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ABSTRACT 

The work in this thesis is concerned with the steady 

streaming generated by some unsteady viscous flows and two 

problems are considered in detail. 

The first part of the thesis considers, in the main, the 

flow in a circular pipe of radius a, which is itself coiled in a 

circle. The pressure gradient along the pipe varies sinusoidally 

in time with frequency co. Of especial interest is the so-called 

secondary flow generated by centrifugal effects in the plane of the 

cross-section of the pipe, for, if the parameter p = v AA2
)
1/2 

is sufficiently small, this is found to be steady in the interior of 

the pipe, and in the opposite sense to that predicted for a steady 

pressure gradient along the pipe ()) is the kinematic viscosity of 

the fluid). This is verified qualitatively by an experiment. 

The second part i7 concerned with the stcci.dy streaming 

generated by an oscillating viscous flow over a wavy wall. A 

viscous shear-wave layer is forr- ed on the wall, and if its thickness 

is much smaller than the amplitude of the wave, an existing theory 

may be used to calculate the steady streaming. This is only valid, 

however, when the amplitude of the oscillation of the fluid par-

ticles a long way from the wall is much smaller than the wave-

length of the wall. A theory is developed for the case when the 



thickness of the viscous layer is much greater than the amplitude 

of the wave, and it is found that, under certain conditions, the pre-

vious theory is still valid. In addition it proves possible to calculate 

the steady streaming when the amplituee of the oscillation of the 

fluid particles a long way from the wall is much greater than the 

wavelength of the wall. 
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GENERAL INTRODUCTION 

The theoretical study of the steady streaming generated by unsteady 

viscous flows was initiated by Rayleigh (1384) in connection with 

certain acoustic phenomena of Kundt's dust tube. Considerable 

attention has since been focused on the fundamental problem of a 

body oscillating in an unbounded viscous fluid, and for a comprehen-

sive review of the contributions to this topic the reader is referred 

to Riley (1967). The type of asymptotic analysis employed by Riley 

is used extensively in part one of this thesis. 

This first part contains an investigation of the flow through 

a curved pipe under an oscillatory pressure gradient, the so-called 

secondary flow generated in the plane of cross-section being of e-

special interest. In the interior of the pipe, this secondary flow is 

found to be steady for sufficiently small values of the parameter 

p = 	Aoa 2)1/2, and in the opposite sense to that predicted for a 

steady pressure gradient; this is confirmed by experiment (co is 

the frequency of the oscillations, a is the radius of the pipe and v 

is the kinematic viscosity of the fluid). This type of flow is of con 

siderable physiological interest, and its implications for the cardio 

vascular system, and in particular the aorta, are considered. Because 

the secondary flow is induced by centrifugal effects, it is analogous 

to the steady streaming induced in a fluid bounded by two parallel 
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planes performing tors ional oscillations about a common axis. This 

problem has recently been considered by Jones and Rosenblat (1969), 

following an earlier disctu;sion by Rosenblat (1960). 

In part two the steady streaming induced by an oscillatory 

viscous flow over a wavy wall is considered. A viscous layer is 

formed on the wall, and if its thickness is much smaller than the 

amplitude of the wave, the theory for a cylinder oscillating in an un-

bounded viscous fluid can be applied directly to predict the steady 

streaming. This theory, due originally to ,7:3chlicking (1932), is valid 

only when the amplitude of oscillation of the fluid particles i^ much 

smaller than the wavelength of the wall. The theory is extended for 

the case when the amplitude of the wave is much smaller than the 

thickness of the viscous layer, and it is found that, under certain 

conditions, the theory due to Schlicking may still be applied to predict 

the steady streaming. In addition it proves possible to calculate the 

steady streaming when the amplitude of the oscillations of the fluid 

particles is much greater than the wavelength of the wall. 
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PART I 

FLOW IN A CURVED PIPE 
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CHAPTER I 

INTRODUCTION  

In this first part we consider the flow of an incompressible 

viscous fluid through a pipe of circular cross-section which is coiled 

in a circle. In particular attention is focused on the so-called secon-

dary flow, which is induced in the plane of the cross-section of the 

pipe by centrifugal effects. 

The steady problem of this kind was first analysed by Dean 

(1927 and 1928), who found that the motion depended on a parameter 

IC, equal to 2Re 2' 	Re being a Reynolds number for flow along the 

pipe, a the radius of the pipe and R the radius of curvature of its 

axis. The analysis employed by Dean was restricted to small values 

of K, but recently this has been extended numerically to moderately 

large values of K by 3'.AcConalogue and Srivastava (1968). The work of 

the latter bridges the gap between the theory of Dean and that of 

Barula (1963), who developed an asymptotic boundary layer theory for 

very large values of K. 

The knowledge of steady flow through a curved pipe is thus 

quite extensive. On the other hand, time dependent viscous flows in 

a curved pipe have not been studied, at least to the author's knowledge. 

Therefore we consider here the effects of unsteadiness on the motion. 



This problem is of considerable interest in the study of the cardio-

vascular systerr where the motion in the larger arteries is anything 

but steady, and where, unlike most engineering situations, the flow 

is laminar. 

In order to simplify the problem, the radius of curvature 

of the pipe is assumed large in relation to its own radius, and the 

pressure gradient applied along the pipe siinuc.,,ic.17-.1 in time 

with zero mean. In Chapter a the equations of motion are derived 

z'..ncl the flow, being u:asi;ear_17, is seen to der.cncl on two 'Para rf,  eters 
which are conveniently taken as 

1 /2 1FT 
P - 	a (1. 1) 

aw 	 s 	v 

Here 	is a typical velocity along the pipe, () is the frequency and v 

the kinerradc viscosity of the fluid. The parameter 	may be 

recognised as the product of the ratio of the particle displacement 

amplitude —T  for motion along the pipe to the radius of the pipe, and 

the square root of the ratio of the radius of the pipe to its radius of 

curvature. The problem has been formulated in such a way that E. 

is always small and this allows the equations to be simplified thus 

making the problem more amenable to analysis. It will be seen 

later that Rs plays the role of a conventional Reynolds number for 

the secondary flow. This choice of parameters was made to allow 

direct comparison with the analagous two-dimensional problem of flow 
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induced by a body oscillating in an unbounded viscous fluid, as des-

cribed by Riley (1967) in a review article. Another parameter of 

major importance in our analysis is 

2 v Aoa' = 2 € 2/Rs 	
(1.2) 

and this also is assumed small. Clearly p represents the ratio of 

the Stokes layer thickness, which is proportional to (2 v M
I/2

, to the 

radius of the pipe. The smallness of P implies that, for the flow down 

the pipe, viscous effects are confined to a thin layer on the wall, 

while the main part of the flow is inviscid. 

In Chapter 3 a solution is developed by the use of two matched 

asymptotic expansions, one expansion being valid near to the wall of 

the pipe, where the Stokes shear-wave layer exists (the inner region), 

and the other expansion being valid in the region away from the wall 

(the outer region). The expansion parameter in each case is P, and a 

common range of validity is assumed in which the matching takes 

place. In Chapter 4 these expansions are taken to 0(132 ) in both regions 

when Rs is small, but when R
s 

is large a solution to only 0430) is 

attempted for the outer region, and is described in Chapter 5. 

In the latter case we find that an outer boundary layer of 

thickness 0(aRs
-1/2

) is formed at the edge of the Stokes layer, in 

which the velocity of the secondary motion is adjusted to the value 

dictated by the flow in the interior of the pipe. This interior, away 
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from all viscous boundary layers, will be referred to as the core, 

and differs from the outer region in that the latter corrrrises both the 

outer boundary layer and the core. Because the governing equations 

for the first order secondary flow in the outer region are steady, 

and the streamlines are closed, it will be seen that the secondary 

flow in the core of the pipe must, to first order, have uniform vor-

ticity (see Batchelor V 956)). Because of symmetry about that dia-

meter lying in the plane in which the pipe is coiled, the vorticity 

immediately above this diameter must be equal in magnitude, but of 

opposite sign, to that immediately below it. Harper (1963) has shown 

that this leads to the formation of a free boundary layer of thickness 

0(a Rs
-1/z

) along this diameter. The equations of these boundary 

layers are linearised by assuming the velocities of the secondary 

motion in the layers are small perturbations to the velocities of the 

motion in the core. These linearised equations are solved to give 

an integral equation for the velocity profile at some station, the 

strength of the vortex in the core appearing as an eigenvalue. This 

equation is solved numerically, and the etenvalue found. 

In Chapter 6 the results are presented together with a dis-

cussion of their implications for the cardiovascular system. One 

of the striking features is that, for sufficiently small values of the 

parameter (3, the secondary flow in the core of the pipe is in the 
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optosite sense to that .fredicted for steady flow along the pipe. Thus, 

whereas the intuitive i&ea cf 'outwards centrifuging' is valid for 

steady flow, it is not valid in the unsteady Low that we discuss; 

rather the apparent centrifuging is negative and is therefore directed 

inwards: This has been verified experimentally using the apparatus 

described in Chapter 7. 

In Charter the analysis is extended to embrace 	of 

elliptic cross-section. The motivation for this is the hope that the 

linearisation used in the large R
s 

calculation 1nay be more convincing. 

7.7e shall find this to be the case in certain circumstances, and the 

results indicate that the linearisation may, in fact, be very good even 

for the circular ripe. This belief is reinforced by the numerical 

work of Kuwahara and Im i (1969) described in Chapter 6. 
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CHAPTER 2 

THE ECUATIONS OF MOTION 

Let us consider incompressible viscous flow in a pipe of 

circular cross-section of radius a, the pipe's own axis itself being 

coiled in a circle of radius R about the axis Oz (Fig. 2. 1). Distance 

down the pipe is measured by RA, where 9 is the angle which an axial 

plane (containing Oz) makes with some fixed axial plane. Within the 

pipe cross-section polar coordinates r, 	are used (Fig. 2.1). 

The velocity vector u has components (u, v, w) corresponding to the 

spatial coordinates (r, 	, A), and we assume u is independent of 

G. In addition we define p to denote the pres'ure, p the density, v 

the kinematic viscosity and t the time. 

The momentum equation written in vector form is 

1 gr ad (.2-2 ) - u A  curl u = -- grad p - v curl curl u 
P 

(2.1) 

and the equation of continuity is 

div u = 0 	 (2.2) 

For the derivation of these equations see, for example, Arrhitham 

(1963). 

In this coordinate system the line element ds is given by 

ds 2  = h1  2  dr + h2 2  till. 2  + h3 2  dO 2 	 (2. 3) 

where 



- 16 - 

= 	 h2 = r t h3 = R + r cos y, 
	(2.4) 

We use the following well known expressions for grad, div and curl 

1 A 	1  A, 1  Z) grad 	
1 

zn. hz  6y, h3  2g 

div u - 	
1 	(h2  h3  u) + 	v) + (h h 	(h h w) 

— 	h h2 
h3 	

e, 	 `I' 3 1 	cog 	1 2 
 

and 

- 	(h2  v)i 

= 	1 	I)2 h3 h l 
	(h1  u) 	(h3  w)1 

a Jr 012  v) - -5-17" 	u).1 )3 h 1 h2 

where 	(II , 12, 13) = curl u 

When the values of h, are inserted the equations become, in component 

form, 

V 3uv 	w 2  cos IP  + u 	+ 	- +)t 	r r R+r - - 	(13/P) 

sinVd 	by v 1 )u 
- 	.̀..r 	R+r 	 )(T; +  r r W (2. 6) 

c3v 6v v by uv w2  sin1P 	1 	(PIP) 
t ' 	+ — —„ + + 

er 	r 0Y,  r R+r 	 r o 

cosy/ 	
4. 

v 1 au + 	(— + 	) 	
(2. 7) 

dr 	R+r coslfr 	 7-11' )  
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?N V 7)w UW  cosh'vw sine_— I  
+ 	+ 10/P) dt 	)r r 	R+r coshR+r 	R+r co-3* a 

ix dw w cosh  1+  1
'  
1 aw w  

ar r 	r R+r cosh r 	r 	R+r cos* 

(2.8) 

The eauation of continuity is 

.J!++ u cost`  
dr r R+r coc* 

v sink  
R+r cosP 

= 0 	(2.9) 

We now impose a simple sinusoidal pressure gradient along 

the pipe 

- 	kp/ 1,1 R 	co cos wt 
	 (2. 10) 

where W has the dimensions of velocity and co is the angular fre-

quency. We may first note that the exact solution to (2.,13) - (2. 9) 

in the absence of viscosity is the potential flow solution 

RIAT Sin wt u= 0, v = 0 w R+r cosV 
(2.11) 

z 
p/p = -ROW co cos wt - Artr:( R+r cos A

) -ii sin2wt 

The arbitrary function of integration has been chosen so that as 

R —> co ,p/p —> -ROW co cos cot, which can be identified as the pressure 

distribution when the pipe is straight. This solution satisfies the 

boundary condition of no flow through the pipe wall. There are no 
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components of secondary flow in the plane of the cross-section, 

there being a balance between the centrifugal force exerted by the 

flow along the pipe, and the pressure gradient in that plane. Now, 

when viscosity is present, a balance between the highest derivative 

and the driving pressure gradient in eauation (2. 8) must be set up, 

in order to -atisfy the extra boundary condition of no slip on the pipe 

wall. Thus we must have 

32w  
,S1 17  w  

r 
(2.12) 

We now as,lume, in common with most boundary layer theories, that, 

for small viscosity, (2.11) is a valid representation for w away from 

the wall of the pipe. Hence we see w = 0(W) and then (2. 12) implies 

that viscous effects are confined to a layer of thicknes,? 0( v /W)1/2 

adjacent to the pipe wall. This layer is thin when p = (2 v /wa 2 )1/2  

is small, and is just the Stokes shear-wave layer referred to in 

numerous texts. Another consequence of this boundary layer assump-

tion is that the pressure gradients, given by the expression for p in 

(2. 11), are essentially unchanged within the viscous Stokes layer. 

However, the value of w will decay to hero as the wall of the pipe 

is approached, and thus there will no longer be a balance between 

the centrifugal force and the pressure gradients in equations (2. 6) 

and (?.7). Therefore the latter now drive the so-called secondary 
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flow in the plane of the cross-section. Within .the Stokes layer a 

balance must be set up between the pressure gradient.and the highest 

derivative in order that all the boundary conditions may be satisfied. 

The.7e.fore, from (?...7) 

r 	(11P ) 	br 
	 (2.13) 

7 Ptr 

Within the layer this leads to the conclusion that v = 0(— 
Rt,) 

 ) and 

V! 2  
similarly u = 0((

Rw—) 13). If this secondary flow persists away from 

2 	i‘rtr 2  
the pipe wall, we may expect then that v = 0(no.)—) and u = 0(R(..) ) 

fro= a consideration of the equation of continuity (2. 9). Although u 

and v may no longer be zero, we shall 7ee that the assumption that 

(2..11) is a valid representation of flow away from the pipe wall is 

still consistent within the frar.cework of this boundary layer theory. 

Ia 1/2  The reason for this is that u, v = 0( w )= 0 L (  

1/2  
for 's mall e (z) 	, the secondary flow, though non-zero, is 

smaller than the flow along the pipe. 

We now introduce the following non-dimensional notation 

w 2  
= a/R, r'= r/a, w' = w/W, 

/VT I  
= 	— , = t R 

2.14) 

r.' = (p + p 	cos wt) /P 5  W2  

remembering that, in due course, r' and u' will need to be suitably 

scaled within the Stokes layer. The momentum equations (2. 6), 

Wi Thus, 
j 
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(2.7) and (2.8) now become 

eta 	E 2 (1.11 	Ul 	Vt  Out 	v.! a 	wr cos h 	?.t  _ 
r' 	r' 	r' 	1+6 r'cos 	?:,r1  

1 2 1 ?.) 	6 	;Nv' vi 
P 2 	(r' a11 1+5rIcosyi  Or' 	r'  

1 ) 
r' (2.15) 

u' 	v' 	v' ON/1  • uI vI 	a sinlk 	1 	t1.21 
) + 	

2 ( 

	

Z,, r' 	r' O 	r' 	1+ 5r'coslk 	r' 

and 

I ?) 	Scos 	v' 	1 ou' ) 
` 7,r' 4-  1+ 5  r'cosY, 	 \-1: (2.16) 

2
(
ui 	w' 	v' ow' 	u'wf5 cos-y. 	v'w'15  :s  

	

c) r' 	 r' 	yr 	1+ 5 r'cosy 	1+6 r'cosik 

1 
	  cost + Pa r 	+ 	wi  6 cosik  

- 1+ 5 r'cos 	 r 2 	6r' 	')(,) r' 	1+ 6 r'cosit,  

1 6 ,1 	 Y.,  w' 6 sin  
r' (Y1k'ry 	- 1+ 5 r'cosik ) 

(2. 17) 

The eouation of continuity (2. 9) becomes 

,-, r)  	tit 6 cos11i 	by' 	v' 5 r;in.Y-,  + 	+ 	 - 0 	(2. 18) 
r' 	1+ 	r' 	- 1+ 6 r'cos'p 

In order to simplify the equations and allow sorre progress to be made, 

6 	is taken to be very small and all terms. of 0(6) are neglected. 

Eouation (2. 18) now becomes 

u' 	u.' 	1 
r` + 17  

 

(2. 19) 

 

We satisfy eouation (2. )9) by introducing the non-dimensional stream 
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function y for flow in the cro-_:s-section, defined as follows. 

_ u 	r, 	v = - ?Yr' 
(2.20) 

If we now eliminate the pres.::ure between equations (2.15) and (2. 16) 

and neglect terry r3 of 0(6), we obtain the following equation for X 

y  .6 2 	(XI Crzg) 	2 	bw' 
v 	r' (r o , 	) 	- r  (r w 61.1  siny 

+ 	C 0 S )1,1,  

where 

6 2  
Q 

2 , 1 c7 
I 2 	' 	t 	I r or 

(2.21) 

3 2 	(a,b) 	ba 	bb 
r' 2 	2 	r I  , 	) t)jo 

(2.22) 

From the expressions (2. 5), we find that the component )3 
of curl 

w 2.  
u is eoual to - 	2  X. Therefore - 	2X is the non-dimen-  Rao) 

sional vorticity of the secondary flow and equation (2.21) is the 

vorticity equation. 

When we neglect terms of 0(5), equation (2. 37) becomes 

"e) w1 	2 	W t 	 3 
= cos 	

2 
+ 	• 	7  w' (2.23) 

The boundary conditions of no slip on the wall of the pipe can be 

written as 

= v?de 	= 0 	on r' = art = ?  (2.24) 

These conditions, together with the requirement that the flow field 

is regular within the pipe, are sufficient for the determination of 

the solutions to (2.21) and (2.23). 
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CHAPTER 3 

THE LIMIT (3 —> 0 

In this chapter we shall seek asymptotic solutions to 

(2, 21) and (2. 23) which tend to the exact solutions in the limit 

p -> 0, R
s fixed; in later chapters we shall study the consequences 

of taking the further limits Rs  —> 0 and Rs  —> co. 

Because of the nature of the imposed pressure gradient, 

we shall admit only those solutions which have a harmonic depen- 

dence on 	. Any other solution is an eigensolution which determin-,:-

whether c-ir not the solution described below is stable. Such questior-

of stability are not our concern here. 

The primes will now be dropped from the dimensionless 

quantities defined in (Z. I4) for reasons of simplicity, and all var-

iables are now dimensionless unless stated otherwise. 

In the Stokes layer, or inner region, we have seen that 

the relevant length scale is (2 )) M
1/2. Therefore, in accord with 

boundary layer theory, we introduce the following scaled variables 

for this region, 

= p- 
 (1-r), 	X = P

- 	 (3.1) 

and seek solutions to (2.21) and (2. 23) for this inner region of the 

form 
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V/ =
o 	

, 	, 	; Rs ) + f3w, , 	;Rs ) + f32w? (T, 	;Rs ) 

+ • • 	 (3.2) 

X = Z.0(t, 	;Rs )+ 13 X i Lt,1 ,"k(,- ;Rs ) 

+ p2 
X2Cr 	rkk ;Rs )  + • • • 

	 (3. 3) 

subject to the boundary conditions (2. 24), which can be written as 

1 = X. = 	= 0 , 	i-t = 0 	i = 0, 1, 2, 3, 	(3.4) 1 	1 

In the outer region, away from the Stokes layer, we look 

for solutions of the form 

w = sin' 	 (3.5) 

=(i , 	; Rs ) + p 	(t" '1'41  ; Rs ) 

+ (32)?,(71-  , r, y• ; R ) + 	 (3.6) 

and require that these should match with the solutions in the inner 

region in some suitable way. Equation (3. 5) is a direct consequence 

of (2.23) if we note that no steady part of w may exist as there is no 

preferential direction for the motion; it can be seen to be just the 

potential flow solution. 

Substituting (3. 5) and (3, 6) into (2,21) and (2. 23), and 

equating like powers of p, we have: 

(3. 7) 

(3. 8) 



1 v 
2 	1  0  (3.9) 

(3.10) 

Vi • R ) (3.11) 

(3. 12) 

(3.13) 

(s 
zero time average; yo ) is independent of frt . similarly, we have 

= 	
(u)

(r; 	;Rs )+ 	
(s)

(r, Itt,  ;Rs ) 	(3. 14) 

where 

v  2 yi (u) = 0 	 (3.15) 

S7 2.  X i (s)  = 	;Rs ) 
	

(3.16) 

Irtrhen we substitute (3.1), (3.2) and (3. 3) into (2.21) and 

(2.23), and equate like powers of p , we arrive at the following equa—

tions for wo and X 
0 

SZ 1 6  2  
(
3
-- 

6,)2 
) w

o 
= cos (3. 17) 

1 3 '. b17.3 

-7:27 	2  
wo = - 2 w sin 	(3.18) 

R 	(s/ 	go ) 4 o,  
2 	2r 	**() (r, y'  ) 

Ecluation (3. 7) implies 

V 7 	= go(r,y.,  ;Rs ) 

and hence 

o = 	
0(a)  (r 	't-  •R s 	o ) + 	(s)( 

where 

v 2 x'o  (1-1
)

= 0  

V  ? ) 0(s)  = go" ;Rs) 

(u) can contain terms proportional to eint.  (n = 1 to co), and has 
P.0 
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The solution of (3. 17) satisfying (3.4) and which matches with (3. 5) 

when rt -> co, is easily seen to be 

wo 
= sin 	- 	sin(T 	) 	 (3. 19) 

Substituting (3.19) into (3. 18) and solving, we find the general 5A:)1u-

tion to (3.18) may be written a 

0 = 	8 	- 2 -12 e 	cos(-1 +Tr/4) - 1. 6 e 
	cos(21-  -2rl  +Tr/4) 

- 	—e 	cos (2r - +1T/4) 2 	 sin 1 

co 
/TIC +i)n +in 2-  + (R 	 - , 

) e 	k 

n=1 

+B( 	3 +C(y-) ri 2 + F( 	+Gut', (3. 20) 

where terms of non-harmonic dependence on , and of exponential 

growth as ri -> co, have been excluded. The latter exclusion is neces-

sary to enable the solution in the inner region to match with that in 

the outer region as ri -> co. The symbol S. means 'real part of'. 

To effect the matching, we assume that there is a common 

region of validity for the inner and outer solutions when 	co 

and r 	1 respectively. Thus, if we write the solution for the outer 

region in terms of the variables of the inner region, we have, for 



z - 2Y k,  
v i 2 1:-(C7- r=1 

3 \ 
3 

I 	°7 
6 I a r3 r=1 

ti 

2 

r=7
+

4 

2Y1 1  r r=1 

r=1 

r=1 
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= 
Yo 1 

ni57.1r=1 	Ir =1 

+ j  )(3J 
	

1  + 0cp
3 	

(3.21) 

For this to match with the inner solution when ri 	co, we see from 

(3.20) that B(11) a-  C(4,  ) = 0 and 

go(u) 	' 	;Rs )  + Yo(s) (1,'P;Rs) 	 (3.22) 

It may be possible, however, to have B or C non-zero if we rescale 

). 	We investigate the likelihood of this in appendix A , and though no 

rigorous proof is established, arguments are put forward to show that 

B and C are probably zero. 

i consequence of (3.22) is that 

)(o  (u )= 0 	on r = 1 	 (3. 23) 

and the only regular solution to (3. 12) with this boundary condition is 

o(u) = 0 	 (3.24) 

Hence F(1-, ) can be seen, from matching (3. 2.0) and (3.21), to be 

a function of 	alone (F op )). 

