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Preface  

This thesis describes an approach to the 

manipulation of formal algebraic expressions by digital 

computer. It differs from others in that a major 

emphasis is -placed on the ability to model and manip-

ulate algebraic structure. The data structure used to 

represent a general algebraic expression not only 

contains the formal variables of the expression but 

also algebraic structural information as well as the 

map associated with the physical structure in storage. 

By having algebraic entities with more structure than 

is found in a character string, the language for for-

mal algebraic manipulation is correspondingly simplified. 

The algebraic data structure facility known 

by the acronym AIDS (Algebraic Interpretive Data Struc-

tures) as well as the supporting macros and manip-

ulative routines provide a base from which to construct 

compilers for algebraic symbol manipulation. In this 

thesis AIDS is used to construct a simple command 

language for algebraic manipulation (CLAM). A number 

of essentially trivial exles are given to demonstrate 

the capability of AIDS. 

AIDS has been written for a multi-access type 

of environment. All routines are hence re-entrant so 

that they may be shared by several users simultaneously. 

The first part of the thesis discusses the 
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development of data structures and languages for 

algebraic manipulation. 	The syntax and operation of 
t 

AIDS is then described. 	The system is summarised in 

the appendices. 

The ptesent implementation has been written for 

the IBM 360 although the definition is essentially 

independent of the hardware. 
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Chapter I 

Introduction 

The advent of the commercially available 

digital computer was to herald not only a new elect-

ronics orientated technology but the start and 

development,of disciplines concerned with the effi-

cient use of digital computing equipment. The initial 

interest in digital computers was little more than to 

emulate and automate the functions of a desk calcu-

lator, however with the exploitation of its arithmetic 

computational ability interest was soon focussed on 

its potential as a tool for non-numeric processing. 

The digital - computer can now be thought of 

more as an information processing device rather than 

as an automatic calculator. As hardware becomes faster 

and more sophisticated and with a major emphasis on 

storage media and access techniques, the functional 

aspects of computer usage are rapidly enlarging. 

Hardware development to date has been concentrated 

on extending the capability of the computer as a 

system through the development of special purpose 

peripheral devices such as visual displays. 

The structural organization of the CPU and 

main memory has remained essentially unchanged and is 

as proposed by von Neumann in the early 1950's 

with the only structuring among the cells of main 
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memory being the implicit ordering of the natural 
. 

numbers used for addressing. Recent experimental 

machines deviating from the von Neumann concept 

(refs. 1,2) have been constructed with the express 

purpose of Simplifying the functional operation of 

a computer.* These machines essentially use a non-

linear addressing scheme which is realised by a 

hardware mapping on to a linear store. Paging, seg-

mentation and some stack machines provide another 

variant of program addressing structure realised 

through extensive hardware and software systems. The 

need for these extended addressing schemes has been 

essentially to cater to a large dynamic environment. 

The emphasis has not only been to add more 

hardware for addressing but also to extend the func-

tional capability of the CPU by microprogramming 

standard sequences of instructions as single operations. 

The development of inexpensive integrated circuit 

modules suggests that microprogramming could become 

a very powerful facility to simplify machine usage by 

permitting more complex operations. 

The linear machine with a standard instruc-

tion order code lends itself to realising algorithms 

for numeric computation. Lists and multi-dimensional 

arrays of values are readily stored and accessed on 

a linear store. The organisation of data elements 
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remains the same throughout the life of the program 

for numeric calculations. As shall be seen structures 

for algebraic manipulation are inherently dynamic and 

put more demands on the system for economic handling 

both in accessing and storage requirements. However 

if structural entities and operations on these en-

tities can be defined, access and manipulation 

could be realised through hardware. With this in 

mind the development of algebraic manipulation on 

a digital computer and data structures is reviewed 

in Chapters II and III in an attempt to recognise 

essential processing functions as well as data rep-

resentations and organisation. 



Chapter IY 

Algebraic Manipulation Schemes  

Development 

Considerable progress has been made in recent years 

in the area of algebraic manipulation. Many schemes have 

been reported with, as of yet, little or no duplication of 

effort. Each scheme tends to be unique in some important 

aspect such as function, definition, efficiency, capability 

etc. Each in turn can be characterised by data base, 

functional capability, and method of operation. Many schemes 

are limited to specific algebraic functions such as differen-

tiation or integration. An exhaustive survey up to August 1966 

is given in references 16 and 17. 

The first schemes developed were specifically designed 

for symbolic differentiation. The input was rather crude and 

closely resembled the internal representation (Ref. 4). Later 

schemes (Ref. 5) were developed more specifically to differen-

tiate FORTRAN-like expressions. 

Integration schemes (Refs. 5, 6) constitute the next 

level of development. The SAINT system for symbolic integra-

tion was a very significant development employing heuristic 

techniques in LISP. This system was capable of solving 

calculus problems with a high degree of success. The author 

further claimed that 100% of the problems having solutions 
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could have been dealt with with some minor changes to the 

system. 'A more ambitious scheme is that of Moses (Ref. 8), 

however it appears that further development along this line 

will require some form of man machine interaction system. 

Polynomial manipulation systems were the next major 

area of development. These systems are confined to classes 

of formulae for which efficient algorithms can be implemented 

and include polynomials in one or more variables, rational 

functions, power series, trigonometric series and other 

series, etc. ALPAK (Refs. 9, 11) was the forerunner of such 

systems with further sophistication introduced in ALTRAN 

(Ref. 13) and the PM system (Ref. 12). 

Another group of systems is designed to deal with the 

secondary school type algebra problems and basic problems 

in calculus and differential equations. The data base is a 

class of well-formed formulae generated from variables, numbers, 

arithmetic operators, the differentiation operator and a 

special function facility. The two most notable examples of 

this class are FORMAC (Refs. 14, 15) and SYMBAL (Refs. 18, 19). 

Further sophistication is achieved in more general 

systems which permit the definition of a data base and in 

some cases the operators involved. These systems (Refs. 20-23) 

tend to be more experimental, sacrificing efficiency for 

sophistication. 



SYMBAL (Ref.19) is the only algebraic system yet 

produced which represents a formal and generalised approach 

to symbol manipulation. The language is a semantic and 

syntactic generalisation of ALGOL 60 along the lines of 

EULER (Ref27). From ALGOL it inherits the concept of 

program blOck structure and the conditional and GO TO 

statements. It uses the full recursive facilities of 

ALGOL in executing some of its functions as well as provid-

ing the same recursive facilities for user programs. From 

EULER it has taken the concept of having only a single 

declaration "NEW" for introducing names, while the values 

and types are handled dynamically. The initial value of a 

variable is its name taken as a string. This may dynamically 

take on other values by assignment. 

A special list data structure is used to represent 

Algebraic expressions. A new data type "vector" replaces 

the array of ALGOL. A vector is of variable length and can 

be assigned to single variables. 

A SYMBAL program is essentially ALGOL-like. A well 

formed expression may contain the following operators: 

I. arithmetic 

2. relational 

3. logical 

4. equality 

The basic syntactic entities include numbers, variables, 

labels, and functions. The types of values which are defined 

in the syntax include: 1) undefined, 2) algebraic, 

3) logical, 4) label, 5) vector, 6) string, and 7) procedure. 



Immediately after its declaration, a simple variable has 

the status "atomic" and is of type "undefined". An expression 

in SYMBAL takes the same form as an expression in ALGOL, being 

defined by essentially the same syntax. Simplification is 

also implicit in SYMBAL but is dependent upon mode values 

set by the.user. 

The flexibility of its list data structures provides 

SYMBAL with much of its capability. 

Symbolic Manipulation in High Level Languages  

A symbol manipulation capability exists in many high 

level languages. Such languages invariably have a data type 

"STRING" on which procedures can be defined for pattern 

matching and replacement. 

SNOBOL (Ref.24) is a string manipulation language which 

runs as an interpreter. The primitive data structure is a 

string which can be used to build up more complex tree 

structures. Because it is interpretive a high overhead is 

incurred wherever it is used to write other algebraic inter-

preters. Implementation constraints restrict the representa-

tion of numbers and the size of structure is limited to the 

available work space. 

LISP (Ref.25), of course, provides a powerful program-

ming tool for symbolic manipulation through its recursive 

and function definition facilities. It too is interpretive 

and incurs a sometimes unjustifiable overhead when used to 

write other programming systems. It is unfortunately unwieldy 
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in its use of parenthesis and suffers most in garbage 

collection when the main store must be re-organised. 

Existing data structures in the main store cannot be 

readily removed to backing store when more space is 

required in the main store. 

PL/1, in attempting to incorporate all desirable 

programming features into a single language can also be 

adapted to symbolic processing. Dynamic string facilities 

exist in the form of variable length strings but this is 

wasteful of store usage as the maximum length string, 

defined by the user, is always allocated. Powerful list 

processing facilities are available in PL/1, however, until 

recently the implementation of these facilities has been 

extremely unreliable. FL/1 also maintains its own local map 

attached to all structures which tends to burden any user 

defined system with a further unnecessary overhead. 

Many other languages are of course adaptable for 

symbolic processing, however their facilities are more useful 

in evolving concepts rather than in producing an economical 

algebraic system. As symbolic manipulation can make exces-

sive demands on both storage requirements and processor cycles, 

it is important to consider schemes which will tend to 

minimise both of these. 



Initially algebraic systems were developed almost 

exclusively for batch-type operations. The trend now is 

to develop interactive systems in which the user can direct 

the system operations fox increased simplicity and efficiency. 

The 'capability and operation of each class of algebraic 

system is Most readily appreciated by discussing representative 

systems from each class. 

Polynomial Manipulation Systems  

The ALPAK system for polynomial manipulation was 

written at the Bell Laboratories for the IBM 7090. The 

initial version defined polynomial arithmetic on its pre-

defined data structure elements. The operations provided 

through subroutines and macros include addition, sdbtraction, 

multiplication, division, differentiation of terms, zero test, 

non-zero test and an equality test on symbolic elements. The 

user was required to understand many of the intimate details 

of the system. The organisation of variables within a term 

is defined by the user in a special .format statement which is 

stored for run-time use. The input of coefficients and 

exponent values is on a term by term basis according to the 

predefined format. 

It was a natural step from a polynomial manipulation 

scheme to a rational function facility. A rational function 

is represented as an ordered pair of polynomials, namely its 

numerator and denominator respectively. These are stored in 

the polynomial canonical form and are relatively prime. 
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ALPAK provides a greatest common divisor of polynomials 

in several variables so that each rational function can 

always be stored in its canonical format. 

ALPAK was further extended to permit solving by 

Gaussian elimination systems of equations linear in certain 

variables and with coefficients which are rational functions 

of other variables. A limited facility for substitution was 

also introduced. Essentially all ALPAIC programs resemble 

assembler programming in FAP macros. The greatest limita-

tion of ALPAK is that it can only continue until there is 

no further work space in main store. ALPAK has been used 

to solve problems in queueing theory, astonomy and wave 

propogation in crystals to name but a few. Even though it 

lacks the elegance of a concise command language it pioneered 

the way for special purpose algebraic systems. 

General Algebraic Systems  

FORMAC and SYMBAL are both symbolic processors, each 

associated with a well known high level language. Whereas 

SYMBAL is a complete system in its own right, FORMAC is 

essentially a preprocessor for FORTRAN IV, translating 

symbolic requirements into FORTRAN calls to a set of special 

object time routines. 

The FORMAC programming language is a proper extension 

to FORTRAN IV and consists of the full FORTRAN IV language 

plus 4 further declarative statements and 15 executable state-

ments for symbolic processing. In addition it introduces 



symbol manipulation operators from which symbolic 

expressions can be created for manipulation at object time. 

Decisions based on symbolic expressions generated at run 

time can be used in the logic of program control during 

execution.' 

Thd operator set of FORMAC includes: 

1. arithmetic operators - ,+, *, /, ** 

2. special operators - FAC (factorial), DFAC (double 

factorial), COMB (combinatorial), DIF (differentiation) 

3. the trigonometric function - EXP (exponential), LOG 

(natural logarithm), SIN, COS, ATAN, TANH 

FORMAC has its own internal representation for 

symbolic expressions (see chapter III). Simplification is 

performed automatically after all symbol processing operations 

as described in chapter VI. 

FORMAC was designed primarily for the batch processing 

environment to provide a symbol manipulation capability for 

FORTRAN IV programs. As with FORTRAN it is essentially 

simple and does not provide, for example, recursive facili-

ties. Further it is a rigid system not readily adaptable 

to special user requirements. 

All expressions must be contained within the available 

work space and substitutions are made for symbolic variables 

wherever possible. A trigonometric function is evaluated to 

a numeric result whenever possible. 
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Requirements for Algebraic Manipulation  

From the previous discussions it is possible to 

identify certain basic requirements for formal algebraic 

manipulation systems. The realisation of the concepts is 

usually associated with an overall systems philosophy. 

Ideally, of course, it is desirable to have sufficient 

generality in the concepts to permit flexibility for 

achieving future enhancements. At the same time, it is 

necessary to identify a limited number of basic primitives 

which can be combined in a logically consistent manner to 

produce unambiguous constructions. 

The basic requirement for algebraic manipulation is 

of course a suitable data base. The data base is often 

related to the type of problem being solved. Essentially 

it is necessary to provide a data structure whose elements 

can be used to model an algebraic expression. The choice 

of data base is also associated with other considerations 

such as mobility, accessing and referencing of data elements, 

as well as processing and storage efficiency. As algebraic 

data structures tend to grow very large any general scheme 

should include provision for moving complete data structures 

or their elements to backing store. Equally important is 

the ability to cope with the dynamic data environment of 

algebraic manipulation through schemes which readily permit 
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dynamic extension and modification of the data structure. 

It is necessary to identify the primitive operations 

of algebra and consider their implementation on the data 

base. Each operator must affect the elements of the data 

base in accordance with predefined schemes. The basic 

operations which are essential include arithmetic (addition, 

subtraction, multiplication and division) and tests on data 

elements for total or partial equivalence. These operators 

are defined on symbolic elements with arithmetic on numeric 

data items constituting the degenerate case. The basic 

algebraic operations are required to realise more complex 

algebraic functions such as symbolic differentiation and 

integration. 

Simplification is also an essential process in any 

formal algebraic scheme in that it permits the removal of 

redundant data. It is usually associated with operating 

efficiency and as such is an important criterion in the 

design of an algebraic system. Simplification must be an 

integral part of on overall system philosophy. 

Symbolic processing is not an end in itself. Often 

it is necessary to associate values with the symbolic 

variables and numerically evaluate an expression. This can 

either be done by replacing all symbolic values by numeric 

data and evaluating the resulting reduced arithmetic expression. 

Alternatively, it may be desired to maintain the symbolic 

representation of an expression and perform the evaluation 

by another procedure which associates numeric value with all 

symbolic data items. 
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There are many algebraic procedures which are desirable 

in such systems. For example, it is often necessary to per-

form such operations as removal of parentheses (expansion) and 

the inverse operation, namely, factoring. The former is an 

exact process while the latter can sometimes lead to many 

equivalent results and hence usually requires user defined 

constraints or direction. 

A function facility for defining run-time relations is 

an analogous facility except that it is more directly under 

user control. Such a facility can, for example, be used for 

defining in-line substitutions through side relations. This 

is over and above a function definition facility within 

algebraic expression(e.g. representation of a derivative). 

The essential requirement for a general algebraic 

system can be summarised as combining a number of basic 

primSvtive algebraic operations on a flexible data base. These 

facilities must be the basis on which to construct specific 

algebraic systems. 
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Chapter III 

Data Structure Schemes 

The usefulness of a data processing system can often 

be judged by the mechanisms through which it stores, 

references and manipulates data. The basic data handling 

capability is associated with the hardware order code and 

involves specific operations for pre-defined data represent-

ations. Further capability is achieved by imposing a soft-

ware hierarchy of manipulative processes on the hardware 

based facilities. 

Data is the representation of information. For digital 

computer applications the internal representations are 

invariably associated with some binary code. Within any 

process data can be distinguished as being of one of the 

following types: 

1. Instructions 	active data elements 

2. Values 	- passive data elements manipulated 

by the active elements 

3. Control 	- passive elements used by active elements 

for program logic and control 

Data values constitute primitive data elements which 

• can be organized into meaningful collections, called data 

structures for purpose3of referencing, accessing and manipu-

lation. A data structure in a programming language consists 

of three main parts: 

1. A notation in the source language for referencing and 

manipulating the data elements in the structure. 



- 16 - 

2. An internal organisation scheme for the data elements 

3. A mapping algorithm for relating the references in the 

external notation to the main store locations. 

The internal representation of data elements is 

dependent upon the choice of computer. Each atomic data 

element has associated with it attributes which are usually 

implicitly known to the processing procedure. In some cases 

the attribute values are encoded within the data elements 

themselves as in IPL (ref 26). Each data element is ultimately 

referenced by an absolute machine address. 

The genesis and evolution of data structures has been 

closely associated with both application areas and programming 

languages. More sophisticated data structuring schemes 

evolved with the development of more powerful and flexible 

programming languages. 
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Data Structure Types  

. 

1. Arrays  

The simplest type of data structure to implement and 

reference is the one-dimensional array, or vector, imple-

mented as a block of contiguous words in memory. All elements 

in the structure have the same attributes. The mapping 

algorithm references each element as an offset from the base 

of the structure. This structure is exemplified by the one-

dimensional array in FORTRAN. 

A character string is also a one-dimensional structure. 

For a byte or character machine, each character occupies one 

byte and is referenced in much the same manner as an array 

element in FORTRAN. If a character string is mapped onto a 

word machine, the mapping algorithm must determine in which 

word and part thereof the referenced character lies. Similarly, 

a table is another instance of a one-dimensional structure. 

The only structure associated with the one-dimensional 

array is a single level ranking of elements according to 

position. This type of organisation is usually static in 

extent. 

Multi-dimensional arrays are an extension of the vector 

concept to several dimensions. Each element in an n-dimensional 

array is referenced by means of n subscripts (S1, S21, ... Sn). 

The mapping algorithm for any element is 

n-1 	1 
element = base 4- S 	14- 1 -- 	(SI-I-1 - 1) -717  DJ I=1 	 J=1 

where (D1, D2, ... Dn) is defined to be the extent of 

each array bound. 
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All elements again possess identical attributes. 

Even though all the bounds need not be identical a multi-

dimensional array is usually wasteful of space when several 

of the elements do not exist. 

An n-dimensional array is usually implemented as a 

static structure which has n degrees of ranking for the 

elements. 

2. List Structure 

A list structure is characterised by the explicit 

links connecting the data elements. The data elements are 

chained together with either single or double pointers for 

forward or bi-directional referencing respectively. Each 

element is stored as a contiguous block according to some 

pre-defined format. 

A list element may be either atomic, in which case it 

can be considered a primative, or it may reference other 

list elements. In this way, complex data structures are 

built up in which the component elements may have differing 

characteristics. The topology of such structures in the most 

general form is a graph. 

List structures are particularly well suited to an 

• environment in which the number of elements can change 

dynamically and new elements are dynamically created. Unlike 

most other data structure schemes the organisation of the 

elements may be changed dynamically permitting the creation 

of complex structures. Because list structures are pointer 

based the size of the overall structure is limited by the 

addressable space available. Garbage collection can be a 

very serious problem especially as common elements can be 
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referenced from several other elements. An element can 

only be moved (or removed) when all pointers to it have 

been appropriately adjusted. Access to elements in a list 

is only possible on a sequential basis and the explicit 

chaining of elements together requims substantially more 

storage than when they are represented as a group of 

contiguous locations. Security can only be provided at 

run time by checking data types interpretively and not at 

compile time. 

The programming languages LISP (Ref .25) and IPL (Ref.26) 

which use lists as their data structures provide a conceptional 

economy and elegance not readily found in other programming 

languages. List structures are also provided in PL/1 using 

the BASED facilities within the language. 

3. Trees 

A tree data structure is a directed graph in which each 

element, except the first, is uniquely addressed through a 

higher level element. A data element in the tree may consist 

of sub elements, each of which in turn may be further 

decomposed to any level. The terminal elements are unique 

primbtives which may have differing characteristics. 

The outstanding examples of tree implementation are the 

data structures of COBOL and PL/1, record classes and code 

word schemes. Their differences are derived mainly from 

their -use in programming schemes. 
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The data structures of COBOL and the basic data 

structures of PL/1 are both definitions of multi-level 

trees. The data structure of COBOL provides a format 

description of the fields within a given record type where 

the variables reference the fields of the current record 

in the working store. For PL/1 there may be many instances 

of the same data structure currently active (e.g. it is 

possible to have an array of structures), however each has 

a unique identification. 

Each element in a tree structure has its own set of 

attributes. These attributes are known only to the compiler 

in both COBOL and PL/1 for subsequent references and in the 

case of PL/1, for data conversions. 

For COBOL the data structure description provides a 

mask for interpreting and referencing a given area of store. 

The mapping is built into the object code. However, for 

PL/1 the map associated with the structure is stored with 

the data in a "structure dope vector". Each substructure 

has its own dope vector for referencing its elements. A 

program reference to an element in a structure requires 

sufficient name qualification for proper referencing of 

the associated dope vectors. The dope vector organisation 

is dependent upon the stncture element type (e.g. array, 

string, structures, etc) and includes bounds values, offsets 

and lengths etc. 
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The basic data structures of PL/1 and the data 

structure of COBOL are both static in organisation and 

extent. These are well suited to such environments as 

found in commercial data processing where file structures 

are constant and hence no.  dynamic structuring is required. 

However, there are dynamic environments such as computer- 

aided-design, algebraic manipulation and dynamic modeling 

where a dynamic tree data structure is at least desirable 

if not essential. 

A dynamic tree can be defined in PL/1 either through 

the use of pointers with the BASED facilities or to a 

limited degree with self defining data. A self defining 

record is one which contains, within itself, information 

about its own fields, such as length of string or number 

of elements in an array. In the former case a list tree 

structure is created while for the latter case a BASED 

structure is declared to have either one adjustable array 

bound or one adjustable string length, governed by a 

variable contained within the structure itself. This 

variable is assigned a value from a variable outside the 

structure when the structure is allocated. This facility 

is rather limited in that when specifying adjustable data 

such as an array bound, the bound must be the upper bound 

of the leading dimension of the element with which it is used. 

The dimension must further belong to the last element in the 

structure declaration, or to a minor structure containing the 

last element. 
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The conception, design, and use of record classes 

was pioneered in AED-0 (Ref.28) and extended in AED-l. 

Records in AED are known as beads or n-component elements 

while the term plex is used to denote a group of interrelated 

records linked by references. There are no record class 

declarations as such in AED. The components of a bead are 

each declared independently with their offset within the 

bead specified as an integer constant. Reference fields 

are declared to be of type INTEGER while other components 

can be of type REAL, BOOLEAN or INTEGER. 

Record handling as proposed by Hoare and Wirth is a 

refinement and formal generalisation of the concepts as 

found in AED. The proposal is for an extension to existing 

languages such as ALGOL 60. (Ref. 29) 

In Record Handling the objects of a computational 

model are divided into a number of mutually exclusive 

classes. Each class is described by a record class declara-

tion which denotes the attributes associated with all objects 

in the class. Each instance of an object in a given class 

requires the allocation of a fixed block of store for the 

record and the assignment of a value to each attribute field. 

In order to uniquely identify a field in a particular record 

the programmer must both name the field by its identifier 

and also indicate the name of the class to which the record 

belongs by a construction known as a field designator. 
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Records within a class can be referenced either by 

reference' variables or by a state variable associated 

with each record class which always points to any one 

record within the class. 

The use of reference variables in Record Handling 

provides the mechanism by which complex dynamic structures 

can be created in terms of well defined components. Within 

both AED and Record Handling new records can be created 

dynamically and associated with existing records within the 

system. A structure grows by establishing explicit links 

with new elements. The accessing and storage overheads are 

reduced considerably by the implicit structure of the n-

component elements. Further it is possible to perform 

compile-time checks for data type, etc. The use of pointers 

for references still limits the extent of a structure to the 

addressable space available. 

Another form of dynamic tree is the codeword scheme as 

first proposed by Iliffe and Jodeit (Ref.30). The two most 

notable implementations of this are the BLM (Basic Language 

Machine of ICL) and the data structure of ICES (Ref.31). A 

Codeword structure is built up of linear sequences of elements 

which may themselves be code words. Each codeword defines 

the address of a block of data, (which may be numeric data, 

program instructions or a set of codewords), as well as its 

length, type and other accessing information. The first set 

of control words is called the process base. The mechanics 

of the system are transparent to the user who communicates 
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with the system through a basic programming language 

(Ref.31) which defines basic primative programming 

operations on the codewords and their elements. 

