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ABSTRACT  

Linear programming has been used as a tool 

for the investigation of corporate planning and 

the valuation of resources, the management of bank 

assets, etc. This thesis uses the LP framework to 

develop a global corporate model for short to 

medium term financial corporate planning, and shows 

the difficulties inherent in both the large scale 

use of such models and the theoretical application 

of the dual evaluation process. 

Fractional programming is used to analyse 

corporate planning with respect to objectives 

which comprise fractional terms. Duality and 

pricing in linear fractional programming are 

discussed. Conditions for 'coherent pricing'in linear 

fractional programming are deduced, and sequential 

methods for the decentralisation of planning 

operations with fractional programmes are given. 

The use of special methods for. fractional 

programming ( integer programming, upper bound 

techniques, sensitivity analysis etc.) are also 

presented. 
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NOTATION  

MATHEMATICAL NOTATION 

E E E 
i j k 	sums over i,j,k, usually i = 1 	m, 

j= 1 ... n, k 	m 

varies with, is approximately the same as 

any of the symbols s , 	, 	,according 

to the problem specification. 

x , x 	 particular values of x, x denoting the 

optimal value of x 

the optimal value of f(x) 

the vector of basic x. 

—13 ' dB the elements of c and d corresponding ..._ * 	* 
to xEl  . ( c and d are also used in this 

context.) 

(v f(x) 	the value of the partial derivatives of f(x) 
, = x * 	x - 	

with respect to x , evaluated at x . — — 

x 'condition A 	the set of x for whith condition A holds 

sometimes used to denote corresponding 

variables in the original fractional 

and Charnes and Cooper forms,'p1  being 

the transform of the variable Ili. 

MODEL NOTATION 

n / m 	a model considering n products over 

a planning horizon of m time periods. 



ABBREVIATIONS  

o.f. 	objective function 

s.t. 	such that 

rhs 	right hand side 

N + S, NS 	necessary and sufficient 

KT, K-T 	Kuhn and Tucker 

BB, B-B 	Balinski and Baumol 

LP 	linear programming 

IP 	integer programming 

FP 	fractional programming 

CCP 	chance constrained programming 

there exists 

REFERENCES  

(1.31) 	equation 31 of Chapter 1 

Fig. 1.31 	figure 31 of Chapter 1 

Table 1.31 	table 31 of Chapter 1 

1.3, 1.3.1 	section 3 and section 3.1 of Chapter 1 

Appendix 1.3 	the third appendix for Chapter 1 

(31) 	reference 31 

All equations, figures, and tables in the appendices 

continue the ordering pertaining to the original chapter of 

the text. 



Chapter 1. Linear Programming and Corporate Modelling: 

A Review  

1.1 LP and the Costing of Funds  

Linear Programming is the description of problems of 

the form 

max 2 = E c.x. 
j 

s.t. 	E a. .x. b. 	i .1 	m 
J 1J 3 	1  

x.! 0 

' 
(c.

3 
 a.. b. constants) 	 (1.1) 

13' 

LP problems are characterised by their attempt to optimise 

thevalueofafunctionofseveralvariablesi.xl, subject to 

linear constraints on the levels that may be assigned to the 

i
x}. In the context of Management Science, the variables 

{x.} may be the activity levels of a system (corporation); the 

function P then measures an objective of the management of 

the system concerning the component variables. The constraints 

i
bil are the 'resources', and the constraint set {xlik.x,,,.,,b} 

	

denotes the allowable (feasible) combinations of 	
1 

ix.
3 
 . 

Theoretical aspects of LP, solution methods, and 

applications are considered in (16), (33), (55), (83); from 

these, and many other sources, the advantages of an LP approach 

to corporate planning may be deduced. We will not discuss 

this point, but will trace the major advances in the uses of 

LP in planning and valuation. 

LP was initially utilised for solving problems of blending, 

plant loading, diet calculation, etc. (see e.g. (33), (83)). 

During the 1950's, more complex problems in Operational Research 

and Financial Planning were formulated in LP terms. Charnes 

Cooper and Miller, (24) consider the application of LP to the 
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Warehouse Problem (10), and the implication of the dual 

variables for evaluation. Their primal formulation of the 

problem is the maximisation of undiscounted cummulative profit, 

for which the dual variables have the dimensions of (compound) 

interest rates (i.e. "pounds per pound invested per period"). 

Thus, by attaching financial constraints to production and 

storage equations, funds are evaluated with respect to optimal 

corporate behaviour. 

Dean (37) proposed a ranking of capital projects on the 

basis of their internal rates of return (i.e. on the basis of 

the internal discount rate that would reduce the net present 

value of the project to zero); this method is criticised by 

many authors (see e.g. (59)) in that it does not allow for 

interdependent projects, negative cash flows etc. In this 

respect, the ranking of projects via the dual evaluation, as 

suggested in (24) represents a major advance in the field of 

capital budgeting and resource valuation.* 

1.2 Dual Interpretations for Capital Budgeting  

Lorrie and Savage (59) show that Dean's proposed ranking 

of projects must fail if: 

a. the projects are interdependent 

b. the total capital expenditure is limited in more 

that one planning period, or 

c. the stream of returns is not always positive. 

As noted in (24), there is a similarity between the 
Warehouse Problem, and the problem of optimal flows 
through a network; this latter approach is developed by 
Ford and Fulkerson in (38). Although networks can aid 
the conceptualisation of the problem, (via the use of 
flow charts, such as Fig. 2.3 and Fig. 2.4,) the 
Mathematical Programming approach has decisive economic 
and computational advantages. 



Their formulation of the capital budgeting problem is 

considered in depth by Weingartner, (88). Although Weingartner's 

work essentially deals with long term planning, the theory 

and methodology he develops are also applicable to medium and 

short planning, and point the way to much of the work in this 

thesis. His formulation is: 

max P = E b.xj  
j 

s.t E c x. s 
tj 	Ct 

s x3  

(xj  integers)  

t= 1. 	T 

(1.2) 

where .tbil are the rewards (NPV's) associated with the projects 

= 0 or 1 according as the j'th project is rejected or 

accepted, T is the number of periods to the planning horizon, 

cij is the outlay for project j in period i, and {Ct} 
 
are the 

maximum possible expenditures for the periods t= 1. ... T. 

(The formulation (1.2) overcomes the last two points 

raised in (59); the interdependence of projects may also be 

included in the integer programme (IP), using inequalities 

of the form xj- xk  s  0.) 

The discussion in (88) contains three important features: 

i. the attempt to solve (1.2) using approximate LP techniques,  

ii. the use of LP duality to rank the projects ixj1, 

iii. the use of IP algorithms to give a true optimum for 

(1.2), and the attempt to associate a dual pricing 

mechanism with the integer solution, by re-imputation. 

Using the LP approximation to (1.2) Weingartner analyses 

the dual, namely: 



* 
= " t119tCt i 4 j bi 

r * 
, Weingartner shows that the 

L Yj 

- 4 - 

T 
min 7= 	E ptC + E II. 

t=1 t j .3 J 
T 

s.tl;)c -1-.13  . 3 t tj 	113 
t=1 

j = 1 	n 

Pt' 	0 
	

(1.3) 

where: 	t}are the shadow prices (or opportunity costs) 

associated with the budgetary constraints, and 14j1 are the 

dual evaluators of the upper bound constraints {xi  s 1}. If 

(bounded) optimal solutions exist for (1.2) and (1.3), LP 

duality ensures that 2*  = Tr*. Weingartner associates the 

with the goodwill generated by x. (since E 12 represents 

the difference between the value of the firm P , and the 
T * 

value imputed to resources, E ptct  ). Defining 
t.1 

provide convenient rankings for the projects. 

Baumol and Gomory (43) suggest a method whereby the dual 

evaluators of the final LP in the method of Integer Forms for 

IP (42) may be re-imputed to the original constraints to give 

an efficient(1) price allocation. The theoretical difficulties 

associated with recomputed dual prices are discussed in 

Chapter 5 of (88). Weingartner suggests an alternative dual 

approach, namely the use of the LP dual on the restricted 

(optimal) IP formulation. This formulation does price out 

resources (an improvement over the prices of Baumol and Gomory) 

but does not clarify the concept of a free good. 

Alcaly and Klevorick (2) have given another variant on 

the re-imputation process, introducing subsidies to the activities 

(1) see Koopmans (56) 
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to ensure that LP duality theorems still hold; although their 

prices are more acceptable economically, the authors note that 

"the concept of a free good remains disturbing", and admit the 

"tenuous relationship between dual prices and marginal revenue 

product in IP". 

Balas, (5), has recently formulated a generalised duality 

theory for discrete programming, which furnishes marginal 

values for integer programmes. The use of this theory for 

fractional programmes is discussed in Section 6.6.3. 

Although the theoretical application of pricing in IP is 

still unresolved, Weingartner's work represents the first 

formalisation of the capital budgeting problem, and forms the 

basis for many of the later financial planning models. The 

more realistic estimates of rates of return on capital give 

a framework in which financing options may be compared. 

1.3 LP for Accounting and Control  

1.3.1 Goal Programming and Accounting Models: 

Goal Programming (16, Appendix B) is the description 

applied by Charnes and Cooper to problems of the form: 

min E(1/1 + 

s.t + 	— 
S. 	

—. 
• + Y 	= 2.o 

A.x 	s b 

2c,./ yi,  yi a 0 	 (1.4) 

inwhichthevariablesix.are considered as 'sub-goals' to 

the 'goal' ao . 

Ijiri (53) shows how the analysis of break-even points 

may be transfdred to a goal programming problem, and how the 

formulation of (1.4) may be used to analyse the operations of 



a firm which has multiple goals. Using 'non-archimedean' 

weightings, Ijiri ranks goals in the order in which they are 

to be achieved, producing a single objective function for 

(1.4), and via the generalised inverse for A, (see e.g. 71), 

devises methods by which deviations from goal attainment may 

be controlled, (Appendix A (53)). Ijiri also applies goal 

programming to the analysis of the spread sheet accounts of 

a firm, via the incidence matrix of the accounting network. 

The model presented in (53) uses the changes in accounts as 

performance indicators; the objective of maximizing net addition 

to retained earnings is optimised subject to restrictions on 

the account levels and their inter-actions. (In this model, 

each account is represented by a model variable.) 

1.3.2 Feedback Indicators and Control of Performance  

For the set of goals v, the sub-goals x land the relationship 

A.2c. 	Ijiri defines an indicator set w by: 

C.X = w 
	 (1.5) 

(If x and w are n and k resp., c is any kxn matrix). 

He shows that the necessary and sufficient condition for v 

to a uniquely determined function of w is that each row of 

A be expressable as a linear combination of the rows of c; 

in this case, w is a perfect indicator set. (Where v is not 

uniquely determined by w, the set w is said to be in imperfect 

indicator set). The case of imperfect indicators is analysed 

using the generalised inverse of A, whereby Ijiri demonstrates 

how the imperfect indicators may be used to.determine whether 

the system is operating within prespecified limits A. 	and 
A 

A.xo  . The development is important where management wish to 

review a restricted number cf statistics (indicators) from which 

a global (i.e. subgoal) performance may be surmised, and 
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controlled. 

1.3.3 Opportunity Costing and Departmental Control  

Samuels, (73), investigates a different aspect of control 

derivable from the LP model. He attempts to formulate a model 

in which the dual evaluators are used to price resources, and 

the divisions of the company are charged (controlled) by 

their deviation from optimal usage of resources. 

The calculation of the (opportunity) costs to be charged 

against erring departments is made using the dual evaluators 

of resources at the previous optimum: Samuels asserts that, 

by duality, the accounting procedures will balance up the 

total optimal budgeted value with the opportunity charges to 

product accounts and their marginal contributions. 

The model discussed is one of three products (X, Y, Z), 

and three resources, floor space, supervisor time and machine 

time: 

max P = 2X + 3Y + 4Z 

s.t. 	5X + Y + Z s 8000 (floor space) 

X + 5Y + Z s 8000 (supervisor time) 

X + Y + 5Z S 8000 (machine time) 

(1.6) 

The optimal solution is P = £10,284, X = 1142, Y = 1143, 

Z* = 1143, with dual evaluatdrs (5 12 5 12 19)  
Gb 28' 28' 

Samuels considers three situations: 
A 

a. Suppose X overproduces, (say X = 1183) and this causes Z 

to produce only 942 units, because of insufficient floor 

space. (The nature of causality is not stated explicitly: 

this is discussed in Appendix 3.2). Dept. X has caused 

a net loss of £722, (overproduction has generated extra 



profits of 41 x £2, but has caused Dept. Z to lose 

201 x £4), and is billed accordingly. 

b. He further demonstrates that if Dept. X is more efficient 

in its use of supervisor time (i.e. it reduces the 

coefficient of X in the second row of (1.6)), it can be 

credited with this saving, (although no other section 

uses this newly freed quantity of supervisor time). 

c. The final example, of overproduction by Dept. X with 

simultaneous underproduction by Dept. Z is presented 

thus: "Assume that, for one reason or another, the producers 

of Z would not have produced more than 1,050 units even if 

Dept. X had not exceeded its allotment. In this instance 

the lower than optimal profit should be attached to the 

departments of both products, X and Z. 

The opportunity cost charged to Dept. X is profit 

lost because the inputs used in the production of X 

prevented Z from achieving its adjusted output figure of 

1,050. Against this, Dept. X is credited with the returns 

from the extra output it produced because Z could not use 

all of its original budget. 

The most severe restriction on X is floor space; 93 

units were made available by Z's failing to achieve its 

target (i.e. 1,143-1,050). As product X requires 5 units 

of floor space per unit, this enabled production of 19 

extra units of X. This resulted in a credit of £38 to 

Dept. X. 

ot;,..),7 22 	.,:oduc%:d 	f 	. X u OVQ th0 

budgeted ou;.:1, 

have been used by 7: , 

on these items is given to 

that; should 

c 	of tai contribution 



X's share of "Loss": 
4 x 	(1,050 - 942) 

Less Contribution from 

= 108 x 4 = 432 

extra X profit = 19 x 2 = 38 394 

Z's share of "Loss": 
4 x 	(1,143 - 1,050) = 93 x 4 = 372 

Less Contribution from 
extra profit = 22 x 2 = 44 328 

Total 'Loss' 	 722 

The accounting system presented by Samuels, (according to 

Bernhard (9)), is: 

i. Bill to Dept. X the revenue loss of Z. 

ii. Credit to Dept. X the revenue it has generated by 

using resources that Z had not planned to use. 

iii. Bill to Z the loss caused by its inability to produce 

more than the revised figure for its best performance 

(regardless of the behaviour of X) . 

iv. Credit to Dept. Z,'X's revenue obtained by using 

resources allocated to Z that Z had planned to use. 

Bernhard, (9), reviewing this system, remarks: 

"The main point of Samuels' paper is that any 

decrease in profit should be charged as an opportunity 

cost to whichever department(s) was responsible for 

the deviation." 

Commenting on case co Bernhard notices that ii and iii 

in the accounting system are in conflict. Suppose Z could 

have made 1142 units and not 1050. i. suggests billing X 

with £722, iii. suggests billing X with £804 and crediting Z 

with £82. Although the net result is the same the second 

process gives Z credit solely because X has infringed upon it'. 

Bernhard suggests a modified accounting procedure, 
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changing iii to: 

iii 	Bill to X the revenue loss of Z. Credit to X the revenue 

gained by utilizing resources assigned to Z (whether Z 

has planned to use them or not). Bill to Z: (as before) . 

The algebraic sum of the penalties and bonuses remains 

the same, but the allocation has been rationalised. 

Although Samuels notes that the external supply of 

limiting factors, and the internal relationships of 

technology may change within the span of the time period, he 

does not consider the possibility that the behaviour of the 

erring department(s) may be so far removed from the optimal 

solution (plan), as to go beyond the range of the optimal 

solution. This would invalidate the dual evaluators, and the 

penalty/bonus scheme under which the department considered 

itself to be operating. 

The dual evaluators may also change due to information 

flows during the period. These difficulties (associated with 

the choice of time period) are discussed in Appendix 3.2. 

1.3.4 LP and Asset Valuation  

The use of dual prices for (long term) fixed asset 

valuation (and depreciation) is discussed by Carsberg (11); 

the article is based on two papers by Wright (94, 95). Wright 

proposes a valuation of assets based, not on sunk costs, but on 

the minimum of replacement cost, realizable value or output 

value, and suggests that dual prices may be used as measures 

of opportunity values. 

Carsberg notes the following points: 

a. due to degeneracy, the marginal values derived at the 

optimum may be "direction dependent" (see Strum (76)). 



Thus they may measure change in the direction of either 

an increase or decrease of asset holding, but not 

necessarily in both. He suggests that separate calculation 

is necessary before the marginal values (of dual prices) 

and opportunity values may be associated. 

b. in situations where there is a limit on the possible holding 

of an asset, the value associated with that asset by the 

dual may be in excess of replacement cost; this might 

prove unacceptable under normal accounting conventions. 

c. measuring the value of each asset according to either the 

dual price (for increasing the asset holding) or the 

opportunity value (for decreasing the holding) will not 

give a true valuation of assets that are lost 'jointly'. 

Under these conditions, the dual prices are liable to 

overvalue the firm with respect to its net cash flow. 

Carsberg associates this overvaluation with the accounting 

problem of 'jointness'. 

Unfortunately, the model presented by Carsberg is very 

simplified. Viewing the production of one item over five 

years (X1  ... X5), which is produced on two types of machines 

A and B (each of which has a life of two years), he deduces 

a model of the type shown in Fig. 1.1. (Equations (1) to 

(5) are sales constraints; equations (6) to (10) and (11) to 

(15) are machine requirements for A and B). In this (single-

product) case, the optimal basis is very stable; the solution 

is: "manufacture the product in each period up to capacity"; 

consequently the range of the solution is large. The use of 

the dual evaluators to evaluate all the machinery is possible 

(if not theoretically desirable), since the loss of one machine, 



Maximize: 
12x1 	15x2 Oxs 6x4 3x6  — 10001 — 	7002  — 	500, — 	4004  — 	4006  — 80b2 — 70b2  — 60b3  50b4  — 40be  
Subject to: 

xl < 100.• • (1)  
xs < 150.• • (2)  

xs < 130.• • (3)  
X4 < 120.• • (4)  

xs < 100.• • (5)  
10x1  100a1 < 0. • • (6)  

10x2 — 10002 — 10002  < 0. • • (7)  
10x3  — 100a2  — 100as < 0.• • (8)  

10x, — 100a, — 10004  < 0.• • (9)  
10x4 — 100at — 100as < 0- • • (10)  

bxs 60b1  < 0.• • (11)  
5x2  — 60b2 — 60b2  < 0•• • (12)  

5x1 60b2  — 605, < 0. • • (13)  
5x4 60bs 6054  < 0. • • (14)  

5xe 6051 — 6056 < 0. • • (15)  
xi , 	,.b f, 

Fig. 1.1 	The Carsberg Model  
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by parametric methods, will not invalidate the optimal basis. 

If the model were to consider multi-product firms, the 

loss of one machine (i.e. the loss of a predetermined number 

of capacity units) might alter the production schedules and 

invalidate the optimal basis; thus machines cannot be valued 

for depreciation using only the optimal dual prices. The 

sensitivity of the basis in the multi-product environment 

might imply very different accounting results for small changes 

of inputs. Parametric analysis will be required even when 

considering the loss of just one machine (asset), "all other 

things being the same". In this sense the dual evaluations 

incorporate the concept of jointness into their pricing 

mechanism; the dual price is the marginal change in the 

objective function per marginal change in a single resource 

- "all other things remaining the same". The attempt to 

overcome this constraint in interpretation and ascribe values 

to individual assets that will be independent of the remainder 

of the firm must, to some extent, be arbitrary - and hence the 

'over-valuation' of assets noted by Carsberg. 

In this case, the philosophy of LP and the conventions 

of accounting are in direct opposition. The difficulties of 

jointness (c.f. Wright) can be overcome by the use of LP, 

but, the LP solution cannot be dismembered to give valuations 

that will accord with accounting conventions. A second instance 

of this difficulty occurs 

(resources) which are not 

A tangible, useful, asset 

not utilised to capacity; 

is not binding. 

with "free goods". Machinery, 

fully utilised are given zero value. 

is written off instantly if it is 

i.e. if its associated constraint 
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Futhermore, the valuations of an LP model are dependent 

on the objectives of the firm; multiple values (differing 

according to objective and utilisation) may be present where 

a firm has more than one measure of performance, or can be put 

into more than one operating environment. (Multiple values 

are considered in Chapter 3). The extent to which the choice 

of the basic time unit affects the dual evaluators is discussed 

in Section 3.3.4 and Appendix 3.2. 

1.4 LP Models for Asset Management and Banking  

1.4.1 Introduction  

In the applications of LP to problems involving set-up 

times, batch quantities, non-divisibility of resources, etc. 

many assumptions have to be made regarding the relevance of 

the purely linear approach. (See e.g. Sections 2.7, 3.3 and 

Appendix 3.3). During the last decade, attention has been 

focused on the uses of Mathematical Programming in Banking, 

Portfolio Selection, etc. (e.g. (14), (29), (30), and (74)). 

Much of this work is similar to the models emanating from the 

simple Warehouse Model, but the detail is more refined. Also, 

because of the nature of the resources, the assumptions of 

linearity, divisibility, etc. are easily justified. 

1.4.2 The Chambers and Charnes Model (14) 

This model of the operations of bankS uses a multi-period 

LP formulation. The constraints deal with desired liquidity 

ratios, security purchase restrictions, etc., the objective 

function being the undiscounted return on the bank's loans 

and investments. 

1.4.3 The Cohen and Hammer Model  

Cohen and Hammer (29), develop a more detailed model for 
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asset management, introducing many of the safety regulations 

that abound in standard banking procedures;. policy considerations, 

loan-related feedback mechanisms, etc. The two models (14) 

and (29) differ in their treatment of cash flows and the 

availability of funds. Chambers and Charnes assume instantaneous 

changes at inter-temporal links - "the desired average balance 

in a partical category is identically equal to the spot balance 

of that category at every instant within each period". Cohen 

and Hammer assume that the rates of cash flow are constant 

within each period. The two systems are compared in Figure 1.2. 

balance 	 balance 

Chambers and Charnes 	Cohen and Hammer 

Figure 1.2 Spot and Average Balances  

As a result of these assumptions, the average period balance 

sheets will balance in the Cohen and Hammer Model, but this 

will not necessarily be the case for any spot balances at the 

beginning or end of periods. 

(This 'unreality' is justified by the authors on the 

grounds that their model is used for intermediate and long 

range planning, not for day to day transactions. It is also 

noted (29) that, "any degree of realism in this respect can 
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be incorporated into the model by appropriately shortening the 

durations of the planning periods".) 

Cohen and Hammer consider three possible objective 

functions for maximisation: 

(1) the value of stockholders' equity during the final 

period 

(2) the present value of the net income stream plus 

realised capital gains and losses during the 

planning period 

(3) the sum of (2) and the net present value of (1) 

Objective (1) avoids the calculation of an internal 

discount rate, and implies a (true) willingness to postpone 

current income in favour of an ultimately higher value of 

stockholders' equity. The second objective allows future gains 

to be discounted against risk, but the optimal solution is 

said to be sensitive to discount rates. (3) is justifiable 

because only the first period decisions are required; the 

final value of stockholders' equity is included to allow for 

the horizon in these decisions, (otherwise terminal stocks 

will be deemed worthless). 

1.4.4 The Use of Unequal Time Periods  

For the models presented in (14) and (29), the time to 

the planning horizon was divided into equal periods. Orgler 

(69), has suggested a model in which unequal periods of time 

are used, varying from daily considerations near the decision 

instant to longer (monthly) considerations at the planning 

horizon. 

In models for day to day decision making this approach 

has the advantage of computational brevity, since detail at 

the planning horizon is not required. Where such detail is 
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needed (in Chapter 2, etc.) unequal time periods will not be 

so useful. 

1.5 Normative Models and the Behavioural Science Approach  

1.5.1 Assumptions in Normative Planning  

In this review of normative models for industry and banking, 

we have tacitly assumed that in most cases, the objective 

function is a reasonable expression of management's aims, 

thereby associating the short term optimisation with the 

first stages of a global, corporate, long-term plan. The 

validity of this approach is questioned by Charnes and Stedry 

(26), (27). In (26), they re-iterate the distinctions between 

the normative (Operational Research, Economic) approach, and 

the descriptive attempts of Cyert and March, Simon, etc. 

(32, 36). The first approach is said to have the following 

characteristics: 

"i. explicit long-run profitability maximization for 

the firm as a whole, 

ii. focus on the design of internal systems to achieve 

this aim, 
• 
iii. the rigorous use of mathematical tools in the 

solution of the organizational problems posed." 

