq. (3.1) together with its boundary conditions 

defines a very complicated nonlinear problem. 	Even the asymptotic 

form can be solved analytically only for incompressible flow 

with constant parcel lapse and constant undisturbed shear. 

Generalisation of this solution to two space dimensions is 

impossible, not only because of the high degree of nonlinearity 
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of the equation, but also because of the complicated general 

shape of the interface. 

However for neutral overturning ('Y= B), Eq.(3.1) can 

be transformed into Laplace's Equation. 	Solutions of Laplace 

in two dimensions can be analytically intractable even if the 

boundary shape is of fairly simple form. 	Fortunately in 

incompressible flow, symmetry demands that the interface should 

be perpendicular, and solutions in this simple case can be found 

by standard methods. 

For incompressible, neutral overturning Eq.(3.1) reduces 

to a Poisson equation; 

p2 r = 2A 

 

(4.2) 

 

	

and letting * = Az ( z - H) + Az2 + 	the equation for IP , (the 

perturbation on the undisturbed flow of constant shear 2A) 

satisfies Laplace's Equation. 

	

V
2
*' = 0 	 (4.3) 

Using the boundary conditions on*, the corresponding conditions 

on 4"  are 
* ' 	= 0 	at z = 0, H 

fir' -" 0 	as x->co 

*' = Az(H-z) 	along the interface x= 

A series solution for *1 , found by separation of the 

variables x and z is 

ir'(x,z) = —
H 	

bn sin
nnz  --- e-nnx/H 

n=0 

where 	bn = 
	

Az(H - z) sinnH dz 

0 
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Consequently, the full solution is 

(x,z) = Az( z _H)+Az2 + 8AH3 ); 	 . 
* * 	7t3 	(2m+,0  3  S111(2M+1)21-1--  e-(2111÷1)nK/11  

m=0 

 

The vertical velocity at the interface x=0 is given by 

2 cp  
= - 	- 8AH 	1 	sin(2m+1)122. 

	

ax TE2 		 (2m+1)2  
m=u 

 

(4.5) 

 

The sum of this series given in Fig.(4.4) indicates that quite 

a vigorous circulation can persist even in the absence of available 

potential energy, the draughts being maintained by the inflow 

kinetic energy. 	If for instance the shear is 5x 10-3 s-1, as 

in the Wokingham storm, then a maximum updraught speed of 

w = 18.5 m s-1  could be maintained without any buoyancy. 	This 

is a substantial updraught and is a simple example of the importance 

of shear on the intensity of the circulation. 
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4.4 — THE UPDRAUGHT/DOWNDRAUGHT BOUNDARY LAYER AND THE DYNAMIC  

BOUNDARY CONDITION AT THE INTERFACE  

As implied earlier, the effect of negative vorticity 

generation in the interface region on the orientation of the 

flow within the cumulonimbus is not obvious. 	Therefore it is 

best to proceed rather carefully and using the momentum equations, 

derive general conditions which have to be satisfied in the 

boundary layer, particularly for the pressure change across the 

layer. 

For this purpose it is convenient to define a coordinate 

system (1,m, n), where 1 is directed along boundary layer axis, 

n is the normal to this axis and m coincides with the j axis in 

the (i, a ,k) coordinate system. 

The momentum equation Eq.(1.7) with f« fit  can be written as 

az 	 ,1 2 
at 	+ v ,,k -2-  Y. ) + 4A 	+ C7(1L) — g of3 k = 0 

where the vorticity is defined by 

=+ 0—Y-n — aval m + 	— —7T-in8v ) an am - VI am - am al - 

The n-component of Eq.(4.6) is 

at 	a f1 2, 	LIT.n LI\ 	a a 	+ TE`TY ) vi( 	— 	) 	) 	g 5/6 COSa = 0 al 	an 	an p 

(4.6) 

(4.7) 

(4.8) 

so in steady state, where a is the angle between the k and n axes 

811'2 	
:122. 
p '‘ 
	

via, 	g 416 cosm = 0 	(4.9) 

1 av 
l al Define r = 
v
— --Il l  then r is a measure of the radius of curvature 

of the streamlines relative to the interface. 	Integrating across 

the boundary layer from An1  to Ant, in general functions of 1, 

(where subscripts [1] and [2] denote updraught and downdraught 

variables respectively) the following is obtained 



6n1 f An1 	Ant 
2 

g EviS c os a, dn  dn 
[71,r

n + 
1 2 L5.21 

-4,n2 	-402 -6112 

(4.10) 
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The first term on the R.H.S. of Eq.(4.10) is directly related 

to An = 	+ An2  and to the temperature difference across the 

boundary layer, while the second is a measure of the effect of 

centrifugal accelerations on the pressure field. 

At this stage, a distinction must be made between having 

a real discontinuity in the variables of the physical problem 

(which is not the case here) and modelling a rapid change over 

a small distance (which is the object of this exercise). 	In 

(subsonic) atmospheric motion, real discontinuities in the 

temperature, velocity or pressure fields do not persist; for 

instance a discontinuity in the velocity field would be dynamically 

unstable according to the summary of chapter I. 	Consequently, 

real discontinuities are only of academic interest here, but it 

is interesting to note that if V is finite, a real pressure 

discontinuity can persist if 

[U.  

An1 2 

2 
1 
--v1 
	+ lim 	—1 do = 0 	(4.11) n 

An-,0 
-An2 

That is if the limiting normal component of the velocity is 

different on each side of the interface and/Or there exist 

unbounded centrifugal accelerations at the interface, a possible 

feature of corner regions. 	If these do not exist then the 

pressure must be continuous at the interface. 