From the boundary conditions (3.4), we can now deduce 
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5 	ilr/4 Dfl(p) 	0 , .11 / 	; 	D2  (1p 	8 

	

) = — 	e 

1 	 (9,,-10)  F(4) = - sinYi ; G(1- 	) - 	16 	cos (2'r +Tr/4) sinV 

+ 5/8 sin- 	 (3.25) 

Therefore, finally, we have 

• 1 	5 
o 	4, 

-21 - 	cos(-1 +Tr/4 ) 

5 + 8  - e 	cos(2t -,i2y1+ Tr/4) - 16 cos(rc -2n +Tr/4) 

,7-  
- 22 e  	os (21:-  - 	(9 

16 +Tr/4) + 	cos (2 't"' +Tr/4) sin 2 10) 
 

(3.26) 

Because only harmonic dependence on rr is allowed and 

(3, 24) impliesgo is independent of 2-  , equation (3. 9) yields the two 

equations 

6 2  
° 

1 	(go' V a go ) 	1 	4 
r 6 , ) R 	o  

(3.27) 

(3. 28) 

We find, therefore, thatgo satisfies the two-dimensional Navier-

Stokes equation, with Rs playing the role of a conventional Reynolds 

number. From matching (3. 21) with (3.26), we see that the boundary 

conditions on )e
o are 

= 0 , 7-2  - sin 	on r = 	(3. 29) ti r 	4 



ZX X I 	 o ( 	2. 1 	 o 
`6"1" 	' 	r i' r 

0
(w w ) sin lid 

-2 	
o (3.35) 
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and the condition on V1  (u  9") is 

(u) 	(9,12-10)  
1 	- 	16 	cos (21-  -1-1114) sin on r = 1 	(3.30) 

, There 	one less boundary condition on Y
1 

(u)  than on )(o
, because 

the equation it satisfies (3. 15) is second order, whereas that satis-

fied by Yo  (3.28) is fourth order. These conditions are sufficient to 

enable the equations to be solved, when we demand that the solutions 

shall be regular everywhere within the pipe. 

We easily find now that 

v (u) 	(9 ,12 —1  0) r cos(22 1-Tr/4) sinVir 	(3.31) 
9‘.1 	16 

The equation of 0((3
3
) in the outer region yields the two 

equations 

Rs '(g3, 
(u)

, V 2  go 

	  - 0 	 (3.32)
)  

-  
62' 	3 Zr 	 ) 

(s) 	 -, 	(s) 

1 	1 	
o) 
	1 	(X0' 

 CJ  )(1  ) 	1  

- r 	(r,1i) 	- r) 	Rr  
4v  (s) (3. 33) 

In the inner region the equations for wI and XI are 

1 	 c 0  
(75. 2 77 )wi (3. 34 ) 

The solution of (3. 34) satisfying (3.4) and matching with (3. 5) as 

—> co is easily found to be 
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2 
1 n 

N i -•kr = - - sin(Z - 	 (3.3 6)r1  

If we substitute the e7pressions for w
o 

(3.19),
o 

(3.26) and w
1 

(3, 6) 

into (3. 35) and solve, we find :hat the general solution of 7 can be 

written as 

„7. _
- 	

-2,1 	 21 cos (2T -2 -FTTA-) - 	- 	
cos(2r -2 ) 16 e 

1 
e -11 cos (2 	- 't ) +Tr/4) + 4- _ 	Ile- co- -  

-  -17 	e 	- cos (22" - 	-1-Tr/4. ) 	9e 	cos(- +„/4) 

1- 	 1 -Zr 1 -21 ---e 	cos(-‘esI )-7ne 	e 	tt- 4 	 d 	16 	sine 

co 
(T.) 

+II('~1)r  
n=1 

+ Iok) 	+ 	1 	+ 	 (3.37) 

Teri-rc of exponential growth as 	-> co and of non-harmonic depe.1:- 

cle.nce on -t- have again been omitted. Frons (3. 21) we see that, for 
/ 

to he matched with - 	
(±. 
	, we must have 

K,) - 
-(9 ,n-10) 

cos (22 +Tr/4)sinli + Km (4/ ) 16 

(3.3B) 

A lc° -from matching we have 
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sin? + 	)1.1 2  

The coefficient '(p) is determined from 

(3.41) 
av 

2  0 ỳ o matching with 

- 30 - 

(1k) = 0 	 (3. 39) 

If we now apply the boundary conditions (3. 4) we find 

n  / 2  ; 	\I/ 	(1 6 	-  35) „Tn(Ak) 0, 2 	32 

0.6 ./2" - 2 1 I 
16) 

	

Op) = sin** ; 	- 	— cos 22-  - —3 
1 sine'.  1- 	32 

(3.40) 

Hence 

	

x 	
1 AL 	-2.11  6  Yie 	cos(2r 	16 

	

+TT/4) - 	 e-2v- I cos(21-. -21 ) 

- 	n  e--11 cos (2Z' -►+Tr/4) + jii-e -P1  cos (21-  - rt ) 

	

5 	- 	 ±Tr/4)  _ (16./2-15)  c-,12 

	

176.11e 	cos(2T 	 cos (2T - 32 

- 

	

1 	n 	1 ` 	t-l  e  Y1 cos(.-   V. +1T/4) + -:4- e_ ' c o s - 1 ) - -8-  1 e-2n 7- (  

1 	_2 i 	(9 ,fi.-10) 	 1 	(16-,/-2-21)  
16 

	

- — e 	16 	i cos (2 r +,T/4) + 21+ 	32 	cos 22' 

in (3.21). 

From matching (3.21) with (3. 26) and (3. 41) we see that 

the boundary conditions on 1 (s) are 



2 	32 	co. 2'r sin ''  on r = 1 	(3.43) (u) 	(16 	 ,-21) 
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r /0 u sin 	- 
y (s)  

r 
1 sins' 	on r = 1 	(3.42) 

If )(2(u) and )(2(s) are defined in the same manner as )e0(u)  and o(s)  

we find, in addition, that the boundary condition on g2
(u) is 

The equation for )(2 (u) is (from 3.27) 

v 	(11) 	0 	 (3. 44) 

and the only regular solution of this, satisfying (3.43), is 

(a) (16,12-21)  
32 r cos z -r sinlfr 	 (3.45) 

The equation of 043`) in the outer region yields the two 

equations 

R 	()c (u), 	. aD(o ) 	Rs  .6(X1  (u), 	2)ei  (S  )) _ 
21. u (r,* 	2r 	 ) 

= o 	 (3. 46) 

1 	(X2 (s), v lY0) 
	

-60c, v 2Y2  (s) 	,((1(s), 	2`, 
3.
(s)) 

) 	r 	'‘) (r, 	r 	3 (r 	) 

	

T7_ 
	(s) 

Rs 	2 

The equations for w2  and 2  in the inner region are 

1  6a 	Rs  6 0  ,vvo  1  cow l 1  6 w 

- 
_ 

(Fr 	7-12)w2 2 	y, 	2 6yi  

(3. 47) 

(3.48) 
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3 

	

1 Z)2" )2r2 	Rs 	4̀\ 	)110 3Xo 

	

(57 - 26112)-i)rT 	2 	d Yt 	2 	\k/ 6 yl  3 

6t( 	+1 
wi  

- 2 w ) w --;- ir sin \I-1  o 2 	) 

_ ° 	a3  o  
"c)i3 

01-3  

(3.49) 

The solution of (3. 48) satisfying the boundary conditions (3. 4) and 

matching with (3. 5) as 	-> co is found to be 

w2  = - I Ze 	sin(t 	) + 	le bl cos(r- t) +Tr/4) 

+R s 
2

c 
 -1  sin(r 	) -32 l e  cos(r - )  

si (17 n ) 720 e  -3r1  cos( 1- - ) —"  

4-  
1

TO e -31 sin 

5 	12)'} 	ti3T -(1+ 112)  
1  _-2n sincr -2 ) - 64 e

-(1+ 
12 

1 
+ 

5 	-(1+ Ali)%7 sin {:r  _( _1),11 + 192e 	sin(3T 	) e  

e-1 sin(3T- vi ) + 1 	e-2 •An(31- 	- 
(5 

64 

(5 ,12-9)  - ri 	 (Z5 	 -48)  e 	cos( ,.c.- 	) 64 e cos(T+ )+ 320 
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167 
- 960 e-1 since"-  yi) 

(151Ar 2-61) - e 	I sin(3r - 	cos 	(3. 50) 

When this is substituted into (3.49), together with the expressions 

for wo  (3. 19), 1(3.2.6), w1 (3.36) and X (3.41), the equation 

can be solved for X 	Owing to the labour involved only the nart 

cient to determine matching conditions on ic2 (s)  . 

of 	 independent of 7:( 	 ) has been found, this being suffi- 
o 	 3 yi  

2 
	 (s) 

(s)  2 2  -21 	/ 	-2 ri 	3 -2n 3 2 -n 

- 	e 	+ Trle 	+32 e 	+ 	e lsinri 

'n e-  1 	, 	- 11 
- 16 	cos 	.-en/4) + e 	cos 11 siny,  

+ 
 RI

1 v, e-21 	7 	-21+  497  e-2 1 +  1 	e-4n_ 

	

s 	64 	128 l e 	3,840 	5,120 

215 -2
1 + 512 c 	4  72 12 	sine) 	 1  vl e1 cos 

	

9 	-rt 	83 	
' 	

167 	-n 

	

64 	t - sinvi - 640  e 	cosi + 1, 920  e 	r'in 

19-3k) 	1 -3I 	(5A/2-9) -2n 
9,600 e  cool • 800 e 	sine 256 e con?1 

1/-2+1)1 5 ../2 e-  • 
( e-21 	241 - 96 96 

co(,./.2-1)1 



1-.Then we apply the boundary condition, 

-biz (s) 

z 
which can be deduced from (3.4), we find 

0 	on n,  = 0 
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+ 	e  25 	-(112+1)1 sin( 	-1)1  -7-3;5-0g 	e -(2+112.)1 cos(2- ,12)v)  384  

2 2304 
5 e -(2+ .12)i s  2- .12 )*1 ,  

-  (45 12 "/2 - 50 )  e-  W-2 1 cos 2Y) 	sin 2  

M (ly") I 2  + 	)7f.  p( • ) 
	 (3.51) 

(3.52) 

Pok) =32 sin g - Rs ' (
13, 793 

 2 , 
95 	 ) sin 2*76, 800 - 

3
304 ,r2  

(3. 53) 

The coefficients M(` it) and N(') are found from matching with 

b3  
3  6r  il 	and r=1   

- 	X 	-r 
1.21  .\ 

r=1 
respectively (see 3.21). 

From matching (3. 21)with (3.. 41) and (3. 51) we see that 

on )(2 (s) the boundary conditions 	are 

X (s)  = - 3  in 2 	s 

(s) 
- 	2 	11 	 13, 793 	395  6 r 	- 32  sin lfr 	Rs( 76, 300 	2,304 

1 on r=1 

12)sin 21// 

(3. 54) 
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In order to evaluate the coefficients I, M and N we need 

to find the solution for the stream function in :1.).e outer region. In 

the next two chapters we study the limiting forms of this solution 

as R
s 

—> 0 and R
s 

—> oo. 
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CHAPTER 4 

THE FURTHER LIMIT R
s —> 0 

We now look for a solution which tends to the exact solution 

in the further limit R
s —> 0. 

We try, therefore, a solution to (3. 28) of the form 

)e. = Yo. (r 	) Rs gal (r'1' ) Rs  2 
)(02(1.'11j)  + • • • 	(4.1) 

The matching conditions (3.29) give us the following boundary condi-

tion:. on the. 
Y01 

Z1)Y00 1 
= 	-•‘ 

on r = 1 	(4.2)  

Xn;  
0i 

= 0 • 	= 0 ,  0 , i r 

If we substitute 	1) into (3. 28) and equate like powers of R
s, we 

find, as our equation for g , 
00 

v  
"oo = 0 	 (4.3) 

The solution of (4. 3) which is regular and satisfies (4. 2) is found to 

be 

oo 
= 	— 	-r a ) sin /' 	 (4.4) 0 0 

The equation of 0(R
s ) for Yol  is 

r.7  4 	 -3( oo, 	)e00)  
901. 	r 	a (r, T) (4.5) 
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The regular solution of (4. 5) which satisfies (4.2) is 

2. 	2•2 
 (I -r 	sinz, v 

"ol 3072 

similarly, the equation for Y02 is 

74 y 	 Cir2 g 	7)(X , 2 	 ) 1 	00 	01 	1 	01 	oo  
o2 	r 	(1°,7i 	r 	) 

and its regular solution , subject to (4. 2), is 

(4.6) 

(4,7) 

1,474,560 t 2r (1 -r 2 )2  (2-7r 2+4r
4 ) silly 02 — 

+ r3(1-r 2 )
3 sin 3)11 	(4.8) 

Matching, we can see from (3.21) that i(y') in the expres-ion for 

o 1 X (3.41) is equal to 3 	 2 -5-7f r=1 

R 	 R 2 
ity 	3 = 	- s 	 s sin 2yi + 	sinyi + 0(R 3 ) 	(4.9) 768 	737,280 

Likewise, M(y1) in(3.51), which is equal to - 2  

can be determined to 0(Rs 2 ). 

3 s, 
oko  

L r3  r=1 

1,11(1/1) = - 8 sinYr 3 .0  
+ 256 "s sin 2111 

R 2  
sin 3/.1 61,440 

+ 0(R 3 ) 	 (4,10) 

We adopt the same procedure for Xi (s), writing 

cs _ 	o R 	+ Rs 2 )(
12 

+ 	 (4.11) 

The matching conditions (3.42) now become 



+ 103r 9 ) sin (I 

(4.18) 

+ 	(-r3-7r5+17r7-9r9 )sin 320 

= 
1 	1 

12 	3072 	1920 (1541. 597r3  + 840r5  - 505r7  
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= 5  sin 	; 	 - - 1 — sirqf 
1

, u 	 r 	2 

on r = 1 	(4.12) 

= 0, i > 1 

Substituting (4.11) into (3. 33) we find, am our equation for X 10 

0 
(4.13) 

The solution to (4.13), satisfying (4. 12), and which is regular, is 

= 10 	16 (19 - 9r`) sin.lif 

The eouaiion for X11 is 

(4.14) 

Vox l = 
1 .?(X 101 02   g00) 	Z(X00, 	0 )  (4.15) 
r 	(32 ,1)11 	r 	(r,yi ) 

whose regular solution, subject to (4.17), i2 

0 

Yu 307Z 1.2- (1  
2 

sin 2)//' 	 (4.16) 

The equation for X.  is 

v )e 	
1 ?)(X11' V21e00 ) 	1 -6(gi 	v *;1  

i2  r 	(r,1/11 	r 

(4.17) 

z (X0 	1X10 ) 1 	(g00' V Y11 )  
(r, --ti") r 	(r, '/J ) 

 

and the solution satisfying (4.12) which is regular is 
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Now N(1.1f ) in (3. 51) can be d.etermined, it being equal to 

r r=2. 

.  NtJf) = 	sinY -3-871 Rs  sin 2"kli 

Rs z- 

12 288 (70 sinV 	sin 34r) + 0(Rs
3 ) (4.19) ,  

We solve equation (3.47) in an analagous manner to that 

employed above, and we find 

R  3.5,013 1,580 z?,(s) = - _67:r 	(29_17r2) 	 in 
b, 1,725 14:7 

16,243 	1, 580  ,4)r4 + r6  sin  2111+ (- 1,225 + 147 

0(R s2) (4.20) 
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CHAPTER 5 

THE FURTHER LIMIT R -> oo 

In this chapter we seek a solution to (3.31) which tends to 

the exact solution for ?c
o 

in the limit R
s 

-> co, subject to the matching 

requirements (3. 29). 

The problem now under consideration, as described by 

(3,78) and (3.29) is equivalent to that of steady, two-dimensional flow 

inside a circle, whose 'wall' has a tangential velocity vw  = 

x(17 2-/Rw) sinlP . For reasons to be discussed later, a thin boundary 

layer of thickness 0(aRs
-1/7

) will be formed at the wall, in which 

the velocity of the flow is adju-;teci to that dictated by the flow in the 

interior of the circle, which we will refer to as the core. We postu-

late that in the limit R -> co no streamlines of the motion in the core 

enter or leave the boundary layer, thereby causing the core to have 

uniform vorticity (see Batchelor (1956), Squire (1956) and Prandtl 

(1927)). This, however, does not determine the core flow uniquely. 

For instance, the core may be divided into several regions each 

having uniform vorticity of a strength different from that of its neigh-

bours. A.s will be seen later, thesB regions will be separated by 

boundary layers because of velocity or stress discontinuities between. 

them. We shall choose the simplest possible arrangement of two 



vorticiies in which the vorticity of the core in the semicircle 

0 < 	< „ is equal in magnitude, but of opposite sign, to that in the 

semic ircle. rr < 	< 21r (see Fig. 5. 1). This implies a definite vel-

ocity distribution at the edge of the core, and if this were identical 

to the velocity of the wall then there would be no doubt as to the 

correctness of this n-odel for the core flow. In fact it will be seen 

that the velocity distribution at the edge of the core flow if:, for the 

most part, suite close to a sinusoidal distribution (Fig. 5. 2), and 

this gives us good grounds on which to argue in favour of the model, 

as depicted in Fig. 5,,1. 

Although its property of uniform vorticity is a consequence 

of small viscosity, the flow in the core is inviscid, and, in order 

for the tangential velocity at its edge to be adjusted to the velocity 

of the wall, a balance mutt be set up between the viscous and inertial 

terms in eouation (3.-3*). In order to achieve this, a thin boundary 

layer of thickness 0(aR
s

-1/2
) must be formed at the wall, and is 

depicted as part of the shaded region in Fig. 5. 1. P boundary layer 

is also formed along the line of symmetry -ty= 0, it because, when 

the fluid in the boundary layer at the wall, having started at 	it, 

reaches -yf = 0, it meets boundary layer fluid from the other semi-

circle. The two boundary layers impact, and must continue along the 

line of symmetry. They retain their boundary layer character because, 
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although the velocity is continuous across the line of symmetry, the 

vorticity is not, and Harper (1963) has shown that this itself leads to 

the formation of a boundary layer of thickness 0(aRs 
-1 /2 ) in which 

to smooth out the discontinuity. 

17e first solve for the flow in the core region of the upper 

semicircle in Fig.5. 1. If we refer to the flow in the core by an over-

bar, the governing equation for g
o 

(5.1) 

where 	is the non-dimensional vorticity, which we may expect to 

be negative from the velocity distribution on the wall of the circle. 

The boundary condition of no flow normal to the boundary of the core 

is 

O = 	
on r = 1 or \11-  = 0, 	(5.2) 

The solution of (5. 1) subject to (5.2), which is regular everywhere 

within the semicircle is 

0 
_ (r -12-r  cos 2-)f) -1 2r 	) tan ( 

- r 2 

1 	x 	 1+2r cosilf +r 
4 

- — (r - —7) sin 2 	. log (1-2r cosy),  +r 2  )  

1 
(r- —) sin-Yr - 221  r 2  (1-cos ryf ) (5. 3) 

The method of solution is given in detail for the elliptic pipe in 

Chapter 8. This gives as our flow velocity at the edge of the core 
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= v, = ( sin.711 - 2 sin 	- sin 2 . log ta01/2)) 

(5.4) 

In the boundary layer adjacent to the circle wall 

- 
°Rs 	

1 2) and y o "s" 0(R 
1/2 

 ). Thus, if we retain the leading 

terms in (3.28) and integrate once with respect to r, we obtain the 

boundary layer equation 	_ 
- 

dv 
1 bv 	'by 	b2v 

v — + u — = v -- + R b --yr 	Dr 	1 ci lir 	c 	br 2  
(5.5) 

dv1 
The function of integration has been put equal to v1  .-Tird 	in the normal 

way, so that at the edge of the boundary layer the equation is satisfied 

by the core flow to first order in Rs 
; this function is just the presciir.- 

gradient acting on the fluid in the boundary layer. TTe now linearise 

(5.5) in a xranner analagous to that employed by Moore (1963) in his 

study of the stress induced boundary layer at the surface of a spherical 

air bubble; the subsequent analysis follows closely that of Harper and 

Moore (1968), who studied the flow associated with a spherical liquid 

drop. Moore's linearisation is, however, formally justified in the 

limit R -> co, whereas that employed here is not. 

7e now assume that the velocity in the boundary layer is 

a small perturbation of the velocity in the core and write 

v= v+ v , u = u + u 	 (5. 6) 
p 	 p 

where a suffix p denotes a perturbation quantity. The justification for 

r-1 



this assumption will he discussed later. Substituting (5.6) into (5.5) 

and neglecting quadratic terr.c.s in the perturbation quantities, we 

have, as our boundary layer equation, 

6v 	dv dv, .6v 
.b 2  \r  

V , 	 + v ".1- 	( -r) 	- R 	 (5. 7) 
p 	 s 	

p 

r 	r 

— 
dv l noting that v = v, and u - = 0.-r) — to a boundary layer approximation, ,. 	 dlif 

The boundary conditions can now be written as 

v = 	w v1  on the circle wall 

(5. 8) 
V -> 0 at the edge of the boundary layer 

where v' is the non-dimensional velocity of the circle wall and is 
w 

equal to -0.25 sine . There will alno be some initial condition or. 

v at the start of the boundary layer. 

Vie transform (5. 7) into the diffusion equation by the use 

of the following transformations 

1/2 
ST  = -("> R ) 	V1  (1-r) 

(5. 9) = _ d/J  

• = 
	

vl V  

71;quation (5. 7) now becomes 

(5.10) 

with the boundary conditions 



+ 
	2 	

VV 	
y(x-y z/41.!, 	0) e-R  

2 ,/- 

similarly, the boundary layer 

(5.12) 

equation for the layer along 

6u du 
Ll  + v 	=u 	+R 	' s on vs 	On 	1 ds 

- I -1 2u (5. 13) 

-45- 

y(x, 0) =S -2 (-0v.r -  v1 ) v1 

y ->0 as y -> co 
(5.11) 

and some initial 

1° solution of (5.3) 

Jaeger (1959). 

condition y(0, y) which will be discussed later. The 

subject to these conditions is given in Carslaw and 

1  
y(x, y) - 	1/2 

2(Trx) 

co 

0 

y(0,y1) e (Y-Y1  )2/4X e- (y+y')Vilxidy, 

the line of syT rnetry 	= 0, 'r can be written a s 

where s is the non-dimensional coordinate along the. line Alf = 0, Tr 

and s = U is 	= 0, and n is the non-dimensional coordinate norrr al 

to it and pointing into the serricircle. 	The non-dimensional veloci- 

ties associated with the new coordinates are u and v. Thus t is in 

the direction of s increasing and v is in the direction of n increasing. 

The non-dimensional velocity of the flow in she core at n = 0 is u1 and 

1 '64-(o is equal to - (- — 
r  31/f y=o 

at s = 1-r, [ 1 67  o = 0 and 	
f 	

at s = r, 
r 
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= Ir. Using (5. 6) and linearising as before, we have, as our 

bo-ndary layer equation, 

_ea u 

	

P 	
au, 	du i  Du 

1. 	_ n 	 P_ — 

	

b s 	p ds 	ds 	n 

2
U. 

n (5.11'x) 

The boundary conditions can be written as 

u 

Z) 	=- 	on n 0 n 

u —> 0 at the edge of the boundary layer 
5.15) 

and there will be some initial condition on u at the start of the boun-

dary layer. 

Employing the following transformations 

=(-SR, )
1/2 

S 

= 	 12 , ds (5.16) 

 

we again arrive at the diffusion equation 

er ear 

-6Y 2  
(5.17) 

The perturbation vorticity is, to a boundary layer approximation 

7)11 
___P 4(-S R )

1/2
) n (5. 18) 



0 	) 	
e -(Y-YI  ) 21/1X 	-(Y+Y1 )274X 

, 	 e CA. 1?; 
2(TrX) /  

0 

- 4  f - 

where C;') = — and this also satisfies the diffu7:ion equation 

(.:9 	2  = 
X 6Y2 

This is solved subject to the boundary conditions (5. 15) which be-

come 

= 4(4 R )
-1/z on Y = 0 

(5. 20) 
-> 0 as Y -> co 

and some initial condition(L-49 (0,Y). As before we find 

00 

(5.19) 

erf () c 2,tic  

We neglect the term of 0(R A/2)1/2 ), assuming that this is much 

smaller than the order of magnitude of the perturbation vorticity. 

This is certainly true in the limit Rs  -> co. If we integrate equation 

(5. 21) with respect to Y, we obtain, after inverting the order of in-

tegration, 

r 	, Y ) - 	1 	C ,_ r Y') 	V  e- (Y - )2/4X 
+e 

 -(Y+YI  )1/4X dY` 
1 	

o,  
/2 	 } 

	

?eirX) 	Jo (5. 22) 

where the arbitrary function of integration has been chosen so that 

as X -> 0, r (X, Y) ->r (0,Y). The inversion in the orde.e of 
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integration is possible as the integral in (5.21) is absolutely conver-

gent for all values of v. 