(see (26), page 147) 

(The original abstraction that firms "maximize profit" 

is linked to a further assumption "that the individuals within 

the firm are 'rational'".) Although Charnes and Stedry concede 

that the concept of profit maximization could be broadened 

to include utility maximization, they suggest that "the 

assumptions of long-run profit or utility maximization are 

non-operational, (even) if, logically or tautologically, they 

can be shown to be valid. Such aims as "good employee morale", 
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"no layoffs unless necessary", etc. are not readily translatable 

into terms of profit and loss". Charnes and Stedry (26, page 

150) find no evidence that firms do construct long term profit 

functions from which they derive short term statements of 

purpose. (See also Cyert, Dill and March (31)). In contrast 

to the normative approach, the descriptions of the behavioural 

scientist have the advantages of encompassing all the aims 

and aspirations of the firm, (at various levels of the 

organizational heirarchy), but there is a dearth of viable 

mathematical tools that can be used in analyses of the 

relationships between aims, policies and strategies. 

Two models are presented in (26) and (27) which broaden 

the scope of mathematical programming for modelling the aims 

and aspirations of management; Goal Programming (introduced 

in Section 1.3.1) and Chance Constrained Programming. 

1.5.2 Chance-Constrained Programming  

Initially developed by Charnes and Cooper (18), CCP 

uses the following formulation: 

Replace Z a..
13

x.s b. , 	= 1. ... m), with the probabilistic 

constraint: 

PriZ c
x  1 -. 	i= 1 	m 	(1.7) 

J 13 3 

Each expression, (i = 1 ... m), becomes a statement of 

policy, with respect to the goal bi. The objective function 

for the programme can take one of three suggested forms: 

the E model: max E(c.x) 

the V model: max E(c.x - c .x )
2 

- 	-o -o 

the P model: max Pr{c.x c .x - -o --o) 

(See e.g. (19), (20), (21), (22)) 

Optimum decision rules for a limited (and severely 
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restricted) class of problems are considered in (20) and (21), 

but, although the application of this technique to (large 

scale) business problems is very attractive, the lack of 

theoretical analysis and computer algorithms makes it impossible. 

Some work has been carried out by Charnes and Sten Thore 

(28) on liquidity levels for financial institutions, and 

by Charnes, Cooper and Symonds, (25), on problems with very 

special forms of associated probability laws. As yet, the 

forms of constraints that can be accommodated are very limited; 

most of the calculations in the literature are specific to 

particular problems, and do not furnish general algorithms. 

Nevertheless, managerial awareness of risk in financial 

planning may not be ignored. Fractional Programming under 

conditions of risk and uncertainty is considered in Appendix 6.4 

and may well represent a fruitful field for further research. 

1.6 Ratios, Performance Measures and Fractional Programming  

1.6.1 Ratios  

In recent times, British Industry has witnessed an 

increasing emphasis on productivity and financial ratios; 

'productivity' has become an established yardstick in labour 

efficiency and wage negotiations, and the use of financial 

ratios has been much publicised as the result of such takeovers 

as that of A.E.I. by G.E.C. (Indeed, long term measurements 

have assumed a short term importance that completely distorts 

the economic picture.) Both sets of ratios attempt to combine 

into one factor a series of complex relationships. Cohen and 

Hammer, (30), note "the fact that the bankers pay attention 

to such simple, and naive rules of thumb as the ratio of loans 

to deposits, capital to risk assets and mortgages to savings 
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deposits indicates their awareness of the interactions that 

exist among these various accounts". 

, Initially, productivity ratios were simple, economic 

guides to the output pote'ntials of different plots of land, 

,or the conversion efficiency of an engineering process. Even 

in their simplest form they represent two major forms of 

comparison; the "input creativity" emphasizes the non-comparabilit 

of inputs and outputs, whereas the "conversion' efficiency" 

,stresses the reduction of both to common terms (e.g. B.T.D. 

equivalents), (40). Recently, work has been published that 

emphasizes the relationship between the productivity measures 

and the aims of the organization: as Professor Gold states (40):: 

"in as much as different systems are likely to have 

different objectives, and each system is likely to have a 

variety of performance criteria, it follows that each system 

may be characterized by an array of productivity relationships 

at a given time, and also that identical measurements may have 

a widely disparate meanings in different systems". 

1.6.2 Value Added and Total Efficiency 

..---./ 

Gold's work on the uses of ratios within the company has 

its parallel in inter-company and inter-industry studies. 

'Professor Ball, (7), also mentions this association between 

aims and performance measures: "there is a great temptation 

(here) to embark on the search for the Golden Index, the single 

statistic that can be taken as a measure of the success and 

efficiency of the enterprise. A popular candidate for this 

role is the rate of return on capital." (7, page 6). 

Giving reasons why no such "Golden Index" can exist, Professor 

Ball writes: "The starting point in any discussion of efficiency 

must be to specify the set of objectives that one is seeking 
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to attain. It is necessary to measure efficiency in relation 

to objectives, otherwise it has no meaning". He proceeds to 

argue that it is necessary to include a measure of "value 

added" to the battery of statistics that are used to assess 

performance." He introduces the concept of the 'total 

efficiency' of a firm - compounded of price and technological 

efficiency, (analogous to the 'efficient points' in Koopmans 

(56)). Comparison by 'total efficiency' is suggested as 

method of inter-firm and inter-industry judgements, but serves 

little purpose in advancing the normative objectives of 

management. 

1.6.3 Programming with Ratio Requirements  

Chambers (13) has considered the allocation of funds 

between competing projects (over the medium term) where a 

company wishes to restrict the .values that will appear in 

reported results. His model, similar to that of Weingartner 

(88), includes constraints on the lower bounds that may be 

taken by such ratios as current assets to current liabilities, 

and return on gross assets. He also incorporates policy 

decisions on the minimum acceptable growth of profits, and 

shows how these constraints impinge on the optimal schedule 

of investments. 

The inclusion of minimum levels for ratios derived from 

LP variables poses no new problems. The constraint 

c.x 	C
o X 	 (1.8) d.x + do 

is readily converted into the linear constraint 

(c - Xd).x + co - Xdb 	0 	 (1.9) 

provided that d.x + do. is always positive. 
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For a firm whose aims can be expressed as the attainment 
c..x + c 

of a set of goals Xi, by the set of ratios 	
1oi , 

a 
Ld..x + do  1 

linear goal programming formulation may be derived. The 

programme 

min E yi  

s.t. 	c..x + co. + v _Li 2.. = 1 . . . m 

d..x + do. 

  

x v i  z 0 	d..x + do. 
0 ( 1 .10 ) 

can be approximated to by 

min E yi  

s.t. 	(c. - X.1di).x + (co. - X.do  ) + y
i  = 0 

—  

i=1 . . . m 

2c, yi  a 0 	 (1.11) 

(The linear nature of the yi  has been lost; 	include 

a heavy weighting on the basis of the itth denominator). 

1.6.3 Fractional Programming  

The problem 

max c.x + co 
d.x + do 

s.t. x 6 S 

where S = 1s1L.i], 

and d.x + d0  1  0 for x s S 	
(1.12) 

T 

has been described by Charnes and Cooper (17) as "programming 

with linear fractional functionals". In (17) they prove that 

the optimal solution.  to (1.12) can be obtained by solving at 

most two linear programmes, either 
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max 	c.i + cot 

s.t. A.y - bt s  0 

d.y + dot = 1 

v, t a  0 

	

or max 	-c.y - cot 

s.t. A.y - bt s 0 

-d.y - dot 

21, t 	0 

(1.13) 

(1.14) 

If (y , t) is optimal for (1.13) or (1.14), then 

is optimal for (1.12).1  
t 

Martos (65), has shown that the problem (1.12) can be 

solved by "simplex-like" methods; such a method is given in 

(64). 

Wagner and Yuan (85) have proved an algorithmic 

equivalence between (17) and (64). 

Joksch (54) considers a more general class of objective 

functions which may be solved by parametric methods. For 

(1.12) the algorithm finds the value of e which maximises f(e), 

where 

f(e) = max c.x + co 

  

6 

s.t. 	A.x s b 

d.x + d 	e — — 
x z 0 (1.15) 

The development of fractional programming (and the 

corresponding recent developments in computer technology and 

LP capabilities) enable such ratios as "return on capital", 

or "return on assets" to be included in the set of objectives 

In later theoretical work we assume that (1.13) is "the 
Charnes and Cooper Form" of (1.12); generalisations to 
include (1.14) present no added difficulties. 



- 24 - 

for normative corporate planning. The considerable emphasis 

placed on these ratios by contemporary management, justifies 

the inclusion of fractional programming as a useful management 

tool. Although it cannot be claimed that'return on assets' 

is the unitary objective for corporate strategy, the use of 

fractional programming enhances the normative approach to 

corporate planning - making it more realistic for both' 

management and the management scientist. 
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Chapter 2 The Mathematical Model of the Firm  

2.1 Introduction  

The broad outline of the LP tools available for corporate 

modelling has been sketched in Chapter 1. A primary intention 

of the project was to use these techniques, and to develop 

new methods, for modelling the planning process in a firm. 

In the following sections, we describe the test firm, 

its technology and planning process, develop the mathematical 

formulation of the model, and show how the data for the model 

is closely allied to both the structure of the firm, and the 

structure of the bounded variable algorithm for LP. 

2.2.1 The Firm  

As a basis for the development of the LP model, a study 

of a particular firm was undertaken; the company studied is 

part of an international corporation whose operations in the 

United Kingdom consist of the import, production, marketing 

and export of a range of electrical appliances. The study was 

limited to the operations within the United Kingdom, since the 

individual companies have considerable autonomy. 

2.2.2 The Product Range  

The product range of the firm falls into two major 

categories: domestic appliances, and industrial appliances, 

and the, second category is further subdivided, according to 

the particular specification of the product, into three 

sub-catagories: light duty, medium duty, and heavy duty. 

The numerical division of the product range between these 

categories was: 

domestic light duty medium duty heavy duty 

55 	13 	44 	113 
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Further classifications were electrical wiring specifications, 

earthing requirements, colour codes, etc. varying between 

markets. Typically, a domestic product could have up to twelve 

individual specifications; an industrial product would have 

at most three or four variants. 

2.2.3 The Manufacturing Facilities  

The manufacturing facilities of the company were divided 

between its three factories in England; two of these being 

'adjacent' in the London area - the third in the North of England. 

Production was organised in batches, according to the 

pertaining production schedules and estimated requirements. 

The final stages of production for each batch comprised assembly, 

testing and packing, these activities being kept strictly 

separate for the domestic and industrial ranges. 

The machinery of the factories was coded into a series of 

work centre classes. A typical (numerical) breakdown of the 

basic machining centre is shown in Figure 2..1. Codes between 

1000 and 9999 were used. Machinery (and production) was 

allocated between factories to keep the costs of transporting 

unfinished parts to a minimum; factories were assumed to 

specialise in particular ranges of product. 

2.2.4 Raw Materials, Storage and Inventory  

On each factory floor locations were assigned for raw 

materials - mainly metal bar, electrical wire, and castings. 

Materials were released from stores 'according to production 

schedules; work-in-progress was stored in bins on the shop 

floor, or returned (for temporary storage) to specified areas 

of the factory floor. 

After final assembly and testing, finished goods passed 

into the warehouses located at the factory. Goods were either 
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Work 	Work 
Centres 	Centres  

Multi Spindle 
-Auto 1100 	 
S 1100 

1101 - S 1101 
-1102 
-1103 
-1104 
?-1105 
-1106 
-1107 
-1108 
-1109 - S 1109 
-1110 

Single Spindle 

[
Auto 1200 
S 1200 	 

F1301 
Chucking Autos 	1302 
-1300 	1303 

TURNING 

& BORING-Turret Lathes 
1400 	 

1000 

F1201 

-1203 
-1204 
-1205 
-1206 

- S 1202 

- S 120 7 

1401 

-1501 
-1502 - S 1502 

F

Capstans 1500 	-1503 
S 1500 	1504 

-1505 
-1506 
-1507 
-1508 

Boring 	 1601 
+-1600 	 F1602 - S 1602 
S 1600 	  1603 

LSnag 1700 	1701 

L 
Link Line Copy 
Lathes 1800 	 

 

1801 

 

Figure 2.1  

Basic Machining Centre - 1000 - (Turning and Borins) 
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despatched immediately to purchasers or company warehouses, or 

stored at the factory, (see 2.2.7). The company used its own 

fleet of vehicles and public road haulier. 

2.2.5 The Market  

The company divided the outlet for its product into five 

categories, each market outlet having a different characteristic 

and associated discount.. These are shown below in Fig. 2.2. 

!Market Sector ' 
1 
Repayment 	Orders 	Discount 	 

1 	1 slow 	large 	30% 
2 	i fast 	large 	• 

40% 
(erratic) 

3 	r , fast 	large 	40% 
(steady) 

4 	medium 	large 	40% 
5 	fast 	medium 	intercompany_, 

Fig. 2.2 Discounts and Repayment Times  

2.2.6 Marketing and Promotion  

The firm employed a sales force whose major function was 

marketing products via the dealer/distributor network. Dealers 

and distributors were contacted regularly in order to ensure 

that they were fully stocked to meet expected responses from 

advertising campaigns. 

The sales campaigns were organised by the Marketing Division 

of the company, and used two primary methods of communication: 

the press, and commercial television. 

Much of the advertising in the press was carried out in 

association with the Mail Order Houses, with whom costs were 

shared. The television advertising campaigns were directly 

controlled by the company, and geared towards- promoting an 

early response for seasonal fluctuations, i.e. towards extending 

the periods of seasonal demand. 

The response rates to promotion, i._e.monthly sales figures 

were derived from an analysis of the returns of the guarantee 



-I-1- 
•\/ 7

C  

- — —1 ‘mles MEIER 

Sales 
Plan 

Prod . 
Plan 

Buy 

=MEM •••••••• ••••• •=1M. 

Store Sales Wind As'rn ---) 

Sub 
V\-F711-C-7 

/ 

R.V.S.  

Freight 

Trans. 
Prod . 

Sched. 

Key for Fig. 2.3 

: Financial position before planning 

Prod. Plan 	: Production plan for the next year 
(and/or three years) 

Buy 	: Purchasing of raw materials by the firm 

R.M.S. 	: Raw materials store 

B.I.P. 	: Bought in parts 

Prod. Sched. : These stores are depleted according to 
the production schedules arising out of 
the annual production plan 

: Subcontracted work 

: Machine shops of company 

: Winding shops of company 

:Assembly lines of company 

: After the activity of 'Sales' the goods 
are shipped from the warehouses in 
various ways - combined here under the 
heading 'freight and transport'. 

Sub 

M'c 

Wind 

Ass'm 

Freight Trans. 

Fig 2.3 	The Physical Flows  



Sal.  
Wages  

Pay Bank Rec 

Assets 

r 

N\ 

S.C.  
'at 

v. IN 

0•111,  ••••1 

argin 

_J 41•1111mM. 

Alli••••41 >0" 

_ 
	T 	 
Sales 
Costs I T 

A 	 

Fig. 2.4 The Financial Flows  

N S. 

Price 
	 Discoun 

G.S 

V 

F.G.  

•M=NI, 	i••• 	 =IN 	,••119. 	111.1, 	%IMMO. 

Cost 

`/'f`/'f
— of 	--t- — 

7 = — "R 111=111 

__ J  

Lab Cost 

Sub  
of 	

out. 
Costs 

S.C.Plant 
Lab C---->" Cr I-1 

--t 

- -r -  	 

— — — 

O P. 
nc 

Res.  

Key for Fig. 2.4 

INV. 	: Inventories of raw materials and 
bought parts 

W.I.P. 	: Work in progress account 

F.G. 	: Finished goods account 

Price 	: Price structure for finished goods 

G.S. 	: Gross sales 

N.S. 	: Net sales 

Op. Inc. 	: Operating income 

S.C. Mat 	: Standard cost of materials 

Cost of Sub. : Costs incurred due to subcontracted work 

S.E.T. Admin : Debts incurred due to labour force 

S.C. Lab 	: Standard cost of labour hours used in production 

Plant O'h 	: Plant overheads incurred due to production 

Cost of M'f : Total cost (at standard) of the manufactured items 

M'f Margin 	: Manufacturing margin 

Res. 	: Company reserves 

Rec. 	: Receivables 

Sal. Wages 	: Salaries and wages that must be paid in cash 

Pay 	: Payables 

Bank 	: Loans and/or repayments with bank. 

Liabilities 



Chairman & 

Managing Director 

Administrative 

Director 

Director of 
Engineering 
and Service 

Director of 
Finance 

Director of 
Personnel 

Admin. 

Director of 
Organization 
Development 

Company 
Secretary 

Service 
Manager 

Chief 
Development 

Engineer 

Quality 
Controller 

Director of 
	

Director of 
Marketing 
	 Manufacturing 

Director of 
Exports 

Sales 
Manager 

Marketing 
Manager 

(industial I 

Marketing 
Manager 

(domestic) 

Director of 
Purchasing 

Warehouse 

Manager 

General 
Manufacturing 

Manager 

FIG. 2.5 THE MANAGEMENT STRUCTURE 



- 32 - 

cards supplied with each product. 

2.2.7 The Physical Flows through the Firm  

A schematic chart of the flow of physical goods through 

the firm is shown in Fig. 2.3. Inputs to the physical flows 

for any period of time were determined (initially) by the 

financial situation at the planning moment, and the projections 

of sales forecasts. Based on these estimates, materials were 

purchased; these eventually passed through the manufacturing 

processes of the firm to be despatched as finished goods. 

2.2.8 The Accounting Procedures and the Financial Flows  

The company used an "integrated standard costing system" 

based on the standard costs of some two years standing. Any 

deviations from these costs were allocated to rate variance 

accounts according to standard practices. 

For the purposes of planning the corporate strategy over 

the short/medium term, (i.e. 1/3 years), a flow chart for the 

financial accounts was drawn up - Fig. 2.4. This chart shows 

the financial flows corresponding to the physical flows of 

Figure 2.3. The chart is given in two sections. After the 

derivation of the operating income, the balance could either 

be transferred to assets (bank or cash) or could be used to 

generate reserves. The generating of reserves was used to 

supply extra funds for the marketing of goods - in particular, 

reserves were used to increase promotional expenditure on 

advertising. 

2.2.9 The Management Heirarchy and the Committee Structure  

A study was made of the structure of the management 

system, the relationships between the management and committee 

structures,and the information flows. (A'chart of the 

management structure is shown in Fig. 2.5). 
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A 3-dimensional picture of the firm was composed: the 

basic physical and financial flows were drawn on to sheets of 

clear perspex. Other sheets of perspex were used to•show the 

basic management functions, and the inter-relationships between 

the management and the committee structure. A final sheet was 

used to identify the information flows between physical and 

financial centres, and the management and committees concerned. 

The sheets were drawn so that any number could be viewed 

concurrently; a view through the chart of committee structures 

and physical and financial flows showed the manner in which each 

committee interacted with these flows, both from the central 

and informational view-points. 

The total 'sandwich' is illustrated below in Fig. 2.6. 

Information flow 

Committee structure 

Management tree 

Physical and 
financial flows 

    

Fig. 2.6. The perspex charts  

were: 

The committees appearing on the second perspex sheet 

i. Management Advisory Committee v. Finance Committee 
(MAC) 

ii. Management Operating Committee vi.  Plant Loading 
(MOC) Committee 

iv. 

Marketing Committee 

Manufacturing Committee 

vii.  Inventory Committee 

These are related, stratigraphically within the firm, in 

three levels; the Board, the Plannirig Level, and the Control 



- 34 - 

Level. 

CBoard 

(Planning 
" 

(—Control 

BOARD 1 
I 

MAC 	MARKETING 	MNFG 	FINANCE 

MOC 	--I PLANT LOAD 	INVENTORY 1 

Fig. 2.7 The Committee Structure  

The planning committees provided the inputs of policy and 

objectives for the model; the output was intended for submission 

at the planning level for approval, then at the control level 

for application. 

2.3 The Corporate Aims and Strategic Planning  

2.3.1 The Planning Processes and Performance Measures  

The policy of the corporation was to conduct its forward 

planning in three stages: the construction of a ten-year 

plan; the construction of a three-year plan (updated) to 

correspond with the current ten-year. plan; the construction 

of annual (operating) plans and budgets. 

The U.K. company followed similar procedures: Eight 

measures were listed in the company's report on Financial 

Planning, by which performance was judged, and concerning 

which the ten-year plan developed detailed projections. 

They were: Return on Assets; Return on Fixed and Current 

Assets; Ratio of Net Sales to Total Assets; Ratio of Income 

before Taxes to Net Sales; Growth of Total Assets; - Growth of 

Net Sales; Growth of Income before Taxes; Growth of Earnings 

per Share. 

The ten-year plan was an extrapolation of these measures 

over the coming decade. Orice these estimates of performance 

measures were published, they became the standard performance 
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measures for current evaluation of operations. 

The performance measures themselves were of different 

importance; a trend of the past decade has been towards the 

reliance on the ratio of Return on Assets. (The concept of 

Productivity of Assets has been reviewed in Sectionl.6, and is 

amplified in Chapter 3). 

Considerable emphasis on "Return on Assets" and "Growth" 

is prevalent in the medium and short term plans. (The medium 

term plan is a more accurate (and updated) version of the 

ten-year plan). 

2.3.2 The Annual Plan and Operating Budget  

As a result of the planning operations i and ii above, 

the annual budgets were planned in April - June. At the end 

of the annual planning period, these budgets became operational, 

i.e. they were the control budgets for the coming year (October 

to October). 

The construction of the annual operating budgets was 

itself a three stage process. 

Stage 1, April: A financial assessment was made of the Income 

and Surplus, Balance Sheets and Cash Flows for the year ahead. 

Stage 2, May-June: Production plans, Market Policies etc. were 

prepared, in order to achieve the proposals of Stage 1. 

Forecasts were obtained on all market fronts for use in the 

planning of operations. 

Stage 3, June-July: The forecasts and plans of stage 2 were 

consolidated into a series of working plans and budgets which 

became operational. 

The general nature of the planning process (for each 

stage) is summarised in Figure 2.8. 

The final stages of acceptance or suggestion of modifications 
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accept, plan 

derive inputs 

suggest modifications 

further requirements 

Fig. 2.8 The General Planning Process  

or amendments, emphasise the circular nature of the planning 

process. 

The model for short term planning was intended to enter 

the 'plan' stage for the one year exercises;it was designed to 

utilise the forec-asts of Stage 2 of this process, and produce 

a more detailed set of production plans and balance sheets for 

further appraisal by management. 

The major advantage in the planning process would be the 

speed with which Stage 3 could be enacted; this would allow a 

series of possible budgets to be considered. 

2.4 The Model  

The planning model proposed for the firm was a multistage 

LP model; the planning horizon (one year) would be split into a 

series of (equal) periods (months) and the interaction of the 

variables 

model the 

The advantages of the linear approach 

problems have been discussed extensively. 

The addition of accounting systems to such 

production planning poses no new problems; 

defining the period activities of the firm would thus 

progress of the firm to the planning horizon. 

to such planning 

See e.g. (16), (83). 

formulations of 

the accounting 
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system, and in particular, the standard costing system, is a 

linear concept of constant returns to scale. 

The interactions of the variables of the model take two 

forms; inter-period and intra-period types. These form two 

distinct groups within the model, and model different functions 

within the firm. An outline of these constraints is given in 

Section 2.4. 

For the 'initial model' it was assumed that the factories 

should not be considered as separate units; the company was 

assumed to be a homogeneous unit. No transportation costs 

between factories were included; (these would have been of 

integer (i.e. non-linear) type). 

The model would thus be useful as either a global model 

of the United Kingdom operations, or as a model of any 

individual factory, which could be inserted into a decomposition 

process. These (and further) assumptions are discussed in 

Section 2.7. 

2.4.1 Intra-Period Constraints  

The intra-period constraints are representations of the 

accounting procedures. In setting up the accounting network of 

the firm, we have not used the explicit approach of Ijiri (53). 

This approach implies the inclusion of many variables as (explicit 

combinations of existing .variables, the calculations being 

carried out in 'equality type.' constraints of the form: 

(2.1) 

This is unnecessary when the row sum 	xjajk will suffice; 

the inclusion of such equalities is computationally undesirable. 

Thus most of the accounting activities are modelled by 

unconstrained row sums of the corresponding multiples of 

variables. These accounting rows are: 
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i,Gross Sales: The value of goods sold in each period is the 

sum of the product of the sales figures and the list prices. 

ii.Standard Costs of Sales: These row sums indicate the 

standard costs incurred during the production of the goods sold 

in each period. 

iii.Overhead Accounts: These accounts are determined by 

adjustments to the standard costs to account for rate and usage 

variances (see Appendix 2.2). They are equality constraints 

of the type outlined above, and are included because of the 

importance of the overhead accounts (due to the lack of updating 

of the standard costs). 

iv,Discount on Sales: The trade discounts on gross sales are 

determined from the discount structures of Section 2.2.5. 

v, Net Sales: 	The net sales figures per period are deduced 

from th'e gross sales and di).scount rates. 

vi,Manufacturing margin: The estimated manufacturing margin 

on current sales is calculated from the net sales, standard 

costs and overhead accounts. 

2.4.2 	Inter-Period Constraints  

The inter-period constraints fall into three main 

sections: accounting sums; capacity constraints; and 

continuity constraints (balance equations). 

a. Accounting sums and equations: The variables for "the 

amounts stored in each period" were omitted; they are 

linearly dependent on "the amounts produced and sold". This 

means that some accounting and storage constraints are of the 

inter-period type although they are logically of the intra-
, 

period type. Due to the method of formulation the following 

are also inter-period constraints: 

i. Work-in-progress: During the periods prior to the 
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completion of a product, it will be accounted as work-in-progress. 