ICES was designed to cater to the dynamic aspects 

of engineering design. It provides facilities for both 

dynamic array capability and a relational (record handling 

type) data s-cructure. The dynamic array capability is an 

extension of FORTRAN arrays implemented by using a codeword 

scheme. Dynamic arrays are known to the system through 

explicit declaration, all other arrays being FORTRAN type 

dimensioned arrays. The dynamic arrays are segmented into 

component elements so that allocation of space in working 

store can be made when the data is referenced through the 

use of a single level store concept. Through this facility 

it is possible to build up and manipulate dynamic trees to 

any level in which all of the elements are of the same type. 

The overhead to reference an element in the main store 

is marginally greater than that associated with a dimensioned 

array although the overhead for retrieving data segments from 

secondary store can be appreciable. An array can grow 

dynamically either by redefinition or in terms of a fixed 

increment size. 

ICES also has a facility for modelling a dynamic tree 

in which the terminal elements need not all be of the same 

type. This relational data structure facility is modelled 

on the concept of associating component members with one of a 
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number of user defined data equivalence classes. Each 

component member has an attribute list associated with it 

and by permitting an attribute to be a pointer to an 

equivalence class it is possible to build up a dynamic tree 

to any level: 
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Data Structures for Algebraic Manipulation  

A wide variety of data structures have been used for 

algebraic manipulation schemes. The operation: and character-

istics of each scheme are highly dependent upon the form and 

extent of the data structures used. Many of the data 

structures have been chosen for a specific application area. 

The most primitive data structure for algebraic manipula-

tion is perhaps the character string. An expression is stored 

as a sequence of symbols much the same as it appears in the 

external representation. Algebraic structure is extracted 

from the string by scan dominated processes and algebraic 

operations are performed as transformations and text editing 

operations. The lack of structure is compensated for by a 

substantial amount of processing. 

Many algebraic schemes have used the data structures 

of LISP to create and manipulate algebraic data structures. 

The "cons" function is applied to primitive data elements to 

construct compound structures. These structures may in turn 

be combined to form more complex structures for subsequent 

processing through procedures defined in LISP. 

ALPAK was the first scheme to involve data structures 

unique to algebraic manipulation and was written for the ' 

IBM 7090. A polynomial is stored as an implicit sum of terms 

and each term is stored as an ordered set of exponent values. 

The length of each exponent value is defined by the user and 

can be up to 36 bits. Any number of exponents can be packed 

into a word. The term format is also defined by the user 
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and only terms with the same format can be manipulated. 

The first word represents the term constant. A polynomial 

is stored in main store as a pointer, a heading and a data 

block. The polynomial is referenced through a name table 

by a pointer-. The heading consists of three words the first 

defining the data address, the second the format address for 

each term and the third the number of terms in the polynomial. 

All the terms are stored as a contiguous block. No facilities 

are provided for sharing common terms or for storing structures 

on backing store. 

FORMAC also has its own data structure for algebraic 

expressions in which the infix notation of the external 

algebraic expressions is converted to a special form of Prefix 

Polish notation. This form of "Delimiter Polish" differs from 

classical Prefix Polish in that it is not necessary to represent 

in the data structure all of the operators which are used to 

define an algebraic expression. In classical Polish notation 

the string *A-Jr+ABCDE represents (A-LB-,-C=D)E. In Delimiter 

Polish a sequence of identical operators is replaced by a 

single instance of the operator but it is now necessary to 

delimit the scope of this operator. For example if j is used 

as a delimiter the string *4-ABCD]E again represents (A+-B-I.C+D)*E 

while 3-A_4BCDT.1 represents A713,4C*D*E. In order to make 

structural changes in this form of data structure (e.g. say 

substitute A2 B for X) it is necessary to recopy the structure 

with the added changes. Essentially, the structure is always 

maintained in its canonical format so that operations on any 
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elements of the structures involve manipulation of the 

complete structure. 

The data structure of SYMBAL is a modified list 

structure with many of the properties of a codeword scheme. 

The "knotted list" structure may contain substructures ti 

common to other structures. The binary tree type structure 

of LISP is replaced by an N-ary tree so that variable length 

elements (as opposed to single words in LISP and double words 

in SLIP) are involved. 

Fig. 3.1 	Binary tree in LISP 

Each element is essentially a vector of code words 

which may either directly reference terminal elements or 

another vector of code words representing a sub expression. 

In order to reduce the magnitude of the garbage collection 

problem, all elements are referenced through a common 

inventory vector. All structure is explicitly defined 
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through the codeword sequences except for the implicit 

ordering of code words in a vector. Because of the 

extensive use of nointers the structure must be contained 

within addressable storage. 

Fig. 3.2 Knotted List Structure of SYMBAL 



- 30 - 

Summary of Data Structure Requirements  

Clearly a comprehensive general data structure scheme 

suited for algebraic manipulation must provide a number of 

basic facilities in an economical manner. 

The first requirement is that the data structure be 

truly dynamic in both extent and topology. This can be 

achieved by either having variable length segments contain-

ing the sub-elements or by dynamically combining fixed 

format segments (e.g. list elements or record class elements) 

in such a manner as to define the structure. An economy in 

space for the internal representation will in all likelihood 

result in a further economy in processing time. It is 

equally important that accessing of elements in the data 

structure be performed in a natural and efficient manner. 

In order to simplify the subsequent procedures which 

define the operation on the data structure elements all the 

algebraic structure implicit in an expression should be 

explicitly defined in the internal representation. It 

should be possible to manipulate substructure without involv-

ing the complete structure. 

Because of the highly dynamic nature of algebraic 

manipulation garbage collection is often a sensitive, if 

not critical, area. No data structure scheme for algebraic 

manipulation can be considered without this in mind and its 

ultimate consequences. 
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Most of the algebraic manipulation schemes produced 

have confined the associated algebraic data structures to 

to the addressable space available.This often limits the 

working environment and the size of the problem which can 

be solved. Where data structures have been relegated to 

backing store (Ref.21) the overheads incurred have been 

intolerable. Hence consideration must be given to a 

canonical format which permits structure and substructures 

to be readily and economically stored and retrieved from 

backing store. 

Many of the previous objectives may be found to be 

self defeating for a given implementation as it is unlikely 

that they can all be achieved in a single data structure, 

hence some trade-offs may be essential. It is therefore 

important to be able to offer the facilities which can be 

moulded by a system designer to suit his requirements. For 

example the use of common sub expressions can lead to 

significant reductions in storage space required, however it 

brings on a host of other problems when garbage collection 

and the transfer of elements is considered. Where a large 

work space is available it may not be necessary to be 

concerned about storing structures on backing store and 

the storage of common structures may be readily accomodated. 

AIDS (Algebraic Interpretive Data Structures) has been 

designed with this in mind, namely to provide a set of 

basic prim6tive data structure elements and operations 

suited to algebraic manipulations which can be moulded 

into algebraic packages with specific characteristics. 
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Chapter IV • 

Algebraic Interpretative Data Structure  

General Philosophy of AIDS  

AIDS is an implementation of a number of basic 

concepts which provide, a general environment for per-

forming algebraic operations. The design objectives 

include overall system efficiency as well as economy in 

both processing time and storage requirements. Some 

restrictions are imposed by the specific implementation 

although the concepts are independent of any hardware 

environment. 

Fundamental to the AIDS concept is the notion 

of storing algebraic structure with both symbolic as 

well as arithmetic data in a single data structure: 

Each data structure element carries its own "type" with 

it. The data structure and data structure elements are 

truly dynamic 	in both scope and extent. 

The facilities provided by AIDS include ref er-

encing, accessing and manipulating the algebraic data 

elements. True recursion is available through the 

provision of stacks and associated facilities (macros 

and subroutines) for recursive programming. 

The provision of extensive dynamic facilities 

necessitates the use of sound data management concepts. 

No single data management scheme is employed, instead 
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several cnncepts are used, each selected for its-inherent 

suitability. 

AIDS is not designed to be a self-contained system 

for performing a specific class of algebraic operation. 

Instead it is intended that it provide a data base from 

which algebraic compilers for symbol manipulation can be 

constructed: A number of primitive algebraic functions 

are provided through subroutines, in much the same way 

that standard algebraic compilers for numeric computation 

work by interfacing to associated subroutine libraries in 

performing standard functions such as square root or 

logarithmic functions, etc. 

The operations of the system defined facilities 

in AIDS are transparent to the user. The result of 

algebraic operations will inevitably produce a result 

which is in a simplified and usually canonical format. 

Hence further simplification should not be necessary. 

It is envisaged that there will be other algebraic 

operations (e.g. implementation of transform functions, 

differential equations, etc) that may require considerably 

more structure manipulation than is performed by the 

existing AIDS subroutines. The structuring and associated 

manipulative facilities in AIDS permit this, however in 

such cases the onus is on the user for some aspects of 

storage management and simplification. There is always 

access to the facilities of AIDS for simplification and 

free store when necessary. 
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Much of the manipulative power in AIDS arises from 

the ability to create sets of topologically equivalent 

structures. The simplest form of a data structure for an 

algebraic element is a standard canonical format for that 

element. A:structural element may however be built up through 

an extended'addressing mechanism involving both indirect 

addressing as well as referencing other externally (usually 

standard or common) defined elements. A further degree of 

structural complexity can be introduced by having sub-elements 

which are themselves composite and hence composed of sub-

elements etc. This facility is recursive to any degree. 

The algebraic operations provided in AIDS do not 

require that the operand elements be in a reduced or 

canonical format. However, it is possible to create supei-

structures (through non-standard type operations) in which 

conflicts in structure would ultimately have to be resolved. 

This situation could arise where super structure forces 

major changes on the structural organisation of'component 

sub-elements1. Wherever this situation can potentially 

arise in the use of AIDS routines it is immediately resolved. 

In like manner a user departing from the standard facilities 

must perform the equivalent action. The requirement is not 

a necessary constraint of the system but rather designed 

to simplify and expedi to the accessing functions. 

AIDS is essentially a re-entrant facility requiring 

each user to have access only to his own data spaces (work 

spaces, stacks, tables, structures, etc.). Again this is 
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transparent to the user. No attempt is made to provide 

common structures to several simultaneous users, however 

this is not conceptionally difficult to realise. 

The present chapter describes the concepts used, 

as well as the details of the 360 implementation, for 

creating and manipulating AIDS data structures. The 

defined algebraic operations are discussed in the following 

chapters. 

1 For example, such a situation could arise where a composite 
element of type "term" is affected by an explicit exponent. 
If a component sub-element (factor) is of "simple" type then 
the organisation of the simple element must be drastically 
changed (see discussion of REDUCE function, Page121). 
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Description of AIDS Data Structures  

The data structure chosen for AIDS attempts to meet 

the demanding requirement for a comprehensive symbol mani-

pulation system. It combines the desirable features of 

pointer based systems with the freedom of mobility 

associated with segmentation schemes. 

The primitive data elements, as in other symbolic 

systems, are numbers and coded symbolic values. These 

primitives are combined to form simple algebraic "typed" 

data elements. More complex algebraic data structure 

elements are formed by combining simple algebraic elements 

in structural relationships. In this manner recursive data 

structures are defined. 

Each data structure element (i.e. excluding 

primitives) has associated with it control fields for 

defining algebraic type, referencing and accessing informa-

tion for sub-elements, as well as fields for defining 

dynamic extent values. As with other dynamic systems the 

data elements are manipulated interpretatively. However 

within any element, referencing and accessing may be either 

implicit or explicit. 

The main function of AIDS is to model and manipulate 

algebraic formulae. Even though the user2s concern is only 

with the external representation of algebraic formulae, it 

is informative to understand the internal representation 

as well as the mechanics of transformation between the two 

formats. The system is relatively insensitive to user mis-

use, however there may be extensive system action and 



- 37 - 

re-organisation which could be eliminated by appropriate 

user action. 

External Representation  

The external representation of an algebraic 

expression is analogous to the representation of algebraic 

expressions, for arithmetic calculation in other languages 

such as FORTRAN and ALGOL. 

Syntax of Algebraic Expression  

The complete syntax for the external representation 

of an algebraic expression is summarised in Appendix I. 

The syntax is described formally in Backus Normal Form 

(BNF) terminology as used in the definition of ALGOL 60. 

Blanks may appear anywhere in an expression as all blanks 

are removed before the syntax analysis. The following 

syntactic entities are defined in the external representa- 

tions using the same referencing system as in the Appendix. 

Basic symbols  

< basic symbol) ::= <letter > I <digit> I <delimiter > 

<letter >:,* -- AIBICIDIEIFIGIHIIIJIKILIMIN101 __ 

PIQIRISITIUIVIWIXIYIZI 

< digit > :::: 	01112131415161718191 

1.3 	( delimiter> : := < operator > I <separator> I <bracket > 

1.3.1.1 < arithmetic operator > ::::< add operator> I 

< multiplication operator> 1 < exponentiation 

operator > 

1.3.1.1.1. < add operator > : := +1 -- 

1. 

1.1 

1.2 
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1.3.1.1.2 < multiplication operator> 

1 . 3.1.1. 3 - < exponentiation operator > 
1.3. 2 	<seectra-tor> :: ==. 21. 1;1; 

1. 3. 3 	< bracket > ::= (I) 

2. Identifiers  

• • •••••• .._ 

	

2.1 	< letter digit string > : := 4 letter >1 

< letter digit string > ‘... letter >. I 

< letter digit string> ( digit > 

	

2.2 	< identifier> ::=< letter digit string> 

	

3. 	Numbers  

< number> ::=<integer >I <rational> I < real> 

	

3.1 	< unsigned integer? :: <digit> 1 <unsigned 

integer) <digit> 

	

3.2 	< integer> ::=< unsigned integer> I < add operator > 

4 unsigned integer> 

	

3. 3 	< rational> ::=< integer}!' / " <integer> 

	

3.4 	<real> ::= <integer> " . "I" . tt <unsigned integer > 

4 integer> " . " <unsigned integer> 

There are implementation restrictions on the rep-

resentations for each type of number. All numbers in the 

data structure are represented as rationals. Hence all 

reals are translated into rationals and care must be 

exercised to avoid the loss of significance. If a. real 

constant cannot be properly represented as a rational, then 

it must be represented by a parameter which can be replaced 

by a real when the expression is evaluated. The evaluation 

of all expressions is in single precision real (floating 

point) arithmetic. This can readily be extended to double 

precision if the need is warranted. 
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4. Variables  

< variable) :::::<simple variable> 1 <subscripted 

variable: 

	

4.1 	<variable identifier) ::=<identifier> 

	

4.2 	< simple variable> ::--4variable identifier> 

	

4.3 	< array identifier> ::--<identifier> 

	

4.4 	<subscripted variable> ::--<array identifier> 

TI ( " < subscript list> " ) It  

	

4.5 	<subscript list> ::=1.<subscript expression> 

<subscript list> 	It <subscript expression> 

	

4.6 	<subscript expression> ::= <simple algebraic 

expression> 

The variables in algebraic manipulation are not 

associated with arithmetic values. Each variable name is 

a representation of itself. For arithmetic evaluation of an 

algebraic expression, values must be assigned to or assoc-

iated with the variables. 

5. Function Designator  

	

5.1 	<function designator> :: <variable identifier 

It ( "<parameter list>" 	It 

	

5.2 	< parameter list> :: <parameter> < parameter > 

It 	?I <parameter> 

	

5.3 	<parameter) ::=1.<simple algebraic expression). 

The function facility permits the representations 

of standard arithmetic, trignometric and user 

defined algebraic functions. It is also used to represent 

algebraic functions such as differentiation or integration. 
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6. 	Algebraic Expressions  

	

6.6 	<Primary> : : =< number > 1 <variable> 1 

< function designator > 1 u ( < simple algebraic 

expression> " ) " 

	

6.7 	< factor> ::=< primary> 1 <factor> " ** 	<primary? 

	

6.8 	< term> ::=<factor> 1 < term> t multiplication 

operator> <factor> 

	

6.9 	<simple algebraic expression> ::=<term> 1 <add 

operator> <term> 1 <simple algebraic expression> 

<add operator> <term> 

The syntax for an algebraic expresssion as described 

above corresponds to the syntax of arithmetic expressiOns in 

both ALGOL 60 and FORTRAN IV. The form of this syntax has 

been maintained to permit interfacing an AIDS type facility 

to these languages for a hybrid system permitting both 

symbol manipulation and extensive arithmetic processing. 

Internal Representation  

An external algebraic expression is modelled by a 

unique internal representation. The data structure con-

stituting the internal representation contains both algebraic 

values (constants and variables), as well as topological 

information pertaining to algebraic structure. Each 

algebraic expression is represented as a tree with each node 

defining the structure (type) and number of the next level 

sub-components. 
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Algebraic Values  

The algebraic values stored for algebraic symbol 

manipulation in an expression are the names of the variables 

as well as the numeric values of any constants. In 360 AIDS 

each variable is represented as being 4 characters in 

length and hence occupies a full word on the 360 implemen-

tation. Longer names are truncated on the right and shorter 

names are blank filled on the right. The internal represen-

tation of each character is EBCDIC, corresponding to 8 bits 

per byte. 

In order to prevent any possible effects due to 

round off error the internal representation of numbers is 

binary integer values. However, to allow greater scope for 

numbers, each number is actually represented as a rational 

number made up of 2 integer values. Each integer value for 

the 360 implementation is a half word value giving a range 

of -32767 to 32767. All integer and real numbers appearing 

in an external algebraic expression are converted to rational 

numbers before being 4.br ,ed. 

Further Syntactic Entities  

The internal representation (data structure) makes 

use of further syntactic entities to economise on storage 

and permit quick access to the algebraic values associated 

with syntactic types of the external representation. The 

syntactic definitions for these extensions also appear in 

Appendix I. 

The following syntactic groups are used in the 

data structure: 
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6.1 	<variable exponent pair) : :=< simple variable> 

" ** " <number> 

A variable raised to a constant power is stored as 

an ordered pair, the variable occupying the first 

word and the exponent, as a rational number, the 

second word. 

	

6.2 	<simple variable group> ::::: <simple variable >I 

<simple variable group> " * " <simple variable> 

A simple variable group constitutes a product of 

a number of simple variables. 

	

6.3 	< variable group) ::=4 variable exponent pair> 

< variable group> " * " <variable exponent pair> 

A variable group constitutes a product of variables 

one or more of which has an explicit exponent. 

	

6.4 	< simple factor group >::.=< simple variable group>I 

<number> " * " < simple variable group > I <number) 

A simple factor group is associated with any com-

bination of a leading number and/or simple variable 

group. If both number and simple variable group 

appear they must be separated by an It * It . A simple 

factor group is represented in storage as a block 

of consecutive words, .the first being a rational 

number for the constant followed by the algebraic 

values in the simple variable group, one per word. 

The order is the same as appears in the external 

expression except if modified by a subsequent 

algebraic operation. A control word defining the 
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length and type is associated with each simple 

factor aroup. 

6.5 	Cfactor group> :: <variable group> I < number> 

<multiplication operator> <variable group? 

A factor group is the internal representation of 

a pioduct of variables each raised to an exponent power 

and an associated leading constant. A control word 

defines the type and length of a factor group which 

is again stored as a contiguous block in storage. 

A leading constant is always stored with either a 

simple factor group or factor group even though it 

may be implicit (i.e.=1) in the external expression. 

The type field of each associated control word defines 

the context in which the factor group or simple 

factor group appears e.g. as a term or a factor. 

In essence a simple factor group differs from the 

factor group in that the exponents associated 

with the variables are implicit (=1) in the 

simple factor group. 

The term AB**2*D*C**3 would be represented as a 

factor group as follows in storage: 

S,I,T 4 8 
1 1 

AB 
2 1 

D 
1 

C 
3 1 

Figure 4.1 	Internal Representation of Term 
A.B**2*D*C**3 
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Representation of Algebraic Structural Information  

Algebraic structural information is represented 

through the use of control words. The format of the 

control word is as follows1: 

1. 	algebraic type Yield - bits 0-3 

bits 	value  description  

     

0 	0 	elementary item - either a.:-simple 
factor group or factor group 

1 	composite item composed of sub-
elements each of which is either 
composite or elementary 

1 	0 	implicit exponent(s), 	1/1) 

1 	explicit format for exponent(s) 

2-3 	00 	type term 
01 	factor 
10 	simple algebraic expression 
11 	function designator 

2. 	accessing information field, bits 5-6 

value 
	

description  

0 
	

item stored contiguously 

1 
	

item must be accessed indirectly 
as specified by Format 2. (Bits 
8-31 constitute address of new 
control word) 

bits 

4 

5 
	

0 	(presence bit) item defined 
within this structure 

1 	externally defined item 

6-15 number of 
proper sub-
elements 

16-31 contiguous 
length of 
element or 
offset to 
next equi-
valent ele-
ment.  

defines the number of sub-elements 
associated with the data element 

defines either the overall length 
of this element or the offset to 
the next equivalent element. 

1  bit positions numbered left to right 0-3i for 360. 
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Format 2 

The control word is interpreted under Format 2 

when the indirect bit is equal to 1. 

	

bits 	value 	description  

	

0-4- 	same as Format 1 

	

5 . 	1 	indirect addressing 

	

8-31 	address of complete new control 
word. 

Through the use of the indirect addressing facility 

it is possible to create amorphous structures anywhere in 

main store.• There can be any number of levels of indirect 

addressing. This facility is useful for dynamically 

altering the structure without undergoing major copying 

operations. 

For elementary items bit 1 defines the exponent 

format, viz. implicit or explicit. For items composed of 

a simple factor group bit 1:= 0 while bit 1 is equal to 

1 for a factor group 

Representation of Exponents for Composite Elements  

For a composite element (bit 0 equal to 1), an 

explicit format (bit 1 equal to 1) requires storing an 

extra element as the exponent. This exponent is stored 

as either an algebraic term or simple algebraic expression 

data element. The exponent is stored as a separate sub-

element after the last sub-element in the element. It is 

however not considered as a sub-element and hence does not 

appear in the sub-element count. 



Definition 	 Representation 	 Value Represented  

C1,I,SAE 4 31 

C,E,SAE 2 9 

S,I,T 1 3 
1 1 

A 
S,I,T 1 3 

1 1 
B 

S,I,T 0 2 
2 1 

S,I,T 2 4 
2 1 

A 

C,I,T B 17 

S,I,F 1 3 
1 1 

A 
C,E,SAE 2 13 
S,E,T 2 4 

1 1 
A 

2 1 
S,I,T 1 3 

- 1 1 
B 

S,I,T 1 3 
1 1 

A 
S,I,T 1 3 

1 1 
C E F 

SAE CW 
Term 1 CW 

Subterm 1 CW 

Subterm 2 CW 

Exponent CW 

Term 2 CW 

Term 3 CW 
Factor 1 CW 

Factor 2 SAE CW 
Term 1 CW 

Term 2 CW 

Exponent CW 

.Term 4 

(A 4- B)2  
A 

B 

2 

2A*B 

A* (A2  - B) 
A 

(A2;:- 	B) **A 
A2 

B 

A 

CEF 
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Fig. 4.2 Canonical Representation of Simple Algebraic Expression 
(A + B)** 2+ 2 ' A * B +A * (A ** 2 - B) ** A + CEF 



C,FD,E 2 
2 

SIN 
S,I,T 1 3 

1 1 
X 
S,I,T 0 2 

2 1 

FD CW 
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For sometypesof algebraic operations (e.g. differentiation) 

it would obviously be more convenient to have it the first 

element as it would involve less retrieval time. However 

this change could be implemented by making some changes to 

the system. 

Function Designator Representation  

A function designator is described and stored in 

a standard format. The function description is stored as 

the first sub-dement. It is expected that this element 

will always be a simple item. The number of sub-elements 

in the count field specifies the number of parameters plus 

one (for the first sub-element). The definition of the 

length field remains unchanged. 

The parameter elements are stored as sub-elements 

of the function designator data element. If the function 

has an explicitly defined exponent this will again appear 

after the parameter sub-elements. 

Generally a simple function name will be stored as 

a double word simple element; the first word being the 

control word for the simple element while the second stores 

the function name. 

Definition 	Representation 	Value Representation 

SIN2(X) 
SIN 

X 

2 

Figure 4.3 
	

Internal Representation of SIN2(X) 
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This concept can be extended to encode partial or 

total deivatives for dealing with differential equations. 