Let a suffix e denote the end of each boundary layer. Thus 

x.
e is equivalent to W = 0 for the layer along the circle wall, and 

Xe is equivalent to lir = lr, r = I for the layer along the line of 

symmetry. Therefore, using the expressions (5. 3) and (5.4), we have 

Tr  

x 	- 
e 

it 2 v
I 	

, - 
2 	Tr 

  

plc 
L rtk 

  

(5. 23) 

X = -2 
r 

dr 
1/1  =Tr 

2, 
TT 

 

  

e  now assume that as the corners (r = I, Yl = 0 or Tr) are approached 

from within the boundary layers, -v in the layer on the circle wall 

tends to u in the layer along the line of symmetry. That is, the 

perturbation velocity profile is convected around each corner un-

changed. This assumption is discussed later. It can be shown that 

near the end of the boundary layer on the circle wall (1(.1"d 0) 

V
I 
	- 	(y+ ylog(1/5/2))  

	

2-C 	
(5. 24) 

and at the start of the boundary layer along the line of symmetry 

(s = I-r 	0) 

ul 	(s 	s logs/2))) 
	

(5. 25) 

Thus, in the corner, the assumption made above gives us 
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y Y 

Y(,re t Y)= r (0, Y) 

Similarly, in the other corner we have 

y Y 

Y) 	Y(0, Y) 

(5.26) 

(5.27) 

Because of conditions (5.26) and (5. 27), (5.12) and (5. 22) 

are a pair of linked integral equations for the velocity perturbation 

in the boundary layer. If we consider the point xe and substitute 

(5.22) into (5. 12), using (5. 26) and (5.27), we obtain the following 

integral eouation for the profile of y at x
e 

   

Y(xe,y1) e -  CY ' -Ytt  )2/41X, 
zlit(xee )

1/2 
o 

- (Y14-Y")2/4X - 
+ e 	 e  x 

-(y-y")2 /4:-:7 	-(y+y")2/4:--- 
x e 	 e  dy" 

2 + — 
; 

co 

2 i/xe  

Y(-`<-te  
, -y2/i. 2,11 	0)e- 'L.t  dp. (5.28) 

Integrating once with respect to y", we obtain 



z  y (xe  -y 2/41L 0)e 	dt."- 

2,/xe 	 (5. 29) 

4x X 1/2  (  e _e  
= (4X +4x4xe 

) 
kx e +.g:e 

_ -Y-1  e e  p  
(4-: 	4x  4x e e 

4x 1/2 X 
(5. 30) 

Y(v e ,  Y): 
1 

2 	1/2 [7(xe+:fe )i 

4 
Y(sc e , Y1 ) e 	

-e 	xe 

2 
 " x e0/  erf a - e P erf plc:1y + 2  

where 

The second integral in (5.29) may be transformed to 

Y 2 
e 	 4xe-x) 

y(x, o)e  dx 	 (5.31) 
2A5 	(x -x )3/2  o e 

and this is equal to 

(o -1 )v i 	), 0) e 
Y ?  

4(xe -x(10) dyi  
(5.32) 

 

3/2 
(xe-x(y)) 

  

Thus we see, from our definitions of y(x, 0) (5.11), x (5. 9) and v-1  

(5.4), that we may write (5. 32) as 

Y m(y) + 	-1  1/ x(Y) 1 (5.33) 
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where yo
x and N i

x are known functions of y. Equation (5.29) may now 

be written as 

,co 
x 

Y(1"e ,  Y) = 	Y(xe  , yi) IC.(y, yT ) dy' + yo
3i (y) + 	Y1  (Y) 

'o 

If we define 

Y(xe, Y) = Yo(Y) + c 1  Y 3  (Y) 

(5.34) 

(5. 35) 

equation (5. 34) may be written as two integral equations of the 

Treldholm type. 

yi(y) = 	vi(yt  ) K(y, ) dy' +Yi  (Y), 	i =0 or l 	(5.36) 

Enuations (5. 36) were solved numerically, and the computations are 

described in appendix B. The strength of the vorticity 	is deter- 

mined from (5. 35) when we enforce the condition N(T.e, y) 	0 as 

y —> co. Thus we see from the appendix that 	= -0.56 correct 

to two decimal places. 

We may now attempt to justify the linearisation. If we 

plot - v'w  and -v1  against 	as in Fig. 5.2, we see that their 

difference, which is a measure of the perturbation velocity, is quite 

small compared with v1 
for a significant part of the boundary layer. 

Of course, the perturbation cannot be small near 	= 0 or Tr, 

owing to the logarithmic dependence on tan( 4172)in v1  and its absence 
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in 	, but we hope that this does not alter the result .significantly. 

We return now to the assumption contained in (5.26) and 

(5.27), which we will attempt to justify using the type of analysis 

employed by Moore (1963), in his investigation of the flow near the 

rear stagnation point of a 3pherical bubble, and of Harper (1963), 

when he considered the flow near the rear stagnation point behind a 

bluff body. '.7e take the full non-Linear Navier-Stokes equations for 

flow within the circle: 

u  v 	_ 	110 	 ZN„ V V I 6u 

	

r 	r Dip r 	Zr R 	‘a r r r Op' 

	

'2:fry 	v Dv 	uv
= 	••• 	

1 	v 
it •••• ••••••••••• 	 •- 	 •••• ••••••••• 

	

Dr 	r 	r 	r DA.11 R 	r r 	
) 

(5. 37) 

(5. 38) 

(c. f. equations (2. 15) and (2.16)). 

Here u and v are the velocity components in the r and 11.1  directions 

respectively. If we write u and v as in (5. 6), and remove the terms 

satisfied identically by the core flow, the equations become 

u -v 	v u 
L,-2 +u 	-P -2 + _E + 

Dr 	132:1r
u 

 p 	r niJ 	r Dili r 	lif 

	

Z VV 	V 2- 	Dp, 	->. by
(..-P  

V 	V 	, -a u 
_ 	P 	..-P-. ., ... _....P_ _ 	1 	c''` 	+ -P _ :!... -P. ) 

	

r 	r 	Dr 	R s
r T_Ftif r 	r 	r 3-11r (5.39) 
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-r)y 	- 	by 	v 
- 	v 	 N,'"'" 

-F u 	u 	 —12- + P OV 4_ 
"t)i- 	p 	p ar 	Qp 	by-  ' r 

- 	_ 
u v 	u v u v 	p 	6v 	v j  bu 

+ --II + --P-- + 	13 P  - - 	 p 	 ( ..........6.. + -2  - -- --2- ) (5.40) -,-. 
r 	r 	r 	r 	 r 	r r olif 

Fi 

where p 	the perturbation yresure, i. e. p = p + p 

We nay now determine the behaviour of all the terms in 

the equations as they approach either of the corners from within the 

boundary layers. If we consider, in particular, the end of the boun-

dary layer along the circle wall, then, because y and y are 0(1) in 

the layer, we may infer from (5.4) and (5.9) that whenIf - 0 

1/2 
(-1 R) liflogN112)for boundary layer quantities 

Ur 1 for v 

  

ltr 

lillog(j I / 2 ) 

(-'S Roll/2  

^ 

	

vJ - 
3' 	 

p, vlosi(w/2) 

(5.41) 

z 
rt )-1/A 

u ~ 	 a p 	3 (log(yr/Z)) 

where 	is the rcagnitude of v compared with v. The order of 

magnitude of each term in (5.39) and (5.40) is thus 



12 (- -c Rs )
/2 _  /2, 	2 	d. 	-1/2. 

/I I 	s  ) 	 (- Rs ) 	a: 

y)
3  leg (104 yf 3  lczcilf/2.) 

_i/2, ') 2 ( _ 3)  

yi 5  (103( IfeS/Z)) 	11) 3  log(14//4 

6 	I 	Z  A 2  

//f legl1(i/21 
.4. 

 
r 2  

Vi 3  (log 10/2))2  
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1 2 (- R) 	-S2 (-S- R)-112A 

7/53  logii/23i JI(log ( rif/2.)? 

2 A  2 

- r 	2a, - 2 	 . 	2  
)f (log( y1/2.)) 

 

1 tv-I'Rs) 	-C  
Iff 50.0g( ilt/2))2  

j (5.42) 3r 

-1/a 

-r 2  62 	 12(- R  ) S  
+ 2  

1/5  (log( 111/2 	lc,g0C/2.) 
Rs

)-1/ 

,iis2
1cgoify

,
2.) 

I 
r  Y41 	

t 	 2R 
A  

g ( I/z)+ (- 	/+ 
if3 

I 
 103.(i/2) 

(5. 43) 
72:1:-..refore, from (5. 42.), we see that 'the -sertur7pation pressure behave 

the following ?.ranee:' ,-ii11,1 	• 

0 	4 	 

2  
—1 /2-

6 
 2 

-S   

I v 3 (log or/z) 1 
The tezrnp..;f:  is a 	e-Z 11, 

	

Rs -1A 2 1 	'c2(-  P-c,)- '12zN  

	

1/1°  (log (1)/2.)S4 	1 IS 1°g0P/2-)  ' 

)1 

	
(5. 44) 

and is .-:.e.zarrnined from those 

terms In (5..40) ,,-,rhich do not c.',ecay 	zero at 	edge of the bounZary 
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layer, e.g. up 	. Hence, from (5.43), we can see that our approxi-

mate equation (5. 7) becomes invalid when 

, ( - 	R s  )- 1 /2 2  IP i Rs)
- 1 / 	

x82  
 	0 Pax ( 	logy /2)1 	og cyr/2  0.00F/2 ))3 	lb All 

(5. 45) 

or, in other words, 

at. most. 

1 /4 
iviax((4 R) 	, 	R )

-1/6 	/6 lAc ,i/z ) , 	
] (5. 46) 

,7irnilarly, we find that the approxiyf ation used for the other 

boundary layer becomes invalid at a distance from its end of the same 

order of magnitude as v.  in (5.46). If A « 0(1) we find that when 

'A If (or the di?tance from the end of the boundary layer)<< 0(1), but 

greater than the order of magnitude given in (5. 46), the viscous 

terms in (5. 3 9 ) and (5.40) become much smaller than the inertia 

terms. Therefore, to a first approximation, the equations become 

inviscid in a region where the linearised boundary layer equation is 

still valid. We postulate that the equations remain inviscid as the 

flow turns either corner, and therefore the stream function must 

satisfy the equation 

"712 	- 	
1 /2 

)0) - 	 (5. 47) 

where 0 is the perturbation vorticity and is determined by matching 

with the perturbation vorticity profile at the end of the boundary layer. 
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1/2 
The coefficient R is included so that R /2)e

o 
 is  0(1) in the boun-

s 

dary layer. This phenomenon of a viscous boundary layer turning a 

corner inviscidly was first discussed by Stewartson (1957). 

7.7le consider, in particular, the corner r = 1, 	= ir at the 

end of the boundary layer along the line of symmetry. In the region 

of the corner we define a new system of polar coordinates r1, cr which 

are depicted in Fig. 5.3. Thus ar
t is the actual distance from the 

corner, and a-  is the angular coordinate measured from the bisector 

of the corner. When r1  is small we may deduce from (5. 3) that 

go 	r 3. 	
,  Tir 	(--1 , 	2,(T log 	cos 	— cos 20-  - 6 Sin 243-1 	(5.48) 2 

In the boundary layer g
o 

= 0(R
s
-1/z

), thus for the boundary layer 

fluid turning the corner r i  = 13R -1/4(log R ) 1/2  j. This leads us 

to define the following scaled variables of 0(i ) in the boundary layer 

at the corner 

1/A- 1/2 	 1/2 r2  = Rs 	(log Rs)r1  , 00  = Rs 	go  

siting 	= 	+ 	, expres 	(5.48) now becomes op 

(5.49) 

TIS 	+ (log R o Tr 4: 2 
-3 	

1z cos 7cr log(log Rs ) 	rz  

-*(log 	
ir 

Rs )
-1  — r2 

	4 	2 	2. + log(— )cos a-  + 2  —cos 2o- - a-  sin 2a- (5.50) 
11 1 

and we see that, unless hog r I ••••• 0(log R J  ), So 
is dominated by an 

irrotational term. Equation (5.47) can now be written as 
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V2 2  Sop  - (log Rs )-1  G(So) 	 (5.51) 

where 

r3-2' - _ 	 + —z 1 	1 - 
2 	- br2, a rZ2 	r2 

boa 

Now,  Now, from (5.16) we see that (-1) 	Oo Y to a boundary layer 

approximation, and at the beginning of the corner G must equal the 

perturbation vorticity at the end of the boundary layer. This is 

-(- 	Rs )
312. 	Eli) evaluated ai; the end of the layer and for large Rs 

this may be taken to be at T= xe (r:ee (5. 13)). Thus (5.51) may now 

be written as 

(5.52) 

= 
op 

.4/2 
+ (-1  ) 	50p 	L'e' (- 

where 0 < X < 1. 

)1/2701 

3)1 /2 630 + xr,soP 
 •• 

_7. 
+(log R ) (- Sad - /2  

/2 

(5. 53) 

Furthermore, if we write (5. 50) as 

-

0 
+ (log R

s ) 	gfo2 then. Lt.) in (5.46) may be expanded further 

to 

GP,) Le, (- 	/2 9301 IXe  C(-S )1/2- Sol i 

7 (log Rs  )-1(- ) /2(701 	3  (log R )-17 ).] 1/2  - 
) 	 s 	02 

(5.54) 

where 0< 	<1. 

Clearly, for Y 	0(1) 	and®.  are functions of the same A 
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order of rragnitude 	. 	= 0(L1.) which is assumed srryall, 
op 

a first approximation to (5.5).) can be written as 

02 2 o p = + (log R)(-1 Rs )` -c 2  1/2- 
()Cot+. ) 	(5.55 ) 

Thus, to a first approximation, the perturbation vorticity is convected 

ar.,und the corner on the streamlines of the it rotational motion des- 

cribed by Sol. .A.:3ol 
	

=
ol 

(-o-), this means that the perturbation 

vorticity profile at the end of the corner is the same as that at the 

beginning, of the corner. In other words, the oerturbatior vorticity 

profile (and hence the perturbation velocity profile) at the start of the 

boundary layer along the wall i2 the same as at the end of the boundary 

layer along the line of symmetry, This is precisely condition (5.27). 
SS 

However, when I log 	0(log R ), (5.1;5) is no longr:r 

1 
a first approximation to (5.51) ac then (log Rs

) 
	$02 
	0(1), 

Nevertheless, as most streamlines do not pass through the region 

flog r2( > 0(log R
s

) we may expect this to have an insignificant effect 

on the result given above. 	 when Y is small, 0 and -6  
Y 

may not have the same order of magnitude. It is easy to show that 

lire ZO  —I < 0 ( 
Y ->0 	 Y ->o 

(5, 56) 

and so (5, 55) may not be a first approximation to (5. 51) when 

930 	0 F 1\ /lax (log R
s 
)- I  , IA 1)1 
	

(5.57) 

However, this again does not affect most streamlines and so the result 
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quoted above may still be taken as a first approximation. 

In addition, mention should be made of the nascent boundary 

layer formed within the corner region on the circle wall. 	may 

deduce from (3.50) that the non-dimensional velocity just outside this 

layer is 0[ R -1/4(log R )1 /2] 	Thus, noting that Tr -Ap.  is 

-1/4 
0 L11 

 
(lore R )

-1/2,
1 in the corner region, we find that for viscous 

and inertia terms to balance in (5. 5),the boundary layer thickness must 

-1/2 
be 0 La 

Rs-1/2 
(log R ) 	 . As the corner region has a dimension s  

-1 /4, 	-1 /2 
[a a 	(log R ) ' 	most streamlines do not pass through this 

layer, and so once again we are justified in taking the condition (5.27) 

as a first approximation. 

An identical analysis to the above may be performed for 

the flow in the other corner and this leads to the verification of (5.26). 

The argument put forward aLove is only valid if d is 

small. Indeed, for the linearised boundary layer equation to be valid 

up to the beginning of the corner, we see from (5. 4 6 ) that we require 

< 0(R -14) s 	. However a glance at Fig. 5.2 shows this to be 

improbable for moderately large values of R , and, of course, is 

not true in the limit R —> co. However, we can say that the approxi- q 

mations (5.26) and (5.27) should be no worse than the linearisation 

and, as we shall see in the next chapter, the results seem to indicate 

that this itself is quite good. 
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CHAPTER 6 

DISCUSSION OF RESULTS FOR THE CIRCULAR PIPE  

As can be seen fro= the solutions for Xo
, both for small 

and large values of R
s
, the secondary flow in the outer region is steady 

in the limit p -> 0, and in the opposite sense to that predicted for a 

steady pressure gradient along the pipe. (see Dean (1927 and 1923), 

Barua (1963) and McConalogue and Srivastava (1968)). That is, the 

motion along the line of symmetry 	= 0, IT is from the outer s'.de 

of the pipe to the inner. The reason seems to be that 'centrifuging' 

generates mbtion which is entirely confined to the Stokes layer. The 

fluid is driven along the wall from the outer side of the bend to the 

inner under the action of the pressure gradient which, in the Stokes 

layer, is no longer balanced by the centrifugal force associated with 

the flow along the pipe; it returns centrifugally within, and at the 

edge of. the Stokes layer only, and in so doing 'drags' the fluid in the 

outer region around in the manner found. A. sketch of the mean first 

order streamlines in Fig. 6.1 makes this clear. 

Let us now formally put p equal to zero. In Fig. 6. 2 the 

secondary velocity profiles are plotted along the line ""lf = it/2 in 

the outer region for different values of Rs. When Rs 
= 0, 100 and 

200 the expansion (4. 1) for
o 

is employed truncating it after the term 
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A 
of 0(R 2 ). However, the error involved is 0(Xo4Rs4)  as )eo 3 (like 

),(o l ) is identically zero along y = /Z. -,Then R
s = oo the expression 

(5.3) for Xo is used. As can be seen the expansion for small R
s 

seems to be quite convergent in practice for values of R up to two 

hundred, and, indeed, seems to describe the transition of flow from 

small to large values of R
s fairly well. It is, however, more 

instructive to plot the vorticity profiles along 1,Jf = 7r/2, and this is 

done in Fig. 6. 3. The truncated expansion used for small R
s 

now 

only seems to be convergent in practice for values of R
s 

up to one 

hundred. Nevertheless, bearing in mind that the error involved is 

0( 
VaXo4 Rs

4
), the profile for R

s 
= 200 may not be without some 

significance. It shows clearly the development of a core of uniform 

0,S 
vorticity gsrf R

s increases, but perhaps indicates that the magnitude 

of the vorticity when R
s —> co has been over-estimated by our crude 

linearisation. 

In consideration of the last remark it is worth observing 

that if the wall of the circle in Chapter 5 moves with a velocity v1, 

this being the velocity at the semicircular edge of the core flow, then 

no boundary layer is formed at the 	of the circle, and any effect 

due to the vorticity discontinuity along the line of symmetry is 

0 -1/2 (R
s 	) which can be neglected. If 	is now chosen so that the 

average velocity at the circle wall is the same as for the problem 
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under consideration i. e. 

O 

sinydlif = 

srr 

v
t 
dl 

O 
(6. 1) 

Tr 

=
Tr 
	(Tr sin 2y - 2 	- sin 2111 log tan(ZJI/2))clilf 

0 

then we find 1 = -0.535. This figure is reassuringly close to that 

prc:dicted both by the linearised theory developed in Chapter 5 for 

large Rs  and by the shape of the low Rs  vorticity curve for R = 200. 

In addition, a recent paper by Kuwa'nara and Imai (1969) 

is in very close agreement to the above calculations. They consider 

the flow in the circle when the wall moves with a velocity V sing , 

and thus their Reynolds number Va/V is equivalent to R
s
/4. Using 

an identical expansion to (4. 1) of the stream function for low Reynolr' 

number, they conclude that the radius of convergence of such an ex-

pansion for the velocity profile along ir = Tr/2 is probably Rs  = 120. 

In addition they perform some numerical calculations for higher 

values of R
s, the most significant feature of which is the confirmation 

of Batchelor's uniform vorticity model for the flow in the core. As 

well as confirming the single vortex model for flow in each semi-

circle, they deduce that the value of the non-dimensional vorticity 

in the core for R
s = 2.043 is 1 = -0.54, and they adopt this as its 

probable limiting value as R
s 

—> co. This gives considerable support 
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to our value of -S = -0.56 as R
s —> co, more so when it is realised 

that, together with Fig. 6. 3, the calculations imply that as R
s 

in-

creases so does the magnitude of 3  . This gives rise to considerable 

confidence in the approximate theory of Chapter 5. 

It is also of interest to locate the precise position of that 

stagnation point of the secondary flow in the outer region which re- 

presents the vortex centre (re'rc 
	Using the expansion (4.1) for 

o 
we find 

r
c = A/3 - ,V73 Rs 2/1, 658, 880 + 0(11s 4 ) 

= Tr/2 - .13 R
s
/864 + 0(R

s
3) 
	 (6.2) 

On the other hand, as R —> oo the centre tends to (0.48, Tr/2). Thu:-

the vortex centre moves in the direction of the fluid motion at the 

sen-wicire-ilar edge of the vortex before inertial effects become domi- 

nant and return it to the line 	= Tr/2. Similar results have been 

obtained by Burggraf (1966) and Kuwahara and Imai (1969). 

Let us now formally put Rs  equal to zero. In Fig. 6.4 

the mean secondary velocity profiles are plotted along the line 

15= Tr/2 in the outer region, using the first three terms of the series 

(3. 6) for the stream func,:ion. These terms are calculated in Chapter 

4. The values of f3 used are 0. 00, 0. 04, 0. 03 and 0.12, and in order 

to demonstrate that the series is still a good asymptotic representa-

tion of the velocity profile at 3  = 0.12, the profile calculated from 



the first two terms of (3. 6) is included for this value. This is im-

oortant, for if we had allowed f3 in this theory to take any value then 

as p -> co the S token layer would thicken until it occupied the whole 

of the interior of the pipe, and a steady state solution would then be 

set up with concomitant positive centrifuging. (In fact the limit p -> OD 

when R
s 

is small or finite would be equivalent to Dean's (1927 and 

ar, 1928) solution as the Dean number K is 2W2  a3/JA. = 4 R
s

/(3a  and 

this is small in Dean's theory). However, for 13 = 0.12 (in general 

R > 0. 11) the mean flow given by these first three terms of the ex-

pansion (3. 6), when Rs 
is equal to zero, is wholly from the inside 

to the outside on the line -95= Tr/2. This shows a tendency towards 

the solution for the steady problem. 

7  ,k 0.Y10. 
In addition, the profiles of the functions)y, described in 

Chapter 5 for the outer boundary layer when R
s 

—> co, have been 

calculated at various stations around the semicircle, These are 

plotted in Figs, 6. 5a and 6. 5b, and their numerical calculation is 

described in Appendix B. 

Of more immediate interest are the implications for the 

cardiovascular system, and in particular the aorta. Unfortunately 

the data available is rather imprecise as yet, but McDonald (1960) 

quotes the following figures for the ascending aorta in man 
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2a = 2. 3 - 2. 45 cm 

7/lean systolic velocity = 21.3 - 87. 4 cm s 
-1 

 

V = 0.04 cm2' s-1  

 

(6. 3) 

 

Thus if we take a = 1.5 cm and co = 2Tr rad s
-1 our parameter 13 has 

the value 0.08. 

The mean systolic velocity is the average over time of the 

velocity along the artery whilst the heart is contracting; when the 

heart is dilating the flow in the aorta is of a much smaller magnitude 

owing to the closure of the valves leading to it. Thus the flow is 

essentially pulsatile, and if we approximate this crudely by 

w = W (1 + sin cot) 	 (6.4) 

we may attempt some order of magnitude analysis on the secondary 

flow. From (6. 3) we may conveniently take W equal to 50 cm s . 

The ratio a/R is of the order of 0.2 for the human aorta 

, 
and this gives rise to a Dean number K = 2W-a.

3
/R V 
 

2.  of 0(106 ). 

Thus we may expect the boundary layer analysis of Barua (1963) to 

be relevant to this problem. This predicts that a thin boundary layer 

is formed on the wall of the pipe in which the pressure gradient in 

she cross-section, induced by centrifugal effects, is balanced by the 

inertial and viscous terms of the momentum. equation. From eouation 

(2. 7) we see that this implies vLia 	W zIR and so the secondary flo,,  

v must be 0{W(a/R)1/2 
1  in the boundary layer. Similarly the boun-

dary layer thickness d must be such that Yv/d2-  'Is" W 2/11. and thus 
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- I /4 
d rust be 0(aK 	) where K is the Dean number. Barua's model 

states that the fluid transported by the secondary flow in the bounda-ry 

layer returns across the interior of the pipe in planes parallel to the 

plane in which the pipe 3.r.  coiled. This implies that in the interior of 

the pipe the secondary flow is 0 [W(a/11)
1 /2 

T.c
-1/4 from continuity. 

If we ignore the interaction that will take place between the 

secondary flows produced by the steady and oscillatory parts of (6. 4), 

then we may deduce the order of magnitude of their ratio near the 

wall of the pipe to be 

A;1.  (a/R) /2  ( a 
w
w  
a a ) 1/2 (6. 5) 

 

W 2  /R. 0.) 

Although, of course, the flows interact strongly, we may expect the 

above ratio to give an indication of which one predominates, remem—

bering that the secondary flows are in the opposite sense to each 

other. For the values of W, o), a and a/R given above the ratio is 

-1/1; 
equal to 0.4, and in addition is smaller by a factor K 	in the in- 

terior of the pipe. 

Thus it seems that the type of secondary flow described 

in this thesis may well predominate over the flow due to the steady 

part of the m..)tion along the artery. Certainly there i-: no clear cut 

choice betwe( n the two and the possibility that one may cancel the 

other cannot 'ae ruled out. 	(See Corrigenda) 
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CHAPTER 7 

THE EXPERIMENT 

The apparatus consisted of a length of clear plastic tubing 

bent into one loop of a circular spiral of small pitch and filled with 

water. .A pump, which consisted of a large glass syringe, was 

attached to one end, and this was driven approximately in simple 

harmonic motion by an eccentric mounted on the shaft of an electric 

motor; at the other end of the pipe there was a reservoir. The 

apparatus is shown by Fig. 7.1 in plan view. 