This row is the sum over 'incomplete' products of their 

contributions to the work-in-progress account. 

ii. Finished Goods: The finished goods row accounts for the 

change in the level of the finished goods account due to 

production and sales during the periods of the total planning 

period. Finished goods are valued at list price. 

iii.Payables: The amounts falling due for payment in each 

period are calculated; payments are staggered according to the 

lag between receipt and the date for settling accounts. 

iv, Receivables: The amounts expected in receipts are similarly 

summed. Both 'Payables' and 'Receivables' are used in the Cash 

Continuity Equation of part c.below. 

v. Bank Charges: The interest charge for the period is 

calculated on the difference between bank loans and repayments. 

Bank charges also appear in the 'Payables' account. 

vi. Marketing Expenses: The marketing expenses are calculated 

on the basis of sales of the present (or succeeding) periods. 

(See Section 2.7.5.) 

b. Capacity Constraints: At most stages of production and 

storage, physical constraints of capacity are operative; these 

are: 

i,Work centre capacity constraints: For each work centre, 

the planned usage may not exceed the total capacity available. 

Allowance may be included for subcontracted work. 

ii.Labour force requirements: The labour force requirement 

(for machine operatives) can be calculated from the proposed 

work centre usages; the labour requirements may be bounded by 

the maximum size of the labour force. 

iii.Storage capacity: The spot balance of products stored at 

the end of each period may not exceed the storage facilities; 
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the increase in stored product may not exhaust the storage 

space available at the beginning of the planning period. This 

increase is calculated from the difference between production 

and sales figures, in which the increase of stored product is 

implicit. 

iv, Materials usage: For each period, it is desired that the 

raw materials required for production be on hand at the beginning 

of the period; this requirement ensures a steady flow of 

materials into the system, corresponding with the back up stocks 

held on the factory floor. 

The materials requirement is calculated from the production 

plans for the succeeding three periods. 

c. Continuity equations: In common with all multistage models, 

the LP model outlined here requires inter-period constraints 

to define the manner in which material balances, etc., are 

carried over between periods. These continuity equations are 

often implicit (as in the case of storage of completed products). 

Continuity equations explicit in the model formulation are: 

i.Materials balance equation: Raw materials available in a 

period is equal to the raw materials available in the previous one 

adjusted for usage and extra purchase. 

ii.Cash continuity equation: The cash on hand at the end of 

a period is calculated from the cash on hand at the end of the 

previous period, adjusted for payments and receipts. The spot 

balance adjustment is analogous to making up the monthly cash 

accounts. 

A further set of constraints were added to the inter-period 

set in order to reflect the time that different products remain 

in store before sales - in order to include the rate of turnover 

of stocks into the financial scheme. 
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iii.Storacle requirements: No finished product is available 

for sale, unless it has been in store for an appropriate length 

of time. This lag is determined by the storage lag data discussed 

below in Appendices 2.2.1 and 2.2.4. 

2.4.3 The Bounds on Admissible Activity Levels  

The levels at which activities may take place are controlled 

by two sections of the model: 

a. the constraints: these define the allowable levels of 

activities by regulating their inter-actions.  

b. management policies: stipulating levels of activities that 

they consider desirable; these may be minimum sales targets, 

cash balances, etc. 

The management policy decisions are entered into the 

model by bounding the activity levels of the model variables. 

Explicit inclusion has been made of the following bounds: 

i.Minimum sales: Sales of each product must exceed the 

given minimum sales pattern. 

ii.Cash balances: The cash balance at the end of each period 

must lie between pre-specified limits. 

iii.Bank loan restrictions: Upper and lower limits are placed 

on the amount that may be borrowed per period. 

iv, Raw materials balance: The materials balance at the end 

of each period must lie within a specified range. 

Other bounds may be introduced' into the model after the 

initial tableau has been set up by the matrix generating 

programme, e.g. 

a. Total loan restriction: The total outstanding loan 

may be restricted by bounding the admissible level 

of interest payments. 

b. Upper sales limits: If planned sales exceed the 

market forecast, this forecast may be introduced as 
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an upper limit on sales. 

2.4.4 The Objectives  

The matrix generating programme also formulated the basic 

set of (unconstrained) rows which could serve as objective 

functions for the programming model. These were: 

1. Change in Current As'sets. 

2. Change in Current Liabilities. 

3. Gross Sales. 

From these three rows, and a knowledge of the asset and 

liability positions of the firm at the beginning of the planning 

period, the performance measures of Section 2.3.1 can be deduced. 

The company emphasised its desire to make operations 

independent of current taxation policies, hence all measures 

are calculated "pre-tax". Net sales, although not explicitly 

included in the objective set, can be deduced from the row sums 

of period sales. 

The formulation of the objective functions was: 

1. Change in Current Assets: Change in current assets is 

accounted for by changes in finished goods, materials, cash 

and outstanding accounts. 

2. Change in Current Liabilities: Additions to'current 

liabilities derive from changes in the outstanding loan, and 

outstanding debt. 

3. Gross Sales: The sum of all monthly gross sales for 

the total planning period. 

2.5 The Mathematical Formulation  

Corresponding to the logical exposition of the model in 

Section 2.4 , a mathematical formulation was devised. This 

is presented in Appendix 2.1. 
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The arrays used for this formulation are shown in Tables 

2.1 to 2.7. The features defined are: 

i. the model parameters 

ii. the model variables 

iii. the production/technology arrays 

iv. the accounting data 

v. the accounting and storage lags 

vi. the technological capacities 

vii. the bounds on the acceptable variable levels. 

The matrix generating and report programmes are listed in 

Appendix 2.3. 

2.6 The Association with the Bounded Variable Algorithm  

2.6.1 Normative models and planning procedures  

Corporate planning may be characterised by the following 

concepts; given the present organisation of the firm, its 

'status-quo' in technological development and resources, and, 

bearing in mind the objectives of its management, what plans 

should be envisaged for 'optimal' operations in the coming 

planning period. 

These plans may encompass changes of the organisation itself, 

advancements in technology, and adjustments to resources, and 

will include the proposed future use of each of these factors 

in the manner most suited to management aims. The desirability 

of any plan will not necessarily be quantifiable in such terms 

as 'Return on Assets', 'Sales', etc., (as in 2.3). Sociological 

norms will also be present, as well as factors not directly 

under the company's control - market share, market value, etc. 

Any plans which are 'normative' with respect toquantifiable 

elements such as financial ratios, sales, etc. will also have 

to be compatible with the aspirations of the firm:and its 
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management. In this context, the normative approach to planning 

is one of validating the mathematically 'optimal' plan with 

respect to the non-quantifiable demands of the firm, and 

rejecting (or re-formulating) such plans when they do not satisfy 

such requirements. 

2.6.2 The .Elements of Normative Planning  

The elements of normative planning outlined above are: 

i. The organisation of the firm: This comprises its structure 

both in the management and technological senses, and the 

framework of the production processes that it utilises. Under 

'organisation', we include the management heirarchy, the 

committee structure and the information flow, as well as the 

basic framework of the flow diagrams of the physical and 

financial resources, Figs. 2.3 and 2.4. 

This outline is complemented by the technological factors 

and resources to give 'the model of the firm'. 

ii. The technology and resources: The ways in which the basic 

framework is utilised depend on the present state of the firm's 

technological development and the resources it commands. 

Its development is characterised by such items as the 

product range, the use of the technological framework by the 

product range, the firm's ability .to introduce innovations, 

the productive efficiencies, etc. The resources on hand are 

those factors which may be disposed of, by management, in 

pursuit of production and sales. 

iii. The objectives of the management: These are divided 

between 'aims' and 'policies'. The aims of management comprise 

their desire to optimise behaviour, attain targets, 'perform' 

well, etc. Any attempts to achieve these aims may be constrained 

by policies which describe the bounds in which management 
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chooses to operate. These bounds may be on financial holdings 

(cash, loans, etc.), stock holdings, or a restriction on 

performance levels. 

In this model, the policies form added restrictions 

to the attainment of objectives. 

2.6.3 The Bounded variable Algorithm: 

The programming model, (described in Section 2.4 and 

Appendix 2.3) was designed for use with standard LP codes. 

The package used for all solutions was the Mathematical 

Programming System on an IBM 360/65 computer (the MPS/360 

package). This code, in common with most standard LP codes, 

uses the bounded variable form of the revised simplex algorithm, 

(16) and (68); it solves the LP: 

max c.x 

s.t. A.x 5 b 

• LsxU 	 (2.2) 

where L and U are lower and upper bounds on the admissible 

levels of the value of x, c.x is the objective function, and 

i
xk.xsb} is the constraint set. 

Considering the matrix A and the vector b, we may distinguish 

two separate features of the constraint set: the structure of 

A and b, i.e. the positions of non-zero entries; the values 

of A and b, i.e. the actual matrix entries. 'Three dimensionally' 

the form of the bounded variable algorithm may be described 

by Fig. 2.9. 

These levels are related to the elements of normative 

planning in the following way: 

i. the underlying framework of constraints and capacities is 

derived directly from the present organisation of the company, 

the layout of its production facilities, the current accounting 
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policies :and 
variable__bounds 

framework of,,. 
constraints-- 

elements of 
constraints 

- 

objectives 

framework 
of capacities 

/ 
elements of 
capacities 

Fig. 2.9 The underlying structure of the bounded variable model  

procedures, the information flows, etc. 

ii. the present technology and resources determine the entries 

into the frameworks for A and b (as defined by the present 

organisation). Efficiencies determine the machine centre 

usages, input requirements, etc., the resources determine the 

plant capacities available, the material inputs, etc. 

iii. the objectives and bounds are directly related to the 

quantifiable aims and policies of management. Their aspirations 

are measured in the set of objectives; the policy levels are 

included in the bounds on admissible activity levels. 

2.6.4 The Relationship between the Model and the  

Committee Structure  

The committees directly related with the formulation of 

the model are those of the planning level: the MAC and the 

Marketing, Manufactliring and Finance Committees. (see Fig. 2.8). 

These have an effect on two of the elements of planning, the 

organisation and the objectives; they directly determine the 

framework of the constraints (via the organisation) and the 
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objectives and bounds, (via the aims and policies of management). 

Their effects are: 

i. Management Advisory Committee: The MAC provides 

consultation to the Board on matters concerned with major changes 

of structure in assets, research, facilities and organisation. 

In terms of a mathematical model these enter as either the 

framework for the constraints and capacities, or the proposals 

for an integer programming,(capital budgeting) type of model. 

Interest here is restricted to linear models, hence the 

committee has the effect of suggesting the constraint framework. 

It also establishes the new aims and objectives of the 

firm, or modifications thereto, and specifically formulates 

the profit objectives, i.e. its major role includes the inputs 

for the bounds and constraints. 

These inputs are further modified by: 

ii. Marketing Committee: where marketing policy is formulated. 

For the model this policy is included as sales bounds and 

suggestions for marketing expenditures. 

iii. Manufacturing Committee: where manufacturing policy is 

proposed for the approval of the MAC. 

The technology of the firm is not decided in committee 

as a short term planning objective; use is made of the technology 

to determine optimal policies. 

2.7 The Assumptions  

2.7.1 Introduction  

The model presented in Section 2.4 and Appendix 2.1 is a 

deterministic, multi-stage LP model, to be used as a planning 

tool for upper management. Implicit in the formulation are 

assumptions concerning both the nature of the interactions 

allowed in the model, and the possible control parameters that 
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can be utilised to govern such interactions. We will discuss 

the general nature of these assumptions under three headings - 

linearity, determinism, and time structure and stock control - 

and append details of any further assumptions made in individual 

constraints. 

2.7.2 Linearity • 

In assuming that the planning processes can be modelled 

using an LP format, all possibilities of capital investment on 

plant and facilities, restrictions of minimum batch quantities, 

and allowances for machine set-up times have been excluded. 

The model was intended for short to medium term planning, 

and it would be expected that any capital commitments arising 

out of a scarcity of capacity during the planning period (and 

demonstrated by the mo41) would require a lead time longer 

than the planning period itself. (Capital expenditures 

undertaken before the beginning of the planning period would 

assume a deterministic form and any associated changes in capacity 

could be built into the model with the data outlined above). 

The lack of restriction on minimum batch quantities is 

somewhat more important; a failure to include such quantities 

could lead to impractical planning. The inclusion of minimum 

batches for production implies either the association of 

integer variables with production activities, .or nonlinear 

equations of the form 

PROD (I,J) x (PROD (I,J) - MIN (I,J)) Z 0 	(2.3) 

where MIN (I,J) = minimum batch quantity for product I 

in period J. (For definitions of PROD (I,J), etc., see 

Appendix 2.1). 

The non-negativity requirement on PROD (I,J) and the 

equation (2.3) would ensure that if PROD (I,J) were2non-zero, 
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it would be greater than MIN (I,J). Such an inequality can only 

be handled in the LP environment using Seperable Programming 

(see e.g. (68), (51)); the inclusion of such constraints for 

each product and every period would greatly expand the problem 

size. It was assumed that deficiencies introduced by omitting 

batch quantities could be adjusted (post-optimally) by 

manipulation. 

Economic batch quantities can, only be accommodated using 

Integer Programming techniques. 

Set-up times have also been omitted, these again are non- 

linear. A true estimate of utilised capacity is obtained by 

the inclusion of set-up times for each non-zero PROD (I,J) - 

using Integer Programming. As with batch quantities, set-up 

times have not been included, due to the size restrictions on 

computable integer programmes, and the difficulties of dual 

interpretations, (see Section 3.3.2). 

A post-optimal scan can be made, to assess the effect of 

both these omissions - the process of post-optimal adjustment 

has been outlined in Section 2.3.2. "Suggesting modifications" 

in Fig. 2.8 could include making allowances for the proposed 

set-up times by appropriate reductions of capacities and can 

take care of minimum batch quantities by the addition of further 

bounds on the non-zero production variables. (Such considerations 

have been made in Appendix 3.2). 

The assumptions of 'linearity and constant returns to scale 

do not contradict the normal accounting procedures of standard 

costing, indeed the action of the programme in making up accounts 

at the end of each month, exactly models accounting practice, 

both with respect to linearity and time segmentation. 

A further assumption associated with linearity is the fact 

that products (variables) are independent - physically and 
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algebraically. Hence, two products will appear totally 

dissimilar if they differ by only one attribute - say standard 

wiring. It is thus necessary to remove all trivial differences 

between product items before defining the product set 

(PROD (I,J) J = 1, ... NPROD). This implies a loss of detail 

in the planning, but will reduce the number of variable that 

must be included in the model. 

2.7.3 Determinism  

In Chapter 1 we have mentioned the Stochastic Approach to 

Mathematical Programming proposed by Charnes and Cooper (18). 

These methods have the advantages of introducing a well defined 

concept of risk into the planning process, and of being much 

more akin to management psychology in their treatment of 

constraints,. but this attractiveness is marred by the lack of 

computational success, and the complexity of any programmes 

developed. It is still far from practical to attempt to model 

a large scale operation using Chance Constrained Programming. 

The only approach to risk, at present, appears to be the use 

of deterministic models, with a post-hoc risk analysis made 

by management on the basis of successive optimisations. 

As has been shown by Wagner, the optimum of an LP approx-

imation using mean value estimates may vary markedly from the 

mean value of the stochastic programme. (See e.g. 84). Such 

will be the case where many of the matrix elements are them-

selves stochastic. 

In this model (and in the short term planning context), 

this stochastic nature need not present too much of an obstacle 

to a deterministic approach followed by adequate sensitivity 

analysis, since the variation is not large. 

The stochastic nature of forecasts is a necessary feature 

of the input data, arid must be dealt with using comprehensive 
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post-optimal analysis. 

2.7.4 Time segmentation and stock control  

The normal practice in multistage models is to define 

variables as pertaining either to the ends of respective periods, 

(such as "cash at the end of period I"), or to some indefinite 

time in period I, for accounting at the end of the period (e.g. 

"materials purchased during period I"). (Equations such as 

(2.22) and (2.23) in Appendix.2.1 define the continuity of these 

variables at intertemporal links.) 

We have already noted that there are two approaches to the 

method of specifying continuity and growth of stock holdings. 

Cohen and Hammer propose a justification for the average balance 

approach on the basis that, a the model is a medium/long term 

planning tool, and b time periods can be shortened (arbitrarily) 

for greater realism. In the model described above, we have 

assumed that holdings of cash, raw materials, finished goods 

and work in progress are all to be considered as spot balances 

referring to holdings at the end of respective periods. With 

the variables for cash holding, this assumption is valid on 

the grounds of regular accounting practice. (The treatment 

of finished goods and work-in-progress is similarly justified). 

The reasons for regarding materials and stored product as 

spot balances are two-fold: 

a. the balance equations are simplified, 

b. with both materials and stock, the end of the period values 

are used in equations modelling the flow of the respective 

item through the system in addition to providing the continuity 

equations. 	Average balances have little meaning in this case. 

Difficulties arise in measuring the warehouse utilisation, (2.20). 

The spot balance here is measured against the absolute capacity. 
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It might be more meaningful to use some average measure 

to compare with capacity, but both average and (adjusted) spot 

balances are unrealistic. The quantity to be compared with 

storage capacity is the maximum amount held during the period. 

To obtain this figure we would have to make further assumptions 

on the rates of change of stocks due to production and sales, 

and might enter into non-linear systems when trying to cope with 

both increasing and decreasing stock levels. In this case the 

normal appeal to the correctness of the length of the time period 

is made. 

The final problem associated with the time structure of the 

models is its interpolation into the real time world; i.e. the 

adjustments to the initial and final stages of the model to 

ensure a smooth (and feasible) transition between true operating 

time and the model's planning period and vice versa. 

At the planning horizon, the accounts for work-in-progress 

need adjustment allowing for work to be completed beyond the 

scope of the model; use of machine facilities during the terminal 

periods will be an underestimate of the actual use that will be 

made; materials on hand at the planning horizon must allow for 

a reasonable continuity of production. 

These end conditions must be satisfied to prevent the 

model "running the firm into the ground". It is assumed that 

such definitions can be provided - ab initio, or deduced by 

the processes of sensitivity analysis and re-optimisation 

outlined above. 

2.7.5 Other assumptions  

i. Work Centre Usage: To find the usage of each work centre 

per period (and to compare this with capacity) the total sum 

of hours planned for each facility is made, (2.18). Because 
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of the linearity of this sum, no account can be taken of the 

order in which jobs would be scheduled. The LP model assumes 

that all feasible plans, (with respect to the constraint set 

of Appendix 2.1) are also feasible for scheduling through the 

work shops. This will be the case if work-centre aggregation 

is meaningful. In our case, either like machines are combined 

into work centres, or the work centre represents part of a 

flow line. In both these instances the aggregation will not 

lead to scheduling conflict. 

ii. Marketing Expenses: In addition to the constraints of 

Section 2.4, additional rows calculating the marketing 

outlays were included. For the 26/12 model it was assumed that 

a flat rate of £1 was paid 

marketing expense is equal 

No forward lag was allowed 

during the period of sale. 

and MRKLAG arrays). 

The association between 

is necessarily deterministic 

per item marketed; in this case the 

to the monthly sales (in units). 

- the expense was made to fall due 

(This may be altered using the MARK 

advertising expenditure and sales 

in this model. Other factors may 

also include such as effects of substitution and correlation 

between sales; 

a. Substitution: Suppose sales of product i can be satisfied 

with a sale pij  of product j. Then, considering say the maximum 

possible market for sales of type i we could formulate the rows 

"sales of i" s 

of ? (pij  x xj) 
J 

maximum for i 

maximum for i 	(2.4) 

where pij  . 1 

b. Association: Conversely if the sale of product i implies a 

possiblesaleofa..ij  of product j, sales of product i may be 

thought to increase the potential for sales of product j. 
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i.e. "sales of i" s maximum 	a.. x X. 	(2.5) 13 	3 

where a.. = 0 13 

Both of these marketing models could be included in the model, 

but data was available for neither the expenditure calculations 

nor the substitution/association effects. It was thus assumed 

that a constant rate of expenditure would be built into the 

model; the rate at which unit sales imply unit marketing costs 

being given by the diagonal elements of the MARK array. 

It was further assumed that transportation and storage 

costs were reflected in the standard costing system. 

iii. Homogeneity of facilities: As mentioned in Section 2.4, 

no account has been taken of the separation between factories. 

The model is of a single production unit, and can model either. 

the total U.K. operations, ignoring the separation into three 

factories, or the operations of one factory. Three such 

models could be combined into a LP decomposition algorithm 

for global optimisation. The case of fractional objectives 

in decomposition is considered in Chapter 5. 

2.8 Summary  

An LP model for short to medium term planning has been 

proposed. This model is formalised in Appendix 2.1. The 

discussion of the assumptions underlying this model has 

concentrated on three aspects: linearity determinism and 

time-segmentation. Further discussion is presented in 

Appendices 2.2 and 3.2 and the dual evaluation is considered 

in Chapter 3. 
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Chapter 3 	Performance Measures and Multiperiod Models  

3.1 Introduction  

In the previous chapter the LP model for short term 

planning was introduced. ExamplL.; of optimal sol..1nrs, 

sensitivity analyses, and other post-- 	mal test - are 

presented in Appendix 3.1. 

This chapter concentrates on the assumptions under  

the interpretation of the dual variables in multistage LP's 

as prices, and develops the use of LP dual evaluators and 

reduced costs for resource valuation, ratio analysis and product 

ranking. 

3.2 Productivity and Financial Ratios  

Interpretations of productivity and financial ratios 

range from "evaluations of past performance" to "criteria 

for management control" and "statistics for inter-firm 

comparisons". In many of these cases different inferences 

may be drawn from the same ratios, regardless of their primary 

function, and regardless of the objectives of the firm. It 

has been suggested by Gold and Kraus (41) that for the purposes 

of control some of these ratios may be shown to be part of a 

tree which disaggregates the basic ratio of "profit to total 

investment" into its constituent parts. (Such a tree is shown 

in Figure 3.1). In (41) they quote the different emphases 

placed by various firms on sections of the tree, e.g. Dupont 

consider (profit:sales), (sales:total investment) and (profit: 

total investment) as key ratios. Monsanto on the other hand 

use (profit:investment), (net income:investment), (sales: 

property), (selling expenses:sales), (operating expenses: 

sales) and (cost of goods:sales). 



Fig. 3.1 The tree of ratios  O 
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Considering the use of ratios for either inter-firm or 

intra-firm comparisons, and in both planning and reporting 

situations, many of these ratios are ill-defined. 'Capacity' 

is measurable as a unitary statistic., only if the firm 

produces just one product, with a fixed statement of resources. 

In normal industrial conditions, the capacity of a 

production unit, manufacturing a number of interdependent 

products with fixed resources, cannot be defined as a single 

statistic without the inclusion of some management objective 

regarding the most desirable product mix. There may be many 

'efficient combinations of production, and the mapping of these 

combinations into one financial estimate of 'capacity' is 

meaningless if corporate objectives are ignored. The applications 

of LP to corporate planning amplify this aspect of business 

ratios (i.e. their dependence on management objectives). As 

we have noted in Appendix 2.3, the ratios derived from an LP 

model vary with the objective function used for optimisation , 

thus ratios may be expected to differ within an industry because 

of differences of objectives, as well as differences of 

productive efficiency. (Amey uses LP to clarify the concepts 

of economic efficiency and business efficiency - see (3)). 

This point becomes more apparent when considering such 

terms as 'output to capacity'. For planning, 'capacity' may 

be defined in two ways: 

i. the 'capacity' to produce say goods and services, is 

that value of goods and services that is theoretically 

attainable whilst the firm pursues some definite 

objective (with fixed resources). 

ii. 'capacity' is the maximum value of goods and services 

that the firm can produce, regardless of its objectives. 

in the sense of Koopmans (56) 
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Mathematically, if x is the vector of production, storage 

variables 	 , the technological constraint set is 

ixA.xsb}, and the function 0(x) measures the value of 

output of goods and services, we may define C(x), the capacity, 

as: 

C(x) = {0(x)1 max f(x), A.x 

according to (i) 	 (3.1) 

or 	C(x) 	{max 0 (x )1 A.x 

according to (ii) . 	 (3.2) 

Alternatively, the two definitions may be thought of as: 

C(x) = x .maximises M1' 
 f(x)+M„.0(x) ' 

s.t A.x 

  

where 

i. M1, M2  have a non-archimedian order property M1>>M2  

(see (16 pp. 756-767)) 	 (3.3) 

and ii. where M1  = 0, M2  = 1 	 (3.4) 

In the first case, the planned output and capacity may 

be identical; the objective function is reflected in the 

capacity level itself. The ratio 'capacity to fixed investment' 

is the rate of turnover of the fixed investment - planned with 

respect to the company's objective. In the second case, the 

ratio 'output to capacity' is not unity; it represents the 

extent to which management have sacrificed the attainment of 

maximum output in order to optimise their objective. 

Both approaches emphasize the central role played by the 

objective function in determining the physical and financial 

measures of performance. 

