
DATA STRUCTURES FOR ALGEBRAIC MANIPULATION

by

J. G. Linders, M.A.Sc., F.B.C.S.

A Thesis Submitted to the University of London

for the degree of Doctor of Philosophy

UNIVERSITY OF LONDON

Imperial College of Science and Technology

1969-70

(±)

Preface

This thesis describes an approach to the

manipulation of formal algebraic expressions by digital

computer. It differs from others in that a major

emphasis is -placed on the ability to model and manip-

ulate algebraic structure. The data structure used to

represent a general algebraic expression not only

contains the formal variables of the expression but

also algebraic structural information as well as the

map associated with the physical structure in storage.

By having algebraic entities with more structure than

is found in a character string, the language for for-

mal algebraic manipulation is correspondingly simplified.

The algebraic data structure facility known

by the acronym AIDS (Algebraic Interpretive Data Struc-

tures) as well as the supporting macros and manip-

ulative routines provide a base from which to construct

compilers for algebraic symbol manipulation. In this

thesis AIDS is used to construct a simple command

language for algebraic manipulation (CLAM). A number

of essentially trivial exles are given to demonstrate

the capability of AIDS.

AIDS has been written for a multi-access type

of environment. All routines are hence re-entrant so

that they may be shared by several users simultaneously.

The first part of the thesis discusses the

(ii)

development of data structures and languages for

algebraic manipulation. 	The syntax and operation of
t

AIDS is then described. 	The system is summarised in

the appendices.

The ptesent implementation has been written for

the IBM 360 although the definition is essentially

independent of the hardware.

Table of Contents
Page

Preface

. Table of Contents
	

iii

Acknowledgements 	 vi

Chapter I
Introduction
	 1

Chapter II
Algebraic Manipulation Schemes 	4
Symbolic Manipulation in High Level

Languages 	 7
Polynomial Manipulation Systems 	9
General Algebraic Systems 	10
Requirements for Algebraic Manipulationl2

Chapter III
Data Structure Schemes 	17
Data Structure Types
1. Arrays 	 17
2. List Structure 	18
3. Trees 	 19

Data Structure for Algebraic
Manipulation 	 26

Summary of Data Structure Requirements 30

Chapter IV
Algebraic Interpretative Data Structure 32
General Philosophy of AIDS 	32
Description of AIDS Data Structures 	36
External Representation 	37
Syntax of Algebraic Expression 	37

Basic Symbols 	 37
Identifiers 	 --38
Numbers 	 38
Variables 	 39
Function Designator 	39
Algebraic Expressions 	40

Internal Representation 	40
Algebraic Values 	 41
Further Syntactic Entities 	41
Representation of Algebraic Structural
Information 	 44

Representation of Exponents for
Composite Elements 	45

Function Designator Representation 	47
Implementation Restrictions 	49

- iv -

Chapter

•

Organisation of Elements Within a
Structure 	 50

Canonical Form of Data Structure 	50
Extended Form of Data Structure 	51
Further Extensions 	58
Accessing Elements Within the Data
Structure 	 59

Conversions Between External and Internal
Repr.esentations 	 62
Operation of the Syntax Analyser 	62
Syntax Analyser Conventions 	66
Forming Algebraic Structures 	68
Conversions Between Data Structure and

External Representations 	69
Recursive Facility in AIDS 	70
Description of Stack 	71
Recursive Programming Macros 	73
Data Stacks and Data Stack Operations 77

Data Management 	 79
User Data Area 	 79
Stacks 	 80
Free Storage Scheme 	81
Secondary Storage Facilities 	84
Catalogue Facilities 	85

V
Algebraic Operations 	86
Data Transmission 	 90
Arithmetic Operations 	92

Rational Arithmetic 	92
Symbolic Addition and Subtraction 	94
Multiplication and Division 	95

Logical Functions 	 100
Equivalence of Simple Elements 	100
Equivalence of Composite Elements 	101

Functions 	 103
Numerical Evaluation 	104
Removal of Parentheses 	-1q5
Factoring 	 106

Chapter VI
Algebraic Simplification and Substitution
Simplification 	 107
Simplification in AIDS 	114
Simplification of Simple Algebraic
Data Elements 	 115

Simplification of Composite Algebraic
Data Elements 	 118

Term Simplification 	119
Simplification of Simple Algebraic

Expressions 	 120

- v -

Resolving Structural Complexity 	121
Substitution 	 124

Chapter VII
Differentiation and Integration 	126
Differentiation and Integration in AIDS
Differentiation 	 128
Integration 	 132

Chapter VIII
CLAM Algebraic Interpreter 	133

Description of CLAM 	133

Chapter IX
Summary 	 137
Future Enhancements 	137
References 	 141
Appendix I - Syntax for Algebraic
Expressions 	 144-

Appendix II - Summary of AIDS Macros 	148
Appendix III- Control Word Formats 	157
Appendix IV - Description of Condition
Byte after Logical Tests 	158

Appendix V - Table Formats 	159
Appendix VI - Summary of CLAM Commands 160

- 1 -

Chapter I

Introduction

The advent of the commercially available

digital computer was to herald not only a new elect-

ronics orientated technology but the start and

development,of disciplines concerned with the effi-

cient use of digital computing equipment. The initial

interest in digital computers was little more than to

emulate and automate the functions of a desk calcu-

lator, however with the exploitation of its arithmetic

computational ability interest was soon focussed on

its potential as a tool for non-numeric processing.

The digital - computer can now be thought of

more as an information processing device rather than

as an automatic calculator. As hardware becomes faster

and more sophisticated and with a major emphasis on

storage media and access techniques, the functional

aspects of computer usage are rapidly enlarging.

Hardware development to date has been concentrated

on extending the capability of the computer as a

system through the development of special purpose

peripheral devices such as visual displays.

The structural organization of the CPU and

main memory has remained essentially unchanged and is

as proposed by von Neumann in the early 1950's

with the only structuring among the cells of main

_ '2 -

memory being the implicit ordering of the natural
.

numbers used for addressing. Recent experimental

machines deviating from the von Neumann concept

(refs. 1,2) have been constructed with the express

purpose of Simplifying the functional operation of

a computer.* These machines essentially use a non-

linear addressing scheme which is realised by a

hardware mapping on to a linear store. Paging, seg-

mentation and some stack machines provide another

variant of program addressing structure realised

through extensive hardware and software systems. The

need for these extended addressing schemes has been

essentially to cater to a large dynamic environment.

The emphasis has not only been to add more

hardware for addressing but also to extend the func-

tional capability of the CPU by microprogramming

standard sequences of instructions as single operations.

The development of inexpensive integrated circuit

modules suggests that microprogramming could become

a very powerful facility to simplify machine usage by

permitting more complex operations.

The linear machine with a standard instruc-

tion order code lends itself to realising algorithms

for numeric computation. Lists and multi-dimensional

arrays of values are readily stored and accessed on

a linear store. The organisation of data elements

- 3 -

remains the same throughout the life of the program

for numeric calculations. As shall be seen structures

for algebraic manipulation are inherently dynamic and

put more demands on the system for economic handling

both in accessing and storage requirements. However

if structural entities and operations on these en-

tities can be defined, access and manipulation

could be realised through hardware. With this in

mind the development of algebraic manipulation on

a digital computer and data structures is reviewed

in Chapters II and III in an attempt to recognise

essential processing functions as well as data rep-

resentations and organisation.

Chapter IY

Algebraic Manipulation Schemes

Development

Considerable progress has been made in recent years

in the area of algebraic manipulation. Many schemes have

been reported with, as of yet, little or no duplication of

effort. Each scheme tends to be unique in some important

aspect such as function, definition, efficiency, capability

etc. Each in turn can be characterised by data base,

functional capability, and method of operation. Many schemes

are limited to specific algebraic functions such as differen-

tiation or integration. An exhaustive survey up to August 1966

is given in references 16 and 17.

The first schemes developed were specifically designed

for symbolic differentiation. The input was rather crude and

closely resembled the internal representation (Ref. 4). Later

schemes (Ref. 5) were developed more specifically to differen-

tiate FORTRAN-like expressions.

Integration schemes (Refs. 5, 6) constitute the next

level of development. The SAINT system for symbolic integra-

tion was a very significant development employing heuristic

techniques in LISP. This system was capable of solving

calculus problems with a high degree of success. The author

further claimed that 100% of the problems having solutions

- 5 -

could have been dealt with with some minor changes to the

system. 'A more ambitious scheme is that of Moses (Ref. 8),

however it appears that further development along this line

will require some form of man machine interaction system.

Polynomial manipulation systems were the next major

area of development. These systems are confined to classes

of formulae for which efficient algorithms can be implemented

and include polynomials in one or more variables, rational

functions, power series, trigonometric series and other

series, etc. ALPAK (Refs. 9, 11) was the forerunner of such

systems with further sophistication introduced in ALTRAN

(Ref. 13) and the PM system (Ref. 12).

Another group of systems is designed to deal with the

secondary school type algebra problems and basic problems

in calculus and differential equations. The data base is a

class of well-formed formulae generated from variables, numbers,

arithmetic operators, the differentiation operator and a

special function facility. The two most notable examples of

this class are FORMAC (Refs. 14, 15) and SYMBAL (Refs. 18, 19).

Further sophistication is achieved in more general

systems which permit the definition of a data base and in

some cases the operators involved. These systems (Refs. 20-23)

tend to be more experimental, sacrificing efficiency for

sophistication.

SYMBAL (Ref.19) is the only algebraic system yet

produced which represents a formal and generalised approach

to symbol manipulation. The language is a semantic and

syntactic generalisation of ALGOL 60 along the lines of

EULER (Ref27). From ALGOL it inherits the concept of

program blOck structure and the conditional and GO TO

statements. It uses the full recursive facilities of

ALGOL in executing some of its functions as well as provid-

ing the same recursive facilities for user programs. From

EULER it has taken the concept of having only a single

declaration "NEW" for introducing names, while the values

and types are handled dynamically. The initial value of a

variable is its name taken as a string. This may dynamically

take on other values by assignment.

A special list data structure is used to represent

Algebraic expressions. A new data type "vector" replaces

the array of ALGOL. A vector is of variable length and can

be assigned to single variables.

A SYMBAL program is essentially ALGOL-like. A well

formed expression may contain the following operators:

I. arithmetic

2. relational

3. logical

4. equality

The basic syntactic entities include numbers, variables,

labels, and functions. The types of values which are defined

in the syntax include: 1) undefined, 2) algebraic,

3) logical, 4) label, 5) vector, 6) string, and 7) procedure.

Immediately after its declaration, a simple variable has

the status "atomic" and is of type "undefined". An expression

in SYMBAL takes the same form as an expression in ALGOL, being

defined by essentially the same syntax. Simplification is

also implicit in SYMBAL but is dependent upon mode values

set by the.user.

The flexibility of its list data structures provides

SYMBAL with much of its capability.

Symbolic Manipulation in High Level Languages

A symbol manipulation capability exists in many high

level languages. Such languages invariably have a data type

"STRING" on which procedures can be defined for pattern

matching and replacement.

SNOBOL (Ref.24) is a string manipulation language which

runs as an interpreter. The primitive data structure is a

string which can be used to build up more complex tree

structures. Because it is interpretive a high overhead is

incurred wherever it is used to write other algebraic inter-

preters. Implementation constraints restrict the representa-

tion of numbers and the size of structure is limited to the

available work space.

LISP (Ref.25), of course, provides a powerful program-

ming tool for symbolic manipulation through its recursive

and function definition facilities. It too is interpretive

and incurs a sometimes unjustifiable overhead when used to

write other programming systems. It is unfortunately unwieldy

- 8

in its use of parenthesis and suffers most in garbage

collection when the main store must be re-organised.

Existing data structures in the main store cannot be

readily removed to backing store when more space is

required in the main store.

PL/1, in attempting to incorporate all desirable

programming features into a single language can also be

adapted to symbolic processing. Dynamic string facilities

exist in the form of variable length strings but this is

wasteful of store usage as the maximum length string,

defined by the user, is always allocated. Powerful list

processing facilities are available in PL/1, however, until

recently the implementation of these facilities has been

extremely unreliable. FL/1 also maintains its own local map

attached to all structures which tends to burden any user

defined system with a further unnecessary overhead.

Many other languages are of course adaptable for

symbolic processing, however their facilities are more useful

in evolving concepts rather than in producing an economical

algebraic system. As symbolic manipulation can make exces-

sive demands on both storage requirements and processor cycles,

it is important to consider schemes which will tend to

minimise both of these.

Initially algebraic systems were developed almost

exclusively for batch-type operations. The trend now is

to develop interactive systems in which the user can direct

the system operations fox increased simplicity and efficiency.

The 'capability and operation of each class of algebraic

system is Most readily appreciated by discussing representative

systems from each class.

Polynomial Manipulation Systems

The ALPAK system for polynomial manipulation was

written at the Bell Laboratories for the IBM 7090. The

initial version defined polynomial arithmetic on its pre-

defined data structure elements. The operations provided

through subroutines and macros include addition, sdbtraction,

multiplication, division, differentiation of terms, zero test,

non-zero test and an equality test on symbolic elements. The

user was required to understand many of the intimate details

of the system. The organisation of variables within a term

is defined by the user in a special .format statement which is

stored for run-time use. The input of coefficients and

exponent values is on a term by term basis according to the

predefined format.

It was a natural step from a polynomial manipulation

scheme to a rational function facility. A rational function

is represented as an ordered pair of polynomials, namely its

numerator and denominator respectively. These are stored in

the polynomial canonical form and are relatively prime.

- 10 -

ALPAK provides a greatest common divisor of polynomials

in several variables so that each rational function can

always be stored in its canonical format.

ALPAK was further extended to permit solving by

Gaussian elimination systems of equations linear in certain

variables and with coefficients which are rational functions

of other variables. A limited facility for substitution was

also introduced. Essentially all ALPAIC programs resemble

assembler programming in FAP macros. The greatest limita-

tion of ALPAK is that it can only continue until there is

no further work space in main store. ALPAK has been used

to solve problems in queueing theory, astonomy and wave

propogation in crystals to name but a few. Even though it

lacks the elegance of a concise command language it pioneered

the way for special purpose algebraic systems.

General Algebraic Systems

FORMAC and SYMBAL are both symbolic processors, each

associated with a well known high level language. Whereas

SYMBAL is a complete system in its own right, FORMAC is

essentially a preprocessor for FORTRAN IV, translating

symbolic requirements into FORTRAN calls to a set of special

object time routines.

The FORMAC programming language is a proper extension

to FORTRAN IV and consists of the full FORTRAN IV language

plus 4 further declarative statements and 15 executable state-

ments for symbolic processing. In addition it introduces

symbol manipulation operators from which symbolic

expressions can be created for manipulation at object time.

Decisions based on symbolic expressions generated at run

time can be used in the logic of program control during

execution.'

Thd operator set of FORMAC includes:

1. arithmetic operators - ,+, *, /, **

2. special operators - FAC (factorial), DFAC (double

factorial), COMB (combinatorial), DIF (differentiation)

3. the trigonometric function - EXP (exponential), LOG

(natural logarithm), SIN, COS, ATAN, TANH

FORMAC has its own internal representation for

symbolic expressions (see chapter III). Simplification is

performed automatically after all symbol processing operations

as described in chapter VI.

FORMAC was designed primarily for the batch processing

environment to provide a symbol manipulation capability for

FORTRAN IV programs. As with FORTRAN it is essentially

simple and does not provide, for example, recursive facili-

ties. Further it is a rigid system not readily adaptable

to special user requirements.

All expressions must be contained within the available

work space and substitutions are made for symbolic variables

wherever possible. A trigonometric function is evaluated to

a numeric result whenever possible.

- 12 -

Requirements for Algebraic Manipulation

From the previous discussions it is possible to

identify certain basic requirements for formal algebraic

manipulation systems. The realisation of the concepts is

usually associated with an overall systems philosophy.

Ideally, of course, it is desirable to have sufficient

generality in the concepts to permit flexibility for

achieving future enhancements. At the same time, it is

necessary to identify a limited number of basic primitives

which can be combined in a logically consistent manner to

produce unambiguous constructions.

The basic requirement for algebraic manipulation is

of course a suitable data base. The data base is often

related to the type of problem being solved. Essentially

it is necessary to provide a data structure whose elements

can be used to model an algebraic expression. The choice

of data base is also associated with other considerations

such as mobility, accessing and referencing of data elements,

as well as processing and storage efficiency. As algebraic

data structures tend to grow very large any general scheme

should include provision for moving complete data structures

or their elements to backing store. Equally important is

the ability to cope with the dynamic data environment of

algebraic manipulation through schemes which readily permit

- Z3 -

dynamic extension and modification of the data structure.

It is necessary to identify the primitive operations

of algebra and consider their implementation on the data

base. Each operator must affect the elements of the data

base in accordance with predefined schemes. The basic

operations which are essential include arithmetic (addition,

subtraction, multiplication and division) and tests on data

elements for total or partial equivalence. These operators

are defined on symbolic elements with arithmetic on numeric

data items constituting the degenerate case. The basic

algebraic operations are required to realise more complex

algebraic functions such as symbolic differentiation and

integration.

Simplification is also an essential process in any

formal algebraic scheme in that it permits the removal of

redundant data. It is usually associated with operating

efficiency and as such is an important criterion in the

design of an algebraic system. Simplification must be an

integral part of on overall system philosophy.

Symbolic processing is not an end in itself. Often

it is necessary to associate values with the symbolic

variables and numerically evaluate an expression. This can

either be done by replacing all symbolic values by numeric

data and evaluating the resulting reduced arithmetic expression.

Alternatively, it may be desired to maintain the symbolic

representation of an expression and perform the evaluation

by another procedure which associates numeric value with all

symbolic data items.

- 14 -

There are many algebraic procedures which are desirable

in such systems. For example, it is often necessary to per-

form such operations as removal of parentheses (expansion) and

the inverse operation, namely, factoring. The former is an

exact process while the latter can sometimes lead to many

equivalent results and hence usually requires user defined

constraints or direction.

A function facility for defining run-time relations is

an analogous facility except that it is more directly under

user control. Such a facility can, for example, be used for

defining in-line substitutions through side relations. This

is over and above a function definition facility within

algebraic expression(e.g. representation of a derivative).

The essential requirement for a general algebraic

system can be summarised as combining a number of basic

primSvtive algebraic operations on a flexible data base. These

facilities must be the basis on which to construct specific

algebraic systems.

- 15 -

Chapter III

Data Structure Schemes

The usefulness of a data processing system can often

be judged by the mechanisms through which it stores,

references and manipulates data. The basic data handling

capability is associated with the hardware order code and

involves specific operations for pre-defined data represent-

ations. Further capability is achieved by imposing a soft-

ware hierarchy of manipulative processes on the hardware

based facilities.

Data is the representation of information. For digital

computer applications the internal representations are

invariably associated with some binary code. Within any

process data can be distinguished as being of one of the

following types:

1. Instructions 	active data elements

2. Values 	- passive data elements manipulated

by the active elements

3. Control 	- passive elements used by active elements

for program logic and control

Data values constitute primitive data elements which

• can be organized into meaningful collections, called data

structures for purpose3of referencing, accessing and manipu-

lation. A data structure in a programming language consists

of three main parts:

1. A notation in the source language for referencing and

manipulating the data elements in the structure.

- 16 -

2. An internal organisation scheme for the data elements

3. A mapping algorithm for relating the references in the

external notation to the main store locations.

The internal representation of data elements is

dependent upon the choice of computer. Each atomic data

element has associated with it attributes which are usually

implicitly known to the processing procedure. In some cases

the attribute values are encoded within the data elements

themselves as in IPL (ref 26). Each data element is ultimately

referenced by an absolute machine address.

The genesis and evolution of data structures has been

closely associated with both application areas and programming

languages. More sophisticated data structuring schemes

evolved with the development of more powerful and flexible

programming languages.

- 17 -

Data Structure Types

.

1. Arrays

The simplest type of data structure to implement and

reference is the one-dimensional array, or vector, imple-

mented as a block of contiguous words in memory. All elements

in the structure have the same attributes. The mapping

algorithm references each element as an offset from the base

of the structure. This structure is exemplified by the one-

dimensional array in FORTRAN.

A character string is also a one-dimensional structure.

For a byte or character machine, each character occupies one

byte and is referenced in much the same manner as an array

element in FORTRAN. If a character string is mapped onto a

word machine, the mapping algorithm must determine in which

word and part thereof the referenced character lies. Similarly,

a table is another instance of a one-dimensional structure.

The only structure associated with the one-dimensional

array is a single level ranking of elements according to

position. This type of organisation is usually static in

extent.

Multi-dimensional arrays are an extension of the vector

concept to several dimensions. Each element in an n-dimensional

array is referenced by means of n subscripts (S1, S21, ... Sn).

The mapping algorithm for any element is

n-1 	1
element = base 4- S 	14- 1 -- 	(SI-I-1 - 1) -717 DJ I=1 	 J=1

where (D1, D2, ... Dn) is defined to be the extent of

each array bound.

- 18 -

All elements again possess identical attributes.

Even though all the bounds need not be identical a multi-

dimensional array is usually wasteful of space when several

of the elements do not exist.

An n-dimensional array is usually implemented as a

static structure which has n degrees of ranking for the

elements.

2. List Structure

A list structure is characterised by the explicit

links connecting the data elements. The data elements are

chained together with either single or double pointers for

forward or bi-directional referencing respectively. Each

element is stored as a contiguous block according to some

pre-defined format.

A list element may be either atomic, in which case it

can be considered a primative, or it may reference other

list elements. In this way, complex data structures are

built up in which the component elements may have differing

characteristics. The topology of such structures in the most

general form is a graph.

List structures are particularly well suited to an

• environment in which the number of elements can change

dynamically and new elements are dynamically created. Unlike

most other data structure schemes the organisation of the

elements may be changed dynamically permitting the creation

of complex structures. Because list structures are pointer

based the size of the overall structure is limited by the

addressable space available. Garbage collection can be a

very serious problem especially as common elements can be

- 19 -

referenced from several other elements. An element can

only be moved (or removed) when all pointers to it have

been appropriately adjusted. Access to elements in a list

is only possible on a sequential basis and the explicit

chaining of elements together requims substantially more

storage than when they are represented as a group of

contiguous locations. Security can only be provided at

run time by checking data types interpretively and not at

compile time.

The programming languages LISP (Ref .25) and IPL (Ref.26)

which use lists as their data structures provide a conceptional

economy and elegance not readily found in other programming

languages. List structures are also provided in PL/1 using

the BASED facilities within the language.

3. Trees

A tree data structure is a directed graph in which each

element, except the first, is uniquely addressed through a

higher level element. A data element in the tree may consist

of sub elements, each of which in turn may be further

decomposed to any level. The terminal elements are unique

primbtives which may have differing characteristics.

The outstanding examples of tree implementation are the

data structures of COBOL and PL/1, record classes and code

word schemes. Their differences are derived mainly from

their -use in programming schemes.

- 20 -

The data structures of COBOL and the basic data

structures of PL/1 are both definitions of multi-level

trees. The data structure of COBOL provides a format

description of the fields within a given record type where

the variables reference the fields of the current record

in the working store. For PL/1 there may be many instances

of the same data structure currently active (e.g. it is

possible to have an array of structures), however each has

a unique identification.

Each element in a tree structure has its own set of

attributes. These attributes are known only to the compiler

in both COBOL and PL/1 for subsequent references and in the

case of PL/1, for data conversions.

For COBOL the data structure description provides a

mask for interpreting and referencing a given area of store.

The mapping is built into the object code. However, for

PL/1 the map associated with the structure is stored with

the data in a "structure dope vector". Each substructure

has its own dope vector for referencing its elements. A

program reference to an element in a structure requires

sufficient name qualification for proper referencing of

the associated dope vectors. The dope vector organisation

is dependent upon the stncture element type (e.g. array,

string, structures, etc) and includes bounds values, offsets

and lengths etc.

- 21 -

The basic data structures of PL/1 and the data

structure of COBOL are both static in organisation and

extent. These are well suited to such environments as

found in commercial data processing where file structures

are constant and hence no. dynamic structuring is required.

However, there are dynamic environments such as computer-

aided-design, algebraic manipulation and dynamic modeling

where a dynamic tree data structure is at least desirable

if not essential.