For an indicator dye a 50/o aqueous solution of aram.anth 

was used, its density being adjusted to that of water by adding a suffi-

cient quantity of alcohol. A streak of dye was injected at A with the 

apparatus at rest, the streak of dye running from the bottom of the 

pipe to the top. This was achieved by puncture of the wall of the pipe 

with the needle of a syringe, which was filled with dye, followed by 

the drawing out of a streak; after the needle was removed the hole 

was patched with adhesive tape. A section at A is shown in Fig. 7. ?. 

after the injection of dye. 

The apparatus was then set in motion, and the movement 

of the streak observed. The results are discussed later. 

The dimensions of the apparatus were as follows: 



- 88 - 

Radius of the pipe a = 0, 75 cm 

Radius of the spiral R = 10. 0 cm 

Angular frequency of pump o.) = 4ir rad 5 -1  

Amplitude of pump = 0. 5 cm. 

Kinematic viscosity of water =.0. 01 cma  s .-1  . 

Thus the basic parameters had the following values: 

6 = 0. 075, E = O. 8, Rs  = Z4, p = 0. 05. 

From the magnitude of these parameters we should have 

expected the flow to look like the situation in Fig. 6. 1. In fact only 

the motion in the outer region was observed clearly, but this was not 

surprising as the inner region was very small. 

The photographs in Fig. 7. 3 were taken a.t intervals of 

approximately three seconds, the camera being positioned at B and 
the pipe 

above the plane in which X was coiled. It viewed the test section at 

an angle of approximately 450, and so the streak of dye was inclined 

at a similar angle in order to obtain a clearer picture. A s can be seen, 

in the centre of the pipe the streak of dye was observed to move towards 

the inside of the bend; at the top and bottom, on the other hand, it 

moved towards the outside, thus agreeing with the predictions for 

flow in the outer region. 

It should be mentioned that what was observed was the path 

of each particle of fluid, and so we need to consider the mass-transport 
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velocity of particles in an oscillatory flow. Longuet-Higgins (1953) 

has shown that in addition to the first order secondary flow calculated 

in this thesis, there is a contribution to the particle velocity of the 

same order and whose mean is equal to 

( 	vs, dt ) . grad w 	 (7.1) 

where an overbar denotes the average in time over one oscillation 

and w = (0, 0, W wo) is the dimensional first order velocity vector of 

the flow. This can be evaluated using the expressions (3.5) and (3.19) 

for wo in the interior of the pipe and in the Stokes layer respectively, 

We find that for small a/R (7.1) is equal to zero in the interior of 

the pipe and 

172  
Rw 2 n 

 
e I sinl cos Nf , 	e 	sinr sing , 0) 	(7. 2) 

in the stokes layer. Thus in the inner region or Stokes layer there 

is a contribution to the first order mean particle velocity which is 

parallel to the plane in which the pipe is coiled, and is directed from 

the inside to the outside of the curve in which the pipe is bent. This 

contribution decays to zero at the edge of the inner layer, and so its 

effect was not observed in the experiment. 

It should also be noted that the observed flow could not have 

been that predicted by the present theory, as the experiment was 
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started fron- rest. However, we may see from a consideration of 

the momentum equation (2. 1) that near the wall of the pipe, where 
u 	Z2u 

viscous effects predominate, 	r and thus the flow would 

have taken a time of 0(d 2/V ) to diffuse a distance d. Thus the Ste?-:es 

layer of thickness 0( )/c.o)
i/z 

was formed in a time of 0(co-1), or, 

other words, after a few oscillations. This must have produced the 

same qualitative flow pattern in the interior as predicted in this 

thesis. Because R
s was small in this experiment, the diffusive pro-

cess was still the mechanism for setting up ehe secondary flow in 

the interior, and this would therefore have taken a time 

s
— 0(a 2/V ). The streak of dye should have traversed the pipe 

in a time Td 	0(a.Rco/W 2 ), but because 1 /1"C"d 
 = R5  = 24 we see 

s  

that the flow in the interior of the pipe could not have reached that 

described in Chapter 4. Nevertheless, it should have been similar 

aualitatively. 

In addition to the above, the effect of the entry regions ne7),-. 

the pump and reservoir should be mentioned. Intuitively we should 

have expected that any effect due to these regions should have onl; 

been felt at a distance from the pump or reservoir of the order of 

the amplitude of a fluid particle. More convincingly, we postulate 

that near the pump or reservoir the boundary layer grew with dis-

tance along the pipe at the same rate as does the Blasius boundary 
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layer formed when a fluid flows over a semi-infinite flat plate. This. 

implies that the thickness of the boundary layer was proportional to 

(v D/W)
1/2  

where D was the distance measured along the pipe from 

either the pump or reservoir (see for example Jones and Watson (1963)). 

We argue that the effect of the entry regions ended when the thickness 

of this Blasius boundary layer became equal to the thickness of the 

viscous shear-wave layer which exists in our theory, i. e. 

, 1/2 (v D/117)
1/2

, (1,)/(0) 	, or, in other words, D 	This is 

restating our intuitive notion that any effect of the entry regions was 

only felt at a distance from the pump or reservoir of the order of the 

amplitude of a fluid particle. 
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CHAPTER 8 

THE ELLIPTIC PIPE  

1. The Inner  Region  

We now cory3ider the problem when the pipe has an elliptic 

cross-section, and, using our knowledge of flow in a circular pipe, 

we can deduce the first order flow in the cross-section without re-

course to the full equations of motion. We first adopt a new co-

ordinate system as depicted in Fig. 8.1. The cylindrical coordinates 

r, yr are replaced by the Cartesian coordinates x, y. The origin 

C is at the centre of the pipe and Cy is parallel to Oz, and coincides 

with one of the principal axes of the ellipse. In addition, we let the 

length of this principal axis in the Oy direction be 2b, and the length 

of the principal axis in the Ox direction be 2a. 

As before we apply a simple sinusoidal pressure gradient 

- 	(pvp) = RW(o cos wt (8.1.1) 

along the pipe, and, if viscosity is absent, we can easily deduce that 

the potential flow solution is 

RW 
w - R+x sin wt 

(8. 1. 2) 
w   

('/P= -RQWw cos cut -2 	(RI-x )
2  - 	sin1cot 
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there being no secondary flow in the cross-section (c.f. (2.11)). 

Using our knowledge of the flow in the circular pipe, we can say 

that, when viscosity is present, a Stokes shear-wave layer of thick-. 

ness 0(v /w)1/2 
 is  forrred on the wall of the pipe when 13 = (wa l-/2‘))

1/z 

is small (assuming b = 0(a)). In the interior of the pipe the flow 

field is given to first order in p by the potential flow solution (8.1.2). 

We now define the wall of the pipe in terms of the eccentric 

angle 11./ 

x = a. cos Vi , y = b sin V./ 	 (3. 1. 3) 

and introduce the inner region variable 

13 -1  n/a 	 (3.1.4) 

where n is the inward drawn normal to the wall of the pipe (c. f. (3. 1)). 

Furthermore, we introduce the following non-dimensional notation 

= a/R , 	w/111 	Ro.) 

= c,)t: rp  = - 26 (1+5 cosy)a  1) 
sin 2cot 

(8. 1.5 ) 

where v is the component of the secondary flow parallel to the wall 

of the pipe within the Stokes layer or inner region (c. f. (2. 14)). 

If we now write 

=w0 
f3w 	 (8. 6) 

then, by analogy with the theory for the circular pipe, the equation 

of motion for wo in the Stokes layer is easily seen to be 
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2 W 
	

Cost  
2W 	o 1+6 cosyr (8.1. 7) 

c. f. (3. 17). 

The solution of (8. 1. 7) which satisfies the condition of 

no slip on the pipe wall and which matches with (8.1.2) as kr —> co 

is 

1 
w - o 	+5 cos1/11 sin 2' - e-rt shin 	) (8. 1. 8) 

c.f. (3.19). 

We now write 

v' =
ol  + pv 	+ 
	

(8.1.9) 

and again by analogy with the circular pipe, we see that v
o
' is driven 

solely by the pressure gradient generated by the centrifugal force 

due to the flow along the pipe. Thus, if as is the co-ordinate measured  

along the pipe wall in the plane of the cross-section and in the direc- 

tion of 
	

increasing, we may write the momentum eouation for v
o
' 

in the Stokes layer as 

	

vo 	wo " sin X 2.‘f 
6 pl 	1 	 _ 

	

at 	+ 5 coslif
= 
	2 dr2 

c.f. (2.16). 

(8. 1. 10) 

The pressure p' is that defined in (2f4) and X is the angle 

between the tangent to the pipe wall and a line parallel to Oy at the 

point as on the wall. Thus the second term in (8.1.10) gives the 
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component of centrifugal force due to the axial flow in the s increasing 

direction. It is easy to show that 

a sin 
sin X = z 	

a  	1/2 
(a sin 	+b lcos 	)1 	' 	( 2sin 	b os 2 7 ) 

(8.1.11) 

and when these are substituted into (8. 1. 10), together with the ex-

pressions for p' and wo', the equation becomes 

	

a sin VI 	(sinr -e sin(' - 1-1 )  

	

(a zsin\if +b ltos 	1 2 	(1 + 5 cosy)
3 

yvo' a sing 	sin 2. 	1  
1/2 

	

3 + 2 	 (8.1.12) 
(a zsin zyi+b -cos 115) 	(1 + 5 cosy') 

A well as the condition of no slip on the wall of the pipe, we found 

from our r-Datching arguments of ChaTytc.,:r 3 that vo
' must remain 

finite at the edge of the Stokes layer or inner region. Applying these 

conditions to (8. 1. 12) we find its solution is 

vol  

 

a sinVf 3  _ + -21 e  
4 

(a 2 	• n si +bcosaitr)-1/2(1+5 cosyr) 

+ 	 -201 sini - 	e 	1 sin(22" -2r1  ) - 	sin(2T- ) 

+ 	 '2  sin (z't 	) 	 (8.1.13) 

where terms of non-harmonic dependence on T have been excluded. 

It is important to note that the first order solution for flow in the 

Stokes layer, as described by (8. 1. 8) and (8.1.13), has been found 
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without using the assumption that 5 << 1. However, as before, it is 

found necessary to ignore terms of 0(5) in order to proceed further 

with the solution. 

Thus with 8 << 1 we have at the edge of the Stokes layer or 

inner region 

lire V = - 1  
CO 

  

a sinlif 

  

(8.1.14) 
(a 2sin 

 

1/2 

and this gives rise to one of the boundary conditions imposed on the 

first order flow in the outer region. The other condition is just that 

there is no flow normal to the wall of the pipe between the inner and 

outer regions, this being true to first order in p for the circular pipe. 

A before we may define a Reynolds number R
s associated 

with the secondary flow, and in the next two sections we look at the 

limiting forms of the first order solution in the outer region as R
s

—>0 

and R
s -> co. We define 

VI 2  R - 
s Rco V (8.1.15) 

where m is the semi-major axis of the elliptic and is equal to Max(a,b). 

From. the condition (8. 1. 14) we may deduce that the solution is steady 

and that when R
s is small the streamfunction satisfies equation (3. 28). 

When R is large a core of uniform vorticity is produced within which 

the equation (5. 1) holds, and this is surrounded by the boundary layer 

described in Chapter 5. 
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2. The Limit R
s 	

0 

We assume that the eccentricity e is small and use the 

method of conformal transformation as used by Segel (1961). We 

map the ellipse in the z. plane (z = x + iy) on to a circle of unit radius 

centred on the origin in the Z. plane. A suitable transformation is 

given in Kober (1952) from which the following forms may be deduced 

for small values of e. When b is the major axis 

I 	4- = rn Z. 1 	(1+Z.2 ) - 	e (3 + 	- 2Z,4  ) + 0(e6)] 26 (8.2.1) 

and if r, 	are polar coordinates in the Z.plane with 	= 0 co- 

inciding with the real axis, the Jacobian J of the transformation is 

given by 

= 	—e  (1 + 3r 1 cos 	) 

1 z-
16 

IL 	Cox  
(5 - 9r - 20r cos 4 Yr ) + 0(e6)1 (8. 2. 2) 

When a is the major axis the transformation is 

 

e , z 	1 
1 - — (1 - 'Z.2) , 4 	16 

   

Z = m - 7-2  - 2 Z_4  ) + 6 (8. 2. 3) 

     

and 

-1 
= et. 

2 — (1 - 3r 2. cos 211 ) 

1 4 	A 
-16 e (5 - 9r' - 20 r 

  

 

cos 41J ) + 0(e6) (8. 2. 4) 

   

The line element ds in these transformed coordinates is 
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given by 

ds z  = m1  J 	(dr a  + r Z  Cl 1,Tr 2 ) 

and hence we find that the equation of continuity (2. 2) becomes 

/2v) J-1/2 

(8. 

(3. 

2. 

2.. 

5)  

6)  + 	r (J-1  
11) 	 = 0 zy 

where W 11/11.W is the fluid velocity in the r increasing direction and 

W 2v/114) is the component in the If increasing direction. Accor-

dingly we introduce the strean-  function X to satisfy (8..2. 6) 

ji /2 
U = r 

1/2  tZe, 
v- J (8. 2. 7) 

In addition, if u is the vector (u, v), we find that in these transformed 

coordinates 

- curl u = V =)e J 	+ ar + I 
	

z  

(8. 2. 8) 
J 

and thus equation (3..28) becomes 

t131()  (8. Z. 9) 

 

The derivation of this equation is given more fully in Chapter 10. 

When b is the major axis we may deduce from (8. 2. 1) that 

sinl 	= sin 
2. e 

4 - 	. 	+ sin 3Yr ) + 0(e4) (8.2.10) 

and thus the velocity v at the edge of the ellipse, as given by (8.1.14), 

becomes in these transformed coordinates 
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V = - sigr _ 2  e I  (sinl 	sin (8.2.11) 

Therefore, using (8. 2. 7), we have 

bY = 	Sinif - e  e 2  (sang + 3 sin 
r 0(e l ) 	on r=1 	(3. 2. 12) 

7rhen a is the major axis we may deduce fro27,  (3. 2. 3) that 

sin/f = [sin?' - 
z 

.e. (sin sin 3 If ) + 0(e -) 1 
(6%2.13) 

e a 
= sine + 	only + sin 3 ) + 0(e y  ) 

and thus the velocity v 	,:he edge of the ellipse is given by 

V = 
- 3 

Sinlif + 
8 

sin 31 ) + 0(e4 ) (8. 2. 14) 

Therefore we have 

e z (sin? 3 sin 34, ) + 0(c.,.4- ) 	on r =1 	(8.2. 15) 

In addition we have the condition that u = 0 at the edge of the ellipse 

and so 

= 0 	on. r = 1 	 (8.2.16) 

Expressions (3. Z. 12), (8. 2. 15) and (8.2.16) are the boundary con- 

ditions to be applied in solving equation (3.2. 9) (c.f. (3.29)). 

We write 

4 y= )(o -t.e.ax2  + e X 	. . (3. 2. 17) 

and substituting into (8. 2.. 9) and equating like powers of e a  we find 

that, as we should expect, o must be the solution for the circular 
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pipe. If b is the :major ax.i7 we find that the eauation for X2 is 

RS V)C:' 	9 
(2) 	RS "me2i °D2 go)  

r 	(r,l) 	r 	a (r,V) 

1 Rs 	()(0, -2- (1+3r ztos215)0t2Y0 ) 
r 

='.(1+3r 2cos2I) 5Dzy (8.2.18) 

If we now write 

gO = goo + Rs gol  -E-Rs  yo2  + . . . 

y = y +R. 	R ?le + . 2 Zo s 21 	s 22 

and substitute into (3.2.13), we find, as our equation for Y2o 

(1+3r lc °sq./ ) 	X001 	(8. 2. 20) 

Fron-3 our previous work on the circular pipe we know 

oo = r 	 (8. 2.21) 

and hence 

)(2o = 6r sinlf 	 (8. 2. 22) 

The boundary conditions to be satisfied are, from (8. 2. 12) and 

(3. 2. 16), 

'6X2  
Zo 

= 0 	"2) r 	16 ° = - — (sin + 3 sin 34) on r=1 
(8. 2. 23) 

(r, yr ) 

(8. 1. 19) 

g2o 
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and the only regular solution of (8.2.2?) satisfying (8.2.23) is found 

to be 

)(20  = —312  (ar - 3 3  + r5 ) sinlp + 32 (r 3-r5 ) sin 31r 
	

(8.2.24) 

The non-dimensional vorticity "S of the flow is equal to - V 2  

which is - J 	X in the transformed coordinates. Therefore we 

have 

= - 	2 )(o  e 21 et 2  Yz 	(1+3r 2cosnif ) 	yol 

+0(e ) 
	

(8.2.25) 

and on the line lir = ,r/2, this reduces to 

[V) 	 A -5" 

	

	
1 

= 
+ 	e 	r (1-3r)+ 0(e ails ) 

11=1T/2  
remembering that - 	2  X  is the vorticity for the circular pipe. 

Similarly, when a is the major axis,the equation for Y20  

is 

D4 y 2 0  = - g.) 2  [(3-3rzcosilf5) cr, Yo 0.1 
	

(8.2.27) 

with the boundary conditions 

	

-g2o 	1 )(2o = 0, 	
r 	- -16 (sin - 3 sin 3yr) on r = 1 

(8. 2. 28) 

Hence we find 

1 
X2o 32 (r

3-r5 ) sin 3 	 5 - 32  (r
3  -r ) sin 3-if (8.2.29) 

and the vorticity 	is 

(8.2.26. ) 
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_Day() - ez Ly.)Ry 
2 

Hence along the line 

= -100z)(0 l
'ir="12  

+ 	( -3r 2cos2I ) 	2)(2 + 0(e 21 

= Tr/2 the vorticity is given by 

2  
e r(1-r 2 )+ 0(e 2R ) 21. 

(8.2.30) 

(8. 2. 31) 

3. The Limit 	 oo R
s 

—>  

In order to solve for the flow in the core of uniform vor-

ticity we can use the method of conformal transformation described 

in the previous section. This, however, is deferred until later as 

the form of the solution it gives is less suitable for computational 

purposes than the following. It does have the advantage though, of 

enabling us to obtain an explicit form for the stream function, as 

well as serving as a useful check on the method given below. 

Let us consider he coordinate system depicted in Fig. 8. I. 

Further let us assume that b is the major axis. We define elliptic 

co-ordinates $, Iv such that 

x = d sinh c/S coslfr , y = d cosh 0sinlJ 
(8.3.1) 

0 < 	< 2Tr , 0 < < 
o 

and we observe that 

a = d sinh pS, b = d cosh S and e = sech S o 	 o 	 o 

The line element ds is given by 

(8.3.2) 
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d2  
ds 2  = 2 —(cosh 2 0+ cos 21if )(de + (8. 3. 3) 

whence we may deduce that the equation of continuity (2. 2) becomes 

[ 	
/2, 

t:3t  (cosh 20+cos2111) 	+ thpitz  (cosh 20+cos2if )1  /2v11 =0 

(8. 3. 4) 

where W 2u/11.4) is the velocity component in the $ increasing direction, 

and NV 2v/Ilco is the component in the lir increasing direction. 

We therefore define a streamfunction y such that 

fib 	- 12b  u - 	 v - 	 '61  (8 3 5) 1/2 blW 	 /1 2 30 d(cosh 2$+cos 211f ) 	 d(cosh 254cos2111) 

and if u is the vector (u, v), then in the core of the upper semi-

ellipse we must have 

- rill curl u = 	2 	= - 	 (8. 3. 6) 

where 	is the non-dimensional uniform vorticity of the core and 

an overbar refers to the flow in the core (c.f. (5. 1)). The solution 

to (8. 3. 6) must satisfy the condition of no flow across the boundary 

of the semi-elliptic core, i. e. 

	

= 0 on 0 = $0  or -yr = 0, yr 	 (8. 3. 7) 

In these coordinates we find (3. 3. 6) may be written as 

+ 4
p

) .g = - 2 b 4)2  (cosh 2$ + cos Dif 	(8. 3. 8) 
Z)14 	Z  

remembering that we have assumed b = m. 
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If we seek a Fourier series solution to (8. 3. 8) subject to 

(8. 3. 7), we find 

CO 

5.1 	- 	(1.1: )2  cosh 20 
0 

c osh(2n+1)9S 	sin(2n+1)V.  
cosh(2n+1 )$0  • (2n-1)(2n+1)(2n+3) 

n=o 

1 d 
^ 2 	cosh 20 sine  1/1 b 

From. this we deduce that 

(8. 3. 9) 

I 
7 	_ 	

(b
1)2 coshari o  

- 
111=r4o 

co tanh(2n+l)fo 
sin(2n+1)1,1 

 

(2n-1 )(2n+3) 
11=0 

  

1  cl 
+ 2 — (—b )2  sinh 2$0  sine (8. 3. 10) 

We  may use (8.3.2) to replace the $o  dependence by expansions in 

terms of the eccentricity and further we may derive the following 

identity from Bromwich (1947) 

co 
'71  sin(2n+1)115 	1 	1 
L (2n-1 )(2n+3) = - —2  sill./ - —4  sin 21.1f log tanq /2) 
n=o 	 0 < lif < Tr 

Hence, expanding in powers of the eccentricity, we find 

1 _ [P01 = I 
Tr
—(Tr sin 21If -2 sinlif -sinnli log tan(f /2)) 

54940 

(8.3.11) 

2 	1 	2 yi 	I 	1 + e t (— 	- — sin 	)-3-e4  (— 	- — sin lif) 31c 	2 	 6Tr 	8 

+ 0(06) 	 (8. 3. 12) 

Therefore the velocity v1  at the edge of the core flow is, from (8:3;5) 
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vl  - (Tr sin` yr -2 siny -sinnif log tan( /2)) 

2 	I 	1  + e a  (— 	
Tr 

- -sin3 	- 7 sin yf + sin4  
3Tr  

1 - 271.  sin zyr sinayr log tan(f /2)) 

4 1 	1 	3 	3 	5 + e (— siny + 	sin 	- 	sin lc 	- 6T 	3.11 	4 tr  

6 	3 - - sin 	+ -53sin 	- 87r  sing sin4\plog tantlf/2)) 4 

+ 0(e6) 	 (8.3. 13) 

Similarly when b is the minor axis we define elliptic co- 

ordinates such that 

x = d cosh cos).11 , y = d sinh sin If 

(8, 3, 14) 

0< 11 < 2.TT , o < < — 

and therefore 

a = d cosh $, b = d sinh 9S, e = sech 9S 
o 	 o 	 o 

The line element in this case is given by 

(8. 3. 15) 

ds 	= `12-72-:(cosh 2$ - cos 211f )(d02  + d"r) 	(8.3. 16) 

and then the equation of continuity is now 

(cosh 2$-Cosryr )121 +615 d 2 (cosh 20-cos2if )1/2v) ..V 

8.3.17) 

= 0 
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This leads to the following definition for the strearr function y 

u= ./2 a 

d(cosh 29S-cos211.01 /2 by 
- •1-2. a  , v - 	 /1 2 ZS d(cosh 20-cos211.1 ) 

(8.3.18) 

Thus equation (8. 3. 6) may now be written as 

= - as - 	nit 	
(
a

)2 
 

whose solution, subject to (3.3.7) is 

co 
_ 	(1)2  sinhlfif Tr a 

sinh(2n+1) 	sin(2n+1)1P  
sinh(2n+1)00  (2n-1)(2n+1)(2n+3) 

(cosh 2$ - cosl)/f) 	(8.3.19) 

n=o 
1 d

)2 
	sine  \/J2 a 	 (8.3.20) 

Hence, using (B. 3.11) and (B. 3.15), we find 

1 
▪ [da$1

=
- 	Tr - (Tr sin21[[ - 2 sidlp sin 2y5 log tan(V /a)) 

$0 
 

+ e 2(7-tr4 	- sinqf + I- sin 21'f log tan /2.)) 
I 	IT 

 

4,61r 
	1 + e t-- sin tif - 8  sina lp)+ 0(e6) (8.3.21) 

and 

v i  

• 

1 r (Tr sin ly - 2 sin 11,.i - sin 21/./ log tancyf /2)) 

1 	1 + e 2`[..— 	ir sins + - sin3  yr - T sin 4 41r  
3Tr   

1 + Tr  (1 + sin115) sin 211.1 log tanCif /2.) 

+ e4  I 112ir  siny + --- 6Tr  sin3yi - 1. sin lif 4ir 
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I 	4 	3 - 2  sin 	+ g sin61if 

+ -1— (1 + 2 sin 2lif 8-1-r 

0(e6)  

- 3 sin4 ) sin alit log tan( /2) 

(8.3.22) 

The velocity at the edge of the outer region is given by 

(8.1.14). Thus, using the notation v' for this velocity (see Chapter 

5), we have when b is the major axis 

/ 2 	 3 
v' 	- —4  1 - —2  e cos 4-- e

A 
 (-8  sin' 	- sin 

+ 0(e6) I sin 	 (3.3.23) 

and when b is the minor axis 

1 	1 2 2. - 
= 	• 	1 +

2 
 e cos \f +- e   cos 	+ 0(06) 	s 	(8.3.24) 

Using the first three terms of the G rie r.. developed above 

for evaluating [. ..4./ .1 	v1 and v' we can solve approximately 
PS=9So 

for the flow in the boundary layers when e is small in precisely the 

same manner as for a circular pipe. 