Example: Consider a firm manufacturing three items on two 

machines, A and B, each machine having a capacity of 10 hours. 

Every unit of product one requires 2 hours on machine A and 
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1 hour on machine B. Units of product two and three each 

require one hour on machine B. Let the net profit per unit 

be £4, £2, £2 respectively and the 'output value' per unit be 

£6, £8, £9 respectively. The LP for maximising net profit is: 

max 4x1  + 2x2 
+ 2x3 

s.t. 2x1 	s 10 	(machine A) 

	

x1 + x2,. +,x3 s 10 	(machine B) 

x1, 	x2, 	x3 	0 	 (3.3) 

The optimal solution is 

x1 	
5 

x2 + x3 	5 

i.e. the value of output may range between £70 and £75 without 

affecting the objective. In this case, capacity (using the 

first definition) is £75, (with respect to maximising net 

profit). The maximum value of output is £90, (when x3  = 10, 

x1 	x2 0). Thus according to the second definition the 

absolute capacity (regardless of objectives) is £90. 

(Similar treatment can be given to other ratios of 

Figure 3.1 (e.g. 'sales to output') using examples of greater 

detail.) 

3.3 Reduced Costs and Dual Evaluators  

3.3.1 Introduction  

Thus far, we have shoWn how the LP approach may be used 

to generate optimal plans for company operations, how such 

plans are interpreted as production schedules, financial 

accounts and operating ratios, and how these measures vary 

with the objectives of the firm. But, the major advantage of 

this approach is not in the attainment of the optimal solution; 

duality and the pricing of resources are the primary attractions 

of the method, since each evaluator (or reduced cost) assigns 
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a monetary value to a proposed (or possible) change. Moreover, 

this evaluation is made in terms of the objective, of the firm 

i.e. with respect to the attainment (or increase) of the 

planning objective. (For the objectives mentioned in 

Section 2.4.4 these may be such values as "pounds change in 

gross sales per extra unit of resource", or "decrease in 

profit per unit increase of production level"). 

For the short term corporate planner, the LP approach has 

two advantages: 

a. it gives a guide to 'optimal' policy 

b. it evaluates resources with respect to that optimum. 

(These values may then be utilised in revising capital 

investment decisions, company policies, etc.) 

Such benefits rely heavily on the assumption's of total 

linearity in the system, the presence of a unitary objective 

(which in itself is linear) and the accuracy of the corres-

pondence between the 'model' and 'reality'. The cogency with 

which these assumptions may be justified is the sole guide to 

the acceptability of the approach. 

3.3.2 The Linearity of the System  

The model described in Section 2.4 was constructed on the 

assumptions of linear relationships within the- firm (of 

production, storage, etc.) and possiblefurther, linear, 

relationships between the firm and its external environment, 

(e.g. marketing, the inclusion of transportation in standard 

costing, etc.) 

As a consequence of this assumption, the dual evaluators 

of the model are interpreted as the values of the resources of 

'the model' and hence as the resources of 'the firm'. In many 

cases, the linearity is questionable; costs are certainly not 
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linear, and, like overheads, cannot be considered deterministic 

in the real environment; many of the variables of the model 

imply solutions which should take account of the non-divisibility 

of activities by the inclusion of integer specifications. The 

theoretical and practical implications for duality in these 

circumstances are important, as are the specific interpretations 

that are placed on the values themselves. 

The assumptions of linearity with respect to costs and 

overheads have been considered in Section 2.7; they are 

justifiable if the model is a planning tool, and do not impair 

the useful interpretation of the dual variables. The assumption 

concerning the integer values of certain variables is more 

serious. 

In Chapter 1, we have introduced the ideas of Baumol and 

Gomory, (43), Weingartner (88), etc., concerning pricing (and 

duality) in Integer Programming. In both works, the implication 

is clear: the association of dual-variableswith prices of 

resources is tenuous. 

In our model we have included neither set-up times, 

nor batch quantities for production runs. Does this ommision 

invalidate the pricing of machine capacity (and all other 

prices)? The exclusion of set-up times was tested with respect 

to the 3/5 model. The capacities for the various work centres 

were decreased to allow for the set-up times implied by the 

basic optimal set and the LP was re-optimised; allowances were 

made for one set-up per month and one set-up per batch of a 

hundred items. With both changes, the optimal (basic) set was 

unaltered, thus the dual evaluators did not change. 

In fact, neither of the revised capacity sets fell outside 

the range for the .row dealing with the respective capacity, 
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(Details are given in Appendix 3.3). 

The real problem, including set-up times on machinery, 

should contain the following rows: 

a..x + 	s .y s c 
j  13 	j 13 	1  

and 

x. - k.
3
y.
J 
 s 0 	yj  integers 

	( 3 .5 ) 

where aij  is the usage of facility i by activity j,:  sij  is the 

set-uptimerequiredbyk.units of activity j on facility i, 

there are m facilities. 

We have solved the amended problems with 

and 

a. .x. s C. .  

Z a
13
. .x s c.

1 
 - E  S. .y 

i = 1...m 	(3.6) 

(3.7) 

where y, is an estimate of the number of set-ups required for 

the jith activity. 

If we can assume that the capacity figures 	comprise 

infinitely divisible resources, then the dual evaluators of 

the LP's containing rows (3.6) and (3.7) will give the marginal 

values of these resources. The 'range' for which these values 

hold is given by the minimum of: 

i. the variation of ci} that preserve the present basis 

(i.e. the LP range of {c.1-) 

ii. the change of {ci} that preserve the estimates 

This range can only be derived using parametric analysis of 

the right hand side of (3.7); see Appendix 3.3. With respect 

to increasing capacity (r.h.s.) values, the objective function 

will increase (where marginality holds) until the allowances 

for set-ups become insufficient. When more capacity has been 

generated (to allow for additional set-up) the objective function 

i = 1...m 	(3.4) 
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will show an initial fall, '(productive capacity has been 

removed for set-up time), and then rise according the dual 

evaluators during the new extent of set-up allocation. The 

typical graph (Figure 3.2) is deduced in Appendix 3.3. 

0 F 
validity of 
set-up times 

  

capacity for 
further set-up 

Work centre capacity 

Fig. 3.2  

The inclusion of the integer estimates does imply that 

the dual evaluators will not price out resources (i.e. the 

right hand side of the initial LP). 

Based on the assumption that production and sales activities 

can take any real values,the concept of marginality is retained, 

by the adaptation of the mixed-integer problem to a series of 

linear problems. (The integer problems of Baumol and Gomory, 

Weingartner, etc. (43), (88) are not so amenable, because of 

the disparity between the integer and linear forms). 

3.3.3 The Reality of 'One Objective' 

In many of the models presented in Chapter 1, (Charnes 

Cooper and Miller (24), Chambers and Charnes (14), Ijiri (53), 

Samuels (13), Carsberg (11), etc.) the aspirations of management 

have been summarised in one, linear, objective function. If 

the optimisation of this expression is accepted as the sole 

aim of management, the duality of the LP model provides a 
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unitary set of dual prices, which may then be used for the 

marginal evaluation of resources. As already mentioned, 

(Section 1.5), this normative approach to Corporate Modelling 

has been queried by Charnes and Stedry in the light of studies 

by behavioural scientists. The absence of a unitary long-term 

objective function (31, also 26 page 147) makes the normative 

approach seem unrealistic, and throws doubt on the extent to 

which dual evaluators, derived from one objective function, 

may be used to price resources, for management decisions. 

For the two methods suggested in (26) there are difficulties 

in the use of duality for pricing. Dual variables can be 

defined for the certainty equivalent of a Chance Constrained 

Programme, (see e.g. (67)), but for large problems CCP is 

impractical. The objective in Goal Programming is the 

minimization of a distance functio.n. Dual variables for the 

formulation in equations (1.4) represent the marginal change 

in distance from goals per unit change of resource. (One 

attractive feature in Goal Programming is'the possible use of 

the optimal canonical form to give the marginal rate of change 

of the achievement of each goal with respect to changes of 

each resource. 

e.g. Consider a two goal problem; "2X+ 3Y to approach 44;' 

"X + Y to approach 20'; with constraints 

The formulation is: 

min 	s1  + s2 

2X+ Ys 12, X, 	Y z O. 

s.t., 2X + 3Y + s
1 

44 

X + 	Y + s2  = 20 

2X + 	Y + Z = 12 

X, 	Y, 	Z, 	s1, s2 z 0 

the optimal solution is Y = 12, 51  = 8, s2 
8.  

t in degenerate cases, the prices in this set may not be 
unique - see e.g. Carsberg (11) 

t• 	. 
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For this optimum, the first-line of the canonical form reads 
*.  

-4X
* 
 + s1  - 3Z = 	(1, 0, -3) ,6-4._\  

20 
1.2) 

The rate of change of s1 with respect to changes in the 

third resource (now at 12 units) is -3. This is the rate at 

which the distance between performance and goal is being 

decreased. 

In Corporate Planning, a series of objectives must be 

considered. (Eight such objectives have been listed in 

Section 2.3.1 for linear or fractional programming). For each 

objective function, there will be an optimal set of dual 

evaluators, representing the marginal values of resources with 

respect to that objective. In these situations, management 

must review the arrays of prices, and arrive at a subjective 

evaluation and ranking of all resources. (Alternatively, the 

(linear) objectives may be weighted to form some utility function. 

The dual evaluators will then rank resources with respect to 

utility - but will not generate monetary prices). 

The contrast between such dual prices (and their associated 

optimal policies) may be extremely illuminating for management. 

The sets of dual prices provide financial evaluations which 

take account of the firm's strategies, activities and policies; 

they highlight the fact that resources can only be valued with 

respect to corporate objectives, operating constraints and the 

external environment, and that these values may well differ from 

economic or accounting values. 

The existence of multiple sets of prices does vitiate the 

use of dual evaluators as penalties and bonuses in control 

models, (such as those of Samuels (73)), and casts doubt on the 

use of dual prices for assets valuation and accounting, (as 

suggested by Carsberg (11)). ( See Appendix 3.2.) 
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3.3.4 The Effect of Time Segmentation  

The multiperiod models used by Cohen and Hammer (29), 

Chambers and Charnes (14), etc., were intended as operating 

models, which would suggest strategies for the first period of 

the planning horizon. (The models would be run at the 

beginning of every period to give the strategy for the 

immediate period). In these cases, the time segmentation 

(i.e. the length of period considered) is not so serious. 

The only criterion that need be considered is whether the model 

has included all future periods that might affect present 

strategy; via their interactions with the present decision 

variables. 

The model of Section 2.4 has a different purpose. Its 

function is to view the whole of the company's operations up 

to the planning horizon; the evaluations thus obtained are 

intended to give a picture of the values of resources over the 

whole planning period. Here, two problems must be resolved: 

a. the selection of the correct length for the time period 

b. the selection of the appropriate number of time periods 

beyond the horizon. 

a. The Time Period: As shown in Appendix 2.4, difficulties 

were encountered with models of over 1400 rows. Since the 

row dimension per period is fixed, consideration of time 

periods of less than one month (even for the short term) would 

make the model unwieldy. 

One assumption that is implicit in 'time-segmented' 

multiperiod models is that activities that are scheduled for 

a particular time period must be independent of time within 

that period. 

e.g. if the optimum schedule for period one is: x1 units 
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of product 1, x2  units of product 2; then the manufacturing 

processes of that period may be organized in any order, 

provided that the totals x1 and x2 are attained. There is no 

allowance made for further assumptions e.g. product 1 must be 

made before product 2. 

For planning, this assumption is justifiable. Taking 'a 

month' as the basic unit of time, we can assume that the 

production targets for each period can be satisfactorily 

scheduled on the shop floor. (Production will appear to be 

instantaneous in the model). The assumption of 'scheduling 

within the time period' is vital to the interpretation of the 

model and the dual evaluators. In Appendix 3.2 we show that 

the failure to define the correct time unit leads to failure 

in the interpretation of the dual variables. The use of a 

month as the basic time unit is not tenable,for control models, 

due to the rapidity of change within the period. From Appendix 

3.2 it would appear that the size of model required for control 

operations is large - and consequently expensive. 

b. The 'End Effect': In Section 2.7.4 we have discussed the 

amendments that must be made to the constraints (and resources) 

of the later periods of the model, to make it correspond with 

reality. The problem of identifying the effect of the termin-

ation of the model at an arbitrary point in time has not been 

investigated; it can only be solved in conjunction with the 

implementation of the model by the test firm. 

3.4 Pricing and Rationalisation with Multistage Models  

3.4.1 Capacity Evaluations  

In Section 2.6.3, we have shown how the bounded variable 

algorithm may be used to illucidate the structure of the 

planning process. If x is the vector of planning variables 



- 68 - 

for one time period only, the elements bi  in equation (2.2) 

represent the plant capacities etc. for that time period. If, 

however, x spans two periods, the vector b may be split into 

b1  and b2  referring to the capacities of the first and second 

time period respectively. 

At the optimum, each capacity in b1  and b, will have an 

associated dual evaluator. Table 3.1 is the set of non-zero 

evaluators for the 18 work centres of the 26/12 model, using 

ASSETS as the objective function. These show a marked variation 

over time, implying that there is no unitary value that can be 

ascribed to increasing plant capacities etc. Such (marginal) 

values are time-dependent as well as objective-dependent. 

If new plant is installed for a particular work centre at 

the beginning of a period, its total capacity is increased 

for that period, and for all subsequent periods throughout the 

life of the new plant. From the figures of Table 3.1, the 

value (over the year) of installing an extra unit of capacity 

for work centre 3, to be operating during January to December 

is £17.86 	i.e. the sum of the marginal values of extra 

capacity for work centre 3 over each month. 

1-The marginal values may be added, provided that the 

system is linear, and that the proposed change does not 

invalidate the present basis. (If the change in r.h.s. is 

5b, and b = b 	5b is within the range of acceptable 'b' for 

the present basis to be optimal, the change in value of the 

objective function is "c.B.5b"). Further consideration of 

the summation of marginal values is given in Appendix 3.3.] 

The extent to which capacity may be increased without 

invalidating the present (optimal) basis must be found using 

parametric analysis. 
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Table 3.1 Monthly Changes of Dual Evaluators  
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By summation, the monthly dual evaluators provide an 

estimate of the value for the first year of a unit increase in 

capacity; individually they demonstrate the distribution of 

this value over time. 

The non-zero marginal values for increased capacity for 

the 26/12 model are shown in Table 3.2 

'Work Centre! 3 11 13 14 15 18 

[Value 	;17.86 13.46 16.95 .49. 17.57 43.94 

Table 3.2 Marginal Values of Extra Plant 

In Table 3.2, work centre 18 seems to give the greatest 

rewards for investment. From the theoretical viewpoint, 

'limited' funds should be allocated to increasing the capacity 

of work centre 18, provided that the units purchased do not 

invalidate the present optimal basis, by increasing the right 

hand side entries beyond the range of feasibility. (In general, 

such investments must be judged using a new right hand side.) 

3.4.2 Average Reduced Costs  

The vectors x and b of (2.2) may be split into sub-vectors 

x 	x2" b1_7 b_27 	 where each pair (x.,b;) represent 

the planning variables and (right hand side) capacities for 

the i'th period. Each vector xi  will have its own associated 

set of optimal reduced costs, (representing the net losses that 

would be sustained by deviating from_the optimum activity 

levels). 

For the production variables associated with each period, 

we will obtain a series of reduced costs. (Table 3.3 is the 

set of reduced costs for the 26 products of the 26/12 model. 

As with Table 3.2 the objective function was ASSETS.) 
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23.73 
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14.53 
0.00 
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0.00 

14.53 
0.00 

183.78 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.0n 
0,00 
0.00 
0400 
0.00 
0.00 
0.00 
0.00 
0.00 

20.30 
0.0C 
0.00 
2.37 
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0.00 
16.37 
25.45 
0.00 

16.17 
0.00 

1 ,02.65 
0.09 
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0.00 
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0.00 
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Table 3.4 	The Activity Levels for the 26/12 Model  



r 

PRODUCT 	AVERAGE s:EDUCF--D COT 

1 
2 
3 
4 
5 
6 
7 
8 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

639.27 
8.34 

45.97 
111.94  
8.87 

382:63 
0.0C 

351.69 
453.60 
696..07 
689.P3 
759.F2 
395.27 
1059.98 
639.98 
491.59 
568.15 
509.71 
987.49 
795.51 
860.25 
47.52 
0.00 

1160.45 
1148.8P 
297.97 

Table 3.5 Average Reduced Costs  
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The average reduced cost (over twelve months) is shown 

in Table 3.5. For product rationalisation these statistics 

are meaningless, apart from indicating which products are 

always basic - these have zero average reduced cost. In 

Section 3.3.4 we consider three other statistics which produce 

rankings that may be more meaningful to management. 

3.4.3 The 'Sales to Costs' Ratio  

At the aggregate level, the ratio 'sales to costs', of 

Figure 3.1, estimates the total capability (efficiency) of 

the firm's production system when converting 'costs' to 

'sales'. This interpretation also holds at the disaggregated 

(product by product) level; in both cases, costs are measured 

by average (or incurred) values. 

The resource evaluation of the optimal solution to the 

linear programming model gives a set of marginal (and average) 

values for resources. (From these figures,resources may be 

valued at their marginal rates). 

Consider the normal formulation: 

max c.x 

s.t. A.x 

x z 0 	 (3.4) 

Let the optimal solution be x 7  the columns of A be a., 

the dual evaluators be v, and let tzil = lci  - v.ail be the 

reduced costs. Then v.ai  represents the marginal value (cost) 

of inputs to activity i (at the optimum), ci  represents the 

return from (say) the sale of product i, and the ratio 

gi  = C 	is the rate of conversion of input value to output 

v.a. — -i 

value by activity i, (at the optimum). Ranking activities by 

the ei  statistics in the single-period model we have: 



Non basic activities Basic activities 

not at bound 	at bound] 

1 	e = 1 	e > 
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i. an activity is basic if and only if 

e. = 1 (i.e. z. = 0) 

ii. any activity for which ei  < 1 is rejected; non-basic 

activities may be ranked by .0i  (Os Oi  s 1) 

Forprogrammesinwhichvariablesx..have upper bounds 

a further modification may be introduced: 

The model is now 

max c.x 

s.t. A.x s b 	 (3.9) 

OsxsU 

Weingartner (88, page 54) associates a goodwill value with 

the dual evaluator of any upper bound constraint that is tight 

at the optimum. For basic activities x. not at their upper 

bound, the ratio ei  = c. 	is unity, since c. - v.a. = O. — 
v . a . 

For a variable at its upper bound (say xj) let pj  be the dual 

evaluator of the constraint x. s u. 

Then, 	c. - -v.a. - u
j 
 .n j  = 0 
	 (3.10) 

(optimality condition) 

i.e c. 

0. = c. > 1 	 (3.11) 

v.a. 

In the bounded variable model, the ranking by (ei) is 

not confined to the range 0 s ei  s 1. The properties of the 

ranking with upper bounds are given in Table 3.6. 

Table 3.6 0 Ranking for Upper Bounds  
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Ranking by (0i) eliminates possible confusion between 

columns that are near multiples of one another. 

Suppose 	c.1  -kc.3 	
k >> 1 

a. - ka. -1 	--j 

then 	c. - v.a.a.  -k(c. - -v.a.) 1 	- - 	_j 

i.e. the reduced cost of the j'th activity is 	times that 

of the i'th activity, yet, in cases where the corresponding 

x., xj  are infinitely divisible, the net effect of changing 

either x. or x. is the same. The fact that 6._ 0. reflects 
3 	 1 	3 

this. 

Example  

Consider the capital budgeting problem posed in (88) 

max; 14x1  + 17x2  + 17x3  + 15x4  + 40x5  + 12x6  + 14x7  + 10x8  + 12x9 
s.t. 	12x1  + 54x2  + 6x3  + 6x4  + 30x5  + 6x6  + 48x7  + 36x8  + 18x9  s  50 

3x1  + 7x2  + 6x3  + 2x4  + 35x5  + 6x6  + 4x7  + 3x8  + 3x9 
s 20 

0 s x. s a 	i= 1...9 	(3.12) 

The solution, reduced costs, 0 rankings (and Weingartner's 

ranking) are shown below in Table 3.7 

7 

Project i Activity Input Upper 
cost limit 

Reduced 	0 
cost Ratio 

0 
Rank Rank 

1 	1.0 	14.0 	1.0 	6.77 
2 	0.0 	17.0 	1.0 	-3.41 

3 	1.0 	17 	1.0 	5.00 

4 	1.0 	15 	1.0 	10.45 

5 	0.0 	40.0 	1.0 	-29.31 

6 	0.96 	12.0 	1.0 	0.0 

7 	0.04 	14.0 	1.0 	0.0 

8 	0.0 	10.0 	1.0 	-0.5 

9 	1.0 	12.0 	1.0 	3.95  

1.94 	2 	2 

0.83 	7 	7 

1.41 	4 	3 

3.29 	1 	1 

0.57 	8 	8 

1.0 	5 	5 

1.0 	5 	5 

0.95 	6 	6 

1.49 	3 	4 

Table 3.7 The Solution to Weingartner's Problem (88) 
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3.4.4 Statistics for Product Ranking  

For a multiperiod model, the -toil (corresponding to 

similar activities in different time periods) will show a 

time dependence. Data from the 26/12 model is presented in 

Tables 3.3 and 3.4, the average reduced cost for each product 

being shown in Table 3.5. The average reduced costs provide 

little guidance for product ranking. Three further measures 

are suggested: 

Let xi  be the optimal amount of x produced in period i, 

a.a_ be the corresponding 'column' 

s.betheentryfor'x.'in the objective function 

v be the dual evaluators 

P(x) = Ex. s. 

Ex.(v.aa..) 

Q(x) = Esi  
E(v.ai) 

and R(x) = 1 	si (3.12) 
N 	v. a. 

where N is the number of time periods being considered. P is 

a productivity measure, aggregating the sales and cost figures 

according to monthly production levels. The 'usefulness' of 

a product is measured in terms of increasing values for P. 

Q is a similar statistic, omitting the weighting by production 

level. R is the average of the ei  over the total planning 

periods. Rankings for the 26 production variables of the 

26/12 model are shown in Table 3.8; the monthly 0 statistics 

are given in Table 3.9. 

Since the model has no upper bounds on production levels, 

the P statistics are either 1 or 0, depending on whether the 

product is produced, or not. (Either x. = 0 and s. 	v.a1., - - 



PRODUCT 	P VALUE 0 VALUE 	R VALUE 

0.00 0.36 0.37 
0.98 0.98 0.98 
1.00 0.93 0.94 
0.00 0.74 0.76 
1.00 0.98 0.98 
0.00 0.56 0.57 
1.00 1.00 1.00 
0.00 0.57 0.58 
0.00 0.56 0.57 
0.00 0.49 0.49 
0.00 0.52 0.52 
0.00 0.56 0.56 
0.00 0.63 0.64 
0.00 0.46 0.47 
0.00 0.58 0.58 
0.00 0.65 0.65 
0.00 0.64 0.64 
0.00 0.69 0.69 
0.00 0.69 0.70 
0.00 0.71 0.71 
0.00 0.69 v.69 
1.00 0.97 0.97 
1.00 1.00 1.00 
0.00 0.62 0462 
0.00 0.62 0.62 
1.00 0.91 0.94 

Table 3.8 The P, Q, R Statistics  
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or x. / 0 and si = v.a., by simplex optimality criteria). The 

P statistics show which products might be dropped from the 

range (i.e. those with zero values). With Q and R rankings 

there are some small differences in rankings (with products 

3, 8, 12, 18, 21 and 26). None of these differences suggest 

major alterations in ranking. These statistics only give a 

guide for product rationalisation. A true picture of 

rationalisation can only be obtained by re-optimising the 

model, flagging out the products that are to be dropped. 

The rankings P, Q, R, (and the dual evaluators and 

reduced costs) are dependent on the objectives used in 

optimisations - no single set can be proposed as the unique 

ranking for the firm's products. 

3.5 Conclusions  

i. Planning criteria and performance measures are objective 

dependent. 

ii. The dual evaluators and valuations are similarly 

objective dependent. 

iii. The underlying assumptions for dual pricing are: 

a. linearity 

b. one objective function 

c. a close correspondence between model and reality. 

Where these are contradicted, (integer values, multiple 

objectives, long time periods, etc.) dual prices must 

be treated with caution. 

iv. With multiperiod models, dual evaluators may have to 

be summed to give estimates of the marginal value of 

capacity. 

v. Reduced costs give little guide for product rationalisation. 

Three statistics have been suggested to aid management 

in this task. 
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Chapter 4 Duality and Pricing in Fractional Programming  

4.1.1 Introduction  

In Chapter 3, ranking of resources with respect to a 

series of objectives was discussed. As suggested in Section 

2.3.1, corporate objectives may include such terms as 'return 

on assets', which are not linear, but fractional. In this 

chapter we investigate the nature of the dual prices in 

fractional programming, for the general, and linear, constraint 

cases. 

