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ABSTRACT

The work in this thesic is concerned with the steady
sireaming generated by sorce unsteady viscous flows and two
problems are considered in detail.

The first part of the thesis considers, in the main, the
flow in a circular pipe of radius a, which is itself coiled in a
circle. The pressure gradient along the pipe varies sinusoidally
in time with frequency w. Cf especial interest is the so-called
secondary flow generated by centrifugal effects in the plane of the
cross-sgection of the pipe, for, if the parameter $ = (2v /c.oaz)l/2
is sufficiently small, this is found to be steady in the interior of
the pipe, and in the opposite sense to that predicted for a stead.y
pressurc gradient along the pipe (Y 1is the kinemratic viscosity of
the fluid)., This is verified qualitatively by an experiment.

The second part ir concerned with the stcddy streaming
generated by an oscillating viscous flow over a wavy wall, A
viscous shear-wave layer is forrred on the wall, and if its thickness
is mouch smaller than the amplitude of the wave, an existing thecry
may be used to calculate the steady streaming. This is only valid,
however, when the amplitude of the oscillation of the fluid par-
ticles a long way from the wall is much smaller than the wave-

length of the wall, A theory is developed for the case when the
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thickness of the viscous layer is much greater than the armrplitude

of the wave, and it is found that, under certain conditions, the pre-
vious theory is still valid. In addition it proves possible to calculate
the steady streaming when the amplituée of the oscillation of the
fluid particles a long way from the wall is much greater than the

wavelength of the wall.
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GENERAL INTRODUCTION

The theoretical study of the steady streaming generated by unsteady
viscous flows was initiated by Rayleigh (1384) in connection with
certain acoustic phenomena of Xundt's dust tube. Consideraﬁle
attention has since been focused on the fundamental problem of a
body oscillating in an unbounded viscous fluid, and for a comprehen-
sive review of the contributions to this topic the reader is referred
to Riley (1967). The type of asymptotic analysis employed by Riley
1s used extensively in part one of this thesis.

This first part contains an investigation of the flow through
a curved pipe under an oscillatory pressure gradient, the so-called
secondary flow generated in the plane of cross-section being of e-
special interest. In the interior of the pipe, this secondary flow is
found to be steady for sufficiently small values of the parameter
B=(2v /wa"')l/z, and in the opposite sense to that predicted for a
steady pressure gradient; this is confirmed by experiment (w 1s
the frequency of the oscillations, a is the radius of the pipe and v
is the kinematic viscosity of the fluid). This type of flow is of con-
siderable physiological interest, and its implications for the cardio
vascular systern, and in particular the aorta, are considered, Because
the secondary flow is induced by centrifugal effects, 1t is analogous

to the steady streaming induced in a fluid bounded by two parallel



planes performing toresional oscillations about a coromon axis. This
problem has recently been considered by Jones and Rosenblat (1969),
following an earlier dizcussion by Rosenblat (1960).

In part two the siecady streaming induced by an oscillatory
viscoue flow over a wavy wall iz congidered., A viscous layer is
formed on the wall, and if its thickness is rruch srcaller than the
ampliiude of the wave, the theory for a cylinder oscillating in an un-
bounded viscous fluid can be applied directly to predict the steady
streaming. This theory, due originally to Schlich;ing (1932), is valid
only when the amplitude of oscillation of the fluid particles is much
srraller than the wavelengih of the wall, The theory is extended for
the case when the amplitude of the wave is much smraller than the
thickness of the viscous layer, and it is found that, under certain
conditions, the theory due to Schlicr_‘sing may still be applied to predict
the steady streaming. In addition it proves possible to calculate the
steady streaming when the arcplitude of the oscillations of the fluid

particles is much greater than the wavelength of the wall.



PART 1

FLOW IN A CURVED PIPE
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CHAPTER 1

INTR ODUCTION

In this first part we consider the flow of an incompressible
viscous fluid through a pipe of circular cross-section which is coiled
in a circle. In particular attention is focused on the so-called secon-
dary flow, which is induced in the plane of the cross-section of the
pipe by centrifugal effects.

The steady problem of this kind was first analysed by Dean
(1927 and 1928), who found that the motion depended on a parameter
K, equal to 2Re%a/R, Re being a Reynolds nurcber for flow along the
pipe, a the radius of the »ipe and R the radius of curvature of its
axis. The analysis employed by Dean was restricted to small values
of i, but recently this has been extended numerically to moderately
large values of K by 4cConalogue and Srivastava (1968). The work of
the latter bridges the gap beiween the theory of Dean and that of
Bary#a (1963), who developed an asymptotic boundary layer theory for
very large values of K.

The knowledge of steady flow through a curved pipe is thus
quite extensive. On the other hand, time dependent viscous floWs in
a curved pipe have not been studied, at least to the author's knowledge.

Therefore we consider here the cffects of unsteadiness on the motion.
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This problem is of considerable interest in the study of the cardio-
vascular systerr where the moiion in the larger arteries is anything
but steady, and where, unlike most engineering situations, the flow
is laminar.

In order to simplify the problem, the radius of curvature
of the pipe is assumed large in relation to its own radius, and the
pressure gradient applied along the pipe sinuc~idal in firce
with zero mwean. In Chapter Z the equations of motion are derived

and the flow, being uasicady, is scen to deyend on two paramreters

which are conveniently taken as

g ‘}'/2 s 2
€ == . R =7 .2 (1.1)
aw R *7"s Rw VY

Here 7 is a typical velocity along the pipe, w is the frequency and v
the kinemratic viscosity of the fluid. The parameter ® may be
recognised as the product of the ratio of the palfticle displacement
amplitude —:f for motion along the pipe to the radius of the pipe, and
the square root of the ratio of the radius of the pipe to its radius of
curvature. The problem has been formulated in such a way that ©
1s always small and this allowe the equations to be simplified thus
making the problem more amenable to analysis. Ii will be seen
later that Rs plays the role of a conventional Reynolds number for

the secondary flow. This choice of parameters was made to allow

direct comparison with the analagous two-dimensional problem of flow
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induced by a body oscillating in an unbounded viscous fluid, as des-
cribed by Riley (1967) in a review article, Another parameter of

major importance in our analysis is

fs3=zv/:oa?=ze?/Rs (:.2)

and this also is assumed small, Clearly P represents the ratio of

the Stokes layer thickness, which is proportional to (2 v /w)l/z, to the
radius of the pipe. The srrallness of B implies that, for the flow down
the pipe, viscoué effects are confined to a thin layer on the wall,
while the rmain part of the flow is inviscad.

In Chapter 3 a solution is developed by the use of two maiched
asymptotic expansions, one expansion being valid near to the wall of
the pipe, where the Stokes shear-wave layer exists (the inner region),
and the other expansion being valid in the region away from the wall
(the outer region). The expansion parameter in each case is §, and a
cornmon range of validity is assumed in which the matching takes
place. In Chapter 4 these expansions are taken to 0(;’32) in both regions
when Rs is small, but when RS is large a solution to only O(ﬁo) is
attempted for the outer region, and is described in Chapter 5.

In the laiter case we find that an outer boundary layer of
thickness O(aRS'l/z) 1s forrced at the edge of the Stokes layer, in

which the velocity of the secondary motion is adjusted to the value

dictated by the flow in the interior of the pipe. This interior, away
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frowm: all viscous boundary layers, will be referred to as the core,
and differs from the outer region in that the latter comrprises both the
outer boundary layer and the core. Because the governing equations
for the first order secondary flow in the outer region are steady,
and the streamlines are closed, it will be seen that the secondary
flow in the core of the pipe wrust, to first order, have uniform vor-
ticity (see Batchelor (1956)), Decause of syrnmetry about that dia-
meter lying in the plane in which the pipe is coiled, the vorticity
immmediately above this diameter must be equal in magnitude, but of
oprosite sign, to that immediately below it. Harper (1963) has shown
that this leads to the foriration of a free boundary layer of thickness
O0{a Rs-l/z) along this diamecter, The equations of these boundary
layers are linearised by assurning the velocities of the secondary
motion in the} layers are small perturbations to the velocities of the
motion in the core, These linearised equations are solved to give
an integral equation for the velocity profile at some station, the
strength of the vortex in the core appearing as an eigenvalue. This
equation is solved numerically, and the eigenvalue found.

In Chapter 6 the results are presented together with a dis-
cussion of their implications for the cardiovascular system. One
of the striking features is that, for sufficiently small values of the

parameter 8, the secondary flow in the core of the pipe is in the

+
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opmosite sense to that rredicied for steady fiow along the pipe, Thur,
whereas che intvitive idea of 'outwards centrifuging' is valid for
steady flow, it is not valid in the unsteady f.ow that we discuss;
rather the apparent ceanirifuzing is negative and is therefore direcied
inwards! This has been verified experimentally using the apparatus
described in Chagnter 7.

In Chayter & the analysis is extended to embrace pires of
ellinztic cross-cection. The motivation for this is the hope thai the
lincarisation used in the large Rs calculation rnay be icore convincing.
e shall find this to be the casc in certain circumstances, and the
results indicate that the linearisation meay, in fact, he very good cven
for the circular nipe. This belief is reinforced by the nuirerical

work of Kuwahara and Imai (1969) described in Chagter 6.
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CHAPTER 2

THE ECULTIONS OF MOTION

Let us consider incompressible viscous flow in a pipe of
circular cross-section of radius a, the pipe's own axis itself being
coiled in a circle of radius R about the axis 0z (Fig. 2.1). Distance
down the pipe is measured by RO, where 0 is the angle which an axial
plane (containing 0z) makes w:ith some fixed axial plane. Within the
pipe cross-section polar coordinates r, "l/ are used (Fig. 2.1).
The velocity vector u has components (u, v, w) corresponding to the
spatial coordinates (r, ¥ , 9), and we assume u is independent of
0. In addition we define p to denote the prescure, p the density, vV
the kinematic viscosity and ¢ the time.

The momentum equation written in vector form is

?

e

+ grad(%gz) -u, curlu= --:- grad p - v curl curlu (2.1)

[«

t
and the equation of continuity is

divu =20 (2.2)
For the derivation of these equations see, for example, Vhitham
(1963).
In this coordinate system: the line element ds is given by
dsz=h12dr2+h22d\bz+h3zd03 (2.3)

where



h, =1, h, =r, h3=R+rcosY/ (2.4)

We use the following well known expressions for grad, div and curl

d Lo o 2 -
grad = (— 352, 75y T )
| or ' h, 2% h, 00 %
dwuw—L~{Lmh\mﬂﬂhhw+imh\ﬁ
2n Ry Lar V273 >y ‘B3 By o0 M1 ™2
and
‘. 1
7R iav‘hsw) o(hzvﬁ @9
1 {2 >
1 - 2_ _2
2" h, hli 50 By w) - 57 By W)}

DR S 2
PR e [l CARY awu‘lu’}

Nr e

where}_ (’l’ 3g0 ‘53) = curlu

When the values of hi are inserted the equations become, in component

form,
e ¥y s
Sreu oI R 1O
ry gl &1 5 e



a¥ , U AW,V DW uw cos ¥ vwsiny _ - 1 .E)..( /o)
3t 3r ' r % © R+4r cos¥  R+r cos}y Rircosz ¥ 00 p/p

-2, L 2w wcosY 19 1dw wsiny R
vy !_(ar ¥ r)‘br ¥ Rer cos?lf)+ r oY (r oY T R4r cos"P)}g
(2. 8)

The ecouation of continuity is

2u  u u cosy 1 dv v sin¥
Qu  u, ucosy ~ lov vsin¥ o, (2. 9)
or r  R+r coc¥  r d¥  Rir cosy¥

We now impose a simrple sinusoidal pressure gradient along
P P g

the pipe

!0’

o4

5 (p/p) =R W w cos wt (2. 10)

where W has the dimensions of velocity and w is the angular fre-
6
quency. We may first note that the exact solution to (2.53) - (2.9)

in the absence of viscosity is the potential flow solution

RV sin wt
u=0 v=0, w=_————u——

T R+r cosy
(2.11)
- w* R : .z
p/p = -ROW w cos wt - > \ ( Rer cos ¥ ) - l;!_3 sin“wt

The arbitrary function of integration has been chosen so that as
R -=> oo, p/p > -ROW w cos wt, which can be identified as the pressure
distribution when the pipe is straight. This solution satisfies the

boundary condition of no flow through the pipe wall. There are no
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components of secondary flow in the plane of the cross-section,
there being a balance between the centrifugal force exerted by the
flow along the pipe, and the pressure gradient in that plane. Now,
when viscosity is present, a balance between the” highest derivative
and the driving pressure gradient in equation (2. 8) must be set up,
in order to -atisfy the extra boundary condition of no slip on the pipe

wall. Thus we must have
Dlw
Y ~ 2.12

We now an:umé, in common with most boundary layer theories, that,
for small viscosity, (2.11)is a valid representation for w away from
the wall of the pipe. Hence we see w = 0(/) and then (2.12) implies

3 re . 1/2
that viscous effects are coniined to a layer of thicknes=z O(v Jw)
. . . ) ) 2. 1/2
adjacent to the pipe wall, This layer is thin when = (2 v Jwa ?)
is smrall, and is just the Stokes shear-wave layer referred to in
numarous texts. Another consequence of this boundary layer assump-
tion is that the pressure gradients, given by the expression for p in
(2.11), are esscntially unchanged within the viscous Stokes layer.
However, the value of w will decay to mero as the wall of the pipe
is approached, and thus there will no longer be a balance between

the centrifugal force and the pressure gradients in equations (2. 6)

and (72.7). Therefore the latter now drive thec so-called secondary
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flow in the planc of the cross-section. Within the Stokes layer a
balance must be set up between the pressure gradient and the highe_st
derivative in order that all the boundary conditions may be satisfied.
Thevefore, from (2.7)

d2v

~ Y T 2.13

=57 /) ST (2.13)
Within tae layer this leads to the conclusion that v = O(-—‘L——) and

w 2
similarly u = ((-——-) ). If this secondary flow persists away from

W w2

. = (8 L. S Y AL
the pipe wall, we may expect then that v = O(Rw) and u = O(Rm )
fror a consideration of the ajuation of continuity (2. 9). Although u
and v may no longer be zero, we shall ree that the assunption that
(2.11) is a valid representation of flow away from the pipe wall is
still conristent within the frairework of this boundary layer theory.

vr 2 [ 1/2
The reason for this is that u,v = O("I‘{";) =0 ‘\ﬁ (a'ﬁ) / W} . Thus,
1/2

for small & (ﬁ) , the secondary flow, though non-zero, is
simaller than the flow along the pipe.

We now introduce the following non-dimensional notation

- U
S=a/R, r'=r/a, w=w/W, u = u/ 4

“r’n’-
—, T=ut
Row'’ ©wro

<.
I

-
il

{2 + p RS cos wt) /p 5 w?

Lo

revcerrbering that, in due course, r' and w' will need to be suitably

scaled within the Stokes layer, The momentum ecguations (2. 6),
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(2.7) and (2. 8) now become

s\u'_l_ ei® du LY du' v!z) w'® cos ¥ __ap
OX Adr' ot 2% T 7T 148 r'cosy dr'
1 , 1 » 6 cinl o oow! Ly 1 2.15)
T2 P (r’ 1 1+8ricosy, Yort  rt Tt O y @
T
pv' | € z(u'bv' pyoov uv! ) w'?sin 1 >p
or Yt ot Y ! I+ &'cosl r' oY
1.z ,D Scos ¥V dv! vt 1 du!
ol = W) { — L ma— - 2.1
* 2!3 ‘Dt + 1+ 6r'cos‘/a)‘br' * T OV ) (2.16)
and
aw! | 2(u' N w +_y_:_ pw'  u'w's cos¥ v'w'b sin¥ )
oT ¢ 5 ' r' Oy 1+ 6r'cosy  1+8 r'cosY

t 1 ,
1 W 5 cos Y

1 S 3 ow
COST+'2'ﬁZ{: (arl + r|)(arl

1+ 5r'cos Y 1+ 6 r'cosyf
+ L _b_(_l___aw' w' 6 sin) ) 2.17)
r' O} r' 0¥ T 14 br'cosY ’
The equation of continuity (2. 9) becomes
1! ' rs w i v vl § -‘Iin’y/
o4 u + u [ofs ] e ) _ 5
5r F o 1+ 6 r'cos¥ YoY% T 1t Sr'cosw 0 (2. 18)

In order to simplify the equations and allow somre progress to be made,
§ ic taken to be very smrall and all terms of 0(6) 2ze neglected.

Ecuation (2. 18) now becomes

\ ]
u ,u L ov _, (2. 19)

We satisfy eouation (2. 19) by introducing the non-dimensional stream
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function X for flow in the crozs-section, defined as follows.

12X o)
u' =_r_'~[)‘// , v o= -%, (2.20)

If we now climinate the pres.urc between ecouations (2.15) and (2. 16)

and neglect terms of 0(5), we obtain the following eguation for X

DW' 1 F] v4
1 W = = 2.2
+ w 3 cos ¥ ) BTV X (2.21)
where

szba L L2 2 9f | 2(ab) _da db_2a db

= ar'?  xt dr! r'? f)y‘_?‘" (', W) " dr' op oY or!
' (2.22)
From the expressions (2.5), we find that the cornponent 33 of curl

ar 2

u is equal to - "\-R]-;o'- ¥V ? X. Thercfore - W ?X is the non-dimen-

sional vorticity of the secondary flow and equation (2.21]) is the
vorticity equation,

When we neglect terms of 0(5), equation (2.17) becomes

'EP D W 1 .

The boundary conditions of no slip on the wall of the pipe can be
wriiten as

)(=%%_-(,=W’=0 onr' =1 (2.24)

These conditions, together with the requirement that the flow field
is regular within the pipe, are sufficient for the determinaticon of

the solutions to (2.21) and (2. 23).
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CHAPTER 3

THE LIMIT g => 0

In this chapter we shall seek asymptotic solutions to
(2.21) and (2. 23) which tend to the exact solutions in the lirnit
B —=> 0, Rs fixed; 1in later chapters we shall study the consequences
of taking the further limits Rs ~> 0 and Rs -> 00.

Because of the nature of the imposed pressure gradient,
we shall admit only those solutions which have a harmonic depen-
dence on T, Any other solution is an eigensolution which determinnc
whether or not the solution described below is stable. Such question~
of stability are not our concern here,

The primes will now be dropped from: the dimensionless
quantities defined in (2. 14) for reasons of simplicity, and all var-
iables arc now dimensionless unless stated otherwise.

In the Stokes layer, or inner region, we have seen that
the relevant length scale is (2 y /m)l/z. Therefore, in accord with
boundary layer theory, we introduce the following scaled variables
for this region,

q=8t ), x=pThy (3.1)

and seek solutions to (2.21) and (2.23) for this inner region of the

form
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w = wo(t' ' M ,\P;Rs) + ﬁwl(t‘, g » YV ;Rs) + {32WZ(T,‘~1,\P ;Rs)

+ (3.2)

B
i

_XO(T,YL,VJ;RS)+ ﬁXl(t,q,\I/;Rs)
+;3"X2(r,q,1p;Rs)+... (3. 3)

subject to the boundary coaditions (2.24), which can be written as
1

Wi:Xi: -g-\'{-z

0, q:O i=0,1,2,3,... (3.4)
In the outer region, away from the Stokes layer, we look
for solutions of the form
w=sinT (3.5)
X = )(o(t’ TSR )+ P (T, SR )
B (T, PR )+ . (3. 6)

and require that these should match with the solutions in the inner
region in some cuitable way. Equation (3.5) is a direct consequence
of (2.23) if we note that no steady part of w may exist as there is no
preferential direction for the rrotion; it can be seen to be just the
potential flow solution.

Substituting (3. %) and (3. 6) into (2,21) and (2.23), and

equating like powers of B, we have:

O oy -
5z V X =0 (3.7)
S VY =0 (3. 8)
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W g X))
A 2 oo, o0 _ly4
oz VX 5 D T,y ) 'Z'V X, (3. 9)
Eaquation (3. 7) implies
(3.10)

v X, =g iR )

and hence
(3.11)

X=X W ey tir )k Beyir)

o)

where
2 (u) -
xo =0 (3.12)

‘v XO(S):go(r’yj;Rs) (3.13)

u T
X w) can contain terms proportional to e (n=1 to o), and has

(s)
zero time average; Xo is independent of ¥ , Similarly, we have

X, =X, e p, tir )+ o, P v ) (3.14)

where
v 2 Xl("‘)= 0 (3.15)
(3.16)

VZ XI (S) = g] (r,'y/ ;RS)

When we substitute (3.1), (3.2) and (3. 3) into (2. 21) and

and equate like powers of B, we arrive at the following equa~

(2.23),
tions fcr w and X
o o
107
(-g:c-'é-aqg Yw =cos T (3.17)
O 1 Q7 ()“Ko _ ,)wo . _
(O'C-ZZ\_V‘{Z)br]Z _—Zwobv‘ s1n¥ (3.18)
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The solution of (3.17) satisfying (3. 4) and which rratches with (3.5)
when N ~> co, is easily seen to be

w_=sinT - eV sin(t - ) (3.19)

Substituting (3.19) into (3. 18) and solving, we find the general =olu-

tion to (3, 18) may be written as

Xo = 51-% e-zq - 'erz-e”1 cos(- " +n/4) - ‘]Z% e-?-q cos(2T -2\*1 +1/4)

- ‘-/2—2e~q cos(2T -r\+'ff/4) % sin ¥

(e )
+ CR Z:'\ Dn(vj,)e"\/lﬁl(l-\‘-i)\’l +in T

n=1
+B("¢«)r!3+C(?//) r12+F(T.\// )q +CG(T, ¥ ) (3. 20)

where terms of non-harmonic dependence on ¥ , and of exponential

growth as n -> oo, have been excluded. The latier exclusion is neces-

gsary to enable the solution in the inner region te match with that in

the outer region as N -> . The symbol R means 'real part of'.
To effect the matching, we assume that there is a common

region of validity for the inner and outer solutions when Y‘ ~

and r -~ 1 respectively. Thus, if we write the solution for the outer

region in terms of the variables of the inner region, we have, for

ro~ 1



2 }2)( : !"B)(l -
+‘3§ %—‘u\ro—, r=1 i \;?-1 r:‘+k,xz-" r=1}
3 2
3y X0 . ’_\"Xll 2,
+[32g } %_; Ar%}} =1t 72 {51’:’} r=1 "~ q\hbr}rzl
3
+[>(3} r='i§ +0(8°) (3.21)

For this to match with the inner solution when Y\ ~ o0, we see from

(3.20) that B(¥) = C(\/«' }= 0 and
(u) , . (s) ) _
XU Y R+ (LY SR =0 (3.22)

It mmay be possible, however, to have B or C non-zere if we rescale
X. We investigate the likelihood of this in appendix A, and though no
rigorous proof is established, argumenis are put forward to show that
B and C are probably zero.
A consequence of (3.22) is that
Y W onr =l (3.23)

(o]

and the only regular solution to (3.12) with this boundary condition is

(u) _ .
;(0 =0 (3. 24)

Hence T (1, L ) can be seen, from matching (3.20) and (3.21), to be
a function of - alone (F(V¥ )).