Let ms be a coordinate measured along the periphery of 

the ellipse in they increasing direction and at 	= , s = s 

In addition let mn be the inward drawn normal to this periphery. If 

u is the non-dimensional velocity component in the n increasing direc- 

tion and v is the component in the s increasing direction, then the 

boundary layer equation along the curved surface is 



(c.f. 5.5) 
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v 	v  s + b—n = v 	+ R 	2V  I ds 	s (8.3.25) 

Vie again linearise by putting 

v = v v , 
p 

u = u + u 
p 

(3. 3. 26) 

where an overbar denotes core flow and a suffix p denotes a pertur-

bation quantity. Substituting (8. 3. 26) into (3.3.25) and neglecting 

squares of perturbation quantities we have 
_ Dv dv 
	 + v p ds 

3v1  Z 	'12-Irp 
n 

dv 

 ds an 	s 	bn2' (G. 3.27) 

(c. f. 5. 7). 

We then employ the following transformations 

1/2 — ) 	v n 
5 

 
1 

1
S 

_ 
v. ds = 

e 

-2 — 
Y= 	vI vp 

and this reduces equation (8.3.27) to the diffusion equation 

b1 
'ax by 

(c.f. (5. 9) and (5. 10)). 

= - 

So 

(8. 3. 28) 

(8. 3. 29) 

For the boundary layer along the line of symmetry Iff = 0, Tr 
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we define coordinates ms along the line and rrin normal to it. In 

addition s = 0 is yf = 0, = So. If u is now the non-dimensional 

velocity component in the s increasing direction and 	the compo-

nent in the n increasing direction, then the boundary layer equation 

is 

where ul 

d u + v 	— bu =U — u l 	-1 e2  

	

u -- 	 u + R 	 (8.3.30) 

	

as 	on 	l ds 	s 'fin'' 

isthe velocity at the edge of the core (c.f. (5.13)). Using 

(a. 3. 26) and line arising, we obtain 

	

6u 	du i 	du 	 *6 2u -1 + 	4 	n 	1  - p 
 = R 

	

1 bs 	p cis 	ds 	s 	3n 2  

(c. f. (5.14)). 

If we employ the following transformations 

Y 	 -1 s1/2 = 	Rs] 	u n 

u., ds 

T7 = u
P 

then (8.3.31) reduces to 

bar 

(c. f. (5.16) and (5.17)). 

We may note that for the elliptic pipe 

ti 

(8.3.31) 

(8.3.32) 

(8. 3. 33) 
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x
e I 	

0?-1_1 

dr‘ 

(8. 3. 34) 
_1 

Xe = 2 3 - 

and hence that if b is the major axis 

x = 	- 	+ 	- •;;) + e e 	2 	Tr 	3 IT 	 Trr 16)  + 
TT 2 4 yr  4 6 1r 

TT 2 a  2 Tr 4 1 Tr xe  =2 - 
Tr3Tr  - 4  —) + e (

3Tr 	1 6 - —) 
2 2 2 1 4 

X e = Tr — - TT  e  - 3Tr  e + 0(e6) 3  

13(e 	) 
(8. 3. 35)  

6 + 0(e) (8. 3. 36)  

- 4 a  1 4 	6)  

	

= — 	e - — X e 	Tr 	31T 	3Tr e + 0(e 

and if a is the major axis 

Neglecting terrrw of 0(e6) in the expansions for 

, vl , v' w  , xe  and Xe we proceed with the calculations 

0=9s, 

in precisely the same way as in Chapter 5, but noting that (5.32) now 
a. 

becomes 	
1) 	

4 (xe  -x (11 ) 

(0 (- 
N(x, Cy), o)e -V [ I 

Tr 	

FS-So  
- — 2 W.n. 	 (xe  - xty»3

/2 
 

(8. 3. 37) 

The computations are described in Appendix B and the values of -S 

are tabulated in Table Z. A discussion of the results and their 



= 0, Tr (8. 3. 39)  

+ 	• • (8. 3. 40)  

(8. 3. 41)  

= 0 	on r = I or 

If we write 

re= ( 	e 72 + e4 '4  

then the equation for go is 

1  = 0 
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implications is deferred until § 8.4. 

We now solve (8. 3. 6) by the method of conformal trans- 

formation as used in 	8.2. Although the form of v1  is less suitable 

for computational purposes, it does enable us to obtain an explicit 

form for the stream function as well as serving as a useful check on 

the previous work. 

In the transformed coordinate system of § 8.2 equation 

(8. 3. 6) becomes 

(8. 3. 38) 
- 
jf 

1 - 	e (1 + 3r a  cos 21k) 

1 
16 e(5 - 9r4 - 20r4 cos 4f ) 

+ 0(e6) } 

where the plus sign is to be taken when b is the major axis. The 

boundary condition (8. 3. 7) becomes 

with the boundary condition 
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° 	on r = 1 or 	= 0, Tr 	 (8. 3. 42) 

We seek a Fourier series solution to (8.3.41) subject to (8. 3.42) 

and we find 

)7. oo 2n+l r 	sin(2n+1)11f 1-r a  (1-cos 21) Tr 	(2n-1 )(2n+1 )(2n+3) 	4 (8. 3. 43) 

n=o 

In order to sum this series we make use of the following identities 

taken from Bromwich (1947) 

co 2n+l r 	cos(2n+1)11I  - 
1  log (1+2r cos+r  

2n+1 	- 4 	1-2r cosyr+r i.  ) 
n=o 

(8. 3. 44) 

2n+1 r 	sin(2n+1)1 1 	-1 2r sin*  - 2 tan 	( (211+1) 	 1 - ri 

Then splitting each term in (3. 3.43) into its partial fractions and 

sumrring, we find 

o  = 2 	[ _ 	(r a  + —1---2 ) cos T 

 

tan-1 (2r sinlif  
1 - r 	) 

 

 

  

  

11 	 1+2r cos115+r 2  
4 - — (r 	) sin 2 	. log (1-2r Cosy, +r 2)  

+ (r -  -)sin Ir 
- 	r z  (1 - cos aii) (8. 3. 45) 

(c. f. (5. 3)). 

If b is the major axis then the equation for g2 is 

2 )(2  = 2 (1 + 3r IL  COS np 	(8. 3.46) 

oo 

n=o 
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with the boundary condition 

on r = 1 or = 0 1T 	 (8.3.47) 

The solution of (8.3.46) subject to (0.3.47) is 

co 
r2n+Isin(2n+1 	+ 

(2n-3)(2n+1)(2n+5) 	8 (1  cos 2-ir ) 

n= o 
(8. 3. 48) 

)1" + 8  (cos c 	-cos41,) 

which can be summed, using (8. 3. 44), to give 

2 
4 1 

(r  + 	) 

1 4 + 4  (r - 	) sin 4 4_ 

- (r3 	sin 

1+2r coslir +r a  log (1-2r cogy+r i)  

1 - 	(r - —)sinly 

   

112 4 IT 

 

 

   

it 4 4 cos 21.y) + r (cos 21,E- cos 4-t.rs: 	(8. 3. 9)  2 	A 

If we write the velocity v in the Alf increasing direction 

as 

v= v1  +e 2 v + e v4 + ...  

then we may deduce from (8. 2. 7) that 

I 	 'go  
2 'Dr 4 — (3.+3r acos 21)  r 

and hence that the value of v2 at r = 1 is 

(8. 3. 50) 

(8. 3. 51) 

+Z 2. ( 
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14 	.-r 	5 	+  [V2-1 r 	= 	sin 	- sin3 	

2 - — sin 	sin4 
3Tr 	 2 

+ TT  (2-5 sin2.1.1,f) sin 21}f log tan(ly/2) 	 (8. 3. 52) 

When the expression (3.3.13) for v1  is written in the transformed 

coordinates using (3.2.10) then the terry of 0(e 2) is found to be 

identical with (8. 3. 5,1') thus checking the arithmetic of the previous 

method. 

Cirnilarly when b is the minor axis the equation for 72 is 

	

1:(2  = 	(1 - 3r z  cos 21y) 	 (8. 3. 53) 

and the solution of this, subject to (3.3.47), is found to be 

1 4 	1 y  Z 	 -1 2r sink —(r + —) cos z_.1 + (r +-2-)cos 2 	l 2 -Ian (1 - rz 	 ) 

[ 7  1 
4 	A. 

4 	1 	1 	1 	1.+2r cos1r+r 4 
 ) 

	

, 	 - — (r - —) sin 43:f - —(r '- --i)sin 2/151log(1-2r coslif+r z  r - 2 	r 

+ (r3 - 5 	1 —3) sin 311.1.  - 3  (r - r—) sinip 
r 

Tr 1 	 IT 4 + 	r 	(1-cos 2.1.10 — r (cos 21.f cos 4111) 2 	 4 

From this it may be deduced that 

(8. 3. 54) 

f_v21 
r =1.

= -C - 3 	
5 11 sinly + — sin Tr 	Tr 	

3 
 

5 + 2 	
2 - — sin4 

 

21r 	- 5 sinzipe) sin 211.5.1og tan("IF/2 	 (8. 3. 55) 

which again checks with the value given by the first method. 

The equation for ) 4 is (regardless of which is the major 

axis) 

77, 475 
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9 4 5 4 
T.) 2 ) = 	- 	r - - r cos 4 - S 156 16 4. 

with the boundary condition 

(8. 3. 56) 

= 0 	on r = 1 or If= 0, Tr 	 (8. 3. 57) 

We find that the solution to (8.3.56) subject to (c.3. 51) iC 

35- 	1- 2 	6 	 4' 
--r-(r 6+-1-)cos6111+2(r4+ -1--)cos ir r  r 

5 	1 --27)cos 21.11 

- 4] -1 Zr sin tan [ ) + 1 - r 
5 - 	(r 6  - ---g  

r 
sin 61:1.1 

1- 5 z  —)sin 2y
.
f log ( 

1
,1 1+2r cosAlf+r 21  —)sin 41y+ -z-(r - - 	r" 	1-2r cosVf+r 2 1  r4 

+ 5(r5 - 5) sin 51.1,C 
r 

7 3 1 16 1 - 3  (r -3)sin 3111.- T (r- 	— 2 r
z (1-cos 23u)) 

Tr - 	r6  (1 + 4 cos 4-1p - 5 cos 61ir ) (8. 3. 58) 

8. 4. Cone lusions  

.As was mentioned in Chapter 1, the reason for consider-

ing the elliptic pipe is to see whether the lin.earisation. employed in 

the calculations for Rs -> oo may be more convincing. Accordingly 

the values of the three terry-  expansions for the velocities v1 and 

v' 	are plotted in Figs. 8. 2a and 8. 2b for values of the eccentricity 

equal to 0. 0, 0.3 and 0.5. The curves produced when b is the major 
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axis are plotted in the first diagram, and those for the case in which 

a is the major axis in the second. In addition the vorticity curves 

along the line Air,c = it/2 are shown in Figs. 8. 3a and S. 3b for 

Rs = 200 and R
s = op. The expressions (8.2.26) and (8. 2. 31) are 

used for Rs 
= 200. 

We see that when b is the major axis the results are in-

conclusive. However, when a is the major axis, we see from. Fig. 

8. 2b that the accuracy of the linearisation should improve as the 

eccentricity increases. However, Fig. 8. 3b implies that as the 

eccentricity increases the magnitudes cf the vorticity for Rs  = 200 

and R
s = co increase by similar amounts. That is, although the 

accuracy of the linearisation improves, the difference between the 

values of the vorticity in the core, given by the Rs 
= 200 and 

Rs = co curves, remain about the same. This indicates that the 

linearisation may in fact be very good even for the case of a circular 

pipe. This reinforces the confidence in our linearisation evoked by 

the work of Kuwahara. and Im.ai (1969). 
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PART II 

FLOW OVER A 'VT AVY WALL  
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CHAPTER 9 

INTRODUCTION  

In the second part of this thesis we consider the steady 

streaming induced by an oscillating flow over a wavy wall. We assume 

that far from the wall the velocity vector of the flow is parallel to the 

mean position of the wall and is equal to U00  cos wt. 

As in Part I a viscous shear-wave or Stokes layer is formed 

on the wall and has a thickness of 0(2 u Mw) 2, where N.) is the 

kinematic viscosity of the fluid. If a is the amplitude of the wall and 

'K its wavenumber, then we may form the two dimensionless quan-

tities 

a = a(2 ww)-1/2  

k = K (2 .v/w)
1/

2- 

amplitude of wall  
Stokes layer thickness 

Stokes layer thickness  
wavelength of wall 

and in the following chapters we shall only consider the case when 

a << 1. If a >> 1 and the wavelength of the wall is much greater than 

the amplitude of oscillation of a fluid particle far from the wall, then 

we may apply directly the theory of Schilling (1932) to find the steady 

streaming in the Stokes layer. Outside of the Stokes layer Schlichting 

essentially considered only the case when a Reynolds number aSSO - 

ciated with the steady streaming was small. His work has since been 
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extended :or large values of this Reynolds number by Riley (1965) 

and Stuart (1966). 

For the present problem we tray form the Reynolds 

number 
1/2 

00 	v 
R = 	(

2
70  ) (9. 2 ) 

and we shall find that the number kR plays an important role. Be-

cause the amplitude of oscillation of a fluid particle far from the 

wall is the U 	we see that kR is oo 

particle oscillation amplitude  kR wavelength of wall (9. 3) 

Thus kit << 1 is the condition necessary for Schlicting's theory to 

hold when a >> 1. 

In Chapter 10 the problem is formulated and, because we 

assume a << 1, we seek a power series solution in a, the first order 

solution being just that if the wall were flat. The solution of 0(a) is 

found to be governed by an equation which is almost identical to the 

Orr-Sornmerfeld equation encountered in the stability theory of 

plane parallel flows. Thus when kR >> 1 our theory relies heavily 

on this work, as well as on that of Brooke Benjamin (1959) who con-

sidered steady shearing flow over a wavy wall. This is described 

in Chapter 12. In Chapter 31 we seek a solution to the problem when 

kR << 1 and we develop a solution valid for all k which is similar to 
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that found by Rayleigh (1884) in an analogous problem:. If, further, 

we assume that k << 1 then we recover the steady streaming predicted 

by Schlicking (1932). This implies that no restriction need be placed 

on the size of a for Schli g's theory to hold, providing that k << 1. 

  

As in Part I we may consider the implications of the theory 

for the cardiovascular system. If we use the data of Chapter 5 for 

the aorta, and assume that the wavelength of a disturbance on the wall 

is equal to its radius (1. 5 cm), then we may deduce the following 

values for the physical constants of the problem 

= 2.rr rad s 
-1

, 	= 	cm
-1 

= 0.04 crnz  s-1, U = 50 cm s oo 

These give rise to the following values of the nondimensional Para 

meters 

k= 0.47, 2.= 141, kR = 67 
	

(9. 5 ) 

and hence it would appear that the analysis of Chapter 12 for large kR 

may be of some relevance. In addition we note the value of the para-

meter 

k (kR)
1/3 
 = I . 92 
	

(9. 6) 

which we assume to be 0(1) in Chapter 12. As can be seen, this 

assumption is amply justified. 

(9.4) 
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CHAPTER 10 

FORMULATION OF THE :PROBLEM  

Let us consider two-dimensional viscous flow over an 

infinite wall, the surface of which is defined by 

y = 	CO3 )4( x 	 (1 0. 1 ) 

where x,y are rectangular Cartesian coordinates. Thus the wall has 

a wavelength 27r .): 
-1

and an amplitude a (see Fig. 10.1). Writing 

z = 	+ iy, we consider the following conformal transformation 

= 	= z - iaei K z 	 (10. 2) 

If a is small, the Jacobian J of this transformation is 

2  d'S 	 y 
J = 	1 + 2c-d; e 	cosK x + 0(a2 ) 

dz 

and, equating real and imaginary parts, we have 

(10.3) 

=x+ae 	y sui .< x 

0 = y ae
-Vt y

cos1( x 
} (10.4) 

Hence we obtain 

J = 1 + 2aK e 	0 cos9,1 + 0(a2 ) 
	

(10.5) 

The surface of the wall is now defined in these transformed coordinates 

by 	= 0(a2 ) and, because we shall be neglecting terms of 0(a2 ) in the 

following analysis, this may be replaced by 0 = 0. 

Let u = (u, v) be the velocity vector in the transformed 
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coordinate system. Thus u is the component of velocity in the 

increasing direction, and v is the component in the $ increasing 

direction. In addition let p denote pressure, p the density of the 

fluid and V its kinematic viscosity. As in Chapter 2 the momentum 

equation for the flow is 

+ ffradti 21 
Dt 	 - u ^  curl u=- 1  - 	grad p _ 

and the equation of continuity is 

div u = 0 

v .curl curl u 	(10. 6) 

(10.7) 

Because the transformation is conformal, the line element ds in 

the transformed coordinates is 

ds 2  = J-1  (dIg 2  4- 	 (10.8) 

and so, using the well known expressions for grad, div and curl, 

we have 
1/2 

gradF..-- (J 	 ) 

div u = JE:iii(J-1/213.) 	(j--1/2v3 

curl _u = J1 	(J-1/2v) 	(J-1/2u 

(10. 9) 

 

  

where i is the unit vector perpendicular to their, $ plane. 

In order to satisfy (10.7) we define a stream function 

uch that 

u= J 	a0 , v- -J I/2u (10. 10) 
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and so 

curl u = -J 	2  i 

where 
Tri.,‘  2 	"e 2  

69S 
	 (10. 12) 

If we now eliminate the pressure p from (10.6) by taking the curl of 

both sides of the equation, we obtain the following equation for )( 

2y
_ 	(e, J352)e) 

a (w, s) 

The boundary conditions we wish to impose on the problem 

are the conditions of zero slip on the wall and, as y -> oo, that of the 

velocity vector being prescribed to be U cos wt in the x direction. oo 

In the transformed coordinate system these conditions become 

-
3 
 - 0 	on i4 = 0 
9S - 

—>U 	cos (...) 	 (10.14) 
oclo 	co 

as rd -> co 

ate _> 0  
In addition only harmonic dependence on wt will be allowed. 

If the wall were flat i.e. J = 1, then the solution of (10. 13) 

subject to (10. 14) would be the well known Stokes shear-wave solu- 

tion ( co 1/2g  

= uoo 	cos wt + (2)12  [e i; 	f-sin(wt- )
1/2

941T/4) 

	

sin(ca + 7114)1i 	 (10. 15) 

= 	L et2 b52 X) (10. 13) 



l as 

-> cosT ) 
-> co 

(10. 19) 
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We consider here the case where the amplitude of the wave a is finite 

2v but also a << 0 ( ) 	. — 1/2
In other words the amplitude of the wave is 

the“ 
much smaller than the thickness of the Stokes layer; atokieh. we may 

((.0,/s) 
expect/ to be a first approximation to the solution. We therefore define 

the following non-dimensional notaticn 

kr = )e 1 u (-22w )1/2  1-1, If' = 	(
2
7)
v )_1 /2 

co  

1 	rIsg)-1/2 	=wt, a = a 
(2y )-1/2 
	

(10.16) 

k = 
N/-2 av 	1/2 	U 

oo  
(—w ) 	R - 

(v w)
1/2  

Equation (10. 13) now becomes 

	

ZR 	„Di 	- 	 
b (kr1 ,1 ) 

= R-1 	12  (.1. 	1)(i 

where 

a 	2  + a and J = 1 + 2ake 	i cos kola' + 0(a2 ) 

In addition the boundary conditions (10. 14) become 

(10. 17) 

(10. 1.8) 

)et 0 on 1 



2Yo)  
XQ 	6 (Alt, ri) = 11-1 	)c 2R

-1  (et, 
(10. 21) 
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For reasons of simplicity the primes will now be dropped 

from the dimensionless quantities defined in (10.16) and (10. 18) and 

all variables are now dimensionless unless stated otherwise. 

We look for a solution to (10. 17) of the form 

= 	+ a yi  + a z 	+ 	. 	 (10. 20) 

remembering that for this problem a << 1. Substituting (10.20) into 

(10. 17) and equating like powers of a we have, as our equation for 

o 

whose solution must satisfy the boundary conditions 

Yo 

xo  
alv 

As expected, this is just the Stokes shear-wave solution 

)eo  = rtcost + 1  LeIsin('C. 'et+ it/4) - sin(Z+ Tr/4)1 

The equation of 0(a) from (10. 17) is 

0 on 

-> cos 

as 	-> co 

-> 0 

(10.22) 

(10.23) 
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2R-1 Lpay 	b(Yo' VY1 ) 	.b(Y1' PaY0 ) 
at I 	(1v, ) 	1) 

oc, 2ke -k n cosklis gpago ) 

 

 

) 

   

= R -1 	+ T)2(2ke-k ( coskliff ,i2 )(0 ) 

 

(10. 24) 

whose solution must satisfy the boundary conditions 

  

X1 = 	_ 0 on 

0 -) 

ail  
6 rl 

—> 0  

u( 	t) = 	i• • We define 

-pe U(1 1 T ) = cos 

(10.2-7) 

)= 
0 

(10.25) 

as 	-> co 

1 

encos(7."-1) 	 (10:7,6 

Then, following Brooke Benjamin (1959), we write 

= CR. _It[F( 1 	) + U( , 't. )e -kTij eil4r  

whereat denotes 'real part of'. This is equivalent to writing 

= )10 6r, 	) + al` 	) + • • • 	 (10.28) 

where Yo(y,r) is just the solution (10. 23) with vi replaced by 

y(oWly )1/a
. This is just the solution which would be valid if the 

wall were flat and is indicative of the fact that we are seeking 
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perturbations to this solution. Because of our change of coordinate 

system contributions from this solution arise in the higher order 

terms of the perturbation expansion, and this leads to our writing 

)ei in the manner shown in (10.27). 

Equation (10. 24) 

a 2L 2F) -(F" -k 	+ 

now becomes 

U(F"-k2F) - U"F 

- 2k2  F 	1(11 

on 	=0 

as 	—> oo 

(10.29) 

(10. 30) 

ikR 3-t• 

I 
7-- (1

71V  
= 

1kR 

with boundary conditions 

F = 0, 	= 

—> 0 

F —> 0 

A prime denotes differentiation with respect to NA 

Equation (10.29) is almost identical to the Orr-Sommerfeld 

equation which arises in the theory of stability of plane parallel flows, 

and when the parameter kR is large we shall make use of this theory 

in solving the equation. 

If we write the norldirrensional velocity u in the 	direc-

tion as 

u = u o  +au 
1 
 + a zu + . . . 	 (10. 31) 

then, as a consequence of (10.10), (10.16) and (10.18), we find that 



and thus the dominant steady streaming is given by 

(s) u 	=CR 1 
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Uo = 

u0  = U( 	) 

•Nme, 
Wa 11 +  oyi (10. 32) 

eiklAr  (10.33) 

(10. 34) 

u 	= ke 	1. cos 

Hence, using (10.26) and (10.27), we can see that 

ul 	
1 F +12. e  -k 

In the next chapter we shall evaluate this when kR << 1, 

and in Chapter 12 when kR >> 1. 
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CHAPTER 11 

THE LIMIT kR. -> 0  

In this chapter we shall seek an asymptotic solution for 

F( , -C) which tends to the exact solution of (10.29) in the limit 

kR -> 0. This implies that the wavelength of the wall is very much 

greater than the amplitude of oscillation of a fluid particle far from 

the wall. We therefore look for a solution of the form 

F r1,17" = Fo(r) • 	+ ikR F1  (n ,z)+••• 	(11.1 )  

When this is substituted into (10. 29) and like powers of ikR are 

equated, we obtain the following equation for F
o 

2 
2 	- %11.127 k 2  )] 	-

0 
 = 0 (11.2) 

In addition Fo must satisfy the following boundary conditions deduced 

from (10. 30) 

F
o 

= 0 , F
o 	

..J2 t = -cos (-15-Hr/4) on 

F ' -> 
0 

F -> 0 
0 

as 	—> co 

= 0 

(11. 3) 

From these conditions and the form of equation (11.2), we see that 

we may write 

" 	- 
Fo(

1
,z ) =f0(1) e Z" 

	
f 
 0(, 
 e 

(11.4) 
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where an overbar denotes 'complex conjugate'. The equation for 

f o( r)) is 

I 
2 	2 	2 

- (k + 	(--7 k 
2 
) f = 0 

zn 	0 

and its solution which allows Fo to satisfy (1 1.3) is 

(11.5) 

f =
s/2 ei1r~4 

o 2(o- - k) 

  

e -crri 	e-kti (11. 6) 

  

where a-2 = k2 + 2i and a- has a positive real part. Therefore we have 

/7 foi"( +/IT/4 /- 
- "s" 

c 
	 e 1 -e - o L (J. - k 

[ — e  e-csh -e- 1)1 
- k 

(11.7) 

The equation of 0(ikR) obtained when (11. 1) is substituted 

into (10. 29) is 

[2a,— - 	-k 2 )1 (4 -k 2 )F1 = -U(Fou -k 2F0) + 	(11.8) 
ort 

Therefore, substituting (10.26) and (11.7) into the right hand side of 

(11. 8), we obtain 
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.-k2)12 )1 	k 2 )F1  

= 	(a-+k)(1-e
- (1-1))e -cr1 +i1114  

4 

Zi 	(e-e-k1 )e- i(1.0 iTr/4 
a--k 

+ 	e2it-  {(cr+k)(1-e- (i+i)) 0 -01 +iTr/4 

2i + (e -cr i 	) e (1+i) + itr/4 

+ complex conjugate (11. 9) 

  

The boundary conditions on Fi, deduced from (10. 30), are 

F1 = F1' = 0 	on n =0 

F1  -> 0 1.  

as 	-> GO 

F1  ->0 

From (11.9) and (11.10) we may deduce that 

F i (Vt,Z") = F i
(s) 

 (1)+ F1
(u) 
 (Mt) 	 (11.11) 

where F1 
1
(u) has zero time average. Furthermore we may write 

(s) 	(s) 	(s) 
F1 	(1)= 11 	( ri) 	 (11.12) 

1-3 (u) 	, 	) = fl (u)( ) e 	+ f1 (u) 
 ( 1)e

-212 

where f 1 
 (8)  and f 1  (u)  satisfy the following equations 
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142 	k 2}2f 1(s)  _ 4i4(cr 	-* - +k)(1..e ri 	3.) 	(71  -Fin-/4 

Zi
k 	

)e  - (I -i)+i7r/4 3  
Cr - LC 

 

- (k2-1-4.1 	d 2 	
f l { -2 -k2 1 (11)= d  12-  to•+k)(i_e 1(1+0)e  -cri-ti-iv./4 

4 

 

Zi 	 (1+i)-1-i-cr/4 

The solution of these equations subject to the boundary conditions 

(11.10) is quite straightforward, but for the sake of brevity we shall 

consider here only the solution to (I 1.13), this being the most germane 

to the present study. 