The "type" of the first sub-element control word is given 

a value according to its use as follows: 

Value 	Definition  

0, 	simple function name 

1 	total derivative 

2 	partial derivative 

The number of variables involved in the differen-

tiations is stored in the count field of the first sub-

element. Each variable of differentiation and its order 

is stored in an analogous manner to the format of a simple 

explicit element. The length field is as before. 

FDI 	4 	18 

02 	3 	8 

F 

2 	1 

Y 

3 	1 

z 
 

STI 	1 	3 

1 	1 
P 
STI 	1 	3 

1 	1 

Q 
STI 	1 	3 

1 	1 

name sub element 

1st parameter 

2nd parameter 

3rd parameter 

Internal Representation of de  F(p,q,r) 

.3x2  ,(3,)z 

R 
Figure 4.4 

4 
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Implementation Restrictions  

The 360 implementation imposes some size res-

trictions. For example the maximum length of an element, 

including simple algebraic expressions, is 32K words 

(128K bytes). If necessary this could be readily extended 

by using a double word for the control word, Alternatively 

a structure could be built up by simple references to 

other existing structures through the use of the "presence" 

bit facility. Through this technique each node of the tree 

is limited to effectively 32K components. 
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Organisation of Elements within a Structure  

The organisation of elements within a data structure 

can be either implicit or explicit. There may be many 

equivalent forms of a data structure, each structure 

differing only in topology. 

A structure is composed of elements, each element 

of which may be made up of other simple or elementary 

(hence terminal) elements or composite elements which may 

themselves be further decomposed. The elements of the 

structure can be dynamic in length at all times. Further-

more, the number of elements in a structure, (or the number 

of sub-elements in an element), is also dynamic. It is 

necessary to be able to add new elements at any time as 

well as deleting other partial or complete elements. 

The data structures of AIDS attempt to meet these 

needs, as well as provide economy in space and accessing 

time, by combined implicit ordering as found in arrays 

with explicit addressing of pointer based systems. This 

form 	of structure is well suited to a dynamic environment. 

However it is unsuited to storing structures on backing 

store. For this the canonical form of the data structure 

must be used. 

Canonical Form of Data Structure  

The organisation of elements in the canonical format 

of the data structure involves only implicit ordering of 

the elements. This format is used for storing a structure 

as a contiguous block or segment, either in core or on 
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secondary storage. Figure 4.2 represents an expression 

stored in canonical format. 

The map for determining the organisation and the 

topology of any data structure is embedded in the control 

word sequence of the structure. Each control word 

associated with an element defines the make-up of the 

element. For simple elements the relevant topological 

information is the length of the element. 

Composite items are made up of consecutive sub-

elements stored in contiguous storage locations. The 

control word for a composite element defines both the 

number of sub-elements and the overall length of the element. 

Each control word contains sufficient information for 

passing from one control word to the next equivalent control 

word. For sub-elements the control word of the first sub-

element is found as the first word past the element control 

word. Addressing in the canonical format is essentially, 

through relative base and offset. 

Extended Form of Data Structure  

The canonical form requires that the data structure 

be stored in consecutive locations in storage. Any 

modifications or changes will usually involve rewriting 

a new structure, unless the new elements are of the same 

length. In order to readily permit modifications to an 

existing structure without extensive rewriting, a pointer 

based facility is available through the use of an indirect 

addressing mechanism. 
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The format of an indirect address control word 

is given.by Format 2. If the indirect addressing bit is 

equal to 1, then the address of an updated control word 

is found at the address specified by bits 8-31 of the 

current control word. This itself may involve indirect 

addressing etc. to any level, although more than two 

levels are not likely to be required. 

Control Element 
Addressing 
Vector 

Indirect Address 

Control Words 

 

Simple Elements 

Fig. 4.5 Addressing Algebraic Data Elements 
through Common Element Table. 

An instance where this facility proves useful is 

to permit accessing common elements without duplication. 

In the canonical format an algebraic expression is essen-

tially stored as it appears in the external representation. 

There is no facility for avoiding redundant representation 

except through the use of the presence bit for identifying 

common external simple algebraic expressions. However when 

working in a dynamic environment where common forms (i.e. 
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algebraic items) are likely, each common form could be 

addressed through a common element table. This will 

permit changing all instances of the item by making only 

the one single change in the element itself. However, 

it is for the same reason that a change in a single instance 
non 

would induce changes in all instances that redundant 

representations are extremely dangerous and of limited 

value. 

The indirect addressing format defines the 

addressing for only a single element, which can be either 

simple or composite. The next equivalent element after 

an indirect addressed element is referenced implicitly 

through the control word immediately following the previous 

indirect control word (see figure 4.6). This element 

itself might be indirect, etc. 

Composite Element CW 

1st sub element 

2nd sub element 

3rd sub element 

4th sub element  

CW 	1---------------- indirect 

cw 

I 

CW 

Figure 4.6 	Mixed Format Composite Data Element 
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Fig. 4.7 Representation of Simple Algebraic Expression 

(A± B) ** 2 + 2 * A * B +A * (A **" 2 - B) 
in Extended Format 

* 	A -r CEF 
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Of course it is possible to build up the data 

structure by having vectors of control words at each level 

and pointer to the final terminal elements. Figure 4.7 

shows this type of data structure for the expression 

( A+B )**2+2*A*B+ A*(A**2 -B )**A-i-CEF. 

The control word mechanism provides very effective 

methods of manipulating algebraic structure without 

involving excessive data movements. In this way it is 

possible to build up complex algebraic elements from 

existing simple elements. For example, if simple data 

elements exist for 3* 	B and C these can be combined to 

form a simple algebraic expression by defining an element 

of 3 control words as in Figure 4.8. 

The first control word specifies that this element 

is a simple algebraic expression with implicit exponent 

consisting of two terms. The total length cf contiguous 

words is specified as 3. The second and third words of 

the element are each of type term and each is flagged as 

specifying the address of the control word where the item 

may be found (Le. Format 2 control word). 

This element could in turn be referenced from 

another data element at a higher level. Figure 4.9 

illustrates a situation where the element defined in 

Figure 4.8 is used as a factor by a higher level element. 

In this manner a hierarchy of algebraic structure can be 

created from simple data elements. 

Whenever structures are created in this manner, 
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Fig. 4.8 Representation of Simple Algebraic Expression 

3A284- C 

Fig. 4.9 Representation of Term (3A314- C)D 
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the following rules are defined for subsequent referencing 

and accessing: 

1. Whenever an element is referenced through a 

control word where indirect addressing is specified, 

algebraic structure is built up through the control 

word sequence. 

2. The organisation of a terminal data element is 

ultimately determined from the control word of the 

terminal element. Hence simple or composite type 

can only be deduced from the terminal element 

itself. The algebraic type, however, is specified 

by the higher level control word (e.g. the data 

element is to be used as a term or factor etc.). 

In this manner the algebraic type of simple data 

elements can be overridden. 

3. If a control word specifies both indirect address-

ing and an explicit exponent, the exponent control 

word is specified in the word following the indirect 

address control word. In this way it is possible to 

affect a complete algebraic structure by an explicit 

exponent.' 
	

If the terminal element itself is 

specified as having an explicit exponent, the 

exponent element is found in the normal manner. 

1
This is a non standard type of operation which produces 
structures whose components cannot be properly accessed 
through the structure macros. The element can be reduced 
to a standard format by the REDUCE routine. 
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Further Extensions  

The presence bit is a facility for referencing 

externally defined elements which are themselves simple 

algebraic expressions. When the presence bit equals 1, 

bits 8-31 of the current control word define an offset 

into an external expression tkble for subsequent refer-

ence to the appropriate simple algebraic expression. 
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Accessing Elements within the Data Structure 

The data structure which models any external 
- 	. 

algebraic expression is basically a tree of any number 

of levels, with any number of branches at each node. No 

element in the structure can be directly accessed without 

tracing through the tree, except of course if previous 

known pointers to specific elements have been kept. Most 

operations in simple algebra involve treating only one level 

down at any one time, although of course this facility can 

be recursive. For example, multiplying 2 expressions 

involves access to each expression as well as to the 

terms in each expression, which are at the next level 

down. Normally one is not concerned with]ocating a 

specific element, but rather with passing through the 

structure performing specific operations on all or parts 

of the structure.1 

A number of macros have been implemented for 

facilitating access to the elements in a structure. These 

macros only permit accessing elements at the same level 

or the next level down. This facility can be used 

recursively at any level in the structure. 

1. 	NEXTD 	RP=2, RD= 3 

The NEXTD macro is a keyword parameter macro for 

locating the first sub-element (i.e. the leftmost 

1In the next stage of development this will not be strictly 
true as it is hoped to use a visual display for user inter-
action. Again however it is only necessary to associate a 
position on the display with an algebraic entity. Even though 
complex items can be represented on the display the actual 
trace time will still be negligible. 
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son) of any element. The keyword parameter 

identifies the register containing the address of 

the current element control word. The address 

of the first sub-element control word is returned 

to the register identified by the keyword parameter 

RD. (In accordance with the rules for keyword 

parmeters, if no macro parameters are specified 

default values of registers 2 and 3 respectively 

are used.) 

2. NEXTE 	RP=2, 

NEXTE is also a keyword macro, used for locating 

the address of the control word for the next equi-

valent (i.e. right brother in the tree) element. 

The parameters RP and RE are similar to those in 

the NEXTD macro. 

3. ELEMENT 	PR=2, ER=3 

Through the use of the indirect addressing facility 

the body of an element could be found only at the 

end of a chain. The ELEMENT macro effectively 

produces the final address of the control word for 

an element. The keyword parameter PR identifies 

the register storing the initial control word 

address while ER identifies the register to which 

the final address will be returned. The ELEMENT 

macro will continue processing until a terminal 

condition is reached. 
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4. EXPONENT 	RP=2, RE=3 

The EXPONENT keyword parameter macro locates the 

address of the control word defining the exponent 

data element. The address of the composite data 

element whose address is sought is contained in 

the.register specified by the keyword parameter 

RP. The exponent address is returned in the 

register specified by the keyword parameter RE. 

5. FUNCTION 	RP=2, RF:=3 

The FUNCTION keyword parameter macro is used to 

locate the address of the first element of a 

function designator data element which defines 

the function. The keywOrd parameter RP ilentifies 

the register containing the address of the function 

data element. RF specifies the register to which 

the element address is to be returned. 
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ConVersions Between External and Internal 

Representations  

An external algebraic expression is read in as 

a charader string and must be converted to the internal 

representation. For output it is necessary to be able 

to convert from the internal data structure to a formated 

line of EBCDIC characters. The first conversion requires 

extracting the algebraic values as well as the algebraic 

structure for subsequent storage in the data structure. 

The latter conversion is performed by a special purpose 

print routine. 

The data structure corresponding to an algebraic 

expression is built up during a syntax analysis of the 

expression. The recursion facility within AIDS is used 

for the creation of the recursive data structures. 

Operation of the Syntax Analyzer  

The function of the syntax analyzer is to 

convert an algebraic expression from the external syntactic 

representation (see Appendix I) to the internal syntactic 

representation. 

The syntax analyzer itself operates inla conven-

tional recursive manner by using 2 local stacks, each of 

which stores single word values. The first stack stores 

the return address to which control is returned after a 

search for a syntactic item. The second stack stores the 

addres of the string pointer on entry to a syntactic 
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entity recogniser routine. 

In constructing the syntax analyzer advantage 

has been taken .of unique hardware instructions in the 

360 which assist considerably in syntactic analysis, 

namely the TRT (translate and test) and TM (test under 

mask) instructions. The TRT instruction works in con-

junction with a 256 byte function string which is used 

as a byte table. The TRT instruction has two operands, 

one of which points to a variable length source string 

(or substring) being analysed while the other operand 

identifies the function byte string. Each byte in the 

source string is used as an offset to reference a byte 

in the function byte string. If the function byte has 

value zero the operation is repeated with the next byte 

in the source string until a non zero function byte value 

is found or the length of the source string is exhausted. 

If the source string is exhausted without producing a non 

zero function byte, this condition is signalled by setting 

the condition code equal to zero. When a non zero function 

byte is produced the operation ceases and returns the 

absolute machine address of the source byte in register 1 

along with the value of the function byte in register 2. 

By this means it is possible to set up a function byte 

string to search for delimiting characters. However, it 

is more•useful as a means of classifying each byte type 

and the TRT instruction is used in this manner in AIDS. 
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The function byte string (of length 256 bytes) 

is created in AIDS by the STRTABLE macro using the 

following keyword paraMeters: 

&NS 	non-valid symbol in source 	non araphic 
string 	 symbol 

&D ' 	digit 	 0-9 

&LT• 	upper case letters 	A-Z 

&AO 	add operator 	4- - 

&MO 	multiplication operator 	* / 

&RO 	relational operator 

&LO 	logical operator 

&S 	separator 

&DL 	delimiter 

&SS 	special symbol 

&BLK 	blank 

It is relatively easy to change the table as well 

as incorporate new class entries such as a lower case 

letter region. The STRTABLE macro also creates single 

byte values for each class entry. Consequently there is 

a single byte for the categories DIGIT, LETTER, ADDOP, 

MULTOP, RELOP, LOGOP, SEP, DELIM, SPEC, NONSYM and BLANK 

set with the value of the corresponding keyword parameter. 

The name assigned to the table produced by STRTABLE is 

named CODESTR and is included within the code for the 

syntax analyzer. This is not included in the user area 

as it remains invariant with processing. 

To assist in writing and modifying the syntax 

analyzer a small number of useful macros have been defined: 
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1. BOT 	TYPE, ADDRESS 

the macro BOT (branch on type) can be issued 

after a TRT to effect a branch to the address 

specified by &ADDRESS if the current character 

being examined in the source string is of type 

specified by the parameter &TYPE (i.e. a classi-

fication such as DIGIT, LETTER, etc.). 

2. BNT 	TYPE, ADDRESS 

The BNT macro (branch not type) is similar to 

BOT except that the branch is effected only if 

the type of the current differs from the type 

specified by the &TYPE parameter. 

3. NEXTCHAR 

The NEXTCHAR macro moves the string pointer up 

one position. 
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Syntax Analyzer Conventions  

The conventions which have been adopted in the 

AIDS syntax analyzer do not-restrict its capability. 

Some of the recognizer routines in the syntax analyzer 

are also used by the command interpreter for recognising 

syntactic elements by adhering to the conventions. 

The syntax analyzer works by examining single 

characters in turn from the source string. The address 

of the current character being looked at is always held 

in register 3. Registers I and 2 are always available 

for use by the TRT instruction. 

Each recognizer routine operates without storing 

current status information such as register contents 

etc. It leaves undisturbed current status registers and 

uses the accepted scratch registers for local processing. 

When creating structures from the source string current 

status data structure information is maintained in the 

user's area. 

Before entering a recognizer routine it is neces-

sary to stack the address to which control is returned 

upon completion of the recognizer routine, as well as the 

current address (pointer) in the source string, in case 

the test fails. The stacks for storing these values are 

labelled ASTACK and PSTACK respectively and each permits 

a maximum of 300 entries (words). Values are stacked by 

transfering control to a local routine STAKAP which 

assumes that the contents of register 2 contain the return 

address and register 3 points to the current source string 

character to be examined. Each recognizer routine ter- 
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minates by branching to either the USTAKA or the USTAKAP 

routine. USTAKA removes the last entry from the stack 

and branches to the return address without resetting the 

source string pointer. This constitutes the "item 

recognised" condition and is signalled to the calling 

program by betting the length of the recognized item in 

bytes in register 0. USTAKAP corresponds to the "item 

not recognised" condition so that register 0 is set to 

zero and the string pointer reset to its value before 

entry to the recognizer routine. 

An algebraic variable is always kept as 4 charac-

ters and hence fits into a single word. Whenever a 

variable identifier for simple variable, array variable, 

or function designator is recognised, the corresponding 

recogniser routine returns 'the value in register 8. Note 

that truncation or blank fill on the right will have 

occurred if necessary. In the same way, all arithmetic 

values are returned in the appropriate form (integer, 

real or rational) in register 9. For example, when 

recognising < variable exponent pair) the variable is 

returned in register 8 and the exponent as a rational 

number in register 9. 

All routines in the syntax analyzer maintain the 

integrity of the base registers (10 and 11) for the 

syntax analyzer as well as the base registers pointing to 

the user data area. 
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Forming Algebraic Structures  

Ah algebraic data structure is built up during 

the syntax analysis as each algebraic data item is 

recognised. Simple data elements are created in a large 

work area, while a control word sequence is built up in 

a.  separate vector. If the syntax analysis is successful 

the structure is copied into its own allocated area and 

stored in canonical format. 

Upon entry into the < simple factor group> and 

<factor group> recognizer routines a block is automati-

cally created in the work area. If the test for the 

syntactic entity fails, the pointers into the work area 

are reset to their previous values. If the test succeeds 

the pointers are updated and the address of the block is 

stored in an indirect address type control word by a higher 

level algebraic recogniser routine. 

Each algebraic type element has its own local data 

space in the user data area. As the syntactic elements 

(simple algebraic expression) , <term >and < function 

designator"? are potentially recursive, the current data 

values must be saved on a data stack whenever any of the 

above are re-entered and reset when the previous environ-

ment is again invoked. 
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Conversions Between Data Structure and External  

Representations 

Because of the dynamic and recursive feature of 

the data structure the transformation between internal 

and external data representation implies considerably 

more processing than for more conventional structures. 

However, as the conversions between the two representations 

constitute only a small part of any algebraic system, 

this overhead can be tolerated. 

The conversion is performed by print routines 

which operate recursively. The routine which decodes and 

prints simple algebraic expressions pass control to a 

similar routine which prints out each term in turn. Both 

of these are obviously recursive. All of the necessary 

editing characters are inserted as required. 
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Recursive Facility in AIDS  

The AIDS system makes extensive use of recursion 

so that powerful system recursive facilities are required. 

Unfortunately the 360 hardware is not particularly suited 

for stack type operations hence these must be effected 

through software. It is of course possible to perform 

recursive programming through the GETMAIN and RETMAIN 

macros in the control program services of OS 360, however 

this procedure is neither efficient in time nor in its 

use of storage. As the stack in AIDS can grow very large 

during processing it is often necessary to save stack 

copies on secondary storage devices, such as the disc. 

Therefore, in AIDS, recursive programming is done through 

a stack which is saved on disc whenever it is necessary. 

The GETMAIN-RETMAIN facility requires considerably more 

processing in that the stack segments must be explicitly 

chained together. 

On many systems recursive programming is facilita-

ted through the use of special hardware. (e.g. Burroughs 

5500/6500, KDF9, PDP10). On others (Univac 1108) it is 

more readily possible than with 360 to simulate stack 

operations through the use of existing registers. 
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The recursive facilities provided in the present 

system ae coded as macros for stack operations. The 

system may employ any number of stacks up to a maximum of 

256. It is essential that there be at least 2, one of 

which (STACKO) is used primarily for recursive program-

ming and stacks current register values, while the other 

is a data stack required by the syntax analyzer when 

creating a structure. Each stack is described by a set 

of control values which are stored in the user's data 

area. A new stack cannot be added dynamically, as with 

the Burroughs systems, but must however be configured 

into the system by setting up a new block of associated 

control values in the user or data area. The control 

values describing each stack are as follows: 

CSSA 	- current stack segment address 

NASSA 	next stack segment address 

NSS 	number of stack segments 

LSA 	- lower stack address 

LS 	- length of stack 

USA 	- upper stack address 

TSR14 	- temporary storage for register 14 

Description of Stack  

A stack is made up of variable length stack 

segments which are each described by a stack segment control 

word which is the first word of the stack segment. CSSA 

holds the address of the current stack segment word. NASSA 
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is the next free word past the present stack segment. 

LSA and USA are the addresses of the lower and upper 

stack boundaries, while LS is the length of the stack 

in words. TSR14 is used as a temporary store for 

register 14 by the stack macros as explained later. NSS 

is the number of stack segments currently active. 

The stack segment word has 3 fields associated 

with it, namely: 

NR 	- bits 0-3 	number of registers saved in this 
segment 

LSS 	- bits 4-15 length of last segment in words 

LCS 	- bits 16-31 length of current segment in bytes 

NR is stored so as to facilitate the accessing of 

data when stored in a stack segment along with the register 

contents. The LSS value permits moving back to the 

previous stack segment control word when unstacking is 

required. This value is given in words to permit a 

maximum size segment of 212  words or 16K bytes. LCS 

gives the length of the current stack segment in bytes. 

Byte, instead of word values, are used as offsets for 

addressing must be in bytes even though each stack is 

essentially a word stack. 

Even though the 360 is essentially a byte machine, 

the stack and stack operations are based on words. 
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Recursive Programming Macros  

1. 	RSAVE 

A recursive routine is essentially a routine which 

can call itself. Hence a first requirement for such a 

routine is that the save areas associated with the calls 

to the routine be separated from each other. STACK() is 

used in the system for saving the reaister contents. 

RSAVE is the recursive save macro for saving the 

contents of the general registers and is described by the 

model statement: 

RSAVE 	&R1= 0, &R2=141  &NR=VOFT, &STACK=0 

All of the parameters in this macro are keyword 

parameters. The parameters &R1 and &R2 specify the 

starting and ending registers that must be saved. If 

these parameters are omitted values of 0 and 14 respectively 

are assumed. The parameter &NR is the number of registers 

saved and is expressed in hexadecimal form. A default 

value of 15 is assumed if the parameter is not specified. 

The &STACK parameter references the stack to be used and 

has a default to STACK() if no value is specified. 

The maximum number of registers that can be saved 

is 15 as it is not anticipated that saving 16 is necessary. 

It has been necessary to deviate from 360 conventions to 

a small degree, however system reliability or performance 

will not be affected. Registers 14 and 15 are used in 

the conventional manner. Register 13 no longer points to 

the current save area as the save area is implicitly 
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2. 	RRETURN  

The recursive return macro RRETURN is the complement 
- 	. 	- 

of RSAVE
1 	

i . It operatds n essentially an analogous - manner 

by producing in-line coding for restoring the register 

contents from a stack segment and providing the linkage 

to a routine USTACK which updates stack status information. 

The USTACK routine, much like RSTACK, loads the 

current stack information, updates and performs checks on 

it. The number of stack segments is decremented by 1 and 

the current and next stack segment address words are 

updated. A check is made to ensure that the stack area 

is not empty, else it is necessary to reload from disc 

the previous stack area. 

3, 	STACKSEG and POPSEG  

For recursive program not only is it necessary 

to save current status information (usually reflected in 

the general register) but also current data values. All 

such data is usually stored in consecutive locations in 

core and hence can be saved as a segment along with the 

contents of the general register. The STACKSEG macro 

moves a data segment from a user area to the current 

stack segment. The model statement is: 

&NAME 	STACKSEG 	&ADDRRSS, &LENGTH, &STACKO 

The positional parameter &ADDRESS and &LENGTH 

specifying the data segment address and the length in words 

1The model statement for RRETURN is: 

RRETURN 	&R1.= 0, &R2:-.-  14, &STACK=0 
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defined by current stack parameter values, however R13 

should be loaded to point to a save area which can be 

used by the control program or a non recursive routine 

if needed. 

RSAVE will usually be the entry point to the 

recursive routine and will usually (although not necessarily) 

be accessed through R15. However R15 is used by the RSAVE 

macro as a general purpose register for addressing purposes 

and hence is a volatile register, so that it should never 

hold a value to be saved. This restriction does'not 

interfere with 360 operations. 

The RSAVE macro produces a limited amount of in- 

line coding for addressing purposes and also saves the 

registers specified. Part of the in-line coding is the 

linkage to the routine RSTACK for updating the stack values. 

The RSTACK routine performs many of the functions 

that would normally be handled by appropriate hardware. 

It loads the data for the designated stack into the 

general registers, updates and performs checks on it. 

The number of stack segments NSS is incremented by 1 and 

a stack segment control word created for the stack segment 

holding the current values of the registers as stored by 

the RSAVE macro. A check is made to ensure that the stack 

is not full (i.e. within 15 words of the upper stack address) 

and when full the stack contents are written to a disk. 
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respectively. &STACK is a keyword parameter identifying 

the stack to be used. If -this parameter is not specified 

STACKO is assumed. 

The complement of STACKSEG is the POPSEG macro 

which moves the data part of the current stack segment to 

the user area specified in the macro. The model statement 

for POPSEG is: 

&NAME 	POPSEG 	&ADDRESS, &LENGTH, &STACK=0 

Both STACKSEG and POPSEG produce in-line coding 

for storing parameter values and linkage to the routine 

STACKSEG and POPSEG respectively. 