From the boundary conditions (3.4), we can now deduce
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D (¥)z0, 2¢2; D (ﬂy)zg. -y/ei"/‘i

n

F(y)=-=sinl 5 G(U,y) =210 “’Jz 10) o527 +n/4) sin ¥

+5/8 sinY (3.25)

Therefore, finally, we have

“"ozi -;);-V] + -,5)- - ge-Zq - “—/Z—ée-q cos(-Y +1r/4-)
+ %e- ~2n cos(2T -ﬁ“ﬁ' 7/4) - %-Zq cos (27 -2n +1/4)

- -10 !
- '\‘/ize chos(ZT - V1+'n'/4) + *(—9—3%;——-) cos(ZT’+w/4)} sin ¥
(3.26)
Because only harmonic dependence on T is allowed and

(3, 24) implies )(0 is indenendent of T , equation (3. 9) yields the two

equations
2 w2y - .
M‘V )(2_0 (3.27)
XL, 9EY)
I €' o _ 1 4 ' ;
-z S _——Rn v )(o (3.28)

We find, therefore, that )(O satisfies the two-dimensional Navier-
Stokes equation, with RS playing the role of a conventional Reynolds
number. IFrom maitching (3, 21) with (3.26), we sec that the boundary

conditions on )(o are

X =0, — =%sin\;/ onr =1 (3.29)



- 25 -

‘e u
and the condiiion on Xl( ) is

)(1 (w) '—(9,{?,-10—-) cos (2T +u/4) sin}) onr =1 (3.30)

There is one less boundary condition on )(1 (w) than on )(o, because
the equation it satisfies (3. 15) is second order, whereas that satis-
fied by )(o (3.28) is fourth order. These conditions are sufficient to
enable the equations to be solved, when we derrand that the solutionc
shall be regular everywhere within the pipe.

We easily find now that

Xl(u) _ 9 gﬁ.-.._l_q)_ r cos(2? +n/4) siny (3. 31)

3 .
The equation of 0(B ) in the outer region yields the two
equations

(a)
- R, v X))
2 gy o8 01 °_ . g (3. 32)

DT 3 2r D (r,¥)
(s) 3 (s)
Tor o (r,y) r D (=) - R_ 1 (3-
In the inner region the equations for w, and Xl are
d 1 27 1 9%, .
(-b—"( -5 7 )wl = -3 ——"Q‘ (3. 34)
’x N\ X 635’ N(w wo ) sin W
o 1 D2 D 1 979 “0 > AT NS S (3. 35)
(r)'(‘ ) 2 A\; ) (\l‘f - ’\Tbx? B -’)r'i3 N D“i :

The solution of (3. 34) satisfying (3.4) and matching with (3.5) as

") => co is easily found to be

kY
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1 -
’\7\71=-qu 1 sin{T - n) (3.3

If we substitute the evpressions for Wo (3.19), XO (3.26) and W, (2. 248)

into (3.35) and solve, we find chat the general solution of Z! can be

written as

2 -2 1 -2
Zl = -(Z - %—éqc 1 cos (2T “Zrl -{-n’/@‘:) - Té-e 1 cos (2T -2 n )
- ‘[-/'é. Y\enw] COS(ZT "Y‘+W/4)+2]}:e—q COS(ZT— l')
+ ""%;"]e— '\/2*} COS(ZT—\/Z\’} +Tf/4)»" {%r}e-h‘COS(-V‘]‘.+'¢;/4}
1 -7 1 -2 1 2w
‘{:é'e 'COS(-V})—SQG q—?ge \js1n1//
cc
w oS iy - /D)y HT
+ U _>__. Jn( ) e +H(4\)&)\’}3
n=1 :
+1(w)q"-+:<:('r,\p)q + L(T,¥) (3.37)

T
EA

ermc of exponential growth as Y) —> 0o and of non-harmonic depen-

dence on | have again been omiiied. Frore (3.21) we see that, for

- FN(1 ),
1,1 to be matched with - ) \ ST J Loy 0 We rmust have
K(T, V)= -@__Aﬁ:m) cos(2T +u/4)sin¥ + KT (V)

(3. 38)

4lco irom roatching we have
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H(y )= 0 (3. 39)
If we now apply the boundary conditions (3.4) we find

(16./2-15)

Jn("\!/) =0, n¥2 ; JZ(’\f‘/) =- siny/

¥, o 6/2?_) 3] Y

hie (\j/):z-mn‘;/ i H(T ,“\I/)— -'l—gj sin ¥
(3.40)

Hence

X :{ - ’\-/-‘Z-vrle"ayl cos(2T -Zw( +w/4) - T]Ze-ZYi cos(2T -2n )

1 16
- '\—/;“‘le'—v‘ cos(2T -9 +w/4) + ée—q cos(2T -n)
+ T%Y‘\e- V2 cos 2T - &2 ) +u/4) - (Lo y2:15) “3/22‘15) " V2n cos2T - /2w
- {_Eh‘e_v‘ Cos(uvl +w/4) + i-e-q cos(-rt ) - %Y}eﬁzq

L 02-10) '{?:6_10) Necos(2T +ir/4) + %*l’r Lo /2-21) cos 27

Y 32
-2 siay s1pn? (3.41)
16 ! §
e . . . oy 1 RS
The coefficient I(\}/) is determined from matching with E \‘\";

in (3.21).
From matching (3.21) with (3.26) and (3.41) we see that

the boundary conditions on )(] (s) are

¥
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(s)
(s) 2¥,
Xl = 5/8 sin{, - 3 .r =

{r—

sin ¥ onr =1 (3.42)

™~

A

)

I }(2 (w) and )(2 (5) are defined in the same manner as Xo(u) and Xo(s .

s . st . e u) .
we find, in addition, thati the boundary condiiion on XZ( ) is

Xz(u) - (}.63f-21“) cos 2T sin'W onr =1 (3.43)

The equation for XZ (12) is (from 3.27)
? () _ _
v Xz =0 (3.44)
and the only regular solution of this, satisfying (3.43), is

a 16./2-
X?( )=—(——6—§—§——%}L r cos 2T siny (3.45;

4
The equation of C(8 ) in the outer region yields the tweo

equations
Q z s b(XZ (u), \"23)(0) Rs 3()(1 (u)’ 7 a)(l (S))
S N S

=0 (3.46)

. b(XZ(S): VZXO) ) A(XO’ VZXZ(S)) . B(Xl (S), szl(S))
T @y) Tt 2 @m¥) Tr 0 &%)

1l 4 {(s) .
—V .4
R ){2 (3.27)

s
The equations for W, and Xz in the inner region are
Rs d X bwo 1 oWy ow

19) D¢ 1] o
w, = 2%, 7215y

1
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2 e S e
> _1__2_,1)},[2 _1}_2{ o X, o a_XOaXO
373 N arf 217 dn Bq W« 2\ a-wa

XY P, 1y, ¥
dp anE T2y i df
2 3%, X, ¥X,,

2T 3 Yle)n Y

RS
A

s} ow,
- 23' 'g;l(wowz) + o, -5_:\— % sin\{/ (3.49)
The solution of (3, 48) satisfying the boundary conditions (3. 4) and
matching with (3.5) as V] -> o0 15 found to he

= - :(33- vfe"l sin(T-n )+ “{% qe"”' cos(T - ytu/4)

+ R ;} - 7eN 2(—:-\'1 sin(’t’-r‘ )+§1§‘qe~q cos(‘t’-q)

+3%\‘)e_q sin(T -Y})+3230 =31 cos(T = n)

=3 sin(r - 1)

80

+ -lz'e- " sin(T - Zr] ) - -(l+ Jé)‘} sin{ 3T -(1+ ﬁ)‘]l

64 -(1+ f)V) nl‘:c - (42~ 1)\,\] +192 '\.sin(3't’ -3r‘)

l_enzq cin(3T -2*1 ) - %ﬁ&-—g) e-r] sin(37C -1 )

(5A/2-9

64 (22 /2-28) -1 cos(T-7)

e-qcos(T+r})+ 30
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- _19_2%6"’7 5in(T - v)
+ (151»‘\9/22-61) e ﬁ"] sin(37T - ,‘/.3',} )75 cos ¥ (3.50)

"Fhen this is substituted into (3.49), together with the expressions
for W (3.19), Xo(3. 26), W, (3, 36) and K! (3.41), the equation

can be solved for X Owing tc the labour involved only the nart

Z'

> independent of T{—é—_?—- ) has been found, this being suffi-
¢l

of
. s X cos 8
cient to determine matching conditions on )(2( ).

B_XZ(S)

BY) i;‘qezv‘-l—— 2Y‘+——e Zvl+—"\ e-qemr

32

- -l-—n/z Y]e-q cos(-‘q «m/4) + %— e Mcos Yl}sin}ﬁ‘

+Rs€ gn e e ‘2'1+3‘1§;:0 -2«Y+5’120 N
gllz - /?r}-i'-—-"] sinr? “le"? cosr)

o B o+ 282 i
--5-1-(;@- vin 21) -(~/2+1)y o (n/2-1)1
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¢ YN (a2 2 H Y cose- 2

* 2,23504 " @ /N ine- A2)n

- (45;\5/122- 50) e"\/éq cos ,,/‘2-\’}} sin?,\}y

+M("1{f)rla + N(¥ M Ply) (3.51)

*Then we apply the boundary condition,

BXZ(S)
o |

which can be deduced from (3.4), we fincé

=0 on \qzo (3.52)

S S 13,793 395 L
P(Y) = -3z sin} - R GF550 - 5303V 2) sin 2V

(3.53)

The coefficients M(Y) and N(¥ ) are found from matching with

i b3y 0 | bz}, 1
- .2- ,.12 [ ar3 ] and Y P ] respectively (see 3. 21).

r=1 r=1

From matching (3,21 )with (3.41) and (3. 51) we see that

(s)
a

the boundary conditions on )(2 re

(s) 3 . v
)(23 =--1-é-s1nY/

on r=1

a1, )
- 2 I 3 R . 13,793 395 . /.
51 - "3z s -R( 76, 800 _ 2, 304 V/2)sin 2¥

(3.54)



In order to evaluate the coefficients I, M and N we need
to find the solution for the sireamnr function in the outer region. In
the next two chapters we study the limiting forms of this solution

as Rp ~> 0 and R?3 —-> Q0.



CHAPTER 4

THE FURTHER LIMIT Rs >0

We now look for a solution which tends to the exact solution
in the further limit RS ~> 0,
We try, therefore, a solution to (3.28) of the form

Ko =X oo P I+ R X )+ R 2N e, Y+ (4.1)

The rratching conditions (3. 29) give us the following boundary condi -

tions on the X .
oi

dX
- . . 00__:':_‘_. LY ‘\
)(oo_o’ Dr -491n\}( '
j onr =1 (4.2)
_ /
X
ok . {
01l [
=0; - =0, > 1-
Xoi Or 0 1z

If we substituie (4.1) into (3. 28) and equate like powers of Rs, we

find, as our eaquation for )(oo’

VAR Y (4.3)

00
The solution of (4. 3) which is regular and satisfies (4.2) is found to
be

X, =~ % (1-r%) sin'yr (4.4)

The equation of O(Rs) for )(01 18

N o, VXD
S (r,¥)

(4.5)

La 38 Ko

I = -

ol
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The regular solution of {4, 5) which satisfies (4.2) is

~r?(1-r?)?sin2 ¥
)(01 ~ 3072 (4. 6)

Similarly, the equation for X  is

o2
2
sy l;5(><00,</'>(01) 1% VIK)
V¥ i o mp) T r aw)

(4. 7)
and its regular solution , subject to (4.2), is

- !
t

] - 4. .
;(02 = - TI54 580 r(l-r?)%(2-Tr3+4r )sm‘//

BN

+ r3(1~r2)3 sin 3'1,// } (4. 8)
Matiching, we can see from (3.21) that I(y/) in the expres-ion for

X
C
X}. (3.41) is equal to -é- [—a—rjg;} .

r=1
R R 2
3 . . _ . 3
I(Y) = 3 sinyf -% sin 27)0’ + 7-3—7-,—52_85 s1n}[f + O(RS ) (4. 9)

1 3)(0 7

N
O
Likewise, M('p’) in(3, 51), which is equal to - = [_a 3 J ’
T

2

il
Sk

can be deterrmined to O(Rsa).
R 2
M) = 3 5 + --3——-R in 2\ - ———2— gin 3
M) = - gsinf + 5 R_sin 2y - ol.as0 Sin3F

3
+ 0R_) (4,10)
‘We adopt the same procedure for )(1 (S), writing

xl(s)=X10+RSX“+RSZX12+... (4.11)

The matching conditions (3.42) now become



onr=1 (4.12)

Substituting (4. 11) into (3. 32) we find, as our equaiion for )(] 0

4 .

N K= 0 (4. 13)

The solution to (4. 13), satisfying (4, 12), and which is regular, is
T -

= - - 3 4

)(10 T (19 - 9r°) sm\]f (4. 14)

The ecuaiion for )(‘11 is

4 1 1
VX, =--= = 2 .15
11 r o) (x,’\{/) T dr, W) : )
whose regular solution, subject to (4.17), iz
X. . = 2 r (l-ra)2 gin 2V (4.16)
11 73072 B -
The squation for )(.l 5 is
. 3. Y
V2™ r T ) v D)
(4.17)
-2
r O (r, %) r (r,y)
and the solution satisfying (4. 12) which is regular is
L 1 3 5 7
= 154y - T a - 5
)(12 3572 { 930 (154r - 597r" + 840x 5051 )

7 )
+ 1081'9) sin“{f + -51-2—6 (-r3-7r5+17r -9r9)sin 3?}
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Now N('\/f) in (3. 51) can be determined, it being equal to

ar

A S
—8-s1n{f +384 Rs sin 2V

5
R_ 9

s omie 3
m (70 s1n'\// + s1in 3'\{{)4' O(RS )

(4.19)

We solve equation (3.47) in an analagous manner to that

eroployed above, and we find

(s) . x_ V7o 2Y o 49 ? 15,018 1,580 x
)(2 = - 7= (29-17r )...1n‘\ff - - R:;- ‘(1,225 iy ﬁ)r

+ O(R ?) (4.20)



CHAPTER 5

THE FURTHER LIMIT R_ ~> o

In thiz chapter we seek a solution to (3. 3’1’) which tends to
the exact solution for )(o in the limit RS -> o0, subject to the matching
requirements (3.29).

The problem now uader consideration, as described by
(3. 28) and (3. 29) is equivalent to that of steady, ¢wo-dirrensional flow
inside a circle, whose 'wall' has a tangential velocity Vo © -0.25%

¥ (W% /Rw) sin}} . For reasons io be discussed later, a thin boundary
layer of thickness O(aRS-l/z)-will be forrred at the wall, in which
the velocity of the flow iz adjusted to that dictated by the flow in the
in‘teriqr of the circle, which we will refer to as the core. We postu-
late that in the lirnit Rs ~> cc no streamlines of the rrotion in the core
enter or leave the boundary layer, thereby causing the core to have
uniform vorticity (see Batchelor (1956), Squire (1956) and Frandtl
(1927)). This, however, does not determine the core flow uniquely,
For instance, the core may be divided into several regions each
having uniform vorticity of a ztrength different from that of its neigh-
bours. As will be secen later, thes: regions will be separated by
boundary layers because of velocity or stress discomntinuities between

them. We shall choose the simplest possible arrangement of {wo
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vorticfes in which the vorticity of the core in the semicircle
0< "P’ < w is equal in magnitude, but of opposite sign, to that in the
semicircle 7 <Y < 2w (see Fig. 5.1). This implies a definite vel-
ocity distribution at the edge of the core, and if this were identical
to the velocity of the wall then there would be no doubt as to the
correctness of thic rrodel for the core flow. In fact it will be seen
that the velocity distribution at the edge of the core flow ir, for the
most part, auite close to a sinusoidal distribution (Fig. 5.2), and
this gives us good grounds on which to argue in favour of the model,
as depicted in Fig., 5, 1.

Although its property of uniform vorticity is a consequence
of small viscozity, the flow in the core is inviscid, and, in order
for ihie tangential velocity at its edge to be adjusted to the velocity
of the wall, a balance musnt be set up between the viscous and inertial

2%

terme in cauation (3.3%*)., In order to achieve this, a thin boundary
layer of thickness O(aRS—l/Z) rrust be formed at the wall, and is
depicted as part of the shaded region in Fig. 5.1. £ boundary layer
is also formed along the line of symmetry ”'lif= 0, v because, when
the fluid in the boundary layer at the wall, having started at '\{f =,
reaches '\/j = 0, it mecets boundary layer fluid from the other semi-
circle. The two boundary lavers impact, and must continue along the

line of symmetry., They retain their boundary layer character because,
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although the velocity is coniinuous across the line of symmetry, the
vorticity is not, and Harper (1963) has shown that this itself leads to
. . . -1/2. . .
the forwmation of a boundary layer of thickness 0(aR _ ) in which
to smooth out the discontinuity.

V7e first solve for the flow in the core region of the upper
semicircle. in Fig.5. 1. If we refer to the flow in the core by an over-

bar, the governing equation for X 13
o
VAR SIS (5.1)

where T it the non-dimensional vorticity, which we may expect to
be negative from the velocity distribution on the wall of the circle.

The boundary condition of no flow normal to the boundary of the core

Y —_ _ - - =4
XO—O cnr =1 or\{f =0, (5.2)

The solution of (5.1) subject io (5.2), which is regular everywhere

within the semicircic 1is

= Y 1,0, 1 - -1 2r sin¥y¥
X = Cy %{] --i(r +F) cos Jf] tan (”;-:-*;;7-)

o] A

I, 3. . 142r cos¥W +r°
_4(1' -rZ)uanV[' log (1-21‘ cosy/+r2')

1
+{r- ) sin}) - %r"‘ (l-cos 2% ) 1 (5.3)

The method of solution is given in detail for the elliptic pipe in

Chapter 8. This gives as our flow velocity at the edge of the core



M T _
_ [ OJ =v, = 3 (-r gin’ \/_( -2 s1n77!)’ sin Zy,".log tar(yf/z))

or r=1
(5.4)
In the boundary layer adjacent to the circle wall
"g; OR, “/2) and ;(o ~ O(Rs-l/z). Thus, if we retain the leading
terre in (3.28) and integrate once with respec: to r, we obtain the
boundary layer equation _
%+u§l‘;%%+Ru-l§;y‘ (5.5)

dv
1.
The function of integration has been put eaual to Vi gy o the normal

way, so that at the edgé of the boundary layer the equation is satisfied
by the core flow to first order in Rs ; this function 1s just the prescur~
gradient acting on the fluid in the boundary layer. "7e now linearise
(5.5) in a 1ranner analagous to that employed by idoore (1963) in his
study of the stress induced boundary layer at the surface of a spherical
air bubble; the subsequent analysis follows closely that of Harper and
Moore (1968), who studied the flow associated with a spherical liquid
drop. iAoore's linearisation is, however, formally justified in the
lirpit Rs -> co, whereas that employed here is not.

e now assume that the velocity in the boundary layer is
a small perturbation of the velocity in the core and write

v=v+yvy , u=u+t+u (5. 6)

where a suffix p denotes a perturbation quantity. The justification for
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thiz assurnption will be discussed lates, Subgctituting (5. 6) iato (5.5)
and neglecting quadratic terics in the perturbation cuantities, we

have, as our boundary layer equation,

_ aV) dvl iv1 v ai\rp
—L —_— g (] et B - .= 5,7
YR cn/f” VY T TR 3 (6.7
- dv
noting that v = v, and v = (l-r) I to a boundary layer approximation.

The boundary conditions can now be written as

- v, on the circle wall 1

P w1 ,
& (5. 8)
vp => 0 at the edge of the boundary layer :

where v'  is the non-dimensional velocity of the circle wall and is
w
equal to -0.25 sin}/ . There will alno be some initial condition or.

VI“ at the start of the boundary layer.

We transiorra (5. 7) into the diffusion ecuation by the use

of the following transforivations

1/2 - ~

-T2 )ET ()

v =
W
x=-"7" (:f_ld" (5. 9)
Jn'
y=37%% v
1 op
Tauation (5. 7) now becomes
- 2
Y. ?(;V‘g (5.10)

with the boundary conditions
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vz, 0) = —S-Z (v' --\-r');

w7 1

1
(5.11)
Yy~>0 asy ~>a

and some initial condition y(0, y) which will be discussed later. The
0
solution of (5.‘}7} subject to thesc conditions is given in Carslaw and

Jaeger (1959).

co

1 vyt )2 /A ) 0 s
T I I e

2 (mx) o
m -
+ -_2— { viz-y2/4p?, 00 e ap (5.12)
™
)y

2 /=
Similarly, the boundary layer equation for the layer along

the line of syinmetry '\!f = 0, can be written as

du

du qu _ = 1 -1 d%u
c— - Sre—— cy 5' 1?
Y s tv dn "1 ds * Rs dn” ( *)

where s is the non-dimensional coordinate along the line '-\{f =0,n
and s = D is 1;( = 0, and n is the non-dimensional coordinaie norr al
to it and pointing into the sercicircle. The non-dimensional veloci-
ties associated with the new coordinates arec u and v. Thus v is in
the direction of s increasing and v is in the direction of n increasing.

The non-dimensional velocity of the flow in the core atn = 0is u, and

"3
is equalto—[-l————] ats =1l-r, '\{/=Oand[‘;'-—-} ats =1,
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'\]U = w. Using (5.6) and lincarising as before, we have, as our

bondary layer equation,

_ bur da, dII} ou . D

; L . - )

2 by e e g b 2R T e 5.14
"1 0s Up ds ¢ ds dn 5 Dn° ( )

The boundary conditions can be writien as

Du

— - . -
>n g onn=20

)
} (5.15)

up => 0 at the edge of the boundary layer

and there will be some initial condition on u:F at the start of the boun-
dary layer.