If we write (11. 13) as 

[ 7Q2-2- -k 2-1 2f 1  (s)  = Ae -(311 +Be-al n(1-14ce-k n - 10-0 
	

(11.15) 

it is easily seen that 

(c) = Ale 	Bt e-°-  - no-i)  f1  

n 	-kn D'e -k 	e 

where 
A 	1

BA' - 	- - A, B' - 	  - 	B (cr 2 -k 2  )2 	4 	r(cr+1 -±)2-k-3
2 	8 

C, - 
C (k+1-02  -k2.12 	- 4 E 1+k(1 +i)] 2  

D'= -(A'-FBI -FC'), 	= ITAT -1-(cr+1-i)113. T+(k+1-i)CT -i-kDI  

(11. 17) 
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It is more instructive to consider the form of (11.16) 

when k is very large or very small. We first consider the case when 

k >> 1, i. e.the wavelength of the wall is much smaller than the thick-

ness of the Stokes layer. It can be seen that (11.16) is exponentially 

small unless 'f•-‘ < 0(1/k) and so we define a new scaled variable • I .... 

= kn. This implies that the steady streaming associated with 

fl  (s) is confined to a boundary layer whose thickness is of the order 

of a wavelength, and this is much smaller than the thickness of the 

Stokes layer. We find 

f  (6),, 
1 	4 

24k - 
(3 112+ n13 )e  1 t+ .125 (151) 	11 	11 '2+6 '3+ 14 )e -114-iTr/4  

96k 

+01-7) 
ko 

and 

(s) 

(6111' 3)e-re 
°Y) 	24k-' 

"IL 	 2 (30 +31' -21 
96k4 

We see from (10.34) that the dominant steady streaming when 

kR << 1 is given by 

61'
„ (s) 

1 
(s) =Et 1 	 (11.20) 

• 

and, therefore, when k is large, we find from (11. 12) and (11.19) 

that 
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(s) u i 	- 	nt  (6- I-1 	 1) I 2k sin kyr + o( —3-)
k  

(11.21) 

This steady streaming is sketched in Fig. 31.1. 

Let us now consider the case k << 1 i. e. the wavelength 

of the wall is much larger than the thickness of the Stokes layer. We 

see from (11. 16) that f1(s)  now consists of two parts. One of these 

decays to zero in a length scale of the order of the thickness of the 

Stokes layer ( > oo), whilst the other decays over a much larger 

length scale of the order of a wavelength ( --> oo). Thus we may 

expand f1
(8) in powers of k in two regions: one where 	^.6 0(1) and 

the other where 	0(1). These may in fact be regarded as inner 

and outer regions, and their solutions inner and outer solutions (c. f. 

Part I ). 

Thus when 	e‘e ( 1 ) , the solution in the Stokes layer or 

inner region is 

(s ) 	1 
f 	k 	-8-9e

-9 
 sink  - 28elcosi 4e - 1 	 1 sin i  — 1  

+ 	 k  2 	n  2 	sinn 32 e 	./ 	32 - 16 t 	16 	f' 

11 	 - 	.1 -n +72-1e 	cos 	
7 	n 

+ 	IV I sin tri-T e 1 cos 

1 +- e -Z i _ 45  64 	64 
- —

1 
 e 

3 9 

4 
sin h 

3 2 

n I 	-2 64 	I 

+ 0(k
3
)  64 16 (11.22) 
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and 

 

k 	
1 cosi + 8  —he 	-g 	11 e 	cos yi 

1 	-n 	1 

+ F 	t%  e 	sinrt+ 	e-211 	3 7-6-1+1117-6-12encosi 1   
16 

1 2  
16 .1 	

-Vsk. 	7 	-p. e 	- 	COSri - 	yle 

19 -)1 	- 7 	i 	e-2't - 32  e ,cosr) 32 	s ni - 32  

sin , 

 

- 64 e 	+ 64 -2Y1 	+ 8 	o(k3) 

Therefore we find that 

 

(11.23) 

2  (s) kR 	 1 -1 	-11 rie 	cosi - 	 e sing - e cos ri Z 

- 2e 	- 171  e-211 + —3  I sin kV 	0(k3R) (l 1. 24) 

and it can be shown that this is identical to the steady streaming pre-

dicted by the theory of Schlic4ing (1932) for oscillating flow over a 

curved boundary. This implies that, if k << 1 and kR << 1, no restric-

tion need be placed on the amplitude of the wave c for SchlicW.ng's 

theory to hold. 

When 	0(1) then we find that f1(s) may be written as 

(s) 	3 	, 	13 	65 	- rit 
f i 	- 	e 	k (-37 + 	n , ) e 	0(k2 ) 

and 

(11.25) 
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fi 	

)6 

(8) 
39 65 - 	 k (1- IV) e-1 +k2 (671  71) e- 	

+ 0(k
3
) 'o  

Therefore in the outer region we find that 

(s) 3k2R  
ul 	 nt) 	sin nil' + 0(k3R) 

(11. 26) 

(11. 27) 

and so in this region the steady streaming generated within the 

Stokes layer decays to zero. The solution (11.27) was found by 

Schlicking (1932) when solving for flow in the outer region for small 

values of his steady streaming Reynolds number, but it is due origi-

nally to Rayleigh ()_884) who studied an analogous problem. In both 

cases the stream function from which (11.27) is derived, satisfies the 

biharmonic equation with n ' and -4f as independent variables. 

The steady streaming predicted by (11.24) and (11.27) is 

sketched in Fig. 11. 2 and we may observe that it is qualitatively 

similar to the situation for large k depicted in Fig. 11.1. 
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CHAPTER 12 

THE LIMIT kR —> co  

We now look for an asymptotic solution tc (10.2.9) which 

tends to the exact solution in the limit kR —> co, i. e. the amplitude 

of a fluid particle oscillation far from the wall is much greater than 

the wavelength of the wall. 

Thus when kR is large, we may expect from (10.29) that 

the governing equation for the flow, away from any viscous boundary 

layers, is 

U(F" - k 2F) - UtIF = 0 	 (12.1) 

and we will refer to this as the inviscid equation and its solutions 

as inviscid solutions. In stability theory equation (12.1) is often 

referred to as the Rayleigh equation. We may note that, unlike the 

similar situation in stability theory, the time variable t appears 

only as a parameter in (12.1). This is because of our insistence on 

periodic solutions which implies that a "s- 0(1) and hence 

2 R) 
ikR << 1 in (1.0.29). This parametric property of 't is impor-

tant,

r3"C 

 for it means that we may make extensive use of the theory of 

Brooke Benjamin (1959) for the steady problem. 

As in stability theory (see for example Stuart (1963)) 

equation (12.1) has a singular point at any position 	= n where 
kc 
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U = 0 and consequently its solutions cease to be approximate solutions 

to the full equation (10. 29) even when kR is very large. In fact we 

find by the method of Frobenius that the formal expansion of one of 

the solutions to (12.1) involves a term in (r - c ) 100' (NV lc) and 

so the correct form of the approximate solution is in doubt until the 

appropriate branch of the logarithm is decided. This ambiguity is 

resolved frorc a consideration of the full equation (10.29) in the 

vicinity of the critical point n 	n 	this necessarily taking into 
c 

account the effects of viscosity. Tollrnien (1929) first demonstrated 

that if the logarithm is expressed as log(9 - c ) when 	> 
then it is to be replaced by log (n- ) - in. when 

lc I <9 c providing 

Uc > 0 (a suffix c denotes 'evaluated at 1 = 	 ct ). If Uc' < 0, then 

the logarithm is to be replaced by log (yl c  - 	+ in when 	< 

In order to solve (12.1) we make the further assumption 

that k << 1, i. e. the wavelength of the wall is much greater than the 

thickness of the Stokes layer. Then, following Brooke Benjamin 

(1959), we find that the solution to (13.1), which is uniformly valid 

in III  and satisfies the boundary condition (10.30) at infinity, is 

F = A('c) U e 1 k 
cc) 

ry 

11(T70  
- 1] 0(k2 ) 

	
(12.2) 

where U
oo 

 is the limit of U as 1—> co (U00  = cos 	This solu-

tion is due originally to Lighthill (1957). Although the integral in 
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(12..2.) is generally a second order term, near a critical point rk = c 

it becomes dominant and at 	c  exactly the integral is infinite. 

However, as —> 	the zero in U cancels the singularity in the c 

integral, and the whole expression gives the finite value 

	

U 	-k Y) co 

	

Fe = Ak U 	e 	c 

c 
(12.3) 

if Uc' 0. 	If in (12..2) there exist rl 	i = 1, 2, ... , n such that 

<...< h , then to obtain a more 
I  ea 	t cn 

U 	= 0 and yl < y, 
c1 	 cl 

explicit form of (12. 2), we indent the path of integration by circuiting 

each singularity by a small semicircle, under the real axis if 

> 0, above if U < 0. We find that (12. 2) now becomes c. 
1 	 1 

LIc ' !' 	) co 

F = AUe -k1 -11-ink 
Uc. / I

1  
U i' 	

[(-6-•°U. 
2 
 -1] d 

1 	

l i 	4. 0 

, c. i 

1 

÷ 0 (k 2  ) i 	 (1 2. 4) 

where 2 denotes the 'principal value' of the integral in the sense 

of Hadan-iard (1923). This principal value is clearly defined by 

Mangler (1952). The choice of contour is made so that the appropriate 

branch of the logarithm is chosen correctly on either side of ri = 9 

If there exists a critical point Yl 1 = n c where both Uc and U' 
m 	 m cm 

are zero (but from (10. 26)U" c / 0), then we find that (12.4) now 
m 

becomes 

= 
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F = A Ue-kr) 	I - iTrk 

	

n TT 	U" 

	

1.1 	2 	C. 
---"--- ) 

,...:11 ( U
CO 

 ' 	t U1  C  . 
a=1 ' 

 
C. 	11 

i :1-11 

uiv  ( 

	

2 Uco 2 	• C
m  cm 	c - + iTrk 3 U" ) u" 2 

	

c 	
'U" C 	c 

nt L 	rn 	
m 

	

co [ Uct.7 )2 	
+ 0(k2 ) 

} 

t.) 
where the plus sign is taken if the contour is indented below the sin-

gularity, the minus sign i.f indented above. In order to decide which 

of the contours to take,_ we would need. to consider the solution of the 

full equation (10. 29) near )1 = rl 	. This is not examined here as 
c 
rn 

we shall not, in fact, require the information. We note that F is 

singular at n = ri 	as the differential equation (12.1) implies. 

	

Near 1 = n c 	 n , and keeping 1,- costant, it is possible 

to exnand (12.4) in the following Taylor series 

F"" A 	
(1-  IC ) 2  

[(I -)) )(U ' +  	U " + 0(1 - 	)3 
 ik- f c G 	2 	c 	(c 

U 2 	U" CO + Alc - 1+ ii-c  7- (y1 - 1 c )  log(11- vid+ C(Y1-1c) U ' 
c 	c 

+ 01..(vi - yi d2  log 

(
1 v.) c  ) i 1 4 PIC 

+ 0(k2 ) 	 (12. 6) 

+ k (12.5) 
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where C depends on T.  and -whose evaluation deT:ends on the behaviour 

of the integrand in (12.4) over the whole of the range of integration 

and not just locally as with the other terms. It is not evaluated here 

and is included solely to demonstrate the procedure whereby (12.6) 

is matched onto a solution valid at the critical point1'I = V. As c 

mentioned. before, when n  < n , log (1_ n ) is replaced by 
c 	c 

log (9 c-1 ) - 	if Uc > 0, andi by log( r‘ - n ) 	if Uc' < 0. 
t c 

Following Reid. (1965), we introduce the small parameter 

1
/
3 

 
E 	LikR Uc' 

arg 

arg 

= -4T/6 

57r/6 

U
c

l  >0 

U' <0 
c 

 

(12.7) 

and introduce the new scaled variables for the neighbourhood of 

I C 

- 
= (9 - r)c)E 

1 	
G=FE-1 (11.8) 

Although there is no reason to scale l' from the equation (10. 29), 

the boundary conditions for the viscous layer on the wall (10. 30) 

imply the scaling (12.8) so that 4.-0 0(1) in the layer. When these 

are substituted into (10.29) the singularity which is present in (12. I) 

no longer exists, for now the highest derivative is not lost but is of 

the same order as a retained non-linear tern-  (see (12, 10)). In 
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addition, we may notice that t again appears only as a parameter, 

this being essential to the subsequent analysis, for, in deriving equa-

tions (12. 10) to (12. 12), we expand U as a Taylor series around 

= c  keeping ' fixed. Thus the viscous effects associated with 

the critical points 	are confined to thin layers of thickness 
c 

0 EE (2 NJ A..)) 	• 

We expand G in the following manner 

G = oo + ( E log E,1 ) G10 + a G11 + 0(E log I El )2 
	

(12.9) 

where the G.. are functions of X and '' . if we substitute (12. 9) into 
13 

(10. 29), and expand U in a Taylor series around 	= y, keeping et 
c 

fixed, then we obtain the following equations for the G.. on equating 

like powers of E etc. 

2G 
x.)  

eiX a 	x 

2Ci 0 
("---a  2 X) 	x  

Zo 2 	aGi 	U " 	2G 

X)----2--() 	= 2U 	 2 Goo)  

= 0 

=0 

We will now focus attention onto the viscous layer formed 

en the wall i. e. Yj 	= 0. This will enable us to determine the function 

A(t") in (12.2) and (12.4). Therefore, in what follows, wherever a suf-

fix c  would have occurred we now use a suffix o to emphasise that 



dX G. = a. + b. X + c. 10 10 10 Ai(X)dX 

2i-rr 3 
X + d_. 

10 dx Ai(X.e 
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we are considering this layer. We may deduce the boundary conditions 

to be imposed on equations (12.. 10) to (12. 12) from (10. 30), and these 

are 
bGoo  Goo = 0 , 
2)X. 	- - Uo 

ZtGli (-7 	= 	= 
ij 	Z• X 

 

on X = 0 	 (12. 13) 

0 	j = 0,1, 

  

together with the require ineat that G should match onto the inviscid 

solution F, assui-cing a co:nmon region of 

Following Reid (1965), we ray write the general solutions 

to (12.10) and (12. 11) as 

i = 0, 1 	 (12.74) 

where the a. etc. are functions of 	which are chosen to satisfy is 

the boundary and matching conditions. The function Ai(X) is the well 

known Airy function and a property of this is that it is exponentially 

small at co for larg XI < 7r/3, this being the sector in which col lies. 

= Tr/3 It is exponentially large elsewhere except on the lines I arg 

2i-tr/3 and arg X = --rr. Thus Ai(Xe 	) is e:izponentially small for 



Ai(X)dX = X  
co 1 

Ai(X)dX -Ai(X) 
dX  col 

(12.16) dX 

- 124- - 

< arg X < -ir/3, this being the sector in which coa.  lies. Thus we 

see from (12. 7) and (12. 8) that, when U0' > 0. arg X = it/6 for 	> 0, 

and hence we must insist that 	0 in order that the solution may io 

not be exponentially large at infinity and therefore impossible to 

match with the inviscid solution. In the same way we see that, when 

U' < 0, argX = -51-  r/6, and hence we must then insist that c10  = 0. 

Making use of the fact that Ai(X) satisfies Airy's equation 

d 2  
(
d 
 2 - X) Ai(X) = 0 (12. 15) 

we may, by means of a partial integration, reduce the double inte- 

grals in (12.14) to forms involving only a single integration. 

e• g• 

x 

Hence, noting the values of the following quantities, 

31/6 r (2/3)  

X=0 

c°1  
o Ai(X) dX /3 

	
(12. 17) 

We may deduce that, when U0' > 0, the boundary conditions (12.13) 

are satisfied by G and Glo if 00 

Ai(X)1 
dX 
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boo 	o = 	- 2n  
a 	7/6 rr 2 
oo 	3 	I ( /3 ) 

blo _ 	-2,r  
alo 37/6 (2/3)  

} 
(12.13) 

-,where F' (x) is the Gaillrna Function c.f. Brooke Benjamin (1959). 

Similarly we may show that, when Uo' < 0, the boundary conditions 

(12.13) are satisfied by Coo  and Glo if ' 

b + U
o -2.7T  eain/3 

00  
a0. 	37/6  -r-/ ( 2/3)  

b lo 	
tin/3 
	 (12. 19) 

a l o 37/6  r (273 )  

The general solution to (12. 12) can be written as 

U I t 

irr 
G i 1  - zu 	, 	2a0oe

iir/6  N(Xe -  /6)+ boo  A Z  	
(12.20) 

0 

+ all + b11 
 X + exponentially decaying terns. 

where N(x) is just the function referred to by Stuart (1963), who 

reproduces a table of its values due to Holstein (1950). This function 

is regular at the origin and has the following behaviour as I X —> co 

- 
N(Xe

in/ 6) ^f IA I log( IX ; arg A =11/6 

IIT/6 N(Xe 	- R I log( IX I ) + Sri IA1 ; 	arg A = - 5ir/6 

(12.21) 
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In order to mak(..-. a meaningful n- atch between these viscous 

solutions and the inviscid. solution (12.4), we need to specify the size 

of k more carefully. In fact we assume that 

k = 	 (12.22) 

where I 	0(1). We see from (9. 6) that this is a reasonable 

assumption for a typical physiological situation. Thus (12.$) gives 

the solution to the inviscid equation correct to o(E 2 ). We may also 

note that the full solution to (12.1) would give the solution to (10. 29) 

correct to o(E 3). 

We therefore expand A('e') in (12.4) as 

A(r) = A00(21+ (E. log 1E1 ).A 10(Z) + E A (T)+ 0( E2log 1E1 )2  

(12.23) 

and hence, writing (12. 6) in terms of the viscous layer variables 

(12.8) and using (12. 22), we Have that as 	-> 0 the inviscid solu- 

tion behaves like 
U 	 U002-  

G -- Aoosk'  U -- 2--°t  + XLTo 	clog lElf A
10 

 (k' 	+ XUot  ) 
o 	 ,

U
o 

U a U  u 	 U 
+ Aoo 	U 1.1 	U

o 
	A11 (le (le 	+ XU ') 

0 	0 	 0 

2 + A —x U I  + A k' 	- C X 

	

oo 	o 	oo 	U0' 

U 2 	U II  
+ A 	kt 	—2- t X log (IX I) 	+ 0( E log tEl )2  

	

0 
00 	-0 - • uo  

(12. 24) 

IJ 2  
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Therefore, in order that the 0(E o) term should match with G as oo 

X —> co we have that 

U 2  CO a = A k- 
00 00 U

0
I  

(12.25) 
b 	= A U 00 00 0 

Similarly, in order that the 0( E log I Q„I ) term should match with 

G , we have that 
to 

U 
a lo = A lo k' cc) 

UoT  

U 2  U " 
blo = A U + A le OD 	o 

o o 100 	Uo U'o 

  

  

 

(12.. 26) 

 

  

I. addition, we may see that in the o(E ) term of (12. Z4) the terms 

involving log (IX') and X2  are automatically watched. by the solution 

for G11 (11.20) when the property (12. 21) is utilised. Also we have 

U 2  
Co 

a
ll 

-A11k' — Uo 

(12. 27) 

bll =All U + boo  k'  U ' cc)  C 
0 

and ::he matching may be continued to higher order in E if desired. 
4/.402,20 

Combining (1 2.18) and (12. 25)Awe find that if U0' >o. 
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U 
Ao®  = - 1/ El+ 	 1(1  (—)

2  

3
7/6

ZIT 
 2 1-1 	Uo

co  

(/a) 

A = 

U 2 T.J f I 

0 
U 

0 
/(1 

2Tr U 2 

1 " 

(12, 28) 

k' 37/6 r(2/3)  
tip.f  ) ( 

o 

Similarly, if U0' < 0 we see corn (12. 19) and ().2.25) that 

21Te2irr/3 	U 2  
A 	=-1  /11+ 	 k' (U-121)  oo 	3 	7 ( /3) 	0 

U 	2  U 
Alb = 1c1 	) U U 0 	0 

2Tr e2i1T/3 oo 
I [1+

3
7/6 -1-7(2/3) 	U 

Hence, using (12. 22) and (12. 7), we see that 

2  -i-iTT/6 
r 	2Tr k(kR.)

1/3 
Uco 

e- 

0 0 	L 	2: 3 7 / 6 	
( / 
2, 

	

3) 	(U 1)5/3 	-1 
0 

2 
/3  U.  co  2  U 0  I 	_ 

lTr k(kR)1/3 	Uco2 	(2-±ill 6  A 	= k(kR) 
10 

(U 1)
8/3 	

3 	1 	2. 1-7 ( /3) 	(U01 )5/3 

(12.30) 

where the plus sign is taken if Uo > 0, and the minus sign is taken 

if Uo' < 0. 

We now consider what happens in the viscous layer near a 

point 	rt 0  when U0' = 0. Near such a point 

U 
	vi ut'".  to)  tW

fl 
 in-- To+ 221 2  PO I I 

	
+ • • • (12. 31) 
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and, in order to create a balance between the inertial and viscous 

terms in (10. 2.9), we are led to the following scalings on "te  - o 

and 'el 
- 

= 	51  • 
_1 

H = F 5 -, T  = 	1-0 ) 6-1  
(12. 32) 

where 3 is a small para.,,rreter defined by 

S = 	iklt [U 
	-1/4 

-00 

arg 8 = -ir/s3 , uot 	> 0  

0 

(12. 33) 

arg 
5  = 46/5 	Po" 	= ro 

 <0 

Substituting (12. 32), (12- 33) and (12. 31) into (10. 29) the equation 

becomes 
sN 4 
U H 	 21-1 + (Ty - 1 y2  ) -1-7+ H = 0(6) 
bv4 

noting that from our definition of U (10. 26) 

(12. 34) 

LT.' 

L 61-  
= -1 	 (12.35) 

In addition, the boundary conditions to be satisfied on the wall become, 

from (10.30) 

r U H H = 0 , 	= - ST —2—l
t= 	

+ 0(52 ) (12, 36) 
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The first order equation for H is obtained by putting the 

righthand side of (12. 34) equal to zero and we again note the impor-

tant feature that the time variable T occurs only as a parameter. 

Four independent solutions to this equation are found in Appendix C 

in the form of contour integrals, but these are not needed for our 

purposes here. We observe that one solution of (12. 34) is 

h(T)i Ty - y z] 	 (12.37) 

We may infer from (11. 34) that the other three solutions are regular 

at ' = 0, and, by assuming the following behaviour of H as 11 —> co 

h1  y+h 2.  y2 0" H 	y e 	I ao-i-a i/y -F... 	 (12.38) 

we may show that they have the following asymptotic forms 

-/ y 	bo  bl /Y -F. (12. 39) 

(5-T2/J2)/2 ei-(Ty--y 2/2 )/,/2 
H3 •-•--  y 	 c 0+c /y+. . . 	(12.40) 

(5-T 2/ ,121)/2. -(Ty-y 212)/,11-  
1-1.e•-• y 	 I do-I-d i  /V-- 	(12.41) 

4. 

where the a. etc. are functions of T. 
3. 