A dynamic tree can be defined in PL/1 either through

the use of pointers with the BASED facilities or to a

limited degree with self defining data. A self defining

record is one which contains, within itself, information

about its own fields, such as length of string or number

of elements in an array. In the former case a list tree

structure is created while for the latter case a BASED

structure is declared to have either one adjustable array

bound or one adjustable string length, governed by a

variable contained within the structure itself. This

variable is assigned a value from a variable outside the

structure when the structure is allocated. This facility

is rather limited in that when specifying adjustable data

such as an array bound, the bound must be the upper bound

of the leading dimension of the element with which it is used.

The dimension must further belong to the last element in the

structure declaration, or to a minor structure containing the

last element.

- 22 -

The conception, design, and use of record classes

was pioneered in AED-0 (Ref.28) and extended in AED-l.

Records in AED are known as beads or n-component elements

while the term plex is used to denote a group of interrelated

records linked by references. There are no record class

declarations as such in AED. The components of a bead are

each declared independently with their offset within the

bead specified as an integer constant. Reference fields

are declared to be of type INTEGER while other components

can be of type REAL, BOOLEAN or INTEGER.

Record handling as proposed by Hoare and Wirth is a

refinement and formal generalisation of the concepts as

found in AED. The proposal is for an extension to existing

languages such as ALGOL 60. (Ref. 29)

In Record Handling the objects of a computational

model are divided into a number of mutually exclusive

classes. Each class is described by a record class declara-

tion which denotes the attributes associated with all objects

in the class. Each instance of an object in a given class

requires the allocation of a fixed block of store for the

record and the assignment of a value to each attribute field.

In order to uniquely identify a field in a particular record

the programmer must both name the field by its identifier

and also indicate the name of the class to which the record

belongs by a construction known as a field designator.

- 23 -

Records within a class can be referenced either by

reference' variables or by a state variable associated

with each record class which always points to any one

record within the class.

The use of reference variables in Record Handling

provides the mechanism by which complex dynamic structures

can be created in terms of well defined components. Within

both AED and Record Handling new records can be created

dynamically and associated with existing records within the

system. A structure grows by establishing explicit links

with new elements. The accessing and storage overheads are

reduced considerably by the implicit structure of the n-

component elements. Further it is possible to perform

compile-time checks for data type, etc. The use of pointers

for references still limits the extent of a structure to the

addressable space available.

Another form of dynamic tree is the codeword scheme as

first proposed by Iliffe and Jodeit (Ref.30). The two most

notable implementations of this are the BLM (Basic Language

Machine of ICL) and the data structure of ICES (Ref.31). A

Codeword structure is built up of linear sequences of elements

which may themselves be code words. Each codeword defines

the address of a block of data, (which may be numeric data,

program instructions or a set of codewords), as well as its

length, type and other accessing information. The first set

of control words is called the process base. The mechanics

of the system are transparent to the user who communicates

- 24 -

with the system through a basic programming language

(Ref.31) which defines basic primative programming

operations on the codewords and their elements.

ICES was designed to cater to the dynamic aspects

of engineering design. It provides facilities for both

dynamic array capability and a relational (record handling

type) data s-cructure. The dynamic array capability is an

extension of FORTRAN arrays implemented by using a codeword

scheme. Dynamic arrays are known to the system through

explicit declaration, all other arrays being FORTRAN type

dimensioned arrays. The dynamic arrays are segmented into

component elements so that allocation of space in working

store can be made when the data is referenced through the

use of a single level store concept. Through this facility

it is possible to build up and manipulate dynamic trees to

any level in which all of the elements are of the same type.

The overhead to reference an element in the main store

is marginally greater than that associated with a dimensioned

array although the overhead for retrieving data segments from

secondary store can be appreciable. An array can grow

dynamically either by redefinition or in terms of a fixed

increment size.

ICES also has a facility for modelling a dynamic tree

in which the terminal elements need not all be of the same

type. This relational data structure facility is modelled

on the concept of associating component members with one of a

- 25 - •

number of user defined data equivalence classes. Each

component member has an attribute list associated with it

and by permitting an attribute to be a pointer to an

equivalence class it is possible to build up a dynamic tree

to any level:

- 26 -

Data Structures for Algebraic Manipulation

A wide variety of data structures have been used for

algebraic manipulation schemes. The operation: and character-

istics of each scheme are highly dependent upon the form and

extent of the data structures used. Many of the data

structures have been chosen for a specific application area.

The most primitive data structure for algebraic manipula-

tion is perhaps the character string. An expression is stored

as a sequence of symbols much the same as it appears in the

external representation. Algebraic structure is extracted

from the string by scan dominated processes and algebraic

operations are performed as transformations and text editing

operations. The lack of structure is compensated for by a

substantial amount of processing.

Many algebraic schemes have used the data structures

of LISP to create and manipulate algebraic data structures.

The "cons" function is applied to primitive data elements to

construct compound structures. These structures may in turn

be combined to form more complex structures for subsequent

processing through procedures defined in LISP.

ALPAK was the first scheme to involve data structures

unique to algebraic manipulation and was written for the '

IBM 7090. A polynomial is stored as an implicit sum of terms

and each term is stored as an ordered set of exponent values.

The length of each exponent value is defined by the user and

can be up to 36 bits. Any number of exponents can be packed

into a word. The term format is also defined by the user

- 27 -

and only terms with the same format can be manipulated.

The first word represents the term constant. A polynomial

is stored in main store as a pointer, a heading and a data

block. The polynomial is referenced through a name table

by a pointer-. The heading consists of three words the first

defining the data address, the second the format address for

each term and the third the number of terms in the polynomial.

All the terms are stored as a contiguous block. No facilities

are provided for sharing common terms or for storing structures

on backing store.

FORMAC also has its own data structure for algebraic

expressions in which the infix notation of the external

algebraic expressions is converted to a special form of Prefix

Polish notation. This form of "Delimiter Polish" differs from

classical Prefix Polish in that it is not necessary to represent

in the data structure all of the operators which are used to

define an algebraic expression. In classical Polish notation

the string *A-Jr+ABCDE represents (A-LB-,-C=D)E. In Delimiter

Polish a sequence of identical operators is replaced by a

single instance of the operator but it is now necessary to

delimit the scope of this operator. For example if j is used

as a delimiter the string *4-ABCD]E again represents (A+-B-I.C+D)*E

while 3-A_4BCDT.1 represents A713,4C*D*E. In order to make

structural changes in this form of data structure (e.g. say

substitute A2 B for X) it is necessary to recopy the structure

with the added changes. Essentially, the structure is always

maintained in its canonical format so that operations on any

- 28 -

elements of the structures involve manipulation of the

complete structure.

The data structure of SYMBAL is a modified list

structure with many of the properties of a codeword scheme.

The "knotted list" structure may contain substructures ti

common to other structures. The binary tree type structure

of LISP is replaced by an N-ary tree so that variable length

elements (as opposed to single words in LISP and double words

in SLIP) are involved.

Fig. 3.1 	Binary tree in LISP

Each element is essentially a vector of code words

which may either directly reference terminal elements or

another vector of code words representing a sub expression.

In order to reduce the magnitude of the garbage collection

problem, all elements are referenced through a common

inventory vector. All structure is explicitly defined

- 29 -

through the codeword sequences except for the implicit

ordering of code words in a vector. Because of the

extensive use of nointers the structure must be contained

within addressable storage.

Fig. 3.2 Knotted List Structure of SYMBAL

- 30 -

Summary of Data Structure Requirements

Clearly a comprehensive general data structure scheme

suited for algebraic manipulation must provide a number of

basic facilities in an economical manner.

The first requirement is that the data structure be

truly dynamic in both extent and topology. This can be

achieved by either having variable length segments contain-

ing the sub-elements or by dynamically combining fixed

format segments (e.g. list elements or record class elements)

in such a manner as to define the structure. An economy in

space for the internal representation will in all likelihood

result in a further economy in processing time. It is

equally important that accessing of elements in the data

structure be performed in a natural and efficient manner.

In order to simplify the subsequent procedures which

define the operation on the data structure elements all the

algebraic structure implicit in an expression should be

explicitly defined in the internal representation. It

should be possible to manipulate substructure without involv-

ing the complete structure.

Because of the highly dynamic nature of algebraic

manipulation garbage collection is often a sensitive, if

not critical, area. No data structure scheme for algebraic

manipulation can be considered without this in mind and its

ultimate consequences.

31 -

Most of the algebraic manipulation schemes produced

have confined the associated algebraic data structures to

to the addressable space available.This often limits the

working environment and the size of the problem which can

be solved. Where data structures have been relegated to

backing store (Ref.21) the overheads incurred have been

intolerable. Hence consideration must be given to a

canonical format which permits structure and substructures

to be readily and economically stored and retrieved from

backing store.

Many of the previous objectives may be found to be

self defeating for a given implementation as it is unlikely

that they can all be achieved in a single data structure,

hence some trade-offs may be essential. It is therefore

important to be able to offer the facilities which can be

moulded by a system designer to suit his requirements. For

example the use of common sub expressions can lead to

significant reductions in storage space required, however it

brings on a host of other problems when garbage collection

and the transfer of elements is considered. Where a large

work space is available it may not be necessary to be

concerned about storing structures on backing store and

the storage of common structures may be readily accomodated.

AIDS (Algebraic Interpretive Data Structures) has been

designed with this in mind, namely to provide a set of

basic prim6tive data structure elements and operations

suited to algebraic manipulations which can be moulded

into algebraic packages with specific characteristics.

- 32 -

Chapter IV •

Algebraic Interpretative Data Structure

General Philosophy of AIDS

AIDS is an implementation of a number of basic

concepts which provide, a general environment for per-

forming algebraic operations. The design objectives

include overall system efficiency as well as economy in

both processing time and storage requirements. Some

restrictions are imposed by the specific implementation

although the concepts are independent of any hardware

environment.

Fundamental to the AIDS concept is the notion

of storing algebraic structure with both symbolic as

well as arithmetic data in a single data structure:

Each data structure element carries its own "type" with

it. The data structure and data structure elements are

truly dynamic 	in both scope and extent.

The facilities provided by AIDS include ref er-

encing, accessing and manipulating the algebraic data

elements. True recursion is available through the

provision of stacks and associated facilities (macros

and subroutines) for recursive programming.

The provision of extensive dynamic facilities

necessitates the use of sound data management concepts.

No single data management scheme is employed, instead

- 33 -

several cnncepts are used, each selected for its-inherent

suitability.

AIDS is not designed to be a self-contained system

for performing a specific class of algebraic operation.

Instead it is intended that it provide a data base from

which algebraic compilers for symbol manipulation can be

constructed: A number of primitive algebraic functions

are provided through subroutines, in much the same way

that standard algebraic compilers for numeric computation

work by interfacing to associated subroutine libraries in

performing standard functions such as square root or

logarithmic functions, etc.

The operations of the system defined facilities

in AIDS are transparent to the user. The result of

algebraic operations will inevitably produce a result

which is in a simplified and usually canonical format.

Hence further simplification should not be necessary.

It is envisaged that there will be other algebraic

operations (e.g. implementation of transform functions,

differential equations, etc) that may require considerably

more structure manipulation than is performed by the

existing AIDS subroutines. The structuring and associated

manipulative facilities in AIDS permit this, however in

such cases the onus is on the user for some aspects of

storage management and simplification. There is always

access to the facilities of AIDS for simplification and

free store when necessary.

- 34 -

Much of the manipulative power in AIDS arises from

the ability to create sets of topologically equivalent

structures. The simplest form of a data structure for an

algebraic element is a standard canonical format for that

element. A:structural element may however be built up through

an extended'addressing mechanism involving both indirect

addressing as well as referencing other externally (usually

standard or common) defined elements. A further degree of

structural complexity can be introduced by having sub-elements

which are themselves composite and hence composed of sub-

elements etc. This facility is recursive to any degree.

The algebraic operations provided in AIDS do not

require that the operand elements be in a reduced or

canonical format. However, it is possible to create supei-

structures (through non-standard type operations) in which

conflicts in structure would ultimately have to be resolved.

This situation could arise where super structure forces

major changes on the structural organisation of'component

sub-elements1. Wherever this situation can potentially

arise in the use of AIDS routines it is immediately resolved.

In like manner a user departing from the standard facilities

must perform the equivalent action. The requirement is not

a necessary constraint of the system but rather designed

to simplify and expedi to the accessing functions.

AIDS is essentially a re-entrant facility requiring

each user to have access only to his own data spaces (work

spaces, stacks, tables, structures, etc.). Again this is

- 35 -

transparent to the user. No attempt is made to provide

common structures to several simultaneous users, however

this is not conceptionally difficult to realise.

The present chapter describes the concepts used,

as well as the details of the 360 implementation, for

creating and manipulating AIDS data structures. The

defined algebraic operations are discussed in the following

chapters.

1 For example, such a situation could arise where a composite
element of type "term" is affected by an explicit exponent.
If a component sub-element (factor) is of "simple" type then
the organisation of the simple element must be drastically
changed (see discussion of REDUCE function, Page121).

- 36 -

Description of AIDS Data Structures

The data structure chosen for AIDS attempts to meet

the demanding requirement for a comprehensive symbol mani-

pulation system. It combines the desirable features of

pointer based systems with the freedom of mobility

associated with segmentation schemes.

The primitive data elements, as in other symbolic

systems, are numbers and coded symbolic values. These

primitives are combined to form simple algebraic "typed"

data elements. More complex algebraic data structure

elements are formed by combining simple algebraic elements

in structural relationships. In this manner recursive data

structures are defined.

Each data structure element (i.e. excluding

primitives) has associated with it control fields for

defining algebraic type, referencing and accessing informa-

tion for sub-elements, as well as fields for defining

dynamic extent values. As with other dynamic systems the

data elements are manipulated interpretatively. However

within any element, referencing and accessing may be either

implicit or explicit.

The main function of AIDS is to model and manipulate

algebraic formulae. Even though the user2s concern is only

with the external representation of algebraic formulae, it

is informative to understand the internal representation

as well as the mechanics of transformation between the two

formats. The system is relatively insensitive to user mis-

use, however there may be extensive system action and

- 37 -

re-organisation which could be eliminated by appropriate

user action.

External Representation

The external representation of an algebraic

expression is analogous to the representation of algebraic

expressions, for arithmetic calculation in other languages

such as FORTRAN and ALGOL.

Syntax of Algebraic Expression

The complete syntax for the external representation

of an algebraic expression is summarised in Appendix I.

The syntax is described formally in Backus Normal Form

(BNF) terminology as used in the definition of ALGOL 60.

Blanks may appear anywhere in an expression as all blanks

are removed before the syntax analysis. The following

syntactic entities are defined in the external representa-

tions using the same referencing system as in the Appendix.

Basic symbols

< basic symbol) ::= <letter > I <digit> I <delimiter >

<letter >:,* -- AIBICIDIEIFIGIHIIIJIKILIMIN101 __

PIQIRISITIUIVIWIXIYIZI

< digit > :::: 	01112131415161718191

1.3 	(delimiter> : := < operator > I <separator> I <bracket >

1.3.1.1 < arithmetic operator > ::::< add operator> I

< multiplication operator> 1 < exponentiation

operator >

1.3.1.1.1. < add operator > : := +1 --

1.

1.1

1.2

- 38 -

1.3.1.1.2 < multiplication operator>

1 . 3.1.1. 3 - < exponentiation operator >
1.3. 2 	<seectra-tor> :: ==. 21. 1;1;

1. 3. 3 	< bracket > ::= (I)

2. Identifiers

• • •••••• .._

	

2.1 	< letter digit string > : := 4 letter >1

< letter digit string > ‘... letter >. I

< letter digit string> (digit >

	

2.2 	< identifier> ::=< letter digit string>

	

3. 	Numbers

< number> ::=<integer >I <rational> I < real>

	

3.1 	< unsigned integer? :: <digit> 1 <unsigned

integer) <digit>

	

3.2 	< integer> ::=< unsigned integer> I < add operator >

4 unsigned integer>

	

3. 3 	< rational> ::=< integer}!' / " <integer>

	

3.4 	<real> ::= <integer> " . "I" . tt <unsigned integer >

4 integer> " . " <unsigned integer>

There are implementation restrictions on the rep-

resentations for each type of number. All numbers in the

data structure are represented as rationals. Hence all

reals are translated into rationals and care must be

exercised to avoid the loss of significance. If a. real

constant cannot be properly represented as a rational, then

it must be represented by a parameter which can be replaced

by a real when the expression is evaluated. The evaluation

of all expressions is in single precision real (floating

point) arithmetic. This can readily be extended to double

precision if the need is warranted.

- 39 -

4. Variables

< variable) :::::<simple variable> 1 <subscripted

variable:

	

4.1 	<variable identifier) ::=<identifier>

	

4.2 	< simple variable> ::--4variable identifier>

	

4.3 	< array identifier> ::--<identifier>

	

4.4 	<subscripted variable> ::--<array identifier>

TI (" < subscript list> ") It

	

4.5 	<subscript list> ::=1.<subscript expression>

<subscript list> 	It <subscript expression>

	

4.6 	<subscript expression> ::= <simple algebraic

expression>

The variables in algebraic manipulation are not

associated with arithmetic values. Each variable name is

a representation of itself. For arithmetic evaluation of an

algebraic expression, values must be assigned to or assoc-

iated with the variables.

5. Function Designator

	

5.1 	<function designator> :: <variable identifier

It ("<parameter list>" 	It

	

5.2 	< parameter list> :: <parameter> < parameter >

It 	?I <parameter>

	

5.3 	<parameter) ::=1.<simple algebraic expression).

The function facility permits the representations

of standard arithmetic, trignometric and user

defined algebraic functions. It is also used to represent

algebraic functions such as differentiation or integration.

- 40 -

	

6. 	Algebraic Expressions

	

6.6 	<Primary> : : =< number > 1 <variable> 1

< function designator > 1 u (< simple algebraic

expression> ") "

	

6.7 	< factor> ::=< primary> 1 <factor> " ** 	<primary?

	

6.8 	< term> ::=<factor> 1 < term> t multiplication

operator> <factor>

	

6.9 	<simple algebraic expression> ::=<term> 1 <add

operator> <term> 1 <simple algebraic expression>

<add operator> <term>

The syntax for an algebraic expresssion as described

above corresponds to the syntax of arithmetic expressiOns in

both ALGOL 60 and FORTRAN IV. The form of this syntax has

been maintained to permit interfacing an AIDS type facility

to these languages for a hybrid system permitting both

symbol manipulation and extensive arithmetic processing.

Internal Representation

An external algebraic expression is modelled by a

unique internal representation. The data structure con-

stituting the internal representation contains both algebraic

values (constants and variables), as well as topological

information pertaining to algebraic structure. Each

algebraic expression is represented as a tree with each node

defining the structure (type) and number of the next level

sub-components.

- 41 -

Algebraic Values

The algebraic values stored for algebraic symbol

manipulation in an expression are the names of the variables

as well as the numeric values of any constants. In 360 AIDS

each variable is represented as being 4 characters in

length and hence occupies a full word on the 360 implemen-

tation. Longer names are truncated on the right and shorter

names are blank filled on the right. The internal represen-

tation of each character is EBCDIC, corresponding to 8 bits

per byte.

In order to prevent any possible effects due to

round off error the internal representation of numbers is

binary integer values. However, to allow greater scope for

numbers, each number is actually represented as a rational

number made up of 2 integer values. Each integer value for

the 360 implementation is a half word value giving a range

of -32767 to 32767. All integer and real numbers appearing

in an external algebraic expression are converted to rational

numbers before being 4.br ,ed.

Further Syntactic Entities

The internal representation (data structure) makes

use of further syntactic entities to economise on storage

and permit quick access to the algebraic values associated

with syntactic types of the external representation. The

syntactic definitions for these extensions also appear in

Appendix I.

The following syntactic groups are used in the

data structure:

- 42 -

	

6.1 	<variable exponent pair) : :=< simple variable>

" ** " <number>

A variable raised to a constant power is stored as

an ordered pair, the variable occupying the first

word and the exponent, as a rational number, the

second word.

	

6.2 	<simple variable group> ::::: <simple variable >I

<simple variable group> " * " <simple variable>

A simple variable group constitutes a product of

a number of simple variables.

	

6.3 	< variable group) ::=4 variable exponent pair>

< variable group> " * " <variable exponent pair>

A variable group constitutes a product of variables

one or more of which has an explicit exponent.

	

6.4 	< simple factor group >::.=< simple variable group>I

<number> " * " < simple variable group > I <number)

A simple factor group is associated with any com-

bination of a leading number and/or simple variable

group. If both number and simple variable group

appear they must be separated by an It * It . A simple

factor group is represented in storage as a block

of consecutive words, .the first being a rational

number for the constant followed by the algebraic

values in the simple variable group, one per word.

The order is the same as appears in the external

expression except if modified by a subsequent

algebraic operation. A control word defining the

- 43 -

length and type is associated with each simple

factor aroup.

6.5 	Cfactor group> :: <variable group> I < number>

<multiplication operator> <variable group?

A factor group is the internal representation of

a pioduct of variables each raised to an exponent power

and an associated leading constant. A control word

defines the type and length of a factor group which

is again stored as a contiguous block in storage.

A leading constant is always stored with either a

simple factor group or factor group even though it

may be implicit (i.e.=1) in the external expression.

The type field of each associated control word defines

the context in which the factor group or simple

factor group appears e.g. as a term or a factor.

In essence a simple factor group differs from the

factor group in that the exponents associated

with the variables are implicit (=1) in the

simple factor group.

The term AB**2*D*C**3 would be represented as a

factor group as follows in storage:

S,I,T 4 8
1 1

AB
2 1

D
1

C
3 1

Figure 4.1 	Internal Representation of Term
A.B**2*D*C**3

- 44 -

Representation of Algebraic Structural Information

Algebraic structural information is represented

through the use of control words. The format of the

control word is as follows1:

1. 	algebraic type Yield - bits 0-3

bits 	value description

0 	0 	elementary item - either a.:-simple
factor group or factor group

1 	composite item composed of sub-
elements each of which is either
composite or elementary

1 	0 	implicit exponent(s), 	1/1)

1 	explicit format for exponent(s)

2-3 	00 	type term
01 	factor
10 	simple algebraic expression
11 	function designator

2. 	accessing information field, bits 5-6

value
	

description

0
	

item stored contiguously

1
	

item must be accessed indirectly
as specified by Format 2. (Bits
8-31 constitute address of new
control word)

bits

4

5
	

0 	(presence bit) item defined
within this structure

1 	externally defined item

6-15 number of
proper sub-
elements

16-31 contiguous
length of
element or
offset to
next equi-
valent ele-
ment.

defines the number of sub-elements
associated with the data element

defines either the overall length
of this element or the offset to
the next equivalent element.

1 bit positions numbered left to right 0-3i for 360.

- 45 -

Format 2

The control word is interpreted under Format 2

when the indirect bit is equal to 1.

	

bits 	value 	description

	

0-4- 	same as Format 1

	

5 . 	1 	indirect addressing

	

8-31 	address of complete new control
word.

Through the use of the indirect addressing facility

it is possible to create amorphous structures anywhere in

main store.• There can be any number of levels of indirect

addressing. This facility is useful for dynamically

altering the structure without undergoing major copying

operations.

For elementary items bit 1 defines the exponent

format, viz. implicit or explicit. For items composed of

a simple factor group bit 1:= 0 while bit 1 is equal to

1 for a factor group

Representation of Exponents for Composite Elements

For a composite element (bit 0 equal to 1), an

explicit format (bit 1 equal to 1) requires storing an

extra element as the exponent. This exponent is stored

as either an algebraic term or simple algebraic expression

data element. The exponent is stored as a separate sub-

element after the last sub-element in the element. It is

however not considered as a sub-element and hence does not

appear in the sub-element count.

Definition 	 Representation 	 Value Represented

C1,I,SAE 4 31

C,E,SAE 2 9

S,I,T 1 3
1 1

A
S,I,T 1 3

1 1
B

S,I,T 0 2
2 1

S,I,T 2 4
2 1

A

C,I,T B 17

S,I,F 1 3
1 1

A
C,E,SAE 2 13
S,E,T 2 4

1 1
A

2 1
S,I,T 1 3

- 1 1
B

S,I,T 1 3
1 1

A
S,I,T 1 3

1 1
C E F

SAE CW
Term 1 CW

Subterm 1 CW

Subterm 2 CW

Exponent CW

Term 2 CW

Term 3 CW
Factor 1 CW

Factor 2 SAE CW
Term 1 CW

Term 2 CW

Exponent CW

.Term 4

(A 4- B)2
A

B

2

2A*B

A* (A2 - B)
A

(A2;:- 	B) **A
A2

B

A

CEF

- 46 -

Fig. 4.2 Canonical Representation of Simple Algebraic Expression
(A + B)** 2+ 2 ' A * B +A * (A ** 2 - B) ** A + CEF

C,FD,E 2
2

SIN
S,I,T 1 3

1 1
X
S,I,T 0 2

2 1

FD CW

- 47 -

For sometypesof algebraic operations (e.g. differentiation)

it would obviously be more convenient to have it the first

element as it would involve less retrieval time. However

this change could be implemented by making some changes to

the system.