Ermploying the following transformations

~1 1/2 -~
Y = (-S Re) /L u, n N

| a (5. 16)
o
7 -2 =
T = g u, u J
I p
we again arrive at the diffusion equation
’ 2 '
ol | Q°T (5.17)
T oyl

The perturbation vorticity is, io a boundary layer approximation

dn (-S R.s:) ! &=/ (5.



where @ = ST and this alco satisfies the diffucion equation

© D@ .
aax= SY2 (5.19)

e

~his is solved subject to the boundary conditions (5.15) which be-
come

(0 = +(-% RS)-l/z/onY = 0

(5.20)
(f:}) >0 as ¥ => 0
and some initial condition @ (0,Y). As before we find
oo
o 1 -(T-YN)3/4X - (V+Y' )Z-/exg
-ELY) = NNy (o, ¥') & e -c Y’
2 (n¥) o )
‘ (5.21)

NES R ?/j/( orf_ ¢

e neglect the terrn of O(Rs”/z), assuming that this is much

2/%

smaller than the order of magnitude of the perturbation vorticity.
This is certainly true in the limit Rs -> co. If we integrate equaticon

(5.21) with respect to Y, we obtain, after inverting the order of in-

tegration,
o0
. -(Y-Y")3/43 -(Y+Y")*/4x
T(J(,Y)z——T-l, \ T-'(O,Y')ie (Y-Y1)°/4% tay
2 (rX)” 2 JO

(5.22)
where the arbitrary function of integration has been chosen so that

as X =0, T (,Y) T (0,¥Y). The inversion in the ordei of



integration is possible as the integral in (5,21) is absolutely conver-
gent for all values of ¥,

Let a suffix e denote the end of each boundary layer:. Thus
X, is equivalent to '\/f = 0 for the layer along the circle wall, and

Xe is equivalent to '\/f =, ¥ = 1 for the layer along the line of

cymmetry. Therefore, uzing the expressions (5. 3) and (5.4), we have

"
-1 v oay -X_2
*e T S Vi \LYI 2w
o
T (5.23)
1Y
-1 T 2
¥ =-2% = t °.} dr = ©
€ . T a.‘l} \// -7 s

We now assume that as the corners (r = 1, \/f = 0 or w) are approached
from within the boundary layers, -vp in the layer on the circle wall
tends to up in the layer along the line of symmetry. That is, the
perturbation velocity profile is convected around each corner un-
changed.. This assuroption is discussed later. It can be shown that

near the end of the boundary layer on the circle wall ('l/f"-’ 0)
v, ~ gj( + Y log{Ys/2)) (5. 24)
1 T W V og(/f o

and at the start of the boundary layer along the line of symmetry

(s =l-r ~ 0)

u %—? (s + s logs /2)) (5.25)

Thus, in the corner, the assumption made above gives us



y=Y
(5.26)
Y(Xes Y) = T (0,7)
Similarly, in the other corner we have
v=Y
(5.27)

T’(X.e,Y) s Y(0,y)

Because of conditions (5.26) and (5.27), (5.12) and (5.22)
are a pair of linked integral equations for the velocity perturbation
in the boundary layer. If we. consider the point X and substitute
(5.22) into (5.12), using (5.26) and (5.27), we obtain the following
integral eouation for the profile of y at X

0,00
1

SN ¥ I Y e
ie(v y)/416+

Y(Xe’Y): 173 g i} Y(xe,Y')
o © '

4da(x X )
e e

-ty /AR
{ x

+ e
Sly=y"' )2 /A - (yry)?
x ge , € e e Ayt dy"!
oo
2 2/, 2 -2 o
+‘7-— y(xe-y /4;.1 , 0 dp (5.28)
™ A
2./%
e

Integrating once with respect to y'', we obtain



4 -
o AR A
1 4737 4xz
4 (<] (<
YG L y)e - J yix ,y')e X
e - . l/2 e
LT p
2 L'ﬂ'(.ue Ax:_e )J o
o0

2
&

2 2
X St ea erf o - eﬁ erf ﬁlgdy’+ -—2: y(xe-y':/fl-},‘»’", O)e . dp-
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where
. R 1/2 o y XX 1/2
- ¢ - i
T tn ) P A > (5.30)
e e e e e e e e
The scecond integral in (5.29) way be transforrred to
2
hid - ——-—z———-
e 4(xe-x)
— b, 0) € dx (5.31)
- 3/2
24w (x -x)
e
and this is equal to
2
N A—
e vk o) e 26 EP)
y p YW, ay  (5.32)
- 372
2 W (xe-'x( //))

113

Thus we see, from our definitions of y(x, 0) (5.11), x (5.9) and \71

(5.4), that we may write (5. 32) as

v+ STy %) (5. 33)
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b5 b4 .
where Y, and Yy, are known functions of y. Tquation (5.29) may now
be written as

,00

e

-

- " -1 X .
vy = | ey Kby dy' + vy ) 4 STy, ) (5. 34)

5
If we define

Yoy =y 0+ T v, ) (5. 35)

equation (5. 34) may be writien as two integral equations of the

Fre#dholm type.

;00 = | voOIKyy) ' vy ly),  i=0orl (5. 36)
o

Tauations (5. 36) were solved nurrerically, and the coraputations are

described in appendixz B. The strength of the vorticity T is deter-

roined from (5. 35) when we enforce the condition 'y(::e,y) -> 0 as

y -> oo. Thus we see from the appendix that T = -0.56 correct

to two decimal places.

We may now atiercpt to justify the linearisation. If we
plot - v'W and _;l against yf as in Fig. 5.2, we see that their
difference, which is a measurc of the perturbation velocity, is quite
small compared with -\;1 for a significant part of the boundary layer.,

Of course, the perturbation cannot be small near 'yf =0orm,

owing to the logarithmic dependence on tan("\}f/?.)in v, and its absence
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in v'w, but we hope that this does not alter the result significuntly.
We return now to the assumption contained in (5.25) and
(5.27), which we will attercpt to justify using the type of analysis
ernployed by Moore (1963), in his investigation of the flow near the
rear stagnation point of a spherical bubble, and of Harper (1963),
when he considered the flow near the rear stagnation point behind a
bluff body, Ve take the full non-linear Navier-Jtokes equations for

flow within the circle:

QM ,vou v*_ pp 1 9 av,v 1ldu, (5.37)
dr r 0 T or Rsr bwar r r oY
>v vy wv _ _1dp, 1D @v,v ldu,
uar+ra +r '"rbw+‘ Dr(ar+r'z-b') (5. 38)

(c.f. equations (2.15) and (2.16)).
Here u and v are the velocity components in the r and '\71/ directions
respectively., If we write u and v as 1n (5, 6), and remove the terms

satisfied identicaliy by the core flow, the equations become

du - ” - du
=0 2, 2% v Yeow 0%
or por p Or r OY'  r ) r oW
2 vv v £ op oV v .~ ,0u
_ P B . p _.1 —QHB+£-£J) (5.39)
r r dr Rr dYor r Y



_ v 3% DV 7 oV v B— v DV
u—T——+u -—V+u +"'"’;L)""+‘-E "‘X‘l"‘E L
dDr pdr r Or ¥y OY  r XY r DY
Gv\ u v u v , OF d v v 1 ou
— p Py 'F-Pz_i_.ﬁ.+_.1.____(__£+_£_—_.\.) (5,40)
T T r J.al/j R_or r r Ty’

where p_ ir the perturbation rressure, i,e. p=p +p .
) ©

3

VWe may now deterznine the behaviour of all the terms 1n
the equations as they approach either of .the corners from within the
boundary layers. If we congider, in particular, the end of the boun-
dary layer along the circle wall, then, because y and y are 0(1) in

the layer, we may infer from (5.4) and (5. 9) that whenyf ~ 0

1 .

(-% RS) /pr’ log{y/2)for boundary layer quantitiesw
0 ~ { -
Or 1 for v

1
2 .1

Oy Yy
v ~TYrlog(ys/2) K( (5.41)
R RS)-1/2 b
s
35
Yp ™ Y log(y /2)

T (-7 RS)'I/Z }
Py ogr/2)

where & is the rragnitude of vp compared with v. The order of

u

magnitude of cach term in (5.39) and (5.40) is thus
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(5.43)

%1«
ol o

L;cs
JJ}A

[}

L " . %, e
Therefore, from (3.42), we sze thzi “he cerinrsaiicon pressure behave:

in the fellowing snanney whexn | )U ~ C.

- -1 2 12
A R s
LA [M;X(‘z % VS ¢ | xS logOp/zyy !
" Gez /20 YT (log (W/2)) | A “og
~-1/2 '

(5. 44)

2
TETRI A ) ]
e I ‘
\L}I (log(}f/Z)gi
The texyn p iz & functicn of u] cily, and iz determined from those

terms in (5.40) which do not decay (6 zmerc al th2 edge of the bouadary

*2
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DV

layer, e.g. u_ - . Hence, from (5.43), we can see that our approxi-

P or

mate equation (5. 7) becomes invalid when

s SRR e g R :}

—— ~0 [?-‘-/.iax ey - ' ! e
s T 108 B ey o h*aogty72’| ¥
(5.45)

or, in other wordg,
Y~ oy R )7, R oA, \Al\/?‘)] (5. 46)
at most. )

Zirnilarly, we find tha: the aporoxizcaiion used for the other
boundary layer becomes invalid at a distance froin iis end of the came
order of rmragnitude zs 1/-f in (5.46), If A << 0(1) we find that when
ﬂp (or the diztance from the end of the boundary layer)<< 0(1), but
greater than the order of imagnitude given in (5.46), the viscous
terms in (5. 39) and (5. 40) becorne much smaller than the ineriia
terms. Therefore, to a firsi approximation, the eguations become
inviscid in a region where the linecarised boundary layer equation is
still valid. We postulate that the eq ations rerrain inviscid as the
flow turns either corner, and therefore the streara function must
satisfy the equation

g KXo =-ow, ) - T (5.47)

where G is the periurbation vorticity and is determined by maiching

with the perturbation voriicity profile at the end of the boundary layer.

1
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The coefficient Rsl /2 is included so that Rsl/z)(o is 0(1) in the boun-
dary layer. This phenoienon of a viscous boundary layer turning a
corner inviscidly was first discussed by Stewartson (1957).

Ve consider, in particular, the corner r = 1, 'l/f = 7 at the
ead of the boundary layer along the line of syrmrmetry. In the region
of the corner we define a new system of polar coordinates r;, O which
are depicted in ifig, 5.3. Taus ar, is the actual distance from the

corner, and o is the angular coordinate measured from the bisccior

of the corner. Vihen ry ie srrall we rcay deduce from (b, 3) that

4 2

=<

T
X ~3 T, ? [r-l-n' + log (-él) cos 20 + }-cos Zo - ¢ sin 20'} (5.48)

-1/2)

, thus for the boundary layer

fluid turning the corner r, = OYRF-I/‘L(log R )'"‘/Z j This leads us
LY ! 8 S

In the boundary layer ;('0 = 0(R

to define the following scaled variables of 0(}) in the boundary layer

at the corner

:Rsl/4(log Rs)]'/z r, . 8 =Rsl/2 X, (5.29)

rZ 1 o

WIoiting 4 =4 +4 , expréssion (5,48) now becomes
o o op

EES

-1 ~1
1 2 s 2
o " (log Rs) log(log Rs) }rz cos 20

™ e

I

-1 3 2§l 2 1 : -
4 (log RS) _ v, %:1-11' + 10.9;(2 Jcos 20 + scos 20 - ¢ sin 20'} (5.50)

.

and we see that, unless |log x,[ ~ Oflog R ), ;éo is dominated by an

.

irrotational term. Xquation (5.47) can now be writien as



-1
'(72? ;50 = - (logR ) G(,éo) (5.51)
where
2_ 00 1D 1 0F .
Vz = brza s 1‘2 arz + 1‘2—1 ao_a (bo 52)

..l 2 i
Now, from (5.16) we sece that (-{) / ;éo = Y to a boundary layer
approximation, and at the beginning of the corner G must equal the
periurbation vorticity at the end of the boundary layer. This 1s
1/2
- (- TRS) 1 (5D evaluaied at the end of the layer and for large R
this rnay be taken to be at 27 = Xe (cee (5.18))., Thus (5.51!) roay now

be written ac

Y,  f = +ilog RS)*(-KRs)}'/Zg %@[zce,@ﬁ”zzol

op

+ (-7 )'}‘/zdopzﬁ;\:\ y (- T)1/2(¢$ +x¢{ ]g (5.53)

where 0 <X < 1.
Furthermore, if we write (5.50) as .

- — ] - o
?fc"" ﬂgol + (log Rs) ?{02 then, &9 1n (5.46) may be expanded further

te
1/2 -1 /2
olx, 17778, =@ x 17/,
7 (log R )7 (=S 23 %C,’[ A-577%3 o+ (og Rsrlzoz:]

(5. 54)
where 0 < g <1

Clearly, for Y ~ 0(1)’@‘ and -S@% are funciions of the sarme



order of rragnitude /\ . As g = 0(A) which 13 assurred small,
op

a first approximation to (5.51) can be written as
2 _ -1 1/2 - [,‘, -1/25 ]
Vz ngop = + (log RS) (-9 RS) < & X -T) ,501 (5. 55)

Thus, to a first approximaiion, the perturbation vorticity is convected
arvund the corner on the streamlines of the irrotational motion ces—
cribed by Zol' Lus -;Zol(o-) = }Zol(-o-)’ this means that the perturbation
vorticity profile at the end of the corner is the same as that at the
beginning of the corner. In other words, the certurbatior vorticity
profile (and hence the perturbation velocity profile) at the start of the
boundary layer along the wall iz the same as at the end of the boundary
layer along the line of symmetry, This is precisely condition (5.27).
(5]

However, when |log rzf ~  0O(log Rs), (5.75) is no longer

a first approximation to (5.51} as then (log Rs)-1 202 ~ 0(%),

Nevertheless, as most strearmmlines do not pass through the region

{1og rzl > 0(log RS) we wnay expect this to have an insignificant effect

DD

—

on the result given above, Similarly, when Y is small, ® and 3Y

may not have the same order of magnitude., It is casy to show that

lim %_@f’ S_O(lim !% ) (5,56)
Y ->0 Y ->0 :

and so (5, 55) may not be a first approximation to (5.51) when

yfo ~ 0 [Niax (log Rs)-l,!/ll)} (5.57)

However, this again does not affect most streamlines and so the result



quoted above iay still be taken as a first approximation.

In addition, meniion should be made of the nascent boundary
layer formed within the corner region on the circle wall. “/e may
deduce fror (5.50) that the non-dimensional velocity just outside this

. m . -1/4 1/2 , . .

layer is Ol. R_ / (log R_) / ] . Thus, roting that w -YJ is

-1/4 -1/2 7. . : .
01 R_ (fog R ) in the corner region, we find that for viscous
and inertia terms to balance in (5.5),the boundary layer thickness mwust

T -1/2 -1/2 . . .
be 0] a Rs (log R(_) . Ag the corner region has a dimension

-1/4 -1/2 ) .

C [a R (iog Rﬂ) rnost strecanclines do not pass through this
layer, and so once again we are justified in taking ihe condition (5.27)
as a first approximation.

41 identical analysis to the above may be performred for
the flow in the other corner and this leads to the verification of (5.26).

The argument put forward above is only valid if A s
srnall, Indeed, for the linearised boundary layer equation to be valid
up to the beginning of the corner, we see from (5.46) that we require

A <omr '1/2’)
- 2]

. However a glance at Fig. 5.2 shows this to be
immprobable for rroderately large values of Rg, and, of course, is

not true in the limit Rs ~> oo, However, we can say that the approxi-
mations (5.26) and (5.27) should be no worsec than the linearisation

and, as we shall see in the next chapter, the results seem to indicate

that this itself is quite good.
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CHAPTER 6

DISCUSSION OF RESULTS FOR THE CIRCULAR PIPE

As can be seen frorr the solutions for Xo, both for small
and large values of Rs’ the secondary flow in the outer region is steady
in the limit p -> 0, and in the opposite sense to that predicted for a
steady pressure gradieni along the plpe. (see Dean (1927 and 1928),
Barua (1963) and McConzalogue and Srivastava (1968)). That is, the
motion along the line of symimetry 'l/f = 0,7 is from the outer s’'de
of the pipe to the inner. The reason seems to be that 'centrifuging'
generates mostion which 15 entirely confined to the Stokes layer. The
fluid 1s driven along the wall from the outer side of the bend to the
inner under the action of the pressure gradient which, in the Stokes
layer, ic no longer balanced by the centrifugal force associated with
the flow along the pipe; it returns centrifugally within, and at the
edge of the Siokes layer only, and in so doing 'drags' the fluid in the
outer region around in the manner found. A sketch of the mean first
order streamlines in 'ig. 6.1 makes this clear.

Let us now forrrally put B equal to zero. In Fig., 6.2 the
secondary velocity profiles are plotted along the line 'L‘J‘ = w/2 in
the outer region for different values of Rs. When RS =0, 100 and

200 the expansion (4.1) for )(o is employed truncating it after the term
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4
of O(R %), However, the error involved is 0(¥ R )as ¥ , (like
s o4 s 03
)(ol) is identically zero along \}f = w/2. %lhen Rc = oo the expression
(5. 3) for Xo is used. As can be seen the expansion for small RS
seems to be quite convergent in practice for values of R_up to two
hundred, and, indeed, seems to describe the transition of flow from
small to large values of Rs fairly well, Ii is, however, more
instructive to plot the vorticity profiles along 1)[/ = w/2, and this is
done in Fig. 6.3. The truncated expansion used for small RS now
only seems to be convergent in practice for values of Rs up to one
hundred. Nevertheless, bearing in mind that the error involved is
4 . .
o( VZXOA RS ), the profile for Rs = 200 rray not be without some
significance. It shows clearly the development of a core of uniform
. ... @S . e . :
vorticity on Rs increases, buft perhaps indicates that the magnitude
of the vorticity when Rs ~> oo has been over-estimated by our crude
linearisation.
In consideration of the last remark it is worth observing
that if the wall of the circle in Chapter 5 moves with a velocity L
this being the velocity at the semicircular edge of the core flow, then
no boundary layer is formed ai the w2ll of the circle, and any effect
due to the vorticity discontinuity along the line of symmetry is
-1/20 : .
O(Rs ) which can be neglected, If Y is now chosen so thai the

average velocity at the circle wall is the same as for the problem
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under consideration i. e,

T T
i R -
-7 sinydy = vy ay
) (6.1)
le} (o}
w
:% (w sinzWIf -2 sin\/! - sin 2 log tanW/Z))d\]f

o
then we find § = -0,535.. This figure is reassuringly close to that
pradicted both by the linearised theory developed in Chapter 5 for
large Rs and by the shape of the low Rs voriicity curve for Rs = 200,

In addition, a recent paper by Ruwahara and Imai (1969)
is in very close agreernent to the above calculations. They consider
the flow in the circle when the wall moves with a velocity V sin'\}f »
and thus their Reynolds number Va/V is equivalent to Rs/4. Using
an identical expansion to (4, 1) of the stream function for low Reynold~
nurcber, they conclude that the radius of convergence of such an ex-
pansion for the velocity profile along ‘I/J' = w/Z‘is, probably R = 120.
In addition they perform some numerical calculations for higher
values of Rs’ the most significant feature of which is the confirmation
of Batchelor's uniform vorticity model for the flow in the core. As
well as confirming the single vortex model for flow in each semi-
circle, they deduce that the value of the non-dimensional vorticity
in the core for Rs = 20438 is 'S = -0. 54, and they adopt this as its

probable limiting value as Rs -> . This gives considerable support
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to our value of § = -0.56 as Rs ~> 00, more so when it is realised
that, together with Fig. .6. 3, the calculations imply that as Rs in-
crcases so does the magnitude of 'S . This gives rise to considerable
confidence in the approximate theory of Chaptei' 5.

It is also of interesti to locate the precise pocition of that
scagnation point of the secondary flow in the ouier region which re-
presents the vortex centre (rc,yfc). Using the expansion (4.1) for

)(o we find

o
C

e

On the other hand, as Rs -> oo the centre tends to (0.48, ©/2). Thu:z

ABJ3 - /3 Rsa/l, 658, 880 + O(Rf')
(6.2)

H

w/2 - /3R _/864 + OR %)

the vortex centre moves in the direction of the fluid motion at the
semicircalar  edge of the voriex before inertial effects become domi-
nant and return it to the line "L/f= /2. Similar results have been
obtained by Burggraf (1966) and Kuwahara and Imai (1969).

Let us now formally put Rs equal to zero. In Fig. 6.4
the mean secondary velocity profiles are plotted along the line
7\/}‘—‘ w/2 in the outer region, using the first three terms of the series
(3. 6) for the stream functicn, These terms are calculated in Chapter
4, The valucs of B used are 0, 00, 0. 04, 0.03 and 0, 12, and in order
to demonstrate that the series is still a good asymptotic representa-

tion of the velocity profile at 8 = 0, 12, the profile calculated from
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the first two terms of (3. 6) iz included for this value. This is imn-
nortant, for if we had allowed P in this theory to take any value then
as B -> co theS tokes layer would thicken uniil it occupied the whole
of the interior of the pipe, and a steady state solution would then be
set up with concomitant positive centrifuging. (Infact the limit £ -=> o
when RS is small or finite would be equivalent (0 Dean's (1927 and
1928) solution as the Dean number K is ZWza%/v‘R =4 R‘s/[?)2 and
this is small in Dean's theory). However, for p = 0.12 (in general
f >0.11) the mean flow given by these first three terms of the ex-
pansion (3. 6), when Rs is equal to zero, is wholly from the inside
to the outside on the line '\ff= w/2. This shows a tendency towards
the solution for the steady problem,
T and

In addition, the profiles of the functionsy, described in
Chapter 5 for the outer boundary layer when Rs ~> co, have been
calculated at various stations around the semicircle, These are
plotted in Figs, 6.5a and 6. 5b, and their numerical calculation is
described in Aprendix B.

Of more irmmediate interest are the implications for the
cardiovascular systerr, and in particular the aorta. Unfortunately
the data available is rather imprecise aé yet, but McDonald (1960)

quoies the following figures for the ascending aorta in man
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22=2,3-2.45cm

Mean systolic velocity = 21,3 - 87.4 cm s -1 (6. 3)

V= 0.04 cm?® s
Thus if we take 2 = 1,5 cmy and w = 2w rad s_l our parameter B has
the value 0. 08,

The mean systolic velocity is the average over time of the
velocity along the artery whilst the heart is contracting; when the
heart is dilating the flow in the aorta is of a much smaller magnitude
owing to the closure of the valves leading to it. Thus the flow is
essentially pulsatile, and if we approximate this crudely by

w=W (1 + sin wt) (6. 4)
we may attempt some order of magnitude analysis on the secondary
flow. Fror (6. 3) we may conveniently take W equal to 50 cm s-l.

‘he ratio a/R is of the order of 0.2 for the human aorta

and this gives risec to a Dean numrber K = ZWzas/R v * of 0(106).

Thus we may expect the boundary layer analysis of Barua (1963) to

be rclevant to this probleir. This predicts that a thin boundary layer

is formed on the wall of the pipe in which the pressure gradient in

the cross-section, induced by centrifugal effects, is balanced by the

inertial and viscous iferms of the momentur:: equation, From ecuation

(2.7) we see that this implies v®/a ~ W*/R and so the secondary flow
/2

' i1
v must be O[W(a/R) —_‘l' in the boundary layer. 3imilarly the boun-

dary layer thickness d must be such that yv/d* ~ W2/R and thus
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4 woust be O(aK- /4) where K is the Dean nuvnber. Rarua's model
states that the fluid transporied by the secondary flow in the bownda~y
layer returns across the interior of the pipe in planes parallel to the
plane in which the pipe 17 coiled. This imrplies that in the interior of

1/2

the pipe the secondary flow is 0 W(a/R) -1/ 1 from continuity,

If we ignore the interaction that will take place between the
secondary flows produced by the steady and oscillatory parts of (6.4),
then we raay deduce the order of magnitude of their ratio near the
wall of the pine to be

r/2

W(a/R)
W*/Rw

=()a ( )1/2 (6. 5)
Although, of course, the flows interact strongly, we may expect the
above ratio to give an indication of which one predominates, rercera-
bering that the secondary flows are in the opposite sense to each
other. For the values of W, », a and a/R given above the ratio is
equal to 0.4, and in addition 1s smaller by a factor K ~1/4 in the in-
terior of the nipe,

Thus it seems that the {ype of secondary flow described
in this thesis rray well predorcinate over the {low due to the steady
part of the motion along the artery. Certainly there ir no clear cut
choice betweon the two and the possibility that one may cancel the

other cannot 5e ruled out. (See Corrigenda)
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CHAPTER 7

THE EXPERIMENT

The apparatus ccnsisted of a length of clear plastic tubing
bent into one loop of a circular spiral of smaitl pitch and filled with
water, A pump, which consisted of a large glass syringe, was
aitached to one end, and this was driven approximately in simple
harmonic motion by an ecceniric mounted on the shaft of an eleciric
motor; aft the other end of the pipe there was a reservoir. 7The
apparatus is shown by Fig. 7.1 in plan view,

For an indicator dye a 50/0 aqueous solution of aramanth
was used, its density being adjusted to that of water by adding a suffi-
cient quantity of alcohol. A streak of dye was injected at A with the
apparatus =2t rect, the streak of dye running from the bottom of the
pipe to the top. This was achieved by puncture of the wall of the pine
with the needle of a syringe, which was filled with dye, followed by
the drawing outl of a sireak; after the needle was removed the hole
was patched with adhesive tape., A section at A is shown in Fig. 7.2
after the injection of dye,

The apparatus was then set in motion, and the movement
of the streak observed. The results are discussed later.