However, rapid changes over small distances are common 

in the atmosphere, not only in this cumulonimbus problem but 

also, for example, in frontal regions, temperature inversions 
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and jet streams. 	The rapid change observed in the updraught/ 

downdraught boundary layer of severe storms is, in this chapter, 

modelled by the boundary condition continuity of pressure at 

the interface; this condition implies interfacial discontinuities 

of velocity, vorticity and temperature. 

It is convenient in practice to reformulate this boundary 

condition in terms of kinematic quantities. 	For this purpose 

the Bernoulli Equation is used in the form: 

-v
-

2  + 	- 	g 6/3 dz = function of * only 	12) 
P 	z 

Applying this equation to limiting streamlines in the updraught 

and downdraught branches of flow with the usual subscript notation, 

1 	

1 [12P 	- RY'2 
+ 	g 6151  dz - 	g 462  dz + fi(*) - f2(*) 

2 	zei 	ze2  

1 	.1.  LT_ 
fi.(11r) = 1 
	

p  
.L.E. ; 	

f  2 (  *) 	 711°2 	p 

the inflow, and identical if the flow is antisymmetric around z= 

For the antisymmetric problem considered here it is convenient to 

let zei  =z,,2  =H/2 , in which case 

a

p - 
[ 

1 

2 

= - 

_1 

-v2 	1 
Li 	j [ 	

• 

2 

rz g(616
1 
- 02)dz + 

Jr11/2  

----(4.17` 

Since for the cases studied in this chapter the pressure is 

continuous, 
j1 

1 2 
g(affSi  Evd2)dz 

2 f H/2 

  

 

(4,14) 

 

  

Therefore in kinematic terms, continuity of pressure expresses 

a balance between the change in the kinetic energy and the change 

where are functions of 
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in the available potential energy across the interface. 	The 

analysis of this chapter distinguishes two distinct cases. 

First, where the temperature is continuous at the interface, 

Eq.(4.14) shows that the boundary condition to use in practice 

is continuity of speed. 	Second, where the log-potential 

temperature has a discontinuity of magnitude ('y - B)H at the 

interface, Eq.(4.14) becomes 

gHey B)(z - H/2) 	 4.15) 

4.4.1 — THE EFFECT OF NEGATIVE VORTICITY GENERATION IN THE 

INTERFACE REGION ON THE REMOTE FLOW  

The question posed in this section is - under which conditions 

can the temperature gradient and hence the vorticity gradient 

be increased in the interfacial boundary layer (by making it 

narrower) and still maintain steady overturning? It will be 

shown that it is not always possible to have a discontinuity of 

temperature at the interface, a limit being set by the size of 

the Richardson Number. 

Negative vorticity generated in the interface region 

has the effect of decreasing the fluid speed in the neighbourhood 

of the interface and the outflow speed in a boundary layer. 	This 

section will be devoted to examining this effect on the flow 

remote from the storm. 	Since the kinematic boundary conditions 

on the steady flow demand that the outflow speed must be positive 

for z>z* , for each value of R (defining the flow in the main 

part of the region) and for each temperature gradient across the 

interfacial boundary layer (a measure of the negative vorticity 

generation) there exists a spectrum of boundary layer thicknesses 
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defining possible outfloWs. 	One limiting case was investigated 

by Green (1962) and this will be considered in greater detail in 

this section to examine the validity of a boundary condition 

with a discontinuity of temperature. 

The effect of negative vorticity on the remote flow field 

is represented by a model with the undisturbed log-potential 

temperature shown in Fig. (4.5), with static stability b = B 

for O z E H and b = -- for - O zo  < 0, where T is the temperature 

difference across the interfacial boundary layer. 	Constant 

parcel lapse 	and constant undisturbed shear is assumed, to 

enable the results of section 3.2.1 to be used in the region OE 

while in the region HE z < D6  additional analysis is imposed. 

For this region 

F( *,z -z, ) = ,f3(x=c0,z=0) + (Y --1)zo 

giving 

(Y-5) / 2A(z,- zo  ) 

 

(4.17) 

 

Substitute Eq.(4.17) into Eq.(3.1) and obtain 

  

  

ti 2A  ± g(Y T/o)1 + z- z 
2A 	 IA/T-frA. 

 

(4.18) 

   

to define the outflow in HE zE D6  in terms of the nondimensional 
- T number RB R( Y A) , of the form of a boundary layer Richardson 

4A2  
Number. 	From Eq. (4.18) the * distribution can be constructed 

for HE z< D6 , given the f ollowing boundary conditions, obtained 

(in terms of R) from the solution in O. zE H and continuity of * 

and velocity at z = H. 

2 •••• 	Az 

az 2Ap2(H— z) 
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Incidentally, in contrast to Eq. (3.6) at z = z. , Eq. (4.18) is 

nonsingular at z = H, so there is no difficulty in obtaining 

second order starting values for Ili. 

The length 6 is implicit in this solution, but since 

by definition, b and D6  lie on the same streamline *(x=co ,z= D6), 

it can be found explicitly by solving 

(x=o3 ,z=Do ) = A( z - z* )2  

= 	.11/75---c=c0/ A 

 

(4.19) 

 

If for a given R, -RB is sufficiently large (i.e. a 

sufficiently steep temperature gradient across the boundary layer) 

so that the vorticity is negative in H. z D 6 , then for some z = D 

the outflow speed becomes negative and consequently D - H defines 

the maximum outflow thickness of the boundary layer. 	The 

corresponding maximum inflow thickness (bmax)  can of course be 

found by solving Eq. (4.19) with Do  = D . 