Function Designator Representation

A function designator is described and stored in

a standard format. The function description is stored as

the first sub-dement. It is expected that this element

will always be a simple item. The number of sub-elements

in the count field specifies the number of parameters plus

one (for the first sub-element). The definition of the

length field remains unchanged.

The parameter elements are stored as sub-elements

of the function designator data element. If the function

has an explicitly defined exponent this will again appear

after the parameter sub-elements.

Generally a simple function name will be stored as

a double word simple element; the first word being the

control word for the simple element while the second stores

the function name.

Definition 	Representation 	Value Representation

SIN2(X)
SIN

X

2

Figure 4.3
	

Internal Representation of SIN2(X)

- 48 -

This concept can be extended to encode partial or

total deivatives for dealing with differential equations.

The "type" of the first sub-element control word is given

a value according to its use as follows:

Value 	Definition

0, 	simple function name

1 	total derivative

2 	partial derivative

The number of variables involved in the differen-

tiations is stored in the count field of the first sub-

element. Each variable of differentiation and its order

is stored in an analogous manner to the format of a simple

explicit element. The length field is as before.

FDI 	4 	18

02 	3 	8

F

2 	1

Y

3 	1

z

STI 	1 	3

1 	1
P
STI 	1 	3

1 	1

Q
STI 	1 	3

1 	1

name sub element

1st parameter

2nd parameter

3rd parameter

Internal Representation of de F(p,q,r)

.3x2 ,(3,)z

R
Figure 4.4

4

- 49 -

Implementation Restrictions

The 360 implementation imposes some size res-

trictions. For example the maximum length of an element,

including simple algebraic expressions, is 32K words

(128K bytes). If necessary this could be readily extended

by using a double word for the control word, Alternatively

a structure could be built up by simple references to

other existing structures through the use of the "presence"

bit facility. Through this technique each node of the tree

is limited to effectively 32K components.

- 50 -

Organisation of Elements within a Structure

The organisation of elements within a data structure

can be either implicit or explicit. There may be many

equivalent forms of a data structure, each structure

differing only in topology.

A structure is composed of elements, each element

of which may be made up of other simple or elementary

(hence terminal) elements or composite elements which may

themselves be further decomposed. The elements of the

structure can be dynamic in length at all times. Further-

more, the number of elements in a structure, (or the number

of sub-elements in an element), is also dynamic. It is

necessary to be able to add new elements at any time as

well as deleting other partial or complete elements.

The data structures of AIDS attempt to meet these

needs, as well as provide economy in space and accessing

time, by combined implicit ordering as found in arrays

with explicit addressing of pointer based systems. This

form 	of structure is well suited to a dynamic environment.

However it is unsuited to storing structures on backing

store. For this the canonical form of the data structure

must be used.

Canonical Form of Data Structure

The organisation of elements in the canonical format

of the data structure involves only implicit ordering of

the elements. This format is used for storing a structure

as a contiguous block or segment, either in core or on

- 51. -

secondary storage. Figure 4.2 represents an expression

stored in canonical format.

The map for determining the organisation and the

topology of any data structure is embedded in the control

word sequence of the structure. Each control word

associated with an element defines the make-up of the

element. For simple elements the relevant topological

information is the length of the element.

Composite items are made up of consecutive sub-

elements stored in contiguous storage locations. The

control word for a composite element defines both the

number of sub-elements and the overall length of the element.

Each control word contains sufficient information for

passing from one control word to the next equivalent control

word. For sub-elements the control word of the first sub-

element is found as the first word past the element control

word. Addressing in the canonical format is essentially,

through relative base and offset.

Extended Form of Data Structure

The canonical form requires that the data structure

be stored in consecutive locations in storage. Any

modifications or changes will usually involve rewriting

a new structure, unless the new elements are of the same

length. In order to readily permit modifications to an

existing structure without extensive rewriting, a pointer

based facility is available through the use of an indirect

addressing mechanism.

- 52 -

The format of an indirect address control word

is given.by Format 2. If the indirect addressing bit is

equal to 1, then the address of an updated control word

is found at the address specified by bits 8-31 of the

current control word. This itself may involve indirect

addressing etc. to any level, although more than two

levels are not likely to be required.

Control Element
Addressing
Vector

Indirect Address

Control Words

Simple Elements

Fig. 4.5 Addressing Algebraic Data Elements
through Common Element Table.

An instance where this facility proves useful is

to permit accessing common elements without duplication.

In the canonical format an algebraic expression is essen-

tially stored as it appears in the external representation.

There is no facility for avoiding redundant representation

except through the use of the presence bit for identifying

common external simple algebraic expressions. However when

working in a dynamic environment where common forms (i.e.

CW

CW indirect

- 53 -

algebraic items) are likely, each common form could be

addressed through a common element table. This will

permit changing all instances of the item by making only

the one single change in the element itself. However,

it is for the same reason that a change in a single instance
non

would induce changes in all instances that redundant

representations are extremely dangerous and of limited

value.

The indirect addressing format defines the

addressing for only a single element, which can be either

simple or composite. The next equivalent element after

an indirect addressed element is referenced implicitly

through the control word immediately following the previous

indirect control word (see figure 4.6). This element

itself might be indirect, etc.

Composite Element CW

1st sub element

2nd sub element

3rd sub element

4th sub element

CW 	1---------------- indirect

cw

I

CW

Figure 4.6 	Mixed Format Composite Data Element

S,I,T 1 3

1 	1

CEF

1,T 1

1
A

- C,E,SAE 2

S,I,T,i
S,I,T,i

	

S,I,T 1 	3

	

1 	1

B

	

S,I,T 0 	21

	

2 	1

- 54 -

C,I,SAE 4 	5

C,I,T,i

S,I,T,i

C,I,T,i

CITi

S,I,T 2 	4

2

A
B

C,E,SAE 2

S,I,T

S, I,T
S,I,T

C,T,I 2

S,I,T,i

C,I,T,i

[4. S,E,T 1 4
Nomenclature

1 1
S simple 	F factor A 1
I implicit 	SAE simple algebraic

expression T term FD 	function designator

2 1

C composite

E explicit S,I,T 1

-1 1
B

Fig. 4.7 Representation of Simple Algebraic Expression

(A± B) ** 2 + 2 * A * B +A * (A **" 2 - B)
in Extended Format

* 	A -r CEF

- 55 -

Of course it is possible to build up the data

structure by having vectors of control words at each level

and pointer to the final terminal elements. Figure 4.7

shows this type of data structure for the expression

(A+B)**2+2*A*B+ A*(A**2 -B)**A-i-CEF.

The control word mechanism provides very effective

methods of manipulating algebraic structure without

involving excessive data movements. In this way it is

possible to build up complex algebraic elements from

existing simple elements. For example, if simple data

elements exist for 3* 	B and C these can be combined to

form a simple algebraic expression by defining an element

of 3 control words as in Figure 4.8.

The first control word specifies that this element

is a simple algebraic expression with implicit exponent

consisting of two terms. The total length cf contiguous

words is specified as 3. The second and third words of

the element are each of type term and each is flagged as

specifying the address of the control word where the item

may be found (Le. Format 2 control word).

This element could in turn be referenced from

another data element at a higher level. Figure 4.9

illustrates a situation where the element defined in

Figure 4.8 is used as a factor by a higher level element.

In this manner a hierarchy of algebraic structure can be

created from simple data elements.

Whenever structures are created in this manner,

.E T 2 6

3

A 2

B

1 1

C,IISAE 2

C,I,T 2 	3

C,I,F

S,I,F

S,E,T 2 6

3 1

A

2 1

B

1 1

~S I T 1 	a

- 56 -

Fig. 4.8 Representation of Simple Algebraic Expression

3A284- C

Fig. 4.9 Representation of Term (3A314- C)D

- 57 -

the following rules are defined for subsequent referencing

and accessing:

1. Whenever an element is referenced through a

control word where indirect addressing is specified,

algebraic structure is built up through the control

word sequence.

2. The organisation of a terminal data element is

ultimately determined from the control word of the

terminal element. Hence simple or composite type

can only be deduced from the terminal element

itself. The algebraic type, however, is specified

by the higher level control word (e.g. the data

element is to be used as a term or factor etc.).

In this manner the algebraic type of simple data

elements can be overridden.

3. If a control word specifies both indirect address-

ing and an explicit exponent, the exponent control

word is specified in the word following the indirect

address control word. In this way it is possible to

affect a complete algebraic structure by an explicit

exponent.'
	

If the terminal element itself is

specified as having an explicit exponent, the

exponent element is found in the normal manner.

1
This is a non standard type of operation which produces
structures whose components cannot be properly accessed
through the structure macros. The element can be reduced
to a standard format by the REDUCE routine.

- 58 -

Further Extensions

The presence bit is a facility for referencing

externally defined elements which are themselves simple

algebraic expressions. When the presence bit equals 1,

bits 8-31 of the current control word define an offset

into an external expression tkble for subsequent refer-

ence to the appropriate simple algebraic expression.

- 59 -

Accessing Elements within the Data Structure

The data structure which models any external
- 	.

algebraic expression is basically a tree of any number

of levels, with any number of branches at each node. No

element in the structure can be directly accessed without

tracing through the tree, except of course if previous

known pointers to specific elements have been kept. Most

operations in simple algebra involve treating only one level

down at any one time, although of course this facility can

be recursive. For example, multiplying 2 expressions

involves access to each expression as well as to the

terms in each expression, which are at the next level

down. Normally one is not concerned with]ocating a

specific element, but rather with passing through the

structure performing specific operations on all or parts

of the structure.1

A number of macros have been implemented for

facilitating access to the elements in a structure. These

macros only permit accessing elements at the same level

or the next level down. This facility can be used

recursively at any level in the structure.

1. 	NEXTD 	RP=2, RD= 3

The NEXTD macro is a keyword parameter macro for

locating the first sub-element (i.e. the leftmost

1In the next stage of development this will not be strictly
true as it is hoped to use a visual display for user inter-
action. Again however it is only necessary to associate a
position on the display with an algebraic entity. Even though
complex items can be represented on the display the actual
trace time will still be negligible.

- 60 -

son) of any element. The keyword parameter

identifies the register containing the address of

the current element control word. The address

of the first sub-element control word is returned

to the register identified by the keyword parameter

RD. (In accordance with the rules for keyword

parmeters, if no macro parameters are specified

default values of registers 2 and 3 respectively

are used.)

2. NEXTE 	RP=2,

NEXTE is also a keyword macro, used for locating

the address of the control word for the next equi-

valent (i.e. right brother in the tree) element.

The parameters RP and RE are similar to those in

the NEXTD macro.

3. ELEMENT 	PR=2, ER=3

Through the use of the indirect addressing facility

the body of an element could be found only at the

end of a chain. The ELEMENT macro effectively

produces the final address of the control word for

an element. The keyword parameter PR identifies

the register storing the initial control word

address while ER identifies the register to which

the final address will be returned. The ELEMENT

macro will continue processing until a terminal

condition is reached.

- 61 -

4. EXPONENT 	RP=2, RE=3

The EXPONENT keyword parameter macro locates the

address of the control word defining the exponent

data element. The address of the composite data

element whose address is sought is contained in

the.register specified by the keyword parameter

RP. The exponent address is returned in the

register specified by the keyword parameter RE.

5. FUNCTION 	RP=2, RF:=3

The FUNCTION keyword parameter macro is used to

locate the address of the first element of a

function designator data element which defines

the function. The keywOrd parameter RP ilentifies

the register containing the address of the function

data element. RF specifies the register to which

the element address is to be returned.

- 62 -

ConVersions Between External and Internal

Representations

An external algebraic expression is read in as

a charader string and must be converted to the internal

representation. For output it is necessary to be able

to convert from the internal data structure to a formated

line of EBCDIC characters. The first conversion requires

extracting the algebraic values as well as the algebraic

structure for subsequent storage in the data structure.

The latter conversion is performed by a special purpose

print routine.

The data structure corresponding to an algebraic

expression is built up during a syntax analysis of the

expression. The recursion facility within AIDS is used

for the creation of the recursive data structures.

Operation of the Syntax Analyzer

The function of the syntax analyzer is to

convert an algebraic expression from the external syntactic

representation (see Appendix I) to the internal syntactic

representation.

The syntax analyzer itself operates inla conven-

tional recursive manner by using 2 local stacks, each of

which stores single word values. The first stack stores

the return address to which control is returned after a

search for a syntactic item. The second stack stores the

addres of the string pointer on entry to a syntactic

- 63 -

entity recogniser routine.

In constructing the syntax analyzer advantage

has been taken .of unique hardware instructions in the

360 which assist considerably in syntactic analysis,

namely the TRT (translate and test) and TM (test under

mask) instructions. The TRT instruction works in con-

junction with a 256 byte function string which is used

as a byte table. The TRT instruction has two operands,

one of which points to a variable length source string

(or substring) being analysed while the other operand

identifies the function byte string. Each byte in the

source string is used as an offset to reference a byte

in the function byte string. If the function byte has

value zero the operation is repeated with the next byte

in the source string until a non zero function byte value

is found or the length of the source string is exhausted.

If the source string is exhausted without producing a non

zero function byte, this condition is signalled by setting

the condition code equal to zero. When a non zero function

byte is produced the operation ceases and returns the

absolute machine address of the source byte in register 1

along with the value of the function byte in register 2.

By this means it is possible to set up a function byte

string to search for delimiting characters. However, it

is more•useful as a means of classifying each byte type

and the TRT instruction is used in this manner in AIDS.

> 7-= <

• ' • 	•

) f It

- 64 -

The function byte string (of length 256 bytes)

is created in AIDS by the STRTABLE macro using the

following keyword paraMeters:

&NS 	non-valid symbol in source 	non araphic
string 	 symbol

&D ' 	digit 	 0-9

<• 	upper case letters 	A-Z

&AO 	add operator 	4- -

&MO 	multiplication operator 	* /

&RO 	relational operator

&LO 	logical operator

&S 	separator

&DL 	delimiter

&SS 	special symbol

&BLK 	blank

It is relatively easy to change the table as well

as incorporate new class entries such as a lower case

letter region. The STRTABLE macro also creates single

byte values for each class entry. Consequently there is

a single byte for the categories DIGIT, LETTER, ADDOP,

MULTOP, RELOP, LOGOP, SEP, DELIM, SPEC, NONSYM and BLANK

set with the value of the corresponding keyword parameter.

The name assigned to the table produced by STRTABLE is

named CODESTR and is included within the code for the

syntax analyzer. This is not included in the user area

as it remains invariant with processing.

To assist in writing and modifying the syntax

analyzer a small number of useful macros have been defined:

- 55 -

1. BOT 	TYPE, ADDRESS

the macro BOT (branch on type) can be issued

after a TRT to effect a branch to the address

specified by &ADDRESS if the current character

being examined in the source string is of type

specified by the parameter &TYPE (i.e. a classi-

fication such as DIGIT, LETTER, etc.).

2. BNT 	TYPE, ADDRESS

The BNT macro (branch not type) is similar to

BOT except that the branch is effected only if

the type of the current differs from the type

specified by the &TYPE parameter.

3. NEXTCHAR

The NEXTCHAR macro moves the string pointer up

one position.

- 66 -

Syntax Analyzer Conventions

The conventions which have been adopted in the

AIDS syntax analyzer do not-restrict its capability.

Some of the recognizer routines in the syntax analyzer

are also used by the command interpreter for recognising

syntactic elements by adhering to the conventions.

The syntax analyzer works by examining single

characters in turn from the source string. The address

of the current character being looked at is always held

in register 3. Registers I and 2 are always available

for use by the TRT instruction.

Each recognizer routine operates without storing

current status information such as register contents

etc. It leaves undisturbed current status registers and

uses the accepted scratch registers for local processing.

When creating structures from the source string current

status data structure information is maintained in the

user's area.

Before entering a recognizer routine it is neces-

sary to stack the address to which control is returned

upon completion of the recognizer routine, as well as the

current address (pointer) in the source string, in case

the test fails. The stacks for storing these values are

labelled ASTACK and PSTACK respectively and each permits

a maximum of 300 entries (words). Values are stacked by

transfering control to a local routine STAKAP which

assumes that the contents of register 2 contain the return

address and register 3 points to the current source string

character to be examined. Each recognizer routine ter-

- 67 -

minates by branching to either the USTAKA or the USTAKAP

routine. USTAKA removes the last entry from the stack

and branches to the return address without resetting the

source string pointer. This constitutes the "item

recognised" condition and is signalled to the calling

program by betting the length of the recognized item in

bytes in register 0. USTAKAP corresponds to the "item

not recognised" condition so that register 0 is set to

zero and the string pointer reset to its value before

entry to the recognizer routine.

An algebraic variable is always kept as 4 charac-

ters and hence fits into a single word. Whenever a

variable identifier for simple variable, array variable,

or function designator is recognised, the corresponding

recogniser routine returns 'the value in register 8. Note

that truncation or blank fill on the right will have

occurred if necessary. In the same way, all arithmetic

values are returned in the appropriate form (integer,

real or rational) in register 9. For example, when

recognising < variable exponent pair) the variable is

returned in register 8 and the exponent as a rational

number in register 9.

All routines in the syntax analyzer maintain the

integrity of the base registers (10 and 11) for the

syntax analyzer as well as the base registers pointing to

the user data area.

- 68 -

Forming Algebraic Structures

Ah algebraic data structure is built up during

the syntax analysis as each algebraic data item is

recognised. Simple data elements are created in a large

work area, while a control word sequence is built up in

a. separate vector. If the syntax analysis is successful

the structure is copied into its own allocated area and

stored in canonical format.

Upon entry into the < simple factor group> and

<factor group> recognizer routines a block is automati-

cally created in the work area. If the test for the

syntactic entity fails, the pointers into the work area

are reset to their previous values. If the test succeeds

the pointers are updated and the address of the block is

stored in an indirect address type control word by a higher

level algebraic recogniser routine.

Each algebraic type element has its own local data

space in the user data area. As the syntactic elements

(simple algebraic expression) , <term >and < function

designator"? are potentially recursive, the current data

values must be saved on a data stack whenever any of the

above are re-entered and reset when the previous environ-

ment is again invoked.

- 69 -

Conversions Between Data Structure and External

Representations

Because of the dynamic and recursive feature of

the data structure the transformation between internal

and external data representation implies considerably

more processing than for more conventional structures.

However, as the conversions between the two representations

constitute only a small part of any algebraic system,

this overhead can be tolerated.

The conversion is performed by print routines

which operate recursively. The routine which decodes and

prints simple algebraic expressions pass control to a

similar routine which prints out each term in turn. Both

of these are obviously recursive. All of the necessary

editing characters are inserted as required.

- 70 -

Recursive Facility in AIDS

The AIDS system makes extensive use of recursion

so that powerful system recursive facilities are required.

Unfortunately the 360 hardware is not particularly suited

for stack type operations hence these must be effected

through software. It is of course possible to perform

recursive programming through the GETMAIN and RETMAIN

macros in the control program services of OS 360, however

this procedure is neither efficient in time nor in its

use of storage. As the stack in AIDS can grow very large

during processing it is often necessary to save stack

copies on secondary storage devices, such as the disc.

Therefore, in AIDS, recursive programming is done through

a stack which is saved on disc whenever it is necessary.

The GETMAIN-RETMAIN facility requires considerably more

processing in that the stack segments must be explicitly

chained together.

On many systems recursive programming is facilita-

ted through the use of special hardware. (e.g. Burroughs

5500/6500, KDF9, PDP10). On others (Univac 1108) it is

more readily possible than with 360 to simulate stack

operations through the use of existing registers.

- 71 -

The recursive facilities provided in the present

system ae coded as macros for stack operations. The

system may employ any number of stacks up to a maximum of

256. It is essential that there be at least 2, one of

which (STACKO) is used primarily for recursive program-

ming and stacks current register values, while the other

is a data stack required by the syntax analyzer when

creating a structure. Each stack is described by a set

of control values which are stored in the user's data

area. A new stack cannot be added dynamically, as with

the Burroughs systems, but must however be configured

into the system by setting up a new block of associated

control values in the user or data area. The control

values describing each stack are as follows:

CSSA 	- current stack segment address

NASSA 	next stack segment address

NSS 	number of stack segments

LSA 	- lower stack address

LS 	- length of stack

USA 	- upper stack address

TSR14 	- temporary storage for register 14

Description of Stack

A stack is made up of variable length stack

segments which are each described by a stack segment control

word which is the first word of the stack segment. CSSA

holds the address of the current stack segment word. NASSA

- 72 -

is the next free word past the present stack segment.

LSA and USA are the addresses of the lower and upper

stack boundaries, while LS is the length of the stack

in words. TSR14 is used as a temporary store for

register 14 by the stack macros as explained later. NSS

is the number of stack segments currently active.

The stack segment word has 3 fields associated

with it, namely:

NR 	- bits 0-3 	number of registers saved in this
segment

LSS 	- bits 4-15 length of last segment in words

LCS 	- bits 16-31 length of current segment in bytes

NR is stored so as to facilitate the accessing of

data when stored in a stack segment along with the register

contents. The LSS value permits moving back to the

previous stack segment control word when unstacking is

required. This value is given in words to permit a

maximum size segment of 212 words or 16K bytes. LCS

gives the length of the current stack segment in bytes.

Byte, instead of word values, are used as offsets for

addressing must be in bytes even though each stack is

essentially a word stack.

Even though the 360 is essentially a byte machine,

the stack and stack operations are based on words.

- 73 -

Recursive Programming Macros

1. 	RSAVE

A recursive routine is essentially a routine which

can call itself. Hence a first requirement for such a

routine is that the save areas associated with the calls

to the routine be separated from each other. STACK() is

used in the system for saving the reaister contents.

RSAVE is the recursive save macro for saving the

contents of the general registers and is described by the

model statement:

RSAVE 	&R1= 0, &R2=141 &NR=VOFT, &STACK=0

All of the parameters in this macro are keyword

parameters. The parameters &R1 and &R2 specify the

starting and ending registers that must be saved. If

these parameters are omitted values of 0 and 14 respectively

are assumed. The parameter &NR is the number of registers

saved and is expressed in hexadecimal form. A default

value of 15 is assumed if the parameter is not specified.

The &STACK parameter references the stack to be used and

has a default to STACK() if no value is specified.

The maximum number of registers that can be saved

is 15 as it is not anticipated that saving 16 is necessary.

It has been necessary to deviate from 360 conventions to

a small degree, however system reliability or performance

will not be affected. Registers 14 and 15 are used in

the conventional manner. Register 13 no longer points to

the current save area as the save area is implicitly

- 74 -

2. 	RRETURN

The recursive return macro RRETURN is the complement
- 	. 	-

of RSAVE
1 	

i . It operatds n essentially an analogous - manner

by producing in-line coding for restoring the register

contents from a stack segment and providing the linkage

to a routine USTACK which updates stack status information.

The USTACK routine, much like RSTACK, loads the

current stack information, updates and performs checks on

it. The number of stack segments is decremented by 1 and

the current and next stack segment address words are

updated. A check is made to ensure that the stack area

is not empty, else it is necessary to reload from disc

the previous stack area.

3, 	STACKSEG and POPSEG

For recursive program not only is it necessary

to save current status information (usually reflected in

the general register) but also current data values. All

such data is usually stored in consecutive locations in

core and hence can be saved as a segment along with the

contents of the general register. The STACKSEG macro

moves a data segment from a user area to the current

stack segment. The model statement is:

&NAME 	STACKSEG 	&ADDRRSS, &LENGTH, &STACKO

The positional parameter &ADDRESS and &LENGTH

specifying the data segment address and the length in words

1The model statement for RRETURN is:

RRETURN 	&R1.= 0, &R2:-.- 14, &STACK=0

- 75 -

defined by current stack parameter values, however R13

should be loaded to point to a save area which can be

used by the control program or a non recursive routine

if needed.