Any number of data areas may be added to the current 

stack segment although it is not expected that the facility 

will be used in this manner. However, as no information 

is stored with each data segment to differentiate it from 

the other data areas in the current stack segment, the 

unstacking operations work on only one data area. 

This need not be a limitation of the system as it is possible 

to add extra coding to unstack data areas from the top of 

the current stack segment by changing the current length. 

As it is not envisaged that this enhancement would be 

particularly useful, the extra overhead to be incurred 

can hardly be warranted, even though there is more 

generality and flexibility. 
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Data Stacks and Data Stack Operations  

The main stack (and most used stack) is STACK() 

which is intended primarily for recursive programming. 

This allows essentially the stacking of recursive save 

areas as well as associated data areas if necessary. 

However, a single stack will not suffice in the system if 

efficiency is to be an essential requirement. Some 

operations, such as creating an algebraic structure, 

require the stacking of data values only. Hence provision 

is made in the system for any number of data stacks. 

The two main macros used for data stack operation 

are STACK and POP. STACK stores a data area as a stack 

segment while POP unstacks a stack segment and moves the 

data to the user area. 

The model statement for STACK is: 

&NAME 	STACK 	&ADDRESS, &LENGTH, &STACK= 0 

The keyword parameters &ADDRESS and &LENGTH identify 

the user data area and length in words respectively. 

&STACK refers to the stack being referenced and defaults 

to stack 1 if no value is specified. 

Similarly the model statement for POP is: 

&NAME 	POP 	&ADDRFSS, &LENGTH, &STACK = 0 

The parameters have the same meanings as in STACK. 

The general stack macro STACKSEG and POPSEG can 

also be used to add and remove a data area to an existing 

data segment. 
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The recursive facility is sufficiently general 

to allow the system programmer to perform complex 

recursive operations on any number of predefined stacks. 

Each stack added requires the system to be re-assembled. 

The dummy control section which describes the user's data 

area (USER).must be changed to include another set of 

parameter values which describe the new stack. Some of 

the values which are referenced through the recursive 

macros in other control sections must also be declared 

as entry points. 
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Data Management  

The highly dynamic nature of algebraic manipulation 

necessitates the use of specialised store management 

techniques for severalaspects of the AIDS system. 	The 

AIDS concept is designed to cope with multiple concurrent 

users in an environment in which all users share the 

program code in common. 	Each user has however access 

only to his own data areas. 

The main areas of data and storage management 

are as follows: 

1. a fixed length data area associated with each active user 

2. a free storage scheme for the allocation and 

de-allocation of blocks of any length for dynamic data 

handling 

3. secondary storage facilities for storing structures 

when not needed immediately in main store as well as for 

storing overlay data segments 

4. cataloging structure facilities for name and variable 

value tables 

User Data Area  

Each active user is allocated a data area for 

storing local data values required for the proper operation 

of the AIDS routines. 	All save areas and parameter 

list data areas are rbferenced within the users data area1. 

1For. the 360 implementation, register 12 is reserved for 
storing the pointer to the user area at all times. The 
symbolic data references are defined by the dummy control 
section labelled USER. 
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Also included in the user area are the general purpose 

stacks and stack environment values as well as the 

local stacks of the syntax analyzer. The dynamic data 

areas within the user area are checked to ensure that 

they do not overrun their allocation with disastrous 

consequences. 	In some cases the same save areas or 

parameter lists are used by•more than one routine but 

only when the routines cannot interact in any way with 

each other. 

One segment of the user data area, which is not 

necessarily contiguous with the main data area, is a large 

scratch work area used by the syntax analyzer and other 

special routines. 	This area is not logically essential 

to AIDS, however by providing a relatively large scratch 

area it eliminates the need for an excessive number of 

calls on the free storage facility and for associated 

housekeeping operations. 	Again this area is only 

used by a single process at any one time and is therefore 

managed by a processing routine. 	It is used primarily 

by the syntax analyzer and the expansion routines, 

essentially in much the same manner as a stack, to create 

temporary data elements during a process. 	These elements 

are moved during a final pass to a structure area. 

Stacks 

The stacks are associated with the recursive 

mechanism available in AIDS. 	Each user area has 



- 81 - 

stack control values for at least 3 separate stacks. 

Variable length stack segments described by a stack 

segment control work are stored and retrieved from 

the stack on a first in first out basis. 	When a 

stack is full this copy of the stack is stored on disk 

and the stack area overlayed with the new stack extension. 

Similarly 'when a stack area is empty and more stack 

segments exist, the previous incarnation of the stack 

is reloaded and new status information set. For this 

the first 4 words of a stack are reserved for holding: 

1. the identification (i.e. record number) of the last 

stack segment so it can be retrieved when needed 

2. length of the previous stack segment in words 

3. current stack segment address (CSSA) to be used when 

the stack is re-incarnated 

4. next available stack segment address (NASSA) for 

the next re-incarnation. 

Free Storage Scheme  

The free storage scheme allocates data blocks 

(in words) of any size from a pool of free areas upon 

demand. 	The size of the free storage area is set at 

system generation time and will usually involve 

claiming all the remaining space available in a 

partition or remaining in main store. 	There is no 

set maximum value and it is expected that the system 

will work satisfactorily with about 32K words in the 

free store area. 
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Fig. 4.10 Free Storage list structure 
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The free storage scheme operates through a two 

dimensional list structure. 	All the blocks of different 

length are chained together, in order of increasing 

size, in a single chain. 	All blocks of the same size 

are chained together in another list. 	Fig 4.10 

represents,a typical free list structure. 

The first 3 words of each block in the free list 

are used for storing status and pointer information. 

Word 1 points to the next largest block in the free 

list, if one exists, while word 2 points to the next 

block of the same size, also if it exists. 	Word 3 is 

divided into 2 fields, the first byte representing the 

number of remaining blocks of the same size while the 

3 tow order bytes contain the length in words of this block. 

A request for a block of given length is made to 

the GETCOR routine. 	If a block of this size does not 

exist the next largest block which does not leave a 

residue greater than a pre specified size is broken up 

and used. 	The residue is of course entered in the 

appropriate position in the free list. 	This method tends 

to conserve large areas which are obviously required for 

holding large structures. 	If a request cannot be met 

a condition code is returned to the calling routinel. 

When a block is returned to the free store an 

attempt is made to attach it to either end of an existing 

block in the free list. 	If this can be done the new 

block is moved to its appropriate position in the free list. 

1Register 15 returns a non zero value on the 360 implementation. 
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The free store scheme does not maintain an 

inventory of blocks allocated and their length but 

relies'on the integrity of the routines which demand 

and return free store blocks. 	However as all the free 

blocks are allocated from a single area of main store, 

RETCOR checks to ensure that a returned block is 

within bounds. 

Because of the dynamic nature of most manipulative 

routines in AIDS the length of block required is not 

always known a priori.Hence the usual procedure is to 

request a larger block than is needed and return the 

unused space. 

Secondary storage facilities  

Because of the nature of algebraic operations, 

the structures can grow very large even when in a 

reduced or simplified form. 	It is essential that a 

back up facility, for storing structures not immediately 

required, be provided. 	Also it is required to be able 

to save stack copies so that the stacks are not limited 

to a fixed length. 	Two routines are provided in AIDS 

for storing and retrieving variable length (in words) 

records; DSAVE for saving and DGET for retrieving 

records. 

DSAVE accepts as parameters the address from 

which the record is to be written and its length in 

words. 	After the record is stored DSAVE returns a 

record identification number, for subsequent retrieval 
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'to the calling routine. DGET is the complement to 

DSAVE and uses the same parameter sequence. The 

calling routine must provide both an identification 

number as well as a length and address. The length 

value could be maintained by the secondary storage 

mechanism. The length value for structures is kept in 

the structure name table for structures and in the stack 

extension area for stack areas. 

Catalogue Facilities  

AIDS provides and maintains a catalogue of all 

mamed structures for any user. A separate name-value 

table is maintained for associating a value for variables 

used in the structures. The format of the structure and 

name-value tables is given in Appendix V. A number of 

routines for maintaining the catalogue are provided. 

The routines INSERTN inserts a name and value 

into the variable name table. INSERTS is an analogous 

routine for inserting a name into the structure name 

table and a pointer to its location in main store. If 

entries already exist they are overwritten. DELETEN and 

DELETES delete variable name andEtructure entries 

respectively from their associated tables. ADDSTR 

returns the address of a catalogued structure and 

NVALUE returns the current value associated with a 

variable. 
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Chapter V 

- - 

Algebraic Operations 

A number of system defined operations are 

available for manipulating the elements of the data 

base in AIDS. 	Arithmetic operations on numeric 

representations consititute the degenerate case for 

formal algebraic operations. 	As with arithmetic 

operations on numeric data the most primitive operations 

are embedded in the instruction repetoire. 	More 

complex operations are defined in terms of the 

primitive operations and constitute essentially 

built-in function subprograms. 	A user defined function 

procedure represents yet a higher level of functional 

complexity. 

Most conventional digital computers have been 

designed almost exclusively for numeric data processing. 

Hence the instruction repetoires do not usually incorporate 

complex instructions, except of course for character 

handling, designed primarily to assist in non-numeric 

processing. 	However as the trend is to build special 

purpose hardware for specific operations such as the 

IBM array processor (refs 33), combined with the 

emergence of complex numeric operators such as found in 

APL (ref 34), it is to be expected that the complexity 
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of operations performed by the hardware will continue 

to increase. 	In an analogous manner it should be 

possible to define algebraic operations that could readily 

be realised by micro programmed hardware sequences. 

The essential difference between operations on 

numeric entities and operations on symbolic entities 

is that the extent of the result of the latter is 

dynamic while numeric calculations produce well defined 

results. 	The result of a symbolic process often 

requires a second pass to reduce it to its minimal form 

in terms of a canonical representation. 

Some languages permit single operations on 

complete data structures or on their multi-element 

components. PL/1 for example, has structure operations 

which essentially constitute an implicit DO loop for a 

single operation on all elements of the structure or 

sub structure. 	The operation must of course be valid 

on the primative elements, although conversions may 

be induced. In PL/1 the structures are inherently 

static and the operators can be any of the arithmetic, 

comparison or string operators. 	These facilities 

are not readily adaptable to symbolic processing in the 

AIDS context. 	Useful operations for symbolic processing 

can be found in some high level languages such as 

SNOBOL (ref. 24 ) 	For example the balanced string 

variable is useful for isolating a balanced pair of 
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parentheses. 	Also, APL defines vector type operations 

by single operators. 

The algebraic operations performed in AIDS can 

be divided into several distinct classes. 	The 

operands are the data elements as defined in AIDS, 

which can be of either simple or composite type with 

either implicit or explicit exponent formats. 	The 

following classes of algebraic operations are defined 

in AIDS. 

1. arithmetic 

2. logical 

3. expansion (removal of parentheses) and factoring 

4. replacement (substitution) 

5. simplification 

6. conversions 

7. differentiation and integration 

8. evaluation 

9. functions 

10. data movement 

Simplification, being such an important operation 

in any symbolic system in that it provides an index of 

merit for any such system, is devoted to Chapter VI. 

Substitution and removal of parentheses and factoring, 

being related operations, are also discussed in Chapter VI. 

Differentiation and integration are essentially 

procedures based on the operations 1, 2 and 4 and are 
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dealt with in Chapter VII. 	Conversions between 

internal and external representations were described 

in Chapter IV. 	The remaining operations, 1 - 3 and 

8 - 10 are also discussed in this chapter. 

Many of the operations involve manipulating the 

algebraic data elements. 	Often however these operations 

can be performed by manipulating only the control words 

and making a subsequent pass on the data elements to 

produce a result in canonical and simplified format. 

The operations in AIDS are available as standard 

procedures. 	Some of the operations are recursive 

while most require access to the user's area. 	All of 

the routines are written as re-entrant procedures. 
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Data Transmission 

The input-output of variable length records 

(which can of course be structures) was described 

under Data Management in Chapter IV. 	Over and above 

this facility is the requirement to be able to move a 

dotplete data element from one part of the main store 

to another. 	A single data element in AIDS may represent 

a very complex structure with many sub-elements in a truly 

recursive manner. 	Further, a data element may be 

either in an extended format, with many indirect Addressing 

links, or in canonical format. 	There is no way of knowing 

whether a complex structure is stored in a canonical 

format from the high level control words. 	Only the 

terminal elements need be in canonical format. 

A single recursive routine is provided for 

moving a data element referenced by its control word 

from one store location to another. 	This routine, 

MOVELEM, has as parameters the address of the control 

word for the element to be moved and the address to 

which it is to be moved. 	The resultant element is 

stored in canonical format with updated control words. 

No simplification is performed except to remove any 

indirect addressing links. 

MOVELEM can be used to move simple elements. 

However, if the element to be moved is known to be 
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simple then it is possible to perform a move operation 

in-line by using the MOVE macro. 	The model statement 

for the move macro is as follows: 

MOVE 	LR-1=5, FROMR= 6, TOR =7 

Each parameter references a register; LR 

specifies the register which holds the length of the 

block to be moved in bytes, FROMR specifies the 

register containing the address of the element to be 

moved and TOR specifies the resultant address. 	If no 

parameters are specified the default values for LR, 

FROMR and TOR are 5, 6 and 7 respectively. 	Register LR 

goes to zero after the operation and FROMR and TOR 

registers are updated to point to the next available 

byte. 
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Arithmetic Operations  

Arithmetic operations are defined on the data 

elements of AIDS. 	The algebraic type field of the 

simple or composite operands must be either " term " 

or " simple algebraic expression " 	The arithmetic 

operations which are defined include addition, 

subtraction, multiplication and division for both 

simple and composite operands. 	No routines exist 

for performing exponentiation although this can be 

done by substitution. 	Exponentiation is treated as 

a special case rather than a basic primative operation 

in algebraic manipulation as any element in AIDS can be 

affected by an exponent through the use of the control 

words. 	A simplification mechanism can, in this case, 

be invoked to reduce the construction to canonical 

format. 	Arithmetic operations on simple elements 

involve both arithmetic and symbolic data. 	The 

degenerate case in which there is only numeric data 

associated with the simple data elements involves only 

rational arithmetic. 

Rational Arithmetic  

All numeric primative data values (excluding 

fields in the control words) are stored as rational 

numbers. 	For the 360 implementation the numerator 
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is stored in the most significant half of the word 
• 

and the denominator in the remainder. A number of 

routines in AIDS provide a-rational arithmetic 

capability. 

Rational addition is performed by PRADD which 

adds two rationals to form a rational result
1. 	PRSUB 

is an analogous routine, also with 3 parameters, for 

rational arithmetic subtraction. 	In like manner 

PRMULT and PRDIV provide rational multiplication and 

division respectfully. 	All result values are reduced 

to simplest terms by application of Euclids greatest 

common divisor algorithm. 	If the result value generated 

is too large an error message is printed. 	In its present 

form the rational arithmetic package can be rather 

explosive. 	Consideration should perhaps be given to 

dealing with rational numbers as ordered word pairs in 

store, in much the same manner as complex values are 

maintained in most systems. 

1 Rational addition on 2 rationals a/b and c/d is defined 
as ad4-bc  

bd 
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Symbolic Addition and Subtraction 

Symbolic addition and subtraction are defined on 

data. elements which are of type "term" or "simple 

algebraic expression". Addition and subtraction are 

dyadic operators requiring two operands to produce a 

resultant operand. Hence all the corresponding routines 

have as parameters, the addresses of the two operands and 

the resultant except for the routine ADDTERM. This latter 

routine attaches a term to an existing simple algebraic 

expression by adding an indirect address term control word 

to the expression control word sequence. 

The routine ATERMS performs symbolic addition 

on two terms. The result may be either a single term 

or a simple algebraic expression consisting of two terms. 

If either one of the term operands is a simple algebraic 

expression the result will consist of the second term 

operand being added to the expression. If both operands 

are of type "simple algebraic expression" the result will 

be a single simple algebraic expression involving the terms 

of both expressions. If it is desired to maintain the 

parentheses of a simple algebraic expression used as a term, 

ADDTERM should be used. In the case where both terms are 

of type "term" a test is made to see if the two terms can be 

combined in which case the result is a single term. A result 

is always in simplified format. 
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The routine ASAES adds two simple algebraic 

expressions to form a resultant simple algebraic 

expression. This routine operates by forming a 
- 	- 	- 

vector of indirect address term control words. A 

simplification mechanism1  is then applied to move 

and reduce the result. 

Symbolic subtraction is performed in a similar 

manner, making provision for sign of the second operand, 

by the routines STERMS and SSAES respectively. 

Simplification is implicit in all of the above-

named routines except ADDTERM. 

Multiplication and Division  

Multiplication and division involve more 

variety than addition and subtraction. When both 

operands are simple elements the result is formed 

by essentially concatenating the body (data elements 

less control word and constant) of the two elements 

together as well as updating the resultant control 

word and producing a new constant. Both simple elements 

must be of the same exponent type else an expansion from 

1 HLC routine - see Chapter VI 
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implicit to explicit exponents will be required. 
. 

The result is always reduced to its simplest form by - - _ - - 

the COMPRESS routine (see Chapter VI) 

Division of one simple element by .another 

is somewhat more complex. 	The dividend is stored in 

the result area with explicit exponents (this may of 

course involve expansion from implicit to explicit 

format). 	If the divisor has implicit exponents the 

divisor body, with explicit exponents of -1/i, is 

concatenated with the dividend. 	The resultant control 

.word and constant are appropriately modified. 	If the 

divisor has explicit exponents, all exponents are changed 

in sign as they are moved. 	In either case the result 

is simplified as with term multiplication. 

The simple data element operands for the above 

operations can be either of type "term " or " factor " 

and the resultant data element will have the type code 

of the first operand. 	It is expected that the type 

code will be overset by the calling routine in cases 

where ambiguity could arise. 

Multiplication and division where either or 

both operands are composite elements is performed by 

creating an intermediate element consisting of a 

control word sequence. 	The composite elements may 

be either simple algebraic expressions or composite 

terms, and each is handled by separate routines. 	A 
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composite factor is treated as a composite, term. 

The routine TMULT performs multiplication of 

two composite terms (or factors) to produce a 

simplified resultant term. 	The operation is performed, 

rather simply,-  by creating in the userts data area 

an intermediate composite term with implicit exponents 

consisting of two indirectly addressed control words 

(of type simple term with implicit exponents) pointing 

to each operand. Control is then passed to the term 

simplification routine RTERM (see Chapter VI) for 

simplifying the intermediate term and moving the 

result to the location specified by the result 

operand. 

TDIV is an analogous routine for performing 

term (or factor) division. 	It operates in exactly 

the same manner except that the second control word 

is set to type It simple term with explicit exponent ". 

The exponent comprising a simple element with value 

-1/1 is stored after the second control word. 	However 

before the result can be formed it is necessary to pass 

control to the routine (REDUCE) so that the exponent 

-1/1 can be applied to all subelements of the division. 

REDUCE produces a control word sequence which is 

passed to RTERM in order to form the resultant term 

element. 

One of the operands in either TDIV or TMULT 
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may be a simple element. 	No expansion is. performed by 

either of these routines. 	If a component factor of 
- 	- 	- 	- 	- - 	- - - - 

a term.is a simple algebraic expression it will also 

appear as such in the resultant term. 	For example 

in multiplying the composite term 3A2B3(A B) by the 

composite term A(A B)2, the resultant term will be 

3A3B3(A -I-  B)3. 	Division of the first by the second 

will correspondingly produce a resultant term of 

.3AB3(A+ B)-1. 

Multiplication and division involving two 

simple algebraic.expressions are performed by the 

routines MSAES and DSAES respectively. Again the 

operations are performed by manipulating control 

word sequences followed by a subsequent simplification 

process. 	MSAES operates by representing, in a work 

space, the first simple algebraic expression as a 

sequence of indirectly addressed control words, one 

for each term. 	A second sequence of control words 

is created to represent the resultant simple 

algebraic expression. 	Each element in this sequence 

is a composite term consisting of two factors. 	The 

first factor references a term in the second multiplication 

operand while the second factor references a term from 

the previously created control word sequence. 	All 

possible cross products terms are created and then the 

resultant simple algebraic expression is simplified by 

the HLC routine (see Chaptor VI). 
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Division of simple algebraic expressions is done 

in a similar manner. 	Each term of the divisor divides 

each term of the dividend. 	The same type of control 

word sequence is created as in MSAES except that the 

second factor is modified by an explicit exponent of 

-1/1 before simplification. 
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Logical Functions  

The logical functions which can be applied to 

the algebraic data elements involve testing for both 

algebraic structural equivalence as well as equivalence 

of symbolic values. 	Two routines are provided for 

this purpose, one of which pertains to tests on 

simple elements while the other is only applicable to 

composite algebraic elements. 	Each routine returns a 

condition status byte (see Appendix IV) 

Equivalence of Simple Elements 

The routine TESTESI tests two simple operands 

for equivalence. 	The simple operands can be either of 

implicit or explicit format. 	No test is made on the 

algebraic type field (e.g. factor or term) as this 

information is readily available to the calling program 

when needed through the appropriate control words. 

The first test performed is on exponents. 	If 

both operands are implicit then this test is skipped. 

If both operands are explicit a test for equivalence of 

variable exponent pairs is performed. 	However, if one 

operand is of implicit format when the other has explicit 

exponents then the explicit exponents must either all be 

plus ones or minus ones 	If the exponent values of one 

operand are the inverse of those in the other, this 
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condition is reflected in the return condition byte. 

This facility can be used to facilitate the search 

for common factor groups in rational function expressions'.  

As there is no system - imposed ordering of the 

variables according to a collating sequence, a search 

for equivalence of variables can be very lengthy. 

However, it is unlikely that a search will proceed to 

any depth if the simple operands actually do differ. 

As no search is made if the number of variables is 

not identical in each operand, the only condition 

that leads to excessive search time is when both 

operands have many common variables, all of which are 

concentrated at the beginning of the first operand. 

If the variables and exponents match a further 

test for equivalence of constants is made. 

Equivalence of Composite Elements  

Tests for equivalence on composite elements are 

performed by the routine TESTECI. As a composite element 

represents a tree or subtree, this routine is recursive. 

Essentially it is similar in structure to TESTESI and 

also returns a condition byte. 	It is necessary to 

identify a mismatch and default as quickly as possible 

because of its potentially time consuming nature. 

1 It is proposed to extend the existing routine to search 
for a subpattern within a given operand. 
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The first +est is to check the number of elements 

in each composite element operand. 	If they differ 

there is an immediate default. 	Care must be exercised 

with operands in extended format to ensure that the 

algebraic structure as reflected in the control words 

is the same for both operands1. 	This particular test 

is searching for topological equivalence. 

If the previous test is successful each subelement 

in the first operand is matched in turn against each 

subelement in the second operand. 	Failure to match 

on any scan produces an immediate default. 	When 

both subelements being matched are simple TESTESI is 

called; when both are composite a recursive call to 

TESTECI is made, else the scan continues. 

1 
For example a term with n factors would not be 
considered equivalent to another term of n - 1 factors 
where one of the factors is made up of 2 subfactors 
even though the 2 terms are symbolically equivalent. 
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Functions  

A function facility is required within algebraic 

expressions for providing a higher level of generalisation 

of the algebraic data elements. 	This facility can be used 

for defining .in-line representations for a number of elements. 

For example, a term in an expression may represent a Bessel 

function of given order etc. 	The same function facility 

is used to represent total and partial derivative as 

explained in Chapter IV. 

The function facility can aslo be used to define 

a selector function for a data element (or elements) on 

a group of existing data elements. 	It may for example, 

be appropriate to define a selector function for 

identifying a term data element from within a simple 

algebraic expression which has the highest power in a 

given variable. 

The algebraic data elements within a function 

description (e.g. < simple algebraic expression>, <term> 

etc) are treated in the same way as the data elements within 

a simple algebraic 	expression. 	The creation and 

maintenance of these elements is left to the special 

function processing routines provided by the user. 
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Numeric Evaluation  

It is often necessary to find the numeric value 

of a symbolic expression. 	This can either be done by 

substituting' numeric values for symbolic variables 

wherever possible and simplifying as is done in FORMAC 

or associating a value with each symbolic variable in 

an evaluation procedure. 

EVALSAE is the AIDS routine which evaluates a 

simple algebraic expression and returns a numeric result. 

This in turn calls EVALTERM for evaluating a term which 

may in turn call EVALFD for evaluating a function 

designator. 	All routines are recursive and all 

calculations are performed in single precision floating 

point arithmetic. 