4.1.2 Duality Theorems for Fractional Programming  

Considering the following problem: 

max f(x) c.x a 

d.x p 
(4.1) 

s.t. gi(x) s 0 	i= 1 	m 

Swarup (77, 79, 80) has proved the following theorems: 

Theorem 1: Let f(x), gi(x)....gm(x) be differentiable On 

En, f(x) as given in (4.1), each g.1
(x) convex; then the 

necessary and sufficient conditions for x ES to be a solution 

to (4.1) is thatu
* 
 EE

m  
s.t. 

m 
i V f(x 	 _x.1  u..g.(x ) x 	— 1=1 

m * 	* 
ii 	u..g.(x ) = 0 

1 1 i=1 
(4.2) 

iii  gi (x* ) s 0 	i = 1 	m 

* 
iv 

1 

where 

a S = 

i = 1 	m 

	

gi(x) s 0, i = 1 	m} 

b d.x 	3 / 0 for xES 
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According to Wolfe (93), the dual problem to (4.1) is 

min x(x, u) 

s.t. V x(x, u) = 0 	u 	0 
	

(4.3) 

where x(x, u) = f(x) - ul.g(x) 

Let D(x, u) = i(x, u) Vx  X(x, u) = 0 u z 0} with 

  

x unconstrained. Swarup also proves: 

Theorem 2: If x is an optimal solution for. 4.1), 
* 	* 

3 u* s.t., u )ED 

s.t. X(x
*
, 

* 
u ) = f(x* ) 

He does not use the non-negativity requirement on x,  

i.e.xzOor-x.s0. If we include these constraints 
- 

	

* 	* in(4.1)andextendu.to (u, v), then 4.2i reads 

* 6g,(x*) - ukax. 	v. = 0 

* agk(x*)  - ukax. k • 3 

NoWifx.>Owehavev.=0 (from ii of (4.2)) 

* c * 
3.1-  

/Af 	— 
* 	

* a.gk(x  ) \s
i = 

0 therefore x. 	- Zu  axi 	k'dx. 
J 	/ 

1 
or 	x

*
, 
F
[7xf(x

*
) - VxEuk.gk(i

* 
 fl 	= 0 	(4.5) 
_1 

Also from (4.4) and iv of (4.2), we have 
* 

af* *  agk(x  ) 	* 
axj  - -uk axi 	= -vi  s 0  

* 
i.e. V f(x ) - 

v 
 uk  .gk  (x ) s 
	 (4.6) V   

Hence, if we include the non-negativity requirement on x, we 

must amend the equations (4.2) to: 

i 	V f(x*) - V F.,uk  .gk  (x
*) s 0 — x —  

or 
* 

= -v. 	 (4.4) 
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. ii x . [7xf (2; ) - W,Su . 	x ) 	0 	(4.7) 

iii Luk.gk(z 	0 

iv gk(x ) S 0 	k= 1 	m 

v u 	."_>_ 	0 k k = 	m 

This is the more usual form of the Kuhn Tucker Conditions (57) 

and is the form of KT Conditions used by Balinski and Baumol 

(6) in their work on the economic interpretation of the dual. 

It is the form we will assume throughout this chapter. 

4.2 The Interpretation of the Non-Linear Dual Variables as  

Marginal Values  

4.2.1 The power of the dual programme in LP is well 

known, and its economic interpretation is in widespread use. 

The interpretation of the non-linear dual, although lacking 

some of the desirable features of the linear dual, can still 

prove a powerful tool in the evaluation of non-linear programming 

problems. The extent of the interpretation depends on the 

properties of the objective and constraint functions. 	In 

this section the main reference is the work of Balinski and 

Baumol (6). 	We will develop the ideas that they have presented 

for the concave objective function, and show how these cannot 

be applied to the FP case, where the objective function is 

only continuous, differentiable and quasi-monotonic. 

Define T = Tr(b) 	{max f(x),2.(x) 5 b, x z 01 

We willrefertotheu.of (4.7) as the dual evaluators. 

In order to interpret the dual evaluators of the LFP as the 

marginal values (prices) of the resources bk, we need to show 

that uk --37r/abk' i.e. where the marginal value of 7r  with 

respect to bk  is defined, its value is given by ui. 

We show how far the dual analysis can be carried in FP, 



- 84 - 

and why the concept of pricing is not always well defined. 

4.2.2 Marginality where f is "concave  

An outline of the work in (6) is as follows: 

Inordertointerpretthedualvariableu!as the 'marginal 

value'(in terms of an economic price)for an extra unit of the 

i'th resource, it is necessary to show that: 
TT 	* 

U. 
67T 

(4.8) 3b. 

Even in LP, the discontinuities in 377/3bi  do not always 

allow this result to be proved. However, it is possible to 

show that 

av 	aff 
3b1.+ 	u1 5 

3b. 
(4.9) 

anciforamIrpointwhereaV/ab.is defined, its value is given 

by (4.8). 

To lend credence to the 'price' allocation we need 

diminishing returns to scale. This is also implied by (4.9); 

aff for ab -11-"- 	abT  s 	and for 5 > 0, we have: . 	• 1+ 

1 51T 
25 

L I ab . 	6/ji b l 	.- 5 bi+5. 
0 

i.e. where the second derivative of V with respect to b exists, 

it is negative. 

In order to deduce the inequalities. (4.9), BB define 

s bi, i 	k 
max f(x); 

(31‹.(1<) 	yk 

and show that: 

i 7r(yk  ) exists in a neighbourhood of bk, 

ii  ff(yk) is continuous, and 

iii the partial derivatives of (4.9) exist. 
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The proofs given in (6) depend heavily on the constraint 

qualification for gi(x) and on the equivalence between the 

Kuhn Tucker Conditions and the Saddle Point Conditions for 

the Lagrangian. 

Kuhn and Tucker (57) proved that the sufficient conditions 

for a saddle point are the "Kuhn-Tucker Conditions" (4.7) and 

the concavity/convexity of f, g. 

We do not have f concave; f is quasi-monotonic. This is 

insufficient to prove the equivalence between the Saddle Point 

and Kuhn-Tucker Conditions. Thus we cannot show 

av  	 s u. 
6b. 	6b. 

Indeed a quasi-monotonic function need not have left and right 

derivatives defined at all points. Consider the step function 

that lies between two rays that pass through the origin: 

x 

Fig 4.1 A quasi-mondeic function with no derivatives at x = 0  

f(x) is monotonic (quasi-monotonic) but there are no one-sided 

derivatives at x = 0. 

It is possible to give sufficient conditions for the 

existence of the marginal values 37716bk. 
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Wheretheconstraintsarelinear,wehavethex.in terms 
.* 	* 

of 	 B . b. 

Hence f(x*)= f(B-1b) and the partial derivatives can be shown 

to exist. 

In the non-linear case we can give a generalisation of 
* 

the equation x = B.b. For concave f, V is also concave: 

V(Obk' + (1-8)1Dk" ) = max -[f(x)gi.(x) sObk, + (1-e)bk„, x () 1 

f(Qx' + (1-6)x") 

Of(x')+ (1-e)f(x") 

= OTT(bk') + (1.-e)Ti(b 	) k" 

proved in (6), where x' and x"  

bk' and bk,," 

(4.10) 

are the optimal solutions for 

For quasi-monotonic f we do not have such a strong result. 

Let SK 	xlg.(x)sb.
I, i/k, gk(x)syk}; 

Then ykjyk:=> SR 	S 	V(yk  ) 	v(yk  )1  
1 	2 	1 	2 

(4.11) 

i.e. IT is monotonic in each argument. 

But this does not guarantee the existence of partial derivatives 

at all points of En, nor does this give diminishing returns to 

scale. 

4.2.3 Marginality where f is quasi-monotonic  

We can state sufficient conditions for the 

partial derivatives of 7(bk) to exist in segments of the total 

range of bk. 

Lemma 1: For bk, s bk s bk" the sufficient condition for 

the partial derivatives of Tr(bk) to exist (with appropriate 

left and right hand derivatives at the ends of the range) is 

thatri3i (bk ) s.t. 

xi 	-2i(bk) 	for all i 
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6.: continuous, differentiable with respect to bk in the 

range (bk,, bk„). 

Proof: If such (Di  exist, then 

V(13k) = f(x(bk  )) 

= f(.6.(bk)) 

c.4)(bk) cc 

d.cD(ok)-1- p 

d.o(bk)i-p > 0 by assumption, therefore partial derivatives 

exist as required. 

Hence we have: 

LFP  	If9(13.(bk 
 ) as defined in Lemma 1 for each of the 

required ranges b1(0 	
s b

k2 
s 

1 

then 67r 	and 
bb
k+ k- 

exist 7  

and 	we will have u . = 	where this is defined. 
labk 

But, as previously stated, we do not have the inequalities (4.9). 

This reflects the general situation in fractional 

programming that returns to scale need not be diminishing. 

Since it is a requirement for a coherent pricing system that 

there exist diminishing returns to scale, the dual evaluators, 

although equivalent to the marginal values, will not serve as 

'economic' prices in all cases. 

4.2.4 Linear Constraints  

The case where the gi(x) are linear can be treated 

separately. 

It has been proved by Martos (65) that the problem 

max f(x) 

s.t. A.x s b 

	

x z 0 	 (4.12) 

has an extremum point solution. This result has a two-fold 

bk' s bk s bk„ 
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importance: 

a. it allows us to use simplical methods for solving (4.12) 

b. it implies that at the optimal vertex the optimal 

solution x is given by: 

x* = B.b 

where B-1  is the inverse basis (see e.g. (44)). 

The ranges bki...bkn  etc. are given by the points where 

a further iteration is necessary, i.e. where the present 

basis no longer remains optimal (or feasible). 

Between changes of basis the i'th rows of B
-1  provide 

the (D. of the previous lemma. Thus Lemma 1 of Section 4.2.2 

provides proof that the dual variables can be equated with 

the marginal values of resources, if the situation is one of 

diminishing returns to scale. 

We could, however, use the CC form of (4.12) to prove 

ag 	ag 
the existence of 70-+  and 6b- 

In the marginal work of Mills and Williams ((66) and (92) 

respectively) we have the following conditions for the 

existence of marginal values. (Once again we present their 

theorems in order to aid exposition). 

Marginal Values of Linear Programmes  

(The notation used is that of Williams.) Consider the problems 

i. max. c.x, 	x z 0, A.xb 

ii. min. 1T.b, 	7T 0, 77.A 
A 

Given H, b, c, define: 

max. (c + a,c).x x 	0, 	(A + ocH).x b + ccb 
iii 	

min. Tr. (b + ab) 	Tr 0 	7T,(A+ ca-{ ) 	c + occ 

The 'marginal value' is discussed for small values of a 

and is defined as: 

•-•/ 

f'(0) = lim (1)(A+ aH) - cD(A) 
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where: -N --(A b) 
--- lc 7  7 7 

and 4) is defined as the value ofthe LP (if it exists) 

i.e. (1)(A) = max c.x... 

min ff.b... 

f'(0) is the marginal value of A with respect to H 

Let S(A
N
) 	0 - - A.x 	and T(A:) = 17r - - 

7l z 0 TT . A z c 
1 • 

   

•,N 
Theorem I (Williams) For given A, the N+S conditions that 

f'(0) exists for every H are that both the primal and dual 

optimal sets of A are bounded. 

Equivalently, that the regularity conditions 

R1: Yz 0, A.ys 0 -H?  c.y.< 0 
(4.13) 

R2: o 	o 	p.b >0 

are satisfied by A. 

Theorem II Let A satisfy (RI, R2);  then f'(.'()) of A is given by 

max 	min f,(0) = (H xo, 17°) xoEso(A) vosTo(A)  

where: 

S°(A) {x°Ix°z 0 	A x°  sb, 	c.x 	c.x1  all .sS('')1 

T°(A) {TIM° z  0 7 	
o 	c, 	ir°.b s 77.b, all I7ET(Iks)} 

and tp(H 7  xo 7 o) = c.xo + o.b- ITo .H.xo 

These two theorems apply for the simple LP model only, 

(i.e. A.xsb), since only for this type can'the regularity 

conditions be guaranteed (if there exist feasible solutions). 

For the case where equalities are found in the constraint set, 

we have further theorems. 

Define A
-11 ..11-12 12.-1 

22 12-2 

I c2 0 --  

with which we associate two LP's 
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max c .x + c .x 1 1 2 2 

II : min v .b + V b 1 1 -2 2 

S. 	A .x + A .x b1 

-21.x1 

1 -12 -2 -1 
A 	.x + A . = b2 

x1 
-1 -22 x  -2 -2 
x1  0 - - 

s. t. .A 	+ 	.A 	c - 1 	 11 -2 21 1 
.A 	Tr .A 	= c2  

7T1 

- -21 -2 22 -2 

z 0 

,..--,* 	(  
also define H= H11 H12 

 b 11 12 -1. 

H 	H 	ID1 -21 -22 -2i 

c c2  0 

* 
Theorem 1 	N-i-S condition that ficoa exists is that the primal 

,* 
and dual sets of A are bounded or that the (amended) 

* 	* regularity conditions (R1'  R2) be satisfied by 

A 	.y + A 	s 0 11 1 -12*-2 

1  . 	1 1  + a2. A21  z 0 
n  :- n--1-321+122•12•1 2' 

P-1*L12 + 2 A  2 2 = 
* 	* 

satisfy (R1' R2). 

R1: (I1, 12 ) 	0; 

R2: (21, 2) 	0; 

,* 
Theorem II Let A 

0 

0 

The marginal value ft(0) is given by: 

f' (o) = 	max 	min 	(H*   , x.  
cl6SX) 	ET (A*  ) 

Where 0 is the Lagrangian form 

0 A  0 0 	 o IA A 0* = c .x +c .x 	.b 	7ro b2  - (Vo Tr ) ; -11 -12 	-1  -4 -2 -2 - 	-2 	-1' -2 ',A A \-21 -22 1(2 

We can use-this marginality of the ordinary linear problem to 

prove the existence of marginal values for the fractional 

programme with linear constraints. 
Using the CC Equivalence given in Chapter 1 we have 

F1 -a-  F2 
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aF2,  
ab. 1+ 

exists as a marginal value of the LP (in terms Note: 
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where 
c.x + a 

Fl = max  	s.t. A.xsb 	x 	0 
d.x + (3 

F2 = max cy+ at s.t.A.y-bts 0 

d.y+ et = 0 

(providing d.x+ (3 is positive for all x s.t. A.x b) 

Now F2 is a linear programming problem of the second type, 

and we can use theorems I and II to deduce that marginal 

values exist with respect to changes in b, i.e. aF2 exists, 
ab. 

and by equivalence 1  aF1  
ab. 

aF
2 

bb. 1+ 

The form exists due 

ti 	A 

to I and II above, using H = (0 

0 0 

Thus for the linear fractional programme we have an existence 

theorem for the right hand derivatives with respect to each 

of the resources, the existence of this derivative depending 

only on the boundedness of the optimal solution set to the 

aFi  
enunciated by Williams). .1z) 	 

u  i+ 
exists by equivalence, and 

since bi  is a right hand side variable for F1 we have the 

existence of the dual prices 	We are now in a position to 

discuss the dual evaluators in terms of marginal returns and 

losses. This we shall do following the strict economic 

interpretation, but first we must discuss the more immediate 

implications of non-linearity. (Although the model we will 

later present is one with linear constraints, (a Considerable 

computational simplification,) we will discuss the general 

case with convex gi(x).) 
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4.3 The Economic Interpretation of the Non-Linear Dual in  

Fractional Programming  

4.3.1 The KT Conditions  

Under the conditions stated in Section 4.2, the dual 

evaluators for the fractional programme exist, and are 

equivalent to the marginal value of resources, where there are 

diminishing returns to scale. 

As in (6) we could give an economic interpretation to 

the Kuhn"rucker Conditions (shown in Section 4.1) for such 

cases of diminishing returns. 

The KT Conditions are: 

if(x°) - V — x — 	xk  

11  xo Iv f(xo) 
x 

0 
iii 	umgk(2) = 

k 

iv gk (
o) s 0 

u 	0  

uk0.gk  (x°) 

vx  uk.gk(22) = 0 k 

k 	m 

k = 	m 

Assume -uo  . is the marginal value of the i'th resource, 
af(x°) 

is the marginal profit yield of xi. 

is the amount of the k'th input required to produce 

axi 

the next unit of x. (at the optimum) - it is the marginal 

input requirement for xi. 

o ° 	(x) uk.  k —  is the total 'value' of resources required 

axi  

to produce the next unit of xi  (at the optimum) hence the set 

of constraints i imply that the net rate of increase of value 

of objective is less or equal to zero. 

axi  

agk(X°) 
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ii implies that, if the net rate of increase of value of 
o 

the o.f. isnegativeforany2  ,that x. is at its lower 

limit - zero. 
oaf(xo) 	o ag (xo)  

1 If x. is positive, we must have 	— -Euk  .  k — = 0 
ax. 	ax. 

implyingthatafurtherincreaseinx?will not increase the 

value of f(x°) 

The condition iii provides the concept of free goods: 

A free good is one whose increase of supply will not increase 

the possibilities of increasing the objective function. If a 

particular constraint gk(x°) is strictly negative)  

uk . gk(2) 	= 0, 

i.e. it is a free good. Thus, 

if a resource bk is a free good, it has a zero marginal 

(accounting) value. 

4.3.2 Economic Rent  

Economic rent R is defined as the rent payable to the 

owner of scarce facilities without which a company cannot 

operate (58). This will be the difference between the total 

yield f(x ) and the marginal value of all inputs, (at the 

optimum). 

i.e. R  = 	* 	* 
- 71 	= f(x ) -d

-
.gk(2e) 

k 

This term appears in the non-linear dual problem in (6). 

In LFP, where the constraints are linear, we will show 

how the dual evaluators, the objective function, and the 

economic rent vary with changes of resource availability. 

4.3.3 Summary  

We have thus far shown how the application of the price 

concept to the dual variables of fractional programming is 

weakened because of two factors: 
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i. the existence proofs for the partial derivatives 

ag 	ag 	377 

k+ 	k- 
-SS- , 	7 	- are less powerful, and 

there is the possibility that returns to scale may not 

be diminishing. 

Where the partial derivatives do exist, and the returns 

to scale do diminish, we can allow a full economic inter-

pretation of the Kuhn Tucker Conditions. In the remaining 

sections we will consider the case with linear constraints, 

and show which cases do, in fact, engender a coherent pricing 

system with diminishing returns to scale. 

4.4 Association between the duals of the original form and  

the CC form  

4.4.1 An Algebraic Approach 
c.x+ cc 

The initial problem is 	max f(x) - d.x+ r3 

s.t. A.x s  b 	(4.14) 

Let vF  = dual evaluators of the original fractional 

programme, 	(4.14), 

	

(vCC' 	v) 	= 

We will show that 

costs' 	are given 

The dual of (4.14) 

Let c = 1-f  

	

- 	
— 

The dual of 	(4.15) 

By the equivalence 

dual evaluators of the CC form, with v 

referring to the denominator row. 

vF  = t*.Ecc. 	Similar results for 	'reduced 

in Appendix 4.2. 

is 	min 	v .b F  

Faf]> - s.t. 	vF  .A 	 (4.15) 
6x1 * 

x=x 	(with rearrangement where necessary) 

is 	max 	c.x 

s.t. 	A.x s  b 	(4.16) 

of 	(4.14) 	and 	(4.16) 	the dual 

evaluators of (4.16) will be zF. 
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Wagner and Yuan (85) have shown the association between 

the optimal inverse basis of the CC form and the 'original' 

inverse basis. 

Let the original basis be B. 
* 

Then the CC basis is B where 

(11 

13) 

(-11 M M 
Now let (B* )-1 

\ M2 i 

corresponding to the B, 

They show that: 

M11 	B-1 -B ,1b(( + d*.B-1.b)-1d — — 

d , 3 

 

L12  = (p + d*  .B-a  .b)-a  .B-a  .b 

M- 21 = 	+ d*.B-1.b)-1d*.B-1 

. E22 = (13 	3-1.b)-1  
-1 Now B b = x* 

 

(4.17) 

B 

—22) 

and (3 + d
* 
 .B .b) 1 

   

1 

  

* 
t 

 

(d 
* * 
.x + (3) 

therefore we can write (4.17) as: 
* 	* 	* 

M
11 	— = B -x .t .d .B -1  

M12 = t .x 

M2- 1 = -t
* 
 .(d

* 
 .B ) 

—M22 = 

(4.18) 

Now the dual evaluators are given by: 
n* 

v, = c .B 

(EcC' v) =' a) (B 	) 
	

(4.19) 
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Using (4.18) we can write: 

v 	= c .M11  + a.11-21 -CC  

c.x + a 	1 
f(x) = a.x + 3  

and t = ------ d.x + 3 

therefore, 
6f  c.(d.x + 3) - d.(c.x + a) 

-  
6x. (d.x + f3)2 

A * 
i.e. 	c. = (c. - d..f ).t 

* 

* 
Now c .• M11 

 = c .B 	- c .• x .t .d .B-1 

therefore vCC 	
a, = (c -c .x .t .d - 	).B 

- - - 
* 

• (c-
* 
 (c .x +u)t*.d*)_B-1 

* 
Hence vCC  = (c - 

* 

F = (c 

i.e. EF tv *-CC 

).B-1  

• ).B 	.t 

Q.E.D. 	(4.20) 

4.4.2 Variation of Marginal Values (dual evaluators) 

with Change of Resources: Returns to Scale 

At the optimum point we know that the 'fractional' 

evaluators are't'times the evaluators of CC formulation. 

i.e.v 
_ 

F  = 	.v -CC 

Now at this point,t - 

   

* * 	- * 
d .x + p 	d .B .b + p 

where B-1  is the current inverse basis. 

If some of the resources are allowed to vary, i.e. we 

allow a change bb, this basis may still remain optimal (as 

in LP), assuming that the problem has no degeneracy. 

Assuming that the basis has not changed, the evaluators 

of the rows of the CC formulation will not have changed; 

these are piecewise constant. 
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A 	A 

A 	A 	.b + a- 	 v b -CC 
* 	A 

(d .B 	.b+ 3) 
R = f - _ (2.24) 
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Thus for such a point b = b + ob, 
A 	1 we have 	v
F  =  	LCC - 	* 

(d .B .b + () 

We can predict what the marginal values will be up to 

the next basis change. The next basis change can be deduced 

by ranging the right hand side of the CC formulation or by 

parametric analysis on the last column of that tableau. 

Thus we have nearly as much knowledge about the marginal 

values of the fractional programme as we have about the dual 

variables of the linear programme. 
* 

The elements of (d .B ) will determine whether the 

marginal value increases or decreases with bk : 

1 	* _.3.  
vF  e-- --iv-CC  . 
	where e. = (d .3 ) -  
(1,-().a_b .l  + (3) . i 

(4.21) 

	

and if e. >0 	diminishing returns to scale. 

Thus the d -• vector plays a vital role in determining whether 

prices exist or not. 

6F = 
	

. -O 6101 	(zs.b. 	13)2 ' -CC 
1 1 

and 	o 4&-"a 	0 
	

(4.22) 
310i  

Similarly we can fully determine the value of the 

objective function, the total value of input factors, and 

the economic rent, and their marginal rates of change; 
* 

	

* A 	 A  

A 	C .x +a 	c . B .b + a 
f - * - 	* 

d .x + 13 	d 	.b+ p 
(4.23) 
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* 

	

Let O. 	(d.B-1).   

	

1 	— — 1 

(D 	(c*.B-1) 

	

1 	 — — 1 

CC. 
1 

A 

b ± a 

+ 13 
t \ 

A 
(0 .b 	3)(79. - (c72.b + a)6. af 	1 	— — 

3b. 	(0.b+ (3)2  

A 
A 	

C76 	erj.b a 3f 	, 0 	 ( 4.25) 
3bi 	3i 	6 + p 

Similarly 

A 	A 	 .b+OC 

R = f - 
3.b +13 

aR 	!-L i 	L•13-1- a 	A 

b 1
, 7 	0t, -7--   = R 	 (4.26) 

J.  
1 	I 	3.b + p 

A knowledge of the present inverse basis is sufficient 

to determine the marginal rates of increase of objective 

function and rent with increases in factor input. Thus, 

for the case of FP with linear constraints the returns to 
* 

scale are determined by (d .B ) as follows: 

If 0. 	(d* .B_a ). 1 — 
then 

ai 	OVi7).  diminishing returns to scale (d.r.t.$) 

and 	0 < 0 some i 7=7-- increasing returns to scale. 

(4.27) 

4.4.3 A Check via the CC Form 

We have shown that the conditions for diminishing 

returns to scale are that: 
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Ai  = (d .B ). 	0 — — 

where d is the vector of the denominator entries 

corresponding to the basic variables. According to (4.17) 

we can derive the optimal inverse basis of the CC form in 
* 	* 

terms of B-1. 1/121  is given by M21 	-t .(d .B ). Thus — 

the condition that ai  be positive is the same as requiring 

that the components of Mn, be negative. 

t is positive by assumption, hence 

ei  z 0 	(m2/)i  S 0 
	

(4.23) 

Where the calculation has been made using the CC 

form, an inspection of the last row of the optimal inverse 

gives the conditions for diminishing returns to scale. 