RSAVE will usually be the entry point to the

recursive routine and will usually (although not necessarily)

be accessed through R15. However R15 is used by the RSAVE

macro as a general purpose register for addressing purposes

and hence is a volatile register, so that it should never

hold a value to be saved. This restriction does'not

interfere with 360 operations.

The RSAVE macro produces a limited amount of in-

line coding for addressing purposes and also saves the

registers specified. Part of the in-line coding is the

linkage to the routine RSTACK for updating the stack values.

The RSTACK routine performs many of the functions

that would normally be handled by appropriate hardware.

It loads the data for the designated stack into the

general registers, updates and performs checks on it.

The number of stack segments NSS is incremented by 1 and

a stack segment control word created for the stack segment

holding the current values of the registers as stored by

the RSAVE macro. A check is made to ensure that the stack

is not full (i.e. within 15 words of the upper stack address)

and when full the stack contents are written to a disk.

- 76 -

respectively. &STACK is a keyword parameter identifying

the stack to be used. If -this parameter is not specified

STACKO is assumed.

The complement of STACKSEG is the POPSEG macro

which moves the data part of the current stack segment to

the user area specified in the macro. The model statement

for POPSEG is:

&NAME 	POPSEG 	&ADDRESS, &LENGTH, &STACK=0

Both STACKSEG and POPSEG produce in-line coding

for storing parameter values and linkage to the routine

STACKSEG and POPSEG respectively.

Any number of data areas may be added to the current

stack segment although it is not expected that the facility

will be used in this manner. However, as no information

is stored with each data segment to differentiate it from

the other data areas in the current stack segment, the

unstacking operations work on only one data area.

This need not be a limitation of the system as it is possible

to add extra coding to unstack data areas from the top of

the current stack segment by changing the current length.

As it is not envisaged that this enhancement would be

particularly useful, the extra overhead to be incurred

can hardly be warranted, even though there is more

generality and flexibility.

- 77 -

Data Stacks and Data Stack Operations

The main stack (and most used stack) is STACK()

which is intended primarily for recursive programming.

This allows essentially the stacking of recursive save

areas as well as associated data areas if necessary.

However, a single stack will not suffice in the system if

efficiency is to be an essential requirement. Some

operations, such as creating an algebraic structure,

require the stacking of data values only. Hence provision

is made in the system for any number of data stacks.

The two main macros used for data stack operation

are STACK and POP. STACK stores a data area as a stack

segment while POP unstacks a stack segment and moves the

data to the user area.

The model statement for STACK is:

&NAME 	STACK 	&ADDRESS, &LENGTH, &STACK= 0

The keyword parameters &ADDRESS and &LENGTH identify

the user data area and length in words respectively.

&STACK refers to the stack being referenced and defaults

to stack 1 if no value is specified.

Similarly the model statement for POP is:

&NAME 	POP 	&ADDRFSS, &LENGTH, &STACK = 0

The parameters have the same meanings as in STACK.

The general stack macro STACKSEG and POPSEG can

also be used to add and remove a data area to an existing

data segment.

- 78 -

The recursive facility is sufficiently general

to allow the system programmer to perform complex

recursive operations on any number of predefined stacks.

Each stack added requires the system to be re-assembled.

The dummy control section which describes the user's data

area (USER).must be changed to include another set of

parameter values which describe the new stack. Some of

the values which are referenced through the recursive

macros in other control sections must also be declared

as entry points.

- 79 -

Data Management

The highly dynamic nature of algebraic manipulation

necessitates the use of specialised store management

techniques for severalaspects of the AIDS system. 	The

AIDS concept is designed to cope with multiple concurrent

users in an environment in which all users share the

program code in common. 	Each user has however access

only to his own data areas.

The main areas of data and storage management

are as follows:

1. a fixed length data area associated with each active user

2. a free storage scheme for the allocation and

de-allocation of blocks of any length for dynamic data

handling

3. secondary storage facilities for storing structures

when not needed immediately in main store as well as for

storing overlay data segments

4. cataloging structure facilities for name and variable

value tables

User Data Area

Each active user is allocated a data area for

storing local data values required for the proper operation

of the AIDS routines. 	All save areas and parameter

list data areas are rbferenced within the users data area1.

1For. the 360 implementation, register 12 is reserved for
storing the pointer to the user area at all times. The
symbolic data references are defined by the dummy control
section labelled USER.

- 80 -

Also included in the user area are the general purpose

stacks and stack environment values as well as the

local stacks of the syntax analyzer. The dynamic data

areas within the user area are checked to ensure that

they do not overrun their allocation with disastrous

consequences. 	In some cases the same save areas or

parameter lists are used by•more than one routine but

only when the routines cannot interact in any way with

each other.

One segment of the user data area, which is not

necessarily contiguous with the main data area, is a large

scratch work area used by the syntax analyzer and other

special routines. 	This area is not logically essential

to AIDS, however by providing a relatively large scratch

area it eliminates the need for an excessive number of

calls on the free storage facility and for associated

housekeeping operations. 	Again this area is only

used by a single process at any one time and is therefore

managed by a processing routine. 	It is used primarily

by the syntax analyzer and the expansion routines,

essentially in much the same manner as a stack, to create

temporary data elements during a process. 	These elements

are moved during a final pass to a structure area.

Stacks

The stacks are associated with the recursive

mechanism available in AIDS. 	Each user area has

- 81 -

stack control values for at least 3 separate stacks.

Variable length stack segments described by a stack

segment control work are stored and retrieved from

the stack on a first in first out basis. 	When a

stack is full this copy of the stack is stored on disk

and the stack area overlayed with the new stack extension.

Similarly 'when a stack area is empty and more stack

segments exist, the previous incarnation of the stack

is reloaded and new status information set. For this

the first 4 words of a stack are reserved for holding:

1. the identification (i.e. record number) of the last

stack segment so it can be retrieved when needed

2. length of the previous stack segment in words

3. current stack segment address (CSSA) to be used when

the stack is re-incarnated

4. next available stack segment address (NASSA) for

the next re-incarnation.

Free Storage Scheme

The free storage scheme allocates data blocks

(in words) of any size from a pool of free areas upon

demand. 	The size of the free storage area is set at

system generation time and will usually involve

claiming all the remaining space available in a

partition or remaining in main store. 	There is no

set maximum value and it is expected that the system

will work satisfactorily with about 32K words in the

free store area.

- 82 -

Fig. 4.10 Free Storage list structure

- 83 -

The free storage scheme operates through a two

dimensional list structure. 	All the blocks of different

length are chained together, in order of increasing

size, in a single chain. 	All blocks of the same size

are chained together in another list. 	Fig 4.10

represents,a typical free list structure.

The first 3 words of each block in the free list

are used for storing status and pointer information.

Word 1 points to the next largest block in the free

list, if one exists, while word 2 points to the next

block of the same size, also if it exists. 	Word 3 is

divided into 2 fields, the first byte representing the

number of remaining blocks of the same size while the

3 tow order bytes contain the length in words of this block.

A request for a block of given length is made to

the GETCOR routine. 	If a block of this size does not

exist the next largest block which does not leave a

residue greater than a pre specified size is broken up

and used. 	The residue is of course entered in the

appropriate position in the free list. 	This method tends

to conserve large areas which are obviously required for

holding large structures. 	If a request cannot be met

a condition code is returned to the calling routinel.

When a block is returned to the free store an

attempt is made to attach it to either end of an existing

block in the free list. 	If this can be done the new

block is moved to its appropriate position in the free list.

1Register 15 returns a non zero value on the 360 implementation.

- 84 -

The free store scheme does not maintain an

inventory of blocks allocated and their length but

relies'on the integrity of the routines which demand

and return free store blocks. 	However as all the free

blocks are allocated from a single area of main store,

RETCOR checks to ensure that a returned block is

within bounds.

Because of the dynamic nature of most manipulative

routines in AIDS the length of block required is not

always known a priori.Hence the usual procedure is to

request a larger block than is needed and return the

unused space.

Secondary storage facilities

Because of the nature of algebraic operations,

the structures can grow very large even when in a

reduced or simplified form. 	It is essential that a

back up facility, for storing structures not immediately

required, be provided. 	Also it is required to be able

to save stack copies so that the stacks are not limited

to a fixed length. 	Two routines are provided in AIDS

for storing and retrieving variable length (in words)

records; DSAVE for saving and DGET for retrieving

records.

DSAVE accepts as parameters the address from

which the record is to be written and its length in

words. 	After the record is stored DSAVE returns a

record identification number, for subsequent retrieval

- 85 -

'to the calling routine. DGET is the complement to

DSAVE and uses the same parameter sequence. The

calling routine must provide both an identification

number as well as a length and address. The length

value could be maintained by the secondary storage

mechanism. The length value for structures is kept in

the structure name table for structures and in the stack

extension area for stack areas.

Catalogue Facilities

AIDS provides and maintains a catalogue of all

mamed structures for any user. A separate name-value

table is maintained for associating a value for variables

used in the structures. The format of the structure and

name-value tables is given in Appendix V. A number of

routines for maintaining the catalogue are provided.

The routines INSERTN inserts a name and value

into the variable name table. INSERTS is an analogous

routine for inserting a name into the structure name

table and a pointer to its location in main store. If

entries already exist they are overwritten. DELETEN and

DELETES delete variable name andEtructure entries

respectively from their associated tables. ADDSTR

returns the address of a catalogued structure and

NVALUE returns the current value associated with a

variable.

- 86 -

Chapter V

- -

Algebraic Operations

A number of system defined operations are

available for manipulating the elements of the data

base in AIDS. 	Arithmetic operations on numeric

representations consititute the degenerate case for

formal algebraic operations. 	As with arithmetic

operations on numeric data the most primitive operations

are embedded in the instruction repetoire. 	More

complex operations are defined in terms of the

primitive operations and constitute essentially

built-in function subprograms. 	A user defined function

procedure represents yet a higher level of functional

complexity.

Most conventional digital computers have been

designed almost exclusively for numeric data processing.

Hence the instruction repetoires do not usually incorporate

complex instructions, except of course for character

handling, designed primarily to assist in non-numeric

processing. 	However as the trend is to build special

purpose hardware for specific operations such as the

IBM array processor (refs 33), combined with the

emergence of complex numeric operators such as found in

APL (ref 34), it is to be expected that the complexity

- 87 -

of operations performed by the hardware will continue

to increase. 	In an analogous manner it should be

possible to define algebraic operations that could readily

be realised by micro programmed hardware sequences.

The essential difference between operations on

numeric entities and operations on symbolic entities

is that the extent of the result of the latter is

dynamic while numeric calculations produce well defined

results. 	The result of a symbolic process often

requires a second pass to reduce it to its minimal form

in terms of a canonical representation.

Some languages permit single operations on

complete data structures or on their multi-element

components. PL/1 for example, has structure operations

which essentially constitute an implicit DO loop for a

single operation on all elements of the structure or

sub structure. 	The operation must of course be valid

on the primative elements, although conversions may

be induced. In PL/1 the structures are inherently

static and the operators can be any of the arithmetic,

comparison or string operators. 	These facilities

are not readily adaptable to symbolic processing in the

AIDS context. 	Useful operations for symbolic processing

can be found in some high level languages such as

SNOBOL (ref. 24) 	For example the balanced string

variable is useful for isolating a balanced pair of

- 88 -

parentheses. 	Also, APL defines vector type operations

by single operators.

The algebraic operations performed in AIDS can

be divided into several distinct classes. 	The

operands are the data elements as defined in AIDS,

which can be of either simple or composite type with

either implicit or explicit exponent formats. 	The

following classes of algebraic operations are defined

in AIDS.

1. arithmetic

2. logical

3. expansion (removal of parentheses) and factoring

4. replacement (substitution)

5. simplification

6. conversions

7. differentiation and integration

8. evaluation

9. functions

10. data movement

Simplification, being such an important operation

in any symbolic system in that it provides an index of

merit for any such system, is devoted to Chapter VI.

Substitution and removal of parentheses and factoring,

being related operations, are also discussed in Chapter VI.

Differentiation and integration are essentially

procedures based on the operations 1, 2 and 4 and are

- 89 -

dealt with in Chapter VII. 	Conversions between

internal and external representations were described

in Chapter IV. 	The remaining operations, 1 - 3 and

8 - 10 are also discussed in this chapter.

Many of the operations involve manipulating the

algebraic data elements. 	Often however these operations

can be performed by manipulating only the control words

and making a subsequent pass on the data elements to

produce a result in canonical and simplified format.

The operations in AIDS are available as standard

procedures. 	Some of the operations are recursive

while most require access to the user's area. 	All of

the routines are written as re-entrant procedures.

- 90 -

Data Transmission

The input-output of variable length records

(which can of course be structures) was described

under Data Management in Chapter IV. 	Over and above

this facility is the requirement to be able to move a

dotplete data element from one part of the main store

to another. 	A single data element in AIDS may represent

a very complex structure with many sub-elements in a truly

recursive manner. 	Further, a data element may be

either in an extended format, with many indirect Addressing

links, or in canonical format. 	There is no way of knowing

whether a complex structure is stored in a canonical

format from the high level control words. 	Only the

terminal elements need be in canonical format.

A single recursive routine is provided for

moving a data element referenced by its control word

from one store location to another. 	This routine,

MOVELEM, has as parameters the address of the control

word for the element to be moved and the address to

which it is to be moved. 	The resultant element is

stored in canonical format with updated control words.

No simplification is performed except to remove any

indirect addressing links.

MOVELEM can be used to move simple elements.

However, if the element to be moved is known to be

- 91 -

simple then it is possible to perform a move operation

in-line by using the MOVE macro. 	The model statement

for the move macro is as follows:

MOVE 	LR-1=5, FROMR= 6, TOR =7

Each parameter references a register; LR

specifies the register which holds the length of the

block to be moved in bytes, FROMR specifies the

register containing the address of the element to be

moved and TOR specifies the resultant address. 	If no

parameters are specified the default values for LR,

FROMR and TOR are 5, 6 and 7 respectively. 	Register LR

goes to zero after the operation and FROMR and TOR

registers are updated to point to the next available

byte.

- 92 -

Arithmetic Operations

Arithmetic operations are defined on the data

elements of AIDS. 	The algebraic type field of the

simple or composite operands must be either " term "

or " simple algebraic expression " 	The arithmetic

operations which are defined include addition,

subtraction, multiplication and division for both

simple and composite operands. 	No routines exist

for performing exponentiation although this can be

done by substitution. 	Exponentiation is treated as

a special case rather than a basic primative operation

in algebraic manipulation as any element in AIDS can be

affected by an exponent through the use of the control

words. 	A simplification mechanism can, in this case,

be invoked to reduce the construction to canonical

format. 	Arithmetic operations on simple elements

involve both arithmetic and symbolic data. 	The

degenerate case in which there is only numeric data

associated with the simple data elements involves only

rational arithmetic.

Rational Arithmetic

All numeric primative data values (excluding

fields in the control words) are stored as rational

numbers. 	For the 360 implementation the numerator

- 93 -

is stored in the most significant half of the word
•

and the denominator in the remainder. A number of

routines in AIDS provide a-rational arithmetic

capability.

Rational addition is performed by PRADD which

adds two rationals to form a rational result
1. 	PRSUB

is an analogous routine, also with 3 parameters, for

rational arithmetic subtraction. 	In like manner

PRMULT and PRDIV provide rational multiplication and

division respectfully. 	All result values are reduced

to simplest terms by application of Euclids greatest

common divisor algorithm. 	If the result value generated

is too large an error message is printed. 	In its present

form the rational arithmetic package can be rather

explosive. 	Consideration should perhaps be given to

dealing with rational numbers as ordered word pairs in

store, in much the same manner as complex values are

maintained in most systems.

1 Rational addition on 2 rationals a/b and c/d is defined
as ad4-bc

bd

- 94 -

Symbolic Addition and Subtraction

Symbolic addition and subtraction are defined on

data. elements which are of type "term" or "simple

algebraic expression". Addition and subtraction are

dyadic operators requiring two operands to produce a

resultant operand. Hence all the corresponding routines

have as parameters, the addresses of the two operands and

the resultant except for the routine ADDTERM. This latter

routine attaches a term to an existing simple algebraic

expression by adding an indirect address term control word

to the expression control word sequence.

The routine ATERMS performs symbolic addition

on two terms. The result may be either a single term

or a simple algebraic expression consisting of two terms.

If either one of the term operands is a simple algebraic

expression the result will consist of the second term

operand being added to the expression. If both operands

are of type "simple algebraic expression" the result will

be a single simple algebraic expression involving the terms

of both expressions. If it is desired to maintain the

parentheses of a simple algebraic expression used as a term,

ADDTERM should be used. In the case where both terms are

of type "term" a test is made to see if the two terms can be

combined in which case the result is a single term. A result

is always in simplified format.

- 95 -

The routine ASAES adds two simple algebraic

expressions to form a resultant simple algebraic

expression. This routine operates by forming a
- 	- 	-

vector of indirect address term control words. A

simplification mechanism1 is then applied to move

and reduce the result.

Symbolic subtraction is performed in a similar

manner, making provision for sign of the second operand,

by the routines STERMS and SSAES respectively.

Simplification is implicit in all of the above-

named routines except ADDTERM.

Multiplication and Division

Multiplication and division involve more

variety than addition and subtraction. When both

operands are simple elements the result is formed

by essentially concatenating the body (data elements

less control word and constant) of the two elements

together as well as updating the resultant control

word and producing a new constant. Both simple elements

must be of the same exponent type else an expansion from

1 HLC routine - see Chapter VI

- 96 -

implicit to explicit exponents will be required.
.

The result is always reduced to its simplest form by - - _ - -

the COMPRESS routine (see Chapter VI)

Division of one simple element by .another

is somewhat more complex. 	The dividend is stored in

the result area with explicit exponents (this may of

course involve expansion from implicit to explicit

format). 	If the divisor has implicit exponents the

divisor body, with explicit exponents of -1/i, is

concatenated with the dividend. 	The resultant control

.word and constant are appropriately modified. 	If the

divisor has explicit exponents, all exponents are changed

in sign as they are moved. 	In either case the result

is simplified as with term multiplication.

The simple data element operands for the above

operations can be either of type "term " or " factor "

and the resultant data element will have the type code

of the first operand. 	It is expected that the type

code will be overset by the calling routine in cases

where ambiguity could arise.

Multiplication and division where either or

both operands are composite elements is performed by

creating an intermediate element consisting of a

control word sequence. 	The composite elements may

be either simple algebraic expressions or composite

terms, and each is handled by separate routines. 	A

- 97 -

composite factor is treated as a composite, term.

The routine TMULT performs multiplication of

two composite terms (or factors) to produce a

simplified resultant term. 	The operation is performed,

rather simply,- by creating in the userts data area

an intermediate composite term with implicit exponents

consisting of two indirectly addressed control words

(of type simple term with implicit exponents) pointing

to each operand. Control is then passed to the term

simplification routine RTERM (see Chapter VI) for

simplifying the intermediate term and moving the

result to the location specified by the result

operand.

TDIV is an analogous routine for performing

term (or factor) division. 	It operates in exactly

the same manner except that the second control word

is set to type It simple term with explicit exponent ".

The exponent comprising a simple element with value

-1/1 is stored after the second control word. 	However

before the result can be formed it is necessary to pass

control to the routine (REDUCE) so that the exponent

-1/1 can be applied to all subelements of the division.

REDUCE produces a control word sequence which is

passed to RTERM in order to form the resultant term

element.

One of the operands in either TDIV or TMULT

- 98 -

may be a simple element. 	No expansion is. performed by

either of these routines. 	If a component factor of
- 	- 	- 	- 	- - 	- - - -

a term.is a simple algebraic expression it will also

appear as such in the resultant term. 	For example

in multiplying the composite term 3A2B3(A B) by the

composite term A(A B)2, the resultant term will be

3A3B3(A -I- B)3. 	Division of the first by the second

will correspondingly produce a resultant term of

.3AB3(A+ B)-1.

Multiplication and division involving two

simple algebraic.expressions are performed by the

routines MSAES and DSAES respectively. Again the

operations are performed by manipulating control

word sequences followed by a subsequent simplification

process. 	MSAES operates by representing, in a work

space, the first simple algebraic expression as a

sequence of indirectly addressed control words, one

for each term. 	A second sequence of control words

is created to represent the resultant simple

algebraic expression. 	Each element in this sequence

is a composite term consisting of two factors. 	The

first factor references a term in the second multiplication

operand while the second factor references a term from

the previously created control word sequence. 	All

possible cross products terms are created and then the

resultant simple algebraic expression is simplified by

the HLC routine (see Chaptor VI).

- 99 -

Division of simple algebraic expressions is done

in a similar manner. 	Each term of the divisor divides

each term of the dividend. 	The same type of control

word sequence is created as in MSAES except that the

second factor is modified by an explicit exponent of

-1/1 before simplification.

- 100 -

Logical Functions

The logical functions which can be applied to

the algebraic data elements involve testing for both

algebraic structural equivalence as well as equivalence

of symbolic values. 	Two routines are provided for

this purpose, one of which pertains to tests on

simple elements while the other is only applicable to

composite algebraic elements. 	Each routine returns a

condition status byte (see Appendix IV)

Equivalence of Simple Elements

The routine TESTESI tests two simple operands

for equivalence. 	The simple operands can be either of

implicit or explicit format. 	No test is made on the

algebraic type field (e.g. factor or term) as this

information is readily available to the calling program

when needed through the appropriate control words.

The first test performed is on exponents. 	If

both operands are implicit then this test is skipped.

If both operands are explicit a test for equivalence of

variable exponent pairs is performed. 	However, if one

operand is of implicit format when the other has explicit

exponents then the explicit exponents must either all be

plus ones or minus ones 	If the exponent values of one

operand are the inverse of those in the other, this

- 101 -

condition is reflected in the return condition byte.

This facility can be used to facilitate the search

for common factor groups in rational function expressions'.

As there is no system - imposed ordering of the

variables according to a collating sequence, a search

for equivalence of variables can be very lengthy.

However, it is unlikely that a search will proceed to

any depth if the simple operands actually do differ.

As no search is made if the number of variables is

not identical in each operand, the only condition

that leads to excessive search time is when both

operands have many common variables, all of which are

concentrated at the beginning of the first operand.

If the variables and exponents match a further

test for equivalence of constants is made.

Equivalence of Composite Elements

Tests for equivalence on composite elements are

performed by the routine TESTECI. As a composite element

represents a tree or subtree, this routine is recursive.

Essentially it is similar in structure to TESTESI and

also returns a condition byte. 	It is necessary to

identify a mismatch and default as quickly as possible

because of its potentially time consuming nature.

1 It is proposed to extend the existing routine to search
for a subpattern within a given operand.

- 102 -

The first +est is to check the number of elements

in each composite element operand. 	If they differ

there is an immediate default. 	Care must be exercised

with operands in extended format to ensure that the

algebraic structure as reflected in the control words

is the same for both operands1. 	This particular test

is searching for topological equivalence.

If the previous test is successful each subelement

in the first operand is matched in turn against each

subelement in the second operand. 	Failure to match

on any scan produces an immediate default. 	When

both subelements being matched are simple TESTESI is

called; when both are composite a recursive call to

TESTECI is made, else the scan continues.

1
For example a term with n factors would not be
considered equivalent to another term of n - 1 factors
where one of the factors is made up of 2 subfactors
even though the 2 terms are symbolically equivalent.

- 103 -

Functions

A function facility is required within algebraic

expressions for providing a higher level of generalisation

of the algebraic data elements. 	This facility can be used

for defining .in-line representations for a number of elements.

For example, a term in an expression may represent a Bessel

function of given order etc. 	The same function facility

is used to represent total and partial derivative as

explained in Chapter IV.

The function facility can aslo be used to define

a selector function for a data element (or elements) on

a group of existing data elements. 	It may for example,

be appropriate to define a selector function for

identifying a term data element from within a simple

algebraic expression which has the highest power in a

given variable.

The algebraic data elements within a function

description (e.g. < simple algebraic expression>, <term>

etc) are treated in the same way as the data elements within

a simple algebraic 	expression. 	The creation and

maintenance of these elements is left to the special

function processing routines provided by the user.

- 104 -

Numeric Evaluation

It is often necessary to find the numeric value

of a symbolic expression. 	This can either be done by

substituting' numeric values for symbolic variables

wherever possible and simplifying as is done in FORMAC

or associating a value with each symbolic variable in

an evaluation procedure.