The dimensgions of the apparatus were as follows:



Radius of the pire a = 0, 75 cm

Radius of the spiral R = 10. 0 ¢m

Angular freouency of pump w = 4w rad s '

Arcplitude of purap = 0.5 cm.

. c s .. 2 -1

Kinematic viscosity of water =.0. 01 cm® s, ,
Thus the basic parameiers had the following values:

§=10.075, € =0.18, R =24, f=0.05.

From the magnitude of these parameters we should have
expected the flow to look like the situation in Fig. 6.1, In fact only
the znotion in the outer region was observed clearly, but this was not
surprising as the inner region was very small,

The photographs in Fig. 7.3 were taken at intervals of
approximately three seconds, the camera being positioned at B and

the pipe

above the plane in which A was coiled. It viewed the test section at

. 40 . . s s
an angle of approximately 45, and so the sirecak of dye was inclined
at a similar angle in ordex to obtain a clearer picture. As can be seen,
in the centre of the pipe the streak of dye was observed tc rove towards
the inside of the bend; at the top and bottor, on the other hand, it
moved towards the outside, thus agreeing with the predictions for
ilow in the outer region,

It sxould be mentioned that what was observed was ine paih

of each particle of fluid, and so we need to consider the mass-transport
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velocity of particlec in an oscillatory flow. Longuet-Higgins (1953)
has shown that in addition t{o the first order secondary flow calculaied
in this thesis, there is a contribution to the particle velocity of the

same order and whose rnean is equal to

t
(&) wdt ). gradw {7.1)

7’

where an overbar denotes the average in time over one oscillation

and w = (0,0, W wo) is the dimensional first order velocity vector of
the flow. This can be evaluated uzing the erpressions (3.5) and (3. 19)
for W in the interior of the pipe and in the Stokes layer respectively.
We find that for sreall a/R (7.1) is equal to mero in the interior of

the pine and

17 2

[

I -1 . '
Ro (Ze sinn cos'q,( , -

BN e

e-q sinrl sin"‘}r , 0) (7.2)
in the Jtokes layer. Thus in the inner region or Stokes layer there
is a contribution to the first order mean particle velocity which is
parallel to the plane in which the pipe is coiled, and is directed frorr
the inside to the ouiside of the curve in which the pipe is bent. This
contribution decays to zerc at the edge of the inner layer, and so its
cffect was not observed in the experiment.

It should alsoc be noted that the observed flow could not have

been that predicted by the present theory, as the experiment was
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started from rest. However, we may see from a consideration of

the moraentum equation (2. 1) that near the wall of the pipe, where

u %
viscous effects predominate,,z-)-%- ~ Va—rg and thus the flow would

have taken a timme of 0(d?/ V) to diffuse a distance d. Thus the Stckes
layer of thickness 0f V/m)l/2 was formed in a iirmme of O(w—l), or, in
other words, after a few oscillations. This must have produced the
same qualitative flow pattern in the interior as predicted in this
thesis. Because RS was small in this experiment, the diffusive pro-
cess was still the mechanism for setting up the secondary flow in
the interior, and this would therefore have taken a time

T s ~ O(aa/v ). The streak of dye should have traversed the pipe
in a time ”Cd«» 0(rRw/W?), but because T S/Td =R_= 24 we sce
that the flow in the interior of the pipe could not have reached that
described in Chapter 4. MNevertheless, it zhould have been siwsilar
qualitatively.

In addition to the above, the effect of the entry regions neax
the purmnp and reservoir should be mentioned., Intuitively we should
have expected that any effect due to these regicns should have only
becen felt at a distance from the pump or reservoir of the order of
the arnplitude of a fluid particle. More convincingly, we postulate
that near the pump or reservoir the boundary layer grew with dis-

tance along the pipe at the same rate as doez the Blasius boundary



layer forrned when a fluid flows over 2 semi-infinite flat plate. This
implies that the thickness of the boundary layer was proportional to

/2

(v D/W’)1 where D was the distance measured along the pipe from
either the purep or reservoir (see for exarple Jones and Watson (1963))
We argue that the effect of the entry regions ended when the thickness
of this Blasius boundary layer becarne equal to the thickness of the
viscous shear-wave layer which exists in our theory, i.e.

(\)D/W)l/zn-v (v/m)l/z, or, in other words, I ~% /w. This is
restating our intuitive notion that any effect of the entry regions was

only felt at a distance from :ihe pump or reservoir of the order of the
P P

amplitude of a fluid particle,
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CHAFYTER 38

THE ELLIPTIC PIPE

1. The Inner Region

We now concider the problem when the pipe has an elliptic
cross-section, and, using our knowledge of flow in a circular pipe,
we can deduce the first order flow in the cross-section without re-
course to the full equations of motion. We first adopt a new co-
ordinate system as depicted in Fig. 8.1. The cylindrical coordinates
r,W’U are replaced by the Tartesian coordinates x,y. The origin
C is at the centre of the pipe and Cy is parallel to Oz and coincides
with one of the principal axes of the ellipse. In addition, we let the
length of this principal axis in the Oy direction be 2b, and the length
of the principal axis in the Ox direction be 2a.

As before we apply a sirrple sinusoidal pressure gradient
[) _ D
-5—g-(l)/p)—RWco cos wt (8.1.1)

along the pipe, and, if viscosity is absent, we can easily deduce that

the potential flow solution 1s

RWwW

= — sin wt
R+x mw

w

(8.1.2)

E

W
P/p = -ROWw cos wi - 5 ;L( )2 - 3] sin*wt

R4x



there being no secondary flow in the cross-gection (c.f. (2.11)).
Using our knowledge of the flow in the circular pipe, we can say
that, when viscosity is present, a Stokes shear-wave layer of thick-
ness O(v /(0)1/2. is forrmred on the wall of the pipe when B = (<.ua."/2\)~)1/Z
is small (assuming b = 0(a)). In the interior of the pipe the flow
field is given to first order in B by the potential flow solution (8. 1.2).
We now define the wall of the pipe in termrs of the eccentric
angle \F
x=acos\/[f s y=bsinw (8.1.3)
and introduce the inner region variable
f'l =B " n/a (8,1.4)
where n is the inward drawn normal to the wall of the pipe (c.f. (3.1)).

Furthermore, we intrcduce the following noa-dirensional notation

W2
H = L A Vo= 4 amas
d=a/R, w =w/W, v V/Rco

(8.1.5)
i
{(1+5 cos\;f)?’

- 1) sin®wit

=

T=wt, p'=- E%
where v is the component of the secondary flow parallel to the wall
of the pipe within the Stokes layer or inner region (c.f. (2.14)).

If we now write

w' =wo'+{3w]'+... (8.%.6)

then, by analogy with the theory for the circular pipe, the equation

of motion for W in the Stokes layer is easily seen to be
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- __cos C

> 1 -
(b'l’_ 2 B\’f o 1+8 cos"»U’ (8.1.7)

c.f. (3.17).

The solution of (8.1.7) which satisfies the condition of
no slip on the pipe wall and which matches with (8.1.2) as vl ~> 00
is

wo' = m IlsinT e sin(T - Yl )} (8.1.8)

c.f. (3.19).
We now write

v':vo'+ﬁv1'+... (8.1.9)

and again by analogy with the circular pipe, we sze that v, is driven

solely by the pressure gradient generated by the centrifugzl force
due to the flow along the pipe. Thus, if as is the coordinate measurca

along the pipe wall in the plane of the cross-section and in the direc-

tion of 1// increasing, we may write the mormenium ecuation for vo'

in the Stokes layer as

! 12 C
avo +wo sin X\ >p! 1 bvo

ST 1.+6cos\p':_as +—2_ aqz

(8.1.10)

c.f. (2.16). _
- - 5
The pressure p' iz that defined in (2¥T4) and \ is the angle
between the tangent to the pipe wall and a line parallel to Oy at the

point as on the wall, Thus the second term in (8. 1. 10) gives the
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component of centrifugal force due to the axial flow in the s increasing

direction., It is casy to show that

a sin}f 2 2 2
3 = 1 T = 1 "y
sin A (aasinay; +b"‘cos7'yj) /z os ',(azsin’ﬁp’ +b *cos "1/11) /2 2
(8.1.11)

and when these are subsiituted into (8.1.10), together with the ex-

pressions for p' and wo', the equation becomes

1 - 2.
avo + a sin W “_sin'l"-e-qsin(’c,‘— r\)}
07T (a*sin™y +bacos"ﬁ7//)1/2 (1+56 cos\;f)3

H '
DY

2 (8.1.12)

_ 2 sin W sin®* T + 1
= 7 -
(a‘sinz'l/f+b”cos 11[5) /2 (L + 8 cosyf)3 2 a"]

Ac well as the condition of no slip on the wall of the pipe, we found
frorn our maiching 2rgumentis of Chapier 3 that vo' must rermain
finite at the edge of the Stokes layer or inner region. Applying these
conditions to (8.1, 12) we find its solution is
si I 1 -
t = a lnw, i-~+'—e 27
o 2. 2 _a,  1/2 3 2T a
(a smz'\\/_r-%b cos 1_/]) (1+6 cosf)

v

1

+ e-q sinrl - Z e-zq sin(2T '2"1) e sin(27 - l’l)

e V2N sin 2T - JEn) } (8. 1.13)

+

i jn

where terms of non-harmonic dependence on C have been excluded.
It is important to note that the first order solution for flow in the

Stokes layer, as described by (8.1.8) and (8.1.13), has been found
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without using the assurrption that 6 << 1, However, as before, it is
found necessary to ignore terms of 0(8) in order to proceed further
with the solution,

Thus with 6 << 1 we have at the edge of the Stokes layer or

inner region

lirn vo' = - i— E:' Slnw 7% (8.1.14)
g ~>00 - (azsinw+b’?‘cos"yj) :

and this gives rise to one of the boundary conditions imposed on the
first order flow in the outer region, The other condition is just that
there is no flow normal te the wall of the pipe between the inner and
outer regions, this being true to first order in 3 for the circular pipe.

As before we may define a Reynolds nurcber RS associated
with the secondary flow, and in the next two scctions we look at the
limiting forms of the first order solution in the outer region as RS ~>0
and RS ~> 00, We define

72
R =

s Rw

(8. 1.15)

<|8

where m is the semi-major axzis of the ellipsec and is equal to Max(a,b).
From the condition (5, 1. 14) we may deduce that the sclution is steady
and that when Rs 1s small the streamfunction satisfies equation (3. 28).
When RS is large a cor e of uniform vorticity is produced within which
the equation (5.1) holds, and this is surrounded by the boundary layer

described in Chapter 5.
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Z. The Limit Rs -> 0

We assume that the eccentricity e is small and use the
method of conformal iransformation as used by Segel (1961). We
map the ellipse in the z plane (z = x - iy) on to a circle of unit radius
cenired on the origin in the Z plane. A suitable transformation is
given in Kober (1952) from which the following forms iray be deduced

for small values of e. When b is the major axis
r 2 4. : ' :
z:mZ.LI~-e—4—f(l+z.?‘)-:!—lé-e*(3+Z.a-222§)+0(e6)] (8.2.1)

and if r, ”\.]L:f are polar coordinaies in the Z. plane wiih \If = 0 co-~
inciding with the real axis, the Jacobian J of the transformation is

given by

N

ok S _S 4 2
dl! [1 7 (1 + 3r*cos 21/7 )

)

-1 1
J = Z

t

1 4 4 4 - 6
-7 ¢ (5 -9r - 20r cosl&}lf)-& O(e ){ (8.2.2)

VWhen a is the major axis the iransformaticn is

i o 2 1 4.
z =m2.l - (1 -ZH - e (3-2%- 227 + o(ee)] (8. 2. 3)
and
-1 . e?- " -~
I = 11--5—- (1 - 3r cosz‘f[r)
1 4 4 4 6 Y
-1% € (5«92  ~20r cos4‘q[)+0(e)] (8. 2. 4)

The line element ds in these transformed coordinates is



given by

-1 5
ds?=m?*J (@r*+r2a\? (8.2.5)

and hence we find that the equation of continuity (2.2) becomes

% -1/2 u) + W(J 1/2v)=0 (8.2.6)

where W2 u/Rw is the fluid velocity in the r increasing direction and
W 2v/Ry is the component in the 'lIf increasing direction. Accor-

dingly we introduce the strearr function X to satisfy (8.2.6)

1/2
J D 1/2 oY
u = L, v=~7J (8.2.7)
oy B

T

In addition, if u is the vector (u,v), we find that in these transformed

coordinates
2
-curlus Y= J(B;+—~l+ Lo o2 ) X
dr DY
(8.2.8)
I p*X
and thus equation (3.28) becomes
R $ra
DD =2 2T 7Y (8.2.9)

Pe. (r,‘gf)

The derivation of this equation is given more fully in Chapter 10,

When b is the major axis we may deduce from (8.2.1) that

sinl = smlp” - -—(suny + sin 3? )+ 0@ (8.2.10)

and thus the velocity v at the edge of the ellipse, as given by (8, 1.4),

becomes in these transformed coordinates
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vy . 477 3 . ATf oy 4
V=—;}:{s:m%f-§ez(sm\y +S1n3W)+ O(e )} (8.2.11)
Therefore, using (8. 2, 7), we have
oY _ 1 . L . 4
>r 4 Smlf{ -2 ° (Sln‘%{r + 3 sin 3'72?' )+ O0(c ) onr=l (8.2.12)

¥Then a 1s the roajor axiz we may deduce fror (5.2, 3) that

ﬂnq/; = i[umlp t; i - 0in3Y )+ O(e4)1
= siny]’ + %i (5111@’ + sin 3‘(]f ) + 0(64)

and thue the velocity v at the edge of the ellipse is given by

—
(]
-«
Pt
.
pot
W

S

1 . ~Te . 3 ) ] - 4
v = -2{51n‘ljf+§ez(s1n¥f+ sin 3'\}" )+ O(e )S (8.2, 14)

Therefore we have

%%( = jz{ sian- %ez (sin'q:{ - 3 s1n 31?' ) + 0(e4)§ onr=1 (6.2.15)

In addition we have the condition that u = 0 at the edge of the ellipse

and so

X=0 onr=1 8.2.16)

Expressions (3.2.12), (€. 2.15) and (8.2.16) are the boundary con-
ditions to be applied in sclving equation (8, 2. 9) (c.f. (3.29)).
We write

X=Xo+e‘°‘X2+e4XA+... (8.7.17)

and substituting into (8. 2. 9) and equating like powers of ¢ * we find

that, as we should expect, X must be the soluiion for the circular



$
<5}
(]
t

pipe. If b is the major axiz we find that the equation for X, is

2
2
R P R 20, DiX)
r o @) r DY)

Rs . ()(o, ‘%’ (1+3r zcosZ\P)oﬁzxo)

o -

r P} (T:W)
= i}é )(2 +§ba[%(1+3r zcosZ\}f) ;DZXO‘X (8.2.18)

If we now write

- y 2
Xo-xoo+Rsxo}.-{Rs X02+"°
{8.1.19)
= L 2
Ky = Woo TROMp +R Py e

and substitute into (8.2.18), we find, as our eguation for XZO
2 o
- = - - ¢ ll‘ 2 ) s . . 20
DA =-5P [(1+3r cos2\) ) )(oo] (8. 2. 20)

From our previous work on ihe circular pipe we know

;3‘ )(oo r sian (8.2.21)

H

and hence

i

6r sin (8. 2. 22)

j?)4)(2!0

The boundary conditions to be satisfied are, from (8.2.12) and
(8.2.16),

yX
XZ.O =0, BZZ: = - -l-% (sin1£f + 3 sin 31][) on r=]

(8.2.23)
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and the only regular solution of (3.2.22) satisfying (8.2.23) is found
to be

X

1 3 5 - 3 3 5
= = @r - i =2 (2.2°) i .2.24
20" 33 (2r - 3r~ + 1) smllf t 5 (r7-r”) sin 31;[( (8.2, 24)

The non-dimensional vorticity 'S of the flow is equal o - Y #Y
. . E N . . ) : R
which is - J f) X in the iransformed ceordinates. Therefore we
have
< =- PEA - el';@’- X, + L (l+3rzc032‘qf) Yy
o Z 2 o

4
+0(@e) (8.2.25)

and on the line Wi" = w/2, this reduces to

> [;D;Xoll[f:w/z '

remenbering that - 35 2 )(o iz the vorticity for the circular pipe.

e #(l-3r?) + 0 1Rs) (8.2.26.)

y,'l«i%—"

Sirnilarly, when a is the major axis,the equation for )(Zo

i}4 )(20 = - —;—i) 2 [(}.-3r7'cosZ'lF') bh* )(00] (€. 2.27)

with the boundary conditions

X, =0 2k = - % (s 3 sin 3¥f) .
20 - 0 S+ —-lé(uln\F- sin Y onr =1

(8.2.28)

Hence we find

XZo

1 3 5. . : 3,3 5 \i
33 (r~-r )mnYY - 33 (r"-r7) sin 37 (8.2.29)

and the vorticity ’§ is



- 2 2 ¥4 l_ . 2 2 2.
V=-2 XO - ¢ [éﬁ XZ 5 (1-3r cosZ\F) D )(A + 0(e ) (8.2.30)
Hence along the line g:f = w/2 the vorticity is given by

‘S = -[Cf)”)(ojl -%ear(l-rz‘)+ O(ezRo) (8.2.31)
\pzv/z i i

3. The Limit RS ~> 00

In order to solve for the flow in the core of uniform vor-
ticity we can use the method of conformal transformation described
in the previous section. This, however, is deferred until later as
the form of the solution it gives is less suitable for computational
purposes than the following., It does have the advaniage though, of
enabling us to obtain an explicit form for the stream function, as
well as serving as a usetul check on the method given below,

I.et us consider the coordinate sysierm depicted in Fig. 8.1,
Further let us assume that b is the major axis. Wz define elliptic
coordinates ¢, \P’ such that

x = d sinh 4 cosY , y=dcosh gsinf

(8.3.1)
< < <dg<
0 <2n , O___;ﬁ_;éo
and we observe that
a = d sinh yfo, b = d cosh ,50 and e = sech ,50 (8.3.2)

The line element ds is given by



- §3 -

2
ds? = %(cosh 24+ cos 2y Y(dg® + d\/ﬂ-) (8. 3. 3)

whence we may deduce that the equation of continuity (2.2) becomes

3 ‘ d ) 1/2
5‘3 [475 (cosh 2¢+c052‘ﬁ) u] DWL«/Z (cosh 2¢+cosZ‘\*f) J =0

(8.3.4)
where W3u/Rw is the velocity component in the # in creasing direction,
and W3v/Rw is the component in the ‘\ff’ increasing direction,

We therefore define a streamfunction X such that

J/2b o = 2 X (5. 3.5

n = (8.
d(cosh 2f+cos 2 ) 172 2y’ d(cosh z,&+coszwp')1/2 o4

and if u is the vector (u,v), then in the core of the upper semi-

ellipse we must have

-m?curlu= V2Y=-7% (8.3.6)
where 'g is the non-dimensional uniform voriicity of the core and
an overbar refers to the flow in the core {(c.f. (5.1)). The solution

to (8. 3. 6) must satisfy the condition of no flow across the boundary

of the semi-elliptic core, i.e.
- = = o )
X—Oonﬁ—ﬁoor T/J'—O,rr (8.3.7)

In these coordinates we find (3. 3. 6) may be written as

2;, ? = g El-)Z (cosh 24 + cos 2Y) (8. 3. 8)

remembering that we have assumed b = m.,



If we seek a Fourier series solution to (8. 3. 8) subject to
(6. 3.7), we find

QO
J_ _ 254 2 5 cosh{2n+l)d sin{2n+1) YW
X= - ()" cosh®d }-"‘ cosh(@ntl)g_* (2n-1)@2n+1)(zn+3)
n=o

da a2 . 2
(b) cosh®d sin ‘W

-

N |

(8.3.9)

From this we deduce that

LY

©
3X S 4, tanh(2n+1)g
{5—%:{5:,& = -T;-(b) coshzgéO Z

¥,

O .
Crems)  Sn@et)

= .‘.1.2 : 22
+ > (b) sinh Zdo sin yf {8.3.10)

We may use (8.3.2) to replace the do dependence by expansions in

terms of the eccentricity and further we may derive the following
identity from Bromwich (1947)

oo

N sin@ntl) Y

(2n-1)(2nt+3)

1l

n=o0

- % sin\f - } sin 2\]{1 log tan(\f /2)

Q<Y<
powers of the eccentricity, we find

(8.3.11)
Hence, expanding in

- [g-%]’&:’é = ‘S i %(n‘ sinz'lII-Z sin‘{f -sin21,J log tan{{f /2))

+ et (-3%}- sinlff - %— sin"'l//)+e4(-é; sinYf - -]é- sina'l//)

+ 0@ 15 (8.3.12)

Therefore the velocity ;l at the edge of the core flow is, from (8.3, 5)
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(m sinzyf -2 sin‘t)[f -sinZ?,U’ log tanﬂ{f /2))

< |

1
A
s
3 e

+ e 2('32—11_ sin\lf - -;L;sin?’\/f - % sinzll[ + % sin41/,f
- 'é% sin 2y/ sinzy{ log tanqb' /2))
+e(—sm1}f +~7'31n'\y f-sm\@f %

- %— 1n&y[ + —sm ‘5([ 87 sm2ll)’u1n \{flog tan(qf/z))
+ 0(66) g (8.3.13)

Similarly when b iz the minor axis we define elliptic co-

ordinates such that

Vs =ci sinh;ﬁsinvf

x =d cosh 4 cos‘l[[ ,
(8.3, 14)
0S’\‘f<2-rr, 0<4d<h,
and thercfere
a = s = d si s =3 8.3.15
a = d cosh yc{o b inh 60 e ech gfo ( )
The line element in this case is given by
(8. 3. 16)

2
& %—_-(cosh 2¢ - cos 27{!’)(@52 +d?)

and then the equation of continuity is now

2 sh 24-coszvr )/ 2 9 (cosh Zdec 1/2,
Sil 72 (cosn 2h-conzyr ) ] b‘p[«/z( h 24-coszyf) 1 °
(8.3.17)
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This leads to the following definition for the strearc function ¥

u - "/2 a Q_K v = - ‘1/‘—2 a b_x
= - , =
d(cosh Zd-COSZ\Ff/Z b]lf d{cosh 2¢-coleP')l/2 3¢
(8.3.18)
Thus equation (8. 3. 6) may now be written as
(ba : y ¥ = e (51-)’- (cosh 24 - cos2Y)f) (8.3.19)
4 ” bw"‘ 2 a 14 T
whose solution, subject to (8.3.7) is
'x‘ é_ ;_1_ nh 24 sinh(2n+l) & sin(2n+1)\[f
- Z sinh(zn+1)¢o * (2n-1)(2n+1)(2n+3)
- (g)’- sinh* d sin\Jf (8.3.20)

Hence, using (3.3.11) and (8. 3, 15), we find

[ { i (m sin?‘w -2 sinl{] - sin ZYI log tan(’\/] /2))

',5 ¢4
4 1, o, L
+ ez(s-; 51n\lf -3 st]'lj + = sin 21{}10g tan(yfl))
" e“(é; sinlff - -;- sin® 1) + 0(e?) } (8.3.21)

and

; = '§§ (w sin \P’ -2 suf\,f - sin ZI/J' log tan(yf /2))

+ ea‘[—l- sinlf + X sin3'SU' L sin4#)'
3m 1T 2

+ %1-; (1+ sin“'\;}') sin 2\!] log tan(‘/f /2.)]