Because h > 0 we see from (12.32) and (12. 33) that, for 

T •••• 0(1), then d. 	0 in order that H may not be c.::;.-ponentially large 

and therefore impossible to match with the inviscid solution. That 

the function H does match naturally onto the inviscid. solution F may 

be seen by expanding (11. 5) at "C - 	for small ri  0 
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akU 	2 U 
a 
l" 	U"' 	iv 

co 	1 2  	o 
2 	

5 
U 

o 
3U " 	- 3 U

o 	o'' 	
_ -- 

3 "U 	1 	12 U 

4 	U'" 2 	U errU 
()iv 

1 (---` - 
9 	`13. 	Uc 

2  
0 

  

12  log 

 

  

+ 0( 12 ) + 0(k2 ) 

Writing this in the scaled variables (12.31) we have when 

0(Ak5-2/Y)  

(12. 42) 

° 
(12.43) 

The expression (12.22.) implies thatk is 0(54/3) and, since the boun- 

dary conditions (12.36) imply that H is 0(5), we therefore require 

that 

A= 0(65/3) 
	

(12.44) 

in order that the inviscid solution should match onto I-1 in (12.39). 

However, when U 	- 5 TU
ot  (see (12.- 35)), we see from (12.30) 

that 

A 	= 0(6 '/3) oo 
(11..45) 

Thus the leading term in an expansion for A. in terms of the small 

parameter 6 near r 	is of the same order of magnitude as 

that predicted by the leading term in an expansion in terms of E. 
elsewhere.. This fact is of particular significance when we come 

to evaluate the steady streaming associated with this flow. 

The expression (12..44) also implies that the function Hi 
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of (12.37) must be of 0(6
8/3

) in order that it may match .onto the 

dominant term in 	2  of (12.42). (F is expanded at 	r in 

(12.42) and so T = 0 in the expression for H
1 ). Thus H

1 is not present 

in the first order solution. The two remaining functions H
2 (12.39) 

and H3  (12. 40) (1
4. was dissImissed because it was exponentially large 

at infinity) can now be made to satisfy the boundary conditions (12.36), 

and this gives rise to the value of the leading term in an expansion 

for A. 

We Y.c:ay also see how this first order solution for H matches 

onto the viscouc. solution G. as IT —> co. If we use the W. K. B. 00 

method and assume that for arg v = -Tr/S (U
0" < 0) and argT = -Ir/8 

) H 	) e 	f
° 
 (N) + 	f (Y) +... 

then we find that 

H -5/4 	2 ._ 	a 	4 
g 	gaY g3NI 	ex-P(- -37 ITY

3 
 I 

eiir/ 
 ) 

+ g
4y-5/4 	

3 
exi)(+ — 1Ty3/2 1eiir/4 ) 

(12.46) 

(12. 47) 

where the g. are functions of T. We may see immediately that 

g4 rz: 0 otherwise H would be exponentially large. If vie write the 

expression for Goo  (12.14) in terms of the .;caled variables (12. 32), 

	

then we find that, for U
o 	c 

	

' 	-STU 't > 0 
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H ••••• 0(5) + 0(58/3)-y + 0(5) 

1/31  iv/6 T 	X 

dX 

co 	c1 

Ai(X) dX 

(12.48) 

and we may show that for large T the double integral gives rise to 

the following asymptotic representation 

2 I, 
H ,--•• 0(5) + 0(58/3)  y 4-0(6)y 5/4 exp(- 3 11Y

3/2 
 I elm/4) 	(12.49) 

(see Reid (1965)). 

Thus as well as ensuring a match with (12.47) we see that 

it is also consistent with H being 0(6). In addition the 0(s
8/3

).y 

terra again demonstrates the order of magnitude of H1  with which it 

must match, and this agre es with the order of magnitude found pre-

viously. We may perform similar  analyses when either Uo > 0 or 

<1": o  (or both) and we find again that the functions match onto 

each other consistently. 

Thus this firs; order solution for H, though not found ex-

plicitly, satisfies all our requirerz-ents: it satisfies the boundary 

conditions on the wall and matches onto both the inviscid solution F 

and the viscous solution G . It also enables us to find the leading 00 

term in an expansion for the function A in (12.4) when 'ts" T.  and, 

as mentioned before, the important feature of this is that its order 

of magnitude is the same as that predicted by the leading term in an 

expansion elsewhere. 
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The physical significance of this region of thickness 

0 16(2v A.0)3 /2] near fr = 	o 
is that it represents the creation 

1/2 
of another viscous layer of thickness 0 [ •(2. v/co ] . This breaks 

away frorn the viscous layer on the wall and propagates into the in- 

viscid region moving with the poinl, Yl= n cti where U = 0. 
( c l 	 cl  

After a certain length of time a point is reached where U 	is again 
cl 

 

zero and now the viscous layer combines with another layer at 

and they both disappear. They reappear later as the two 
2 

layers at I n 	and v). 	respectively. It should be noted that 
I c 	c3 

during part of the period of oscillation there are no viscous layers 

away from the wall, whilst at other times there may be several. 

Indeed, when U co = 0 there are an infinite number although their 

effect decays exponentially away from the wall. In connection with 

this it should be mentioned that whilst the solution (12.4) does not 

exist at 	= 	where U = 0, the limit 't 	does. Reference 
co 	co 	 co 

to the sketch of the profiles of U(1 , 	at different stages in a period 

of oscillation in Fig. 12.1 should t ake this structure clear. 

We may easily see from matching with (IL 6) that the 

viscous solutions G..
3 
 given in (12. 14) and (12.. ZO) are immediately 

3. 

applicable for the solution of (11.10) - (12. 12) in the viscous layers 

away fror-,  the wall. As we should expect, we find that the Airy 

function solutions are not required. If one had existed and decayed 
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exponentially for 1 > n , then it would have increased exponentially 
c 

for r5 < IN and this would. have been intoleraLle. Similarly the first 
c 

order solution H (12.39) to the equation (12... 34) is directly applicable 

in 'he regions where the viscous layers are either (.--_.rnerging or dis- 

appearing. As before, at the inception of such a r3gion H is matched 

to the first order viscous solution G. , but at its conclusion it now 00 

has to be rra;chec7 onto the inviscid solution F. However, on closer 

investigation using (12.. 14), (12.25)2.110 (12.24), we see that; those 

are now identical to first order in E , and ':(11.-to the rriaLcning is, in 

fact, unaffected. Bc..szn:E.se A. 	is now 0(1) near such a region, we 
eo 

-2/3 	 -5/3 see from. matching that 	mu.st be 0(5 	) and this is 0(5 H2 
 

greater than in :he er.Tuivalent region on the wall. 

We nol,v concentrate on the evaluation of the steady  stre.F,,m 

ing associated. with this 	away fror.,::. the viscous layer on the wall. 

Proll‘ (10.34) vie may see that if there were no viscous layers then 

the contribution of 0(a) woul:, be given by 

;lc 	21t 

=1  (s) = 	-- 
yr  

d 	 (1 2. 50) 

Being the inviscid solution and OR denoting 'Real part of'. However, 

as mentioned in the previous paragraph, near the viscous layer at a 

, the invisci,1 solution is identical to the viscous solu- I C 

to first order in E. . Therefore, using (12.6) and (12.23), vie 
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find that the dominant contribution to the steady streaming is 

-k Jr) +nog 
27r A

oo 6y1 
(12. 51) 

the neglected terms being of 0(kR) ". Strictly, we do not know 

the value of the leading term for A in a region near the time 

when Uo = 0, but we inferred from (11. 44) and (12..45) that it was 

the same order of magnitude as that predicted by A . More e7,r.pli- oo 

citly it is of 0(8
5/3

) and, because such a region exists for a time of 

0(5), then the error incurred from this source when using (12. 51) is 

of 0(6
8/3

). This is 0(kR)-2/3  and is much smaller than the effect 

of the neglected terms. Should, however, the integration pass through 

a region•where
c 	0 then the use of (12.•51) must involve an error 

of 0(6H). We saw from the matching conditions outlined above that 

H is 00
-2/3

) and so the error is 0(6
1/3 	 1- /12 

). Because this is 0(kR) 

it is very much larger than the error of 0(kR)-1/3 from the neglected 

terms. Nevertheless, in the limit kl —> co, it is still vanishingly 

sm7.11 compared to (12. 51). 

Using (10.26) and (32.30) we find that we can write (12. 51) 

as 
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(s) 
	 rr 

4  Ale-(1+k)Thik1 	 co3(Z7r1+-rr/4)cos5 (t+IT/4)  
27T ..31T 	('r+Tr/4 )+2 a e

in/6
cos2Ar 

4 

cos (-C- 	)c os5/3 
(t+ 44)  + 	- 	 d't 	(12.52) 

cos
573 	 -irr/6 rt-HT/4)-2 	cos2T 

4 

where 
1/3 (ka)  

6  - 5/6 7/6---7 2 
a 	3 	I ( /3) 

This may be rearranged into the following form. 

asinw6)e.-0-Fm1 sin  k x 

(12. 53) 

it 

cost-' ) cosy/3t (1-1-sin 2t) 

cos ta/3t+2 Aces 5/3t(l+sin2t)costrr/* ES 2(l+sin2t)a 

if 
-z 

dt 

(12.54) 

or more graphically 

(s) 	 (12.55) v 	= -k (kR)
1/3

e-(1+k) fr. cos +I sin v•N I sin klif 1 1 2 't 

The integrals II  and 12  have been evaluated numerically using an 

integration routine available on the Imperial College IBM 7094 

commuter. The results are given for different values of k(kR)
1/3 in 

Table 4. 

From Chapter 9 it would appear that k(kR)
1/3.s generally 
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on -the small side for physiological applications, and so the limiting 

values of I1 and 12 as k(kR)1/3 or A 	0 are of some interest. We 

therefore consider the following integrals. 

2 	 coz; 	t (l+sin  
8/3 

J 
cos 	t+26cos

5/3t(l+sin2t)cos(ir/q1-6.2.(1+sin2t) 1 	10/3 

IT 
-- 

2 (12. 56) 

and 

J2= 
sin t cosy/3t (1 + sin 2t)  dt 

10/3 	5/3 
cos 	t+2acos 	t(1+sin2t)cos(Tr/91- 62  (l+sin2t)2  

tr  
2. 	 (12. 57) 

We may write Ji  as 

'ZI3 cos 	t (l+sin 2t) 
0/3 	5/3 	,‘ 2 

COO 	t÷2.6.COS 	tCOriftri tr 4-A 

 

n 	 5/ 3 
)
n 

 .6 sin
n 
 2t1...2A+ Asin2t-2cos 	t cos(triat  

cos 
10/3 	2.6c0.,„5/3t co:_tr/o  +4, 

	

A 	x, 

 

n= 

 

(12. 58) 

and because the order of :magnitude of each tel'm in the series is 

3n/5 
< 0( 	) throughout the range of integration, the error involved 

in neglecting these will be < 0( 6
3/5 ) times the remaining integral. 

Therefore we consider 

dt 

Tr 

a  



10/3 
cos 	t+24 cos 5/3

t 
IT 
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IT 

2 
cosy/3t (1+sin2t.) 33 

c osfr/63 -f 

2 

2. 

Tr 
2 

0 

8 cos /3  

 

dt 

(12..59) 

 

10/3
0-2 c os 5/3 cos t costr/91- 

 

and if vie 1.7.se the substi.mtion 	= cos t then J1 becomes 

J1  = 6 

1 10 

5 dY 
1 -y6)1/2 (y10

+24 y costr/lf 2 ) 
(12. 60) 

We now split up the range of integration into two parts in 

the following manner 

where 

31 = 6(3p  + 3) (12.61) 

1 
Jp  

/ 	. 0 
= 

(1 	) 2(17.10+26 y5co45/6)i. t!i.2 ) 

(12.. 62) 

10 

. 	6 1/2 10 ) 	(y +24 y5
co4r/6)1- 

We :may er.pand the integranc.I of J in the following manner 

dt 

d 

= 

1 c, 
l. -1- 

(1-76)14  P 

CO 

_z=1 

ri 
as. .6 i . ---7--. I 

v 	cly 	(12..63) 
J ' 

Y ' 

if 8, -« p'. The error incurred by replacing the full expression for 
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J by 

= 
i1  

1  dy (1 -y6)1/2  (12. 64) 

will therefore be given by the order of magnitude of 

(1 	

(1"Y 
6

)
1 /2 

y
5 dy 	 (12.. 65) 

which is 

1/2. 

dY 	 1

1 
A  +dy 

(1-Y
6
)
1/2 

1 /2 
(12. 66) 

= 0(LS. /p4) 

the constants A and B being of 0(1).. Because of the condition 

« p5 
the error in using the expression (12. 64) for J is therefore 

- A 1/5  
0( a 	). 

We now write J as 

1 

J = 	 (12.. 67) re (i_y6 	dY )1/2 	(1-  1y6)1/2 dY 

and so J 	J becomes 

2 	-7-cos (.4r/6)-F 6. 2  J 	= 	 dy 
(1-y6)1  (y1°

+2Q y5costrr/01- 2 ) 

(12. 68) 

C aa  GYvt.- 



3p + J= - t  1 + y +... 
2 

d;,- 
(y 	+2.6 ycostir/6)F 42 ) 

2  
10 	s 	

6 	 y 
(P 	rz 

2A 7-)COthil6)-1-  	f 	1 6 

0 
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We again expand the integrand so that 

(12. 69) 

and the order of magnitude of the integral is given by the first tern-) 

providing p6 
<< 1. Thus the value of p is such that 	

1/5<< p << 1. 

Using the substitution y = 4 1/5 the first term in the expansion 

(12. 	becomes 

pAa1 /5 

1/5 	 2 N.\ Scos(rr/6)+ 4 2  

y110+2. 5cos(Tr/6) + 1 

= 0(41/5 ) 

Therefore, from (12. 61), we finally have 

+ 0( A.his ) Ji  = 	-,,6)5/2. 
o 

(12. 70) 

(12.73.) 

d.rA 

which becomes, using the substiation x = 

1 
1 /5 = -1 /2 -5/6 d + 0( 6 r. 	) 

0 

1 	1 
= 	• "i) 

1 /5 ) 

where B is the well known Beta Function. 

In a similar way we can show that 

6 
Y 

(12. 72) 
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2 2 
3 	1 	1 

Z = 	B(-6 
 , -) -I- 0( Q. 1 ) 

and since 

,1 1, I" (1/6) r(1/2) 	r(1/6)  71. r 
B t-F)' 2/ 	r 	= 

(2/3) 	V-13 ) 

the expression (12. 55) becomes, using (12. 53) 

(12. 73) 

(12. 74) 

(s) 	7r17r1/2T'(1/6)k(kR)  
1/3 

u1 	= - 	 2 ~cos 24/337/6 Cr -7 (2/30 

4/5 

and this gives 

+ 	sinti e (11-k)r-, 
f sin. ky 

(12. 75) 

(s)= -0. 5927 k(kR)1/3 [cos 	+ 	sin 	e -(1-4-k) 

/1-4/5 
Ofk(kR)'' JJ 

 

sin k)15.  

(12. 76) 

In Fig. 12-2 we plot the values of log (0. 5927 - 1
1 ) and log(0. 8890 

- 	) against log I k(kR)I/3  1 for values of k(kR)
1/3 from 0.001 to 

0 , 91 .  
11 4-,:r3 inclusive (see Table 4). As can be seen, the resulting curves 

are straight lines with gradients of 1/5, and this verifies that the 

error in (12.76) is 0 [k(kR)1/3 
11/5 

 . 

To summarise, the dominant steady streaming is of 0(a), 

and, if we assume k ,•••• 0(kR)1
- /3  then, away from the viscous layer 

on the wall, it is given by (12. 55) in the limit 161 -> oc. The error 

in (12.55) is 0(kR)
-1/3 almost everywhere, but, if r-  is within a 

distance 0(kR)-1/4 from a point where, at some time during a cycle, 

both U and U' are zero, then the error is of 0(kR)
-1/12.  This may 
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be quite considerable even for very large values of kR. Should we 

take the further limit k(k11.)
1/3 —> 0 then the. steady streaming is given 

by (12. 76). Because the error is 0 [k(kR)
1/371/5,  this too may be 

quite large for very sr.all values of k(kR)
1/3

. A sketch of the steady 

streaming predicted by (12. 55) is given in Fig. 12.3. This consists 

of a peculiar stacked struc'hire of regio1-3.s of recirculation, but, 

because of the e:cponential decay away from the wall, only the first 

few regions are of importance. In this respect it is not dissimilar 

to the steady streaming depicted in Figs. 11. 1 and 11.2 for small 

kR. 
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APPENDICES 



X 0  - 0 o 	r 
= 1 	 (A.4) 

-6X 
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APPENDIX A 

7'0  SHOW THAT B AND C ART:', IDENTICALLY ZERO IN (3.20)  

Su -:!:,ose that in (3. 20) ri is not identically zero and so in 

the Stoker,. layer X0  B 93 
as 	—> co. Ls only harmonic der,en- 

dence oil tin le is allowed, and the first order flow in the interior rust 

Zo, we 1 1-1,-,7 (Ira7 : the time e1e:2ivaive fror._-• (2.. 21) for OM" 

puri7oses here. Lie_a, using (3. 5), this equation for flow in the outer 

region becomes 

a (4 7124)  
(A. 1 ) (r,yi ) 	Rs 

Writing (3. 20) in terms of the variables for the outer region we find 

that as 11 • co 

0.-03  + 0(13-1) 	 '(A. a) 

This leads to our writing X as 

= (3-2/.0 + 13-1 	+... 	 (A. 3) 

where, from (A. 2), X
o n-Aust satisfy the boundary conditions 

Because of (A. 3) the effective Reynolds number in (A. 1) 

is p R and this is large for 	p. In addition (A.4) implies that 

no streamlines associated with x
o 

enter or leave the Stokes layer, 
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and therefore the first order flow in the outer region must have uni-

form vorticity (Batchelor (1956)). As pointed out in Chapter 5, this 

does not specify the flow uniquely as the outer region could consist 

of several regions each having uniform vorticity of a strength dif-

ferent from that of its neighbour. However, having decided on one 

such configuration, this does imply a definite non-zero velocity dis-

'tribution at the edge of the outer region as only one solution of the 

vorticity eouation 

s7 	= - 
	 (A. 5) 

is regular within a closed area. (3 is the voracity which is uniform 

in each region of the configuration. ) But (A.4) implies that this velo- 

city distribution must be identically zero and hence 	_o 0.  
This leads directly to the conclusion that B 0. 

We now consider the possibility of a boundary layer being 

formed at the edge of the outer region. If this has a thickness 0(o-) 

then in order to balance inertial and viscous terms in (A.1) we re- 

quire that cr 	R
s
-1

. But to match with Z we require that 
o 

-2 3 	 1/2 -1/4 
o- and this leads to the conclusion that o- 13 	Rs 	

and 

p_1/2 
Rs 

3 • We therefore define the following boundary layer 

variable s 

and then if 

1 /2 	3/4 	3.E 	-1/2 	/4 
= 13 	Rs 	Y, (1-r) (A. 6) 



ic-o 	)10-4
3
Yox 

011 
- 

4
o
x 

E 2 	s 
(A. 8) 

The asymptotic form of the solution to (A. 9) as 

- 0 on NrA = 0 (A. 9) 

—> co 

leaving out terrrs of 

o 
y) 

boundary conditions 

Hence we again find 

that 	 —› 0 as 

Therefore we introduce the scaled stream. function X = PRs 	
X in i/z . 
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= fox 
5(P)3€ 
	

(A. 7) 

where 5(1) —> 0 as 3 —> 0, the equation for X
o 

may be deduced from 

(A. 1) to be 

The boundary conditions (A. 4) become 

can be shown co be 

  

a(j1) q X   + 1000 (A.. 10) 

exponential growth. If a E. 0 then (A.10) implies 

co, and Riley (1965) has shown that, with 

x 
(A. 9), this leads to the conclusion that xo 

= 0. 

thatXo 
and therefore B are identically zero. If 

a t 0, then writing (A.10) in the original variables, we have as 

—> co 
1 	1 /2 (1-r)+ ... 	 (A. 1 1? 

the interior or core of the pipe. The effective Reynolds number for 

flow in the core is now 13
-1 

R
s
1/2 which is again large for small 13. 

The relation (A.11) also inwliec that no first order streamlines of 
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the core flow enter or leave the boundary layer, and. thus the first 

order flow in the core )eo has uniform vorticity. Therefore we once 

more have a definite prescribed velocity at the edge of the core and 

a configuration of regions of uniform voracity similar to that described 

previously. 7.-Iowever, our experience in Charter 5 implies that, 

having decided on one such configuration, the problem can be solved 

uniquely by applying the condition of recirculation of the boundary 

layers, including those for7.ed between regions of different vorticities.  

That is, the problem can be solved completely with only the two 

boundary conditions (A. 9) specified at the edge of the outer region. 

Because these two conditions are those of no flow, we may therefore 

deduce that there is no flow throughout the outer region. This again 

leads to the conclusion that g
o and hence B are identically zero. 

In a similar way we can show that C = 0, thus justifying ou.77 

analysis of. Chapter 3. We may note that, if in (A. 1), the effective 

Reynolds number were small, then the boundary conditions (A.4) 

must imply no flow in the interior, if we expand the solution in powers 

of the Reynolds number as in Chapter 4. This would again determine 

B and C to be identically zero. 
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APPENIDrf. B 

THE NUMERICAL SOLUTION OF (5.36) 

The integral equation (5. 36) was oolved on the Imperial 

College IBM 7094 machine. In iteration procedure was used whereby 

an approximate profile for yi(y) was used to evaluate the right hand 

side, thus giving an improved estimate for the profile on the left hand 

side. This in turn was used to evaluate the right hand side and the 

process continued until the inrut and output profiles differed by a 

small enough amount. Infinity was taken to be at y = 10 and this was 

found to be more than adequate. 

However, in order to evaluate y. up to y = 10 on the left 

hand side, it v✓as necessary o excranolate for the values of y, when 

10 < y < 20 to evaluate the right hand side. This was because the 

mazr.imum contribution to the integral on the right hand side came frori: 

the vicinity of y = y', and it was therefore necessary to extend the 

range of integration until the kernel 	K(y,y') of the integrand became 

negligibly small (< 10
-6 

 ). This led to our choice of y = 20 for the 

upper limit of integration. The extrapolation was easily accomplished, 

the constant ,orofile for yi  as y —> co being anticipated by putting 

yi  (y > 10) = y 1 
(y= 

 10). 

The starting profile used was that of 	this being 
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evaluated for y > 0 from; the integral in (5. 32) using Simpson's rule 

Owith a step length of Tr/200. The value of -‘/..(0) was 
N 
 .( ) which we 

knew exactly to be zero. Similarly the integral on the right hand 

side of (5. 36) was evaluated. using Simpson's rule with a step length 

of 0.1. The errors associated with these integrations will be discussed 

later. 

The iterations, were continued until the value of yi  at each 

station yn  = 0.1 x n differed by less than 0.00001 from the value given 

by the previous iterate. It was, however, found necessary to devise 

a way of speeding the convergence of the iterations when y was large. 

This was accomplished by anticipating the behaviour yi  —> constant 

as y —> co, and noting that the value of this constant value was ap?- 

roached from above by the iterations. Thus after each evaluation of 

•ale profile on the left hand side N.(1), a nevi profile •y.(2) was deduced. 

by ?utting 

(Z) 	(1-) 
'i 	(Yn) = Yi 	(Yn) 

(2) 	(1) 
Yi 	(Yn) = Yi  

n < N 

n> N+1 

(33.1) 

where N was determined from the following conditions 

N.(1  )(y 
N 

 ) < y (I)  (y 
100  ) - 0. 00001 

(B. 2) 

N3. 
.(1) 

' 100 ) 	0.00001 < y.(1 )(y
n 
 ) < y. (1)(y

1 0 0 
), N < n < 100 

1 	 ••••• 

The erofile y. (2)  was then used to obtain the next iterate for y,. If, 



~zowever, t'_ze conditions (B. ~) could not be saiisfied, or if Y )(y 
i 	100 

of the previous ite~ ate were less th ..n the subsegaent y )
(Y loo) 

(indicating that the constant value had been overshot), then the itera-

tion was continued without recourse to the above device. This accel-

erated the convergence considerably, but it was still found necessary 

o continue for fifty iterations after the condition for convergence had 

first been satisfied, in order to guarantee that the resulting profile 

was correct. If the value -y.(y ) of one of these fifty profiles was not 
n 

within 0. 00001 of the value due to another, then the iterations were 

continued. 

If la were the ste-;:. length, then the error associated with. 

using Simpson's rule for the numerical evaluation of the integrals 

would normally have been. 0(h -- ), provided that the first four deriva-

tives of the integrand existed and were boon '.w.. tiowever it could 

be shown that, when y -- 0, v 174, .0 and hence -yo, 	y log y, and that the 

error was now 0(h2 ). Therefore, in order to check the accuracy of 

the integrations, use was made of the following device. If I were the 

true value of the integral in (L. 36) and I I and I the values obtained 

by using Simpson's rule with step lengths of h and 21i respectively, 

then, for the -y 0 profile, 

I = I2- + 4Eh2 = T 	E3112 
	

(B.3) 

and hence 
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I = I1  + 
1 

- 12 	 (B. zi) 

E being some constant. When the calculations were performed using 

step lengths of 0.2 and 0.1, the maximum difference between the 

resulting profiles for yo 	found to be 0. 00011. Thus (B.4) assured 

that the profile was given correct to three decimal places when the 

step length was 0.1. The rAP..gnitude of the error associated with the 

t. 
integration of y i  was the norl-.-al 0(h`), and a similar analysis to that 

given above showed that, with a step length of 0.1, y1 was given 

correct to at least the four decimal places ensured by the condition 

for convergence of the iterations. Similarly it could be shown that 

the :1?:  were given correct to five decimal places when evaluated from 

the integral (5.32) using a ster length of Tr/200. 