EVALSAE is the AIDS routine which evaluates a

simple algebraic expression and returns a numeric result.

This in turn calls EVALTERM for evaluating a term which

may in turn call EVALFD for evaluating a function

designator. 	All routines are recursive and all

calculations are performed in single precision floating

point arithmetic.

The routines operate by associating numeric values

with the symbdlic variable. 	The value of each variable

is found from the variable name table. 	If a variable name

cannot be found in this table, the structure name table is

searched and if found this structure is immediately

evaluated for a numeric result. 	Failure to identify a

variable causes a message to be printed and the evaluation

process terminates.

- 105 -

Removal of Parentheses

ReMoval of parentheses is a linearising operation

which reduces algebraic structural relationships within

a simple algebraic expression to a minimum. 	This process

involves both multiplying out terms and expanding expressions

raised to an integer power. 	Both operations are part of the

simplification process in FORMAC under user control. 	These

operations are performed in AIDS by manipulating control

word sequences in a recursive manner.

Removal of parentheses is performed on a term by

term basis within a simple algebraic expression by the

routine EXPANDS. 	It requires as parameters the address

of the simple algebraic expression and the address where

the result is to be stored.

Each term is formed in a scratch area by removing one

level of parentheses at a time. 	The resulting simple

terms are removed to a resultant area while further expansion

is introduced if parentheses still exist. 	The simple terms

are simplified before being moved. 	The resultant expression

is subsequently simplified.

The expansion of a simple algebraic expression raised

to an integer power is performed by creating a vector of term

control word3in a large scratch area. 	Muliiplication is

performed using only indirect address control words until

the exponent power has been reached. 	Each term is then

- 106 -

simplified followed by a simplification of the resultant
.

expression.
-- 	•

Removal of parentheses is undoubtably the most

complex operation performed by AIDS.

Factoring

No attempt has been made to implement the inverse

operation to expansion, namely factoring. 	However, the

facilities for implementing factoring are available for

user defined procedures. 	Further facilities are

desirable such as searching for a subpattern within a

simple element as well as extracting the largest common

pattern from two or more simple elements. 	Neither of

these is difficult to implement. 	It is clear that

factoring should be attempted in a highly interactive

environment, such as with visual display terminals, where

extensive user direction and control is possible.

- 107 -

Chapter VI

Algebraic Simalification and Substitution

Simplification

Central to any sophisticated symbolic algebraic

system is the need for an efficient simplification

mechanism. The simplification is usually related to

the canonical format of symbolic representations within

the system. 	Simplification is essential in that it

removes redundant symbolic expressions as well as

permitting more efficient processing on the resultant

data structure elements.

A brief survey of the development of simplification

routines is given in reference 10. 	The authors cite

several independently written routines for performing

some aspects of simplification. 	Most of these are

LISP based except notably their own simplification

subsystem within the FORMAC system called AUTOSIM.

The exact meaning of simplification is not

readily definable and is usually only to be found in

terms of a working philosophy for a given algebraic

system. For example most would agree that

(14- 3a + 4b) should be reduced to a representation of

at least (4a+4b) and preferably 4(a+ b). 	However,

it cannot always be expected that the term (a - b)(a b)

- 108 -

should be automatically reduced to (a
2 - b2) as it may

be more informative to the user, expecially in an

interactive system, to maintain the original representation.

The removal of redundant values is invariably desired,

however, the .transformation of an algebraic entity to

another form .should only be performed under a set of

well defined conditions, all of.which can be controlled

by the user.

The importance of simplification cannot be

overstressed as simplification of a resultant operand can

in many cases account for more processing time that the

algebraic operations which produced the resultant

element. 	The essentials of simplification are a

pattern matching operation combined with the creation

of an equivalent representation for an algebraic element.

Again, because this is a dynamic type of operation,

demands will be made upon the data management facilities

in the system. 	Simplification in LISP based systems

(refs 10, 11) consists usually of a number of recursively

defined routines which operate on their list data

structures. 	The arguments against this type of

facility are essentially those against all list processing

systems, namely inefficiency in processing time and

storage requirements.

The AUTOSIM package in FORMAC differs from

previous attempts at simplification in many pronounced ways.

109 -

It is a complete subsystem encompassing many aspects

of simplification as defined within FORMAC. AUTOSIM

does not employ recursion in the same manner as LISP

based systems. 	It does however make use of a push down

store. 	Fundamental to the simplification process in

AUTOSIM is the ability to flag, and subsequently test

for) elements which are in simplified format.

FORMAC's authors have taken the view that a

substitution of a variable for an expression should

be performed whenever possible. For example consider

the following FORMAC statement:

1. LET E = (A B) **N

2. LET F = (A+ B) **M - E2 4- 5 * E ** D

The first FORMAC statement defines an expression
CA.

E to have the value (A+ B) ** N. 	If when this is

encountered at object time B is an atomic variable

(e.g. symbolic) and A and N are FORTRAN variables with

values 1 and 2 respectively then the representation

for the first expression will then be (1 4- B) ** 2.

If subsequently expression 2 is encountered and M is

a FORTRAN variable with value 6,, and D an atomic

variable, the representation for this expression will

be (1+ B) ** 	- (1 	B) ** 4+ 5 * (14-B) **2*D. If

however further simplification is possible at this level

it will be performed. For example if D were to have a

FORTRAN value of 3, the resulting representation for

- 110 -

expression F would be

6 * (11- B) ** 6 - (1 	B) * 4

The algebraic operations performed in FORMAC rely

on the representation of expressions to be in

simplified canonical format.

AUTOSIM performs the following "natural"

simplification transformations:

1. 0 ** A-4. 0

2. 1 ** A-4.1

3. A ** 0-N1

4. A ** 1->A

[

-A ** N if N is an odd integer 5. (-A) 	N._).

A * N if N is an even integer

6. -(-A) --> A

7. EXP (LOG (A))--->A.

8. LOG (EXP (A))->A

9. -(3 * A * (-13) * C * (-D))-->(-3) * A * B

where A 0

C D

10. n A.
3

j=1

n A. E 3
j=1

where A k- - 0

' Tf

	

TT 13 	Bi 	where Bk 1

	

j=1 	j2:1

jPk •

11. raTrBi 	0
j =1

where there exists at

least one value of k

such that B 	0 k

Most of the above transformations are usually inherent

in any simplification system. However, AUTOSIM applies

further transformations under control of the user.

These relate to the evaluation of standard functions

with numeric parameters. 	The options governing these

transformaticins are

a) evaluate all functions automatically

b) evaluate only the integer-valued functions

(factorial and combinatorial)

c) evaluate only the transcendental functions

(EXP, LOG, SIN, COS, ATAN, TANH)

d) no functions to be evaluated .

AUTOSIM is a scan driven process and operates by

deciding whether a simplification transformation is

applicable to the part of the expression currently

being scanned. 	Each algebraic operator governs the

simplification operation on its associated operands

and the lower level operators. 	The applicability of

the simplification transformations can be determined

from a transfer table specifying the association between

operators. 	Part of the decision process is to perform

contextual checking. 	There are essentially three

main types of context which may be checked before

applying a simplification transformation. 	Firstly there

is a check for specific patterns of operands and operators

(e.g. the simplification of B ** (-K) is only done if K

is an integer). 	Secondly a test is made to check if the

- 112 -

sub expression has already been simplified. ' Lastly,

transformations are only_applied after checking mode

switches for specifying simplification options.

All transformations are not immediately applied

when first recognised,in the transfer table but are

delayed until sub expressions are simplified. 	In this

way the need to perform some transformations may be

eliminated. 	Also intermediate in-line growth of

expressions can be reduced (e.g. the transformation

(Ti * T2 	Tn) ** X —>(T1 ** XTn ** X) should

only be performed after the base Ti * T2 	Tn has

been simplified) by delaying simplification at one level.

Simplification in AUTOSIM involves an ordering of all

operand variables for an operator in delimitor Polish

notation.

Essentially FORMAC simplification (AUTOSIM) is a

scan dominated process for applying transformations on

the internal representation of an expression. 	The

process involves a complex set of rules for both

determining when and how a simplification transformation

should be applied. 	Extensive data movements with

sorting and merging are involved.

Simplification in SYMEAL achieves essentially the

same objectives in a somewhat more formal manner. 	The

simplification mechanism consits of a series of procedures

which may be called recursively to reduce and modify the

- 113 -

list data structure for an expression. 	A transfer

table is Used to determine sign whenever parentheses

are removed. SYMBAL also uses five modes which

determine the level and extent of any simplification.

These modes provide controls for:

1. distribtitive multiplication: 	It is possible to

specify the removal of all parentheses up to an integer

power. 	Parentheses will be retained for all expressions

having larger integer exponent values.

2. delayed assignments: The user may control the

assignment of a value to a variable through this mode

3. common denominator: This mode makes it possible

to control whether rational expressions are to be

represented as

E. (numerator terms)

denominator

or as 	E(numerator terms/denominator)

4. truncation of power series: For power series

representations all terms with an exponent greater than

a specified value are dropped.

5. distributive multiplication in expressions consisting

of a single term: For expressions consisting of a single -

term, distributed multiplication is unconditionally suppressed.

Individual routines exist for simplifying factors

and terms. 	Most make extensive-use of a scratch area

and ultimately result in copying the simplified element

into a new area.

- 114 -

Simplification in AIDS

Algebraic simplification in AIDS is performed

either implicitly as an integral part of an algebraic

system operation or explicitly through a user initiated

command. Simplification is performed in accord with

the needs of proper system operation.

In much the same manner as with other extensive

algebraic systems the algebraic data elements are always

maintained in reduced canonical format. 	Operations

which produce results which may require simplification

automatically invoke the necessary simplification

mechanisms. 	Some of the same simplification mechanisms

can also be invoked through user control.

Since simplification is such a vital part of

any algebraic manipulation scheme it is essential to

be able to perform this function on any algebraic
data element as economically as possible in terms of

processing time and storage space required. 	The result

produced by any basic simplification mechanism should

be a data element in canonical format with no redundant

representations. 	The redundancy argument applies to

both structural as well as symbolic data.

One of the basic reasons for choosing some of the

data structure elements found in AIDS was to make the

simplification process as natural and simple as possible.

Hence a minimal amount of manipulation is performed in

- 115 -

a well defined manner.

Simplification of elements in AIDS usually involves

re-writing the simplified element into a location

different from that of the original element. 	This

approach has been chosen primarily because of expediency.

There are cases where a simplified element in AIDS may

require more storage space than the unsimplified element.

In this case there would be an unjustift,able amount of

housekeeping and data movement involved. 	The result

of any simplification in AIDS is to produce a simplified

element in reduced canonical format. 	This is not a

necessary condition of AIDS operation and an analogous

simplification mechanism could be constructed to

produce simplified elements in the extended format.

This facility might perhaps be useful for a highly

interactive environment such as the use of visual

displays where obviously it would be undesirable to

rewrite large elements because of only minor changes.

The various levels of simplification in AIDS

can be broadly classified as follows:

1. simplification of simple algebraic elements

2. simplification of composite algebraic elements

3. reducing structural complexity to canonical format.

Simplification of Simple Algebraic Data Elements

The simple algebraic data structure elements in

- 116 -

AIDS consist essentially of contiguous lists in store

containing control information as well as algebraic

primatives according to a format defined by the•control

word. A simple element is dynamic in length and hence

can contain any number of symbolic variables or variable

exponent p'airs, but only one element constant. 	Simplification

of a simple=element involves removing redundant variables

from the element. 	For example the unsimplified simple

element 3 * A ** 2 * B ** 1 * A ** 1 would simplify

into 3 * A *•* 3 * B ** 1.

The simplification of simple elements is

performed by the COMPRESS routine. 	This routine

accepts as parameters the address of the simple element

to be simplified as well as the address of the location

where the simplified element is to be stored. 	COMPRESS

operates by selecting each variable in turn and

scanning for its next occurence, if any, in the element.

If it does not occur again the variable (with or without

exponent) is recopied into the new area. 	If, however,

another instance of the variable is found the exponent

is accordingly updated and the scan stopped. 	In this

case the scan for the next variable begins without

recopying. This process can be executed in the same

data area in which the term exists only if the simple

term has explicit exponents. 	For the case where the

simple element has implicit exponents a match during the

- 117 -

scan necessitates expanding the simple item from an

implicit exponent format to an explicit exponent format

before the previously described process can be applied.

(This is essentially the reason for rewriting simplified

elements into new areas of store - i.e. an element can

grow in length during a simplification operation!)
1

This expansion is performed in the result area and

COMPRESS is then applied to this element.

Whenever a match of variable names is found the

exponents are updated by rational arithmetic addition.

If the result is zero the variable exponent pair is not

included in 'the new element being formed. • The control

word for the resultant elenent is automatically updated

during the operation.

The EXPAND routine accepts as paramenters both

the address of a simple element to be expanded from

implicit exponent to explicit exponent format and the

address of the location in store where the result is

to be formed. 	This operation involves merely inserting

exponent values of 1/1 for all variables.

The COMPRESS, in conjunction with EXPAND routine,

performs the following simplifications in AIDS:

1 The break-even point occurs when the number of
variables in the original element is 2 (equating
lengths gives 2 	N=24. 2(N - 1), hence N := 2).

- 118 -

a) A ** 0 --t,- 1 	(implicitedly)

b) A ** M* A ** N —0,- A ** (M -I- N)

c) m TT 	F. 	IT Fi n
where m - n (m)n) variables

(F.) are common i= 1
	

i=1

in the simplification process could The scans

be shortened by ordering the variables within a simple

element according to the collating sequence in much

the same manner as AUTOSIM. 	However, AIDS attempts

to avoid this restriction so that a user defined order

may be maintained whereever possible for possible use

in highly interactive systems. 	In any case, the

amount of processing time is not likely to be reduced

significantly as the ordering process could itself

consume considerable processing time.

Simplification of Composite Algebraic Data Elements

Composite elements in AIDS combine algebraic

structural information with symbolic data of simple

algebraic data elements. 	Simplification of composite

elements involves both structural re-organisation as

well as combining and simplifying simple elements.

The composite syntactic elements <term) and

-4 simple algebraic expression> are simplified by the

routines RTERM and HLC respectively. Each routine

accepts as parameters the address of the composite

- 119 -

element to be simplified and the address in which

the result is to be stored.

Term Simplification

Term simplification involves reducing a term

to the minimum number of factors by combining redundant

representations. 	The RTERM (reduce term) routine

makes two passes on the given term, first to remove

all simple factors and combine them into a single

simple factor element and then a second pass to

extract all composite factors. 	The resulting simple

factor resulting from the first pass is itself reduced

by the COMPRESS routine. 	If the resultant constant

is zero the resultant control word is set to a single

word of zeroes signifying a simple term of length zero

(i.e. a null term). 	If the constant has value 1/1

and further composite factors exist, the simple item is

not removed, although it could well be. 	The overhead

borne by maintaining a simple factor of value 1/1 is

small and it can prove useful when performing further

algebraic operations.

The second pass involves comparing each composite

factor with all remaining composite factors in the term

for either complete or partial equivalence. 	If the

two factors differ only in exponents a resultant

factor with updated exponents is moved to the resultant

- 120 -

area. This scan cycle continues for further possible

matches of composite factors for the same partial

equivalence. 	Each composite factor as it is used,

is flagged so that it can be ignored in subsequent scans.

New scan cycles,are initiated until no further composite

factors remain.

The effect of RTERM is to produce a reduced

composite term in canonical format. 	A simple factor,

if one exists, will appear as the first sub element.

All composite factors with common base will be combined

into a single composite element of the same base but

updated exponent.

simplification:

d) 0 * A-> 0

e) ,tIm, TT C.
i==1 	i==1

In essence RTERM performs the following

where m - n (m>n) composite

factor have base elements

in common with other elements

The control word which describes the new term is

updated to reflect any changes as a result of the

simplification.

Simplification of Simple Algebraic Expressions

The simplification routine which reduces the

representation of a simple algebraic expression is HLC

(high level compresser). 	This routine operates in

much the same manner as RTERM. Each term in turn is

- 121 -

compared against all remaining terms for either complete

or partial equivalence, the partial equivalence in this

case being "differ in leading constant value only".

Matches which lead to possible reductions involve

storing an.updated term in the resultant area as well

as flagging the term in a separate map area to signify

that it has been accounted for. The order of the terms

is not changed and where reduction has occured the

position of the first appearance of the term is

maintained .

HLC assumes that each term is in a reduced

state from the operation which formed it. 	The control

word is updated to reflect any changes induced by the

simplification mechanism. 	The result of combining

two terms may lead to a zero result vich is checked.

Simplification from HLC is defined by

f) 	C * A-1-0 	where C= 0, and C is the
constant associated with a

simple data element

9)
	

n

E Ti
	ZT. 	where m - n (m>n) terms differ

1=1 	1=1. 	from other existing terms in no

more than a constant factor

Resolving Structural Complexity

Complex algebraic structures can be built up by

describing and referencing sequences of control words.

By this means it is possible to build up superstructure

- 122 -

on existing algebraic and symbolic data. 	The most

important instance of this is the case where all

factors in a term or all factors in a composite

factor can be affected by an exponent. Some or all

of the factors may already have explicit exponents and

the Iterm or factor may have one or more (if the composite

item is not in simplified format) simple factors.

The routine REDUCE has been designed to transform

this type of structural complexity for a term or composite

factor into a standard format. REDUCE accepts as

parameters the address of the element as well as the

address where the result is to be stored. 	Th6 effect

of this routine is to produce a vector of control

words and data elements in which each base element is

identified by an indirect address control word followed

by the complete exponent. 	The exponent may reference

other existing elenents by indirect addressing. 	This

result could in turn be simplified by the RTERM routine.

It may of course be necessary to raise a simple

factor group to an explicit power. 	This could be done

by decomposing a simple group of m variable into m+1

composite factors, each of which consists of a simple

item raised to an explicit power. 	It is, however, also

possible to raise the complete simple item to the

explicit power by creating a single composite factor

consisting of the simple group all of which is affected

by the explicit exponent. 	This latter course is

- 123 -

followed in AIDS.

REDUCE operates by maintaining a stack for the

exponent value as a simple algebraic expression. 	Each

factor in the term or composite factor may contribute

its own exponent value which must of course by removed

before pas'sing to the next factor. 	For example assume

that the term 3 * A ** 2 * B * (A - B) ** 2 * (A D) ** 3

were to be raised to the power X - Y. An exponent stack

consisting essentially of a simple algebraic expression

with the single term (X - Y), which is itself ,.a simple

algebraic expression, is created. 	The first sub

element of the term which is a simple factor with

explicit exponents is raised to an exponent power by

creating a composite factor with a single simple data

element. 	The composite factor is set to type explicit.

The exponent value is moved from the exponent stack to

the resultant area. 	The next factor (A - B) ** 2 is

a simple algebraic expression with explicit exponent.

A control word pointing to the simple exponent of

value "2 " and designated as type term is added to the

exponent stack. The control word describing the exponent

stack is also updated to reflect the increased length

and element count. The local exponent value is

removed from the exponent stack, by changing the exponent

control word, after the factor has been moved off to

the result area. 	This process is repeated until all

- 124 -

sub element factors have been dealt with.

This routine is particularly useful in cases

where structure is created and manipulated by routines

other than the AIDS routines for performing operation

on the data structure elements. 	However, AIDS does use

this facility when expanding a polynomial to an integer

power.

A limited amount of structural simplification

is provided by the MOVELEM routine. All indirect

addressing links are removed from the subelements of

the data element being moved. 	The result of course

is stored in canonical format.

Substitution

Substitution involves the replacement of one

symbolic entity by another. 	The entity being replaced

is usually a variable although it could be any algebraic

element.

This process is essentially scan driven and requires

searching for the element to be replaced. 	At present

AIDS provides the facility of replacing a symbolic

variable by any other algebraic data element. As a

symbolic variable is always stored in a simple element a

complete simple element must be removed and in most cases

replaced by a composite element. 	This is done in AIDS

by creating indirect address control words in an existing

- 125 -

structure which point to the replacement element. 	A

simplifying pass is then used to move the structure to

a resultant area.

Substitution is performed in AIDS by the routine

SUBST which has as argument the addresses of the variable

fox replacement, the referenced simple algebraic expression

and the resultant area. 	Even though replacement of complete

elements is not provided it can readily be designed by

using existing facilities in AIDS.

- 126 -

Chapter VII 	•

- 	, 	 - 	-
Differentiation and Integration

Differentiation and integration constitute two

of the more complex algebraic functions of algebraic

manipulation. 	Both of course are required when

dealing with the formal solution of differential

equations. 	The procedures for performing these operations

are recursive in nature with procedural complexity related

to the sophistication of the associated data structure.

Each procedure can be defined in terms of primative

arithmetic and pattern matching operations as well as

predefined transformations.

Differentiation, as is to be expected, is decidedly

the simpler of the two processes. 	Initial attempts

(Refs. 4, 5) at symbolic differentiation were crude and based

on simple data structures. 	With the availability of LISP,

,which is well suited to this type of operation, more

sophisticated and powerful schemes emerged (Ref. 3).

Differentiation can also be readily achieved with string
•

processing languages such as SNOBOL.

Symbolic integration, however, does present more

of a challenge. 	The first symbolic integration program

with any claim to generality was SAINT (Symbolic Automatic

Integrator - Ref. 6). 	This was written in LISP but did

- 127 -

not have sufficient flexibility to permit the solution of

ordinary differential equations in a practical algebraic

manipulation system. 	This was followed by SIN (Symbolic

Integration - Ref. 8), also written in LISP, which used the

rational function package of MATHLAB (Ref. 7). 	SIN in

turn was used to write SOLDIER (Ref. 8) for the solution

of first order, first degree ordinary differential

equations. 	Both systems make extensive use of pattern

matching.

Even though SAINT and SIN are both relatively

powerful they can be very time consuming because of their

heuristic approach. 	Integration is perhaps best suited

to a•highly interactive environment where user direction

and involvement can be used to reduce the complexity of

the operation.

- 128 -

Differentiation and Integration in AIDS.
.

Differentiation

A comprehensive differentiation facility is

incorporated within AIDS with many of the associated

routines making use of the recursive facilities. A

design objective in AIDS has been to provide data

structures which permit the realisation of complex

operations in a natural and efficient manner. 	This

can be demonstrated by the relative ease with which

the normally difficult operation of differentiation

can be achieved.

Differentiation of any element (including simple

algebraic expressions) is performed as a single pass in-

line-!operation to produce resultant elements. 	As these

elements may not be simplified a further simplification

pass is required which also moves the elements to a

resultant area. No other re-organisation of the data

elements is necessary even though the operation is inherently

highly recursive.

There are 3 levels of routine in AIDS involving

differentiation of:

1. simple algebraic expressions

2. terms - simple or composite

3. functions

All of the above are essentially recursive except for the

- 129 -

case of simple term elements.

Differentiation of a simple algebraic expression

is performed by the DIFFSAE routine which accepts as

parameters the address of the simple algebraic expression

control word, the address where the result is to be stored

and the address of the variable of differentiation. 	Each

.term is referenced in turn and a test is made to determine

whether it is of type simple or composite before control

is transferred to the appropriate routine. 	The control

word of the resultant simple algebraic expression is

automatically updated after return of control from the

.lower level differentiation routines. 	This routine is

essentially recursive since a term within a simple

algebraic expression may itself be totally or in part

another - simple algebraic expression. 	A final

simplification pass is required to remove redundant terms

from the unsimplified structure created in the work area.

The recursive routine DIFFC differentiates a

composite term with respect to a given variable. 	The

parameters involved are the addresses of the composite term,

result area and variable of differentiation as well as the

address of the simple algebraic expression control word

(of which the resultant term is a part) to be updated.

Differentiation is performed according to the formula:

d (f.f f 2 3
dx

f.) f2f3 	f n df 1 + f lf 3f4 • • • f n cif 2 4.
dx 	 dx

flf2f3 	fn -1dIn
dx

- 130 -

Each term in the result requires creating a null term control

word followed by the differentiation of the factor

associated with the term. 	If the result of the

differentiation is zero this term is ignored and the

routine proceeds to create the next term. 	If a non zero

result is prbduced indirect address factor control words

are stored with the term to reference the remaining

factors. Both the term control word and the simple algebraic

expression control word are appropriately updated. 	The

resultant term is simplified and moved to its proper

, 	result area.