The routines operate by associating numeric values 

with the symbdlic variable. 	The value of each variable 

is found from the variable name table. 	If a variable name 

cannot be found in this table, the structure name table is 

searched and if found this structure is immediately 

evaluated for a numeric result. 	Failure to identify a 

variable causes a message to be printed and the evaluation 

process terminates. 
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Removal of Parentheses 

ReMoval of parentheses is a linearising operation 

which reduces algebraic structural relationships within 

a simple algebraic expression to a minimum. 	This process 

involves both multiplying out terms and expanding expressions 

raised to an integer power. 	Both operations are part of the 

simplification process in FORMAC under user control. 	These  

operations are performed in AIDS by manipulating control 

word sequences in a recursive manner. 

Removal of parentheses is performed on a term by 

term basis within a simple algebraic expression by the 

routine EXPANDS. 	It requires as parameters the address 

of the simple algebraic expression and the address where 

the result is to be stored. 

Each term is formed in a scratch area by removing one 

level of parentheses at a time. 	The resulting simple 

terms are removed to a resultant area while further expansion 

is introduced if parentheses still exist. 	The simple terms 

are simplified before being moved. 	The resultant expression 

is subsequently simplified. 

The expansion of a simple algebraic expression raised 

to an integer power is performed by creating a vector of term 

control word3in a large scratch area. 	Muliiplication is 

performed using only indirect address control words until 

the exponent power has been reached. 	Each term is then 
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simplified followed by a simplification of the resultant 
. 

expression. 
-- 	• 

Removal of parentheses is undoubtably the most 

complex operation performed by AIDS. 

Factoring  

No attempt has been made to implement the inverse 

operation to expansion, namely factoring. 	However, the 

facilities for implementing factoring are available for 

user defined procedures. 	Further facilities are 

desirable such as searching for a subpattern within a 

simple element as well as extracting the largest common 

pattern from two or more simple elements. 	Neither of 

these is difficult to implement. 	It is clear that 

factoring should be attempted in a highly interactive 

environment, such as with visual display terminals, where 

extensive user direction and control is possible. 
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Chapter VI 

Algebraic Simalification and Substitution 

Simplification  

Central to any sophisticated symbolic algebraic 

system is the need for an efficient simplification 

mechanism. The simplification is usually related to 

the canonical format of symbolic representations within 

the system. 	Simplification is essential in that it 

removes redundant symbolic expressions as well as 

permitting more efficient processing on the resultant 

data structure elements. 

A brief survey of the development of simplification 

routines is given in reference 10. 	The authors cite 

several independently written routines for performing 

some aspects of simplification. 	Most of these are 

LISP based except notably their own simplification 

subsystem within the FORMAC system called AUTOSIM. 

The exact meaning of simplification is not 

readily definable and is usually only to be found in 

terms of a working philosophy for a given algebraic 

system. For example most would agree that 

(14- 3a + 4b) should be reduced to a representation of 

at least (4a+4b) and preferably 4(a+ b). 	However, 

it cannot always be expected that the term (a - b)(a b) 
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should be automatically reduced to (a
2 - b2) as it may 

be more informative to the user, expecially in an 

interactive system, to maintain the original representation. 

The removal of redundant values is invariably desired, 

however, the .transformation of an algebraic entity to 

another form .should only be performed under a set of 

well defined conditions, all of.which can be controlled 

by the user. 

The importance of simplification cannot be 

overstressed as simplification of a resultant operand can 

in many cases account for more processing time that the 

algebraic operations which produced the resultant 

element. 	The essentials of simplification are a 

pattern matching operation combined with the creation 

of an equivalent representation for an algebraic element. 

Again, because this is a dynamic type of operation, 

demands will be made upon the data management facilities 

in the system. 	Simplification in LISP based systems 

(refs 10, 11) consists usually of a number of recursively 

defined routines which operate on their list data 

structures. 	The arguments against this type of 

facility are essentially those against all list processing 

systems, namely inefficiency in processing time and 

storage requirements. 

The AUTOSIM package in FORMAC differs from 

previous attempts at simplification in many pronounced ways. 
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It is a complete subsystem encompassing many aspects 

of simplification as defined within FORMAC. AUTOSIM 

does not employ recursion in the same manner as LISP 

based systems. 	It does however make use of a push down 

store. 	Fundamental to the simplification process in 

AUTOSIM is the ability to flag, and subsequently test 

for) elements which are in simplified format. 

FORMAC's authors have taken the view that a 

substitution of a variable for an expression should 

be performed whenever possible. For example consider 

the following FORMAC statement: 

1. LET E = (A B) **N 

2. LET F = (A+ B) **M - E2 4- 5 * E ** D 

The first FORMAC statement defines an expression 
CA. 

E to have the value (A+ B) ** N. 	If when this is 

encountered at object time B is an atomic variable 

(e.g. symbolic) and A and N are FORTRAN variables with 

values 1 and 2 respectively then the representation 

for the first expression will then be (1 4- B) ** 2. 

If subsequently expression 2 is encountered and M is 

a FORTRAN variable with value 6,, and D an atomic 

variable, the representation for this expression will 

be (1+ B) ** 	- (1 	B) ** 4+ 5 * (14-B) **2*D. If 

however further simplification is possible at this level 

it will be performed. For example if D were to have a 

FORTRAN value of 3, the resulting representation for 
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expression F would be 

6 * (11- B) ** 6 - (1 	B) * 4 

The algebraic operations performed in FORMAC rely 

on the representation of expressions to be in 

simplified canonical format. 

AUTOSIM performs the following "natural" 

simplification transformations: 

1. 0 ** A-4. 0 

2. 1 ** A-4.1 

3. A ** 0-N1 

4. A ** 1->A 

[ 

-A ** N if N is an odd integer 5. (-A) 	N._).   

A * N if N is an even integer 

6. -(-A) --> A 

7. EXP (LOG (A))--->A. 

8. LOG (EXP (A))->A 

9. -(3 * A * (-13) * C * (-D) )-->(-3) * A * B 

where A 0 

C D 

10. n A. 
3 

j=1 

n A. E 3 
j=1 

where A k- - 0 

' Tf 

	

TT 13 	Bi 	where Bk 1 

	

j=1 	j2:1 

jPk • 

11. raTrBi 	0  
j =1 

where there exists at 

least one value of k 

such that B 	0 k 



Most of the above transformations are usually inherent 

in any simplification system. However, AUTOSIM applies 

further transformations under control of the user. 

These relate to the evaluation of standard functions 

with numeric parameters. 	The options governing these 

transformaticins are 

a) evaluate all functions automatically 

b) evaluate only the integer-valued functions 

(factorial and combinatorial) 

c) evaluate only the transcendental functions 

(EXP, LOG, SIN, COS, ATAN, TANH) 

d) no functions to be evaluated . 

AUTOSIM is a scan driven process and operates by 

deciding whether a simplification transformation is 

applicable to the part of the expression currently 

being scanned. 	Each algebraic operator governs the 

simplification operation on its associated operands 

and the lower level operators. 	The applicability of 

the simplification transformations can be determined 

from a transfer table specifying the association between 

operators. 	Part of the decision process is to perform 

contextual checking. 	There are essentially three 

main types of context which may be checked before 

applying a simplification transformation. 	Firstly there 

is a check for specific patterns of operands and operators 

(e.g. the simplification of B ** (-K) is only done if K 

is an integer). 	Secondly a test is made to check if the 
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sub expression has already been simplified. ' Lastly, 

transformations are only_applied after checking mode 

switches for specifying simplification options. 

All transformations are not immediately applied 

when first recognised,in the transfer table but are 

delayed until sub expressions are simplified. 	In this 

way the need to perform some transformations may be 

eliminated. 	Also intermediate in-line growth of 

expressions can be reduced (e.g. the transformation 

(Ti  * T2 	Tn) ** X —>(T1  ** X .....Tn  ** X) should 

only be performed after the base Ti  * T2 	Tn has 

been simplified) by delaying simplification at one level. 

Simplification in AUTOSIM involves an ordering of all 

operand variables for an operator in delimitor Polish 

notation. 

Essentially FORMAC simplification (AUTOSIM) is a 

scan dominated process for applying transformations on 

the internal representation of an expression. 	The 

process involves a complex set of rules for both 

determining when and how a simplification transformation 

should be applied. 	Extensive data movements with 

sorting and merging are involved. 

Simplification in SYMEAL achieves essentially the 

same objectives in a somewhat more formal manner. 	The 

simplification mechanism consits of a series of procedures 

which may be called recursively to reduce and modify the 
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list data structure for an expression. 	A transfer 

table is Used to determine sign whenever parentheses 

are removed. SYMBAL also uses five modes which 

determine the level and extent of any simplification. 

These modes provide controls for: 

1. distribtitive multiplication: 	It is possible to 

specify the removal of all parentheses up to an integer 

power. 	Parentheses will be retained for all expressions 

having larger integer exponent values. 

2. delayed assignments: The user may control the 

assignment of a value to a variable through this mode 

3. common denominator: This mode makes it possible 

to control whether rational expressions are to be 

represented as 

E. (numerator terms)  

denominator 

or as 	E(numerator terms/denominator) 

4. truncation of power series: For power series 

representations all terms with an exponent greater than 

a specified value are dropped. 

5. distributive multiplication in expressions consisting 

of a single term: For expressions consisting of a single - 

term, distributed multiplication is unconditionally suppressed. 

Individual routines exist for simplifying factors 

and terms. 	Most make extensive-use of a scratch area 

and ultimately result in copying the simplified element 

into a new area. 
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Simplification in AIDS  

Algebraic simplification in AIDS is performed 

either implicitly as an integral part of an algebraic 

system operation or explicitly through a user initiated 

command. Simplification is performed in accord with 

the needs of proper system operation. 

In much the same manner as with other extensive 

algebraic systems the algebraic data elements are always 

maintained in reduced canonical format. 	Operations 

which produce results which may require simplification 

automatically invoke the necessary simplification 

mechanisms. 	Some of the same simplification mechanisms 

can also be invoked through user control. 

Since simplification is such a vital part of 

any algebraic manipulation scheme it is essential to 

be able to perform this function on any algebraic 
data element as economically as possible in terms of 

processing time and storage space required. 	The result 

produced by any basic simplification mechanism should 

be a data element in canonical format with no redundant 

representations. 	The redundancy argument applies to 

both structural as well as symbolic data. 

One of the basic reasons for choosing some of the 

data structure elements found in AIDS was to make the 

simplification process as natural and simple as possible. 

Hence a minimal amount of manipulation is performed in 
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a well defined manner. 

Simplification of elements in AIDS usually involves 

re-writing the simplified element into a location 

different from that of the original element. 	This 

approach has been chosen primarily because of expediency. 

There are cases where a simplified element in AIDS may 

require more storage space than the unsimplified element. 

In this case there would be an unjustift,able amount of 

housekeeping and data movement involved. 	The result 

of any simplification in AIDS is to produce a simplified 

element in reduced canonical format. 	This is not a 

necessary condition of AIDS operation and an analogous 

simplification mechanism could be constructed to 

produce simplified elements in the extended format. 

This facility might perhaps be useful for a highly 

interactive environment such as the use of visual 

displays where obviously it would be undesirable to 

rewrite large elements because of only minor changes. 

The various levels of simplification in AIDS 

can be broadly classified as follows: 

1. simplification of simple algebraic elements 

2. simplification of composite algebraic elements 

3. reducing structural complexity to canonical format. 

Simplification of Simple Algebraic Data Elements  

The simple algebraic data structure elements in 
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AIDS consist essentially of contiguous lists in store 

containing control information as well as algebraic 

primatives according to a format defined by the•control 

word. A simple element is dynamic in length and hence 

can contain any number of symbolic variables or variable 

exponent p'airs, but only one element constant. 	Simplification 

of a simple=element involves removing redundant variables 

from the element. 	For example the unsimplified simple 

element 3 * A ** 2 * B ** 1 * A ** 1 would simplify 

into 3 * A *•* 3 * B ** 1. 

The simplification of simple elements is 

performed by the COMPRESS routine. 	This routine 

accepts as parameters the address of the simple element 

to be simplified as well as the address of the location 

where the simplified element is to be stored. 	COMPRESS 

operates by selecting each variable in turn and 

scanning for its next occurence, if any, in the element. 

If it does not occur again the variable (with or without 

exponent) is recopied into the new area. 	If, however, 

another instance of the variable is found the exponent 

is accordingly updated and the scan stopped. 	In this 

case the scan for the next variable begins without 

recopying. This process can be executed in the same 

data area in which the term exists only if the simple 

term has explicit exponents. 	For the case where the 

simple element has implicit exponents a match during the 
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scan necessitates expanding the simple item from an 

implicit exponent format to an explicit exponent format 

before the previously described process can be applied. 

(This is essentially the reason for rewriting simplified 

elements into new areas of store - i.e. an element can 

grow in length during a simplification operation!)
1 

This expansion is performed in the result area and 

COMPRESS is then applied to this element. 

Whenever a match of variable names is found the 

exponents are updated by rational arithmetic addition. 

If the result is zero the variable exponent pair is not 

included in 'the new element being formed. • The control 

word for the resultant elenent is automatically updated 

during the operation. 

The EXPAND routine accepts as paramenters both 

the address of a simple element to be expanded from 

implicit exponent to explicit exponent format and the 

address of the location in store where the result is 

to be formed. 	This operation involves merely inserting 

exponent values of 1/1 for all variables. 

The COMPRESS, in conjunction with EXPAND routine, 

performs the following simplifications in AIDS: 

1 The break-even point occurs when the number of 
variables in the original element is 2 (equating 
lengths gives 2 	N=24. 2(N - 1), hence N := 2). 
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a) A ** 0 --t,- 1 	(implicitedly) 

b) A ** M* A ** N —0,- A ** (M -I- N) 

c) m TT 	F. 	IT Fi  n 
where m - n (m )n) variables 

(F.) are common i= 1 
	

i=1 

in the simplification process could The scans 

be shortened by ordering the variables within a simple 

element according to the collating sequence in much 

the same manner as AUTOSIM. 	However, AIDS attempts 

to avoid this restriction so that a user defined order 

may be maintained whereever possible for possible use 

in highly interactive systems. 	In any case, the 

amount of processing time is not likely to be reduced 

significantly as the ordering process could itself 

consume considerable processing time. 

Simplification of Composite Algebraic Data Elements  

Composite elements in AIDS combine algebraic 

structural information with symbolic data of simple 

algebraic data elements. 	Simplification of composite 

elements involves both structural re-organisation as 

well as combining and simplifying simple elements. 

The composite syntactic elements <term) and 

-4 simple algebraic expression> are simplified by the 

routines RTERM and HLC respectively. Each routine 

accepts as parameters the address of the composite 
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element to be simplified and the address in which 

the result is to be stored. 

Term Simplification  

Term simplification involves reducing a term 

to the minimum number of factors by combining redundant 

representations. 	The RTERM (reduce term) routine 

makes two passes on the given term, first to remove 

all simple factors and combine them into a single 

simple factor element and then a second pass to 

extract all composite factors. 	The resulting simple 

factor resulting from the first pass is itself reduced 

by the COMPRESS routine. 	If the resultant constant 

is zero the resultant control word is set to a single 

word of zeroes signifying a simple term of length zero 

(i.e. a null term). 	If the constant has value 1/1 

and further composite factors exist, the simple item is 

not removed, although it could well be. 	The overhead 

borne by maintaining a simple factor of value 1/1 is 

small and it can prove useful when performing further 

algebraic operations. 

The second pass involves comparing each composite 

factor with all remaining composite factors in the term 

for either complete or partial equivalence. 	If the 

two factors differ only in exponents a resultant 

factor with updated exponents is moved to the resultant 
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area. This scan cycle continues for further possible 

matches of composite factors for the same partial 

equivalence. 	Each composite factor as it is used, 

is flagged so that it can be ignored in subsequent scans. 

New scan cycles,are initiated until no further composite 

factors remain. 

The effect of RTERM is to produce a reduced 

composite term in canonical format. 	A simple factor, 

if one exists, will appear as the first sub element. 

All composite factors with common base will be combined 

into a single composite element of the same base but 

updated exponent. 

simplification: 

d) 0 * A-> 0 

e) ,tIm, TT C.  
i==1 	i==1 

In essence RTERM performs the following 

where m - n (m>n) composite 

factor have base elements 

in common with other elements 

The control word which describes the new term is 

updated to reflect any changes as a result of the 

simplification. 

Simplification of Simple Algebraic Expressions  

The simplification routine which reduces the 

representation of a simple algebraic expression is HLC 

(high level compresser). 	This routine operates in 

much the same manner as RTERM. Each term in turn is 
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compared against all remaining terms for either complete 

or partial equivalence, the partial equivalence in this 

case being "differ in leading constant value only". 

Matches which lead to possible reductions involve 

storing an.updated term in the resultant area as well 

as flagging the term in a separate map area to signify 

that it has been accounted for. The order of the terms 

is not changed and where reduction has occured the 

position of the first appearance of the term is 

maintained . 

HLC assumes that each term is in a reduced 

state from the operation which formed it. 	The control 

word is updated to reflect any changes induced by the 

simplification mechanism. 	The result of combining 

two terms may lead to a zero result vich is checked. 

Simplification from HLC is defined by 

f) 	C * A-1-0 	where C= 0, and C is the 
constant associated with a 

simple data element 

9) 
	

n 

E Ti 
	ZT. 	where m - n (m>n) terms differ 

1=1 	1=1. 	from other existing terms in no 

more than a constant factor 

Resolving Structural Complexity  

Complex algebraic structures can be built up by 

describing and referencing sequences of control words. 

By this means it is possible to build up superstructure 
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on existing algebraic and symbolic data. 	The most 

important instance of this is the case where all 

factors in a term or all factors in a composite 

factor can be affected by an exponent. Some or all 

of the factors may already have explicit exponents and 

the Iterm or factor may have one or more ( if the composite 

item is not in simplified format) simple factors. 

The routine REDUCE has been designed to transform 

this type of structural complexity for a term or composite 

factor into a standard format. REDUCE accepts as 

parameters the address of the element as well as the 

address where the result is to be stored. 	Th6 effect 

of this routine is to produce a vector of control 

words and data elements in which each base element is 

identified by an indirect address control word followed 

by the complete exponent. 	The exponent may reference 

other existing elenents by indirect addressing. 	This 

result could in turn be simplified by the RTERM routine. 

It may of course be necessary to raise a simple 

factor group to an explicit power. 	This could be done 

by decomposing a simple group of m variable into m+1 

composite factors, each of which consists of a simple 

item raised to an explicit power. 	It is, however, also 

possible to raise the complete simple item to the 

explicit power by creating a single composite factor 

consisting of the simple group all of which is affected 

by the explicit exponent. 	This latter course is 
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followed in AIDS. 

REDUCE operates by maintaining a stack for the 

exponent value as a simple algebraic expression. 	Each 

factor in the term or composite factor may contribute 

its own exponent value which must of course by removed 

before pas'sing to the next factor. 	For example assume 

that the term 3 * A ** 2 * B * (A - B) ** 2 * (A D) ** 3 

were to be raised to the power X - Y. An exponent stack 

consisting essentially of a simple algebraic expression 

with the single term (X - Y), which is itself ,.a simple 

algebraic expression, is created. 	The first sub 

element of the term which is a simple factor with 

explicit exponents is raised to an exponent power by 

creating a composite factor with a single simple data 

element. 	The composite factor is set to type explicit. 

The exponent value is moved from the exponent stack to 

the resultant area. 	The next factor (A - B) ** 2 is 

a simple algebraic expression with explicit exponent. 

A control word pointing to the simple exponent of 

value "2 " and designated as type term is added to the 

exponent stack. The control word describing the exponent 

stack is also updated to reflect the increased length 

and element count. The local exponent value is 

removed from the exponent stack, by changing the exponent 

control word, after the factor has been moved off to 

the result area. 	This process is repeated until all 
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sub element factors have been dealt with. 

This routine is particularly useful in cases 

where structure is created and manipulated by routines 

other than the AIDS routines for performing operation 

on the data structure elements. 	However, AIDS does use 

this facility when expanding a polynomial to an integer 

power. 

A limited amount of structural simplification 

is provided by the MOVELEM routine. All indirect 

addressing links are removed from the subelements of 

the data element being moved. 	The result of course 

is stored in canonical format. 

Substitution  

Substitution involves the replacement of one 

symbolic entity by another. 	The entity being replaced 

is usually a variable although it could be any algebraic 

element. 

This process is essentially scan driven and requires 

searching for the element to be replaced. 	At present 

AIDS provides the facility of replacing a symbolic 

variable by any other algebraic data element. As a 

symbolic variable is always stored in a simple element a 

complete simple element must be removed and in most cases 

replaced by a composite element. 	This is done in AIDS 

by creating indirect address control words in an existing 
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structure which point to the replacement element. 	A 

simplifying pass is then used to move the structure to 

a resultant area. 

Substitution is performed in AIDS by the routine 

SUBST which has as argument the addresses of the variable 

fox replacement, the referenced simple algebraic expression 

and the resultant area. 	Even though replacement of complete 

elements is not provided it can readily be designed by 

using existing facilities in AIDS. 
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Chapter VII 	• 

- 	, 	 - 	- 
Differentiation and Integration 

Differentiation and integration constitute two 

of the more complex algebraic functions of algebraic 

manipulation. 	Both of course are required when 

dealing with the formal solution of differential 

equations. 	The procedures for performing these operations 

are recursive in nature with procedural complexity related 

to the sophistication of the associated data structure. 

Each procedure can be defined in terms of primative 

arithmetic and pattern matching operations as well as 

predefined transformations. 

Differentiation, as is to be expected, is decidedly 

the simpler of the two processes. 	Initial attempts 

(Refs. 4, 5) at symbolic differentiation were crude and based 

on simple data structures. 	With the availability of LISP, 

,which is well suited to this type of operation, more 

sophisticated and powerful schemes emerged (Ref. 3). 

Differentiation can also be readily achieved with string 
• 

processing languages such as SNOBOL. 

Symbolic integration, however, does present more 

of a challenge. 	The first symbolic integration program 

with any claim to generality was SAINT (Symbolic Automatic 

Integrator - Ref. 6). 	This was written in LISP but did 
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not have sufficient flexibility to permit the solution of 

ordinary differential equations in a practical algebraic 

manipulation system. 	This was followed by SIN (Symbolic 

Integration - Ref. 8), also written in LISP, which used the 

rational function package of MATHLAB (Ref. 7). 	SIN in 

turn was used to write SOLDIER (Ref. 8) for the solution 

of first order, first degree ordinary differential 

equations. 	Both systems make extensive use of pattern 

matching. 

Even though SAINT and SIN are both relatively 

powerful they can be very time consuming because of their 

heuristic approach. 	Integration is perhaps best suited 

to a•highly interactive environment where user direction 

and involvement can be used to reduce the complexity of 

the operation. 
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Differentiation and Integration in AIDS. 
. 

Differentiation  

A comprehensive differentiation facility is 

incorporated within AIDS with many of the associated 

routines making use of the recursive facilities. A 

design objective in AIDS has been to provide data 

structures which permit the realisation of complex 

operations in a natural and efficient manner. 	This 

can be demonstrated by the relative ease with which 

the normally difficult operation of differentiation 

can be achieved. 

Differentiation of any element (including simple 

algebraic expressions) is performed as a single pass in- 

line-!operation to produce resultant elements. 	As these 

elements may not be simplified a further simplification 

pass is required which also moves the elements to a 

resultant area. No other re-organisation of the data 

elements is necessary even though the operation is inherently 

highly recursive. 

There are 3 levels of routine in AIDS involving 

differentiation of: 

1. simple algebraic expressions 

2. terms - simple or composite 

3. functions 

All of the above are essentially recursive except for the 
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case of simple term elements. 

Differentiation of a simple algebraic expression 

is performed by the DIFFSAE routine which accepts as 

parameters the address of the simple algebraic expression 

control word, the address where the result is to be stored 

and the address of the variable of differentiation. 	Each 

.term is referenced in turn and a test is made to determine 

whether it is of type simple or composite before control 

is transferred to the appropriate routine. 	The control 

word of the resultant simple algebraic expression is 

automatically updated after return of control from the 

.lower level differentiation routines. 	This routine is 

essentially recursive since a term within a simple 

algebraic expression may itself be totally or in part 

another - simple algebraic expression. 	A final 

simplification pass is required to remove redundant terms 

from the unsimplified structure created in the work area. 