For given values of the parameter R in the 'unmixed' layer 

z H, the continuous lines on Fig. (4.6) define the critical 

fractional length 6 	/(D + bmax)  as a function of R 6 B  /(D bmax ) max 	 max 
This diagram shows that for given values of R and RB  , only values 

of 6 satisfying b 6max are permissible in steady, two-dimensional 

overturning. 	For given R, the broken lines on this diagram show 

the fractional length 6 as a function of RB,  b/D as defined in 

the model with the continuous temperature distribution at the 
1 	D interface (in which case RB  = R(-z e - 2 bf ). 	It can be seen from 

this figure that if in this model R 1 , steady two-dimensional 

overturning can exist for all lengths b ranging from bmax  down 

to infinitesimal values; that is, it is permissible to model 

a steep gradient of temperature by a temperature discontinuity 
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FIG. 4.6 	THE. LIMIT ON STEADY, TWO-DIMENSIONAL OVERTURNING 

DETERMINED BY THE EFFECT CJF NEGATIVE VORTICI TY 

GENERATION IN THE INTERFACE REGION ON THE 

REMOTE FLOW. 
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(a) The continuous lines define the maximum possible 

value of 	tifir)+6) as a function of MAD +S) 	a 

number proportional to the temperature difference 

across the interfacial boundary layer, in isopleths 

of R. 

(b) The broken lines define the value of CAI as a 

function 	of 	R,,E/H 	for 'the particular model 	of 

section 4.4.1. 	The equation of these lines is 

12,C/H = R(1 - 11/2C ) . 

Cc) 	The critical value of the Richardson Number for 

steady, two-dimensional overturning can be seen to 

be 	Ric -1.62 	i.e. R = 1-0 ) 
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for this range of R and still maintain steady two-dimensional 

overturning. 	It is difficult to imagine that the origin of 5 

or the precise details of the distribution of temperature across 

the interface are crucial, so the conclusion is that steady 

two-dimensional overturning is only possible if -0.25 .5, 1245, 1 , 

the lower limit being obtained from Eq. (3.10). 	If R > 1 or 

R < -0.25 , the flow is presumably not steady or not two-dimensional. 

Since the Richardson Number is more physically acceptable than R 

this limit is given alternatively by -1.62.<.. Ri 0.75. 

4.4.2 — THE EFFECT OF NEGATIVE VORTICITY GENERATION IN THE  

INTERFACE REGION ON THE DETAILED OVERTURNING (VELOCITY  

DISCONTINUOUS AT INTERFACE) 

In this section, detailed two-dimensional solutions 

are found for the model with a continuous pressure and temperature 

distribution and a discontinuous velocity field at the interface, 

and the effect of the negative vorticity production in the 

neighbourhood of the interface deduced from the solutions. 

The free-boundary problem to be solved in this section is 

 

2A.+ 

2A + 

g(Y-B)  tz - z01 
2A 	z0 i 0 zo  E 

 

a 211, 	a 2 1.,  

a ax2 	z2  

  

g(-Y -  B)  (1 _ H liz- zo\ 
2A 	\ 	26/k z*- zo l 

 

   

where e/H is a specified fractional inflow depth of the interfacial 

boundary layer, and is related to the length 6 of the last section 

by E/H = VD5 + 5) , (the difference between E and el is only 

one of scale). 	zo  is defined by zo  = z* 	. The kinematic 

boundary conditions are those given in section 4.2, with the 

inflow/outflow conditions being obtained by scaling the asymptotic 

solutions of section 4.4.1, and continuity of pressure is the 
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dynamic boundary condition at the interface. 

This free-boundary problem was solved numerically for 

various values of R and RB = R -A-) . 	A selection of solutions 

are shown in Figs. (4.7 - 4.9). 

From these solutions, as the temperature gradient across 

the interfacial is increased, the interface is progressively 

more tilted into the updraught. 	This behaviour may be visualised 

as follows: 	In the updraught boundary layer, a particle tends 

to be retarded by the effect of negative vorticity as it ascends, 

but the dynamic boundary condition (continuity of pressure) in 

effect demands continuity of speed, so the interface has to be 

tilted into the updraught squashing the streamlines closer 

together i.e. generating a local pressure field to accelerate 

the fluid to counteract the slowing due to the negative vorticity, 

and thereby satisfy the boundary conditions. 

4.4.3 — VELOCITY AND TEMPERATURE DISCONTINUOUS AT THE INTERFACE  

It was shown in section 4.4.1 that the finite vorticity 

generation in a boundary layer across which there is a finite 

gradient of temperature can be validly modelled by a temperature 

discontinuity, at least if -1.62.5 Ri4 0.75. 	In this section 

therefore, detailed solutions are obtained for the model with 

a continuous pressure field but with the velocity and temperature 

fields discontinuous at the interface. 	That is, the free-

boundary problem defined by the partial differential equation, 

a21, 	a2t  

ax2 	az2 
2A + g("Y-B)  tz -z, 

2A 	\ z*-zo 

together with the kinematic and dynamic boundary conditions 

of the previous section, except that the inflow/outflow boundary 

condition is in this case given by the asymptotic solution of 

section 3.2.1. 
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The solutions to this problem for representative values 

of the nondimensional number R are given in Figs.(4.10- 4.14). 

From these solutions, if R> 0 (i.e. buoyant overturning with 

a release of potential energy) the flow is orientated with the 

updraught lying below the downdraught, the angle of tilt 

increasing with R. 	For negative R with -0.254, 1R.. 0, (i.e. 

overturning generating potential energy), the orientation is 

in the opposite sense with the updraught sloping over the 

downdraught. 	A more detailed discussion of the implications 

will be given in the following section. 