In performing differentiation of any element in the

above process a test is made for type. 	If the element

is a simple factor, control is passed to the routine for

performing differentiation of simple elements. 	If a

simple algebraic expression is encountered a further test

for explicit exponent is made else control is immediately

passed to the DIFFSAE routine. 	Should an exponent exist

it is referenced as an indirectly addressed factor of the

term before control is passed to DIFFSAE. When control is

returned the control word for the expression, if the result

• is non zero, is modified to specify an explicit exponent

which is then formed by performing a subtraction of a term

with value 1/1 from the existing exponent.

For the case where the element to be differentiated is

a function designator control is passed to DIFFFD. 	This

- 131 -

routine is required to identify the function and perform

the necessary operation. 	For trigometric functions this

can be performed through tables. 	Further if a function

is affected by an explicit exponent it is dealt with in

the same manner as the analogous situation for simple

algebraic expressions. 	DIFFFD is recursive.

The most common requirement is to differentiate

simple elements which can be of either implicit or explicit

exponent format. 	This is essentially a very fast

operation as it involves a scan to determine the presence

of the variable of differentiation. When the referenced

element has implicit exponents and a match is found the

element is copied less thevariable into the resultant

area. 	For explicit exponents the appropriate exponent

value is decreased by 1/1 before moving it. A resultant

exponent value of zero requires removing the variable

during copying. 	To give an indication of the result a

completion code is returned in R15, zero indicating a

valid result and non zero that the result itself is zero.

Considerably more power can be added to this system

by catering to functional dependence of one variable on

another. 	For this, further scans would be required to

search for dependent variables. 	This operation would then

involve replacing the simple element with a composite

element involving factors which arc themselves derivatives.

- 132 -

Integration

No attempt has as yet been made to implement general

integration schemes involving all the algebraic data

elements of AIDS. 	However, a routine (INTEL) does exist

for integrating a simple element with respect to a

specified variable of integration. . This function is

similar in operation to differentiating a simple element

except that in this case it may be necessary to expand

a simple element from implicit to explicit exponent format.

Again no functional dependence is permitted at this stage.

Integration of complicated algebraic expressions

can be achieved by first removing parentheses and then

integrating on a term by term basis. 	It is hoped to be

able to attempt more ambitious schemes in the future.

- 133 -

Chapter VIII

-- CLAM Algebraic Interpreter -

CLAM, an acronym for Command Language for Algebraic

Manipulation is a simple interpretive scheme designed to

illustrate the facilities of AIDS. It consists of a number

of basic commands available to the user for performing a

limited class of algebraic operations. The system can readily

be extended to include other commands by interfacing to the

existing facilities of AIDS.

The' interpreter uses some of the recogniser routines

from the syntax analyser which recognises simple algebraic

expressions. Each command statement is free format hence

blank3may appear anywhere. An implementation restriction

requires that the total length of a command must not exceed

400 characters, excluding blanks, and the command must be

terminated by a semi colon.

CLAM was written by interfacing to existing AIDS

facilities. The power of AIDS is not limited to writing

simple algebraic interpreters as it is expected to be able

to produce sophisticated algebraic compilers from AIDS.

Description of CLAM

The following further syntactic entities are used in

the definition of CLAM:

1. <name) : : 	< variable identifier>

2. <name list> : : =sname> I <name list> tt 	It 	<name>

- 134 -

A name may reference a symbolic variable or a simple

algebraic'expression. The unique identification of a user

is also by a name.

A command statement consists of a command identifier

followed by an operand list and terminated by a semicolon.

The following is a list of commands available in CLAM:

1. USER <name) " ; "

This is the first command of a CLAM program and

identifies a user to the system. CLAM then allocates him a

private data space for tables, work areas, stack areas, etc.

2. FINI < name) it ; It

FINI signals the end of processing for a given user.

For terminal operation a user count is kept which when it

goes to zero causes control to return to the operating system.

A user's data space is relinquished by FINI.

3. LET < name) "=" <simple algebraic expression > 	le ; ft

LET permits a simple algebraic expression and its

associated name to be known to CLAM. The simple algebraic

expression is recognised, converted to internal format, and

catalogued.

4. PRINT < name list> to ;

PRINT causes a print out of all simple algebraic

expressions referenced in the name list. Names which

reference variables are printed with their current value.

- 135 -

5. SET 	name> "=" <number> 	< name)

" C number ') . . . 	1/ /I

Symbolic variables are assigned numeric values by

means of the SET command. Any number of variables may be

assigned values through a single SET command.

6. SAVE <name list > " ; "

The expressions referenced by names in the name list

are relegated to backing store. They may be restored by

either the command RESTORE or a reference to an simple

algebraic expression during processing.

8. RESTORE <name list > "
	It

All the referenced simple algebraic expressions in

the name list are moved from backing store to main store.

{
9.

DISPLAY NAME TABLE
STRUCTURE TABLE

The contents of either the NAME or STRUCTURE table is

printed out.

10. EVALUATE <name list‘? 	"

The simple algebraic expressions referenced in the name

list are evaluated for numeric results.

11. 	SUBSTITUTE < name) "=

"IN " < name >

< simple algebraic expression >

. tt 2

The first name value references a variable in the

simple algebraic expression specified by the second name

value. The referenced variable is replaced by the symbolic

value of the simple algebraic expression.

- 136 -

12. SIMPLIFY <name list > " ; "

Each simple algebraic expression referenced by a

variable in the name list is simplified and stored in main

core in canonical format.

13. DIFFERENTIATE < name 	WRT " < simple variable > " ; ft

The simple algebraic expression referenced is differen-

tiated with respect to a simple variable

14. EXPAND C name list 	to ; ft

This command is used to reduce a simple algebraic

expression to a polynomial of simple terms.

15. INTEGRATE < name) ft WRT " < simple variable> It
	

ff

Integration of the named simple algebraic expression is

.performed with respect to the simple variable specified on a

term basis. The simple algebraic expression must first be

expanded.

An example of a CLAM program is given in Appendix VII.

•

- 137 -

Chapter IX

Summary

AIDS has been designed from the premise that

algebraic operations can be defined on algebraic data

structure elements in much the same way that arithmetic

operations are defined on arithmetic data. 	Further

it is possible to identify processes and facilities

which are essential for manipulating symbolic data.

Some of these constitute primitive operations for

symbolic processing and could well be incorporated

within the hardware.

The usefulness of AIDS lies in the ability to

define simple algebraic data elements, composed of

primiltive (arithmetic and symbolic) components, which

-can be combined dynamically with algebraic structural

information to form composite algebraic data elements.

The data elements are organised to model algebraic

expressions. 	By manipulating the data elements through

algorithmic schemes, algebraic operations are realised.

Desirable hardware features can be associated with

specific algebraic operations.

The accessing mechanism involves indirect addressing

to any level which is a standard hardware feature on many

machines. 	Indirect addressing is usually associated with

- 138 -

a specific bit position in the instruction. Obviously

for an AIDS implementation it would be desirable to

define the control word format in such a way that the

indirect address bit coincides with the hardware indirect

address bit:

Data management in AIDS makes extensive use of

stacks. Again this facility is found on many machines

and is becoming fashionable with new machine architecture.

This stack facility must be capable of dealing with

variable length segments. 	Stack maintenance should be

done by the hardware except for stack overlays. A

stack area full or empty condition signalled by a

hardware interrupt can be used to initiate a stack area

save or stack area restore operation. 	It would also be

desirable to provide a store protection mechanism through

hardware rather than through software as in AIDS. 	For

existing data elements the length field can be used to

define the upper bound with the control word as base.

In AIDS it is desirable to be able to manipulate

data elements in single operations. When multiplying

two simple elements of the same exponent format the

• operation is well defined and involves a concatenation,

a rational arithmetic multiplication and the creation of

new control word. 	Reducing a simple element with explicit

exponents to a minimal form is also a well defined

operation. 	When a simple element has implicit formt,

- 139 -

scans through the symbolic components for multiple instances

of the same component could set a condition code to signify

that the element requires expansion to explicit exponents

which must then be followed by a reduce operation. The

expansion from implicit to explicit format is itself

well-defined. All of the above operations could be

implemented as interruptable micro-programmed sequences.

It is possible that rational arithmetic, including the

greatest common denominator algorithm, could be realised

through micro code, however because of its potentially

explosive nature when the resultant denominator is

small condition code setting would certainly be required.

Future enhancement

It has always been the desire of the author to

develop the concept for ultimate use in man-machine

interactive systems. 	It is obvious that many processes

such as factoring can be best realised through user interaction.

At the same time it may be informative for the user to

have a graphical representation of a function on which

to base further decisions. 	Identification and changes

from the display can be readily implemented through

association lists using indirect addressing. 	A display

with keyboard terminal is an obvious candidate for the

AIDS facility.

An obvious enhancement is the representation of

complex numbers. 	This can be achieved by essentially

140 -

adding another dimension (and using another bit in

control word) to each simple element. Consideration

should also be given to extending the concept to

ordered n-triples for tensor applications.

It is further hoped that the AIDS facility can be used

to devise languages for teaching and demonstrating concept

in some areas of mathematics.

•

- 141 -

References

- 	- 	.
1. Iliffe, J.K. Basic Machine Principles, Macdonald

& Co. (London) 1968

2. Iliffe, J.K. Elements of BLM, Computer Journal
August (1969)

3. Woolridge, D. An Algebraic Simplification Program
in LISP, Stanford Artificial Intelligence Project,
Memorandum 11, December 1963

4. Kahrimanian, H.G. Analytical Differentiation by
Digital Computer, M.A. Thesis, Temple University
Philadelphia, Pa. May 1953

5. Symbolic Work on High Speed Computers, Project
Report No. 4, Dartmouth Mathematical Project,
Dartmouth College, N.H. June 1954

6. Slagle, J.R. A Heuristic Program that Solves
Symbolic Integration Problems, Journal ACM 10, 4
p. 507 - 520

7. Engleman, C MATHLAB, Proceedings AFIPS 65, FJCC
November 1965 p. 413 - 422

8. Moses, J. Symbolic Integration, Project MAC report
MAC-TR-47, December 1967

9. Brown, W.S. The ALPAK System, Bell Systems Technical
Journal Vol. XLII (1963) p. 2681

10. Tobey, R.G., R.J. Bubrow, S.N. Zilles, Automatic
Simplification in FORMAC, Proceedings Fall Joint
Computer Conference 1963

11. Brown,W.S., J.P. Hyde, B.A. Tague, ALPAK System,
Bell Systems Technical Journal XLIII No. 2 (1964),
p. 785 - 804

12. Collins, G.E. "PM A System for Polynomial Manipulation",
Communications ACM 9 (August 1966) p. 578 - 589

13. Brown, W.S. A Language for Symbolic Algebra on a
Digital Computer, Proceedings IBM Scientific Comp.
Symposium on Computer Aided Experimentation, October 1965

- 142 -

14. Bond, ER:FORMAC Share Program General Library
R21BM0016

15. -Sammet, J.E. and E.R. -Bond Introduction to
FORMAC Trans. IEEE on Elect. Comp. August 1964

16. Sammet, J.E. Survey of Formula Manipulation,
Communications ACM Vol. 9, No. 8 (August 1966)

17. Sammet, 'J.E. An Annoted Description Based
Bibliography on the Use of Computers for Non-
numerical Mathematics, Computing Reviews Vol. 7,
No. 4 (July 1966) p. B1 - B31

18. Engeli, M. Design and Implementation of an
Algebraic Processor, Report Institute fUr
angewandte Mathematik der E TH, Zurich April 1966

19 Engeli, M. SYMBAL - User's Manual, Report: The
University of Texas at Austin, June 1968

20. Sibley, E.H. The Engineering Assistant: Design of
Symbol Manipulation System, Technical Report
CONCOMP, The University of Michigan August 1967

21. Fenichel, R.R. An On-line System for Algebraic
Manipulation, Report MAC-TR-35, Prog. MAC, MY-T
December 1966

22. Standish, T.A. A Data Definition Facility for
Programming Languages, Ph.D. Thesis, Carnegie
Institute of Technology, Pittsburgh, Pa. May 1967

23. Perlis, A.J., R. Iturriaga An Extension of ALGOL
for Manipulating Formulae, Communications ACM 7,
February 1964

24. Griswold, R.E., J.F. Poage, I.P. Polansky The
SNOBOL 4 Programming Language, Prentice Hal1,1968

25. McCarthy, J., et al., LISP 1.5 Programmer's Manual
M.I.T. Press, Cambridge, Mass. 1962

26. Newell, A., H.S. Kelly 	IPL-V Manual, Prentice Hall
1964

27. Wirth, N., H. Weber EULER, A Generalisation of ALGOL,
and Its_ Definition, Part I Comm. ACM Vol. 9 No. 1 January 1966,
Part II Comm. ACM Vol. 9 No. 2 February 1966

- 143 -

28. Ross, D. et al, AED-O Programming Manual, AED-O
User's Kit, Electronic Systems Laboratory, MIT,
Cambridge,- Mass. -

29. Wirth, N., C.A.R. Hoare A Contribution to the
Development of ALGOL, Communications ACM Vol. 9,
No. 6 June 1966

30. Iliffe, J.K., J.G. Jodeit A Dynamic Storage
Allocation Scheme, Computer Journal 5, 200 (1962)

31. Roos, D. ICES System Design, M.I.T. Press Cambridge,
Mass. 1967

32. Iliffe, J.K., G.F. Coulouris Notes on the "Machine
Interface" Presented at NATO Advanced Study Institute
on Architecture and Design of Digital Computers,
August 1969

33. System 360 - 2928 Array Processor, IMB Manual Ref.
A24-3519

.34. APL/360 Primer IBM Manual

Appendix

Syntax For Algebraic Expressions

1. Basic Symbols

<basic symbol> ::= c letter, I <digit> I <delimiter>

	

1.1 	cletter> ::=AIB(C(D(E(F(GEH(I(J(K(L(M(N~O~P(Q(R(S(T(U(V(W(X~Y~Z

	

1.2 	<digit> ::=011121314j516171819

	

1.3 	<delimiter> ::= <operator > I <separator> 1 <bracket>

	

1.3.1 	<operator > ::= <arithmetic operator> I <relational operator>
<logical operator>

1.3.1.1 <arithmetic operator> :: 	add operator> 1 <multiplication operator >I
<exponentiation operator >

1.3.1.1.1< add operator> ::=+ I -

1.3.1.1.2 <multiplication operator> ::=* I

1.3.1.1.3 <exponentiation operator > : :=*-*

1.3.1.2 <relational operator> ::= -<1<:-.71zI>=1,1".=

1.3.1.3 <logical operator> ::=

	

1.3.2 	<separator> ::=,1 •1:1;

	

1.3.3 	< bracket) ::= ()

• 2. Identifiers

	

2.1 	<letter digit string> ::= <letter> I <letter digit string> <letter > I 	 1
<letter digit string> < digit>

	

2.2 	< identifier> : := < letter digit string> 	 .
3. Numbers

< number> ::=< integer > I <rational> I <real>

	

3.1 	<unsigned integer> ::=<digit> I <unsigned integer> <digit>

	

3.2; 	<integer> ::=<unsigned integer> I <addop> unsigned integer>
I-.

	

3.3 	< rational number> ::=< integer> " / " <integer> 	 A
0

	

3.4 	<real> ::=< integer> " . " 1 It . It <unsigned integer> I <integer > 	 t
" . " <unsigned integer>

4. Variables

< variable> ::=< simple variable> I <subscripted variable>

	

4.1 	< variable identifier> ::=< identifier>

	

4.2 	<simple variable> ::=< variable identifiers

	

4.3 	<array identifier> ::=<identifier>

	

4.4 	<subscripted variable> ::=<array identifier> " t % It <subscript list >
It
	

)
	

III

	

4.5 	<subscript list> ::=<subscript expression> I <subscript list, > n , it
< subscript exprssion>

•

	

4.6 	<subscript expression > : :=< simple algebraic expression }

5. Function Designator

	

5.1 	< function designator > ::=< variable identifier> " (< parameter
list> ") tt 	 list

	

5.2 	< parameter list > ::=< parameter > I <parameter'r> "
•

tt < parameter >

	

5.3 	< parameter> ::= < identifier> I <simple algebraic expression>

6. Algebraic Expressions

	

6.1 	< variable exponent pair> : := <simple variable> " 	tt <number >
< simple variable } U ** tt U (" <number> ") "

1-A

	

6.2 	< simple variable group> ::= <simple variable> I <simple variable 	 rn
group> " * " <simple variable >

	

6.3 	< variable group} ::=< variable exponent pair > I < variable group >
< multiplication operator > < variable exponent pair).

	

6.4 	< simple factor group> : := <simple variable group> I <number > It * TI

<simple variable group > I c number >

	

6.5 	< factor group> : := <variable group > I < number > < multop) < variable
group>

	

6.6 	<primary> : := <simple factor group> I < factor group> I < function
designator > I tt (ft < simple algebraic expression> ") "

6.7 	<factor> ::=< primary > I cfactor> " ** " <primary>

6.8 	< term) : :=< factor > I < term> < multiplication operator> <factor >

6.9 	< simple algebraic expression> :,:= < term > I <addop> <term) I <simple
algebraic expression> <addop> <term)

Appendix II

Summary of AIDS macros

1. 	Recursive Facility Macros

1. RSAVE 	R1= 0, R2=14, STACK=0

saves the consecutive sequence of registers as specified by keyword

parameters R1 and R2 on the stack specified by the STACK keyword

parameter. (Default values will cause registers 0 to 14 to be saved

on stack 0).

2. RRETURN 	R1=0, R2=14, STACK=0

restores the consecutive sequence of registers as specified by key-

word parameters R1 and R2 on the stack specified by the STACK

parameter. The default values are identical to those in RSAVE.

3. STACKSEG 	ADDRESS, LENGTH, STACK=0

saves the consecutive sequence of words of length (in words) specified

by the positional parameter LENGTH from store location specified by

the positional parameter ADDRESS on the general purpose stack specified

by the keyword parameter STACK as an extension of the existing stack

segment. The default value for the STACK parameter is stack 0.

4. POPSEG 	ADDRESS, LENGTH, STACK==0

restores a single sequence of words of length (in words) specified

by the positional parameter LENGTH from store location specified by

the positional parameter ADDRESS from the general purpose stack

specified by the keyword parameter STACK. The same default value as

for the STACKSEG macro is assumed.

5. STACK 	ADDRESS, LENGTH, STACK==1

saves the sequence of words of length (in words) as specified by the

LENGTH positional parameter from store location specified by the

positional parameter ADDRESS as a single data stack segment on the

data stack specified by the keyword parameter STACK. The default

value for the STACK parameter is stack 1.

6. POP 	ADDRESS, LENGTH, STACK =1

restores the sequence of words of length (in words) as specified by
.•

the LENGTH positional parameter from the last stack segment on the

stack specified by the STACK keyword parameter to the store location

specified by the positional parameter ADDRESS as a single stack

segment.

II. 	Data Element Referencing Macros

1. NEXTD 	RP= 2, RD =3

loads the register specified by the keyword parameter RD with the

address of the first sub-element of the element whose address is

contained in the register specified by the keyword parameter RP.

The default values for RP and RD are 2 and 3 respectively.

2. NEXTE 	RP=2, RE =3

loads the register specified by the keyword parameter RE with the

address of the next equivalent element to the element whose address

is contained in the register specified by the keyword parameter RP.

The default values for RP and RD are 2 and 3 respectively.

3. ELEMENT 	PR=2, ER:=3

loads the register specified by the keyword parameter ER with the

final address of the element whose address is contained in the

register specified by the keyword parameter PR. The default values

for PR and ER are 2 and 3 respectively. There can be any number of

levels of indirectness.

uT 0

4. EXPONENT 	RP:=2, RE:=3

loads the register specified by the keyword parameter RE with the

address of the exponent element for the element whose address is

contained in the register specified by the keyword parameter 'PR.

The default values for RP and RE are 2 and 3 respectively.

5. FUNCTION 	 RE ̂ 3

loads the register specified by the keyword parameter RF with the

address of the name element for the function whose address is

contained in the register specified by RP.

6. ALL1 	FUNC, RP =2, RE 	=3, R1= 4

executes the function whose symbolic address is specified by the

positional parameter FUNC for all sub-elements of the element whose

address is contained in the register specified by the keyword para-

meter RP. FUNC must return control through register 14. The keyword

parameter RE specifies the register to be used for holding the address

of each sub-element, before transfering control to the function pro-

cedure. R1 is the keyword parameter which specifies the count register

for the sub-elements. The default values for RP, RE and R1 are 2,3

and 4 respectively.

7. 	ALL2 	FUNC, RP=2, RE1=73, RE2 =4, R1==5, R2=6 ..

executes the function whose symbolic address is specified bytthe

positional parameter FUNC for all sub-elements of the sub-elements

whose address is contained in 'the register specified by the keyword

parameter RP. (This macro, for example, can be used to access all

of the factors of all of the terms in a simple algebraic expression).

Keyword parameters RE1 and RE2 specify the registers to be used to

store the addresses of the first and second level sub-elements

respectively. R1 and R2 are keyword parameters for specifying the

respective count registers.

III. 	Utility Macros

1. 	MOVE 	LR =5, FROMR =6, TOR=7

moves the consecutive sequence of bytes from the main store address

contained in the register specified by the keyword parameter FROMR

to the main store address, contained in the register specified by

keyword parameter TOR. The number of bytes to be moved is found in

the register specified by the keyword parameter LR. The registers

specified by FROMR and TOR are updated after the operation, while the

value in the register specified by LR goes to zero.

2. 	DEFINE

defines the hexadecimal equivalence of a single byte for a number

of common symbols used in AIDS.. The following values are defined

on the first byte of a control word:

a) SIMPLE 	defines the simple/composite bit•

b) IMPLICIT 	defines the implicit/explicit exponent bit

c) INDIRECT 	defines the indirect addressing bit

d) PRESENCE 	defines the presence bit

e) TERM

	

	defines the one's complement of the 2 bit. values 	0

for "term" (note "term" has a bit field value of 00)

f) FACTOR 	defines the 2 bit value for "factor"

g) SAE 	defines the 2 bit value for "simple algebraic

expression"

h) FD 	defines the 2 bit value for "function designator"

The following possible type fields are defined:

i) STI 	simple term implicit

j) STE 	simple term explicit

k) CTI 	composite term implicit

1) CTE 	composite term explicit

m) SFI 	simple factor implicit

n) SFE 	simple factor explicit

o) CFI 	composite factor implicit

p) SEI 	simple algebraic expression implicit

q) SEE 	simple algebraic expression explicit

r) FDI 	function designator implicit

s) FDE 	function designator explicit

IV. 	Syntax Analyzer Macros

1. 	STRTABLE 	NS==00, D=60, LT=00, A0=001 MO=00,

R0=00, L0:=001 S==00

create a 256 byte vector and assigns the value (hexadecimal) of

the appropriate type, as defined by the keyword parameters, to each byte

whose offset is the decimal equivalent of the hexadecimal EBCDIC

value. The following types are defined:

2.

type description graphic symbol

a) NS non valid symbol non graphic symbol

b) D digit 0 - 9

c) LT upper case letters A - Z

d) AO add operator -I- 	, 	- 	•

e) MO multiplication operator * , /

f) RO relational operator 4 , 	79

g) LO logical operator --1,&, 	I

h) S separators , 	; 	: 	.

i) DL delimitors (9)9 	' 	ti

j)

k)

SS

BLK

special symbols

blank

9 	?, 	&, Yot 	@,

BOT TYPE, ADDRESS

causes abranch to the symbollic location specified by the positional

parameter ADDRESS only in the next character in the source string

being examined is of type as specified by the positional parameter TYPE.

The typecan be any one of the types listed in the STRTABLE macro above.

3. 	BNT 	TYPE, ADDRESS

causes a branch to the symbolic location specified by the positional

parameter:ADDRESS only if the next character in the source string

being examined is not of the type as specified by the positional

parameter TYPE.