4.5 Conclusions 

Although the economic interpretation of pricing cannot 

easily be applied to the general case of LP with nonlinear 

(convex) constraints, we have shown conditions under which 

the dual variables of the FP with linear constraints do 

have an economic interpretation. 

In so doing we have used only the optimal inverse basis 

and the denominator, thus the coherence of the marginal 

pricing is easily checked. 

Examples in Appendix 4.1 show that even simple FP 

problems can exhibit increasing returns to scale. 
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Chanter 5 Decomposition of Linear Fractional Programmes  

5.1 Decomposition and Decentralisation  

5.1.1 The Linear Decomposition Principle of Dantzig 

and Wolfe (36), has found use in two applications of 

mathematical programming: 

(i) it is a method of solving large programmes with special 

structure, namely 	max Lc. x . 

	

s.t. A..x 	b. 	i = 1 ... m 
—i   -± -i 

r, M..x s  b 
-1 -i - 

X 0 
-i - 

(ii) it is also a method of formalising the planning process 

of a decentralised firm. 

The importance of linear decomposition in the analysis of 

the decentralisation arises from its analogy with a 'transfer-

price mechanism' for decentralised planning. In Sections 5.2 

onwards we present two approaches to the decomposition of 

Linear Fractional Programmes, together with an analysis of 

the transfer prices generated in such applications. 

5.1.2 Decentralisation and Transfer Pricing with  

Nonlinear Objectives  

The economist's approach to decentralised planning has 

been characterised by an attempt to apply a "market clearing 

mechanism" (simple price/quantity relationships) to the 

decentralised firm, surmising that market adjustments within 

the firm will enable each division to act in a manner which 

is optimal both with respect to its own objectives and with 

respect to the aims of the organization. Thus, from the 

economic 	standpoint, the problem is a search for that set of 

prices - the transfer prices - which will equate supply and 

demand within the organization for each market. Arrow and 
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Hurwicz (4) have shown that gradient methods can be used to 

calculate such prices = but the method is one of infinite 

iteration. For cases where the objectives of the divisions 

and the technological constraints are linear, the Decomposition 

Principle provides a finite mechanism for such calculations. 

(See (36) and other references quoted in (23)). 

Considering the following problem: 

min f(u) = V1 (u
-1 

 ) + V2 (u-2  ) + 
	V (un  ) 

s.t. 	B1(u1) 	 b 
-7 	 4 

B2(u2) 	s b, 

B u • —n (  —n 	—n 

and 	C1 4  
(u ) + C-2 (u-2 )+ 	C—n (u—n ) 	0 

where f(u) is the objective function for the corporation, 

1
B.(u,) s 134 1 are the sets of divisional constraints, and 

EC. (u.) z 0 are the corporate constraints)  

Charnes, Cooper and Kortanek (23) have shown that 

decentralised planning by price alone, where the objective 

function is separable, is possible only if each Vk  is strictly 

convex. Other models require more information during the 

planning process than can be provided by a pricing system of 

penalties and subsidies., 

Whinston (90, 91) discusses the problem of transfer 

prices via the Kuhn Tucker Conditions associated with the 

optimal 'allocation of resources in the firm. He considers 

models of the form: 

max 

s.t. s k. 

and concludes that, from an interpretation of the KT 

Conditions, namely: 
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af. 

ax. 1 j J 

1 	• o .x. ox. ; 	1 

g..(x
o 	k. 

X? (fig..(x°)-k.)= 0 

x°, X. 	0 
i' 

for all 

a pricing-correction mechanism can be derived. These 

adjustments are: 

dX. ifX.=0 and k. - L g±j  „(x,) > 0 
1  

g.. (x.) - k. otherwise 
1J 3 - J- 

This analysis is similar to that of Koopmans (56), 

using the 'custodian' price setting technique. 

Whinston further shows that in the case of externalities 

in the objective function (indicating a technological or 

economic dependence between divisions), other information 

such as lower bounds on production, may be required to 

promote optimal divisional behaviour, e.g. for the objective 

function: 

max 	f1 (x1'  x2) + f2  (x2  ) + 	f n  (xn  ) 

subject to 	g.. (x.) s  k. 	= 	m 
i  

x. 	0 

a gaming situation develops between divisions one and two. 

Price guides are no longer sufficient as a mechanism for 

motivating optimal behaviour. 

Hass (45) considers the decomposition of a quadratic 

programme: 

dt 
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max 7 (X, Y) = P.X 	Q.Y 	Z.O.Z 

s.t. 	C.Z 5  R 

f.(Y) s  s. 	i = a ... a 

g.(X) s t. 	i = 1 ... a — 

X, Y > 0 

where: P, X are m vectors 

Q, Y are n vectors 

Z = (X, Y) 

0 is (m+ n) by (m+ n), symmetric and negative definite 

f, q are convex, etc. 

C, R have dimension k by (m+ n) and k respectively. 

He partitions 0 and C as follows: 

0 
1 	 3 

3 g-2) 

  

m n m n 

and shows that the quadratic decomposition is effected by 

supplying correction factors to P, Q according to the optimal 

solution of the present 'executive programme'. 

If X = (X1, ... Xk) are the (provisional) marginal costs 
A A 

(or revenues) associated with corporate resources, and X, Y 

are the present optimal solutions for X, Y in the executive 

programme, the amendments are: 
A 

P 	P +0.X -C X + 203. Y 	for div. 1 
1 	1 	t A 

Q--:';':>Q 	°{2.'"Y. 	253'L 	for div. 2 

In this case, not only the prices (Xi) but also the 
1 A 	t A 

inter-divisional dependencies 03.X and 03.Y are being given 

to the divisions. 

Hass shows that this is equivalent to a search for 

'efficient' functions, rather than 'efficient' prices - these 
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functions are shown to be linear, e.g. demand curves of the 

form a - bx. 

The interest of Hass's work lies in the possible inclusion 

of price dependence between divisions; the profit for an 

activity Xi  may depend on Y - this is reflected in the 0 

of the total objective, and the profit amendments 0,.X 
, A 

and 3  .Y of the revised divisional programme. 

5.1.3 Decomposition with Fractional Objective Functions  

The decomposition of a linear fractional programme is 

complicated by the non-separability of the objective function. 

For the programme: 

max c 	+ c 
-1-1 -2-

x  2  
d
1- 1
x  +d

-2-2x +3 

s.t. 	(i) A x 
11 	1 

(ii) 	A,x, 	bo 	(5.1) 

(iii)M1
- 1
x +M-22

x s b 

x x 0 -1' -2 

wheredx
I1 

+d22 ' x ▪ 3 > 0 and bounded for all feasible 

(x1' x2  )) no 'divisional' objective function presents itself. 

The denominator acts as an externality between the divisions 

We will consider two approaches to the problem: 

i. The linear approach: Using the Charnes and Cooper 

Equivalence, divisions will be given linear objective 

functions. The form of the master programme will have 

slight differences from that of the ordinary linear 

decomposition. 

ii. The fractional approach: The objective function of (5.1) 

will be split into two parts, each division will be asked 

to optimise a function derived from marginal values of 

activities at the previous executive optimum, subsidised 
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or penalised with the usage of corporate resources at 

these marginal values. An equivalence is drawn between 

the two approaches. 

(A decomposition principle has been anunciated by Chadda 

(12) but this method does not allow for iterative planning 

processes.) 

5.2 The Linear Approach  

5.2.1 The Charnes and Cooper-Form  

Consider the CC form of (5.1). This is: 

max 1L1 E2/2 

s.t. 	(i) A- 1-  y1 	- b t < 0 

(ii) A2- 2  y -b2t 	0 

(iii) LILl  + M,y, - bt 	s 0 - 	 (5.2) 

(iv) d- 1-1.  + d v-22  + pt 	= 

v1' v2 	, t > 0 - 

Although the constraint set of (5.1) was in decomposable 

form, that of (5.2) contains a further dependence between the 

divisions one and two; the objective function, however, is 

now separable, and linear. By the initial conditions on 

d 11
x  +d-22x + 3, t is always positive and non-zero. 

Rewrite (5.2), introducing two variables t1, t2  as follows. 

max c1y1+  E.2/.2 

s.t. 	(i) A1y1  - b t -1 4 	
0 

(ii) 2-2 - b2  t 

(iii) M y 	2 - bt < 0 	(5.3) 

(iv) d1 	d22 	- 3t = 1 
--- 

(v) - t = 0 

t2  - t = 0 

t1, t2'  y 	y--2 	0, t > 0 



-,„ 

(iii) L u
i  t 

i 
, 

( iv) 
J 

yj..q 

i 
v
j 

0 7 

bt 0 

pt = 

t = 0 

t = 0 

- 

(5.6) 

vj.c2.vi  -2 

Vi .M2  .v2  - 

vj.d2  .yi  

max L 

s.t. 

L
J.

1j
 	

L-
• 
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The coefficient matrix of (5.3) is 

0 _ 0 

.,2 -2 -122 

L12 0 	-b _ _ 

,d, 0 P • ,  

o 	1 'o o -1 

'K? o :o 1 -3) 

Clearly this is now in linear decomposition form. 

The divisional programmes are: 

A
l 

-b1  

0 0 

m,1 - 0 - 

d-3. 
0 

(5.4) 

max f = c 
a 	-a -a 

s.t. A .y - b .t 	0 -a -a -a a - 

y a- , to 	0 — 
a = 1, 2 	(5.5) 

These are unbounded in t
a' 

thus according to Dantzig 

and Wolfe (36) the master program need only consider non-

negative combinations of divisional programmes, (and not 

convex combinations of such programmes). 

Assume divisions one and two have submitted programmes 

ti, i = 1 	ka' 
a = 1, 2 

aJ 

At this point the master programme will be: 

where sums are for: i = 1 	k1  

j = 1 • • • 

Let the dual evaluators at the optimum of (5.6) be 
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'd' u1' g2
) corresponding to rows (i), (ii), (iii) and 

(iv). According to Baumol and Fabian (8), we may interpret 

these as 'provisional prices' and use them to form subsidy/ 

penalty revisions for the divisional programmes. 

The decomposition process is as follows: 

(a) assume ka 
solutions from division a, (a = 1, 2). 

(b) form master programme (5.6) and optimise. 

(c) revise objective functions for divisions in exactly the 

same manner as for linear decomposition, but omit the 

last two rows. The new divisional objective functions 

are: 

2.4c 	- 7.M 	- 	. a = 1, 2 a. 	- 	ffd da.J Ya. 1 

The 'denominator row' is considered to be a 'corporate 

resource'. (M 	is the i'th column of M ) 
-a. 	 -a 

(d) solve the divisional programmes and test for optimality. 
A 	A 

Let the new divisional optima be fa. If Tra 	f
a 

(a = 1, 2), the present solution is optimal. (This 

A 

condition is proved later). If 7
a 

< f
a 

for a = 1 or 2, 

update ka  and go to step (b). 

5.2.2 Bounding the divisional subprogrammes  

In order to obtain bounded solutions to (5.5) it may be 

necessary to put an arbitrary bound on t. (Let this be t°.) 

(In the original programme (5.2), t is always bounded since 

t = 11<-4  + d 2x2  + 	,and dixa  + 21.22s2  + 3 > 0 for all 

feasible (x x )--by assumption). 

Lemma: F` or the LP 

	

max 	f = c.y 

E . 	. 	b.t 	< 0 	 (5.7) 
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if a (bounded) optimum exists, say f , then: 

t = to  or f* = 0 and 0 = t 	t°. 

Proof: Suppose a (bounded) optimum exists. Let n be the 

dual evaluator of the last row of (5.7). 

Then, by LP duality 

f M  = t.t 
	with Tct 	

0 
	 (5.8) 

But. to > 0, therefore: 

either f - 0rtt  = 0; the last row of (5.7) is slack 

or 	f > 0 t 
> 0; the last row of (5.7) is tight 

* 
=-t = t

o. 

Q.E.D. 

Corollary: Equivalence: For 0 < t < p, and y = x.t, the 

programmes: 

max f = c.y 	s.t. A.y - bt :5- 0 	t s  t° 	(5.9) 

max 	c.x 	s.t. A.x 	<b 	 (5.10) 

are equivalent if bounded solutions exist for (5.10) for 

which f > 0. 

Proof: f M  > 0 =j t •-= to. 

Equivalence by division. 

In this chapter we will assume that divisions only tender 

programmes of strictly positive value. We also assume that 

't' is strictly positive (and bounded). Thus we may amend 

the decomposition method of (5.21) as follows: 

(a)-(c) remain the same 

(d) solve the equivalent divisional subprogrammes 

max E (ca. - ;T.Ma 
 - n

d
.da

)x
a. 

s.t.A 	b a —a —a 

x —a 0  
(5.11) 
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(e) assume t is the optimal value .of t in the master 

programme about to be solved in step (b). This is permissible 

because any arbitrary t may be chosen. 

(f) go to (b), i.e. solve (5.6) 

N.B. Assumption (e) alters the form of rows (iii) and (iv) 

These are now: 

i 
- 	= 	 i.e. convexity constraints 

yj = 0 

5.2.3 The Optimality Criterion - 

The optimality criterion cited in (d) now becomes 

clear; it is identical in application with that of the 

ordinary linear decomposition: 
A 
fa is the net profit contribution of the new solution from 

division a 

ita is the relative marginal profitability of a transfer of 

some company resources to division a.(See (8), page 13.) 
A 

For optimality 'c
a 	

f
a 

5.3 The Fractional Approach  

5.3.1 The Executive Programme  

Assume that, in-accordance with -step (d) of Sedtion 

5.2.2, the divisions have tendered the plans 

rvil L-  a) 	ka ' 
a = 11. 2 

Assume that the corporate management now wish to use these 

plans to form a global optimum; the method of forming the 

executive programme corresponds with the linear decomposition 

approach. 

The executive programme is: 
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. Ui  c, x 	Ti c xl 
max 	

E T1
i_ d1-X1 + E 7;-]  d,,-X2,; + 3 , 

s.t. 	(i) L Ti m xi + 1; Tij M2 - X2 ----- b 
1-1 	.---.  

(ii) L p, - 	 = 1 

(iii) E vi 	= 1 	(5.12) 

(where the sums over i and j are as (5.6)), lai,i)j?__ 0 

Equations (ii) and (iii))the convex combinations)  are 

required to maintain feasibility. 

The CC form of (5.12) is 

max 
	

E ai .c-1 .X-1 ▪ 	ii *L2*X2 

s.t. 	(i) 27, a
i.m1  .Xi  + E yi.M2.4 - bt < 0 — 1  

(ii) Z ai.d
- a 

 .Xi  + Z y.d2.4 + pt = 1 -1 

(iii) E ai 	 - t = 0 

( iv) 
	

E yj 
	

- t = 0 

	

a1, y 	0 
	

(5.13) 

where the transformation 

t.4 - = 	has been applied, t > 0. 

t = I I 

Lemma: The optimal solution vectors to (5.13) and (5.6) 

differ only by the scale parameter t applied to the unbounded 

solutions to (5.7) in Section 5.2.2. 

Proof: Re-write the activities and constraints in (5.13) as: 
i\ 

max ZAH c (xi.t*) s.t 	 
\t 

The (x .t ) are the same as the (vi). Thus the activities 

and. ai l are identical, 

i.e. 	ai = t*i 
	

(5.14) 

Corollary: The dual evaluators of both (5.6) and (5.13) are 

identical. 
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Proof: Given two problems 

max c.x 	s.t. A.x 

A 
c.kx and 	max 	s .t. 	kx = b 

the dual evaluations are identical, if k is non-zero and 

constant. 

For k = t r  , the above result follows. 

5.3.2 The Fractional Algorithm  

Let 	Tc1' it2' be the dual evaluators of rows (i), (ii) 

and (iii) at the optimum, of (5.12). 

The proposed algorithm is: 

(a) assume ka solutions from division a, (a = 1, 2). 

(b) form the executive programme (5.12) and optimise. 

Let x = (x
-L
„ xn) be the 'optimal' programme derived. 

(c) derive the marginal values of production for each 

variable x1.'  x2 	at the present solution levels, 
i ! af 	

--i, , j 	,-- 
i.e. form the vector 	- T.m, 1  — --cc . I 

1 	
a. 1 

.__ 
(d) present each division with these new marginal figures 

and request optimisation with respect to these new 

(linear) objectives. 
A 

(e) test for optimality with new divisional solutions f
a
. 

If Ti(x > fa  (a = 1, 2) the present solution to (b) is 

optimal 

If Tc
a 

< f
a (a = 1 or 2), update ka and go to step (b). 

5.3.3 Comments on Algorithm  

As will he shown in Section 5.4, the two approaches to 

the decomposition of (5.1) are identical apart from constant 

factors at each level of updating the master programmes. 

The linear method stresses the planning approach of 

treating the denominator as a corporate resource that divisions 
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arc 'allowed to use'. This approach also makes it quite 

clear to divisions that a penalty/subsidy process is being 

used. 

In the second algorithm, the emphasis on the fractional  

nature of the problem is maintained, by concentrating on the 

net marginal increase to a fractional objective function. 

The optimality condition (e) of Section 5.3.2 follows 

from the associations derived in Section 5.4 and the optimality 

conditions for the linear approach. 

5.4 The Association between the Two Algorithms  

5.4.1 The dual evaluators of the master programmes  

Let the optimal value of the denominator of (5.12) be 

d, and let 	= 	
1 d-1. 

By fractional programming duality, and by the lemma of 

Section 5.3.1, 
A 
t(Tt, 7L 1, TE2) 	= ( 	, FE) (5.16) 

5.4.2 The association between the revised divisional  

objective functions 

Assume that divisions 1 and 2 have submitted ka 

propositions (a = 1, 2). 

According to the linear algorithm, the objective function 

for division a is revised to 

L ic
a. -a 

-
d
.d
a. 

y
a. — —. 

a = 1, 2 

 

r 

or 	 .1 
x
a. 

L Ica.  - TE.M 	- 

	

— —a. 	md.da./  i 	1 	1 	1 	1 
a = 1, 2 

(5.17) 

in the revised version. 

According to (5.15) of the fractional approach of 

Section 5.3, the divisional objective 'is a vector whose i'th 

component is 
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(-)f — m.M 
rox 	— —a. 

a, 	 1 

(5.18) 

Now 
.1\ 	A 

= (ca. -   f.d  ).t 
a. 

X = X 

But, by linear and fractional duality on (5.6) and (5.12) 

f = TC
d 
	 (5.19) 

Using (5.19) and (5.16) we can write (5.18) as 

(ca. 
- 71d..da  ).t - t Tc.M . 	- 1 

,.. 
= -tc 	— TE.M 	— 

	

l. a. 	— —a. 

	

1 	I 
(5.20) 

Comparing (5.17) and (5.20) we see that at the ka
'th 

stage the objective functions for divisions a are in effect 

the same, whichever algorithm is used, the difference being 

a scalar multiplier. 

5.5 The Optimal Dual Solution  

5.5.1 Introduction  

Walker (5) has shown that for linear decomposition, the 

final tableaux of the executive and divisional programmes 

provide, not only the primal solution vector, but also the 

full dual evaluation. The final executive programme gives 

the dual evaluators of the rows of the 'executive' section of 

the initial tableau, whilst the derived divisional programmes 

give the dual evaluation of their respective rows 

Thus for the problem: 

max 	 c,X, 

s.t. 	(i) 	X 	1: b 
-.1 1 	 1 

(iL) 22 2 ': 1)- z 

(iii)MX+MX 	b 
11 -2-2 

i 

X. 

(5.21) 
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the final executive programme gives the dual evaluators 

for rows (iii). Let these be 	. 

The (dual) solutions to 

min 	r .b 
-a -a 

s.t. 	.A 	c - .M -a. 	ca -b 

0 -a 	- 
a = 	1, 2 

(5.22) 

give the dual evaluators for (i) and (ii) according as 

a = 1, 2. ((5.22) are simply the dual forms of the final 

divisional subprogrammes). 

In the linear case, the 	7E
aJ
*1-  are automatically - 

generated by the final iterations; Walker's proofs rely upon 

the linear duality theorems equating the optimal primal and 

dual objective functions, i.e. he relies on the fact that: 

c X+ c 	b +
*
.b 

-1-1 - -2 	-a-a -b - a 
(5.23) 

Because of the non-linearity of the fractional objective 

function, (and the presence of economic rent in the dual 

objective), this equality is not upheld in the fractional 

case. The value of the primal objective function does not 

equal the total implied value of all resources, i.e. 

c1-1  + c X 
22 	* 

_ 	E 7; 	TE * + 
	a 

7L-- -cc. 
b  
-a  + b - - X2  fl

1
IX
1  + d 2- 

* 

(5.24) 

where the X 's and Tt 's refer to the optimal solution to 

max c 
-1  + c - 1-1 -2-

X  
2  

d X + d X + 11 -2-2 13  
= f(X) 

s.t. 	(i) 	X1  	 -L" b 

(ii) A 2-2 	
1.2 	 (5.25) 

(iii) M X 	1122- I1 	 2-2 

> 



1 —.1-1 	
.m2.X1 s.t. 	(i) 	 7-  .M X 	4  

(ii) E 

(iii)  

0 

b 

1 

= 1 	(5.26) 
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* 
Let the optimal value in (5.25) be f(2\. ) 

We will show that Walker's proof can be adapted to the 

non-linear case, and will prove that the dual evaluators of 

the final tableaux for the method outlined in Section 5.3 

are the dual evaluators for the total problem. 

5.5.2 The dual programmes  

The dual to (5.25) is: find (m u 	X 	X-) -17 _27 	7 17 

s.t. e is the solution to: 

min 7,,1b,1  + 212.2 + 

s.t. ziAl  + 7C M1 	
or — — 

X (5.26) 

7. A + .1" M 2 3f 
6X —2,  
— - X = X 

-f.  

Let 

where X is optimal for (5.25) 
	

Form the primal: 
,* 	,* 

max 	f.x + f .x 	+c.x. 
1 	 1 	 2 	—1 —1 	 2 2 

s.t. 	(i) ,1.1Lc1 	.s Li  

(ii) -L'22S2 	 2  

(iii) mixi 	+ m22s2 	s b — 

(5.27) is a linear decomposition problem. 

(5.27) 

Consider the following programmes: 

Assume that ka 
solutions have been tendered from 

diVisions a, (a = 1, 2) for the decomposition of (5.27). 

The master programme is: 

i— 
max 	

k1 
P"1.C1.2

i J2 1 
 i=1 	i=1 
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Assume that the dual evaluators for rows (1)-(iii) of 

(5.23) are (1-c , 0"1 	
) ' 	2 

The final divisional programmes for (5.27) are 

 

 

max L (ca. 
- 7 .M 	)2\.. 
- 	. 

S. t. -.-   
h --a 

(5.29) 

(a = 1, 2) 

The dual of (5.29) is: 

min iT b 

 

 

a a 

s.t. 7t .A 	c - 	.M —a —a a — —a 

(a = 1, 2) 

 

Lemma: Let x be the optimal vector for the problem 

 

 

c.x 

 

max f(x) - 

 

s.t. A.x <b 	(5.30) 
d.x 	c3 

x 0 

Let f(x ) = f , and let the optimum dual evaluators be .7c . 

Consider the problem: 

max x.. 	6x.1 1! x = x *  

s.t. A.x 

0 

(5.31) 

Then: x is optimal for (5.31) and Tt are the dual evaluators. 

Proof: By Martos (65), the fractional programme has one 

unique solution over the constraint set 	23, x 	01 

i.e. (5.30) has a unique solution. From Swarup's work, the 

KT Conditions for such an optimum are that there exists 

X , tt :2--  0 

- Tr, .A = 0 

A. is i'th column of A 
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- n .A. 	- 0 — 
X = X 

(iii) A.x b 	 (5.32) 

(iv) 7c.(A.x - b) = 0 

But conditions (5.32) are the KT Conditions for the problem 

(5.31), i.e. (x , m ) is a sadde point for (5.31),. But there 

is only one solution to (5.31), hence proof 	 

Theorem: (Walker (86)). If (5.28) is the final optimum 

tableau for the executive programme for (5.27), then m , and 

the corresponding m1  , m, from (5.30) are the components of 
- 	 2 

the dual evaluators of (5.27). 

Proof: see (86) 

Lemma: The dual evaluators 7 from (i) of (5.28) are the 

dual evaluators of the rows (iii) of (5.25). 

Proof: By the theorem just quoted, the m of (5.28) are also 

the evaluators of rows (iii) of (5.27). 

By the lemma just proved, the dual evaluators of (5.27) 

and (5.25) are - identical, hence: 

Corollary 2: The Final Fractional Dual, (equivalent to the 

theorem of Walker). The final dual solutions to steps (b), 

(c) and (d) of the decomposition of 5.3.2 give the dual 

evaluators of the programme (5.25). 

Proof: Using lemmas already proved. 

Example of computation are shown in Appendix 5.1. 

5.5.3 The final 'prices' 

As has been shown, the final solutions to the executive 

and divisional programmes furnish the dual (marginal) 

evaluations of the total problem, thus they provide the 

desired 'transfer prices'. These 'prices' however , are 



the marginal value of inputs and outputs; they do not 

equate the value of total supply and demand in each market 

due to the non-linearity of the objective function. 