+e4[1]‘2 sm}f‘f——sm\(f —'—"m ']P’
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- oY+ 3 sint S
+ 51'; (1+2 sinﬂ{; -3 sinz‘lw) sin 2\/{ log tan(\{f/z) ]
6
t o) } (8.3.22)

The velocity at the edge of the outer region is given by
(8.1.14)., Thus, using the notation v'w for this velocity (see Chapter

5), we have when b is the major axis

N
“
-
o]
[

o]

1 1 4 3 4 1
r - L= e—c® 2 == E -
v 4_{1 ZeCOS\}/'i'e(SSIan -

+ 0(66) } sinl}j (3. 3.23)
and when b is the mrinor axis

‘ 3 4 4
vvw = - -}Iﬂl +-;-ezcos"\// + -'é-e“ cos \?L( + 0(06)} s_'.n'yf (8. 3.24)

-~

Using the first threc terms of the series developed above

for evaluating [%—%] ) ;3 and v'W we can solve approximately
g=g
o

for the flow in the boundary layers when e is small in precisely the
same manner as for a circular pipe.

Let ms be a coordinate measured along the periphery of
the ellipse in the'\ff increasing direction and at \}f =7, §= se.'
In addition let mn be the inward drawn normal io this periphery. If
u is the non-dimensional velocity component in the n increasing direc-

tion and v is the component i1n the $ 1increasing direction, then the

boundary layer equation aleng the curved surface is



dv
ov dv  — 1 -1 D%
— — e o Je
Yss "Ytn "17ds ' Rs 2m’ (6. 3.25)
{(c.f. 5.5)
We again linearise by putting
v=v+v_, usu+u (8. 3.26)

where an overbar denotes core flow and a suffix p denotes a pertur-
bation quantity. Substituting (8. 3.26) into (8. 3.25) and neglecting

squares of perturbation quantities we have

_ DV d;l d;l =% . B?'v
—B I 8.3.27
V1 s * Vp ds "ds >n R:s ODn (@ )

{c.f. 5.7).

We then employ the following transforrnations

n

- (- §'I R.s)l/z‘ v

«
n

1

we-t Ul T oas- Y
e = - -g J V:l_ du - g aé }¢=¢ dy (8. 3. 28)
Se w o]
-2 -
Y= X v, vp

and this reduces equation (8. 3.27) to the diffusion equation

dy . 9%y (8. 3.29)

% oy *
(c.f. (5.9) and (5.10)).

For the boundary layer along the line of symmetry Yf =0,
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we define coordinates ms along the line and mn normal to it. In
addition s = 0 is 1}{ =0, 4= ;50. If u is now the non-dimensional
velocity corrponent in the s increasing direction and v is the corrpo-

nent in ihe n increasing direction, then the boundary layer equation

is _
. du
du ou - 1 -1 D%
—+t v —= —— + R — .3.30
ubs v on %3 ds S Dn* (8 )

where ;1 is the velocity at the edge of the core (c.f., (5.13)). Using

(8. 3.26) and linearising, we obtain

ou clul dul Ddu 1 24
B ] ——— e ———— B = [R— 8. 3. 31
%1 s * L'p ds " "ds on Rs dn® ( )

(c.f. (5.14)).

If we errploy the following transformations

—

-1 A /2
-7 Rs) / u, n

Y

s
x=-7"} S u. ds (8. 3. 32)

V:(*Zzlup

then (8. 3. 31) reduces to

21 31T
0x  ?Y°

(8. 3. 33)

(c.f. (5.16) and (5.17)).

We may note that for the elliptic pipe
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%:‘dg{%%L¢dw
i,

o
(8. 3. 34)
-1 QX
X =2 g { dgd
e b’vrvo
and hence that if b is the major axis
T 2 2, 4 I ow 6
R —— o =} —— -
* T2 7 € (3r1r ) e (31r 16)+0(e )
(8. 3. 35)
_2 4, 1 4 6
Xe_n' 3r° T 3x° +0fe)
and if a2 is the major axis
T 2 2, 2 4 1 L 6
-r_z == —_—_ — 8.3.36
X =g ntet (5o te (5o- 1ot 0k )'g ( )
2
X =g---—e2 le4+0(e)
e w 37 3w 6 A
Neglecting terms of O(e ") in the expansions for
- oK , v, , v, x and X we proceed with the calculations
d 8] 1 w e e
deg_

in precisely the sarne way as in Chapter 5, but noting that (5. 32) now

2
—
becomes

-1 X 4('Xe-x(¥r)
o 3 [-3ﬁ§] Yoe, (), 0)&
' =g ;
dl
2 /7 “n b, - xly 2

(8.3.37)

The computations are described in 4ppendix B and the values of ‘S

are tabulated in Table 2. A discussion of the results and their
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implications is deferred until § 8.4.

We now solve (8. 3, 6) by the method of conformal trans-
formation as used in § €.2. Although the form of ;1 is less suitable
for computiational purposes, it does enable us to obtain an explicit
form for the stream function as well as serving as a useful check on
the previous work.

In the transformed coordinate system of § 8.2 equation

(8. 3. 6) becomes

Br=- T4 ‘}

1
:-‘gi 1-—-e3(1_-_1-_3r"c052 )
2 Yf (8. 3. 38)

4.
- i%e" 5 - 9:* - 20r% cos 4Y)
+ 0% }

where the plus sign is to be taken when b is the major axis. The

boundary condition (8. 3.7) becomes

?=0 onr =1 orY=0,1r (8. 3. 39)

If we write

?=)7°+e‘§72+e47(A+... (8. 3. 40)

then the equation for )(o is
31320=-§ (8.3.41)

with the boundary condition
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Y =0 onr=lor}lf=0,1r (8. 3.42)

o
We seek a Fourier series solution to (8, 3. 41 ) subject to (8. 3.42)

and we find

Z ( "in@an )\ Tr? (1-cos 2) (8. 3. 43)

co
2n-1)(2n+1)(2n+3) 4

n=o

In order to sum this series we make use of the following identities

taken from Bromwich (1947)

O 2n+1
Z r cos@nt)\[ 1 142r coslp'-!»r
2n+1 =z log (l 2r cosy’fﬂ" )
n=o0
(8. 3.44)
o .
Zn-,'ls1n(2n+1)\__2-‘f L, -1 2r sin‘g

Z, (2n+1) =pfen AT

n=o

Then splititing each term in (8. 3.43) into its partial fractions and

sumimring, we find

= T 1 1 -1 2r sin
)(ozé—;r- [1--2-(1"”+;—5)c052\}(] tan 1_1:3 )

i+2r cosE[.-“-,'x"2
1-2r cos\fy +r?

1 1
-Z(rz-;-g)sinZ}{(.log(

+(r - %) sian’ —"iz—rrz (1 - cos Z'P’) } (8. 3.45)
(c.f; (5.3));

If b is the inajor axis then the equation for .)?2 is

Kol 72 =§ (1 +3r? cos 21[}) (8. 3.46)
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with the boundary condition

??=O onr=lor‘\'p‘=0,1r (8.3.47)

-

The solution of (8.3.46) subject to (8.3.47) is
(0]
2ntl
_ 8% r sin(Znt1 )  Tr? .
Y= ety T e ¢ -cos2¥)
n=o

——

[wa]

(8. 3.48)
‘g 4
'y
5 (cos 2}/ - cos 47{;’)
which can be summed, using (8. 3. 44), to give

1/ b 1 4 ! -1 2r sin\y
X2=Z_;{ 5(r4+~4—)—l] tan”! EEEIY

1l - ¢
T

4 1 142r cos\P+r?
4 ,
) sin ‘\P log 37 COS\I{"I'TZ

3 : , .1 o
- (r -;'3—) sin 3@ -3 (r - r) s1n'$U

T2 z 4 | 0
+2$ (1 - cos 21{!)+2r (cos 21;( - cos 4’\{{ )} (8. 3. 49)

If we write the velocity v in the '\}f increasing direction

as

p
- 2 2
v—vl+e v2+e Vot oo (8.3.50)

-

then we may dcduce from (8. 2. 7) that

LY S, , o OX
v, T Z -y (143r “cos 2115) ST

(8.3.51)

and hence that the value of v2 atr =1 is
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[vz'Ir 1 -S { - mnl}}r % 31n311f - .;.’. SinaW+ é_ sin4'gf
+ 2—:‘_ (2-5 sin"]{f) gin 2\]{ log tan('\P'/Z)' :% (8.3.52)

When the expreagsion (.3, 13) for ;1 is written in the transformed
coordinates using (S.2, 10) then the term of O(e ?) is found to be
identical with (8. 3. 51) thuz checking the arithmetic of the previous
method.

Girnilarly when b is the minor axis the equation for )(2 is

@2 ;72 = g (1 - 3r2 cos 2\{{) (8. 3. 53)

and the solution of this, subject to (8. 3.47), is found to be

522, = 2% {[ - --(r + ——) cos /’Y( + (r +1-)cos 2‘\]‘8’ -L]ta -1 -2—1;_3—?—\1!)

1,4 1 1, » 1. ‘l 1427 cosWi+r?
-l =7 =) sin 4V - =(r *- —3)sin 2
[4 (x r4) n Y Z(r 1-2) 15 ?7?_1 ‘1 -2r cos‘&b’ﬂ'z)

3 1 . 5 1 .
+ (r -r3) 51n31}(- 3 (r - r)s1nqj

—~r? (l-cos 2.'\£() - g-r4 (cos Zﬂ{ - CcOS 41{!) S (8. 3. 54)

From this it may be deduced that

LVZ] "K{'“‘“Slnl}f+-s1nlp+251n1f5 ;— '4“?
z.r (1 - 5 sia®yr) sin 2{.log tan(/2 ) z (8. 3. 55)

which again checks with the value given by the first method,

The zquation for ¥, is (regardless of which is the major

4

axis)



B

ﬁ)zf4=§2(?%-3_%r”- r4cos41’p'} (8.3.56)

with the boundary condition

?A=O onr =1 or ‘\}f= O,w (8.3.57)

<

We find that the solution to (8. 3. Sg) subject to (8. 3. SZ) is

yfl = 35 {[ -?-(r + 6)coso\[f+2(r + —-)co \P+ "(1‘ r_la)COS Z\F

-4] tan (—Ji—_a-_i-_—i-'-)+ -i—(ré-—%) sin 6'!¥
r

4. 1+2 +
+ (r - —-—)S1n \iﬂ = (r - )sm 2117]10,_, Zi zz:%+iz)

r

5 i )
+ 5(r" - "g) sin S'qf
T

- % (r - '--) sin 31}/ —-—(r- —)slan + rz(l cos 2'\1_{)
r
-§r6(1+40054\p-50056\?)} (8. 3.58)

8.4. Cormclusions

As was mentioned in Chapter 1, the reason for consider-
ing the elliptic pipe iz to see whether the linearibsa_’cion employed in
the calculations for Rs -> o0 rray be mrore convincing. 4ccordingly
the values of the three terrr expansions for the velocities -\;1 and
v'w are plotted in Figs. 8.2a and 8.2b for values of the eccentricity

equal to 0.0, 0.3 and 0.5. The curves produced when b is the major
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axis are plotted in the first diagram, and those for the case in which
a is the major axis in the second. In addition ihe vorticity curves
along the line '\z:{ = w/2 are shown in Figs. 8.3a and 8. 3b for

RS = 200 and Rs = 00. The expressions (8.2.26) and (8. 2. 31) are
used for RS = 200.

We see that when b is the major axis the resulis are in-
conclusive. However, when a is the major axis, we see from Fig.
8. 2b that the accuracy of the linearisation should improve as the
ecceniricity increases. However, Fig. 8.3b implies that as the
eccentricity increases the magnitudes cf the vorticity for Rs =200
and Rs = oo increase by similar amounts. That is, although the
accuracy of the linearisation improves, the difference between the
values of the vorticity in the core, given by the RS = 200 and
RS = oo curves, remain about the same. This indicates that the
linearisation may in fact be very good even for the case of a circular
pipe. This reinforces the confidence in our linearisation evoked by

the work of Kuwahara and Imai (1969).
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PART II

FLOW OVER A WAVY WALL
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CHAFTER 9

INTRCDUC TION

In the second part of this thesis we consider the steady
streamring induced by an oscillating flow over a wavy wall. We assume
that far frorn the wall the velocity vector of the flow is parallel to the
rmean position of the wall and is equal ioc Uoo cos wt.

As in Part I a viscous shear-wave or Srokes layer is formed

/2

.
on the wall and has a thickness of 0(2v /w) ’~, where V is the
kinematic viscosity of the fluid. If @ is the amplitude of the wall and

X its wavenumber, then we may form the two dimensionless quan-

tities

-1/2 _ amplitude of wall

(2 v /o) Stokes layer thickness

o
T

| (9.1)
Stokes layer thickness
wavelength of wall

K @ w2

w
H

and in the following chapters we shall only consider the case when
a<<1l, If a>>1 and the wavelength of the wall is much greater than
the amplitude of oscillation of a fluid particle far frorme the wall, then
we may apply directly the theory of Schlick:ing (1932) to find the steady
streaming in the Stokes layer. Outside of the 3tokes layer Schlichting
essentially considered only the case when a Reynolds number 2sso -

ciated with the steady strearring was small. His work has since been
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extended Jor large values of this Reynolds number by Riley (1965)
and Stuart (1966).

For the present problem we may form the Reynolds

number
1/2
- -2 2y
R= > () (9.2)

and we shall find that the number kR plays an imporiant role. Be-
cause the amplitude of oscillation of a fluid particle far from the

wall is the Uoo/w, we see that kR is

particle oscillation amplitude
= - (9. 3)
wavelength of wall

kR
Thus kR << 1 is the condition necessary for Schlicting's theory to
hold when a >> 1.,

In Chapter 10 the problem is formulated and, because we
assume a << 1, we seek a power series solution in a, the first order
solution being just that if the wall were flat. The solution of 0(a) is
found to be governed by an equation which is almost identical to the
Orr-Sommerfeld equation encountered in the stability theory of
plane parallel flows: Thus when kR >> 1 our theory relies heavily
on this work, as well as on that of Brooke Benjamin (1959) who con-
sidered steady shearing flow over a wavy wall. This is described

in Chapter 12. In Chapter 11 we seek a solution tc the problem when

kR << 1 and we develop a solution valid for all k which is similar to
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that found by Rayleigh (1884) in an analogous problem, If, further,
we agsume that k << 1 then we recover the sieady sircaming predicted
by Schlick:ing (1932). This implies that no restriction need be placed
on the size of a for Schlicking's theory to hold, providing that k << 1,

As in Part I we may consider the impliecations of the theory
for the cardiovascular system, If we use the data of Chapter 5 for
the aorta, and assume that the wavelength of a disturbance on the wall
is equal to its radius (1.5 cm), then we may deduce the following
values for the physical constants of the problem:

-1 -1
2rrads , K =4%x/3cm (9. 4)

w

- [N |
0.04cmzsf, U =50cms
Q0

¥

These give rise {o the following values of the nondimensional para
meters

k =0.47, R =141, kR = 67 (9.5)
and hence it would appear that the analysis of Chapter 12 for large kR
may be of some relevance, In addition we note the value of the para-
meter

ca) 3 = 1. 02 | (9. 6)

which we assume to be 0(}) in Chapter 12. As can be seen, this

assumption is amply justified.
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CHAPTER 10

FORMULATION OF THE PROBLEM

Let us consider two-dimensional viscous flow over an
infinite wall, the surface of which is defined by
v = acos x (10.1)
where x,y are rectangular Cartesian coordinates. Thus the wall has
a wavelength 2w X -1 and an amplitude @ (see Fig. 10,1). Writing

z = x + iy, we consider the following conformal transformation

ik z

8 =Y+ id = = - iae (10.2)
If @ is small, the Jacobian J of this transformation is
d -K
J= E”E 2-14+20Ke Tcoskx+ Ofa?) (10.3)
and, equating real and imaginary parts, we have
s = x+ae Y gink x
K (10, 4)
g =y -ae” YcosK x
Hence we obtain
-K
J=14+2aKe ’jcosm;y + 0({a?) (10.5)

The surface of the wall is now defined in these transformed coordinates
by g = 0{a?) and, because we shall be neglecting iterms of 0(a?) in the
following analysis, this mray be replaced by g = 0.

Letu-= (u, v) be the velocity vector in the iransformed
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coordinate system. Thus u is the component of velocity in the W
increasing direction, and v is the component in the ¢ increasing
direction. In addition let p denote pressure, p the density of the
fluid and V its kinematic viscosity. As in Chapter 2 the momentum

equation for the flow is

ou 1 1
———— 2 - S - - . O-
3t + grad(ig )-u, curlu 5 grad p Vv curl curl v (10, 6)

and the equation of continuity is
divu =0 (10.7)
Because the transformation is conformal, the line element ds in
the transformed coordinates is
ds? = 7 | @y 2 + ag?) (10. 8)
and so, using the well known expressions for gra.d; div and curl,

we have

12 M
grad = (J aw, J 58)

div u = J[a%-p(.r'l/zu) + §B‘ (J"l/zv)] (10.9)
curlu = J'I:gai;{(.]'-l/zv) - %z (J'-l/zu)] i

where i is the unit vector perpendicular to i:he’l’f, g plane,

In order to satisfy (10.7) we define a2 stream function X

such that

u=J1/22—§ , vz-J‘/z% (10.10)
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and so
curlu=-J 0?2 ¥i (10.11)
where
2 2
2 22 .0
= + 10.12
% Zt 57z ( )

If we now eliminate the pressure p from (10, 6) by taking the curl of

both sides of the equation, we obtain the following equation for ¥

ig}z,( a(a’(’(gjiz’;)’(’ = v DT DN (10.13)

The boundary conditions we wish to impose on the problem
are the conditions of zero slip on the wall and, as y => oo, that of the
velocity vector being prescribed to be U00 cos wt in the x direction,

In the transformed coeordinate system these conditions become
bz{

x = = 0 on ﬂ =0 \
2)35

5-7?{ > Uoo cos wt a L (10, 14)
as g =>

Y i J

In addition only harmonic dependence on wt will be allowed.

If the wall were flat i.e. J = 1, then the solution of (10.13)
subject to (10.14) would be the well known Stokes shear-wave solu-
tion (_ )1/2,5
v 1 1/2
;(:Uoofﬁcos wt+(- /ZL sin(wt- (= / g /4)

sin(wt + 1r/4)]‘§ " (10, 15)



We consider here the case where the amplitude of the wave « is finite

2V 1/2

but also @ << 0 ( . In other words the amplitude of the wave is
theu
rouch smaller than the thickness of the Stokes layer; whieh we rray

([o (s)
expect/to be a first anproxxmatmn to the solucmn We therefore define

the focllowing non-dimensional notatia

X' - x’ OOZV 1/2] \{f W(Zv -1/2

Yl =¢{('2—"’)-1/2 » T =owt, a:a(Z_L/)-l/Z (10, 16)
@ w
2v 1/2 U 2
k = K (w ) y R = 1/2
(v w)

Equation (10. 13) now becomes

DL IR

» 12 3yt
2R” a’t'ﬁ X - T )
RPN (10.17)
where
. o° Ot -k 2
i}i e 3 and J = 1 + 2ake 1 cos kue' + 0(a®) (10.18)

- c)l/f' ar)

In addition the boundary conditions (10, 14) becorme

'a-% on M =0 )
t

RS - cos'r)

o
Yl as -> 0
f

QX 5o
2y’ /

it

(10.19)




For reasons of simplicity the primres will now be dropped
frora the dimeneionless quantities defined in (10, 16) and (10.18) and
all variables are now dimencicnless unless stated otherwise.

We look for 2 solution to (10.17) of the forrn

X=X +aX +a® )X, +... (10.20)

remerrbering that for this problem a << 1, Substituting (10.20) into

(10. 17) and equating like powers of a we have, as our equation for

X

o]
_]"b—_ 5 B(XO, g)z)(o)

2R S O - XY

-r! X}‘} ){0 (10.21)

whose solution must satisfy the boundary conditions

A X, (10.22)

él(g_ asrl->oo

As expected, this is just the Stokes shear-wave solution

)(o = Vlcos’t + -—/—%— e lsin(T - rl-i- w/4) - sin( T+ n'/4)} (10.23)

The equation of 0{a) from (10.17) is
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2R _a__ﬁa)( _ bO(o' g)xl) i BO( g} )()
o 0 (Y. ) > 0o, r})

1
founy

a(X 2ke” qcosk\},f &) )(

o Ty )
DY pree Neony oy} ane

whose solution raust satisfy the boundary conditions

DX,
)( -——-—~O on =0
! r)\‘l W
d X,
éq (16, 25)

as Yy ~> o

> X
>0
Y
We define U(r? i.e.
U(\-],T)=cos't -e-q cos(?j-vl) (10.256

Then, following Brooke BEepnjarin (1959), we write

. - iy
X, =® {[F(r},l‘) + Uy, Tre N W } (10.27)
where ® denotes "real part of'. This is equivalent to writing

X=)(o(y,7:)+aF(\'\,T)+... (10.28)

where )(o(y,'t') is just the solution (10.23) with Y\ replaced by

yiw/zy V2.

This is just the solution which would be valid if the

wall were flat and is indicative of the fact that we are secking
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perturbations to this solution. Because of our change of coordinate
system contributions from this solution arise in the higher order
terms of the perturbation expansion, and this leads to our writing
)(1 in the manner shown in (10.27).

Equation (10.24) now becomes

_.g‘..b_ 3] 25 1.2y P
lkRa"C(F -k“F) + U{FE"-k°F) - UV'F

1 A
(FY C2k2F' 4 KT (10.29)

L
ikR
with boundary conditions

F=0 It=.U0 on\“2=0

(10. 30)

as Y], - 00

A prime denotes differentiation with respect to \r‘\ .

Equation (10.29) is almost identical to the Orr-Sommerfeld
equation which arises in the theory of stability of plane parallel flows,
and when the parameter kR is large we shall make use of this theory
in solving the eyuation.