- 157 -

Appendix III

Control Word Formats

1. 	Format 1 - standard format

bit position value 	definition

0 	simple element

1 	composite element

0

1 	0 	implicit exponent

1 	explicit exponent

2 - 3 	00 	term

01 	factor

10 	simple algebraic

expression

11 	function designators

4 	0 	in-line addressing

1 	indirect addressing

(use format 2)

5 	0 	locally defined element

1 	externally defined element

6 - 15 	 number of sub elements

16 - 31 	overall length of element

or offset to next

equivalent element

2. 	Format 2 	indirect addressing format

bits 	definition

as in format 1

indirect addressing

new address of control word

0 - 3

4 1

8 - 31

158 -

Appendix 1V

Description of Condition Byte after Logical Tests

1. . TESTESI --.test for equivalence of 2 simple elements_ 1
bit position 	definition

	

0 	constants differ in value

	

- 1 	exponent types differ

	

2 	exponents are inverse values

	

3 	variables do not match

2. 	TESTECI - test for equivalence of 2 composite elements

bit position 	definition

	

0 	constants of simple elements differ

in value

	

1 	sub elements do not match

	

2 	exponents differ in value

	

3 	number of sub elements differ

	

4 	no simple sub element

1 a value of 1 in bit position for condition to hold'

- 159 -

LIppendix V

Table Formats

Structure Name Table
- - - 	-

All entries of 8 bytes each

a) header work for table

number of entries in table

b) table entries

bytes

1 - 4 	name of structure

5 	status byte

bit 0 0 in main core

1 on secondary storagedevice

bit 1 0 inactive

1 active

format 2

6
	

identification number of saved record

7 - 8
	

length of saved record in words

format 1

5 - 8 	address in core of structure

2. 	Name value table

Each entry is 8 bytes long as follows:

1 - 4 	name of variable

5 - 8 	value in floating point representation

•

1.

- 160 -

Appendix VI

Summaiy of-CLAM Commands

The following further syntactic types are used in

the definition of CLAM:

<name > 	< variable identifier >

<name list> :: 	< name > <name list> "
	

It < name>

Command Structure

Command 	Operands 	it• it

Blanks are permitted anywhere

CLAM Commands

1. SAVE < name list > 't • , tt

2. RESTORE < name list > " ; "

3. DELETE < name list > " ; it

4. EVALUATE < name list > it ; n

[5. 	SET < name > it 	?I <number > " , It < name >

4 number > 	 3 i. ; ii
6. DIFFERENTIATE < name> "WRT" < simple variable> 11. it

2

7. INTEGRATE < name > "WRT" < simple variable >

8. EXPAND c name list > " ; 11

NAME TABLE
9. DISPLAY
	

it tt

STRUCTURE TABLE

11 	• 	11

10. SUBSTITUTE < name 	11 - 	< simple algebraic expression >

" IN " < name > " ;

11. PRINT < name list > tt; it

12. SIMPLIFY < name list
	

11• it

13. USER c name 	It 	11

14. LET < name 	11 - tt
	

simple algebraic expression 	. it

15. FINI < name > 	. 11

U
N

I V
E

R
S

I
T

Y
 O

F
 W

A
T

E
R

L
O

O

IEF233I SY141 	SYS3UT=B.

//SY1AN 03 	'L I4DE S'OSGLEV L=I
// 	EKE PR]: =AS4 CLG,PARM. '<ED=IXRF LET,LIST'
KXAS4 EXEC 	PS =IEJAS1,P 14=LOAD,R GION=50K 330200 0
XXSYSLIB DD 	DS1 'IE=SYS1.M CLI3,DISP SHR 0004030
XXSYSJTI DD 	J11 =SYSS'),SP CE=(1700, 400,50)) 000533 0
XXSYSUT2 DD 	J11 =SYSSO I SPi:E=(1700, 400,50)) 000303 0
XXSYSJT3 DD 	J11 =(SYSS),S P=(SYSUT2 SYSUT1,SY LIB)), X001000 0
xx SPA E=(1700,(03,50)) 30120000
XXSYSPRI T 	DD 	SYS UT=A 301400)0
XXSYSPJN 4 DD 	SYS UT=B 00160010
XXSYSGJ 09 	DS4 4E=EL3ADS T,JNIT=SY SQ,SPACE= B0,(103,5 1), X00183010
KX DIS ...(m3D,PAS) 032333 0
//ASI.SY 14 	DD
IFF2351 LLOC. 	F3R SY1A1 S1
IEF2371 YSLIR 	3 131
IEF2371 YSUTI 	JI 132
IEF2371 YSUT2 	3 1 	136
IEF2371 YSUT3 	1 130
IEF2371 YSPRINT 131
TEF237I YSPUNC4 J 132
IEF2371 YSGI 135
IFF237I YSIN 130

U
N

I V
E

R
S
I
T

Y
 O

F
 W

A
T

E
R

L
O

O

E.)

SYMBOL TYPE ID DDR LENS
EXTERNAL SYMBOL DICTIONARY PAGE

11.41 4/01/ H LI ID

[a

U
N

I
V

E
R

S
IT

Y
 O
F
 W

A
T

E
R

L
O

O

U
N

I
V

E
R

S
IT

Y
 O

F
 W

A
T

E
R

L
O

O

SYNAN
INAREA
:MD
ADOSTR
STRTAB
dA
MOVELE4
OSAVE
DELETES
PVAL
CRLSTR
GETCJR
DIFFSAE
PRTSAE
RETCJR
INTSER
DISPLAY
SUBS'.
NEWJ
HLC
INSERTN
EXPANDS
INSERTS
SERIFS
TERM
PURGE
JSERAREA
LDS
I DENT
VI
SV
VFP
SVG
VG
FD
PLIST
PARM
3FG
FG
NUMBER
JI
RATIONAL
REAL
REALL
PRIMARY
FACTOR
TERM
SAE
STAK
POPO
MESSAGES
:NVRL
INITIAL
MESSAGES
JSER4

SD 01 0 0000 001E
ER 32
ER 03
ER 04
ER D5
ER 06
ER 07
ER 38
ER 09
FR OA
ER OB
ER DC
ER DD
ER OE
ER OF
ER 10
ER 	11
ER 	12
ER 13
ER 14
ER 15
ER 16
FR 17
ER 18
ER 	19
ER 14
ER 18
LD 	333E08
LD 	330F56
LO 	03DF6C
LD 	010F82
LP 	DiOFBE
LD 	0 1030
LD 	311090
LD 	01111A
LO 	D112A6
LD)112E6
LD 	0112FC
LD 	D11386
LD 	01148E
LD 	0 14C8
LD 	31157C
LD 	/115C8
LD 	0116B8
LD 	0 173E
LD 	0117FA
LO 	011462
LO 	311347.
ER 1C
ER 10
ER IF
ER IF
LO 	0 1EBC
SD 20 0 1E68 3001
ER 21

01
01
01
01
01.
01
01
01
01
01
01
)1
01
01
01
01
01
01
91
01
01

20
8

0
1

3

SS OF LEN

TH VALUE

i. TH VALUE

DRESS,CLE
V(STAKSEG
H PARAMET
&SYSNDX+8
SYSNOX

GTH,&STAC

R IS ADDR

=

SS OF LEN

&STACK)
&ADDRESS)
ENGTH)

RESS,&LEN1,TH,&STACK
V(POPSG)
H PARAMETER IS ADDR
&SYSNDX+8
SYSNOX

&STACK)
&ADDRESS)
ENGTH)

PAGE 	1.

Ln: OBJECT CODE DDR2 STM 	SOUR:E STATEMENT FOIFEB 9 4/01/

1
1
1
1

1

M CR0
&NAME S ACKSES &A

	

&NAME L 	15,
* 	NOTE THAT LENG

	

L 	14,

	

B 	15

	

CIOP 	0,4

	

M&SYSNDX DC 	ALI
4L3
4(&

M ND
M. ,R0

&NAME P PSE3 &AD

	

&NAME L 	15,
NOTE THAT LENG

14,
1 	L. 	1,N
2 	15
2 	9,4
2 N&SYSNDX DC 	ALI

AL3
4(&

2
	

M ND
2 	M L -R0
27 &NAME STACK
28 &NAME L
29 * 	NOTE
3
3
3
3
3
3
3
3
3 	tiI
3 &NAME P
4 &NAME L
4 * NOTE
4 	 L

I
LR
ND
CRO
AVE
LR
IN

SS OF LEN

STAC<=0
BASE

1

TH VALUE

I
LR
NO
CR0
P 	&AD RESSI&LEN,THT &STACK

15, V(POPD)
THAT LENG H PARAMET7R IS ADDR

14, ADDRESS
14, SA&STACK
14, SA&STACK
14, LENGTH
14, SA&STACK+4
I,R A&STACK
0(1 ,X'OESTAC
14, 5

&ADDRESSI&LENGTH,&STACK I
15,=V(STAK)

THAT LENGTH PARAMETER IS ADDRESS OF LENGTH VALUE
14, ADDRESS
14, SA&STACK
14, LENGTH
14, SA&STACK+
1,R A&STACK
3(1 X'OESTAC '
14, 5

3,&R2=141.NR=COF',
15,1 	ESTABLISH
*,1
I5,-V(NASSA&S ACK)

U
N

IV
E

R
S

I
T

Y
 O

F
 W

A
T

E
R

L
O

O

ADDR 1

4
4
4
	

L
4
4
	

L
4
4
	

B
5
	

M

&NAME R
5 &NAME B
5
	

U
5
	

L

0

PASE 	2

Lo: o ,,IECT CODE ADDR 1 DDR2 STM SOURCE STATEMENT FO1FEB 9 	4/01/ 0

U
N

IV
E

R
S

IT
Y

 O
F

 W
A

T
E

R
L

O
O

U

N
IV

E
R

S
IT

Y
 O

F
 W

A
T

E
R

L
O

O

5 	L 	15,'{3,15)
5 	S M 	&RI &R2,4(15) SAVE RESI TERS
5 	M I 	3(1),&NR
5' 	B LR 	15,
64 	U INS 	*,I
6 	M' I 	A&S SNDX,X 1 0& TACK'
6 	14 &SYSNDX+4
6 	 15, &SYSNDX
6 	 15
6 A&SYSNOX DC 	V(R TACK)
60 	U INS 	*0
6 	M ND
61 	 M CRO
61 &NAME R ETURN &RI 0,&R2=14 STACK=3
71 &NAME B LR 	15
7 	U INS 	*,1
7 	15, V(CSSA&ST CK)
7 	 L 	151'13,15)
7. 	Li 	&R1 &R2,4(15) RESTORE R SISTERS
7 	B LR 	15
7 	U INS 	*,1
7' 	M I 	B&S SNDX,X'D& TACK'
7 	15, &SYSNDX
71 	 15
8 B&SYSNDX DC 	V(U TACK)

M ND
82 	MACRO
83 &NAME MOVE 	&LR=5,&FROMR=6,&TOR=7
84 * 	SPECIFIED IN RESISTER FR3MR T3 LOCATION
8. &NAME C 	&LR =4'256'
8 	B 	Q&S SNDX 	LESS THAN 256 BYTES
8 	M C 	312 6,&TOR),0 &FROMR) MOVE MACK
8' 	 &FR MR1256(3, FROMR) 	INCREMENT
8 	L 	&TO 256(0,&T R)
9 	Si 	&LR =4'256'
9 	B 	*-2 •
9 Q&SYSNDX LTR 	&LR &LR
9' 	 P&S SNDX
9 	B T 	&LR +4
9 	&LR *+I2

&LR 1(3,&LR) RE-INCREMENT COUNT
9 	 B 	P&S SNDX
9 	0(1 &TOR) 1 0(& ROMR) 4D/E PARTIAL
9 P&SYSNDX LA 	&TO 3(&LR,&T R)

1.0 	L 	&FR MR,D(UR FROMR)
10 	M ND
10 	M ICRO
10 &NAME N XTD 	&RP 2,&RD=3
10, &NAME E EMENT PR= RPIER=&RD
10 	L 	&RD 4(0,&RD) PICK UP NEXT INLINE
10 	M ND
10 	M cm]
10 &NAMF N XTF 	&RP 2,&RE=3
10 &NAME T4 	0(& P)IINDIRE T
11 	B&S SNDX

it

I

13 MOVE
3F 256 3Y
EGISTER B

BLOCK

Ca

ES
256

SPECIFIED IN RESISTER T)R

PAGE 	3

LOC JECT CODE ADDR 1 DDR2 STM SOURCE STATEMENT FOLFEB 9 4/Oi/

U
N

IV
E

R
S

IT
Y

 O
F

 W
A

T
E

R
L

O
O

U

N
IV

E
R

S
IT

Y
 O

F
 W

A
T

E
R

L
O

O

11 	"P'
	

DIE P),X'CO'
11
	

CES SNDX
11. 	Lo
	

ERE 4(0,&RP)
11
	

DES SNDX+2
11 • CCSYSNOX LA

	
ERE B(0,ERPI

11.
	

DES SNDX+2
11 BSSYSNDX L-1

	
ERE 2(0,&RP)

11" 	SLA
	

ERE 2(0)
11" D&SYSNDX AR

	
ERE &RP

120 	M ND
12 	M RO
12. &NAME E EMENT &PR
12. &NAME L 	&ER
12 	DI&
12. 	B 	**I
12. 	L 	&ER
12' 	 #-1

12 	M ND
121 	M cRn
131 &NAME E PONENT &R
13 &NAME T 	DI&
13 	V&S
13. * 	IF I DIRECT EX
13 	L 	ERE
13 	Ei EMENT PR=
13. 	13 	 Z&S
137 V&SYSNDX LR
138 	LH
139 	11
141 	 15,
14 	N XTD 	RP=
14 	B 	W&S
14 X&SYSNOX NEXTE RP=
14 W&SYSNDX LR 	&RP
14. 	E EMENT PR=
14 	T 	15 ,
14 i&SYSNDX LR 	&RP
141 	M ND
14 	M ,r;Rn
151 CNAME F NOTION ER
15 &NAME N XTD 	RP=
15' 	M ND
151 	M CRO
15 &NAME A LI 	CFU
15. &NAME E EMENT PR=
15. * 	EXECITE FUNCTI
15' 	L 	&R1
15 	&R1
15 	N XTD 	RP=
16' 	 LES
16 KaSYSNOX NEXTE RP=
16 LCSYSNOX LR 	&RP
16' 	 EMENT PR=
16 	L 	15,
/6 	LR 	14,

0(0,&ER)

11

(0,15)
.RP,RD=ERE
SNDX
APIRE=FIRE
ERE
RE,ER=ERE
CSYSNDX
14

=2,ERF=3
RP,RD=CRE

'',ERP=2,E
RP,ER=CRP
N FOR ALL
0(D I ERP)
MASK1
RP,RD=&RE
SNDX
RP,RE=CRE
&RE
RE,ER=ERE
AIEFUNC)
5

NEXT

SAVE POINTER

E=31 &RI=4

FIRST LEV

NJ. OF EL _MENTS AT

L ITEMS

HIS LEVEL

2,EER=3
CPR
RI,INDIRE T

=2,ERE=3
P),INDIRE T
SNDX
ONENT MUSS BE
4(0,ERP/
RE,ER=ERE
SNDX+2

14,ERP
15,0I0IERP)
15,MASKI

TEST FOR XPLICIT COMPJSITE

LEMENT

0

&REI=3,&R

MENTS AT

ST LEVEL

2=4

ECOND LEV

LE4ENTS

COUNT BY

COUNT BY

OR COMPO ITE ITEM
R EXPLICI FORMAT F
BRANCH 3 ZERO FOR

R
E ALGEBRA 	EXPRESS
ION DESIG ATO1
DDRESSING
DEFINED :EVENT

M IMPLICI
M EXPLICI
TERM IMPL
TERM EXPL
TOR IMPLI
TOR EXPLI
FACTOR TM
FACTOR.. EX
EBRAIC EX

IT
CIT

IT
IT
LICIT
LICIT
RESSI34 I

PAGE 	4

LO: DEJECT CODE ADDR1 DDR2 STM SOURCE STATEMENT FOIFEB 9 4/01/

16 	T 	CR1 K&SYSNDX
16 	M ND
16. 	M CRO
16 &NAME A L2 	&EU l&RP=2,&
170 &NAME E EMENT RP= RP,ER=&RP
17 * 	MA R EXECUTES FJNCTION
17 	&RI 0(0,CRP)
17; 	 CR1 MASK1
17 	N XTD 	RP= RP,R0=&RE
17 	N&S SNDX
17. MCSYSNDX NEXTE RP= RP,RE=&RE
17' N&SYSNDX LI 	&RP &RE'
17 *
17 	E EMENT PR=.REI,ER=ER
18P 	 O(& EI),SIMPL
18 	B 	OCS SNDX
18' 	 &R2 0(0,&REI)
18 	CR2 MASK1
18 	TA O(&RE1), MPLICIT
18
18 	L. 	&R1 1(0,&RI)
18 	T 	O(& El),X 1 301
18 	BID 	*4-8

18 	L 	CR1 1(0,&R1)
19
19
	

XTD 	PR= REI,ER=ER 2
192
	

P&SYSNDX
193 O&SYSNDX NEXTE RP=&RE1,RE=&RE2
194 P&SYSNDX LR 	&REI,&RE2
19
	

EMENT PR=ARE2,ER=&R2
19 Q&SYSNDX L 	15, A(&FUNC)
19'
	

LR 	14, 5
19' 	B T 	CR2 O&SYSNOX
19
	

T 	&R1 MCSYSNDX
20 	M ND
20 	M CRO
20 	D FINE
20 SIMPLE E U 	X'8
70 IMPLICIT EDU 	X'4
20. TERM 	E U 	X 1 3
20. FACTOR Eel) 	X'1
20' SAE 	EIU 	X'2
20; FO 	E U 	X'3
20' INDIRECT EOU
21' PRESENCE E)U
21 * 	TYPES
21' SIT 	EeU 	X 1 0
21 STE EIU 	X'4
21 CTI EPU 	X 1 9
21. CTE 	EIU 	X'C
21. SFI 	E U 	X1 1
21 SFE 	E U 	X1 5
21' CFI 	E U 	X'9
21m EFF 	F U 	X'D
22 SET 	F U 	X'2

L DOWN

A EXPONEN
TERM

ON

PLICIT

ELEMENTAR
IMPLICIT
MOTE —4JS
TYPE FACT
TYPE SIMP
TYPE FUNC
INDIRECT
EXTERNALL

SIMPLE TE
SIMPLE TE
COMPOSITE
COMPOSITE
SIMPLE FA
SIMPLE FA
COMPOSITE
COMPOSITE
SIMPLE AL

1=5,ER2=6

DR ALL EL

NO. OF FI

1

INCREMENT
TEST FOR

INCREMENT

U
N

IV
E
R

S
I
T

Y
 O

F
 W

A
T

E
R

L
O

O

0

SIMPLE AL
FUNCTION
FJNCTION
FUNCTION
FUNCTION

TO=*+4000

N PDATA=(

TAX ANALY

EGS),STOR

ER

EBRAIC EX. RESSIO4 E
MPLICIT
XPLICIT
MPLICIT
XPLICIT

GE=(&FROM

TH,&,C=C'
PJT CHARA
NGTH-11 EA

&AR=2
TEST FOR

INCREMENT

OBTAIN F
REFERENCE

TER IN Fl
DRESS

YPE

NCTIDN BY
BY R3- I

ST POSITI

E FOR CHA
SERTED IN

STRING POINTER BY 1

PAGE 	5

Ln: OBJECT :37E ADOR 1 DOR2 STM SOURCE STATEMENT FOIFEB 9 4/01/

U
N

IV
E

R
S

IT
Y

 O
F

 W
A

T
E

R
L

O
O

22
22
22
22
22
22
22
22
22
23
23
23
23
23
23
23
23
23 4

23 '
24
24
24
24'
24 '
24
24
247
248
249
25
25
25
25 '
25
25
25
25
25
25
26
,6
26
26'
26
26
26
26
26
26
27

27
27
27
27+
27.

U X'5
U X'B
U X'F
U 	MB
U X'F
ONMENT BI
U X 1 8
U X'4

SEE
FOI 	E. ►
EDE
FNI 	P ;

ENE
* 	ENVI
ESAE
EED 	E.
MD
	

U
SFGE 	E U
FGE
	

U
SAFE
	

EOU
M ND
M CRO

&NAME T ST
&NAME S

S

B
X&SYSNOX

MACR DEFINITI NS FOR SY
M CRO

&NAME S TENV &TY E
&NAME 0
	

NVS ATUSI&TYP
MEND
MACRO

&NAME CLEARFNV &TYPE
&NAME X 	NVS. ATUS,&TYP

M ND
M CRO

&NAME C ER 	&AD1 RESS,&LEN
&NAME M I 	CAD RESS,&C

&AD RESS(1)+L
M ND
M CRO

&NAME B FTYPE &TY E v &ADDRES
&NAME C I 	3(& R),&TYPE

&AD, RESS
M ND
M CRO

&NAME N XTCHAR &R 3
&NAME L 	&R, (31 &R)

M N7
MACRO

&NAME R T 	&TY El &ADDRES
&NAME T T 	0(1 3),CODEST

F 	2,* 12
B E 	&AD RFSS
13 	*4-8

C I 	&TY E,X 1 00 1
M ND
M cRn

&NA E R T 	&TY E,&ADDRES

PLICIT

&TO)

ACTER
R2

X 1 1
MO
MO
X1 0

AP

DS
ND

&N= &FROM=*
1,X SYSNDX
DC5 DEBUG,ID=
1,X SYSNDX
X&S SNDX+4
1F

I

S

0

PAGE

n JECT :31E ADOR 1 DDR2 STM SOURCE STATEMENT FO1FEB 9 	4/01/ 0

U
N

I
V

E
R

S
I
T

Y
 O

F
 W

A
T

E
R

L
O

O

U
N

IV
E

R
S

IT
Y

 O
F
 W

A
T

E
R

L
O

O

27
27
27
27
28
28
28
28

&NAME T
F
B

It
	

B
C
M
M

&NAME S

28 * NS-N
28 	D-DI
28. * 	LT-U

	
11

28' * 	AO-0
28 * MD-M
28 	RO-R
294 	L0-L
29 * S-SE
29
	

DL-D
29 	SS-S
29
	

BLK-B
29
29
29
?9
291 &NAME
30
301
302
303
30
30
30
30
30
30
31
31
31'
31
31+
31
31
31
31
31 •
32
32
32
32
32
32
32
32
32•
32

0(1 3)+ CODEST
?,- 12
&AD CRESS
*-43
&TY E'X'001

N3
CRO
RTABLE &N =31,&D=OD

&DL 3)+ ESS=00
N VALID S MBOLS HAV
IT
PER CASE IETTERS
ERA TORS
LTIPLY OP RATORS
LATIONAL PERATnRS
GICAL OPE ATORS
ARATORS
LIMITJRS
ECTAL SYMBOLS
ANK

AMETFRS S ECIFY HEX

TABLE VALI E
DC 	64X'&NS'
DC 	XL1'&FILK.
DC 	9)(1 &NS'
DC 	XLII&SS'
DC 	XLI'&S'
DC
DC 	XL1'&DL'
DC 	XL1'&AO'
DC 	XL1'&LO'
DC 	XL1I&LO'
DC 	9X'&NS'
DC 	XLP&SS'
DC 	XL1'&SS'
DC 	XL1'&MO'
DC 	XLP&DL'
OC 	XL1.1 &S'
DC 	XLP&LO'
DC 	XL1'&401
D: 	XLP&M0'
DC 	9X'&NS'
DC 	XL1'&S'
DC 	XLI'ESS'
DC 	XLI'ESS'
DC 	XLI'&RO'
DC 	XL1I&SS'
DC 	1OX'&NS'
DC 	XL1'&S'
DC 	XLII&SS'
DC 	Xll'ESS'
DC 	XL1i&DL'
DC

OBTAIN F NCTIO4 BY
REFERENCE BY R3- I

<=31,&A =00,&M3=0
CBLK=03
VALJE 	&NS

&D
ELT
&AO
&MO
CR0
&LD
ES
&DL
CSS

DECIMAL V LJES

SYM OL

54
55-73

7
7
7
7
8
8
9
9
9
9
9
9
9
9
9
1
1
1
1
1
1
1

1

E F3R - :1-14 A:TER
SERTE3 IN 12

3=00,&S=0

ION GRAPHIC SYMBOL
0-9
A-Z

*,/
=,
C,
. F
(,),',

,S,

SS
RD
DL
A3
L3
LO
NS
SS
SS
M3
DL
S
L3
A3
M3

-106
	

VS
7
	

S
B
	

SS
9
	

SS
3
	

RD
1
	

SS
2-121
	

NS
2
	

S
3
	

SS
If
	

SS
5
	

DL
5
	

R3

II

* ALL PAI

D CI'1AL 	TYPE
0 53 	NS
&A.<
AS
74
75

-89

XL1I&DP
XL1'&NS'
54X'&NS'
9X' ELT'
7X'&NS'
9X'&11"
8X"&NS'
8XICIT'
6X'CINS'
10X'&D'
6Xi&NSI

CO'
<'
&AO'
&MO'
CRO'
&LO1
CS'
COL.
&SS'
&NS'
&BLK'
•

1.7
1.B
1 9-182
1 3-201
2,2-208
2 9-217
2 .8225
2. 5-233
2 4-239
2 0-249
2'3-255

A—I

J—R

0-9

PAGE

Lo: n JECT CODE ADDR1 DDR2 STM SOURCE STATEMENT FOIFEB 9 	4/01/I

U
N

I
V

E
R

S
I
T

Y
 O
F
 W

A
T

E
R

L
O

O

U
N

I
V

E
R

S
I
T

Y
 O

F
 W

A
T

E
R

L
O

O

33
	

DC
33
	

DC
33
	

DC
33
	

DC
33
	

DC
33
	

DC
33
	

DC
33
	

DC
33
	

0:
33
	

DC
34
	

DC
34
34' * 	FUNC
34 *
34 DIGIT D
34's LETTER 0
34.. ADDOP D
34, MULTOP 0
34. RELOP 0
34" LOGOP D
350 SEP
35 DELIM 0
35 SPEC D
35' NONSYM 0
35' BLANK 0
35 RBRAC
356 L3RAC DC
357 ASTERISK
358 	MEN)
35 ' 	 M CRO
36 &NAME B
36 &NAME F
36'
36' 	C I
36
360 	M ND
36.
36' 	M CRO
36 &NAME B T
36. &NAME S
371
37
37' 	C I
37 	M ND
37
37 	M CRO
37 &NAME B LK
37 &NAME E
37.
37: 	C I
381
381 	M ND
380
38' 	M CRO
38+ ENAME B AO

DL
NS
L9WER CAS
LT
NS
LT
NS
LT
NS

NS

XL1
XL1
XL1
XL1
XLI
XLI
XL1
XL1
XL1
XL1
XL1
IC'

ION VALUE

0

1C')'
1C"."