As can be surmised from the work on strictly convex 

functions by Charnes, Cooper and Kortanek (23), these 

marginal prices will be insufficient to promote optimal 

behaviour from divisions. (Methods of control in decentralised 

firms are discussed in Section 5.8). 

5.6 The Optimal Inverse 

5.6.1 Introduction  

According to Chapter 4, the optimal inverse basis is 

needed in order to test the 'returns to scale' of any 

fractional programme. Without this definition of 'returns', 

it is impossible to associate the dual evaluators (marginal 

values) with economic prices. For any sensitivity analysis 

to be effected, the optimal inverse basis is also a pre-

requisite. 

In this section we will consider the methods available 

for the calculation of the optimal inverse basis. This will 

be approached indirectly by first considering the problem 

of finding the range of possible changes in right hand side 

elements that 'maintain' the present basis. Throughout this 

work we will assume that the problem is non-degenerate at 

all vertices of the simplex. 

Most techniques of post-optimal analysis in LP use the 

optimal inverse basis as a starting point. 

i.e. for the problem: 	max c.x 

s.t. A.x b 	(5.33) 

0 

we have x = 1 	for some B-1 	 (5.3!!) 
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With a non-degenerate problem (at its optimum): 
P 

_ 
- ij 

and the range of values over which any bk  can vary 	Lne 

problem remains optimal/feasible is given by the extent 

to which b in (5.34) 'preserve' the condition that 

x = 0 . 	( See e.g. (410.) 

ax. 
We will use the marginal values 	1 calculated 3b. 

J 

indirectly to form the optimal inverse basis for the decomposed 

linear fraction programme. To aid exposition the linear case 

is presented, and the Baumol and Fabian metaphor of corporate 

planning is maintained. Clearly the method can be interpreted 

as an adjunct to decomposition for the solution of large .  

scale problems. 

5.6.2 Notation  

In the following sections the divisional weights have 

not been separated. The solutions X. i 	I, are of the form 

((X 

;(from division 1) or 	(from division 2). 

2  / 	\ xn  / \_„; 

4. is the optimal weight attached to the i'th plan 

bk refers to the k'th entry in the relevant r.h.s. 

5.6.3 The marginal variations of basic Xi  with  

changes in resources  

We will assume that the information available Lo the 

central organization.  is: 

(i) the series of solutions iX 

I *-1  (ii) the optimal weights 14,j,  

(iii) the optimal inverse basis of the final executive 

, programme n 
-1 

(5.35) 

ab. 
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(iv) the technology matrix and r.h.s. of the corporate 

section of (5.21), 

a. Change of h. contained 	corporate constrainiTr;: 

Using (i) and (ii) of (5.35) we have the optimal 

programme 

X, E µ. X. 
I —.1 i 

(5.36) 

Since the problem is not degenerate, (assumed), a 

small change in b. in the corporate section will not induce 

a change in any of the sets of penalties and subsidies given 

to divisions, 
*- 

i.e. the divisional solutions 1X. are 'independent' of bi  

(for corporate resources). Consider changing a particular 

resource level in the corporate r.h.s., say bk. (5.36) can 

be written as 

X 	= E µi(bk ).Xi  

3)(4' 	1-; 
3u,.
1 
 (b *  

and 	- 	= 	. X. 	 (5.37) 
3b
k 	i abk 	-1 

But, from (iii) of (5.35), and the assumption of non-degeneracy: 

(
/b \\ 

i! - 
_ 

B-   1 , 1 	for basic Ili  
V- 	\ 1_ / 

(We ignore non-basic 	and assume that 	comprises the non- 

zero ;z. 1 only). 

oµi  

3;0
k  

ik 
is known, the terms 

3X. 
-i may be calculated directly. 

 

Change of b,•  conta-ined in a divisional r.h.s.: 
r 	* 

Por this case, both -i
1)

µ.( 
 
and 	are b -dependent. 

L  
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Hence 3b 
j 

t 
. 	1.1j 

- 
3bk 	j 	

a°lc 
(5.38) 

Assume that each division supplies the marginal values 

of the optimal solutions with respect to its own resources, 

i.e. assume 	are known. (In the computational approach 

k 

for large programmes, the —2- are known from the inverse 6bk  
it  

basis of the 'divisional' programmes.) The 
Labki 

may be 

calculated as follows: 

-1 
iformulatetheexecutiveLP,9,intermsofthe03i --) 

and b instead of X. 	_, -usina X. = (B. .b). For a small change __.a. ---3._ — 

f *1
in b

k  s b, co and -0J,i 	vary with bk, i.e. p = co(bk), and the 

solutions to the final executive programme are 	= p,i(bk). 

• if the marginal values of the LP p exist, we can find 

(bk • K  A, )
/ 

for some small Ak. 

The N + S conditions for the existence of the marginal 

values of an LP have been considered in Section 4.2.3; they 

are due to Williams (92). 

Assuming that these hold for the executive programme, 

, 
the terms 

ap 
i may be derived from 

6bk  

/ 
61.1i  lim 	i(bk  + Ak) - p.i(bk  

313,K 	Ak 	A (5.39) 

(By the assumption of non-degeneracy, we can assume that 

s.t. for Uk 	the Ili  (bk. 	Ak) are defined and that 

the limit exists). 

The executive programme co(bk) will be of the form: 
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max 	c. .(b
k  ) 	1371(b — — 

p,.(bk  ) .  n. (b A) b — 
(5.40) 

1 	convexity 

2 	 constraints 

where: 	= (0, 0, 	bk'  0, 0 	
 0), b is corporate 

r.h.s., and the 1 	refer to respective divisions, 	0 

From the formulations (5.39) and (5.40), the right hand side 

of (5.38) may be obtained. 

Since these calculations have only, depended on the 

linearity of the constraint set, they are applicable to 

linear fractional programming; the theorems of Williams 

will not be immediately applicable, but, using methods 

similar to Section 5.5, they may be used via the Charges and 

Cooper Equivalent forms. 

A direct method for computingis shown below in 6bk  
Section 5.6.4. 

Calculations illustrating the theory of Sections 5.6.3, 

and 5.6.4 are presented in Appendices 5.2 and 5.3. 

5.6.4 Direct calculation of the "perturbed inverse  

basis" 

Assume that the columns of the executive programme for 

basic µi  are given by A. (A is m by m) 

A small change in bk  will change the column values of A 

according to the matrix elements 6xi 	, (assuming that the 
abk 

change is sufficiently small to retain optimality/feasibility 

etc.) 

Assume that the perturbed matrix for A is A 	H(6bk), 
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where represents the small change in bk
. The new inverse 

which exists, if the conditions 
1 

basis is A + H(5b, )l -1  

nunciated by Williams are satisfied, (and ,A + N(5b 
	is 

non-singular). Now: H(bbk) ) is linear in bbk,  
—  

since it is 

the weighted sum of terms which are linear in bbk' 
i.e. it 

can be written as H.bb, where H is a matrix of scalar 

values. 

(bk) = A
-1  .b 

and 	
*
(bk + bbk) + TI.bb — k_i .b 

where b is the r.h.s. of the executive programme, 

(b k) = 	lim 
bb 0 

A + 1 - - - A1  
(5.41) 

 

bbk 

 

(if the r.h.s. exists) 

+ H.bbk 	iA II + A-1  .H.bb 

-' -1 	-1 
I + A-1.H.bbk  ' -.A 

! 	— 

But we may make bbk 
as small as we please, i.e. if 

D = A-1  .H.bbk 
 = (d..) we can find c, 6 s.t. 

— —  

	

d.. 	< s for bb, < b. 

	

iJ 	K 

Hence we can ensure that (A-1.H.bbk  )-4›0 as 
rn —> CO 

 

and can expand (I + D)-1 to give: 

(1 + D)-1  = I - D + D
2 

   

(5.42) 

   

Using (5.42) we can re-write (5.41) as 

2.A -1 	-1 	
\, -)J2( b 	2%k  ) 	, 	.A-1  + 	) b - A 	b -1 - D 	D . 	.  

= lim 6bk 	51ok-7>c\ 	
bbk 	// 

	

/ 	-1 ! - A .H A -.b.5bk  + 0(bbk) 

b 
	 (5.43) 

lim 
6b 1(  - 
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Typical calculations for. II ace also shown together with 

the worked example in Appendix 5.3. 

N.B. A-1  .p is the present solution (immediately available) 

is the optimal inverse (immediately available) 

only H need be determined. 

5.7 The Provisional Dual Pricing Theorems 

5.7.1 Provisional pricing in the linear case  

For the LP 

max c.x 	s.t. A.x = 

	

x 	0 	 (5.44) 

Let x = 3-1.h 
A 
c 	be the 	ix term corresponding to x 

= C . 3 

For any solution x, not necessarily optimal, Baumol and 

Fabian have proved the following theorems: 

Theorem 1: For non-basic xk' 
the marginal change in objective 

function upon inclusion of xk  is given by 

A
k 

= - TC.Ak  + c
k 	

(5.45) 
— 

where Ak  is the column of A pertaining to xk. 

Theorem 2: For basic x. A. = 0 
J 	3 

	

i.e. 7.A. = c. 	 (5.46) 

Theorem 3: 7.b = c.x 
j 	

(5.47) 

These theorems are proved in (6), and allow the 

interpretation of the 7's of executive programmes in 

linear decomposition as provisional dual prices. 

5.7.2 Provisional pricing for fractional decomposition 

In steps (d) of 5.2.2 and (c) of 5.3.2, we have amended 

the objectjve funcLionn of the divis]onal pro(jrammes using 

7C':, cal L110 corpocate con:: 6_1- ,1 11 	row:; 	may:gin:LI vh_lAt 



In Chapter 6 we show that if 

= t. M22 (5.50) 
a _1 L, 

then w = 	) -k 	s f  d 

is given by 
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the corporate resources. We formed" the expressions: 

max ica 

	

- TE.M 	- 	.d x — —ai 	d ai) ai 

and 	max fa ( 	- 	) x ax 	— 
1 	a. 	1 	1 1 

In so doing it was assumed that the Provisional Dual 

Pricing Theorems quoted in 5.7.1 held for the fractional 

executive programmes. This will now be proved, using the 

duality relationships derived in Section 4.4. We use the 

same notation as in Section 4.4, namely: 

assume the initial problem is 

max c.x + a s.t. A.x s  b 

   

+ 13 	 x >--- 0 
	

(5.48) 

The 'Charnes and Cooper form' of this is 

max c.y + at 	s.t. A.y - bt 	0 

	

d.y + 13t = 1 	(5.49) 

y, t a 0 

Let the present solution to (5.48) be described by x = B-1.b 
* 

The corresponding inverse basis of the CC form, (B )
-1 
 is 

given by 

 

(B 
* 

)
_1 X11 X12 + 

\ N21 N22 

-1 B . 

t.x 

-t(d.B-1) 

where: 

 

M21 
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k 
+ t.x(d -  

E -.a. ) 

	

- 	
1 

k 	
--k 

• -1 id - 	.a ) k 	 k 
(5.51) 

Define T.. by: 
!af

• n  ,_,- 
—F -  (3x —,x = x L_ 

(5.52) 

where f is differentiated with respect to basic x. only. 

Define cc- a , m, by: —  
* -1 

(Ecc'  iTd) = (c, a).(B ) (5.53) 

(This is the same definition as in 5.7.1 for the linear 

case). 

Theorem  1F: For non-basic xlc  in (5.48), the marginal change 

upon inclusion of xk  is given by Ak, where 

Ak 	
- TE, k + of  

a )(3( x = x 
(5.54) 

Proof: Theorem 1 holds for the Charnes and Cooper form of 

(5.48). 
A 

Let the corresponding solution be (y, t) 

Then: 

— A 	= —cc 	+ ck- 
d 

/A \ 
k\ •— * 

-(c a).CB ) ck 

/.\ _1
• 	

A A A 
= -c.B 	a1, - c.x.t(dk - d.B k)  

A 
- a t(dk  - d B-1- a—k  ) + ck 

A A 

Now (c.x + a)t = f 

A A A 	
—1 A 	- f.d.B 	(ck  - d, .f) — — Ay 

A 

	

- f. '
-) 	

(.12
-1 ) + (c,K  - f'dk) 

Now c - 



• 

dr 
75X 

- X = X 

A,.F 6x 

and c - T. 

Avg  

- 227  - 

= x 

but A, = t A 	by relation .x = L (shown in Appendix 4.2) lc 	Yi r;. 	-, 
A 	= --it • .-, , —F-k +  

Theorem 2F: For basic x., A. = 0 
J 	J 

f ] i.e. 21 Th 
• 7:7.1 

x 

  

Proof The same proof. applies; but A 	- 0 because y. 
Yk 

A. = 0 (x. is basic) 
J 	J 

basic, 

i.e. it 	= 
F —k 

or 7 
6x.i 
l]x = x 

N.B. Theorem 3 has no fractional equivalent, i.e. 

A 
: 	! 

O_L 

ax .  

	

JJ 	 x 

The normal failure due to non-linearity of the objective 

function occurs, but the lack of Theorem 3F does not preclude 

the interpretation of the Tt's of the fractional executive 

programme as marginal values. 

The full interpretation as economic prices would 

require diminishing returns to scale, etc. But as has been 

seen, these are not necessary for the operation of the 

decomposition algorithms. 

5.8 Control in Decentralised Organizations  

5.8.1 Control in Decentralised Organizations  

At the termination of a decomposition process, the 

'executive' calculates the optimal weights to be attached to 

Hof 
3x 

-x = x 

x.. 
basic J  
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the divisional subprogrammes. As has been outlined in (8) 

these weights form convex combinations of divisional 

solutions; the optimal divisional programme is an interior  

point of the divisional constraint set - and cannot be 

reached by programming methods which have extremum point 

optima. 

Thus pricing alone is insufficient (in the linear case) 

to ensure that divisions act optimally. At the end of the 

decomposition the optimal solutions are announced as production 

fiats. This will also be the case in fractional programming 

because of the persistence of the divisional extremum point 

solution. 

Charnes Cooper and Kortanek (23) have shown that it is 

possible to set goals for each division, based on the optimal 

solution; divisions are then asked to optimise a function 

containing severe penalties for any deviations from the 

prescribed goals. These are termed 'pre7eqicive goals'. 

Such goals are also definable for the divisions in the 

fractional cases; they will differ little from those of the 

linear case, due to the similarity of the divisional programmes 

in both the linear and fractional decompositions. 

5.9 Summary 

In this chapter we have shown how decomposition methods 

may be applied to fractional programming problems, using 

both the original and Charnes and Cooper forms. 

We have proved the appropriate duality and pricing 

theorems (where possible), and have shown how the bases of 

the decomposition method can he used in the construction of 

the total optimal inverse basis. Examples are presented in 

Appendices 5.1, 5.2 and 5.3. 
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Chapter 6 Special Methods in Fractional Programming  

6.1 Introduction  

In this chapter we discuss the special methods available 

in FP, which can be based on the equivalence between the 

algorithms of Martos (64) and Charnes and Cooper (17). 

Emphasis is placed. on the latter approach since it utilises 

existing codes; IP with fractional objectives is also 

considered together with aspects of pricing with integer 

programmes. Stochastic Programming with fractional objectives 

is reviewed in Appendix 6.4. 

6.2 Basis Relationships in FP  

Wagner and Yuan (85), have shown the equivalence of the 

algorithms of Martos (64) and Charnes and Cooper (17). Their 

work shows that the two methods proceed to the optimum via 

the same pivot paths. Charnes and Cooper have also shown that 

for any vector (y, t), feasible for (1.23), t is strictly 

positive. 

Thus we may assume that any set of pivot operations 

{remove xs,  introduce-xr} has a corresponding set of operations 

in the CC form, namely {remove ys, introduce yr}. 

6.3 The Bounded Variable Algorithm  

6.3.-1 The CC Form  

Consider the problems 

max f(x) = c.x+ a.— — 
d.x+ 

s.t. i A.x s  b 

ii O s x s U 
	 (6.1) 

and 

max f(/) = c./+ at 
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s.t. 	i A.y - bt s  0 

d.y + pt 	1 

ii 	ut 	s o 	o 	(6.2) 

(6.2) is the CC form of (6.1), but it does not display 

the upper bounded variable characteristics of (6.1), because 

of the inclusion of the variable t in the rows ii.. For a 

problem of this form, with many upper bounds (e.g. the capital 

budgeting problem where projects are bounded by unity), the 

resulting CC form (6.2.) appears cumbersome due to the explicit 

inclusion of all upper bounds in the rows ii of (6.2). 

The CC form cannot be used for a bounded variable 

algorithm for the solution of fractional programmes. 

6.3.2 The Parametric Approach  

Using the method of Joksch (54), the problem (6.1) 

becomes 
c.x + a 

	

max  	= f(0) 
9 

	

s.t. 	A.x s  b 

d.x + p = e 

o 5 x s u (6.3) 

For any fixed 0, (6.3) is a normal bounded variable LP. 

6.3.3 Variations on Martos' Algorithm  

In order to solve (6.1) directly, the only variation 

required for the normal LP bounded variable algorithm is 

that of the selection of the pivot column; this can be 

achieved by adaptation of Martos' algorithm,((64)) , 

according to methods outlined in (35) and (68). 
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6.3.4 Dual evaluators in 17.1p2er  bound formulations  

Weingartner (88), uses the dual evaluators associated 

with the upper bound formulation to rank basic and non-basic 

projects. Such rankings can be applied in FP; once again 

the mapping is effected via the variable 't'. 

Consider the problem: 

	

c.x 	a 
max f(x) - 	 d.x + 

s.t. i A.x s  b 

ii 	x.s 1 	i = 1 . . n 	(6.4) I 
Let the dual evaluators for (6.4) be (g F,  L.F  )7  and the -.  

* 	* 
optimal value be f = f(x ) 

The CC form of (6.4) is 

max 	f ( 	+ at 

s.t. 	i A.y - bt s  0 

+ pt = 

ii 	Y — et s  0 	(6.5) 

where e is the vector (1, 1, 1, ... 1). Let the evaluators 

of (6.5) be (Q, g
d  , L). By LP duality, 

17d  = f . 

Let . = 'z, - c.' defined for the CC form ('y' variables 

only) as in (88), /c 	(y.) 

then y. = -C.A. + d..f • + 	- c. -J 

,d. .f • ) 

Now Tr, a _and Lc  = L.F.TA  (fromi!Section 4.4.1) 

therefore.„_. t :07..A.i_ p,._.(c.._d..f*) 11 
Yj 	*L.--F --J 	J 	J • j 

But the numerator of (6.6) is the marginal value sum of 

inputs for the j'th variable minus the marginal return, 

evaluated at the optimum of (6.4). 

J 

= 
-1 /4- .A3 

(6.6) 
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i.e. y..ts = 	.A . + 	6f] 	
Y F 	6xj 	* 	F.  

x= x 

where yF  is the 'yj  ' defined for the form (6.4) 
J 	 1 i.e. /c  = 	.7* • 

The natural ranking of (i, j) is preserved in FP, and can be 

deduced from the ranking in the CC form. 

6.3.5 Productivity Ratios 

In Chapter 3, we have suggested a second ranking for 

variables (projects), the ratio of marginal return to the 

sum of the marginal values of inputs (i.e. for LP the 

ratios e. = 	c.  ). These rankings are not strictly preserved 
v.a. 
—J 

between the CC form and the original fractional form. 

Considering the CC form (6.5), the definition of e 
J 

would give 	c. 
e. 

    

{— .A. + d.. c —3 	3 
*1 (ignoring the upper bounds) 

e • , the equivalent 9's for the original form would be 

c. 
J 	IT

F 
 . A . — —j 
• A 	A 

e 
J  k

7/ j 0 >
k because of the term d .f 

defining e j  for the CC form as 	j 	, the ranking is 
.A. 

—C preserved. 

6.4 Sensitivity Analysis in FP  

In order to describe the optimal solution to a mathematical 

programming problem, three pieces of information are required: 

the primal solution, the dual variables, and the 'robustness' 

of the solution to changes of input data. Sensitivity is 

required before the solution can be used for decision making. 

Sensitivity in FP can be approached using the sensitivity 
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analysis of LP applied to the CC form, as outlined in the 

following sections. 

6.4.1 Changes in the r.h.s elements ibk1 that 'preserve' 

optimality are derived from the optimal inverse basis using 

the formula 

	

x
* 	

Bb 

For changes of b, the basis is feasible only if the corres- 

ponding x* is positive. ( See e.g. (68).) 

In the CC form, the elements b appear in the matrix of 
r 

constraints. Nevertheless the range for -bk  can' be deduced 

from the range of the r.h.s. of the CC form. 

Assume that the range of the k'th row of the CC form is 

k (for an increase in bk): then, a basis change occurs when 
A 	A 

	

k 	- bk.t .6k  
A /\ 

where (a, t) is the value of (1, t) at the end point of the 

range of the k'th row. Up to this point the present basis 

is optimal, i.e. 
A 

Ak ./ - bk .t 	53.(  

bk 
or 	Ak  .x 	bk 

t 

(6.7) 

6k therefore the range' of bk  (increasing) is given by 7, 
t 

A 
where 5k is the range of the k'th row of the CC form and t 

is the value of t at the limit of the range. (Similar 

analysis applies for decreasing bk: worked examples are 

shown in Appendix 6.1) 

6.4.2 Changes in the iLcil terms  

Allowable changes in the {cil terms may be deduced 

directly from the CC form; this is an LP, for which sensitivity 

to changes in St.cil is readily available, see e.g. (68). 
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6.4.3 Changes in the idil terms  

Let a.(d.) be the i'th reduced cost in the CC optimal 

tableau, let the dual evaluators be ( C, t). Let the i'th 

fA. column of the initial tableau be !-J 1 and the optimal 
\di  

solution be 
* 

with t = f 
- -7 

d.x • + p 

Let 15.(d.) be the i'th 'reduced cost' in the original form. 1 

Consider changes caused by perturbation of di  by an amount A. 1 

Where d. + A. = d.  1 

From Appendix 4.2 (4.41) we know that 

1 — 

3f1 . Now of = 

	

	F3f 	B-1.A 	(6.8) ax. 
j12 .11i 	 x *  x=x 

where ix are basic activities, B-1 
-B 

of the original fractional form 

is the optimal inverse 

* * 
therefore l a.=(c.-cl.1.f )t - E (c. - d. .f 1  

where B-1.A. = a-1 . 

 

• ).a.. 1 	1 	 13 

 

(6.9) 

a. Non-basic 	f and a.. are independent of di, 

therefore, for the present basis to be optimal we require 

that 

* 
- (di  + Ai)f - E (c. - d..f • ).a.. 13 

V non basic i 

i.e. 	a. (d1. 	= Cl. 	1 f 	0 1  

therefore, di  may be reduced by an amount 

* 	c.x • + a 
f 
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whilst x. remains non-basic 	(6.10) 1 

b. Basic  ixil:  If x. is basic, 
	and t vary with di; 

optimality is preserved if ak(d) 
s  0 for all non-basic xk 

i.e. if a
k
(d

i) = ck - d 	 k • v * + A. .x. 1 a. 

u
*  

- L (c - d.. * 	*) . akj 

	

j/i 	j 	3  v +  A..x. 1 a. 

- (c. - (d.1+ A. ) 	* u 
*; '-ki 

v + A..x. 

0 	non basic k. 	(6.11),  
* 

Let t • vary with Ai  i.e. t 	(v* + A1..x. ) -1  

Rearranging terms we have 
r- 

, 	* 	* 	* 	* 
6k  (d.) = t ck(v + A. .xi  ) - dk  .0 1 	1  

* 	.) 
- L {c (v* + A..x. ) - di 	

j 
.0

.0 
 j a

k  1 1 
j/i 3  

- ▪ + A. .x*. ) - (d. + A. 	ak . 1 	1 i 	i 

*F- 
L 

 - 
a. ki j  ji j 	l = t 	.x. - L c..x..ak  .+u k i a 

	

+ ck .v • - cik.11 	E(c
3 
 —v 	c1-11  ) akj  

* * 
Let 	c .x. - 	c..x..a,. 

+ 
	.a k 	3 	ki 

then a (d.) = t
*
iA..n. 	v*.0k 	0 

i.e. 	A. s -v a k 
1. . 77i 

V (6.12) 

  

d. may be decreased by an amount pk  = 	ak  before xk ni   

will become a 'profitable non-basic' activity; hence 'range' 

for d.1  is minipk1 

a. 
A. 	* 
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(Worked examples are given in Appendix 6.1; all components of 

upk1 'are obtainable from the CC optimal solutions) 

Alternatively, an algebraic formulation may be used, 

i.e. noting the changes of the inverse basis with changes 

of The approach is shown in Appendix 6.1.3: although 

useful for exposition, it has no computational value. 

6.5 IP with Fractional Objective Functions 

6.5.1 In the exposition of FP methods we have thus far 

assumed that variables are real valued, but many formulations 

are only meaningful if model variables are integer valued 

(e.g. capital budgeting, etc.). Branch and Bound Techniques 

for (linear) IP may easily be adapted for FP, at the possible 

expense of computational efficiency in the tree search. 

Cutting plane methods (42), (43), may also be applied 

to FP; Swarup (78) has given one approach via the direct 

method, formulating his own dual algorithm for FP. The CC 

form may also be utilised for integer work as follows. 