4.5 — CONCLUSIONS ON THE DISCONTINUOUS MODELS OF CHAPTER IV  

Assisted by the solutions of the previous section, it 

is possible to prove a necessary condition for the existence 

of a solution to the free-boundary problem considered in that 

section. 	Since continuity of pressure at the interface demands 

that the kinetic energy change across the interface is equal 

to gH(7- B)(z- H/2), and from the solutions in Figs.(4.1 0- 4.14), 

z=H is a stagnation point for the downdraught at the interface, 

the condition to be satisfied at z= H on the updraught side of 

the interface must be 

Ixl = jg(y-B)*. H 	 4.2-' 

The asymptotic outflow speed at z = H is 

Iv i  
6
2 

2A 
1+(3 

 

(4.23) 

 

and so from the form of the solutions it is readily seen that 

a solution to the free-boundary problem can exist only if: 

(12 
ig('y - B) 	2A 1 +6 

i.e. only if .0 
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A little algebra shows that the limit on R from the existence 

of a solution to the free-boundary is defined by the solution of 

1/2 
	

1 + 2R+ (1 +  

3+ (1 + 4R)14  

It can be shown that R= 1 defines this upper limit, with the 

result that a necessary condition for the existence of a solution 

to the free-boundary problem of the last section is -0.25,5, R. 1 . 

It follows that R= 1 defines an upper limit to steady, two-

dimensional overturning, a condition obtained independently in 

section 4.4.1. 

Comparing the model solutions of sections 4.4.2 and 4.4.3, 

it is clear that the presence of a finite generation of negative 

vorticity in the interface region, (through a continuous 

temperature distribution) does not alter the general orientation 

of the flow within the storm - the updraught lies under the 

downdraught in both models. 	This verifies the generalisation 

from the asymptotic argument of section 4.4.1, where it was 

concluded that a rapid change of temperature (and hence vorticity) 

could validly be modelled by a temperature discontinuity (a 

vorticity generating sheet). 

The results so far suggest that this orientation of the 

flow with the updraught/downdraught boundary sloping downshear 

is a feature of steady, two-dimensional, wet-adiabatic flow 

of Richardson Number satisfying -1.624 Ri4 0.75. However, 

before being committed to this conclusion, it is necessary to 

ensure that a discontinuity of velocity at the interface is a 

valid way of modelling the shear across the interfacial boundary 

layer, and also to examine if in fact continuity of pressure 

is, in general, an adequate dynamic boundary condition to model 
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the interfacial boundary layer in the two-dimensional, steady 

convection at present being studied. 

With these problems in mind, the next chapter deals 

with initial value problems in which flow fields are generated 

by given sources and sinks of heat, with steady-state solutions 

being of particular interest for comparison with the discontinuous 

models of this chapter. 
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+ div 
Dt 	g ax

a(V) = 

div(p v) = 0 

D(O/S) 
-B) Dt 

0 

where T> B , 

CHAPTER V - TWO-DIMENSIONAL CONTINUOUS MODELS  

The updraught/downdraught boundary layer examined in 

the first part of this chapter is distinct from that of the 

previous models in that the velocity, temperature and vorticity 

are all continuous. 	It is interesting to examine the effect of 

different sources and sinks of heat on the orientation of the 

flow, and in order to model the updraught/downdraught boundary 

layer, the solutions are used to define an alternative dynamic 

boundary condition to continuity of pressure. 	This new boundary 

condition implies a discontinuity of velocity, temperature, 

vorticity and pressure at the interface, and models a physical 

process in the boundary layer - cooling of the low-level and 

warming of the high-level inflow air in this region. 	It is 

used in one of the free-boundary models of the last chapter and 

the solution compared to that of the continuous models. 

5.1 —THE GROWTH OF SMALL-AMPLITUDE DISTURBANCES IN UNSTABLY  

STRATIFIED SHEAR FLOW  

The convective overturning in its steady-state form is 

essentially of finite amplitude since the vertical displacement 

of particles is comparable to the height scale of the system. 

Nevertheless during its initial development from the undisturbed 

condition, the motion must be of small amplitude and hence the 

linearised theory applicable. 

The following set of equations, 
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is linearised in the classical way by introducing small 

perturbations on the undisturbed, horizontal flow, and 

ignoring variations in the y-direction. 	Since Eq. (5.2) allows 

the definition of a streamf unction in the form, 

u = - it • 	- _ 
az 	P w 	ax -----(5.4) 

itis convenient to linearise the equations with respect to 

= 	o 	+ Real part of { h(z) exp i(Xx - at )1 

= 	(r. -B)z+ Real part of {g(z) exp i(Xx - at )1 

Substituting Eqs.(5.51  5.6) into Eqs.(5.1 -5.3) and ignoring 

second-order terms, the following equations for h(z) and g(z) 

are obtained: 

(5.5) 
(5.6) 

f 12.0 4.  7) 0  
d 2h 	1 dh 	dz 	Ho  

A Ho  2zuo - 0  
er B) 

(uo  —07X)  
x2jh 0  

 

5.7) 

 

(r - B) h  
g(z) 	(uo  - aA ) 

Using the transformation 

h(z) = co(z) exp 

Eq. (5.7) can be written as 

d203 
dz2 

I w = 0 er B)  
uo  - a/A 	(uo - a/X)2 + X2 + 41-1 

12H0) 

—(5.8) 

(5.9) 

(5.10) 

This equation for the amplitude of the perturbation appears 

extensively in the linearised theory of mountain waves, cyclone 

waves etc. 	As in the previous analysis let the undisturbed 

shear *9,o  be constant and equal to 2A, and uo  = 2A(z - H/2) making 

flow stationary with respect to z = H/2. 

d2co 	1 	g(r - B)  
dz 2 Ho  (z H/2 - 0/2A ) 	4A2(z - H/2 - a/2AN)