The recursive routine DIFFC differentiates a 

composite term with respect to a given variable. 	The 

parameters involved are the addresses of the composite term, 

result area and variable of differentiation as well as the 

address of the simple algebraic expression control word 

(of which the resultant term is a part) to be updated. 

Differentiation is performed according to the formula: 

d (f.f f 2 3 
dx 

f.) f2f3  	f n df 1 + f lf 3f4 • • • f n cif  2 4. 
dx 	 dx 

flf2f3 	fn -1dIn 
dx 
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Each term in the result requires creating a null term control 

word followed by the differentiation of the factor 

associated with the term. 	If the result of the 

differentiation is zero this term is ignored and the 

routine proceeds to create the next term. 	If a non zero 

result is prbduced indirect address factor control words 

are stored with the term to reference the remaining 

factors. Both the term control word and the simple algebraic 

expression control word are appropriately updated. 	The 

resultant term is simplified and moved to its proper 

, 	result area. 

In performing differentiation of any element in the 

above process a test is made for type. 	If the element 

is a simple factor, control is passed to the routine for 

performing differentiation of simple elements. 	If a 

simple algebraic expression is encountered a further test 

for explicit exponent is made else control is immediately 

passed to the DIFFSAE routine. 	Should an exponent exist 

it is referenced as an indirectly addressed factor of the 

term before control is passed to DIFFSAE. When control is 

returned the control word for the expression, if the result 

• is non zero, is modified to specify an explicit exponent 

which is then formed by performing a subtraction of a term 

with value 1/1 from the existing exponent. 

For the case where the element to be differentiated is 

a function designator control is passed to DIFFFD. 	This 
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routine is required to identify the function and perform 

the necessary operation. 	For trigometric functions this 

can be performed through tables. 	Further if a function 

is affected by an explicit exponent it is dealt with in 

the same manner as the analogous situation for simple 

algebraic expressions. 	DIFFFD is recursive. 

The most common requirement is to differentiate 

simple elements which can be of either implicit or explicit 

exponent format. 	This is essentially a very fast 

operation as it involves a scan to determine the presence 

of the variable of differentiation. When the referenced 

element has implicit exponents and a match is found the 

element is copied less thevariable into the resultant 

area. 	For explicit exponents the appropriate exponent 

value is decreased by 1/1 before moving it. A resultant 

exponent value of zero requires removing the variable 

during copying. 	To give an indication of the result a 

completion code is returned in R15, zero indicating a 

valid result and non zero that the result itself is zero. 

Considerably more power can be added to this system 

by catering to functional dependence of one variable on 

another. 	For this, further scans would be required to 

search for dependent variables. 	This operation would then 

involve replacing the simple element with a composite 

element involving factors which arc themselves derivatives. 
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Integration 

No attempt has as yet been made to implement general 

integration schemes involving all the algebraic data 

elements of AIDS. 	However, a routine (INTEL) does exist 

for integrating a simple element with respect to a 

specified variable of integration. . This function is 

similar in operation to differentiating a simple element 

except that in this case it may be necessary to expand 

a simple element from implicit to explicit exponent format. 

Again no functional dependence is permitted at this stage. 

Integration of complicated algebraic expressions 

can be achieved by first removing parentheses and then 

integrating on a term by term basis. 	It is hoped to be 

able to attempt more ambitious schemes in the future. 
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Chapter VIII 

-- CLAM Algebraic Interpreter  - 

CLAM, an acronym for Command Language for Algebraic 

Manipulation is a simple interpretive scheme designed to 

illustrate the facilities of AIDS. It consists of a number 

of basic commands available to the user for performing a 

limited class of algebraic operations. The system can readily 

be extended to include other commands by interfacing to the 

existing facilities of AIDS. 

The' interpreter uses some of the recogniser routines 

from the syntax analyser which recognises simple algebraic 

expressions. Each command statement is free format hence 

blank3may appear anywhere. An implementation restriction 

requires that the total length of a command must not exceed 

400 characters, excluding blanks, and the command must be 

terminated by a semi colon. 

CLAM was written by interfacing to existing AIDS 

facilities. The power of AIDS is not limited to writing 

simple algebraic interpreters as it is expected to be able 

to produce sophisticated algebraic compilers from AIDS. 

Description of CLAM  

The following further syntactic entities are used in 

the definition of CLAM: 

1. <name) : : 	< variable identifier> 

2. <name list> : : =sname> I <name list> tt 	It 	<name> 
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A name may reference a symbolic variable or a simple 

algebraic'expression. The unique identification of a user 

is also by a name. 

A command statement consists of a command identifier 

followed by an operand list and terminated by a semicolon. 

The following is a list of commands available in CLAM: 

1. USER <name ) " ; " 

This is the first command of a CLAM program and 

identifies a user to the system. CLAM then allocates him a 

private data space for tables, work areas, stack areas, etc. 

2. FINI < name ) it ; It 

FINI signals the end of processing for a given user. 

For terminal operation a user count is kept which when it 

goes to zero causes control to return to the operating system. 

A user's data space is relinquished by FINI. 

3. LET < name) "=" <simple algebraic expression > 	le ; ft 

LET permits a simple algebraic expression and its 

associated name to be known to CLAM. The simple algebraic 

expression is recognised, converted to internal format, and 

catalogued. 

4. PRINT < name list> to ; 

PRINT causes a print out of all simple algebraic 

expressions referenced in the name list. Names which 

reference variables are printed with their current value. 
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5. SET 	name> "=" <number> 	< name ) 

" C number ') . . . 	1/ /I 

Symbolic variables are assigned numeric values by 

means of the SET command. Any number of variables may be 

assigned values through a single SET command. 

6. SAVE <name list > " ; " 

The expressions referenced by names in the name list 

are relegated to backing store. They may be restored by 

either the command RESTORE or a reference to an simple 

algebraic expression during processing. 

8. RESTORE <name list > " 
	It 

All the referenced simple algebraic expressions in 

the name list are moved from backing store to main store. 

{ 
9. 

DISPLAY NAME TABLE  
STRUCTURE TABLE 

The contents of either the NAME or STRUCTURE table is 

printed out. 

10. EVALUATE <name list‘? 	" 

The simple algebraic expressions referenced in the name 

list are evaluated for numeric results. 

11. 	SUBSTITUTE < name) "= 

"IN " < name > 

< simple algebraic expression > 

. tt 2 

The first name value references a variable in the 

simple algebraic expression specified by the second name 

value. The referenced variable is replaced by the symbolic 

value of the simple algebraic expression. 
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12. SIMPLIFY <name list > " ; " 

Each simple algebraic expression referenced by a 

variable in the name list is simplified and stored in main 

core in canonical format. 

13. DIFFERENTIATE < name 	WRT " < simple variable > " ; ft 

The simple algebraic expression referenced is differen-

tiated with respect to a simple variable 

14. EXPAND C name list 	to ; ft 

This command is used to reduce a simple algebraic 

expression to a polynomial of simple terms. 

15. INTEGRATE < name ) ft WRT " < simple variable> It 
	

ff 

Integration of the named simple algebraic expression is 

.performed with respect to the simple variable specified on a 

term basis. The simple algebraic expression must first be 

expanded. 

An example of a CLAM program is given in Appendix VII. 



• 
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Chapter IX 

Summary  

AIDS has been designed from the premise that 

algebraic operations can be defined on algebraic data 

structure elements in much the same way that arithmetic 

operations are defined on arithmetic data. 	Further 

it is possible to identify processes and facilities 

which are essential for manipulating symbolic data. 

Some of these constitute primitive operations for 

symbolic processing and could well be incorporated 

within the hardware. 

The usefulness of AIDS lies in the ability to 

define simple algebraic data elements, composed of 

primiltive (arithmetic and symbolic) components, which 

-can be combined dynamically with algebraic structural 

information to form composite algebraic data elements. 

The data elements are organised to model algebraic 

expressions. 	By manipulating the data elements through 

algorithmic schemes, algebraic operations are realised. 

Desirable hardware features can be associated with 

specific algebraic operations. 

The accessing mechanism involves indirect addressing 

to any level which is a standard hardware feature on many 

machines. 	Indirect addressing is usually associated with 
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a specific bit position in the instruction. Obviously 

for an AIDS implementation it would be desirable to 

define the control word format in such a way that the 

indirect address bit coincides with the hardware indirect 

address bit: 

Data management in AIDS makes extensive use of 

stacks. Again this facility is found on many machines 

and is becoming fashionable with new machine architecture. 

This stack facility must be capable of dealing with 

variable length segments. 	Stack maintenance should be 

done by the hardware except for stack overlays. A 

stack area full or empty condition signalled by a 

hardware interrupt can be used to initiate a stack area 

save or stack area restore operation. 	It would also be 

desirable to provide a store protection mechanism through 

hardware rather than through software as in AIDS. 	For 

existing data elements the length field can be used to 

define the upper bound with the control word as base. 

In AIDS it is desirable to be able to manipulate 

data elements in single operations. When multiplying 

two simple elements of the same exponent format the 

•  operation is well defined and involves a concatenation, 

a rational arithmetic multiplication and the creation of 

new control word. 	Reducing a simple element with explicit 

exponents to a minimal form is also a well defined 

operation. 	When a simple element has implicit formt, 
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scans through the symbolic components for multiple instances 

of the same component could set a condition code to signify 

that the element requires expansion to explicit exponents 

which must then be followed by a reduce operation. The 

expansion from implicit to explicit format is itself 

well-defined. All of the above operations could be 

implemented as interruptable micro-programmed sequences. 

It is possible that rational arithmetic, including the 

greatest common denominator algorithm, could be realised 

through micro code, however because of its potentially 

explosive nature when the resultant denominator is 

small condition code setting would certainly be required. 

Future enhancement  

It has always been the desire of the author to 

develop the concept for ultimate use in man-machine 

interactive systems. 	It is obvious that many processes 

such as factoring can be best realised through user interaction. 

At the same time it may be informative for the user to 

have a graphical representation of a function on which 

to base further decisions. 	Identification and changes 

from the display can be readily implemented through 

association lists using indirect addressing. 	A display 

with keyboard terminal is an obvious candidate for the 

AIDS facility. 

An obvious enhancement is the representation of 

complex numbers. 	This can be achieved by essentially 
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adding another dimension (and using another bit in 

control word) to each simple element. Consideration 

should also be given to extending the concept to 

ordered n-triples for tensor applications. 

It is further hoped that the AIDS facility can be used 

to devise languages for teaching and demonstrating concept 

in some areas of mathematics. 

• 
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Appendix  

Syntax For Algebraic Expressions 

1. Basic Symbols  

<basic symbol> ::= c letter, I <digit> I <delimiter> 

	

1.1 	cletter> ::=AIB(C(D(E(F(GEH(I(J(K(L(M(N~O~P(Q(R(S(T(U(V(W(X~Y~Z  

	

1.2 	<digit> ::=011121314j516171819 

	

1.3 	<delimiter> ::= <operator > I <separator> 1 <bracket> 

	

1.3.1 	<operator > ::= <arithmetic operator> I <relational operator> 
<logical operator> 

1.3.1.1 <arithmetic operator> :: 	add operator> 1 <multiplication operator >I 
<exponentiation operator > 

1.3.1.1.1< add operator> ::=+ I - 

1.3.1.1.2 <multiplication operator> ::=* I 

1.3.1.1.3 <exponentiation operator > : :=*-* 

1.3.1.2 <relational operator> ::= -<1<:-.71zI>=1,1".= 

1.3.1.3 <logical operator> ::= 

	

1.3.2 	<separator> ::=,1 •1:1; 

	

1.3.3 	< bracket) ::= ( ) 



• 2. Identifiers  

	

2.1 	<letter digit string> ::= <letter> I <letter digit string> <letter > I 	 1 
<letter digit string> < digit> 

	

2.2 	< identifier> : := < letter digit string> 	 . 
3. Numbers  

< number> ::=< integer > I <rational> I <real> 

	

3.1 	<unsigned integer> ::=<digit> I <unsigned integer> <digit> 

	

3.2; 	<integer> ::=<unsigned integer> I <addop> unsigned integer>  
I-. 

	

3.3 	< rational number> ::=< integer> " / " <integer> 	 A 
0 

	

3.4 	<real> ::=< integer> " . " 1 It . It <unsigned integer> I <integer > 	 t 
" . " <unsigned integer> 

4. Variables  

< variable> ::=< simple variable> I <subscripted variable> 

	

4.1 	< variable identifier> ::=< identifier> 

	

4.2 	<simple variable> ::=< variable identifiers 

	

4.3 	<array identifier> ::=<identifier> 

	

4.4 	<subscripted variable> ::=<array identifier> " t % It <subscript list > 
It 
	

) 
	

III 

	

4.5 	<subscript list> ::=<subscript expression> I <subscript list, > n , it 
< subscript exprssion> 



• 

	

4.6 	<subscript expression > : :=< simple algebraic expression } 

5. Function Designator  

	

5.1 	< function designator > ::=< variable identifier> " ( < parameter 
list> " ) tt 	 list 

	

5.2 	< parameter list > ::=< parameter > I <parameter'r> " 
• 

tt < parameter > 

	

5.3 	< parameter> ::= < identifier> I <simple algebraic expression> 

6. Algebraic Expressions  

	

6.1 	< variable exponent pair> : := <simple variable> " 	tt <number > 
< simple variable } U ** tt U ( " <number> " ) " 

1-A 

	

6.2 	< simple variable group> ::= <simple variable> I <simple variable 	 rn 
group> " * " <simple variable > 

	

6.3 	< variable group} ::=< variable exponent pair > I < variable group > 
< multiplication operator > < variable exponent pair ). 

	

6.4 	< simple factor group> : := <simple variable group> I <number > It * TI 

<simple variable group > I c number > 

	

6.5 	< factor group> : := <variable group > I < number > < multop) < variable 
group> 

	

6.6 	<primary> : := <simple factor group> I < factor group> I < function 
designator > I tt  ( ft < simple algebraic expression> " ) " 



6.7 	<factor> ::=< primary > I cfactor> " ** " <primary> 

6.8 	< term) : :=< factor > I < term> < multiplication operator> <factor > 

6.9 	< simple algebraic expression> :,:= < term > I <addop> <term) I <simple 
algebraic expression> <addop> <term ) 



Appendix II  

Summary of AIDS macros  

1. 	Recursive Facility Macros  

1. RSAVE 	R1= 0, R2=14, STACK=0 

saves the consecutive sequence of registers as specified by keyword 

parameters R1 and R2 on the stack specified by the STACK keyword 

parameter. (Default values will cause registers 0 to 14 to be saved 

on stack 0). 

2. RRETURN 	R1=0, R2=14, STACK=0 

restores the consecutive sequence of registers as specified by key-

word parameters R1 and R2 on the stack specified by the STACK 

parameter. The default values are identical to those in RSAVE. 

3. STACKSEG 	ADDRESS, LENGTH, STACK=0 

saves the consecutive sequence of words of length (in words) specified 

by the positional parameter LENGTH from store location specified by 

the positional parameter ADDRESS on the general purpose stack specified 

by the keyword parameter STACK as an extension of the existing stack 

segment. The default value for the STACK parameter is stack 0. 



4. POPSEG 	ADDRESS, LENGTH, STACK==0 

restores a single sequence of words of length (in words) specified 

by the positional parameter LENGTH from store location specified by 

the positional parameter ADDRESS from the general purpose stack 

specified by the keyword parameter STACK. The same default value as 

for the STACKSEG macro is assumed. 

5. STACK 	ADDRESS, LENGTH, STACK==1 

saves the sequence of words of length (in words) as specified by the 

LENGTH positional parameter from store location specified by the 

positional parameter ADDRESS as a single data stack segment on the 

data stack specified by the keyword parameter STACK. The default 

value for the STACK parameter is stack 1. 

6. POP 	ADDRESS, LENGTH, STACK =1 

restores the sequence of words of length (in words) as specified by 
.• 

the LENGTH positional parameter from the last stack segment on the 

stack specified by the STACK keyword parameter to the store location 

specified by the positional parameter ADDRESS as a single stack 

segment. 



II. 	Data Element Referencing Macros  

1. NEXTD 	RP= 2, RD =3 

loads the register specified by the keyword parameter RD with the 

address of the first sub-element of the element whose address is 

contained in the register specified by the keyword parameter RP. 

The default values for RP and RD are 2 and 3 respectively. 

2. NEXTE 	RP=2, RE =3 

loads the register specified by the keyword parameter RE with the 

address of the next equivalent element to the element whose address 

is contained in the register specified by the keyword parameter RP. 

The default values for RP and RD are 2 and 3 respectively. 

3. ELEMENT 	PR=2, ER:=3 

loads the register specified by the keyword parameter ER with the 

final address of the element whose address is contained in the 

register specified by the keyword parameter PR. The default values 

for PR and ER are 2 and 3 respectively. There can be any number of 

levels of indirectness. 

uT 0 



4. EXPONENT 	RP:=2, RE:=3 

loads the register specified by the keyword parameter RE with the 

address of the exponent element for the element whose address is 

contained in the register specified by the keyword parameter 'PR. 

The default values for RP and RE are 2 and 3 respectively. 

5. FUNCTION 	 RE ̂ 3 

loads the register specified by the keyword parameter RF with the 

address of the name element for the function whose address is 

contained in the register specified by RP. 

6. ALL1 	FUNC, RP =2, RE 	=3, R1= 4 

executes the function whose symbolic address is specified by the 

positional parameter FUNC for all sub-elements of the element whose 

address is contained in the register specified by the keyword para-

meter RP. FUNC must return control through register 14. The keyword 

parameter RE specifies the register to be used for holding the address 

of each sub-element, before transfering control to the function pro-

cedure. R1 is the keyword parameter which specifies the count register 

for the sub-elements. The default values for RP, RE and R1 are 2,3 

and 4 respectively. 



7. 	ALL2 	FUNC, RP=2, RE1=73, RE2 =4, R1==5, R2=6 .. 

executes the function whose symbolic address is specified bytthe 

positional parameter FUNC for all sub-elements of the sub-elements 

whose address is contained in 'the register specified by the keyword 

parameter RP. (This macro, for example, can be used to access all 

of the factors of all of the terms in a simple algebraic expression). 

Keyword parameters RE1 and RE2 specify the registers to be used to 

store the addresses of the first and second level sub-elements 

respectively. R1 and R2 are keyword parameters for specifying the 

respective count registers. 

III. 	Utility Macros  

1. 	MOVE 	LR =5, FROMR =6, TOR=7 

moves the consecutive sequence of bytes from the main store address 

contained in the register specified by the keyword parameter FROMR 

to the main store address, contained in the register specified by 

keyword parameter TOR. The number of bytes to be moved is found in 

the register specified by the keyword parameter LR. The registers 

specified by FROMR and TOR are updated after the operation, while the 

value in the register specified by LR goes to zero. 



2. 	DEFINE 

defines the hexadecimal equivalence of a single byte for a number 

of common symbols used in AIDS.. The following values are defined 

on the first byte of a control word: 

a) SIMPLE 	defines the simple/composite bit• 

b) IMPLICIT 	defines the implicit/explicit exponent bit 

c) INDIRECT 	defines the indirect addressing bit 

d) PRESENCE 	defines the presence bit 

e) TERM 

	

	defines the one's complement of the 2 bit. values 	0 

for "term" (note "term" has a bit field value of 00) 

f) FACTOR 	defines the 2 bit value for "factor" 

g) SAE 	defines the 2 bit value for "simple algebraic 

expression" 

h) FD 	defines the 2 bit value for "function designator" 

The following possible type fields are defined: 

i) STI 	simple term implicit 

j) STE 	simple term explicit 

k) CTI 	composite term implicit 



1) CTE 	composite term explicit 

m) SFI 	simple factor implicit 

n) SFE 	simple factor explicit 

o) CFI 	composite factor implicit 

p) SEI 	simple algebraic expression implicit 

q) SEE 	simple algebraic expression explicit 

r) FDI 	function designator implicit 

s) FDE 	function designator explicit 

IV. 	Syntax Analyzer Macros  

1. 	STRTABLE 	NS==00, D=60, LT=00, A0=001  MO=00, 

R0=00, L0:=001  S==00 

create a 256 byte vector and assigns the value (hexadecimal) of 

the appropriate type, as defined by the keyword parameters, to each byte 

whose offset is the decimal equivalent of the hexadecimal EBCDIC 

value. The following types are defined: 



2. 

type description graphic symbol 

a)  NS non valid symbol non graphic symbol 

b)  D digit 0 - 9 

c)  LT upper case letters A - Z  

d)  AO add operator -I- 	, 	- 	• 

e)  MO multiplication operator * , / 

f)  RO relational operator 4 , 	79 

g)  LO logical operator --1,&, 	I 

h)  S separators , 	; 	: 	. 

i)  DL delimitors ( 9 )9 	' 	ti 

j)  

k)  

SS 

BLK 

special symbols 

blank 

9 	?, 	&, Yot 	@, 

BOT TYPE, ADDRESS 

causes abranch to the symbollic location specified by the positional 

parameter ADDRESS only in the next character in the source string 

being examined is of type as specified by the positional parameter TYPE. 

The typecan be any one of the types listed in the STRTABLE macro above. 