If we write the nondimensional velocity u in the 1!_( direc-
tion as

2
= a 10.3
u uo+ u1+a uz+ { 1)

then, as a consequence of (10.10), (10.16) and (10.18), we find that
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k . ]
u = , u, = ke " Lcos ki :;+——-—- (10. 32)
Ience, using (10.26) and (10.27), we can sec that

u = U T), v =R { §—§+-§—;}qe'k"l} KW (10.33)

and thus the dominant steady streaming is given by

5) eik‘F 21 -
u, *lowr 5= bL aT (10. 34)
. N

In the next chapter we shall evaluate this when kR << 1,

and in Chapter 12 when kR >> 1.
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CHAPTER 11

THE LIMIT kR >0

In this chapter we shall seek ar asymptotic solution for
{ V} » L) which tends to the exact solution of (10.29) in the limit
IkR > 0. This implies that the wavelength of the wall is very much
greater than the amplitude of oscillation of a fluid particle far from
the wall. We therefore look for a solution of the form

F(q.i‘)=Fo(q,“c')+ikRF1(q,”c)+... (11.1)

When this is substituted into (10.29) and like powers of ikR are

equated, we obtain the following equation for Fo

2 O _b__ _
2 %% - (b ] (&3 - k) F_=0 (11.2)

In addition FO must satisfy the following boundary conditions deduced
from (10, 30)
F =0, Fo' = - J-i cos(T+w/4) on r}

A0 (11. 3)

0
as —-> 0

From these conditions and the form of equation (11.2), we see that

we may write

F o) =f (et +T (q)e™T (11.4)
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where an overbar denotes ‘complex conjugaie'. The equation for

fo(r\)ls
‘.b 2 - (kZ +2] i 2 _
ey i) k})f =0 (11.5)
on oy

and its solution which allows FO to satisfy (11, 3) is

~ in/4
; J&——-{ =N -e-kn} (1. 6)

o 2(0 - k)
where ¢? = k% + 2i and ¢ has a positive real part. Therefore we have
—_ i ; - 1T o3 - -
- /2 {31‘(-&-11\'/4 { "‘”7 'k')i o1 in/4 [ "‘”} 'kV]J
F o= e -e + ——— e -e
(o] 2 l.o-k —
g -k

(11.7)
The equation of 0(ikR) obtained when (11.1) is substituted

into (10.29) is

= 2 kz)’ (-bj- k3H)F, = -UF "-k?F )+ U''F (1. 8)
on’ a,}"' "1 o o o o
Therefore, substituting (10.26) and (11, 7) into the right hand side of

(11. 8), we obtain
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Y ,
_- 2/2 {(wk)(l-e“? (1-i)) -ow Fin/4

o2 =" _e-kr\ o~ q(l-i) + in/4

o-k

+ ezif [(0'+k)(l-e- Y) (l+i)) e-(”] +im/4

2 TN ok - () ¢ i /4 ]

o=k

+

+ complex conjugate } (11.9)
The boundary conditions on Fl, deduced from (10. 30), are

F . =F'=0 onV1=0

1 1
P 0 (11.10)
I I
From (11.9) and (11.10) we may deduce that
P ) =7, D) E, @ () T) (11.11)

(u)

where Fl has zero time average. Furthermore we may write
(s) _ ¢ (8)
Fy )=, ) )+ £ '1) (11.12)
Pty = W) HT L B T

(u)

where fl (s) and fl satisfy the following equations
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[__d;.z.z ) ka_i 2fl(5) _ %-2:{(0__&)(1_6—- n (l—i))e—o'q +im/4

) 2i —crr] -e-k'} \v\ (1-iM+iw/4 3 (11,1
- 1

2 2
[’&d\? . (k2+4-i;J[ ddqz -kz'lfl ,

pE T B e (1+i)+im/4 } (11. 14)

0'1\

-'-'-/Z—{fo+k) (1-e~ q(lﬁ))e -¢ QH"/LL

The solution of these equations subject to the boundary conditions
(11.10) is quite straightforward, but for the sake of brevity we shall
consider here only the solution to (11, 13), this being the most germane
to the present study.

If we write (11,13) as-

2 . N
I:ac%z' -1<2-i fl(s) = A" M 43" N " N0 ek -1y s

it is easily seen that

£, 00 ae™ e ™ T N ygrg iy - D)

1
e ¥+ E' KN (11.16)

where

A’:W:-%A B'_[(0'+l 1;?2 I ]2: i?‘ B )

¢ :[(k+l-i():a-kz]2 - 4.[1+k?1+i)]z $ (12.17)

D'= -(A"4B'+C'), E' = ¢A'+(0+] -1)B"+(k+1-1)C'+kD" )
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It is more insiructive to consider the form of (11.15)
when k is very large or very small, We first consider the case when
k >> 1, i.e.the wavelength of the wall is much smaller than the thick-
ness of the Stokes layer, Il can be seen that (11.16) is exponentially
small unlegs Y\ < 0(1/k) and so we define 2. new scaled variable

' = kvy. This implics that the steady strearning associated with
‘(l P YV 14

¢ (s)

1 is confined to a boundary layer whose thickness is of the order

of a wavelength, and this is much smaller than the thickness of the

Stokes layer. We find

(s) 1 P L VY R 3. 4 -w'+in/d
£ 0% —— B2 e T+ (150 2460 e
! 241" 1 e 1 1
]
+ o:;-g) (11.18)
and
bf (s) »\/- /
1 ] 3. - W20 3 4 -n'+in/4
~ ént-n'")e b 1- (30n'+30' 220" - ' F)e N
5‘) 241> L 96k TR
i
+0=) (11.19)
5

We see from (10, 34) that the dominant steady streaming when
kR << I is given by
(s)
oF .
ul(s)=<R {ik’RS—-l— elkw.& (11.20)

and, therefore, when k is large, we find from (11.12) and (}1.19)

that
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(S) R t 1 2 -y
Yy~ T T2R2 N (6"] e ) sin KV + 0(%) (11.21)
k
This steady streaming is sketched in Fig. 11,1,
Let us now consider the case k << 1 i.e. the wavelength

of the wall is much larger than the thickness of the Stokes layer. We

(s)

1 now consists of two parts. One of these

see from (11.16) that f
decays to zero in a length scale of the order of the thickness of the
Stokes layer (v\—> o0), whilst the other decays over a much larger
length scale of the order of a wavelength (v)f‘b—> o). Thus we may

(s)

expand fl in powers of k in two regions: one where ‘q ~ 0(1) and
the other where y)' ~ O0(1). These may in fact be regarded as inner

and outer regions, and their solutions inner and outer solutions (c.{.

Part1).
Thus when Y}N 0(1), the solution in the Stokes layer or
inner region is
fI(S)N k {- —é—qe- s1n\') - -e lr’cos\r)- i—e-v) sinY]
1 —2 3 2 1 2 - .
‘1+32 6W‘g+k{]‘6qeq51n\r}
Y\e Y}cosr) + Y'\e r] sm\'\+——e qcosr)
-ie-v\sinv}+ Y}e '\ 1 -2‘)

\’]+16V] }+O(k (13.22)
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and

bf 1 - 1 - -

16

+—e Y\smv{+—‘—€”§-———}+k 516," e Y)cos\'}

- -1-% qae”‘q sinv} - %“e“t COSY] - -115 T}e-'!f sinrl

-~—-e qcosq - e y\sinvl_glz\qe-zrt

Ao, Sq}f 0(<) (11.23)

Therefore we find that

2
ul(s,)., k'R % ") r’cos\'} \']e s1nY\ —-e ncosr\
- 271 sin¥) - i-e"z"l + % }sin KVF + O(k3R) (11.24)

and it can be shown that this is identical to the steady streaming pre-
dicted by the theory of Schlic#ing (1932) for oscillating flow over a
curved boundary. This implies that, if k << 1 and kR << 1, no restric-
tion need be placed on the amplitude of the wave @ for Schliqi\:ing's
theory to hold.

When Y} '~ 0(1) then we find that fl (s) may be written as

f, ), T '\+k(——+——-q ye N 4+ og?) (11.25)
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Of (s) 3
1 N-;%ku-q')e"l +k2<6—2“%i'l'>e"‘ +0(7)  (11.26)

°n
Therefore in the outer region we find that

(s) 3k2R
u ~s

1 ‘ 8

(t-nq" e” ' sin KW+ 0(°R) (11.27)

and so in this region the :c;‘ceady streaming generaied within the
Stokes layer decays to zero. The solution (11.27) was found by
Schlicking (1932) when solving for flow in the outer region for small
values of his steady streaming Reynolds number, but it is due origi-
nally to Rayleigh (1884) who studied an analogous problem. Inboth
cases the strear function from which (11.27) is derived, satisfies the
biharmonic equation with g\ ' and w as independent variables.

The steady stireaming predicted by (11.24) and (11.27) is
sketched in Fig. 11.2 and we may observe that it is qualitatively

sirailar to the situation for large k depicted in Fig. 11.1.
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CHAPTER 12

THE LIMIT kR -> co

We now look for an asymptotic solution tc (10.29) which
tends to the exact solution in the limit kR -> co, i.e. the amplitude
of a fluid particle oscillation far from the wall is much greater than
the wavelength of the wall.

Thus when kR is large, we may expect from (10.29) that
the governing equation for the flow, away from any viscous boundary
layers, is

UEFE" - k%) - U"'F =0 (12.1)
and we will refer to this as the inviscid equation and its solutions
as inviscid solutions. In stability theory equation (12.1) is often
referred to as the Rayleigh equation. We may note that, unlike the
similar situation in stability theory, the time variable T appears
only as a parameter in (12.1). This is because of our insistence on
periodic solutions which implies that —5;{: ™~ 0(1) and hence
22 << 1 1n (10.29). This parametric property of U is impor-

ikR 2T

tant, for it means that we may make extensive use of the theory of

Brooke Benjamin (1959) for the steady problem.
As in stability theory (sce for example Stuart (1963))

equation (12.1) has a singular point at any position q = Y\C where
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U = 0 and consequently its solutions cease to be approximate solutions
tc the full equation (10.29) even when kR is very large. In fact we
find by the method of Frobenius that the formal expansion of one of
the solutions to (12. 1) involves a term in (Y‘ - \’]C) Jog (Y'\- qc) and
so the correct form of the approximate soluiion is in doubt until the
appropriate branch of the logarithm is decided. This arrbiguity is
resolved frorm: a consideration of the full equation (10.29) in the
vicinity of the critical point Y'] = V’l o’ this necessarily taking into
account the effects of viscosity., Tollmien (1929) first dermonstrated
that if the logarithm is expressed as log(r‘l - r) C) when n > rl <!
then it is to be replaced by log (r) C-") ) - im when V] < Y} c providing
UC’ > 0 (a suffix ¢ denotes 'evaluated at Y} = "1 C'). If UC' < 0, then
the logarithir is to be replaced by log (qc - Yl) + ir when r\ < ‘(} o
In order io solve (12.1) we mmake the further assumption
that k << 1, i.e. the wavelength of the wall is much greater than ihe
thickness of the Stokes layer. Then, following Brooke Benjamin
(1959), we find that the solution to (12.1), which is uniformly valid

in Y‘\ and satisfies the boundary condition (10, 30) at infinity, is

2

F=A(’C’)Ue-kn§l+k S [(—%9-)-1]«:11 +0(k2)} (12.2)
b

where U is the limit of U as "’\—> o (U = cos ). This solu-
oo oo

tion is due originally to Lighthill (1957). Although the integral in
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(12.2) is generally a second order term, near a critical point “\ = "‘ c
it becomes dominant and at Y} = Vl c exactly the integral is infinite.
However, as Y‘ - ‘q c the zero in U cancels the singularity in the
integral, and the whole expression gives the finite value

Vo M
FC =AkTI:,- e

(12.3)

if Uc' # 0. If in (12.2) there exist Y\c » i=1,2,...,n such that

;
Uc = 0 and Y) < Wc < Y‘]c <.00 < ,» then to obtain a more
i 1 2 °n

explicit form of (12.2), we indent the path of integration by circuiting
each singularity by a srnall sermicircle, under the real axis if

Uc '>0, above if Uc '< 0. We find that (12.2) now becormes

i i ]
Cqu @ Yot ®orUu N
F o= AUe-kq{I-iwk ?‘_’(U‘x’,} Uc?,‘ + kP [(-%) ~1] an
i=1' % | € d |
+ 0(k?) } (12.4)

where ? denotes the 'principal value'of the integral in the sense
of Hadamard (1923). This principal value is clearly defined by
Mangler (1952). The choice of contour is made so that the appropriate

branch of the logarithm is chosen correctly on either side of V’ = q Jr
i

If there exists a critical point \’\ = V} where both U and U
: c c c
m m m
are zero (but from (10. 26)U"C # 0), then we find that (12.4) now
m
becomes



n Ull
k) :Uoo 2 i
I ,
F=AUe {1 im ._J(U'”) ‘U'\
i=1 ¢ 5§ i
i;‘m
. UL Uiv yr
2 { Yoo \2! °m °m 8 °m P
im‘k '5 g ) 1{ gtie }_')' gt
c ' c c
m | . m m

.co
Uco PR
+ ? —} -1} dn + 0{k? 12. 5
k [( 2 -] an v e (12.5)
where the plus sign is taken if the contour 15 iadented below the sin-
gularity, the minus sign if indented above. In order to decide which
of the contours to take, we would nced to consider the solution of the
full equation (10,29) near Yl = Yl . This 15 not examined here ac
c :
m

we shall not, in fact, require the information. We note that ¥ 1s
singular at q = V'l . as the differential equaiion (12, 1) implies.

Mear V'I = Y) o+ and keeping T coustant, it is possible
to expand (12, 4) in the following Taylor series

. (Y\"]C)z " "kq.o
Lo O o s 0 )

Um"* v
+ Ak T §1+——-—-—(v\ Y] )log(\'l V1)+C(Y1Y?)
+0[(v\ rz )2 log (1) - r) } 6 'Zc,

+ 0(k?) (12. 6)
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where C depends on T 2nd whose evaluation denends on the behaviour
of the integrand in (12,4) over the whole of {he range of integration
and not just locally as with the cother terrns. It is not evaluated here
and is included solely io demonsiraie the procedure whereby (12. 6)
is mnaiched onto a solution valid at the critical point YI = ‘? K As
mentioned before, when \’\ < Y]c’ log (\"- r)c) ic replaced by
log(v)c-r) ) - iwif UC' >0, and by 1og(r}c- r)) + im if Uc‘ < 0.

Following Reid (1965), we introduce the small parameter
£ < [uru ]
arg & = -a/s, Uc" >0 (1?.7)
arg & =5x/6 , UC’ <0

and iniroduce the new scaled variablec for the neighbourhood of

7.

S R |
xz(r]-r)c){_' , G=F & (12. 8)

Although there is no reacoen tc scale T from the equeciion (10.29),

tﬁe boundary conditions for the viscous layer on the wall (10. 30)
imply the scaling (12, 8) co that G ~ 0(1) in the layer. When these
are sﬁbstituﬂ:ed into (10, 29) the singularity which is present in (12. 1)
no longer exists, for now the highest derivative is not lost but is of

the same order as a retained non-linear terrc (see (12.10)), In
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addition, we may notice that T again appears only as a parameier,
this being essential io the subsequent analysis, for, in deriving equa«
tions (12.10) to (12,12), we expand U as a Taylor series around

Y} = t’I c keeping T fixed. Thus the viscous effects associated with
ithe critical poinis Y] . are confined {o thin layers of thicknesc

o [€ @2 Jo) /2} .

We expand G in the following manner
= : E, 2
G=G_ +(E logIEI)Glo+E_ G,, + O(E log | ) (12.9)
where the Gij are functions of A and T . If we substitute (12. 9) into
(10.29), and expand U in 2 Taylor series arouand Yl = Yl c keening T
fizzed, then we obtain the following equations for the Gij on equating

like powers of é etc,

2 9%, _
(SF -2) Y =0 (12.10)
2
) 9%
(‘57\'2 -M—'—b_KT =0 (12.11)
>z y °G Ut MG
3 - N3 e M - 26 (12.12)
C

We will now focus aitention onto the viscous layer formed
cn the wall i, e. Y) c = 0, This will enable us te determine the function
A() in (12.2) and (}2.4). Therefore, in what follows, wherever a suf-

fix ¢ would have occurred we now use a suffixz o to ernphasise that
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we are considering this layer. We mray deduce the boundary conditions

to be imposed on equations (12,10) to (12.12) fron: (10. 30), and these

are
G
= —20C _ g
Goo o, PR Uo
56 on X = 0 (12.13)

1j .

e R i T = 1

_ij b )\ 0 J 0, LY

togetner with the requirewnent that G should maich onto the inviscid
solution 1", assusrring a coinmon region of validity,
Following Reid (i965), we may write the general soluiions
O ]

tc (12.10) and (12.11) as

R A
G, =2, th M+ g an Ai(\)dn
"oy 9
Y ) N
+a, an Ai(eri"/ 3y ax
2 ')
i=0,1 (12. 14)

where the 2. etc. are funciions of U which are chosen to satisfy

the boundary and maiching conditions. Tle function Ai(\) is the well
known Airy function and a property of this is that it is exponentially

small at co for [arg A < =/3, this being the secter in which o, lies.
It 15 exponentially large elsewhere excepi on the lines farg M = w/3

Zin’/B)

and arg A = -7, Thus £Li(d\e is exponentially small for
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-7 < arg A < -w/3, this being the sector in which oo, lies. Thus we

2
see from (12, 7) and (12. 8) that, when Uo' >0, arg \ = w/6 for r‘ > 0,
and hence we must insist that d’io = 0 in order that the solution rnay
not be exponentially large at infinity and therefore impossible to
match with the inviscid solution. In the sarce way we see that, when

Uo' < 0, arg \ = -57/6, and hence we must then insist that ¢io = 0.

Making use of the fact that Ai(\) satisfies Airy's equation

d? ciy
(m -A)AI(N) =0 (12, 15)

we wnay, by means of a partial iniegration, reduce the double inte-

grals in (12.14) to forms involving only a single integration.

e.g.

axn Ai(VEN = A ALQ)AN - —= AiQ\) (12.16)

dx
o, 0, ®,

Hence, noting the values of the following quantities,

1

{.iAim] AN
dn A
A=C

o, (12.17)

AiQ\) d\ = /3

‘o
We rnay deduce that, when UO' > 0, the boundary conditions (12.13)

are satisfied by G and G, if
oo lo



+ t
boo Uo - 2T

a o 37]6 r‘f(Z/S)

(12.18)

26 36T 2/3)

wnere |/ (x) is the Gamma Function c.f. BErooke Eenjamin (1959).
Sirrilarly we may show that, when Uo' < 0, the boundary conditions

(12, 13) are satisfied by G and G, _if
oc lo

1

boo + U0 24 e21':\'/3
=~
%00 37/ 17 273
. Q
b, _ 2wm/3 (12.19)
lo __-Zme
1o 3176 7 #/3)
The general colution to (12.12) can be written as
U it .
o /6 /6 2 ]
= a ¢ .20

Gll ZUO' [ 2 00 N(Xe 3+ boo X (12.20)

+a, 1 +h o k4 exponentially decaying terms.

where M(x) is just the funciicn referred to by Stuart (1963), who
reproduces a table of its values due tc Holstein (1950). This function
is regular at the origin and has the following behaviour as [A| =>
-in/6
in/ Y~ IX) log(IXN1}; arg N =7/6
(12.21)

-1
N\e 1./6)f~/ - In) log(INt) + witn) 5 arg A= - 5a/6



In order to rrake a meaningful rcaich between these viscous
solutions and the inviscid solution (12.4), we need to specify the size
of k mmore carefully. In fact we assurce that

k=¢& k" (12.22)
where |k'] ~ O0(1). We sec from (9, 6) that this is a reasonable
assumption for a typical chysiological situation. Thus (12.,%) gives
the solution to the inviscid equation correct to o(f %), We may also
note that the full solution tc (12.1) would give the solution to (10.29)
correct to of 53).

We therefore expand A(T) in (12.4) as
A(T)=A_(T)+ (€ log [E1)A (T)+E A (T)+0Q(E 0g IEN )?

(12, 23)
and hence, writing (12.6) in terms of the viscous layer variables
(}2. 8) and using (12.22), we have that as Y’t ~> 0 the inviscid solu-

tion behaves like

2 2
U
~ ¢ OO 1 1 0% '
G Aooik R +\U_ }+ Elogl{!‘}' AL 22—+
c ., O
u 2 u" g 2
¥ Aoo K -UOO' ) —{JET- )\,{ rt iAll(k' 'g)' * )\Uo')
o o °
u 2
xz It ¥ 8.0
+tA S U'M+A K o C A
v 2 u"
o0 0 2
+Aook' Uo,. —-ﬁ:,)\log(!)\l)} +0( & 10g 1€l )

(12.24)
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. - o, . .
Therefore, in order that the 0(€ ) term should maich with Goo as

A = oo we have that

oo foY) U

(12,25)

Sirpilarly, in order that the 0( £ log l&l| ) term should match with

G. » we have that
lo

lo 1o U

)
i
>
~
c
8
- Y]
P

(12.26)

b

] kl .
lo Alo Uo +A’oo u' u'

I addition, we may see that in the G(E Y term of (12, 24) the terms
involving log (IAl) and \? are automatically maiched by the solution

for Gll (12.20) when the property (12.21) ig utilised, Also we have

g 2
= ’ ! m
an A K g
o
(12.27)
u 2
- 1 ‘.' co
bll Al Uo +Aoo ¢ Uo' c

and the maiching may be continued to higher order in E if desired.

amd. (1220
Combining (12.18) and (12. 25)/\we find that if Uo' >0
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U = -
\
A _=-1/]14 'F'%)’-] !
7
00 [ /GTi (/., U0 k
! (12, 28)
U U
A =k (=2 0 2T 0, ]1'
lo U 37/6 T &) Uo
Simdlarly, if Uo' < 0 we gsee frormn (12,.19) and (12.25) that
_ r 2—?7C2iw/3 . Um 2
AOO—-I/ 7/6 k (-L—]--l) ]
T ¢ /3) o
(12.29)
U gn 2im/3 u
o 7 T [ 2
lo U U' 7/6-——; U !
o o (/3)

Hence, using (12.22) and (12.7), we see that

2 *+Hu/6
_ ' 21 k(kR) ]'/ Up®
Ao -1/ [ 1t 775 : e
T &/3) (')
. 2
U Zy rrwe 1/3 U ® +in/6
3 e JE
A.m:k(kR)l/’ o "o /L 4 ZOEOR) © o ]

(Uo,)S 3 37/6 T (273) (UO, )5/3

(12. 30)
where the plus sign iz taken if U ' > 0, and the minus sign is taken
o
if U'<O0.,
o
e now consider what happens in the viscous layer near a

point T =7 when Uo' = 0. Near such a point

U~ (T T)[a"c . z'] [U”} - $oo. (12.31)

o
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and, in order to create a balance between the inertial and viscous
terms in (10. 29), we are led to the following scalings on T - To

and Vl
1l 1

Y =M 5, H=F 5"", T = lt--To) & (12. 32)

where 9 is a small pararreter defined by

o o o]}

) =T,

i}
2]

(4]
=2
i

5= -m/2, [Uo"] >0 (12.33)

Substituting (12.32), (12.33) and (i2. 31) into (1 0. 29) the equation

becormes

4 2e.
9 f + (Ty - —;-yz)%%+ H = 0(5) (12. 34)

oY

notiag that from our definition of U (10.256)

i o U l = - 12. 3¢
0 ' = -1 .35
oT o ( )
ol :’2"0

In addition, ihe boundary conditions to be satisfied on the wall becorne,

from (10.30)

n FUO']'C 5
H=0, =—=-§T o 4+ 0(8%) (12, 36)
_ dY dT —'Co |
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The first order equation for H is obtained by putting the
righthand side of (12. 34) equal to zero and we again note the impor-
tant feature that the time variable T cccurs only as a parameter.
Four independent solutions to this equation are found in Appendix C
in the form of contour integrals, but these are not needed for our
purposes here. We cbserve that one solution of (12, 34) is

B, - n(T) | Ty - %y"‘] (12.37)

We may infer from (12, 34) that the other three colutions are regular

at vy = 0, and, by asgurcing the following behaviour of H as ’y. - co

(12. 38)

h_v+h yzﬁ
H rvyo.e 1 z iao-kal/y +..0 }

we may show that they have the following asympiotic forms

-1 : .
F *{ .
H,~ Y {bo+bl/y touo ¢ (12.39)

~ oy (5-T2/J/2)/2 _+(Ty-y*/2)/ J/2 fe te, At 3 (12.40)

H,

By

~ Y G-T2/A2)/2 e"(TY"VZ/Z)/ﬁ {do+d1/y+. .. } (12.41)
where the a, etc. are functions of T.