2 + A2 + • • 
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Eq. (5.11) is a confluent hypergeometric equation, and thus w(z) 

is given in terms of Whittaker Functions, in general of complicated 

series form. 	If however, the incompressible form of Eq. (5.11) 

(obtained by setting H/H. = 0) is taken, considerable simplification 

results, because using the substitution 

S = X z - XH/2 - a/2A 

Eq. (5.11) reduces to 

d2w  

dS2  
6.) = 0 

 

(5.12) 

 

General solutions to Eq. (5.12) exist in the form 

of 	= S/6[ A In(S) + B Kn(S)] 

where in classical notation In(S) and Kn(S) are Bessel Functions 

of order n = (1/4  + R 	and imaginary argument. 	The constants 

A and B can of course be evaluated using boundary conditions at 

S. and Si  . 	The condition for non-zero solutions of Eq. (5.12) 

is given by the characteristic equation 

c(so  , si ) = In(s0 ) Kn(si ) - in(si ) Kn(s.) = 0 , 	(5.13) 

the roots of which give the amplification rate a and the phase- 

velocity c =0/X in terms of the wavenumber X and R. 	These 

1 solutions can be obtained fairly easily in closed form if n=N +— 
2 ' 

where N is an integer, but otherwise solutions are difficult to 

obtain. 	Some solutions of the characteristic equation for 

nonintegral values of N have been found by Ku o (1963). 	Green (1962) 

obtained solutions for N= 1, with boundary conditions W= 0 at 

So = -X11/2  - cY2A and Si  = XH//2 - (///a 	= 0 and z= H respectively). 

He found that the fastest growing wave is that of wavenumber AB= 1.61 
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with an amplification rate of G/2A= 0.155. This solution 

indicates an orientation of the temperature extremes with a 

slope of about 45° with the warm air above the cold. 	However, 

since the value of R= 2, corresponding to lq= 1 is outside the 

range considered in the previous two-dimensional solutions, 

and in any case the results of the linearised analysis cannot 

be expected to be directly applicable to the finite amplitude 

state (especially considering the findings of section 3.2.2) it 

is not possible to obtain any reliable conclusion about the 

orientation of the flow in the cumulonimbus from this analysis. 

Consequently, the nonlinear problem must be solved in detail 

in order to determine the orientation of the flow. 

5.2 — THE NONLINEAR CONTINUOUS PROBLEM 

As in the previous chapters, the general dynamical 

features of convection in shear are investigated, particularly 

the orientation of the updraught/downdraught boundary, and the 

details of the precipitation process avoided. 	Initial value 

problems are posed and the effect of certain distributions of 

sources and sinks of heat on an initially horizontal, /sheared flow 

considered. 

Since the effects of compressibility can be allowed for 

by the scaling procedure adopted in chapter III, and in order 

to avoid unnecessary complication, the flow is assumed to be 

incompressible (H/H. << 1). 	To be able to make comparisons 

with previous analysis, constant undisturbed shear is retained 

in this chapter. 	In the continuity equation the term 	may 11P- 
at 

be neglected by comparison with the other terms, and a streamfunr,.4 - 

Vx,z,t) defined as 

a* a z 	' w = - ax • 



The mathematical problem involves the solution of the 

vorticity and energy equations, 
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D 2 
35,t(C/ 	+ g -LLZ.5)  

ax 	= 

i5ED bi6 	Q  

0 

where Q= Q,,q(x,z) (say) is the distribution of sources and 

sinks of heat. 

It can be shown that the nondimensional number which 

determines the flow is 

r R  Q.  
- 4A2 2AH 

 

5.16) 

 

r is evidently closely associated with the nondimensional number R 

arising in the free-streamline formulation of previous chapters. 

For example, adopting the usual notation, if 	= r B and 

q=w, the vertical velocity, then r and R are numerically equal 

(i.e. in quasi- wet-adiabatic flow). 

The initial conditions on the problem are 

ilf(x,z,t=0) = Az(z- H), 

Q(x,z) 	= rq(x,z) , for a given r and q(x,z) 

59S(x,z,t=0) = 0 ; 

that is a heat source stationary with respect to z= H/2 in an 

initially horizontal flow of constant shear 2A. 

At the rigid boundaries at top and bottom, it is sufficient 

to prescribe the streamfunction as 41(x,z=0,t)=Ii(x,z=H,t) = 0. 

The outflow/inflow boundary condition is not so straightforward 

to define because the flow at this boundary is influenced by the 

development of the storm circulation. 	Accordingly, the boundary 

condition has to be changed as the circulation develops from the 
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initial state. 	This adjustment of the flow in the vicinity of 

the outflow/inflow boundaries is communicated from the source 

region in the interior of the system by internal gravity waves 

(sound waves have been eliminated by neglecting the elastic 

compressibility effect at in the continuity equation). 

Consequently the time taken by the longest (fastest) gravity 

wave to travel from the source region to the outflow/inflow 

boundary is a measure of the time at which it first becomes 

necessary to adjust the initial streamfunction distribution at 

the boundary. 	The relative phase speed of an internal gravity 

wave is g az  u c 
)1.
2 
+v
2 

 

5.17) 

  

where X and v are the horizontal and vertical wave numbers 

respectively, and for the system under consideration the 

2n longest wave is given by X== v = --H— 

(U ± C) 
	

1 
	
(°) 

2AH 	Tc 2A 

With 2A= 3x10-3  s-  and 	=10-7  cm-1  ,  U 	C = 14 m s 1̀. 
az 

Consequently the initial inflow/outflow boundary condition can 

be retained until a simulated time of about 5 minutes, after 

which time this boundary condition must be modified. 	This 

was done successfully by setting the values of 0 and If at the 

outflow/inflow boundary equal to those at grid points a pre-

determined number of mesh lengths into the interior of the flow. 