3. 	BNT 	TYPE, ADDRESS 

causes a branch to the symbolic location specified by the positional 

parameter:ADDRESS only if the next character in the source string 

being examined is not of the type as specified by the positional 

parameter TYPE. 
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Appendix III  

Control Word Formats 

1. 	Format 1 - standard format 

bit position  value 	definition  

0 	simple element 

1 	composite element 

0 

 

1 	0 	implicit exponent 

1 	explicit exponent 

2 - 3 	00 	term 

01 	factor 

10 	simple algebraic 

expression 

11 	function designators 

4 	0 	in-line addressing 

1 	indirect addressing 

(use format 2) 

5 	0 	locally defined element 

1 	externally defined element 

6 - 15 	 number of sub elements 

16 - 31 	overall length of element 

or offset to next 

equivalent element 

2. 	Format 2 	indirect addressing format 

bits 	definition 

as in format 1 

indirect addressing 

new address of control word 

0 - 3 

4 1 

8 - 31 
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Appendix 1V  

Description of Condition Byte after Logical Tests 

1. . TESTESI --.test for equivalence of 2 simple elements_ 1 
bit position 	definition  

	

0 	constants differ in value 

	

- 1 	exponent types differ 

	

2 	exponents are inverse values 

	

3 	variables do not match 

2. 	TESTECI - test for equivalence of 2 composite elements 

bit position 	definition  

	

0 	constants of simple elements differ 

in value 

	

1 	sub elements do not match 

	

2 	exponents differ in value 

	

3 	number of sub elements differ 

	

4 	no simple sub element 

1 a value of 1 in bit position for condition to hold' 
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LIppendix V  

Table Formats 

Structure Name Table 
- - - 	- 

All entries of 8 bytes each 

a) header work for table 

number of entries in table 

b) table entries 

bytes  

1 - 4 	name of structure 

5 	status byte 

bit 0 0 in main core 

1 on secondary storagedevice 

bit 1 0 inactive 

1 active 

format 2  

6 
	

identification number of saved record 

7 - 8 
	

length of saved record in words 

format 1  

5 - 8 	address in core of structure 

2. 	Name value table 

Each entry is 8 bytes long as follows: 

1 - 4 	name of variable 

5 - 8 	value in floating point representation 

• 

1. 
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Appendix VI  

Summaiy of-CLAM Commands 

The following further syntactic types are used in 

the definition of CLAM: 

<name > 	< variable identifier > 

<name list> :: 	< name > <name list> " 
	

It < name> 

Command Structure  

Command 	Operands 	it• it 

Blanks are permitted anywhere 

CLAM Commands  

1. SAVE < name list > 't • , tt 

2. RESTORE < name list > " ; " 

3. DELETE < name list > " ; it 

4. EVALUATE < name list > it ; n 

[5. 	SET < name > it 	?I <number > " , It < name > 

4 number > 	 3 i. ; ii 
6. DIFFERENTIATE < name> "WRT" < simple variable> 11. it 

2 

7. INTEGRATE < name > "WRT" < simple variable > 

8. EXPAND c name list > " ; 11 

NAME TABLE 
9. DISPLAY 
	

it tt 

STRUCTURE TABLE 

11 	• 	11 

10. SUBSTITUTE < name 	11 - 	< simple algebraic expression > 

" IN " < name > " ; 

11. PRINT < name list > tt; it 

12. SIMPLIFY < name list 
	

11• it 

13. USER c name 	It 	11 

14. LET < name 	11 - tt 
	

simple algebraic expression 	. it 

15. FINI < name > 	. 11 
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IEF233I SY141 	SYS3UT=B. 

//SY1AN 03 	'L I4DE S'OSGLEV L=I 
// 	EKE PR]: =AS4 CLG,PARM. '<ED=IXRF LET,LIST' 
KXAS4 EXEC 	PS =IEJAS1,P 14=LOAD,R GION=50K 330200 0 
XXSYSLIB DD 	DS1 'IE=SYS1.M CLI3,DISP SHR 0004030 
XXSYSJTI DD 	J11 =SYSS'),SP CE=(1700, 400,50)) 000533 0 
XXSYSUT2 DD 	J11 =SYSSO I SPi:E=(1700, 400,50)) 000303 0 
XXSYSJT3 DD 	J11 =(SYSS),S P=(SYSUT2 SYSUT1,SY LIB)), X001000 0 
xx SPA E=(1700,(03,50)) 30120000 
XXSYSPRI T 	DD 	SYS UT=A 301400)0 
XXSYSPJN 4 DD 	SYS UT=B 00160010 
XXSYSGJ 09 	DS4 4E=EL3ADS T,JNIT=SY SQ,SPACE= B0,(103,5 1), X00183010 
KX DIS ...(m3D,PAS ) 032333 0 
//ASI.SY 14 	DD 
IFF2351 LLOC. 	F3R SY1A1 S1 
IEF2371 YSLIR 	3 131 
IEF2371 YSUTI 	JI 132 
IEF2371 YSUT2 	3 1 	136 
IEF2371 YSUT3 	1 130 
IEF2371 YSPRINT 131 
TEF237I YSPUNC4 J 132 
IEF2371 YSGI 135 
IFF237I YSIN 130 
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SYMBOL  TYPE ID  DDR LENS  
EXTERNAL SYMBOL DICTIONARY PAGE 

11.41 4/01/ H LI ID 

[a 
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I
V

E
R

S
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  W

A
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O
 

SYNAN 
INAREA 
:MD 
ADOSTR 
STRTAB 
dA 
MOVELE4 
OSAVE 
DELETES 
PVAL 
CRLSTR 
GETCJR 
DIFFSAE 
PRTSAE 
RETCJR 
INTSER 
DISPLAY 
SUBS'.  
NEWJ 
HLC 
INSERTN 
EXPANDS 
INSERTS 
SERIFS 
TERM 
PURGE 
JSERAREA 
LDS 
I DENT 
VI 
SV 
VFP 
SVG 
VG 
FD 
PLIST 
PARM 
3FG 
FG 
NUMBER 
JI 
RATIONAL 
REAL 
REALL 
PRIMARY 
FACTOR 
TERM 
SAE 
STAK 
POPO 
MESSAGES 
:NVRL 
INITIAL 
MESSAGES 
JSER4 

SD 01 0 0000 001E 
ER 32 
ER 03 
ER 04 
ER D5 
ER 06 
ER 07 
ER 38 
ER 09 
FR OA 
ER OB 
ER DC 
ER DD 
ER OE 
ER OF 
ER 10 
ER 	11 
ER 	12 
ER 13 
ER 14 
ER 15 
ER 16 
FR 17 
ER 18 
ER 	19 
ER 14 
ER 18 
LD 	333E08 
LD 	330F56 
LO 	03DF6C 
LD 	010F82 
LP 	DiOFBE 
LD 	0 1030 
LD 	311090 
LD 	01111A 
LO 	D112A6 
LD 	)112E6 
LD 	0112FC 
LD 	D11386 
LD 	01148E 
LD 	0 14C8 
LD 	31157C 
LD 	/115C8 
LD 	0116B8 
LD 	0 173E 
LD 	0117FA 
LO 	011462 
LO 	311347. 
ER 1C 
ER 10 
ER IF 
ER IF 
LO 	0 1EBC 
SD 20 0 1E68 3001 
ER 21 

01 
01 
01 
01 
01. 
01 
01 
01 
01 
01 
01 
)1 
01 
01 
01 
01 
01 
01 
91 
01 
01 

20 
8 

0 
1 



3 

SS OF LEN 

TH VALUE 

i. TH VALUE 

DRESS,CLE 
V(STAKSEG 
H PARAMET 
&SYSNDX+8 
SYSNOX 

GTH,&STAC 

R IS ADDR  

= 

SS OF LEN 

&STACK) 
&ADDRESS) 
ENGTH) 

RESS,&LEN1,TH,&STACK 
V(POPSG) 
H PARAMETER IS ADDR 
&SYSNDX+8 
SYSNOX 

&STACK) 
&ADDRESS) 
ENGTH) 

PAGE 	1. 

Ln: OBJECT CODE  DDR2 STM 	SOUR:E STATEMENT  FOIFEB  9 4/01/ 

1 
1 
1 
1 

1 

M CR0 
&NAME S ACKSES &A 

	

&NAME L 	15, 
* 	NOTE THAT LENG 

	

L 	14, 

	

B 	15 

	

CIOP 	0,4 

	

M&SYSNDX DC 	ALI 
4L3 
4(& 

M ND 
M. ,R0 

&NAME P PSE3 &AD 

	

&NAME L 	15, 
NOTE THAT LENG 

14, 
1 	L. 	1,N 
2 	15 
2 	9,4 
2 N&SYSNDX DC 	ALI 

AL3 
4(& 

2 
	

M ND 
2 	M L -R0 
27 &NAME STACK 
28 &NAME L 
29 * 	NOTE 
3 
3 
3 
3 
3 
3 
3 
3 
3 	tiI 
3 &NAME P 
4 &NAME L 
4 * NOTE 
4 	 L 

I 
LR 
ND 
CRO 
AVE 
LR 
IN 

SS OF LEN 

STAC<=0 
BASE 

1 

TH VALUE 

I 
LR 
NO 
CR0 
P 	&AD RESSI&LEN,THT &STACK 

15, V(POPD) 
THAT LENG H PARAMET7R IS ADDR 

14, ADDRESS 
14, SA&STACK 
14, SA&STACK 
14, LENGTH 
14, SA&STACK+4 
I,R A&STACK 
0(1 ,X'OESTAC 
14, 5 

&ADDRESSI&LENGTH,&STACK I 
15,=V(STAK) 

THAT LENGTH PARAMETER IS ADDRESS OF LENGTH VALUE 
14, ADDRESS 
14, SA&STACK 
14, LENGTH 
14, SA&STACK+ 
1,R A&STACK 
3(1 X'OESTAC ' 
14, 5 

3,&R2=141.NR=COF', 
15,1 	ESTABLISH 
*,1 
I5,-V(NASSA&S ACK) 
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ADDR 1 

4 
4 
4 
	

L 
4 
4 
	

L 
4 
4 
	

B 
5 
	

M 

&NAME R 
5 &NAME B 
5 
	

U 
5 
	

L 

0 
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5 	L 	15,'{3,15) 
5 	S M 	&RI &R2,4(15) SAVE RESI TERS 
5 	M I 	3(1 ),&NR 
5' 	B LR 	15, 
64 	U INS 	*,I 
6 	M' I 	A&S SNDX,X 1 0& TACK' 
6 	14 &SYSNDX+4 
6 	 15, &SYSNDX 
6 	 15 
6 A&SYSNOX DC 	V(R TACK) 
60 	U INS 	*0 
6 	M ND 
61 	 M CRO 
61 &NAME R ETURN &RI 0,&R2=14 STACK=3 
71 &NAME B LR 	15 
7 	U INS 	*,1 
7 	15, V(CSSA&ST CK) 
7 	 L 	151'13,15) 
7. 	Li 	&R1 &R2,4(15) RESTORE R SISTERS 
7 	B LR 	15 
7 	U INS 	*,1 
7' 	M I 	B&S SNDX,X'D& TACK' 
7 	15, &SYSNDX 
71 	 15 
8 B&SYSNDX DC 	V(U TACK) 

M ND 
82 	MACRO 
83 &NAME MOVE 	&LR=5,&FROMR=6,&TOR=7 
84 * 	SPECIFIED IN RESISTER FR3MR T3 LOCATION 
8. &NAME C 	&LR =4'256' 
8 	B 	Q&S SNDX 	LESS THAN 256 BYTES 
8 	M C 	312 6,&TOR),0 &FROMR) MOVE MACK 
8' 	 &FR MR1256(3, FROMR) 	INCREMENT 
8 	L 	&TO 256(0,&T R) 
9 	Si 	&LR =4'256' 
9 	B 	*-2 • 
9 Q&SYSNDX LTR 	&LR &LR 
9' 	 P&S SNDX 
9 	B T 	&LR +4 
9 	&LR *+I2 

&LR 1(3,&LR) RE-INCREMENT COUNT 
9 	 B 	P&S SNDX 
9 	0(1 &TOR) 1 0(& ROMR) 4D/E PARTIAL 
9 P&SYSNDX LA 	&TO 3(&LR,&T R) 

1.0 	L 	&FR MR,D(UR FROMR) 
10 	M ND 
10 	M ICRO  
10 &NAME N XTD 	&RP 2,&RD=3 
10, &NAME E EMENT PR= RPIER=&RD 
10 	L 	&RD 4(0,&RD) PICK UP NEXT INLINE 
10 	M ND 
10 	M cm] 
10 &NAMF N XTF 	&RP 2,&RE=3 
10 &NAME T4 	0(& P)IINDIRE T 
11 	B&S SNDX 

it 

I 

13 MOVE 
3F 256 3Y 
EGISTER B 

BLOCK 

Ca 

ES 
256 

SPECIFIED IN RESISTER T)R 
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11 	"P' 
	

DIE P),X'CO' 
11 
	

CES SNDX 
11. 	Lo 
	

ERE 4(0,&RP) 
11 
	

DES SNDX+2 
11 • CCSYSNOX LA 

	
ERE B(0,ERPI 

11. 
	

DES SNDX+2 
11 BSSYSNDX L-1 

	
ERE 2(0,&RP) 

11" 	SLA 
	

ERE 2(0) 
11" D&SYSNDX AR 

	
ERE &RP 

120 	M ND 
12 	M RO 
12. &NAME E EMENT &PR 
12. &NAME L 	&ER 
12 	DI& 
12. 	B 	**I 
12. 	L 	&ER 
12' 	 #-1 

12 	M ND 
121 	M cRn 
131 &NAME E PONENT &R 
13 &NAME T 	DI& 
13 	V&S 
13. * 	IF I DIRECT EX 
13 	L 	ERE 
13 	Ei EMENT PR= 
13. 	13 	 Z&S 
137 V&SYSNDX LR 
138 	LH 
139 	11 
141 	 15, 
14 	N XTD 	RP= 
14 	B 	W&S 
14 X&SYSNOX NEXTE RP= 
14 W&SYSNDX LR 	&RP 
14. 	E EMENT PR= 
14 	T 	15 ,  
14 i&SYSNDX LR 	&RP 
141 	M ND 
14 	M ,r;Rn 
151 CNAME F NOTION ER 
15 &NAME N XTD 	RP= 
15' 	M ND 
151 	M CRO 
15 &NAME A LI 	CFU 
15. &NAME E EMENT PR= 
15. * 	EXECITE FUNCTI 
15' 	L 	&R1 
15 	&R1 
15 	N XTD 	RP= 
16' 	 LES 
16 KaSYSNOX NEXTE RP= 
16 LCSYSNOX LR 	&RP 
16' 	 EMENT PR= 
16 	L 	15, 
/6 	LR 	14, 

0(0,&ER) 

11 

(0,15) 
.RP,RD=ERE 
SNDX 
APIRE=FIRE 
ERE 
RE,ER=ERE 
CSYSNDX 
14 

=2,ERF=3 
RP,RD=CRE 

'',ERP=2,E 
RP,ER=CRP 
N FOR ALL 
0(D I ERP) 
MASK1 
RP,RD=&RE 
SNDX 
RP,RE=CRE 
&RE 
RE,ER=ERE 
AIEFUNC) 
5 

NEXT 

SAVE POINTER 

E=31 &RI=4 

FIRST LEV 

NJ. OF EL _MENTS AT 

L ITEMS 

HIS LEVEL 

2,EER=3 
CPR 
RI,INDIRE T 

=2,ERE=3 
P),INDIRE T 
SNDX 
ONENT MUSS BE 
4(0,ERP/ 
RE,ER=ERE 
SNDX+2 

14,ERP 
15,0I0IERP) 
15,MASKI 

TEST FOR XPLICIT COMPJSITE 

LEMENT 

0 



&REI=3,&R 

MENTS AT 

ST LEVEL  

2=4 

ECOND LEV 

LE4ENTS 

COUNT BY 

COUNT BY 

OR COMPO ITE ITEM 
R EXPLICI FORMAT F 
BRANCH 3 ZERO FOR 

R 
E ALGEBRA 	EXPRESS 
ION DESIG ATO1 
DDRESSING 
DEFINED :EVENT 

M IMPLICI 
M EXPLICI 
TERM IMPL 
TERM EXPL 
TOR IMPLI 
TOR EXPLI 
FACTOR TM 
FACTOR.. EX 
EBRAIC EX  

IT 
CIT 

IT 
IT 
LICIT 
LICIT 
RESSI34 I 

PAGE 	4 

LO: DEJECT CODE  ADDR1  DDR2 STM  SOURCE  STATEMENT  FOIFEB 9 4/01/ 

16 	T 	CR1 K&SYSNDX 
16 	M ND 
16. 	M CRO 
16 &NAME A L2 	&EU l&RP=2,& 
170 &NAME E EMENT RP= RP,ER=&RP 
17 * 	MA R EXECUTES FJNCTION 
17 	&RI 0(0,CRP) 
17; 	 CR1 MASK1 
17 	N XTD 	RP= RP,R0=&RE 
17 	N&S SNDX 
17. MCSYSNDX NEXTE RP= RP,RE=&RE 
17' N&SYSNDX LI 	&RP &RE' 
17 * 
17 	E EMENT PR=.REI,ER=ER 
18P 	 O(& EI),SIMPL 
18 	B 	OCS SNDX 
18' 	 &R2 0(0,&REI) 
18 	CR2 MASK1 
18 	TA O(&RE1), MPLICIT 
18 
18 	L. 	&R1 1(0,&RI) 
18 	T 	O(& El),X 1 301  
18 	BID 	*4-8 

18 	L 	CR1 1(0,&R1) 
19 
19 
	

XTD 	PR= REI,ER=ER 2 
192 
	

P&SYSNDX 
193 O&SYSNDX NEXTE RP=&RE1,RE=&RE2 
194 P&SYSNDX LR 	&REI,&RE2 
19 
	

EMENT PR=ARE2,ER=&R2 
19 Q&SYSNDX L 	15, A(&FUNC) 
19' 
	

LR 	14, 5 
19' 	B T 	CR2 O&SYSNOX 
19 
	

T 	&R1 MCSYSNDX 
20 	M ND 
20 	M CRO 
20 	D FINE 
20 SIMPLE E U 	X'8 
70 IMPLICIT EDU 	X'4 
20. TERM 	E U 	X 1 3 
20. FACTOR Eel) 	X'1 
20' SAE 	EIU 	X'2 
20; FO 	E U 	X'3 
20' INDIRECT EOU 
21' PRESENCE E)U 
21 * 	TYPES 
21' SIT 	EeU 	X 1 0 
21 STE EIU 	X'4 
21 CTI EPU 	X 1 9 
21. CTE 	EIU 	X'C 
21. SFI 	E U 	X1 1 
21 SFE 	E U 	X1 5 
21' CFI 	E U 	X'9 
21m EFF 	F U 	X'D 
22 SET 	F U 	X'2 

L DOWN 

A EXPONEN 
TERM 

ON 

PLICIT 

ELEMENTAR 
IMPLICIT 
MOTE —4JS 
TYPE FACT 
TYPE SIMP 
TYPE FUNC 
INDIRECT 
EXTERNALL 

SIMPLE TE 
SIMPLE TE 
COMPOSITE 
COMPOSITE 
SIMPLE FA 
SIMPLE FA 
COMPOSITE 
COMPOSITE 
SIMPLE AL 

1=5,ER2=6 

DR ALL EL 

NO. OF FI 

1 

INCREMENT 
TEST FOR 

INCREMENT 

U
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0 



SIMPLE AL 
FUNCTION 
FJNCTION 
FUNCTION 
FUNCTION 

TO=*+4000 

N PDATA=( 

TAX ANALY  

EGS),STOR 

ER 

EBRAIC EX. RESSIO4 E 
MPLICIT 
XPLICIT 
MPLICIT 
XPLICIT 

GE=(&FROM 

TH,&,C=C' 
PJT CHARA 
NGTH-11 EA 

&AR=2 
TEST FOR 

INCREMENT 

OBTAIN F 
REFERENCE  

TER IN Fl 
DRESS 

YPE 

NCTIDN BY 
BY R3- I  

ST POSITI 

E FOR CHA 
SERTED IN 

STRING POINTER BY 1 
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22 
22 
22 
22 
22 
22 
22 
22 
22 
23 
23 
23 
23 
23 
23 
23 
23 
23 4  

23 '  
24 
24 
24 
24'  
24 '  
24 
24 
247 
248 
249 
25 
25 
25 
25 '  
25 
25 
25 
25 
25 
25 
26 
,6 
26 
26'  
26 
26 
26 
26 
26 
26 
27 

27 
27 
27 
27+ 
27.  

U X'5 
U X'B 
U X'F 
U 	MB 
U X'F 
ONMENT BI 
U X 1 8 
U X'4 

SEE 
FOI 	E. ► 
EDE 
FNI 	P ;  

ENE 
* 	ENVI 
ESAE 
EED 	E. 
MD 
	

U 
SFGE 	E U 
FGE 
	

U 
SAFE 
	

EOU 
M ND 
M CRO 

&NAME T ST 
&NAME S 

S 

B 
X&SYSNOX 

MACR DEFINITI NS FOR SY 
M CRO 

&NAME S TENV &TY E 
&NAME 0 
	

NVS ATUSI&TYP 
MEND 
MACRO 

&NAME CLEARFNV &TYPE 
&NAME X 	NVS.  ATUS,&TYP 

M ND 
M CRO 

&NAME C ER 	&AD1 RESS,&LEN 
&NAME M I 	CAD RESS,&C 

&AD RESS(1)+L 
M ND 
M CRO 

&NAME B FTYPE &TY E v &ADDRES 
&NAME C I 	3(& R),&TYPE 

&AD,  RESS 
M ND 
M CRO 

&NAME N XTCHAR &R 3 
&NAME L 	&R, (31 &R) 

M N7 
MACRO 

&NAME R T 	&TY El &ADDRES 
&NAME T T 	0(1 3),CODEST 

F 	2,* 12 
B E 	&AD RFSS 
13 	*4-8 

C I 	&TY E,X 1 00 1  
M ND 
M cRn 

&NA E R T 	&TY E,&ADDRES 

PLICIT 

&TO) 

ACTER 
R2 

X 1 1 
MO 
MO 
X1 0 

AP 

DS 
ND 

&N= &FROM=* 
1,X SYSNDX 
DC5 DEBUG,ID= 
1,X SYSNDX 
X&S SNDX+4 
1F 

I 

S 

0 
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27 
27 
27 
27 
28 
28 
28 
28 

&NAME T 
F 
B 

It 
	

B  
C 
M 
M 

&NAME S 

   

28 * NS-N 
28 	D-DI 
28. * 	LT-U 

	
11 

28' * 	AO-0 
28 * MD-M 
28 	RO-R 
294 	L0-L 
29 * S-SE 
29 
	

DL-D 
29 	SS-S 
29 
	

BLK-B 
29 
29 
29 
?9 
291 &NAME 
30 
301 
302 
303 
30 
30 
30 
30 
30 
30 
31 
31 
31'  
31 
31+ 
31 
31 
31 
31 
31 • 
32 
32 
32 
32 
32 
32 
32 
32 
32• 
32  

0(1 3)+ CODEST 
?,- 12 
&AD CRESS 
*-43 
&TY E'X'001  

N3 
CRO 
RTABLE &N =31,&D=OD 

&DL 3)+ ESS=00 
N VALID S MBOLS HAV 
IT 
PER CASE IETTERS 
ERA TORS 
LTIPLY OP RATORS 
LATIONAL PERATnRS 
GICAL OPE ATORS 
ARATORS 
LIMITJRS 
ECTAL SYMBOLS 
ANK 

AMETFRS S ECIFY HEX 

TABLE VALI E 
DC 	64X'&NS' 
DC 	XL1'&FILK. 
DC 	9)(1 &NS' 
DC 	XLII&SS' 
DC 	XLI'&S' 
DC 
DC 	XL1'&DL' 
DC 	XL1'&AO' 
DC 	XL1'&LO' 
DC 	XL1I&LO' 
DC 	9X'&NS' 
DC 	XLP&SS' 
DC 	XL1'&SS' 
DC 	XL1'&MO' 
DC 	XLP&DL' 
OC 	XL1.1 &S' 
DC 	XLP&LO' 
DC 	XL1'&401  
D: 	XLP&M0' 
DC 	9X'&NS' 
DC 	XL1'&S' 
DC 	XLI'ESS' 
DC 	XLI'ESS' 
DC 	XLI'&RO' 
DC 	XL1I&SS' 
DC 	1OX'&NS' 
DC 	XL1'&S' 
DC 	XLII&SS' 
DC 	Xll'ESS' 
DC 	XL1i&DL' 
DC 

OBTAIN F NCTIO4 BY 
REFERENCE BY R3- I 

&LT=31,&A =00,&M3=0 
CBLK=03 
VALJE 	&NS 

&D 
ELT 
&AO 
&MO 
CR0 
&LD 
ES 
&DL 
CSS 

DECIMAL V LJES 

SYM OL 

54 
55-73 

7 
7 
7 
7 
8 
8 
9 
9 
9 
9 
9 
9 
9 
9 
9 
1 
1 
1 
1 
1 
1 
1 

1  

E F3R - :1-14 A:TER 
SERTE3 IN 12 

3=00,&S=0 

ION GRAPHIC SYMBOL 
0-9 
A-Z 

*,/ 
=, 
C, 
. F 
(,),', 

,S, 

SS 
RD 
DL 
A3 
L3 
LO 
NS 
SS 
SS 
M3 
DL 
S 
L3 
A3 
M3 

-106 
	

VS 
7 
	

S 
B 
	

SS 
9 
	

SS 
3 
	

RD 
1 
	

SS 
2-121 
	

NS 
2 
	

S 
3 
	

SS 
If 
	

SS 
5 
	

DL 
5 
	

R3 

II 

* ALL PAI 

D CI'1AL 	TYPE 
0 53 	NS 
&A.< 
AS 
74 
75 

-89 



XL1I&DP 
XL1'&NS' 
54X'&NS' 
9X' ELT' 
7X'&NS' 
9X'&11" 
8X"&NS' 
8XICIT' 
6X'CINS' 
10X'&D' 
6Xi&NSI 

CO' 
&LT' 
&AO' 
&MO' 
CRO' 
&LO1  
CS' 
COL. 
&SS' 
&NS' 
&BLK' 
• 

1.7 
1.B 
1 9-182 
1 3-201 
2,2-208 
2 9-217 
2 .8225 
2. 5-233 
2 4-239 
2 0-249 
2'3-255 

A—I 

J—R 

0-9 
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33 
	

DC 
33 
	

DC 
33 
	

DC 
33 
	

DC 
33 
	

DC 
33 
	

DC 
33 
	

DC 
33 
	

DC 
33 
	

0: 
33 
	

DC 
34 
	

DC 
34 
34' * 	FUNC 
34 * 
34 DIGIT D 
34's LETTER 0 
34.. ADDOP D 
34,  MULTOP 0 
34. RELOP 0 
34" LOGOP D 
350 SEP 
35 DELIM 0 
35 SPEC D 
35' NONSYM 0 
35' BLANK 0 
35 RBRAC 
356 L3RAC DC 
357 ASTERISK  
358 	MEN)  
35 ' 	 M CRO 
36 &NAME B 
36 &NAME F 
36'  
36' 	C I 
36 
360 	M ND 
36. 
36' 	M CRO 
36 &NAME B T 
36. &NAME S 
371 
37 
37' 	C I 
37 	M ND 
37 
37 	M CRO 
37 &NAME B LK 
37 &NAME E 
37. 
37: 	C I 
381 
381 	M ND 
380 
38' 	M CRO 
38+ ENAME B AO 

DL 
NS 
L9WER CAS 
LT 
NS 
LT 
NS 
LT 
NS 

NS 

XL1 
XL1 
XL1 
XL1 
XLI 
XLI 
XL1 
XL1 
XL1 
XL1 
XL1 
IC' 

ION VALUE 

0 

1C')' 
1C"." 