Because Y} > 0 we sce from (12.32) and (12, 33) that, for
T ~ 0(1), then di z 0 in ovrder that H way not be cuponentially large
and therefore impossible to match with the inviscid solution. That

the function H dces maich naturally onto the inviscid solution ¥ may

be seen by expanding (12,5) 2t [ =T o for small 71



+ 0f rfa) + 0(k?) } (12.42)

Writing this in the scaled veariables (12. 32) we have when Y] ~ 0
H o~ O(Aks‘?‘/y) (12.43)
/3

4
The exprescion (12.22) implies thatk is 0(8 and, since the boun-
dary conditions (12.36) imply that H is 0(58), we therefore require
that

:/3

A= 08

) (12, 44)
in order that the inviscid solutiori should match onto HZ in {12.39).
However, when Uo' ~ =0 TUO" (see (12.35)), we sce from (12.3C)

that

A =077 (12.45)

Thus the leading term in an expansion for A in terms of the small
parameter & near T =7 o iz of the same order of magnitude as

that predicted by the leading term in an expansion in terrns of &

elsewhere. This fact is of particular significance when we come

to evaluate the steady streawning associated with thic flow.

The expression (12.44) also iroplies that the function I-I]
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o /a
of (12,37) rrust be of 0(80/") in order that it yray maich onto the
y

doreinant term in \’1 2 of (12.42)., (T is expanded at 7 = To in
(02.42) and so T = 0 in the expression for H1 Jo Thus I—Il ic not present
in the first order soluticn. The two remaining functions H2 (12. 39)
and H3 (2. 40) (H;;_. was disgmissed because it was exponentially large
at infinity) can now be made tc satisfy the boundary conditions (12, 36)1
and this gives rise to the valuc of the leading terrn in an expansion
ior A.

We rray alsc sce how this first order solution for H maiches
onto ine viscous solution Goo as [T! ~> 0, If we use the W. K., B,

metnod and assume that for arg y = -w/8 (Uo” < 0)and arg T = -u/8
(T>T )

H~ g(T) eﬁ Av) {fo(y)+ L fl(y) +ou g (12.46)
ST

then we find that

. -5/4 2,.3 iw/4
H o~ g, + 8,Y + AN / exp(- ngY /Zle / )
-5 /4 4 3 iir /4
+g,¥ 5/ exp(+ -g- Ty /2' em'/‘ ) (12.47)

where the g, are functions of T. We may sce immediately that
8y = 0 otherwise H would be exponentially large. If we write the
cuxpression for Goo (12.14) in terrrs of the scaled variables (12, 32),

then we find that, for UO' ~ -STUC" >0



- 133 -

'YT1/3IEi1r/6 N
H ~06) + 0553y y + 0(5) dn AL(L) A

(12, 48)
and we may show that for large T the double integral gives rise to

the following asymptotic representation
, - 2 3 i
H ~ 0(5) + 0(58/3) v + 0(8)y 5/4 exp(- 3 \Ty3/2 ) e”'/'*) (12, 49)

(see Reid (1965)).
Thus as well as ensuring 2 maich with (12.47) we see that

/3)v

it is also consistent with H being 0(8), In addition the 0(68
term again demonsirates ihc order of meagnitude of Hl with which it
must maich, and this agrees with the order of magnitude found pre-
viously, We may perform sirnilar analyses when cither Uo' >0 or
T < 'T: o {or both) and we find again. that the functions match onto
each other consistently.

Thus this first order solution for H, though not found ex-
plicitly, satisfies all our requirerrents: it sétisﬁes the boundary
condifions on the wall and iraiches onto both the inviscid solution F
and the viscous solution Gco" It 2lso enables us o find the leading
term in an expansion for the function A in (12.4) when U~ T o and,
as mentioned before, the important feature of this is that its ordew

of magnitude is the samie as ihat nredicted by the leading terme in an

expansion elsewhere.



The physicel significance of this region of thickness

1/2
0 [6(2\/ /) / ] near ( = to is that it reprecents the creation
, . poonns v 1/2 .
of another viscous layer of ¢hickness 0 [E (2 ¥ /) ] This breaks

avway froca the viscous layer on the wall and propagates into the in-

viscid region moving with the point Y] = Y}c (T) where Uc = 0.
1 1

After a certain lengih of tirme a2 point is reached where U_ ' is 2gain

c
1
zero and now the viscous layer cownbines with another layer at
n = Y} . and they both disappear. They reappear later as the two
layers at Yl = Y) c and Y\l respectively. It should be noted that
c
2 3
during part of the period of oscillation there are no viscous layers
away from the wall, whilst at other times there may be several.
Indeed, when Uoo = 0 there are an infinite nuatber although their
effect decays exponentially away from the wall, In connection with
this it should be meationed that whilst the solution (12, 4) does not
exist at T =Y where U =0, the limit U == T does. Reference
co o)) co

to the sketch of the prefiles of U(Yl ,T) at different stages in a period
of oscillation in Fig. 12.1 chould icake this struciure clear.

We may casily see from matching wiih (12. 6) that the
viscous solutions G, , given in (12, 14) and (12.20) are immediately

1)

applicable for the solution of (12,10) - (12, 12) in the viscous layers

away fror the wall, As we should expect, we find that the Airy

funciion solutions are no: reouired. If one had exisied and decayed
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exponentially for Y} > qc, then it would have increased exponentizlly
fox \r‘\ < \'1 c and this would nave been intolerable. Siwnilarly the first
order solution HZ (12.39) tc the cquation (12. 34) ic directly applicable
in the regions where the viscoug layers arce either emerging or dis-
appearing. As before, at the inception of such a region HZ. ic matcued
co the firgt order visccus soluiicon Goo' but 2% its conclusion it now
has to be maiched ontc the inviscid solution F. However, on closer
investigation usiag (12.14), (12.25) and (12, 24), we sec thai these

are now ideniical o first crder in & , and thus ihe maicaing is, in

3,

fact, wvanaffected. Becaune A ig wow 0(1) near such 2 rerion, we
eo

-2/ -
e from raaiching thoi H, muzt be 08 2. 3) and thiz is G(® 5/3)

°e & 2
greater than in lhe eruivalent region on the wall.

Wec now coaceniraie on ine evaluation ci the steady siream-
ing associated with this fiow =way from. the viscous layer on ihe wall.
From (10. 34) we mavy see that if there werc ao viccous layers then

toe coniribuiion of 0(a) woull be given by

2m
kY
() g & OF 4 (12.50)

] 2% ay}

1

ot

F being the inviscid scolution aad R+ denoting 'Real rart of'. However,
Lo mentioned in the previcus paragraph, near the viscous layer at a

noint Y] = \'] o’ the inviscid solution is identical to the viscous solu-

tion o first ocrder in E . Therefere, using (12.5) and (12.23), wve
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find that the dominant contribution to the steady strecarning is
™
~kny +ik
(s) _ S ¥
1 2w

oy
Boo3m 9T (12, 51)

C

1/3

the neglecied terms being of oxRr) 7. Stricily, we do not know
the value of the leading term for A in a region asar the time U~
when Uo’ = 0, but we inferred from (12.44) and (12.45) that it was
the same order of magnitude as that predicted by Aoo' More expli-
5/3

citly it is of O(8 ) and, because such a region exists for a time of

0(8), then the error incurred from this source when using (12.51) is

-2/3
/ and is much sranaller than the effect

of 0(68/3). This is O{kR)
of the neglected terms. Should, however, the integration pass through
a region where UC' ~~ 0 then the use of (12.51) must involve an errcr
of 0(6H). ‘We saw from the waiching conditions outlined above that

H is 0(5.‘2/3) and so the error is 0(61/3). Because this is O(kR)-l/lz
)-1/3

it is very much larger than the ervor of 0(kRR from ihe neglecied
terms, Nevertheless, in the lirnit kR => co, it is ctill vanishingly
smzll comparad to (12, 51).

Uszing (10.26) and (12. 30) we find that we can write (12.51)

as
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(s) _ T
ul = 4 / ‘
- i_%-(“k)*ﬁikijf{ coq(“«-;;'\w/‘a)cos Lt;g/zn 4T
u . 33 (thnfayrzne™ Pcosa
e
51
4 5/3
. co"(/(,3'\+7r/4)c0f' (TC+/2/4) ax (12.52)
. (Tru/4)-2 be " Ccos?
4
where
1/3
itk (kR )
A = = e (12. 53)
2576 577877 273

Tais may be rearranged into the following form

u_l(s) = - "-—-/: Asm(-n/o)e-(]-i-k)q sin k\{{ X

x
2

cos{t-1) coss/?’t (1+sin 2{)
* 10/3 5/3 2 2 d
cos t+2 Accs™’ Ti(l+sin2t)costr/ Gk A®(1+sin2t)

r
2 (12, 54)
or more graphically

ul(s) = -k (m)l/so_(Hk)q{Ilcos \1+Izsin r\} sin k\F (12.55)

The integrals I1 and I2 have been evaluated numerically using an

integration routine available on the Imperial College IBM 7094

1/3
computer. The resulis are given for different values of k(kR) /

Table 4,

1/3
From Chapter ¢ it would appear that k(kR) / is generally



on tae srpall side for physiologicel applications, and so the limiting

1
valucs of I, and I, as k(kR) /3 or /A -> 0are of some interest. We

1 2

therefoie coansider the f{cllewing integrals.

™

2 8/3
5= COsS /Jt (I1+sin 2¢) de

- 10/3 5/3
! cos o/ 2 AcosJ/ t(1+si112t)co.f,(:r/6)+ L% (1 +sin2t)?

mw

2 (12, 56)
and

n

5
1. = z gin t cos /3t (1 + sin 2t) 3t
10/3 '
z cos O/J‘i:+2Acos5/3t(l+sin2“c)cos(rr/6)l- A% (1+sin2t)?

w

"2 (12.57)
We raay wriie J'_l as

r

e /o
- 2 cosc'/"*’c (1+sin 2t)

I = 1073 573 R

J I t+24vcos "ccos@r/@i- AN

2

fe'a) ) &/ n
+ E' (-1)nA_nsinlzt[2A+Asin2t-2cosg/')'t cos&:jé\] at
10/3 . 5 :
) !‘ cos 0/3t + ZAcosJ/st cos(rr/6)+A?‘] &
(12.58)

and because the order cf magnitude of each term in the scries is

< o A3n/5)

throughous the range of integration, the error involved

/

3/5 s
in neglecting these will be < 0( A ) times the remaining integral,

Therefore we consider
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T
2 A
5 - cos®3 (3 +5in2t) -
1 10/3 5/3 -
cos / i+20 cos /t cosfr/6) 4 &°
T
2
« (12, 59)
2 8/3
-2 7 COS5 t/ i
16/3. 5/3 2
o cos8 +2Acos™ 't cos@'/())l-a
3
and if we vse the substitution v = cos t then J] becomes
! VlO
J =6 dy (12. 60)
1 . 61 2. .10
(t-y / v %24y costw/x’)}FA )
o

We now split vp the range of integration into two parts in

the following manner

J, =6{(3 +7J) (12, 61)
1 P
waere
P S0
J = ~ dt
P o (l-—‘y’o)]/z()fl +248v coq-n'/é)i- A?)
(12, 62)
! 10
. - dt
" 10
P (1-v 6 1f,r +2A v cos(rr/o){-A‘2

We rnay expand the integrand of J in the following mmanner
1 ~ co
i A
J = 76 lﬁ—il + E uJy—gi gdy' (12, 63)

-
. 5 . . .
if A\ << p . The error incurved by replacing the full expression for
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/‘1
1
J = l —'_de (12. 64)

o (1-y")

vrill therefore be given by the order of magnitude of

1 JAY
~ — dy (12. 65)
5.1/2 ©
s (1-y%1/2,
wrhich is
1/2 1
A B
< Al Fa+ AI —iin Y
p v / (1 )
(12, 66)
- o(A Aot

the constants A and B being of 0(1), Because of the condition
5
A <K p the error in using the cupression (12.64) for J is thereforc
1/5
o A5,
We now write J as
1 p
= | —te gy | e d (12, 67)
- 6172 V-V T 6172 Y "o
, (v o (1-v)

and so Jp + J becomes

p
i 2
J o4 g=. g ZA i cos(.r/6)+A

_asydy 72102 Ay B cost /g A?)

dyr

(12. 68)

S.QL C o Bszwl&
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We again expand the integrand sc that

e 5
~ 2 7
S ZA/ cosﬁr/6)+& {1 +%70+”'} 1y
(y +2Ay co.,(n'/é)i- L2)
(12. 69)
and the crder of magnitude of the integral is given by the first term
. 1 6 . 0w oiar A 1/5
providing p << 1, Thus the value of p is such that <Kp<l,
1/5
Yl the firsi term in the expansion

Using the substitution y = A

(12. ,Q) becomes

1/5

/O 5
) 1/5 2N “cosin/O+ A2 3
A 10 . 5
o Y‘l +2\f1 cosim/6) + 1
(12, 70)
]_ r
- oa?)
Therefore, from (12. 61 )_, we finally have
SRR -——-,——,—/-?— dy + O A1/5 (12.71)
(1-Y )
which becomes, using the substittionx =y ,
1
-1/2 -5/6 1/5
Jl = (1-x2) / e 5/05::.;:+ C(A / )
0
(12.72)

where B i1s the svell known Beta Function.

In 2 sirniler weay we can show that
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S35 1/5
I, 75 (6 2)-+ o( A (12.73)
ano slace
T /6 T/2)  _ T /6)
B( 273 = . J/u T (12. 74)

the expression (12, 55) becommes, using (12.53)

1/2 1/3
(s) T (1/6)k(kR) - 3 . T -(1+k)q .
u = - cos + — sin e sin k
1 473,776 ETﬁ(Z/s)jz L N7z WJ ‘F’

4/5

+ o[kmﬂ)l/‘] (12. 75)
and thisc gives
U_l(s)z -0. 5927 k(ld’{)l/3 [cos N+ 2 sinrﬂ e"“k)']sin kY
» /5
[koda) % J (12. 76)

In Fig, 12.2 we plot the vaiuves of log (0.5927 - Il) and log(0. 8890
. 1/37 1/3
- IZ) against log [ k(kR) / J for values of k(kR) / from 0. 001 o
00l
:Q.—:%“g inclusive (secec Table 4). As can be seen, the resulting curves
are straisht lines with gradients of 1/5, and this verifies that the
1/371/5

ervor in (12. 76) is O [k(kR) / .‘ / .

To summarise, the dominant steady sireaming is of 0(z),

. ~1/3 .

and, if we assume k ~ 0(kR) /3 then, away irom the viscous layer

on the wall, it is given by (12, 55) in the limit kR -> ac. The error

ia uz.ss)is(ukRJ'l/3

-1/4

almost everywhere, but, if r‘\ is within a

digtance O(kRR) from a point where, at come time during a cycle,

-1/12

both U and U' are zero, then the error is of O(kR) This may
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be guiie considerable even for very large values of kR, Should we

/3

) 1
take the further limit k(kR) -> 0 then the steady sireaming is given

) 1/3711/5 .
by (12.76), Because the error is 0 [k(kR) / j / , this toco may be
. 1/3 , e
quite large for very srozall values of k(kR) * . 4 skeich of the steady
sireawing predicted by (12.55) is given in Fig. 12.3. This consists
of a peculiar stacked structure of regioas of recirculation, but,
because of the exponential decay away from the wall, only the first
few regions are of imporiance. In this respect it is not dissimilar
to the steady sireaming depicted in Figs. 11.1 and 11.2 for swall

kR.
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APPENDIX A

TO SHOW THAT B AND C ARE IDENTICALLY ZERQO IIT (3.20)

-’

Sunvocge that in (3.20) B is not identically zero and so in

(3]

the Stckes layer XON B q as rz -> o, Ao only harmonic depen-
dence on tirne is allowed, and the first order flow in the interior rust
maien with X, we may droy the timwme deviveiive frow (4, 21) for cur

o i

purrnoses here. Thewn, usineg (53.5), this equation for flow in the ocuter

region becomes

v *x (A.1)
Weiting (3. 20) in {exrrs of the variables for the outer region we find
that as Y} ~> €0
-2 3 -1 ,
X ~BB " (-x) + 0(8 ) (4.2)

Thic leads to our writing X as

X = @"ZXO + p'l }{O +o.. (A, 3)

X = e =3 ony =1 (A.4)

Because of (A, 3) the effective Reynolds number in (A.1)

is B Rs and this is large for cwell B. In addition (A.4) implies that

1o streamlines zssociated with X enter cr leave the Siokes layer,
0
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and therefore the first order flow in the outer region must have uni-
form vorticity (Batchelor (1956)). As pointed ocut in Chapter 5, this
dozs not specify the flow uniquely as the outer region could consist
of several regions each having uniform vorticity of a2 strength dif-
ferent fron: that of its neighbour., However, having decided on one
such configuration, this does imrply a definite non-zero velocity dis-
cribution at the edge of the outer region as oaly one solution of the
vorticity ecuation
Vix =-7 (A.5)

is regular within 2 closed area, (4 is the vorticity which is uniform
in each region of the configuration. ) But (A, 4) implies that this velo-
city distribution must be identically zero and hence 'K = XO =z 0,
Thig leads directly to the conclusion that B = 0,

We now congider the possibility of 2 boundary layer being
forrred ai the edge of the outer region. If this has a thickness 0(c)
then in order to balance inertial and viscous terins in (A. 1) we re-

quire that o X ~~ Rs . DBui to nratch with X  we require that
o

-2 3 : 1 _1
X ~ B "¢ and this leads to the conclusion thai ¢ ~ /st /4 and

Y p.1/2 Rs.3/4

. We therefore define the following boundary layer

variables

N gl/Z R 3/4 ‘. qx } 5-1/2 RSJ./4 (1-1) (A. 6)

3

vh

and then if



GRS SRR Sy (A.7)

r

where 6(B) == 0 as § —> 0, the equation for )(Oh may be deduced from

(A.1) to be

YA S Y Sl Sl o O
= (8.8)

x5 __\_2 - ; =4
OnE DAY DY bq""’ qu
The boundary conditions (A, 4) becore

X

b3 *®
2 — = = A,
)(0 3 Y)H on ‘q 0 (A.9)
The asyraptotic form of the solution to (A. 9) as Y\ ¥ S
can be shown to be
x ®

1 3. 10
Xy ~ 20y " + o) (. 10)

leaving out terms of exponential growth. If 2 = 0 then (A. 10) implies

Y .,

~> 0 as \r‘ N co, and Riley (1965) has shown that, with

that —
¥
boundary conditions (A. 9), this leads to the conclusion that )(o = 0.

Hence we again find that Xo and therefore B are identically zero, If

a‘# 0, then writing (A. 10) in the original variables, we have as

N e

K~ Rsl/z Q-r)+... (A, 11)

. . T 1/2,.
Therefore we introduce the scaled stream function X = {SRS / X in
the interior or core of the pipe. The effeciive Reynolds number for

1/2

. . -1 s s .
flow in the core is now f§ R which is agzin large for small 8.
s

The relation (4.11) also implies that no firsi order cireamlines of



the core flow enter or leave the boundary layer, and thus the first
order flow in the core ;0 has uniform vorticity. Therefore we once
rrore have a definite nrescribed velocity at the edge of the core and

a configuration of regions of u:niform vorticity similar to that described
previously. However, our exzperience in Chanter 5 implies that,
having decided on one such configuration, the problem can be solved
uniguely by applying the condition of recirculaiion of the boundary
layers, including those forrred baiween regions of different vorticities.
That is, the problerw can be solved compleiely with only the two
boundary conditions (A.9) specified at the edge of the outer region.
EBecause these two conditions are those of ne flow, we may therefore
deduce that there is nc flow throughout the culer region. This again
leads to the conclusion that Xo and hence B are identically zero.

In 2 similar way we can show that C z 0, thus justifying our
analysis of Chapter 3. We may note that, if in (A. 1), the cffective
Reynolds numrber were small, then the boundary conditions (A.4)
must imply no flow in the interior, if we expand the solution in powers
of the Reynolds number as in Chapter 4. This would 2gain defermire

B and C to be identically zero.



APPLEMDIY B

THE NUMERICAL SOLUTION OF (5. 36)

The integral equation (5. 36) was sclved on the Imperial
College IBM 7094 machine. An iteration procedure was used whercby
an approximate profile for yi(y) was used to evaluate the right hand
gide, thus giving an improved estirrate for the profile on the left hand
side. This in turn was used to evaluate the right hand side and the
process continued until the inyfut and output profiles differed by a
small enough azrnount, Infinity was taken tc be at y = 10 and this was
found to be rmoxre than adequate.

However, in order to evaluate Y, up toy = 10 on the left
hand side, it was necessary to exiranolate for the values of Y; waen
10 <y £ 20 to evaluate the right hand side. 'This wac because the
meazirnum coniribution to the integral on the right hand side came frow:
the vicinity of v = y', and it was therefore necessary to extend the
range of integration until ths kernel Kly,v') of the integrand becamre
negligibly snrall (< 10 ). This led to our cihoice of y = 20 for the
upper lirrit of integration. The extrapolation wasg easily accomplished,
the constant profile for Y; 25 ¥ -> oo being anticipated by putting
v, ¥ >10) =y, (y = 10)

X . .
The starting profile used was that of \A this being



evaluated for y > 0 fron: the iniegral in (5. 32) using Simpson's rule
with a sten length of /200, The value of yiH(O) was yi(O) which we
Inew exactly to be zero, Sinzilarly the integral on the right hand

side of (5. 36) was evaluaied using Simpson's rule with a step length

of 0. 1. The errors associaied with these integrations will be discussed
later.

The iierations werc continued until the value of Vs at each
station V. 0.1 x n differed by less than 0, 00001 fremw: the value given
by the previous iterate, It was, however, found necescary tc devise
a way of speading the convergence of the iterations when y was large,
This was accoraplished by anticipating the behaviour Y ~> constant
as y —=> oo, and noting that the value of this constani value was app-
roached from above by the iterations. 7Thus after sach ecvaluation of

( )

2
the profile on the left hand side y, ', 2 new profile Yi( ) vras deduced

by putting

2
vi()(vn)= ()(Y) n<N
(. 1)
(2) _ ( ) .
Y; (yn) = (VMW) n > N+l
where 11 was determined from the following conditions
( ) (1)
.2y, " ly,,q) - 0.00001
T
i N i 100 (B.2)
), (1) _
Y, (730} - 0:00001 <v. "y )2V, Hyygp) N<n<100

(2)

The wrofile Y; was then used to obtain the next iterate for ;e If,



(2)

however, the conditions (B, Z) could not be satisfied, or if y,
i

(1)

(v 00
)

of the previous iterate were less than the subsequent A (YIOD
(indicating that the constant value had been overshot), then the itera-
tion was continued without recourse to the above device. This accel-
eraied the convergence conziderably, but it was still found necessary
to continue for fifiy iterations after the condition for convergence had
first been satisfied, in order to guarantee that the resuliing profile
was correci. If the value yi(‘y’n) of one of these fifty proefiles was not
within 0. 00001 of the value diie ito another, then the iterations were
continued.