The above initial-value problem was solved numerically 

for different distributions of sources and sinks of heat, 

using a staggered-grid computation scheme which is of second 

order accuracy in time. 	The details of the different heat 

source/sink distributions and the solutions are given in the 

appropriate sections. 



5.2.1 — STATIONARY HEAT SOURCE IN FLOW OF CONSTANT SHEAR  

This section examines the effect of a heat source, 

stationary at z = H/2 with respect to flow of constant shear. 

The heat source is of the form q(x,z) = sin Tcz/H e-41x1 where 

x H ; 0 z H and its strength determined by the value 

of r. 	The heat source was chosen to be proportional to sin.nz/H 

because with the vertical velocity zero at top and bottom an 

approximately constant parcel lapse is produced. 	The steady-

state solution for a sample value of r. 0.5 is shown in Fig.(5.1). 

Since the temperature and streamline patterns are known from 

these solutions, it is possible to calculate the equivalent 

value of Ri. 	This was done. not only because it is easier to 

make a comparison with the free-boundary solutions, but also 

because the analysis of chapters III and IV show Ri to be a 

physically meaningful and fundamental parameter in steady, 

two-dimensional overturning. 	On the other hand r does not have 

any simple physical interpretation. 

The solutions indicate that the updraught has a definite 

slope in the direction of shear. 	Although the intensity of 

the circulation depends on the size of the Richardson Number, 

the orientation of the updraught does not depend critically on 

this parameter. 	The downdraught circulation is weak by comparison 

with the updraught, a feature presumably associated with the 

absence of positive vorticity generation in this region. 

These solutions, showing the effect of a heat source 

on sheared flow is not directly comparable with the free-boundary 

solutions of the previous chapter, since the latter imply the 

existence of a heat source and sink. 	Since Eq.(4.10) suggests 

that the orientation of the updraught/downdraught boundary is 

closely related to the form of the pressure field in the boundary 
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layer and for purposes of comparison with the free-boundary 

solutions, the next section examines the effect of a stationary 

heat source and sink on flow of constant undisturbed shear. 

Before the development of a downdraught by the evaporative 

cooling of rain, a cumulonimbus is effectively a heat source 

and therefore the above simple model is at least relevant to 

this initial stage of development. 

5.2.2 — STATIONARY HEAT SOURCE AND SINK IN FLOW OF CONSTANT SHEAR 

DIET-ADIABATIC MODEL)  

This section has two distinct purposes. 	First, to 

verify that discontinuity of velocity used in the free-boundary 

problems of chapter IV is a valid way of modelling the shear 

across the interfacial boundary layer. 	Second, the more 

direct problem of examining the effect of a stationary heat 

source and sink on sheared flow, particularly in relation to 

the orientation of the flow. 

The first problem requires setting up an equivalent 

continuous analogue of the free-boundary problem of section 4.4.2 — 

i.e. generating quasi-steady flow 

flow of initially constant shear. 

vorticity equation and the energy 

of constant parcel lapse in 

More explicitly, the 

equation Dt 	where •y 

is the constant parcel lapse defined in chapters III and IV, 

must be satisfied. 	For this purpose, flow was generated using 

a heat source/sink distribution defined by 

2q  12(x2 a2)) 
Q(x,z) = r c °sit( z - H/2)3i- exp 

 

5.18) 

 

Since Q is proportional to cos 7t(z - H/2) and the vertical velocity 

vanishes at z= 0,H , an approximately constant parcel lapse 

is produced, 	The distribution of Q has a maximum of r at 



(x = a, z= 11/2) and a minimum of -r at (x= -a, z =H/2), When the 

flow developed its finite amplitude form, the following (quasi-

wet-adiabatic) source was used 

Q(x,z,t) = R'w 

where R' is a constant calculated from the finite amplitude flow 

with Q given by Eq.(5.18). 	The steady-state solution of this 

problem is then compared to the free-boundary solution with R=R' . 

The continuous and free-boundary solutions are shown in 

Fig.(5.2) and Fig.(4.14) respectively for r= 0.25, and it can 

be seen that discontinuity of velocity is a valid model of the 

boundary layer, particularly regarding its orientation. 

Consequently, the main features of this quasi- wet-adabatic 

continuous model are represented by the free-boundary solutions 

of chapter IV, indicating that the down-shear slope of the 

interface is a feature of steady, two-dimensional quasi-

wet-adiabatic flow, of Richardson Number satisfying -1,,62Ri< 0.75. 

5.2.3 — STATIONARY HEAT SOURCE AND SINK IN FLOW OF CONSTANT SHEAR  

(COOLING OF LOW-LEVEL INFLOW) 

Examination of the Wokingham Storm tephigram indicates 

that over the first three kilometres of ascent, the low-level 

inflow air in the lower part of the updraught must be cooler 

than its surroundings and negatively buoyant. 	The flow pattern 

can nevertheless be maintained by utilisation of the inflow 

kinetic energy. 	Moreover, even assuming an upshear slope for 

the interface, the high level inflow air in the model cannot 

be significantly cooled by precipitation until it has descended 

over a considerable distance. 	(Note that the Ludlam-Browning 

descriptive model avoids this latter possibility by implying 

112 



01 6 
11s '104 5 

•• 0.12 

Ijr at 0.09 

=006 

* a03 

o 

•0 

it 0.03 

r

1.
11 I:100:12 59  

016 

• • 

---- IMO 4/0 4I•4m• ----- en •••• 

410 —-------- n• ter— MM. 

04.4 . 