&AD RESS 
8 

*-1-8 
DIG T,X'DO' 
&AD CRESS 

&AD RESS 
2,* 5 
	

BRANCH IF LETTER 
2,*• 8 
*4.3 
LET ER•X'00 1  

&AD RESS 
2,* 8 
*+.8 
BLA K,X'00' 
&AD RESS 

&AD RESS 



PAGE 	a 

LO: OFJECT CODE ADD? 1 

U
N

IV
E

R
S

I
T

Y
 O

F
 W

A
T

E
R

L
O

O
  

Ed4) 

U
N

IV
E

R
S
I
T

Y
 O

F
 W

A
T

E
R

L
O

O
  

333035 4 20 BE2A 
3000)A 5120 3338 
00003E 5 .100 2.304 
)00012 1102 
300014 5 F3 803A 
000013 0 FF 

30301A 0 DO 

3033)3 
000330 9 EC D33C 
003034 0 BD 
000015 

0012 S TM 	SOURCE STATEMENT 

2 
B 
	

*48 

C 
	

ADD P,X' 00' 
&AD ti RESS 

M N) 

&AD 
2,* 
MUL 
SAD 

COMMAND LIST F NCTION 
M CRO 
C F 	&L, FUNC 
L 	14,;L.(0,0) 
L, 	3,4 

CM&SYSNO LA 	3,0 14,3) 
2,C &SYSNDX 

L 	15, A(STAKAP) 
B LR 	14, 5 
L 	15, A(SV) 
L 	 10, YNTAX+6 
S 	11, GI 
L 	11, 095(0,10) 
LA 	11,1(3,11) 
BALR 	14,15 

CI&SYSNDX L 	11,AG1 
L R 	0,0 

CE1 
14, 
3,0 14,3) 

PERFiRM OPERAT ON 
L 	14, FUNC 

L 	14, (0,0) 
C I 	0(3 ,C',' 

B 	CM& YSNDX 
M ND 

F MACRO D F INITInNS 
EC T 

14, 2,12_(13) 
LR 	11, 
ING 	*,1 

L 	2,C SA 
S 	2,8 0,13) 

13, f (0,2) 
13, 

L 	15, A(INITIAL 
B LR 	14, 5 

4 	OPEN INPUT DAT SET 
0 EN 	( IN ( I NPUT) ) 

CNOP 0,4 

OF 30 
0308 

)0004 

38' &NAME 
38 
38 
38 
38 
39 
39. 	 M CRO 
39 &NAME B MD 
39 &NAME S C 
39 
39 
39 
39 
39 
39 
40 
40 
40 
40 
40 
40 
40 
40 
40 
40 
41 
411 
412 
413 
41 
41 • 
41 
41 '  
41 
41 
42 
42 
42 
42 
42 
42 * END 
42• SYNAN C 

030C 	42 CMDINT S 
42 
42 
43 
43 
43 
43 
43 
43 
43 
43 
43 
43 

0)40 

C I 
B E 
M ND 

B E 

II 

II 

8 

RESS 
5 
10 1 X' 00' 
RESS 

FO1FE3 9 	4/01/ 0 

BRANCH IF NOT MJLT 

R3 POINTS TO ST1 I4G 

jPDATE R3 TO GET BY VI 

IS NEXT C ARACTER A 7.344A 



3S= MFT22 
T113346.R 
DS= MATH4 
T113346.R 
DS= NATH3 
T113346.R 
OS= MFT11 
T113346.S 
3S= MFT22 
T113346.S 
DS= MATH4 
T113346.R 

000. 

000. 

000. 

000. 

000. 

000. 

SYNAN.R0000001 

SYNAN.R0000002 

SYNAN.R0000003 

SYNAN.R0000004 

SYNAN.R0000005 

SYNAN.LOADSET 

   

3S= MATH2 . 
T113346.R 000.SYNAN.S0000006 
3S= 4FT11 . 
T113346.R 000.SYNAN.S0000006 
05= 4FT11 . 
IEWL,PARI (XREF,LET,LTST,NCAL 
=(8,LT,AS1) 
41E=EILOADS:T,DISP=i0LD,DELETE) 
ME=SYSIN 
41F=5G3SET G3),UNIT=SYSDA,SPAC 
=(MOD,PAS 1 
=ISYSDA,S, P=ISYSLIN ,syst_mnn» 
UT=A,DCB= OLKSI7E=L21) 
NAME=SYS1 FORTLIB,D7SP=SHR 

0 
0 
0 
0 
0 
0 
0 

KEPT 

DEL TED 

DEL TED 

DEL 

SYS 

SYS 

PAS 

SYS 

DEL  

TED 

UT 

UT 

ED 

N 

TED 

:032203 
002400 
002600( 
002800,  
X003000 0 

003200 
303400 
003600 

K, 

=(1024,I5 

4,(53,20) SPACE=(10 

,REGION=9 

,20,11), 

U
N

IV
E

R
S

I
T

Y
 O

F
 W

A
T

E
R

L
O

O
 

SYS1.MACLI3 

SYNAN 
1 135 
130 

IFF2371 SYSLMOD ON 130 
IEF2371 SYSUT1 	ON 131 
IFF2371 SYSPRINT 3N 136 
1EF2371 YSLIB 	JN 130 

IFF285I 
IEF285I 
IFF2851 
IEF2351 
I EF235I 
IEF235I 
IFF2851 
IFF235I 
TEF215I 
IFF285I 
IEF2351 
IFF285I 
IEF285I 
IEF235I 
IFF2851 
IEF285I 
IFF2851 
IEF2851 
XXLKED 
XX 
XXSYSLIN 
XX 
XXSYSLMO 
XX 
XXSYSJT1 
XXSYSPRI 
//LKED.S 
//LKED.S 
IEF2361 
TFF237I 
TEF2371 

VOL SER 
SYS70091 
VOL SER 
SYS70091 
VOL SER 
SYS70091 
VOL SER 
SYS70091 
VOL SER 
SYS70091 
VOL SER 
SYS70091 
VOL SER 
SYS70091 
VOL SER 
SYS70091 
VOL SER 
EXEC PG1 

CJN 
DD 	DSN 
DD 	DON 
DD DSN 

DIS 
DO 	UV! 
IT OD SYS 
SLIB DD D 
SIN DO 
UDC. FOR 
YSLIN 	3 

3 

KED 

U
N

IV
E
R

S
I
T

Y
 O

F
 W

A
T

E
R

L
O

O
 



SECTION 

ORIGIN 

03 

LENGTH 

1F62 

  

S 	1E68 	118 

1E80 	210 

2190 	12C 

22CD 	100 
23C0 	9F54 

C318 	2254 

E570 	8F7 

FE58 	12 

EE70 	404 
F278 	00 
F348 	71A 

FA63 	754 

101C0 	AF2 

10088 	20F 
IOEC8 	198 
11060 	15A 
111C0 	IFO 
11380 	700 
11880 	700 
12350 	700 

F44-LEVEL LINKAGE EDITOR OPTIONS SPECIFIED XREF,LET,LIST 
VARIARL OPTIONS USE) - SIZ =(49152,1i240) 

****30 	DOES NOT EXIST BUT HAS B EN ADDED 0 DATA SE 
DEFAULT 0 TION(S) U ED 

ROSS REFE,  ,ENCE TABL 

U
N

IV
E

R
S

I
T

Y
  O

F
  W

A
T

E
R

L
O

O
 

E.) 

U
N

I V
E

R
S
I
T

Y
 O

F
 W

A
T

E
R

L
O

O
 

ENTRY 

NAME 

LDS 
VEP 
PLIST 
NUMBER 
REALL 
SAE 

INITIAL 

INSERTN 
NAMVAL 

CNPRRL 

GETCOR 

TESTESI 
REDUCE 
TMULT 
COMPRESS 
PRSUB 

PRTSAE 

PURGE 

DIFFSAE 

USTACK 
POPSG 

EXPANDS  

LOCATION 

F08 
FRE 

12A5 
149E 
1688 
184C 

lEBC 

1E80 
20EA 

227C 

23C0 

C318 
CDFE 
DSCC 
DA40 
DC3C 

E570 

EE58 

F348 

FB65 
FD6E 

10538  

NAME 

IDENT 
SVG 
PARM 
UI 
PRIMARY 

INSERTS 
ADDSTR 

RETCOR 

TESTECI 
MOVECWS 
TOIV 
EXPAND 
PRADD 

DI FES 

STAKSEG 
DSAVE  

LOCATION 

F56 
1030 
12E6 
14C8 
173E 

IFEC 
2138 

24EA 

C43C 
CF48 
0624 
DB2A 
DC52 

F7DA 

FBF4 
FOCA  

NAME 

VI 
VG 

'SEG 
RATIONAL 
FACTOR 

DELETEN 

HLC 
ASAES 
DSAES 
PRDTV 

MATCHVAR 

STAK 
DGET  

LOCATION 

F6C 
1090 
12F: 
157C 
17FA 

205E 

C790 
0256 
D670 
DB:6 

F922 

FC7C 
FEAD  

NAME 

SV 
FD 
PG 
REAL 
TERM 

DELETES 

43VELEM 
SSAES 
ISAES 
PRMULT 

INTEG 

POPD 
INAREA  

L3:ATION 

F82 
111A 
1366 
15:8 
1A62 

2042 

:62C 
03EA 
D7AE 
DBFO 

F97C 

FCF2 
10040 

CONTRO 

NAME 

SYNAN 

MESSAG 

TABLES 

INTSER 

DISPLA 
STORE 

ALSJTS 

PRINT 

SERIES 

NEdU 
CRLSTR 
RIFF 

RS TACK 

EVAL 

SJBST 
CNVRL 
ATX 
RTI 
STAKO 
STAKI 
STAK2 



LOCATION 	NAME 	LIGATION 

NASSA3 
NASSA2 

19600 ERRTRA 

FDIOCS 

IHCERRE 

FCVAOUTP 
FCVEOUTP 

ADJSWTCH 

FlOCSREP 

15244 

15680 

16CC2 
17730 

180FC 

1824E 

INTS4TCH 

FCVL7JTP 
FCVC3UTP 

12E328 
12B68 

16106 

16052 
1794A 

NAME 

STACK0 
CSSA2 

STRTAB 

ALOG 

12824 
12864 

14558 

14E94 

NAME 

CSSAI 

FCVZOUTP 
INT6SWCH 

IM CONTR L SECTION 

R TACK 
T BLES 

R.TACK 
F /AL 
S ORE 
PINT 
I TSER 
S BST 
A GUTS 
E/AL 
S_RIES 
U ERAREA 
M SSAGES U

N
IV

E
R

S
I
T

Y
 O
F
 W

A
T

E
R

L
O

O
  

U
N
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E

R
S

I
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 O
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T

E
R

L
O

O
 

10) 

USERAR A 
	

12823 

USERA 

IHCFIX 

IHCFRX 

IHCSLO 

IHCSEX 

IHCECO 

IHCCOM 

THCERR 

IHCFCV 

13068 

I* 148A0 

R* 14CF0 

14E78 

15038 

H* 151E8 

16120 

16668 

H* 16C18 

IHZEFN H* 17D93 

IH:EFI S* 182A8 

IHC0OP * 193C8 
IHCETR,H* 196C8 

THCUATBL* 
WA 
RCdV 
XWAS  

19958 
199E0 
1D860 
1E030 

LOCATI 

D4 
06; 
D6 
D7: 
D7 
08 
08 
09r 
DA 
DA B.  
DB 
DC 
DO 
05 

REFERS 

NAME ORIGIN LENGTH NAME LOCATION 

12824 
12848 

13F14 

14840 

14CF0 

14E78 

15038 

151E8 

16380 

16669 

16C19 
1722E 

17090 

18248 

196C8 

LOCATION 

1.2844 

16E42 
17C33 

CSSAO 
NASSA1 

NAM TAB 

FIXPI 

FRXPR 

ALDG10 

EXP 

IBCOM 

SEQOASO 

ERRMON 

ADCON 
FCVIOUTP 

ARITH 

F TOGS 

IHCTRCH 

1248 

E38 

14F 

193 

13A 

180 

F31 

545 

SAC 

1175 

512 

I11C 

300 
28E 

98 
3E80 
700 
FAO 

1E030 

T7 SYAR3L 

INAREA 
ADDSTR 
WA 
DSAVE 
EVAL 
GET:DR 
PRTSAE 
INTSER 
SUBST 
HLC 
EXPANDS 
SERIES 
USERARF 
'MESSAGE  

CMD CWVSAE 1F350 

  

LOCATION REFERS 

04 
06 
06 
07 
D7 
08 
09 
09 
DA 
08 
08 
DO 
04 
1CA 

 

I 

 

  

VECvIS 

0 SYM3DL 

CMD 
STRTAB 
MOVELE4 
DELETES 
CRLSTR 
DIFFSAE 
RETC31 
DISPLAY 
NEWJ 
INSERTN 
INSERTS 
PURSE 
MESSAGE 
WA 

1E670 
	

VTCWS 

IN CONTR3 SECTION 

X AS 
U ERA 
Ai GUTS 
T•BLES 
C LSTR 
D FF 
S ORE 
D SPLAY 
N WU 
T BLES 
T BLES 
S RIES 
M SSAGES 
Wi 

IEBOO 



in^yr- In".4 REi-L1S 13 SYMBOL IN CONTROL SECTION  LOCATION REFERS TO SYMBOL IN CONTROL SECTION 

1C8 
1CC 
218 
225 
23A 1  
235 
C46 
CF6 
CDA 
C78 
C73 
D24 
061 
DEO 
E59 
EAD 
E99 
EE3 '  
F27 
F34 
F4A 
F5F 
FA3 
FA4 ►  

FA4 
FA5 
FA5 

1903 
10398 
11470 
1059C 
1055 
106A 
1008, 
10C9 
10CiV 
19CD 
10E5 
10EC 
1125 
1262 •  
1253 
1254 
1255 

0 	1256 
1287 
14C8 1  
14E0 = 
140F 
14FE 
1516 

U
N

IV
E

R
S

IT
Y

 O
F

 W
A

T
E

R
L

O
O

 

It 

HLC 
pe'F'^ 
r"/V"1 
USERA 
CNVRL 
STRTAB 
NAMTAB 
RSTACK 
RSTACK 
USTACK 
NASSA0 
CSSAO 
RCWV 
RET:OR 
RET:OR 
RSTACK 
RSTACK 
USTACK 
NASSAO 
mESSAGF 
RI! 
RSTAC< 
USTACK 
CSSAO 
STA< 
PRSJ5 
PRA9D 
EXPAND 
MESSAGE 
RSTACK 
USTACK 
ATX 
CNPRRL 
VICOS 
WA 
GET:OR 
RETCOR 
RSTACK 
NASSA0 
GET:1R 
FIXPI 
STA<0 
STA<0 
STAK1 
STA<1 
STA<2 
STA<? 
IH:ERRM 
IH:FRRM 
EXP 
IHCFRRM 
IHCERRM  

A GUTS 
k TACK 
CIVRL 
it ,F!) ,A 
C IVRL 
U FRA 
U ERA 
R TACK 
R TACK 
R.TACK 
U ERAREA 
U ERAREA 
R WV 
S ORE 
S ORE 
R TACK 
R TACK 
R.TACK 
U.ERAREA 
M SSAGES 
R I 
R TACK 
R TACK 
U ERAREA 
R TACK 
A GUTS 
A GUTS 
A GUTS 
Mt SSAGES 
RSTACK 
RSTACK 
ATX 
I ITSFR 
X4AS 

S (IRE 
S ORF 
R TACK 
U ERAREA 
S ORE 
I :FIXPI 
S AKO 
S AKO 
S AK1 
S AK1 
S AK2 
S AK2 
I CERRM 
I CFRRM 
I CSEXP 
I iCFRRM 
I CERRM  

IC5 
1CBI  
1E5 
227 
23A 
235 
2351  
C55 
C77 
023 
D24l  
D24r.  
060 
DDFi  
DEI 
E761, 
E684 
ECO 
EE3 
F34 
F36 
F47 
FA3 
FA3 '  
FA4 
FA4'  
FA5 

1001 
101E 
1033C 
10598 
10540 
1055 
106A 
10C9 
10C9 
10CA 
1008+ 
10E8 
110F 
1282 
1283 
1284 
1285 
12B6 
12871  
14C8 
14E0 
140F 
14FA 
1516 
152A  

STA< 
MESSAGE 
USERA 
INTEG 
USERA 
MESSAGE 
CRLSTR 
RSTACK 
USTAC< 
USTAC< 
NASSAD 
CSSAO 
GET:OR 
GET:OR 
MESSAGE 
RSTACK 
USTAC< 
USTAC< 
CSSAO 
USERA 
RSTAC< 
USTACK 
MASSA° 
VTCWS 
POPD 
MOVELEI 
PRDIV 
STACK0 
RSTACK 
USTACK 
MASSA° 
CSSAO 
NAMVAL 
MOVELE4 
CWVSAE 
REDUCE 
MESSAGE 
USTAC< 
CSSAO 
FRKP1 
STA<0 
STA<0 
STAK1 
STA<1 
STA<2 
STA<2 
I5C34 
IBCOM 
ALOG 
IBCOM 
IBCOM 
SEDDASD  

I TACK 
M SSAGES 
U ERA 
D FF 
U EIA 
M SSAGES 
C LSTR 
R TACK 
R TACK 
R TACK 
U ERAREA 
U'. ERAREA 
S ORE 
S ORE 
M SSAGES 
R TACK 
R TACK 
R TACK 
U. ERAREA 
U ERA 
R TACK 
R TACK 
U EIAREA 
X AS 
R TACK 
A GUTS 
A GUTS 
U ERAREA 
R TACK 
RSTACK 
USERAREA 
USERAREA 
T BLES 
A GUTS 
X AS 
A GUTS 
M SSAGES 
R TACK 
U ERAREA 
I CFRXPR 
S AKO 
S AKO 
S A<1 
S AK1 
S AK2 
S AK2 
I CECOMH 
I CECOMH 
I CSLOG 
I CECOMH 
I. CECOMH 
I CCOMH2 
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DRESS 
NGTH 

1600 
1601 
15FB 
1601 
1601 
1602 
15FB 
15FE 
15FC U 

15FC 
1628 
1540 
16C0 
ISCO 
17BF 
1814 
180F 
1815 
181C 
1848 
1993 
1984 

ENTRY A 
TOTAL L  

ADCON 
ARITH 
IHCUO?T 
FCVEOUT 
FCVIOUT 
FCVADUT 
IHCERRE 
IHCERR1 
IHCCO1H 
IHCCDMH 
IHCECOM 
IHZECO11 
IH,CUOPT 
IHCTRCH 
IB:31 
IBCJM 
INT6SWC: 
ADZON 
IHCER11 
INCUATII 
IBC31 
FIOCSRF 
00 

EFDO  

IHCFCVTH 
IHCEFNTH 
THCUOPT 
IHCFCVTH 
IHCFCVTH 
IHCFCVTH 
IHCERRM 
IHCERRM 
IHCCOMH2 
IHCCOMH2 
IHCECOMH 
IHCECOMH 
IHCUOPT 
IHCETRCH 
IHCECOMH 
IHCECOMH 
IHCFCVTH 
IHCFCVTH 
IHCERRM 
IHZUATBL 
IHCECOMH 
IHCEFIOS  

1690 
1603 
1602 
1601 
1602 
1602 
15FE 
15FB 
15FC 
1628'  
164C 
164E 
16C0 
16C1 
17RF 
1815 
180E, 
18154 
1840 
1849 
1984 1)  

FIO:S 
ADJS4TC 
IHCJOPT 
FCVLOUT 
FCVCOUT 
FCV7OUT 
IHCCOMH 
IHCCOMH 
IHCCOMH 
IHCECOM 
IHCECDM 
IHCECOM 
IBC31 
FIOCSRE 
IHCERRM 
INTSWTC 
IHCLIOPT 
FIDCS 
IHCERRM 
IRC31 
ADCON  

IHCEFIOS 
IHCEFNTH 
I CUOPT 
IHCFCVTH 
IHCFCVTH 
IHCFCVTH 
IHCCOMH2 
I CC3MH2 
IHCCOMH2 
IHCECOMH 
IHCECOMH 
IHCECOMH 
IHCECOMH 
IHCEFIOS 
IHCERRM 
IHCECOMH 
I CUOPT 
IHCEFIOS 
IHCERRM 
IHCECOMH 
IHCFCVTH 

U
N

I
V

E
R
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U
N

IV
E

R
S

I
T
Y
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A
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O
F
 W

A
T
E

R
L
O

O
  

DELETED IEF285I 
IEF2351 
IEF235I 
I FF285I 
I FF235I 
IFF235I 
1EF235I 
IFF2851 
TEF235I 
IEF295I 
I FF2351 
IEF235I 
IFF235I 
IEF2351 
XXGJ 
//GO.SYS 
//GO.MES 
//G3.SAV 
//GO.ALG 
IEF236I 
I EF2371 
IEF237I 
IEF237I 
IEF237I 
IEF237I  

SYS70091.T113346.RF000.SYNAN.LOADSET 
VOL SER DS= MATH? . 
SYS70091 T113346.1 000.SYNAN S0000009 
VOL SER 35= MFT11 . 
SYS70091 T113346.R 100.SYNAN 50000009 
VOL SER DS= 1FT11 . 
SYS70091 T113346.1 000.SY\JAN GOSET 
VOL SER. 35= MFT11 . 
SYS70091 T113346.1 000.SYNAN R0000007 
VOL SER DS= MFT22 . 
SYS70091 T113346.S 000.SYNAN 80000003 
VOL SER DS= MATH3 . 
SySi.F31 LIB 
VOL SER 35= 4FT11 . 

EXEC PS4 *.LKED.SY.L100,CDND ((B;LTIAS 
DJ4P DD S S)UT=A 
AGES DD S SOUT=A 
AREA OD j IT=2314,S1ACE=(CYL 0),VOLUME 
BRAS DO 
LLOC. FOR SYNAN 
GM=*. DD 0 130 
YSUDUMP 3 131 
ESSAGES 3 131 
AVEAREA 0 132 
LGEBRAS 3 130 

1+El 

SER Ll 
ET E1=A** +2.04,3 
ET E2=(A+ .3*B)**2+ 
RINT E1,E '  

E1=(1/1 A**(2/1)+ /1*B) 
E2.=((1/1*A+2/1*B)**(2/1) 

SET A=2.0, 3=3.0 
EVALUATE E2 

VALJE 0 

	

	E2 	=97.7 
ELETE B 
UBSTITUTE B=A+3 IN 
'RINT Ell E 

E1=(1/1 4**(2/1)+ /1*B) 
E2=((3/ *11+6) *(2 1)+41/10* 

XPAND E2 
(9/1*4*-(2/11+36 +451/10+4 

IFFERENTT TE E2 
(1R/1*A 36/1+123/ 0A**( 2/1  

AVE E2 
ISPLAY ST UCTLRE TA LE 

STRJCTO F Fl IN D.tE 
STRJCTU E E2 	ON DISC 

ISPLAY NA,F TABLE 
VALJF O 	A 	=2.0 

0 	F NI 

F2 

.1*11**3-9 

+41/10*A**(3/1)491/10+E.) 

, (3/1)-9 

/10*A**(3 
A 

SYS 

DEL 

PAS 

DEL 

SYS 

KEP 

)1(4,LT,L 

SER=MAT4 

N 

TED 

ED 

TED 

UT 

ED)) 
	

003300 

/10+E1) 
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IEF2851 	SYS70091.T113346.RF000.SYNAN.GOSET 	PASSED 
IEF285I VOL SER JS= 	1FT11 . 
IFF285I SYS70091 T113346.S 000.SYNAN.R0000010 DEL; TED 
IEF285I VOL SER JS= 	MFT22 
IFF2951_ SYS70091 TI13146.S 000.SYNAN.ROOD0011 SYS IUT 
TEF28.51 VOL SER OS= METZ? . 
IEF2351 SYS70091 T113346.2 000.SYNAM.RD000012 DEL TED 
IEF285I VOL 	SER 3S= 	MATH4 . 
IEF2851 SYS70091 T113346.R 000.SYNAN,S0000013 SYS N 
IFF285I VOL 	SFR JS= 	MFT11 
TEF2B5I SYS70091 T113346.R DOO.SYNAN.S0000013 DEL TED 
IFF2951 VOL 	SER JS= 	MFTII . 
IFE-285I SYS70091 T113346.R 000.SYNAN.GOSET DEL TED 
IFF2851 VOL 	SFR JS= 	1E1-11 . 
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