&AD RESS
8

*-1-8
DIG T,X'DO'
&AD CRESS

&AD RESS
2,* 5
	

BRANCH IF LETTER
2,*• 8
*4.3
LET ER•X'00 1

&AD RESS
2,* 8
*+.8
BLA K,X'00'
&AD RESS

&AD RESS

PAGE 	a

LO: OFJECT CODE ADD? 1

U
N

IV
E

R
S

I
T

Y
 O

F
 W

A
T

E
R

L
O

O

Ed4)

U
N

IV
E

R
S
I
T

Y
 O

F
 W

A
T

E
R

L
O

O

333035 4 20 BE2A
3000)A 5120 3338
00003E 5 .100 2.304
)00012 1102
300014 5 F3 803A
000013 0 FF

30301A 0 DO

3033)3
000330 9 EC D33C
003034 0 BD
000015

0012 S TM 	SOURCE STATEMENT

2
B
	

*48

C
	

ADD P,X' 00'
&AD ti RESS

M N)

&AD
2,*
MUL
SAD

COMMAND LIST F NCTION
M CRO
C F 	&L, FUNC
L 	14,;L.(0,0)
L, 	3,4

CM&SYSNO LA 	3,0 14,3)
2,C &SYSNDX

L 	15, A(STAKAP)
B LR 	14, 5
L 	15, A(SV)
L 	 10, YNTAX+6
S 	11, GI
L 	11, 095(0,10)
LA 	11,1(3,11)
BALR 	14,15

CI&SYSNDX L 	11,AG1
L R 	0,0

CE1
14,
3,0 14,3)

PERFiRM OPERAT ON
L 	14, FUNC

L 	14, (0,0)
C I 	0(3 ,C','

B 	CM& YSNDX
M ND

F MACRO D F INITInNS
EC T

14, 2,12_(13)
LR 	11,
ING 	*,1

L 	2,C SA
S 	2,8 0,13)

13, f (0,2)
13,

L 	15, A(INITIAL
B LR 	14, 5

4 	OPEN INPUT DAT SET
0 EN 	(IN (I NPUT))

CNOP 0,4

OF 30
0308

)0004

38' &NAME
38
38
38
38
39
39. 	 M CRO
39 &NAME B MD
39 &NAME S C
39
39
39
39
39
39
40
40
40
40
40
40
40
40
40
40
41
411
412
413
41
41 •
41
41 '
41
41
42
42
42
42
42
42 * END
42• SYNAN C

030C 	42 CMDINT S
42
42
43
43
43
43
43
43
43
43
43
43

0)40

C I
B E
M ND

B E

II

II

8

RESS
5
10 1 X' 00'
RESS

FO1FE3 9 	4/01/ 0

BRANCH IF NOT MJLT

R3 POINTS TO ST1 I4G

jPDATE R3 TO GET BY VI

IS NEXT C ARACTER A 7.344A

3S= MFT22
T113346.R
DS= MATH4
T113346.R
DS= NATH3
T113346.R
OS= MFT11
T113346.S
3S= MFT22
T113346.S
DS= MATH4
T113346.R

000.

000.

000.

000.

000.

000.

SYNAN.R0000001

SYNAN.R0000002

SYNAN.R0000003

SYNAN.R0000004

SYNAN.R0000005

SYNAN.LOADSET

3S= MATH2 .
T113346.R 000.SYNAN.S0000006
3S= 4FT11 .
T113346.R 000.SYNAN.S0000006
05= 4FT11 .
IEWL,PARI (XREF,LET,LTST,NCAL
=(8,LT,AS1)
41E=EILOADS:T,DISP=i0LD,DELETE)
ME=SYSIN
41F=5G3SET G3),UNIT=SYSDA,SPAC
=(MOD,PAS 1
=ISYSDA,S, P=ISYSLIN ,syst_mnn»
UT=A,DCB= OLKSI7E=L21)
NAME=SYS1 FORTLIB,D7SP=SHR

0
0
0
0
0
0
0

KEPT

DEL TED

DEL TED

DEL

SYS

SYS

PAS

SYS

DEL

TED

UT

UT

ED

N

TED

:032203
002400
002600(
002800,
X003000 0

003200
303400
003600

K,

=(1024,I5

4,(53,20) SPACE=(10

,REGION=9

,20,11),

U
N

IV
E

R
S

I
T

Y
 O

F
 W

A
T

E
R

L
O

O

SYS1.MACLI3

SYNAN
1 135
130

IFF2371 SYSLMOD ON 130
IEF2371 SYSUT1 	ON 131
IFF2371 SYSPRINT 3N 136
1EF2371 YSLIB 	JN 130

IFF285I
IEF285I
IFF2851
IEF2351
I EF235I
IEF235I
IFF2851
IFF235I
TEF215I
IFF285I
IEF2351
IFF285I
IEF285I
IEF235I
IFF2851
IEF285I
IFF2851
IEF2851
XXLKED
XX
XXSYSLIN
XX
XXSYSLMO
XX
XXSYSJT1
XXSYSPRI
//LKED.S
//LKED.S
IEF2361
TFF237I
TEF2371

VOL SER
SYS70091
VOL SER
SYS70091
VOL SER
SYS70091
VOL SER
SYS70091
VOL SER
SYS70091
VOL SER
SYS70091
VOL SER
SYS70091
VOL SER
SYS70091
VOL SER
EXEC PG1

CJN
DD 	DSN
DD 	DON
DD DSN

DIS
DO 	UV!
IT OD SYS
SLIB DD D
SIN DO
UDC. FOR
YSLIN 	3

3

KED

U
N

IV
E
R

S
I
T

Y
 O

F
 W

A
T

E
R

L
O

O

SECTION

ORIGIN

03

LENGTH

1F62

S 	1E68 	118

1E80 	210

2190 	12C

22CD 	100
23C0 	9F54

C318 	2254

E570 	8F7

FE58 	12

EE70 	404
F278 	00
F348 	71A

FA63 	754

101C0 	AF2

10088 	20F
IOEC8 	198
11060 	15A
111C0 	IFO
11380 	700
11880 	700
12350 	700

F44-LEVEL LINKAGE EDITOR OPTIONS SPECIFIED XREF,LET,LIST
VARIARL OPTIONS USE) - SIZ =(49152,1i240)

****30 	DOES NOT EXIST BUT HAS B EN ADDED 0 DATA SE
DEFAULT 0 TION(S) U ED

ROSS REFE, ,ENCE TABL

U
N

IV
E

R
S

I
T

Y
 O

F
 W

A
T

E
R

L
O

O

E.)

U
N

I V
E

R
S
I
T

Y
 O

F
 W

A
T

E
R

L
O

O

ENTRY

NAME

LDS
VEP
PLIST
NUMBER
REALL
SAE

INITIAL

INSERTN
NAMVAL

CNPRRL

GETCOR

TESTESI
REDUCE
TMULT
COMPRESS
PRSUB

PRTSAE

PURGE

DIFFSAE

USTACK
POPSG

EXPANDS

LOCATION

F08
FRE

12A5
149E
1688
184C

lEBC

1E80
20EA

227C

23C0

C318
CDFE
DSCC
DA40
DC3C

E570

EE58

F348

FB65
FD6E

10538

NAME

IDENT
SVG
PARM
UI
PRIMARY

INSERTS
ADDSTR

RETCOR

TESTECI
MOVECWS
TOIV
EXPAND
PRADD

DI FES

STAKSEG
DSAVE

LOCATION

F56
1030
12E6
14C8
173E

IFEC
2138

24EA

C43C
CF48
0624
DB2A
DC52

F7DA

FBF4
FOCA

NAME

VI
VG

'SEG
RATIONAL
FACTOR

DELETEN

HLC
ASAES
DSAES
PRDTV

MATCHVAR

STAK
DGET

LOCATION

F6C
1090
12F:
157C
17FA

205E

C790
0256
D670
DB:6

F922

FC7C
FEAD

NAME

SV
FD
PG
REAL
TERM

DELETES

43VELEM
SSAES
ISAES
PRMULT

INTEG

POPD
INAREA

L3:ATION

F82
111A
1366
15:8
1A62

2042

:62C
03EA
D7AE
DBFO

F97C

FCF2
10040

CONTRO

NAME

SYNAN

MESSAG

TABLES

INTSER

DISPLA
STORE

ALSJTS

PRINT

SERIES

NEdU
CRLSTR
RIFF

RS TACK

EVAL

SJBST
CNVRL
ATX
RTI
STAKO
STAKI
STAK2

LOCATION 	NAME 	LIGATION

NASSA3
NASSA2

19600 ERRTRA

FDIOCS

IHCERRE

FCVAOUTP
FCVEOUTP

ADJSWTCH

FlOCSREP

15244

15680

16CC2
17730

180FC

1824E

INTS4TCH

FCVL7JTP
FCVC3UTP

12E328
12B68

16106

16052
1794A

NAME

STACK0
CSSA2

STRTAB

ALOG

12824
12864

14558

14E94

NAME

CSSAI

FCVZOUTP
INT6SWCH

IM CONTR L SECTION

R TACK
T BLES

R.TACK
F /AL
S ORE
PINT
I TSER
S BST
A GUTS
E/AL
S_RIES
U ERAREA
M SSAGES U

N
IV

E
R

S
I
T

Y
 O
F
 W

A
T

E
R

L
O

O

U
N

IV
E

R
S

I
T

Y
 O

F
 W

A
T

E
R

L
O

O

10)

USERAR A
	

12823

USERA

IHCFIX

IHCFRX

IHCSLO

IHCSEX

IHCECO

IHCCOM

THCERR

IHCFCV

13068

I* 148A0

R* 14CF0

14E78

15038

H* 151E8

16120

16668

H* 16C18

IHZEFN H* 17D93

IH:EFI S* 182A8

IHC0OP * 193C8
IHCETR,H* 196C8

THCUATBL*
WA
RCdV
XWAS

19958
199E0
1D860
1E030

LOCATI

D4
06;
D6
D7:
D7
08
08
09r
DA
DA B.
DB
DC
DO
05

REFERS

NAME ORIGIN LENGTH NAME LOCATION

12824
12848

13F14

14840

14CF0

14E78

15038

151E8

16380

16669

16C19
1722E

17090

18248

196C8

LOCATION

1.2844

16E42
17C33

CSSAO
NASSA1

NAM TAB

FIXPI

FRXPR

ALDG10

EXP

IBCOM

SEQOASO

ERRMON

ADCON
FCVIOUTP

ARITH

F TOGS

IHCTRCH

1248

E38

14F

193

13A

180

F31

545

SAC

1175

512

I11C

300
28E

98
3E80
700
FAO

1E030

T7 SYAR3L

INAREA
ADDSTR
WA
DSAVE
EVAL
GET:DR
PRTSAE
INTSER
SUBST
HLC
EXPANDS
SERIES
USERARF
'MESSAGE

CMD CWVSAE 1F350

LOCATION REFERS

04
06
06
07
D7
08
09
09
DA
08
08
DO
04
1CA

I

VECvIS

0 SYM3DL

CMD
STRTAB
MOVELE4
DELETES
CRLSTR
DIFFSAE
RETC31
DISPLAY
NEWJ
INSERTN
INSERTS
PURSE
MESSAGE
WA

1E670
	

VTCWS

IN CONTR3 SECTION

X AS
U ERA
Ai GUTS
T•BLES
C LSTR
D FF
S ORE
D SPLAY
N WU
T BLES
T BLES
S RIES
M SSAGES
Wi

IEBOO

in^yr- In".4 REi-L1S 13 SYMBOL IN CONTROL SECTION LOCATION REFERS TO SYMBOL IN CONTROL SECTION

1C8
1CC
218
225
23A 1
235
C46
CF6
CDA
C78
C73
D24
061
DEO
E59
EAD
E99
EE3 '
F27
F34
F4A
F5F
FA3
FA4 ►

FA4
FA5
FA5

1903
10398
11470
1059C
1055
106A
1008,
10C9
10CiV
19CD
10E5
10EC
1125
1262 •
1253
1254
1255

0 	1256
1287
14C8 1
14E0 =
140F
14FE
1516

U
N

IV
E

R
S

IT
Y

 O
F

 W
A

T
E

R
L

O
O

It

HLC
pe'F'^
r"/V"1
USERA
CNVRL
STRTAB
NAMTAB
RSTACK
RSTACK
USTACK
NASSA0
CSSAO
RCWV
RET:OR
RET:OR
RSTACK
RSTACK
USTACK
NASSAO
mESSAGF
RI!
RSTAC<
USTACK
CSSAO
STA<
PRSJ5
PRA9D
EXPAND
MESSAGE
RSTACK
USTACK
ATX
CNPRRL
VICOS
WA
GET:OR
RETCOR
RSTACK
NASSA0
GET:1R
FIXPI
STA<0
STA<0
STAK1
STA<1
STA<2
STA<?
IH:ERRM
IH:FRRM
EXP
IHCFRRM
IHCERRM

A GUTS
k TACK
CIVRL
it ,F!) ,A
C IVRL
U FRA
U ERA
R TACK
R TACK
R.TACK
U ERAREA
U ERAREA
R WV
S ORE
S ORE
R TACK
R TACK
R.TACK
U.ERAREA
M SSAGES
R I
R TACK
R TACK
U ERAREA
R TACK
A GUTS
A GUTS
A GUTS
Mt SSAGES
RSTACK
RSTACK
ATX
I ITSFR
X4AS

S (IRE
S ORF
R TACK
U ERAREA
S ORE
I :FIXPI
S AKO
S AKO
S AK1
S AK1
S AK2
S AK2
I CERRM
I CFRRM
I CSEXP
I iCFRRM
I CERRM

IC5
1CBI
1E5
227
23A
235
2351
C55
C77
023
D24l
D24r.
060
DDFi
DEI
E761,
E684
ECO
EE3
F34
F36
F47
FA3
FA3 '
FA4
FA4'
FA5

1001
101E
1033C
10598
10540
1055
106A
10C9
10C9
10CA
1008+
10E8
110F
1282
1283
1284
1285
12B6
12871
14C8
14E0
140F
14FA
1516
152A

STA<
MESSAGE
USERA
INTEG
USERA
MESSAGE
CRLSTR
RSTACK
USTAC<
USTAC<
NASSAD
CSSAO
GET:OR
GET:OR
MESSAGE
RSTACK
USTAC<
USTAC<
CSSAO
USERA
RSTAC<
USTACK
MASSA°
VTCWS
POPD
MOVELEI
PRDIV
STACK0
RSTACK
USTACK
MASSA°
CSSAO
NAMVAL
MOVELE4
CWVSAE
REDUCE
MESSAGE
USTAC<
CSSAO
FRKP1
STA<0
STA<0
STAK1
STA<1
STA<2
STA<2
I5C34
IBCOM
ALOG
IBCOM
IBCOM
SEDDASD

I TACK
M SSAGES
U ERA
D FF
U EIA
M SSAGES
C LSTR
R TACK
R TACK
R TACK
U ERAREA
U'. ERAREA
S ORE
S ORE
M SSAGES
R TACK
R TACK
R TACK
U. ERAREA
U ERA
R TACK
R TACK
U EIAREA
X AS
R TACK
A GUTS
A GUTS
U ERAREA
R TACK
RSTACK
USERAREA
USERAREA
T BLES
A GUTS
X AS
A GUTS
M SSAGES
R TACK
U ERAREA
I CFRXPR
S AKO
S AKO
S A<1
S AK1
S AK2
S AK2
I CECOMH
I CECOMH
I CSLOG
I CECOMH
I. CECOMH
I CCOMH2

LP ATION REFERS Ti SY'1BJL IN CONTROL SECTION LOCATION REFERS TO SYMBOL IN CONTROL SECTION
U

N
I
V

E
R

S
I
T

Y
 O

F
 W

A
T

E
R

L
O

O

DRESS
NGTH

1600
1601
15FB
1601
1601
1602
15FB
15FE
15FC U

15FC
1628
1540
16C0
ISCO
17BF
1814
180F
1815
181C
1848
1993
1984

ENTRY A
TOTAL L

ADCON
ARITH
IHCUO?T
FCVEOUT
FCVIOUT
FCVADUT
IHCERRE
IHCERR1
IHCCO1H
IHCCDMH
IHCECOM
IHZECO11
IH,CUOPT
IHCTRCH
IB:31
IBCJM
INT6SWC:
ADZON
IHCER11
INCUATII
IBC31
FIOCSRF
00

EFDO

IHCFCVTH
IHCEFNTH
THCUOPT
IHCFCVTH
IHCFCVTH
IHCFCVTH
IHCERRM
IHCERRM
IHCCOMH2
IHCCOMH2
IHCECOMH
IHCECOMH
IHCUOPT
IHCETRCH
IHCECOMH
IHCECOMH
IHCFCVTH
IHCFCVTH
IHCERRM
IHZUATBL
IHCECOMH
IHCEFIOS

1690
1603
1602
1601
1602
1602
15FE
15FB
15FC
1628'
164C
164E
16C0
16C1
17RF
1815
180E,
18154
1840
1849
1984 1)

FIO:S
ADJS4TC
IHCJOPT
FCVLOUT
FCVCOUT
FCV7OUT
IHCCOMH
IHCCOMH
IHCCOMH
IHCECOM
IHCECDM
IHCECOM
IBC31
FIOCSRE
IHCERRM
INTSWTC
IHCLIOPT
FIDCS
IHCERRM
IRC31
ADCON

IHCEFIOS
IHCEFNTH
I CUOPT
IHCFCVTH
IHCFCVTH
IHCFCVTH
IHCCOMH2
I CC3MH2
IHCCOMH2
IHCECOMH
IHCECOMH
IHCECOMH
IHCECOMH
IHCEFIOS
IHCERRM
IHCECOMH
I CUOPT
IHCEFIOS
IHCERRM
IHCECOMH
IHCFCVTH

U
N

I
V

E
R

S
I
T

Y
 O

F
 W

A
T

E
R

L
O

O

U
N

IV
E

R
S

I
T
Y

 O
F
 W

A
T
E

R
L
O

O

O
F
 W

A
T
E

R
L
O

O

DELETED IEF285I
IEF2351
IEF235I
I FF285I
I FF235I
IFF235I
1EF235I
IFF2851
TEF235I
IEF295I
I FF2351
IEF235I
IFF235I
IEF2351
XXGJ
//GO.SYS
//GO.MES
//G3.SAV
//GO.ALG
IEF236I
I EF2371
IEF237I
IEF237I
IEF237I
IEF237I

SYS70091.T113346.RF000.SYNAN.LOADSET
VOL SER DS= MATH? .
SYS70091 T113346.1 000.SYNAN S0000009
VOL SER 35= MFT11 .
SYS70091 T113346.R 100.SYNAN 50000009
VOL SER DS= 1FT11 .
SYS70091 T113346.1 000.SY\JAN GOSET
VOL SER. 35= MFT11 .
SYS70091 T113346.1 000.SYNAN R0000007
VOL SER DS= MFT22 .
SYS70091 T113346.S 000.SYNAN 80000003
VOL SER DS= MATH3 .
SySi.F31 LIB
VOL SER 35= 4FT11 .

EXEC PS4 *.LKED.SY.L100,CDND ((B;LTIAS
DJ4P DD S S)UT=A
AGES DD S SOUT=A
AREA OD j IT=2314,S1ACE=(CYL 0),VOLUME
BRAS DO
LLOC. FOR SYNAN
GM=*. DD 0 130
YSUDUMP 3 131
ESSAGES 3 131
AVEAREA 0 132
LGEBRAS 3 130

1+El

SER Ll
ET E1=A** +2.04,3
ET E2=(A+ .3*B)**2+
RINT E1,E '

E1=(1/1 A**(2/1)+ /1*B)
E2.=((1/1*A+2/1*B)**(2/1)

SET A=2.0, 3=3.0
EVALUATE E2

VALJE 0

	

	E2 	=97.7
ELETE B
UBSTITUTE B=A+3 IN
'RINT Ell E

E1=(1/1 4**(2/1)+ /1*B)
E2=((3/ *11+6) *(2 1)+41/10*

XPAND E2
(9/1*4*-(2/11+36 +451/10+4

IFFERENTT TE E2
(1R/1*A 36/1+123/ 0A**(2/1

AVE E2
ISPLAY ST UCTLRE TA LE

STRJCTO F Fl IN D.tE
STRJCTU E E2 	ON DISC

ISPLAY NA,F TABLE
VALJF O 	A 	=2.0

0 	F NI

F2

.1*11**3-9

+41/10*A**(3/1)491/10+E.)

, (3/1)-9

/10*A**(3
A

SYS

DEL

PAS

DEL

SYS

KEP

)1(4,LT,L

SER=MAT4

N

TED

ED

TED

UT

ED))
	

003300

/10+E1)

U
N

I
V

E
R

S
I
T

Y
 O

F
 W

A
T

E
R

L
O

O

IEF2851 	SYS70091.T113346.RF000.SYNAN.GOSET 	PASSED
IEF285I VOL SER JS= 	1FT11 .
IFF285I SYS70091 T113346.S 000.SYNAN.R0000010 DEL; TED
IEF285I VOL SER JS= 	MFT22
IFF2951_ SYS70091 TI13146.S 000.SYNAN.ROOD0011 SYS IUT
TEF28.51 VOL SER OS= METZ? .
IEF2351 SYS70091 T113346.2 000.SYNAM.RD000012 DEL TED
IEF285I VOL 	SER 3S= 	MATH4 .
IEF2851 SYS70091 T113346.R 000.SYNAN,S0000013 SYS N
IFF285I VOL 	SFR JS= 	MFT11
TEF2B5I SYS70091 T113346.R DOO.SYNAN.S0000013 DEL TED
IFF2951 VOL 	SER JS= 	MFTII .
IFE-285I SYS70091 T113346.R 000.SYNAN.GOSET DEL TED
IFF2851 VOL 	SFR JS= 	1E1-11 .

U
N

I
V

E
R

S
I
T

Y
 O

F
 W

A
T

E
R

L
O

O

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167
	Page 168
	Page 169
	Page 170
	Page 171
	Page 172
	Page 173
	Page 174
	Page 175
	Page 176
	Page 177
	Page 178
	Page 179
	Page 180
	Page 181
	Page 182
	Page 183