------------ 

• -- 
---------- 

• • 
••• 	 •=014.0 

----------- 
----- 

•1•0 -0.8 -0.6 -0.2 -0.4 0.2 0.4 0.6 0.8 
K/H 

FIG. 5.2 -- STEADY SOLUTION TO THE INITIAL-VALUE PROBLEM WITH STATIONARY HEAT SOURCE 

& SINK IN FLOW OF CONSTANT UNDISTURBED SHEAR. 	THE RICHARDSON NUMBER IS 

RI ett-11.0 AND THE BROKEN LINES SHOW THE POTENTIAL TEMPERATURE EXCESS IN 

UNITS 	OF 	4 /1/4 1)J1 
9 	• 



114 

that the downdraught originates from mid-levels - a feature 

which demands that the flow is dependent on three space dimensions, 

a possibility excluded from the present analysis.) 	This section 

examines the effect of introducing cooling of the low-level and 

warming of the high-level inflow air, with particular interest 

in the orientation of the flow. 

A convenient way of demonstrating the effect of inflow • 

warming/cooling is to examine the effect of the following 

R-distribution on flow if initially constant shear: 

I 2 (2mz 	1 ax ) 	 2mx Q(x , z ) 	r[ sin 	exp -! 
H 
— + sin`Hcxp - b ( z - H/2)2) ] —(5. 20) 

for 	-1.1<x<H ; 0 < z H , where a and b are constants 

determining the shape of the heat source/sink distribution. 

A sample integration with a 	b, 6, r = 2 is shown 

in Fig.(5.3), and the equivalent value of Richardson (umber 

determined from these solutions is Ri ="-- 1.5. 	This case shows 

that the updraught/downdraught boundary is inclined upshear, 

with the updraught above the downdraught, as is implied by 

observation of real storms. 

After intensive examination of two-dimensional finite 

amplitude overturning induced by given distributions of sources 

and sinks of heat, it is concluded that in two-space dimensions, 

a flow orientation with the updraught inclined over the downdraught 

is peculiar to a model with cooling in the low-level and warming 

in the high-level inflow. 

5.3 —THE PRESSURE FIELDS IN THE INTERFACIAL BOUNDARY LAYERS  

OF  THE CONTINUOUS MODELS 

With the object of modelling the boundary layers of the 

continuous models of this chapter in terms of dynamic boundary 
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conditions for the free-boundary problem, the interface 

orientations are now interpreted in terms of the pressure 

change across the boundary layers. 	It will be shown that 

the quasi- wet-adiabatic and boundary layer warming/cooling 

models of sections 5.2.2 and 5.2.3 respectively have distinctive 

boundary layer pressure fields. 

The Bernoulli equation can be applied along streamlines 

to define the pressure difference across the interfacial 

boundary layer. 	In particular since the flew is antisymmetric 

with respect to z= H/2 and approximately steady, the pressure 

change across the boundary layer at height z can be shown to be 

613
(z) = ("6-2-) P 	P 

2 = ji g(161 	1 -2-  /52)dz - 1 2 	1 	 ) 
Y1 717-2 

H/2 

where the subscripts [1] and [2] refer to variables on the 

updraught and downdraught sides of the boundary layer respectively. 

The pressure difference across the boundary layer is therefore 

equal to the change in the difference between the potential 

and kinetic energies. 

Fig.(5.4) and Fig.(5.5) show the pressure change across 

the interfacial boundary layer in the models of sections 5.2.3 

and 5.2.4 respectively. 	It is clear that in the former case, 

flow with a forward sloping interface is characterised by a 

small pressure change across the boundary layer, whereas the 

latter case with a backward sloping interface is characterised 

by a relatively large pressure change. 

5.4 - AN ALTERNATIVE DYNAMIC BOUNDARY CONDITION AND EQUIVALENT  

FREE-BOUNDARY MODEL  

In a real physical situation the variables, velocity, 

temperature and pressure must be continuous (as in the continuous 

(5.21) 
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models of this chapter), otherwise the flow would be dynamically 

unstable and would readjust itself to smooth out the discontinuities. 

However, it has already been shown that large gradients in 

the velocity and temperature fields can be justifiably modelled  

mathematically by discontinuities, without adversely affecting 

the physical nature of the flow. 	Further, it will be shown 

in this section that a large gradient of pressure can also be 

modelled by a discontinuity of pressure. 

The (wet-adiabatic) model of section 5.2.2 is characterised 

by flow with a small pressure change across the interfacial 

boundary layer, and intuitively it should be possible to 

represent this boundary layer and the general flow pattern by 

a free-boundary model with continuity of pressure at the interface. 

Comparison of the solutions to the free-boundary problems 

of chapter IV and the continuous, wet-adiabatic model of 

section 5.2.2 show that this is indeed acceptable. 

Likewise, it is not unreasonable to expect that the 

relatively large pressure change across the boundary layer in 

the continuous model of section 5.2.3 could be modelled by a 

pressure discontinuity in the equivalent free-boundary model. 

Since the solution on Fig.(5.3) shows that the'pressurei change 
z 

across the boundary layer is approximately 	g(fSi  -152)dz, 
Jr  H/2 

the alternative 

i.e. 

boundary condition 

613(z) 	P-2-) = 	- 

is defined as 

(a) 
P 	1 

b.P(z) 	= 	g("Y - B)(z 

= 	g(fil  - /32)dz 
P 2 	J'H/2 

- H/2) (5.22) 

The free-boundary problem defined by Eq.(4.21) and the 

usual kinematic boundary conditions together with the alternative 

dynamic condition Eq.(5.22) at the interface, was solved for 



the value of Ri defined in the continuous model. 	This solution 

is shown/  in Fig. (5.6). 

Comparing the free-boundary solution in Fig.(5.6) with 

the continuous solution in Fig.(5.3), it can be seen that 

important features such as the interface slope, updraught speed 

and steering-level are represented to a reasonable accuracy by 

the equivalent free-boundary analogue. 	There is therefore 

considerable justification for representing the continuous 

boundary layer by a discontinuity of velocity, temperature, 

and pressure in this free-boundary analogue. 