The profiles for the y. and.y, are given in Table 1, and 

\rye deduce from (5.35) that, for 	y) —> 0 a y —> co, 

-S 	- 
y (co) 

y (co) 0 
(B.5) 

Therefore, we find that ¶ =-0. 56 correct to two decimal -1-.1aces. 

The equation for the elliptic 	was solved in precisely the same 

way, and the values of 	for different values of the eccentricity are 

given in Table 2. 

In addition the profiles of y and rr  were evaluated at dif-

ferent positions around the semicircle. Having derived the profile 
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of y(xe, y), the property ('..26) enabled TI  to be evaluated along 

the line of symmetry fror.r.i. equation V5.22-). Then, h aving obtained 

T7 	Y), the property (5,27) was utilised to e,.ralu.ate y along the 

curved boundary from (5.'12). The integrals of y and r were again 
• 

evaluated by Sirbpson's rule with a step length of 0. 1, but, in order 

to evaluate the second integral on the right hand side of (5. 12), the 

step length had to be shortened considerably for small y from the 

value used previously. This integral corresponded to. 

= vo + 	
-1 

y115. evaluated at the position under consideration, 

= /IS say. Thus for y > 0 it was evaluated from an integral iden-

tical to (5. 32) except that x
e 

was replaced by xPlf) and. the upper 

limit by /P" . However, for 1.S .1-• 0, the integrand had a sharp peak 

near y = 0 and this necessitated the successive shortening of the step 

length from the value n/200 used above until te desired accuracy of 

three decimal places had been achieved. In fact, to conserve com-

puting time, it was finally found neces,-“a.ry to interpolate the value 

of the integral at y = 0.1 fror.,--  the values at y = 0. 0, 0.1 and 0. 2. 

The value of the integral at y = 0. 0 was again known exactly, and 

was equal to y( x(' ), 0) which can be found from the boundary condi-

tions (5. 11). 

The resulting i,rofiles of rand y correct to three decir3-.-al 

places are tabulated in Tables 3a and 3b respectively, and they are 

also depicted in Figs. 6. 5a and 6. 5b. 
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A.PPENDur. C 

THE FUNCTION 1-1(y, T) 

In this a]..-pendiz.  we seek solutions to the following equation 

derived from (12. 34) 

-b
4
H 	1 2 'b 
4  + (TY - 	 H -7- (C. 1) 

We may integrate this once to give 

31-T. 	1 2 a i ---3- + (Ty - — y ) ---=-- + (y-T)11 = S(T) 
-by 	

2.. 

where S is an arbitrary function of T. Thus three of the solutions 

to (C. 1) also satisfy the hoz.. ogeneous equation obtained by putting 

S = 0 in (C. 2). The other solution is given by a particular integral 

of (C. 2) when S * 0. 

We use the following substitution 

= 	T)2 	 (C.3) 

and this transforrf s (C. 2) into 

H 	H 	S 
1/2 8x 	+ 12 	+ (T 2. -x) 	+ H = 

x 
We now look for a solution of the form 

(C.4) 

(C. 2) 

H = 

jb e  
-per 

1(p) dp 

a 

(C.5) 
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where the limits a and b are to be chosen in sore suitable manner. 

We also assume for he present that S = 0. '7;cluation (C. 4) now 

becomes 

b 

[(.8p2 -1)p e -13'11:0 	4. 	[P(1-8p2)--93 + (2-T2p-12p2 )0 le-Pxdp = 0 dp a. a 
(C. 6) 

We see that if the limits a and b are chosen so that the expression 

in squared brackets in (C. 6) is zero, then the equation is satisfied 

if 

p(1-8p2 )—+ (2.-T2p - 12p2 ) = 0 
dp 

and this gives rise to the following expression for yS 

- = p_2 
(1-c f2p)(1-T2/Ii)/4(1+2 f2.0(1-FT2/1i)/14_ 

(C. 7) 

( C . 8) 

We observe that, when this is substituted into (C. 5), the integrand. 

has a pole at p = 0 and branch points at p = 1/2 	Because of this 

we choose the limits a and b to be at infinity and larg(ax., bx)I < if/2. 

More explicitly, if we assume that 7J 0'r > 0 - 	therefore arg x = it/4 

(see (12. 32)), then we find that the roost suitable value of a or b for 

our purposes 1s so , where arg, co = -ir/4. Thus the three solutions 

to (C. 4) when S = 0 are given by the following integrals 

x 1-T2/,12-,)/ 	1-FT/...127)P.c., Li 	(1-2. vrip )( 4(1+2 .%/1-2.p)(  

i = 1,2,3. 	 (C.9) 
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where the contours C. start and finish at co and branch cuts are 

made from p = + 1/2 #12.to oo as shown in Fig. C. 1. 

The integral I1 around the contour 01 is easily calculated 

fro-a:a the value of its residue at p = 0. Thus we have 

I = 2Tri (T 2  - x) 
(C. 10) 

= 2rri (21/12 - y 2 ) 

and this is just the solution I-11  of (12. 37) 

If we write 

p= i/2 	+ re-"10 
	

(C.11) 

then the integral I around C2 becomes 

exp [-(?Z 	+ re -41r/4 )x 1 

co  [1/2 A/Y + 	l a  

x 
[2 izre_ilr/41(1-T2/ A/2)/4[2+2 zre_ iir/41 	 e  1+T 2/ A/2)/4_iirAcir  

co 
exp r-(1/2,x/2+  re 7irri4  )x  

5  11/2, Ari re.7i"/4 2  

,nre7:11741 	 [2+2 dIre7.11./4 ] 

	

(1-T2/ ,/i..)/4 	 (1+T 2 / Ar2- )/4 
e 	dr 7iirt4 

f  7Tr/4 
exp -(1/c.Nri + 5e10)xl  x 

y, 11 /2.,sr2, 	seig i 2  
-WP9 

x 	 -2,12.5e1 
1 	

[2.+2,125,:i9 
(1-F"fi)/4i5eiGdg (1-T2//1)/4 	 T2/ 

(C. 12) 
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where 6 is the radius of the circle enclosing the branch point 

p = 1/2 	. If 172 1 < 10 then the last integral in (C. 12) vanishes 

as 6 > 0, and'., writing t = r 	\ve may show that for large I xl 

12 — 8(-2  /2)
(1-T2/ ./2)/4 (1+T2/4/70/4E 7i•tr(1-T 2/,./2)/16 

os 

- e 	(1 -T2/ 'if )/16 e -3c/2 ,,,r2 -(5- T2/,)/4. 	e -tt (1 Tz/  

(C.13) 

The integral is a cornple.7: Gamma Function and is 0(1). Thus we see 

that for large y 

I2 	R(T) y-(5-T2/Nr2)/2 e+(yT--y 2/2)/„/2 	(C.14) 

where R is some function of T. Although the above asyrcptotic analy- 

sis is only valid if 1 T2 t < 10, we 	deduce from (C. 14) that I 

corresponds to the solution 1-13  of (12. 40). In a similar way we can 

show that the integral 13 around C, corresponds to the solution H4 

of (12.41). We may treat the case U' 0" < 0 in the same way, the only 
w: difference being that, since arg = -Tr/4, we choose arg, co = TT/4.  

If S *0 in (C. 3), then it can be shown that 

1 	1 
7.7 = ic 1772 dp - 2 ,/-ir 

(C15) 

and hence that equation (C. 4) is satisfied by (C. 5) if 
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p(1-8p2 ) aTdc4  + (2-T2p - 12p2 ) - 	
1

1/2 
wrr p 

(C.16) 

We have chosen S = 1 with no loss of generality. This gives rise to 

the following expression for a iDarticular integral of S 

= 	
(1-T2/d2)/40.÷2dap)(1+T2/"/2)/4 3 	

(1-212P) 
2 akirp 2  

x 

p1/2 (1-2 ,,f2p) 
	T2/ " 2)/4  (1+2 ,Ap)-(5-1- T 2/)/4ap (C.17)  

0 

which leads to the following integral as a solution of (C. 1) 

14  = 4e-Px 0(p) dp 	 (C. 18) 

Cl 

 

$(p) being that defined in (C.37). For small p (C. 17) becomes 

„s, 	1 	p-1/2 (1 + 0(p)) 	 (C. 19) 
3 A/Tr 

and so if we again assume Uo" > 0, and therefore arg cox  = -ir/4, and 

let the radius of the circle enclosing the branch point p = 0 tend to 

zero, vie find (C. 10) assumes the form 

1 	 -r ix! i, 	) -iTr/4, 	-ilr/4 Fotre 	dr e 
e 
  

CO 

co 

e-r lx1 95(re7iir/4.- )dr e7iTr/4 

0 

 

(C.20) 

 

0 
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We again write t = r 	an,--1 (C. 20) now becon- es 

14 = 	e-t (—t e -iTr/4) dr 

CO 

co 

t 
e
-t 	

e
7iir/4 

Pci 	
')dr e7iir/4 

0 

Thus, for large pci we find, using (C.19) 

e- ix/8 	co 
e 
-t 

2 x-1/2 
3 

Therefore for large 

2 -1 
4 3 

co 

T-TITE 	-772 di:  
3 7r 

(C.21)  

(C.22)  

(C.23)  

and hence we see that 14 corresponds to the solution 142 
 of (12. 39). 
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TABLES 



TABLE1:Thefunctions yi  and y. . 

y 	-Yo 	-Y1 -Y1 

0.0 0.0 0.0 0.0 0.0 

0.1 0.03286 0.01242 0.038 0.0154 

0.2 0.05037 0.02144 0.061 0.0273 

0.3 0.05997 0.02774. 0.076 0.0365 

0.4. 0.06466 0.05184 0.086 0.0455 

0.5 0.06611 0.03419 0.092 0.0486 

0.6 0.06558 0.03515 0.096 0.0523 

0.7 0.06318 0.03503 0.099 0.0549 

0.8 0.05999 0.05410 0.100 0.0565 

0.9 0.05619 0.03257 0.101 0.0574 

1.0 0.05204 0.03063 0.101 0.0578 

1.1 0.04772 0.02842 0.101 0.0578 

1.2 0.04539 0.02606 0.100 0.0576 

1.3 0.03914 0.02366 0.099 0.0572 

1.4 0.03506 0.02127 0.099 0.0567 

1.5 0.03119 0.01896 0.098 0.0561 

1.6 0.02758 0.01677 0.097 0.0555 

1.7 0.0224.24 0.01471 0.096 0.0549 

1.8 0.02118 0.01282 0.096 0.091 11  

1.9 0.01840 0.01110 0.095 0:0539 

2.0 0.01590 0.00954 0.095 0.0535 

2.1 0.01366 0.00815 0.094 0.0532 

2.2 0.01168 0.00693 0.094. 0.0529 

2.3 0.00993 0.00585 0.094 0.0526 

2.4. 0.00841 0.00491 0.094 0.0524 

2.5 0.00707 0.00410 0.093 0.0523 

2.6 0.00592 0.00340 0.0521 

2.7 0.00494 0.00281 0.0521 

2.8 0.00409 0.00231 0.0520 

2.9 0.00338 0.00188 0.093 0.0520 
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Y -Yo -yi -Yo -yi  

3.0 0.00277 0.00153 0.093 0.0520 

3.1 0.00226 0.00124 0.0520 

3.2 0.00184 0.00100 -- 0.0520 

3.3 0.00149 0.00080 -- 0.0520 

3.4 0.00120 0.00063 -- 0.0520 

3.5 0.00096 0.00050 -- 0.0520 

3.6 0.00076 0.0000 -- 0.0521 

3.7 0.00061 0.00031 -- 0.0521 

3.8 0.00048 0.00024 -- 0.0521 

3.9 0.00037 0.00019 0.0521 

4.0 0.00029 0.00014 -- 0.0522 

4.1 0.00023 0.00011 -- _- 

4.2 0.00018 0.00008 •••••=11. 

4.3 0.00014. 0.00006 .11=11.1=1,  f1.001m,  

4.4 0.00010 0.00005 

4.5 0.00008 0.00004. -- 1•••••• 

4.6 0.00006 0.00003 

4.7 0.00005 0.00002 01111f 

4.8 0.00003 0.00001 

4.9 0.00003 0.00001 =OMNI •I••••• 

5.0 0.00002 0.00001 ••• 

5.1  0.00001 0.00000 1••••••• 

5.2 0.00001 -- 

5.3 0.00001 -- IMMO./ 

5.4 0.00001 -- 

5.5 0.00000 0.00000 0.093 0.0522 
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TABLF, 2: The vorticity -5 of the core in the upper semi-ellipse 
when Rs-* co. 

Minor axis of ellipse in. plane of coil 

Eccentricity 0.0 0.1 0.2 0.3 0.1k. 0.5  

-----7 -0.56 -0.56 -0.56 -0.55 -0.55 -0.54 

Major axis of ellipse in plane of coil 

Eccentricity 	0.0 0.1 0.2 0.3 0.4 0.5 1 
1C 	-0.56 -0.56 -0.57 -0.59 -0.62 I -0.66 
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TABLE 3: The profiles of P and. y around the semicircle. 

(a) The profiles of T' along the line of symmetry-VS=0o- 

115 =o 
f.:775-11̀ 7;7513 	r=0.0 

    

r=0.5 	r=1.0 

0.0 0.000 -0.007 =0.004 -0.003 -0.003 

0.1 -0.011 -0.007 -0.004. -0.003 -0.003 

0.2 -0.012 -0.006 -0.004 -0.003 -0.003 

0.3 -0.011 -0.006 -0.004. -0.003 -0.003 

0.4 -0.008 -0.005 -0.004. -0.003 -0.002 

0.5 -0.005 -0.004. -0.003 -0.003 -0.002 

0.6 -0.003 -0.003 =0.003 -0.002 -0.002 

0.7 -0.001 -0.003 -0.003 -0.002 -0.002 

0.8 ,0.001 -0.002 -0.002 -0.002 -0.002 

0.9 0.002 -0.001 -0.002 -0.002 -0.002 

1.0 0.002 0.000 -0.001 -0.002 -0.002 

1.1 0.003 0.000 -0.001 -0.001 .-0.001 

1.2 0.003 0.001 4.0.001 -0.001 -0.001 

1.3 0.003 0.001 0.000 -0.001 -0.001 

1.4. 0.003 0.001 0.000 -0.001 -0.001 

1.5 0.002 0.001 0.000 0.000 -0.001 

	

1.6 0.002 0.001 0.000 	-0.001 

	

1.7 0.002 0.001 0.000 	0.000 

1.8 0.001 0.001 0.000 -- 

	

1.9 	0.001 	0.001 	0.001 

2.0 0.001 0.001 0.001 

	

2.1 	0.001 	0.001 	0.001 -- 

2.2 0.000 0.001 0.001 -- 

	

2.3 	0.001 	0.001 -- 

2.4. 0.000 0.000 0.000 0.000 0.000 
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(b) The profiles of y along the curved boundary r=1 

11.5 =IT 1)5 =37714 1JS 27/2  11.5=7/A 11:=0 

0.0 -0.003 -0.005 0.030 -0.005 0.000 

0.1 -0.003 -0.008 0.025 0.001 -0.011 

0.2 -0.003 -0.010 0.020 0.005 -0.012 

0.3 -0.003 -0.010 0.016 0.007 -0.011 

0.4 -0.002 -0.010 0.012 0.008 -0.008 

0.5 -0.002 -0.009 0.009 0.009 -0.005 

0.6 -0.002 -0.008 0.006 0.009 -0.003 

0.7 -0.002 -0.006 0.004 0.008 -0.001 

0.8 -0.002 -0.005 0.002 0.008 0.001 

0.9 -0.002 -0.004 0.001 0.007 0.002 

1.0 -0.002 -0.003 0.000 0.006 0.002 

1.1 -0.001 -0.003 -0.001 0.005 0.003 

1.2 -0.001 -0.002 -0.001 0.004 0.003 

1.3 -0.001 -0.002 =0.002 0.003 0.003 

1.4 -0.001 -0.001 -0.002 0.002 0.003 

1.5 -0.001 -0:001 -0.002 0.002 '0.002 

1.6 -0.001 -0.001 -0.002 0.001 p.002 

1.7 0.000 -0.001 -0.001 0.001 0.002 

1 .8 -0.001 -0.001 0.000 0.001 

1.9 0.000 -0.001 0.001 

2.0 -- -- -0.001 0.001 

2.1 -0.001 0.001 

2.2 -- -0.001 0.000 
2.3 MO OM,  MM.0 -0.001 
2.4 0.000 0.000 0.000 0.000 0.000 
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TABLE 4: The integrals Il  and Is. 
1 

k(kR)a  Ii. 12 14a) .. Ii  Ia 

0.1 0.27377 0.22255 2.6 0.03326 0.00124 

0.2 0.22331 0.15717 2.7 0.03118 0.00063 

0.3 0.19225 0.12233 2.8 0.02925 0.00010 

0.4 0.16999 0.09960 2.9 0.02746 -0.00036 

0.5 0.15276 0.08318 3.0 0.02579 -0.00075 

0.6 0.13875 0.07054 3.1 0.02423 -0.00108 

0.7 0.12697 0.06039 3.2 0.02279 -0.00135 

0.8 0.11681 0.05200 3.3 0.02144 -0.00159 

0.9 0.10789 0.04491 3.4 0.02019 -0.00178 

1.0 0.09993 0.03883 3;5' '0.01'903 -0.00194 

1.1 0.09276 0.03357 3.6 0.01794 -0.00207 

1.2 0.08624 0.02897 3.7 0.01693 -0.00217 

1.3 0.08027 0.02495 3.8 0.01598 -0.00226 

1.4. 0.07479 0.02141 3.9 0.01510 -0.00232 

1.5 0.06973 0.01830 4.0 0.01428' -0.00237 

1.6 0.06505 0.015554  4.1 0.01351 -0.00240 

1.7 0.06072 0.01314 4.2 0.01279 -0.00242 

1.8 0.05669 0.01102 4.3 0.01212 -0.00242 

1.9 0.05296 0.00915 4.4 0.01149 -'0.00242 

2.0 0.04949 0.00751 4.5 0.01090 -0.00241 

2.1 0.04627 0.00608 4.6 0.01035 70.00240 

2.2 0.04323 0.00483 4.7 0.00983 -0.00238 

-2.3 0.04049 0.00373 4.8 0.00935 -0.00235 

2.4 0.03790 0.00278 4.9 0.00889 -0.00232 

2.5 0.03549 0.00196 5.0 0.00846 -0.00229 
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TABLE 4(cont.): 

k (kR)S 21 

0.001 0.473 0.603 
0.002 0.455 0.561 
0.003 0.443 0.534 
0.004 0.4.33 0.514. 
0.005 0.426 0.497 
0.006 0.419 0.483 
0.007 0.414 0.471 
0.008 0.409 0.460 

0.009 0.404 0.450 
0.010 0.400 0.441 

log[k( 	)3] log[0.5927-11 ] log[0.8890-12] 

-6.908 -2.123 -1.252 
-6.215 -1.983 -1.115 
-5.809 -1.899 -1.036 
-5.521 -1.834 -0.981 
-5.298 -1.792 -0.936 
-5.116 -1.750 -0.901 
-4.962 -1.722 -0.872 
-4.828 -1.694 -0.846 
-4.711 -1.668 -0.823 
-4.605 -1.647 -0.803 

( 
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FIGURES  



R 

. 4 

z 

0 

Fig. 2.1: The co-ordinate system for the circular pipe. 
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4k 

Fig. 5.1: Model for flow in the outer region when Rs-► Me 

Shaded regions denote boundary layers; unshaded 

regions have uniform vortioity. 

vv=. -0.25 (72/R63) sin 1.1.1" 



-V
w  

Fig. 5.2: Comparison of the velocity distribution at the edge of the core flow (ii) with the 

distribution on the wall of the circle (v'). 
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A 

$k 

Fig. 5.3: The co-ordinate system in the corner r=1;1f=w. 
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inside 	 outside 
of bend 	 n of bend 

Fig. 6.1: Sketch of the streamlines in the plane 

of the cross-section for small P. 



-0.2 0.0 —0.1 
V 

1: R = 0 

2: Rs= 100 

3: R. = 200 

	 R=s co 

0.2 

Pig. 6.2: The profiles of the secondary flow's velocity in the outer region along 	/2 when 13 =0 . 
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-1.0 	 0.0 

Fig 6.3: The profiles of the secondary flow's vorticity 

in the outer region along lif=r/2 when (3=0. 

1: Rs= 0 

2: R = 100 

3: Rs= 200 

R = co 



1: [3= 0.00 

2: [3= 0.04. 

3: 13= 0.08 

4: [3= 0.12 

r 

-2.0 -1.0 0.0 1.0 

1.0 

Fig. 6.4; The profiles of the secondary flow's mean velocity in the outer region 

alonglifr'=T/2 when Rs= 0. 



0.2 

0.1 

r=0.0 	 r=0.5 	 r=1.0 

Fig. 6.5a: The profiles of r along the line of symmetry = Ir. 

—0.01 jp. 
r=1.0 	 r=0.5 

• t 	_o 	 
.0 



0.2 

0. 

—0.01 0.0 0.01 0.02 
1.1; =-Ir • 	 IR=37r/4 	 =7-r/2 

Fig. 6.5b The profiles of y along the curved boundary r= 1. 



. o motor 	 to reservoiT 

syringe pump 

B `A. 

Fig. 7.1: The experimental apparatus. 
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adhesive tape . 

Fig. 7.2: Cross-section of pipe after injection 

of dye. 



Fig.7.3. Photographs of test section taken 

at intervals of approximately three seconds. 



y 

Fig. 8.1 The co-ordinate system for the elliptic pipe. 



1: e= 0.0 

2: e= 0.3 

3: e= 0.5 

0.1 

0.0 	  
0.0 

0.2 

Fig. 8.2a: Comparison of 'f1  with v.; when the minor axis of the ellipse lies in the plane 

in which the pipe is coiled. 



0.0 

Fig. 8.2b Comparison of 	with v; when the major axis of the,ellipse lies in the plane 

in which the pipe is coiled. 
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• 

1.0 

-r 

0.0 
-1.0 0.0 

Fig. 8.3a: The secondary flow's vorticity in the outer 

region along AiMr/2 when /9=0 and. the minor 

axis of the ellipse lies in the plane in 

which the pipe is .coiled. 
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1: e= 0.0 

2: e= 0.3 

3: e= 0.5 

I  

—1.0 	 .0.0 

Fig. 8.3b: The secondary flow's vorticity in the outer 

region alongy=2ri2 when j9=0 and. the major 

axis of the ellipse lies in the plane in 

which the pipe is coiled. 
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0 

Fig. 10.1: The co-ordinate system for the wavy wall. 



Fig. 11.1: Sketch of steady streaming when kR÷ 0 and k» 



Fig. 11.2: Sketch of steady streaming when kR4 0 and k<< 1. 



-t-s r/2 T=37r/4 	 er 

0 

6.o 

5.o 

4..o 

I 
3. 

2.0 

1.0 

u('l 

it  
0.1 	t T./4.: 

0.0 
0.0 T.0 
• Fig. 12.1: The profiles of U(11,t) and. the associated viscous layers 

f ),(= viscous layer and. its direction of propagation. 



k (kR):  

'Fig. 12.2: Graph of log[0.5927-113 and log(0.8890-12] 

plotted against log[k(k0] for 

0.0014 k(kR)47  40.010. 
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I 
..... --... 

-... 	 1 

Fig. 12.3: Sketch of steady streaming when kR-> co and. k-> 

0[E(G231-')Ilq• 

0 such that k(kR 

//IN// =viscous layer of thickness 
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p -plane 

Fig. C.1: The contours i  around whioh (C.9) is integrated 

when 110" >0. 
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CORRIGENDA  

Page 66  

Dr. R. erem has pointed out to me that, owing to the mean 

flow, a fluid particle remains in the aortic arch for a time of only 

0(w-1). Me time taken for the secondary flow to diffuse into the 

f  interior is Oka2  A0) (see Chapter 7), and, since the ratio of these 

)» 1, then the flow would have no ti..e to develop. However, 

since the stokes layer is formed in a time of 0(J-1) (see Chapter 7), 

this would be inexistence at the end of the arch. Because this is 

the 	for driving the secondary flow in the interior, this 

might 	develop further along the artery. In conclusion, it has 

to be pointed.out that the effects due to branching of the aorta may 

considerably outweigh the-centrifugal effects described here. 

Dr. Nerem has further pointed out that the ratio a/R is 

more 	0.4 and thus the value of the ratio in (6.5) is amended 

to 0.4/A• 
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olio -14_1 : 	(12-0s) -C(I2-64) Ju--4 	kte 
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