If h were the sie; lengih, then the error associated wiih
ucing Siropson's rule for the numerical evaluation of the iniegrals
would norrmrally have been O(h ), provided thet the first four deriva-
tives of the integrand existed and were boun’ed, Hewever it could
be shown that, wheny ~ 0, Yo:-:’ and hence Y, ~ y log y, and that the
error was now 0(h?). Therefore, in order to check the accuvacy of
the integrations, use was made of the following device. If I were the
irue value of the integral in (£, 36) and Il and I2 the values obtained
by using Simpson's rule with ctep lengiths of h and 2h respectively,
then, for e vy, vrofile,

1=IL+¢mﬁ=1]+Eh2 (B.3)

and hence



- 155 .
I, -1,
1 2 .
I = Il + - 3 (L. 4)

I being some consiant, When the calculations were performed using
step lengths of 0.2 and 0. 1, the rra:imum difference between the
resulting profiles for Y 78S found to be 0, 00011, Thus (B.4) zssured
that the profile was given corzect to three decimal places when the
step length was 0. 1. The magnitude of the errcr associated with the
4
integration of Y, was the norrzal 0(h’), and a sireilar analysis to that
given above showed that, with a step length of 0.1, Y, was given
correct to at least the four decimal places ensured by the condition
for convergence of the iterations. Similarly it could be shown that

= . 2. * -
the Y, were given correct to five decimal places when evaluated frorc

the integral (5.32) using a cien length of w/200,

©

TS
14

The profiles for the vy, and y, are given in Table 1, and
i i

we deduce frorn (5. 38) that, for y(z ,y) => 0asy -=> oo,

yl(CO)

<

(B.5)
YO(OO)

Therefore, we find that S ==0, 56 correct o two decirral slaces.
The egqguation for the elliptic pire was solved in precisely the same
way, and the values of § for differecat values of the eccentricity are
civen in Table 2.

In addition the profiles of y and T7 were evaluated at dif-

ferent positions arouad the sercicircle. Having derived the profile



of y(xe,y), the progerty (J.26) enabled T to be evaluated along
the line of symmetry frow equation (,1/5. 22). Then, having obtained
T (Xe’ ¥), the property (Y. 27) was utilised to evaluate y along the
curved boundary frown (5,12); The integrals of y and T were again
evaluated by Sixhpson's rule with a step length of 0, .1, but, in oxfde‘-.'
tc evzluate the second integral on the right hand side of (5.'12), the
step length had io be shorienesd considerably for small v from the
value uced previously. This integral corresponded ‘to-

\/:: =y e 51 -1 yl}i evaluated at the position under consideration,

?/J' = 'l_P' say. Thus for y > 0 it was evaluated frore an integrzal iden-
tical tc (5.32) excepi that % was renlaced by x('?;,() and the upper
limnit by y-,f . However, for 1_]3 7(/ 0, the integrand had a sharyp peak
ncar y = 0 and this necessgiiated the successive shortening of the siep
lengih frowm the value /200 used above uniil the desired accuracy of
three decimal places had been achieved. In fact, to conserve com-
puting time, it was finally found necesnazry to interpolate the value
of the integral at v = 0.1 frox the values aty = 0.0, 0.1 and 0. 2.
The valuc of the integral at vy = 0. 0 was again known exactly, and
was ejual to y(x('l[f), 0) whiclh can be found fror the boundary condi-
tions (6. 11).

The resulting v»rofiles ofrand y correct to three decinval

places are tabulaied in Tables 3a and 3b resrvectively, and they are
I e Y Y

also depicted in Figs. 6.5a and 6. 5b.



ATPPENDIZ C

In this a;rpendixz we seek soluticns to the following equation

derived froiw (12.34)

4 D 2un
ﬁ-l—iury-%yz)-——ia +H=0 (C. 1)
oY PR

We may integraie this once te give

3. :
3—3-31‘* +(Ty - :i,jva) %% + (y-T)H = 5(T) (C.2)
Y

where S is an arbitrary function of T, Thus three of the solutions
to (C.1) also satisfy the hor:.ogeneous cquation obtained by putting
S = 0in (C.2). The other soluiion is given by a particular integral
of (C.2) vwhen S } O,
We use the following substitution
z={y - T)? (C. 3)
and this transforrrs {(C.2) into

0’1

& 27 Dt
8x ,,I+ 12 . :I + (Tz-x)-i-l- + H = -—§....... (C. 4)
S Qi D 1/2
Ox .
We now look for a solution of the form
b
H = e P 4ip) dp (C. 5)

a



vhere the limits a and b are o be chosen in sorne suitable manner,

We alsc zasuwire for the present that S = 0. Zquation (C.4) now

becomes
. P ’ d4 -
[(spz—l)p e P“p/] + [p(l-Spa)a—P'+ (Z-T'ap_lzpa)gﬁ}e PXdp = 0
a
a

(C. 6)
We see that if the limnits a and b are chosen so that the expression
in squared brackete in (C. §) is zero, then the equation is satisfied
if

g

p(1-8p%) 7=+ (2-T%p - 12p%) = 0 (€. 7
..i}

and this gives rise to the following expression for &

2 2
§=p 202 o) T R [T /2 | (c.8)

We observe that, when this isc substituted into (C. 5), the integrand
has a pole at p = 0 and branch points atp = + 1/2 /2. Because of this
we choose the lirrits 2 and b to be at infinity and [arg(ax, bx)l < n/2.
More explicitly, if we assurre that U "' > 0 =ad therefore arg x = w/4
o

(see (12.32)), then we find that the rrost suitable value of a or b for

L E ® . o .
our purposes is co , where arg @ = -n/4. Thus the threz solutions

toc (C.4) when S = 0 arc given by the following integrals

e P
I = =r (1-2./2p

-3 1. m2 s
(-1 /ﬁ)/4(1+2 Japy (T /A/Z)/%P

i i=1,2,3. (C.9)



=

where the contours Ci start and finish at o0 , and branch cuts are
. = o s
made from p = + 1/2 o/2 to o0~ as shown in Fig. C. 1.
The integral I1 arcund the contour Cl is easily calculated

rom the value of its residue at p = 0. Thuc we have

I, =2mi (T2 - x)

(C.10)
= 2wi (2y7T - Y?‘)
and this is just the sclution I-I1 of (12.37)
If we write
p=1/2.3 4 ve® (C.11)
then the integral IZ around Cz becomes
. r -se/4, 7
I = g exp.-(l/?,../i+re ” )% x
2 r = -iw/4
© Ll/?. 2 + re 1rr/ ,],
o a(1-T?/ f2)/4 TR V2 /4,
% [-z J2re 3T/ * [z+z Sre i/ 4] R
co
i - Tiw /4
N ( exp L-(1/2 /2 + re m/)'j
IOk
) (1-T2/ . J2)/4 e (14TE 2) /4,
- i 75
X [—2 ~/2re7'v/41 {2+2 ,,/’éi'e'?m_'/‘}] 2 m/{Ldr

Ta/4
exp [ - (1/&..\/’+ 50 )x]

/a [1/24Z + 5e‘O]
nl-na I«/Z)/A

+

W(IH‘Z/ NOTE

ide” d0

X [-2 ,\/-Zf)ei ]

[2.+2 B6e

(€.12)
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where 0 is the radivg of the circle enclosing the branch poini
2 : . . ., . .
p = 1/2 /2. If I'l‘ \ < 10 then the last integral in (C. 12) vanishes

as &b => 0, and, writing ¢ = v | x|, we nray show that for large le

L, ~8(-2 /2)

(1-T%/ /2)/42_(1+T2/,ﬁ:)/4[e7iw(1-'r?-/,./i)/l 6
2

oo
. & (1-2
i e-in(l-Ta/ AZ)/16 e—x/Z N - (5-T?/S2)/ 1 { o /‘ﬁ)/‘*de
°© (C.13)
The integral is a comaples: Gararca Function and iz 0(1), Thus we sece

that for large vy

_m2 2 -
I, ~ R(T) .Y-(o T?/n2)/2 e"‘(YT Y/2)/ 2 (C. 14)

where R is some function of T. Although the above asymptotic analy-
ciec is only valid if |72 <10, we way deduce from (C. 14) that IZ
corresponds to the solution H3 of (12.40). In a similar way we can

show that the integral I, around C, corresponds to the solution I—':[4
o4

3
of (12.41), We reay treat the casc Uo" < 0 in the same way, the only

. . e . . H
difference being that, since arg =z = -m/4, we choose arg o = n/4.

IS % 0 in (C. 3), then it can be showa that

| R e P¥ a (G 15)
1/2 -~ ~ 172 P
pid 2 W p

<

and hence that equation (C.4) is satisfied by (C.5) if
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/

1

p(1-8p* Y3t (2-T?p - 12p%) 4 = -

Zﬁpl/z

We have chosen S = 1 with no losc of generality. This gives rise to
the following expression for a particular integral of ¢
1 1-12/ . /2)/4 (1+72/ J2)/4

2 ./fn'l:»a

P
PVZUJJ%fw¢WJthﬁJ%fwwWJmm® (©. 17)

0

which leads to the following integral as a solution of (C. 1)

1, = TP dip) dp (C. 12)

g

gf(p) being that defined in (C.17). For small p (C.17) becomes

g~ - 1/(1+0(p)) (. 19)

v

3 ,\/Tr
and so if we again assuine Uo" > 0, and therefore arg c© = -w/4, and
let the radius of the circle enclosing the branch point p = 0 tend to

zero, we find {C. 13) agsurmes the form

O

e-r Ix) ;zf -111‘/4) e-17r/4

(re

ar

(03]

rix Piw/4. Ti
LRL TR i/ Mar o 1T/4 (C. 20)
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We again write t = vz} and {C. 20) now becornes

c
-t t < 1T i i
I = . ?5(_1_ . n/é})dr . in/4
4 _ h:d
0
co
-t t Tin/4 Ti C.
+ g . m/')dr . ir/4 (C.21)
1<)
o

[fad)

Thus, for large jxy we find, using (C.19)

-in/8 (-t
1~ < S di
4 ~ 3 172
R DV R P /z Lt
(C.22)
~ %x-l/z
Therefore for large y
2 -1
- C.23
I,~ 3V ( )

and hance we see that 14 corresponds to the golutioa HZ of (12.39).
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TABLES
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TABLE 4: The fuactions y; and Yy -

y ~yo -yi “Yo ~yi
0.0 0.0 0.0 0.0 0.0
0.1 0.03286 0.012,2 0,038 = 0.0154
0.2 0.05037 0.0214% 0,061 0,0273
0.3 0.05997 0.02774 0.076 0,0365
Ouk 0.06L66 0.03184 0,086 0.0435
0.5 0.06611 0.03419 0,092 0.,0,86
0.6 0.06538 0.03515 0,096 0.0523
0.7 0.06318 0,03503  0.099 0.0549
0.8 0.,05999 0.034L10 0,100 0.0565
0.9 0.05619  0.03257  0.101 0.057%
1.0 0.0520L  0.03063 0,101 0.0578
Te1 0.04772 0.02842 0,101 0.0578
1.2 0.04339 0.02606 0,100 0.0576
143 0.03914  0.02366 0.099 0.0572
1ol 0.03506 0.02127 0.099 0,0567
1.5 0.03119 0.01896 0.098 0.0561
1.6 0.02758 0.01677 0.097 0.0555
1.7 0,022  0.01471  0.096 0.0549
1.8 0.02118 0.01282 0,096 0.0544
1.9 0.018,0 0.01110  0.095 020539
2.0 0.01590  0.0095%  0.095 0.0535
2.1 0.,01366 0.00815 0,09 0.0532
2.2 0.,01168  0.00693 0,094 0.0529
2.3 0.00993 0.00585 0.09% 0.0526
2k 0.00841 0.00491  0.09% 0,052
2.5 0.00707 0.,00410  0.093 0.,0523
2.6 0.00592 0,003,0 - 0.0521
2.7 0.0049%  0.00281 - 0,0521
2.8 0.00409  0,00231 - 0.0520

2.9 0.00338 0.00188 0.093 0.0520



3.0
3.1
3.2
3.3
3.0
3¢5
3.6
3.7
3.8
3.9
4.0
lol
bo2
Lo
Lol
L.5
4.6
k7
4.8
ko9
5.0
5.1
5.2
5.3
5aly
5.5

0.00277
0.00226
0.0018
0.00149
0.00120
0.00096
0.00076
0.00061
0.00048
0.00037
0.00029
0.00023
0.00018
0.0001k.
0.00010
0.00008
0.00006
0.00005
0.00003
0,00003
0.00002
0,00001
0,00001
0.00001
0.00001
0.00000

0.00153
0.0012l
0.00100
0.00080
0.00053
0.00050
0.000%0
0.00031
0.0002};
0.00019
0.00014
0.00011
0.00008
0.00006
0.00005
0..0000
0.00003

- 0,00002

0.00001
0.00001
0.00001
0,00000

0.093

0.0522
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L

TABLE 2: The vorticity'g of the core in the upper semi-ellipse

when Rs» e

Hinor axis of ellipse in plane of coil

Eccéntricity 0.0 0.1 0.2 0.3 O.h 0.5
1 -0,56 | -0.56 | -0.56 | =0,55 | -0.55 { -0.54

Major axis of ellipse in plane of coil

Eccentricity | 0.0 0.1 | 0.2 0.3 0.4 0.5
£y ~0.56 | -0.56 | —0.57 | —0.59 | -0.62 | -0.66




- 167 -

TABLE 3: The profiles of |’ and y around the semicircle.

(&) The profiles of T’along the line of symmetry'l%f:O,w

¥ T
s =0 . il

: *=1.0  r=0.5 r=0.0 r=0.5 r=1.0
0.0 | 0.000 -0.007 =0.00h =0.003 -0.003
0.1 | -0.011 =0.007 =0,00L ~-0,003 =0,003
0.2 | -0.012 =-0.006 =-0,00L =-0,003 =-0,003
0.3 | =0.011 =0,006 -0.00 =0,003 =0.003
0., | =0.008 -0.005 =0.004 =0.003 =0.002
0.5 | =0.005 -0.00, =0,003 -0,003 ~ ~-0,002
0.6 | =0.003 -0.003 =0.003 -0.002 =-0.002
0.7 | -0.001 -0.003 -0.003 =0.002  =0,002
0.8 | 0,001 -0.002 =0,002 =0,002 =0,002
0.9 | 0.002 =0.001 =0,002 =0,002 =0,002
1,0 | 0.002 0,000 =0,001 =0,002 = =0,002
1.1 | 0,003 0,000 =0.001 =0.001 .-0.,001
1.2 | 0,003 0.001 0,001 =-0,001 =-0.001
1.3 | 0.003  0.001 0,000 =0.001 =0,001 .
1.4 | 0.003 0,001  0.000 =0.,001 =0,001
1.5 | 0,002  0.001 0,000 0,000 =0,001
1.6 | 0.002  0.001 0.000 —  —-0.001
1.7 | 0.002  0.001 0.000 - 0.000
1.8 | 0.001 0,001  0.000 = -- —
1.9 | 0,001  0.001  0.001 - -_—
2,0 | 0.001 0.001 0,001 — -
2.1 | 0,001  0.001  0.001 — -
2.2 | 0.000 0,001 0,001 - -
2.3 - - 0.001 0.001 — -
2., | 0,000 0.000 0,000 0,000 0,000
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(b) The profiles of y along the curved boundary r=1

y Y

\J =7 1p=ﬁnh =n/2 YW=/t gﬁ=o

0.0 | -0,003 =0.005 0,030 -0,005 0,000
0.1 | -0.003 =-0,008 0,025 = 0,001 =-0.011
0.2 | -0,003 -0,010 0,020 0,005 -0,012
0.3 | -0.003 =-0.010 0,016  0.007 =0.011
0.4 | -0,002 =-0,010  0.012 0,008 -0,008
0.5 | -0.002 =~0.009  0.009  0.009 -0,005
0.6 | -0.002 --0,008  0.006 0,009 =-0.003
0.7 | -0,002 =0,006 0,00, 0,008 =0.001
0.8 | -0,002 -0,005 0.002 0,008 0,001
0.9 | -0,002 =-0,004. 0,004 0,007 0,002
1.0 | 0,002 =0.003 0,000 0,006  0.002
1.1 | -0,001 -0.003 =-0.001 0,005 0,003
1.2 | -0,001 =0.002 =-0,001 0,004 ' 0,003
1.3 | -0.001 =-0.002 =0,002 0.003 0.003
1.4 | -0,001 =0.001 =0,002 0,002 0,003
1.5 | -0,001 -0,001 =-0.002 0,002 0,002
1.6 | =0.001 =0,001 -0.002  0.001 ~ .002
1.7 | 0.000 =-0.001 -0.001- 0,001 0,002

1.8 - -0,001 =0,001 0,000  0.001

1.9 | -- 0,000 =0,001 == 0,001

2,0 | - - ~0.001 - 0.001
2.1 - —~  -0.001 - 0,001

2,2 | -- —  -0.,0001 - 0.000

2.3 | - - ~0,001 _— -

2.4 0,000 0,000 0.000 0,000 0.000



TABLE 4: The integrals I, and Iy.

k(kR)Jz

0.1
0.2
0.3
0.4
" 0.5
0.6
0.7
0.8
0.9
1.0
141
1.2
1.3
14
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2,2
-2.3
2.4
2.5

I

0.27377
0.22331
0.19225
0.16999
0.15276
0.13875
0.12697
0.11681

0.10789 .
10.09993

0.09276
0.0862
0.,08027
0.07479
0.06973
0.06505
0.06072
0.05669
0.05296
0.04959
0.04627
0.0,323
0.04049
0.03790
0.03549
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’

Iz

0.22255
0.15717
0,12233
0.09960
0.08318
0.0705%
0,06039
0.05200
0.04491
0.03883
0.03357
0.02897
0.02495
0.02141
0.01830 °
0.01555"
0.01314 -
0.01102
0.00915
0.00751
0.00608
0.00483
0.00373
0.00278
0.00196 "

k(kR)%

2.6
2.7
2.8
2.9
3.0
3.1
3.2
3.3
ek
35
3.6
3.7
3.8

3.9

4.0
bt
I
b3
beols
ho 5
4e6
ha?
48
4e9
5.0

I

0,03326
0.03118
0,02925
0.02746
0.02579
0,02423
0.02279
0.02144
0.02019

'0,01903
- 0.0179%

0.01693
0.01598
0.01510

0.01428

0.01351
0.01279
0.01212
0.01149
0.01090
0.01035
0.00983
0.00935

0.00889 ’

0.00846

I

0,0012L
0.00063
0.00010
-0.00036
~0,00075

- 20.00108

=-0,00135

-0,00159 -

-0.,00178

=0.00194

-0,00207
-0,00217
-0,00226
-0,00232
-0,00237
-0.00240
-0.00242
-0.00242
=0,00242
~0.002}1
-0,00250
-0.00238
-0,00235
-0,00232
-0,00229
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TABLE 4(cont.):

Kk (r) I . I
0.001 | 0.473 0.603
0.002 0.455 0. 561
0.003 Oolle3 : 0.534
0.00k 0.433 0. 514
0.005 0.426 0.497
0.006 0.419 0.483
0.007 0. 414 0.471
0.008 0.409 0.460
0.009 0.404 0.450
0.010 ' 0.400 0441

L |
log[k(kR)®*]  10g[0.5927-T;] 10g[0.8890-1; ]

-6.908 -2.123  =1.252
-6.215 - -1.983 o =1.115
-5.809 -1.899 *. =1.036
-5.521 -1,834 - -0,981
-5.298 -1.792 -0.936
-5.116 -1.750 -0, 901
-4..962 : -1.722 -0.872
-4.828 =1.694 -0.846
-4 711 1,668 -0.823

- =4.605 -1.647 -0.803
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FIGURES
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Fig. 2.1: The co-ordinate system for the circular pipe.
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Fig. 5.1t Model for flow in the outer region when Rs-> 0y
‘Shaded regions denote boundary layers; unshaded
régions have uniform vortioivty.

v =.-0.25 (W2/Rw) sin \Js



Fig. 5.2: Comparison of the velocity distribution at the edge of the core flow (;1) with the

distribution on the wall of the circle (vv',).

-l -
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v

v

Fig. 5.3: The co-ordinate system in the corner r=1 ,‘\.]J':ﬂr.
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Fig. 6.1: Sketoh of the streamlines in the plane

of the cross-ssction for small 5.
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Fig. 6.2: The profiles of the secondary flow's velocity in the

outer region along \;f::r/ 2 when =0,
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8

Fig 6.3: The profiles of the secondary flow's vortici'tyv

in the outer region balong v,(.—.qr/Z when £=0.

1 =0
S
2: R = 100
s t
3 RS= 200



1: B= 0.00

2: f= 0.04

3: f= 0,08

Lt B= 0.12 i
e —_p= 0.12 (two term

. -—
expansion)
O

\

\
\
|
0

-200 "'1.0 .o

v

1.0

Fig. 6.4: The px:pfiles of the secondary flow's mean velocity in the outer region

~ N .

along\)(f:qr/Z when R = O.
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Fig. 6.5a: The profiles of |’ along the line of symmétry#f: 0,m.
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Fig. 6.5b The profiles of y along the curved boundary r= 1.
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Fig..7.1:4The experimental apparatus.
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adhesive tape
/_"Mw'_'-""

. ' ' R |
Fige 7.2: Cross—section of pipe after injection

of dye.






N

Fig. 8.1 The co-ordinate system for the elliptic pipe.
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Figs 8.2a: Comparison of 51. with v"v when the minor axis of the ellipse li_:es in the plane

in which the pipé is coiled. ‘ N ]



Fig. 8.2b Comparison of ¥y with v; when the major axis of the.

" in which the pipe is coiled.

ellipse lies in the plane

- I8l ~



1.0

Fig. 8.3a: The secondary flow's vorticity in the outer

region along 1)[(:17'/2 when S=0 and the minor -
axis of the ellipse lies in the plane in

- which the pipe is coiled.
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Fig. 8.3b: The secondary flow's vortioity in the outer
region along\j.f:'lr/Z when £=0 and the major
axis of the ellipse lies in the plane in

which the pipg is coiled,
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- Fig., 10.1: The co-ordinate system for the wavy ﬁall.



Fig. 11.1:

Sketch of steady streaming when kR» O and k>> 1,




Fig. 11.2: Sketch of steady streaming when kR»> O and k<< 1.




v'6.o | | . | J/X
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4.0

3,0 < :
o
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|
2.0
1.0 |
0.0 ' 4 I+% : o (——
0.0 To 01 U ap, T ' T

' 'Fig. 12,1: The profiles of U(Q,Qﬁ'and the associated viscous layers .

T)(: viscous layer and its direction of propagation.
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\
x (kR)®
~7.0 -6.5 =6,0 =5.5____=5,0 =355 g
=1 .0
" 105[0.8890-1, ]
/ 1.0
1og[0.5927-1; ] 2,00

‘Fig. 12.2: Graph of 1og[0.5927-I;] and 10g[0.8890-I; ]

1
plotted against log[k(kR)3] for

0.001% k(kR)JJ £0,010.




S | L
' Fig. 12.3: Sketch of steady streaming when kR> w and k- O such that k(kR)~O.

. ]
#1111 =viscous layer of thickness 0[6(52;1)5].
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. —— —— — = branch cuts .

Fig. C.1: The oontoux"s‘Ci around whioh (C.9) is integrated

when U " SO.
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