5.5 - GROWTH RATES OF FINITE-AMPLITUDE OVERTURNING IN SHEAR  

It is interesting to compare the maximum growth rates 

of small-amplitude waves in unstably stratified flow of constant 

shear, obtained from solutions of the characteristic equation 

Eq.(5.12), with the growth rates of finite amplitude flow, 

obtained from the numerical solution of the nonlinear equations. 

(The growth rate of the finite-amplitude disturbance is defined 

as the reciprocal of the time taken to develop the finite 

amplitude state from initially horizontal flow.) 	Fig.(5.7) 

shows both sets of growth rates and it can be seen that the 

finite amplitude flow has the fastest growth rate. 

Now [g(•y-B)]-1h  isthe time-scale arising via the linear 
1 analysis of convection, while TA- is that appropriate to the 

linear theory of convection in sheared flow. 	It turns out that 

a simple combination of these time-scales gives a time-scale 

appropriate to finite amplitude overturning in shear because 

1  the growth rate is very nearly linear in R 2. 	Explicitly 
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gives a simple estimation of the growth rate associated with 

flow of the form shown in Fig.(5.8), as a function of 2A and 

R = g('Y-B)  
4A2 	

This distinction in growth rate is another 

example of the incompatibility of the linearised and finite 

amplitude theories of convective overturning in shear. 
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CHAPTER VI — CONCLUSIONS WITH REGARD TO FUTURE WORK  

Jicat of the conclusions have already been summarised in 

the abstract or at stages throughout the analysis, and so it 

is unnecessary to repeat them here. 	However, important points 

such as the momentum transfer and the orientation of the flow 

within the system are worthwhile summarising at this stage. 

The momentum transfer in the model described in this 

thesis is contrary to the conventional ideas of cumulus and 

cumulonimbus convection, because in the model momentum is 

transferred from the slower moving fluid to the faster (i.e. 

against the velocity - gradient), whereas vertical convection 

is usually presented as being a process which transfers momentum 

downgradient (a contrasting mechanism resulting in-the mean 

shear being decreased). Basically, the reason for the increased 

shear and the direction of momentum transfer is a feature of 

the-energetics of the cumulonimbus model - - the-energy exchange.  

- • is from the available potential energy of the undisturbed flow. 

to.the kinetic energy of the modified flow, the effecting 

mechanism being the cumulonimbus. 	This effects an increase 

in the mean shear and also the direction , of the momentum transfer. 

Moreover, the-  quantification of section 3.5.3 shows that the 

momentum transfer is large by comparison with the smaller scale 

boundary-layer processes. 	Indeed,- the fact that- cumulonimbus 

convection' in shear involves large .energy and momentum transfers 

makes it an important field of study in meteorology. 

The interface orientation with the downdraught above the 

updraught is.characteristic of steady,. two-dimensional, 

wet-adiabatic flow of Richardson Number satisfying -1.62<Ri4 0.75, 

and not a feature of the mathematical representation of a continuous 

updraught/downdraught boundary layer by discontinuities in the 
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velocity, temperature or vorticity fields. 	This has been 

shown in detail throughout the analysis of chapters IV and V. 

.Introduction of cooling in the low-level updraught air 

and warming of the high-level. downdraught air generates a 

pressure field requiring flow. with the updraught.inclined over 

the .downdraught, the orientation implied by observational 

evidence to. exist in real storms. 	In a rather extensive analysis 

of two-dimensional overturning, this is the only physical process 

found to induce this orientation. 	This configuration with 

cooling of the inflow air in low-levels is interesting, because 

Pearce (1962) also found that cooling had to be introduced in 

the lower part of the updraught to maintain his assumed 

backward-sloping interface. 

However, when the implications of these contrasting 

interface orientations are examined in terms of a momentum budget, 

the conclusion suggests that a complete answer is not likely 

to be so simple, but that other (probably three space-dimensional) 

physical processes have to be accounted for: 	Consider a 

momentum budget over the shaded region in Figs.(6.1 and 6.2). 

In case 6.1, with the downshear sloping interface, integration 

of the x-component of the momentum equation in flux form shows 

that since U1  > U2  remote from the storm and UW> 0 within the storm, 

the momentum budget can be satisfied without a net pressure 

difference existing along the length of the storm. 	However 

in case 6.2 with the upshear sloping interface, since U1  > U2  

remote from the storm and UW< 0 within it, the momentum budget 

can only be satisfied if there is a relatively large net pressure 

difference along the length of the storm.. 	Consequently taking 

the Coriolis effect into consideration, a non-negligible 

transverse (y-directional) circulation is likely to be induced  LE 
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the storm --in which case a three space-dimensional study 

could reveal additional physical processes. 	This possibility 

is worthy of closer study, especially since real storms do 

in fact feature three-dimensional structure, in particular the 

propagation to the right of the undisturbed wind field. From 

this evidence, time spent in developing a theory of three 

space-dimensional circulation would be justified, a problem 

which will be subsequently tackled. 

Although cumulonimbus convection has been specifically 

dealt with in this thesis, this is not the only form of convection 

in shear relevant to this analysis. 	For instance, application 

to the prediction of the movement of lines of showers associated 

with cold-front zones has already been made in chapter III. 

Moreover, observational studies suggest that structure exists 

in sub-cloud layer circulations. 	A similar formulation for 

the dynamical theory of convection in this sheared region is 

conceivable. 	This would be useful since a dynamical theory 

of the transfer of heat and momentum is necessary, particularly 

through the requirements of global numerical models. 
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