6.5.2 An Integer Algorithm for FP  

Consider the problem: 

c.x + a 
max  	s.t. A.x s  b 

d.x + p 
x z o 

x. integers 	(6.13) 

where c, d, A, b have integer entries. 

(6.13) has the CC form: 

max c..y.  + at 	s.t. A.y - bt 

+ 3t 

/7  t Z 0 	(6.14) 

with the added requirement that 1 	* 	e integer valued. 



- 137 - 

The convexification algorithm utilising the CC form may be 

stated as follows: 

.i optimise the CC form and test 1 * for optimality 
t 

(i.e. for integer values) 

ii all Yi integers - stop'. 

if not: 

iii map the final CC tableau back to the original form, 

giving "the greatest fractional row". 

iv form the cutting plane and add it to the constraint set. 

v map the new constraint into the CC form. 

vi use the LP dual simplex method to restore feasibility)and 

optimise. Go to ii. 

Let ACC  be the present (optimal) canonical form for the 
* 	* 	* 

CC method, and the solution vector be Y = t .2s . Let 41 

denote the fractional part of xk. Using the Method of 

Integer Forms, (42), we select the row for which ix
k 

is a 

maximum, i.e. for which flikl is a maximum, say xi. 
L *j 
t 

Assume that the original (optimal) canonical form is 7 = (a..)• 
A 

(Mappings for ACC  -*A are given in Section 6.5.3) - - 

The cutting plane is 

) 	

* %. 	f )  
E a.. x. 	. 
4   

i.e. in the CC form this constraint is 

(6.15) 

IA 
laij _I • Yj  

r *) 
tx
if

t z 0 (6.16) 

A 
(6.16) is added to the matrix ACC, and the dual simplex 

algorithm implemented as in step vi. 

(Worked examples are shown in Appendices 6.2 and 6.3). 
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6.5.3 The mapping between optimal tableaux  

Two methods are available for finding the equivalent 

canonical form mentioned in the previous paragraph. 

i. The optimal solution can be deduced from the basic rows 

in the CC form, using the equivalence between pivoting 

sequences outlined in 6.5.1. 

The optimal inverse of the original form can be deduced 

from the sequence of pivots in the CC form. The efficiency 

of inversion routines makes this heuristic method attractive 

for large scale programming; it also provides an accurate 

computation of the row elements of the original form. 

ii. The second method utilises the Wagner-Yuan Equivalence 

wk 
 

Let Wk 	W  Y be the k'th column of the 'optimal' tableau 
kt/ 

Let
lc be the k'th column of the optimal tableau of the 

original form. 

Let .13-1  be the CC inverse basis 

Let .B,  be the first m entries of the present r.h.s. of the 

CC form 	1 ( 0 
0 

i.e. 113 = (7)-1. ' I • 

Let x13?  d 	correspond to LB  and let ak  denote the k'th 

column of A. Then, using the equivalence outlined in 

Section 4.4.1, we have 

-1. a Now 3k 
. 

k 

(85). 

of the CC form. 
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k 	t.XB  (dk  - dB  .zk  ) 

vt(dk  - (113.W 

The last entry in the column Wk  is known (or can be readily 

calculated if the revised simplex method is used); this is 

Wk - the entry in the denominator row. 
t 

 

1 / .
z 

 
-k 	.113'141kt' t ; Thus W .•= 1  y 

k 

t, 	W
kt 

( 
z, = Wk 	a-B 

W
‘  kt 	 (6.17) 

tj 

Thus all the required elements of the optimal tableau of 

the original form may be calculated (see Appendix 6.2). 

6.6 Pricing for Integer Programming with Fractional  

Objective Functions 

6.6.1 Introduction  

With the emergence of algorithms to solve (linear) 

integer and mixed integer programmes, economists and experts 

in mathematical programming have been faced with the problem 

of interpreting the value of resources in the light of such 

optimisations. Since the dual pricing mechanism for linear 

programmes is so powerful, duality has provided the major 

springboard for (such) resource evaluation. 

Methods have been devised by Gomory and Baumol (43), 

and Alcaly and Klevorick (2), for "re-imputing" the dual 

variables(at the optimal tableau of the cutting plane 

algorithm)back to the original resources. 

A similar, method has been used by Weingartner (88) 

as outlined in Section 1.2. 

Dual pricing mechanisms have been seen to fail 

in some LFP cases , 	because of the lack of diminishing 

therefore
, 1A2k  = 
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returns to scale; both marginality and diminishing returns to 

scale are absent in integer programming. Frank (39a) has 
Az 

proposed defining the marginal value of resources as Lb i  

where the Abi represent unit changes in the resources, and 

Pz the concommitant changes in objective function, but the 

results are not generally applicable. 

6.602 Pricing via Recomputed Dual Variables 

In LP, the recomputation process has the following 

properties: 

i the recomputed prices eliminate the possibility of 

profitable output - i.e. recomputation preserves the normal 

linear optimality criteria, 

ii a good has a zero price if it is a free good in the 

economic sense 

iii if there exist in'original inequalities such that these 

alone determine the same integer optimum as the total problem, 

the dual evaluators of the reduced problem give a unique 

set of recomputed prices. ( See (88).) 

The general deficiencies of non-unique recomputations, 

the inability to cope with free goods (i.e. a good should be 

a free good if and only if it has a zero price), etc. all 

throw doubt on the pricing system of recomputed dual variables. 

The fact that the optimal integer solution has been 

found using 'combinations of resources' as cutting planes 

indicates that resources can no longer be considered indepen- 

dent. Weingartner notes that the concept of a free good is 

not one which has a unique interpretation in integer program- 

ming. 
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Consider the programme of Figure 6.1. (The integer 

points are those on the lattice points.) 

Figure 6.1  A typical integer lattice  

Only the resource level corresponding to hyperplane D 

represents a truly free good. Either B or C may be removed 

without affecting the optimum; but the removal of both gives 

a different optimum: Neither B nor C represents a truly 

free good; they are not independent. 

A further criticism of the Baumol/Gomory Prices has 

been made by Alcaly and Klevorick (2). In the linear case, 

the recomputed prices do not exhaust input factors; i.e. the 

pricing does not equate the value of inputs with the value 

of outputs. 

Alcaly and Klevorick suggest two methods to overcome 

this; the first introduces a constant term to balance input 

and output. This is a 'subsidy' to the firm to keep it to 

'integer production'. The method has all the failings of 
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the Gomory and Baumol Method. The second method is one 

which redistributes prices amongst goods in such a way as 

to (artificially) ensure that a free good has a non-zero 

price. 

All these methods are of doubtful practical use, but 

since they can easily be applied to the fractional program-

ming case, the appropriate recomputations have been 

considered in Appendix 6.3. 

There is an additional problem when recomputing dual 

evaluators in a non-linear environment; the dual evaluators 

of the intermediate non-linear programmes are not piecewise 

constant. 

(The dual evaluators of the CC Form, (an:LP), are piece-

wise linear, but those of the original form are not.) An 

implicit assumption in recomputed dual 'prices' is that the 

dual evaluators, themselves, are piecewise constant. ThiS 

does not hold in the fractional case (or any case with a non-

linear objective function). The recomputed prices of Appendix 

6.3 ignore this non-linearity; like all recomputed prices 

they can only serve as guides to resource evaluation. 

6.6.3 Pricing via Minmax Duality Theory  

The difficulties of pricing by recomputed duals highlight 

the fact that the integer programming problem, as formulated 

in (6.13), has no dual - hence any interpretation of 'dual' 

prices is erroneous. 

Bales (5), in his work on Duality in Discrete Programming 

has suggested the following approach to the dual of the 

integer programMing problem. His work amplifies that of 

Wolfe (93), Mangasarian (61, 62) and Huard (48). 
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Let X1, U1 
 be arbitrary sets of vectors. 

Let X2, U2 
be sets of vectors in real space. 

Balas defines two problems: 

min 	max 	K(x, u) - uo  V 	K(x, u) 
x7  u2 	

1.2 

and 

x u 0 2- ' -2 

x EX 	u EU 
- 1 	1 	 1 1 

max 	min 	K(x, u) - x2.Vx  K(x, u) 
x, u, xo 	-2 

 

 

s.t. V 	K(x, u) s  0 
—2 

(6.19) 

x u 0 2- 7  -2 

x
1- 
EX
1  L

IEU1  

where K(x, u) is the Lagrangian function 

K(x, u) = f(x) - u.F(x) 

Balas proves that (6.18) and (6.19) are symmetric.dual 

to each other. (Assumptions are made concerning the 

separability of K(x, u) with respect to either u1  or x1  ). 

Let U1 
denote integer valued dual variables 

U
2 
 denote real valued dual variables 

X1 
denote integer valued primal variables 

X2 denote real valued primal variables 

We are at 'liberty' to assume that the dual variables 

for the dual to (6.11) are real or integer valued. In the 

case of the linear objective function, integer programming 

implies discrete, integer-valued changes in the value of 

the objective for discrete changes of resources. Hence 
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integer values are logically acceptable. In the case of the 

fractional objective, as in (6.11), this assumption is less 

justified due to the non-linearity of the objective function. 

In either case, (real or integer-valued dual variables), 

it is readily seen that for a pure integer problem (6.11) 

X1  = iset of integers/ 

x2  = 0 

The constraint set of (6.19) is empty, and the objective 

function is optimised for non-negative -(.1121. 

The implication of Balas' formulation is that dual 

'prices' do not exist in pure integer programming since any 

reasonable allocation of dual variables in (6.19) will be 

possible. (If the dual variables are also integers the 

constraint set of (6.18) is empty. If they are real, (6.18) 

is the 'normal' integer programming problem with an additional 

allocation for u2  which is unconstrained). 

Prices are generated in the mixed integer case. (Such 

prices are similar to the marginal values derived in 

Appendix 3.4). Here a penalty can be applied to, say, 

'opening a new factory', when the returns to production are 

known. The penalty/subsidy mechanism in mixed integer 

programming derives its meaning from the pricing mechanism 

generated for the real valued variables and resources; in 

this case the Balas formulation preserves the normal economic'  

criteria for profitable production. 
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Chapter 7 Summary and Conclusions  

7.1 Fractional Programming  

In Chapters 4, 5, and 6 we have shown that LP methods 

have close counterparts in fractional programming, except in 

the application of duality and marginal pricing. We have 

given the conditions under which the marginal values of a 

fractional programme do show diminishing returns to scale. 

The methods of decomposition in FP, integer programming, 

post-optimal analysis, etc., have also been covered, and we 

have noted that a form of goal programming is also possible. 

7.2 LP and Corporate Planning  

The role of. LP in corporate planning has not yet been 

defined. Linear models such as those of Cohen and Hammer 

(29), Chambers (13), and Chambers and Charnes (14) have been 

proposed as viable approaches to financial planning; the 

model developed in this thesis is intended to aid corporate 

financial planners in their short to medium strategic planning. 

As we have seen, some authors demur. Objections are 

raised against the use of noLmative programming methods for 

corporate planning (and in particular against LP) because of 

the implied use of only one objective function, the disparity 

between the model and the real system, and the total neglect 

of sociological factors inherent in planning. In Chapter 3, 

we have shown that the optimal strategy and valuation of a 

firm varies according to the objectives (and environment), 

and that the differences between the model and the real system 

make the use of dual prices more difficult than LP theory 

would suggest. However, these difficulties, (an absence of 

one objective function, a multiplicity of interests, and an 

abstraction for planning purposes) are inherent in the planning 
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exercise itself. They are not introduced by the LP approach. 

In this respect, the tool used for the 'solution of a 

problem' cannot be blamed for the initial intractibility of 

the problem itself. Multiple objectives, compromises with 

reality, etc., are part of the difficulty of corporate 

planning. 

The inclusion of fractional programming for corporate 

modelling considerably broadens the scope of the linear 

approach. As we have seen, ratios can now be included as 

both objectives and constraints, without altering the basic 

linear approach. Fractional programmes can be used to rank 

alternatives as well as evaluate resources. This availability 

of a range of mathematical forms for the objective in one 

model framework, the present advances in integer and mixed- 

integer programming, and the speed and sophistication of the 

LP approach to planning (as compared to that of the accountant/ 

economist) still weigh heavily in favour of the use of linear 

models for corporate planning, (with the provisos outlined 

in Chapter 3). 

The same justification cannot be applied to LP models 

used for control, or the valuation of assets, where it is 

vital to have a close correspondence between the model and 

the real system. The complexity of such models, and the 

difficulties associated with their solution (and interpretation) 

imply that control models based on LP would be impractical 

and expensive, even if the difficulties raised in Chapter 3 

could be overcome. Similarly there are serious doubts 

attached to the use of LP models for asset valuation because 

of the presence of multiple corporate objectives. 

Further work is necessary in the area of fractional 
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programming in order to increase its 'planning power'. The 

compatability of the performance ratios of divisions and 

central management needs further study, as does the possibility 

of using decomposition in the setting of target performance 

ratios for a decentralised organisation. A second major 

area that requires further research is the analysis of risk 

and uncertainty in FP, using the methods outlined in 

Appendix 6.4, and the use of goal programming to analyse the 

importance of performance objectives for the corporate 

planner. 



- 148 - 

References: 

1. ABADIE J.M.: Nonlinear Programming, North Holland 

Publishing Co., Amsterdam, 1967 . 

2. ALCALY R.E. and KLEVORICK A.K.: A Note on the Dual 

Prices of Integer Programmes, Econometrica, Vol. 34 

No. 1, Jan. 1966. 

3. AMEY L.R.: The Efficiency of Business Enterprises, 

Allen and Unwin, 1969 . 

4. ARROW K.J. and HURWICZ L.: Decentralization and 

Computation in Resource Allocation, Essays in Economics 

and Econometrics, Ed. Pfouts, N. Carolina Press, 1960. 

5. BALAS E.: Duality in Discrete Programming I-IV. 

I: Technical Report No. 67-5, Dept. of O.R., Stanford 

University, 1967 . 

II-IV: Management Sciences Research Reports, Carnegie 

Mellon University, Pittsburgh, Penn. 

6. BALINSKI M.L. and BAUMOL W.J.: The Dual in Non-Linear 

Programming and its Economic Interpretation, Review of 

Economic Studies, XXXV (3), July 1968. 

7. BALL R.J.: Business Ratios, Vol. 2 No. 2, (1968), 

pp. 5-11, Dunn and Bradstreet Ltd. 

8. BAUMOL W.J. and FABIAN T.: Decomposition, Pricing for 

Decentralization and External Economies, M.Sc., Vol. 11 

No. 1, 1964 . 

9. BERNHARD R.H.: Some Problems in Applying Mathematical 

Programming to Opportunity Costing, Journal of 

Accounting Research, (Spring 1968), pp. 143-148. 

10. CAHN A.S.: The Warehouse Problem, Bulletin of America 

Maths Society, LIV, (Oct. 1948), pp. 1073-80. 



- 149 - 

11. CARSBERG B.: On the Linear Programming Approach to 

Asset Valuation, Journal of Acc. Res., (Autumn 1969), 

pp.. 165-182. 

12. CHADDA S.S.: A Decomposition Principle for Fractional 

Programming, Opsearch, (India), 4 No. 3, 1967. 

13. CHAMBERS D.: Programming the Allocation of Funds, 

O.R.Q., Vol. 18 No. 4, Dec. 1967 . 

14. CHAMBERS D. and CHARNES A.: Inter-temporal analysis 

and Optimization of Bank Portfolios, M.Sc., Vol. 7, 

No. 1, 1960-61. 

15. CHARNES A., CLOWER R.W. and KORTANEK K.: Effective 

Control through Coherent Decentralization with Pre-

emtive Goals, O.N.R. Research Memo. No. 88, Tech. Inst. 

Northwestern Univ., Evanston, Illinois, 1964. 

16. CHARNES A. and COOPER W.W.: Management Models and the 

Industrial Applications of Linear Programming, Vols. 

I and II, Wiley, 1961 . 

17. CHARNES A. and COOPER W.W.: Programming with Linear 

Fractional Functionals, N.R.L.Q., No. 19, 3 and 4, 

1962 . 

18. CHARNES A. and COOPER W.W.: Chance Constrained 

Programming, M.Sc., Vol. 6 No. 1, (Oct. 1956), pp. 73-79. 

19. CHARNES A. and COOPER W.W.: Deterministic Equivalents 

for Different Objectives in CCP, O.N.R. Research Memo. 

No. 37, Dec. 1960. 

20. CHARNES A. and COOPER W.W.: Chance Constrained 

Programming with Normal Deviates and Linear Decision 

Rules, N.R.L.Q. 7. No.4, (Dec. 1960), pp. 533-544. 

21. CHARNES A. and COOPER W.W.: Optimum Decision Rules 

for the E-Model, Cahiers du Centre de Recherche, 

7-8, 1965-66. 



- 150 - 

22. CHARNES A. and COOPER W.W.: CCP and Normal Deviates, 

J.A.S.A. Vol. 57, 1962. 

23. CHARNES A., COOPER W.W. and KORTANEK K.: Duality and 

Semi-infinite Programmes, and some works of Haar and 

Caratheodory, M.Sc., Vol. 9 No. 2, (Jan. 1963), 

pp. 209-229. 

24. CHARNES A., COOPER W.W. and MILLER M.H.: Application 

of LP to Financial Budgeting and the Costing of Funds, 

Journal of Business XXXII, No. 1, (Jan. 1959), pp. 20-46. 

25. CHARNES A., COOPER W.W. and SYMONDS G.H.: Cost 

Horizons and Certainty Equivalents, O.R. Vol. 12 No. 3, 

(May 1964), pp. 460-470. Also M.Sc., Vol. 4 No. 3, 

April 1958. 

26. CHARNES A. and STEDRY A.C.: The Attainment of 

Organizational Goals through the Appropriate Selection 

of Sub-unit Goals, O.R. and the Social Sciences, 

Ed. J.R. Lawrence, Tavistock Publications, 1966. 

27. CHARNES A. and STEDRY A.C.: Investigations into the 

Theory of Multiple-budgeted Goals, Management Controls, 

Ed. Bonini, Jaedicke and Wagner, McGraw Hill, 1964. 

28. CHARNES A. and STEN THORE: Planning for Liquidity in 

Savings and Loans Associations, O.N.R. Research Memo. 

No. 95. 

29. COHEN K.J. and HAMMER F.S.: Analytical Methods in 

Banking, Homewood, Illinois, (1966), (Richa'rd D. Irwin 

Inc.). 

30. COHEN K.J. and HAMMER F.S.: Some Preliminary Notes 

and Exhibitions, Appendix to (29). 

31. CYERT R.M., DILL W.R. and MARCH J.G.: The Role of 

Expectation in Business Decision Making, Admin. Science 

Quarterly, Vol. 3 No. 3. 



- 151 - 

32. CYERT R.M. and MARCH J.G.: Behavioural Theory of the 

Firm, Englewood Cliffs, N.J., Prentice-Hall 1963. 

33. DANTZIG G.B.: LP and Extensions, Princeton University 

Press, Princeton, N.J., 1963. 

34. DANTZIG G.B.: LP under Uncertainty, M.Sc., Vol. 1, 

No.. 3 and 4, 1955. 

35. DANTZIG G.B.: Upper Bounds, Secondary Constraints 

and Block Triangularity in LP, Econometrica, Vol. 23 

No. 2, April 1955. 

36. DANTZIG G.B. and WOLFE P.: Decomposition Principle 

for LP, O.R. No. 8, (1960), pp. 101-111. 

37. DEAN J.: Internal Rate of Return: Capital Investment 

Series Harvard Business Review, in Capital Budgeting 

N.Y. Columbia University Press, 1951. 

38. FORD L.R. and FULKERSON D.R.: Flows in Networks, Princeton 

University Press, Princeton, N.J., 1962. 

38a. FRANK C.R. Jr.: Integer Programming, Marginal Revenue 

Productivity, and Pricing of Resources, paper published 

by Economic Growth Centre, Yale University. 

39. FREUND R.J.: The Introduction of Risk into Mathematical 

Programming, Econometrica, Vol. 24 No. 3, July 1956. 

40. GOLD B.: Productivity Analysis and System Coherence, 

O.R.Q., Vol. 16 No. 3, pp. 287-307. 

41. GOLD B. and KRAUS R.M.: Integrating Physical with 

Financial Measures for Management Control, Academy of 

Management Journal, June 1964. 

42. GOMORY R.E.: Integer Programming , Recent Advances in 

Mathematical Programming, Ed. Graves and Wolfe, 

McGraw Hill, 1963. 

43. GOMORY R.E. and BAUMOL W.J.: I.P. and Pricing, 

Econometrica, Vol. 28, No. 3, July 1960. 



- 152 - 

44. HADLEY G.: Linear Programming, Addison-Wesley 

Publishing Co., 1962. 

45. HASS J.: Transfer Pricing in a Decentralized Firm, 

M.Sc., Vol. 14 No. 6, Feb. 1968. 

46. HIRSCHLEIFER J.: Internal Pricing and Decentralized 

Decisions, Management Controls: see (27). 

47. HIRSCHLEIFER J.: On Economics of Transfer Pricing, 

Journal of Business XXIX, July 1956. Also Economics 

of the Divisionalised Firm, Journal of Business XXX, 

April 1957. 

48. HUARD P.: Dual Programmes, I.B.M. Journal, Jan. 1962. 

49. IBM: System/360 Job Control Language, C28-6539-4. 

50. IBM: HASP System, Computer Centre Bulletin No. 23, 

(1967), University College, London. 

51. IBM: Applications Programme: Mathematical Programming 

System/360, (360A-00-14X), H20-0476-0. 

52. IBM: READCOMM Programme Reference Manual, H20-0372. 

53. IJIRI Y.: Management Goals and Accounting for Control, 

N. Holland Publishing Co., 1965. 

54. JOKSCH H.C.: Programming with Fractional Objective 

Functions, N.R.L.Q., Vol. 11 No. 2-3, (1964), pp. 197-204. 

55. KARLIN S.: Mathematical Methods and Theory in Games, 

Programming and Economics, Vols. I and II, Pergamon 

Press, 1959. 

56. KOOPMANS T.C.: Activity Analysis of Production and 

Allocation, J. Wiley and Sons, N.Y., 1951. 

57. KUHN H.W. and TUCKER- A.W.: Non-linear Programming, 

Proceedings of the Second Berkeley Symposium on 

Mathematical Statistics and Related Systems, University 

of California Press, Berkeley, 1951. 



- -153 - 

58. LIPSEY R.G.: An Introduction to Positive Economics, 

Weidenfeld and Nicholson, 1966. 

59. LORRIE J.H. and SAVAGE L.J.: Three Problems in Capital 

Budgeting, Journal of Business, Oct. 1955. 

60. MADANSKY A.: LP under Uncertainty, see (42). 

61. MANGASARIAN O.L.: Pseudo-Convex Functions, SIAM Journal 

of Control, Ser. A Vol. 3 No. 2, 1965. 

62. MANGASARIAN O.L.: Duality in Non-linear Programming, 

Q.A.P. 20, 1962-63. 

63. MARCH J.G. and SIMON H.A.: Organizations, Wiley, 1958. 

64. MARTOS B.: Hyperbolic Programming, N.R.L.Q., Vol. 11 

2 and 3, 1964. 

65. MARTOS B.: The Direct Power of Adjacent Vertex 

Programming Methods, M.Sc., Vol. 12.No. 3, Nov. 1965. 

66. MILLS H.D.: Marginal Values of Matrix Games and LP's, 

Linear Inequalities and Related Systems, Annals of 

Maths Studies 38, Princeton, N.J., 1956. 

67. NASLUND B. and WHINSTON A.: A Model of 

Multiperiod Investment under Uncertainty, 

Management Science, Vol. 8, No. 2, pp. 184-200, 

1962. 

68. ORCHARD HAYES W.: Advanced LP Computing Techniques, 

McGraw Hi11,1968. 

69. ORGLER Y.E.: An Unequal Period Model for Cash 

Management Decisions, M.Sc., Vol. 16 No. 2, Oct. 1969. 

70. PARZEN E.: Modern Probability Theory and its Applications, 

John Wiley, N.Y., 1964. 

71. PENROSE R.: A Generalized Inverse for Matrices, 

Proceedings of the Cambridge Philosophical Society, 

51  ,(1955), pp. 406-413. 



- 154 - 

72. RITTER K.: Ein Verfahren zur Losung parameterabhangiger 

nichtlinearer Maximum-Probleme, Unternehmungsforschung, 

Band 6, (1962), pp. 144-166. 

73. SAMUELS J.M.: Opportunity Costing; An Application of 

Mathematical Programming, Journal of Accounting 

Research 3, No. 2, (Autumn 1965), pp. 182-191. 

74. SHARPE W.: An LP Algorithm for Mutual Fund Portfolio 

Selection, M.Sc., Vol. 13 No. 7, March 1967. 

75. SHUBIK M.: Incentives, Decentralized Control, the 

Assignment of Joint Costs and Internal Pricing, 

Management Controls, see (27). 

76. STRUM J.E.: A Note on Two Sided Shadow Prices, Journal 

of Accounting Research 7, (1969), pp. 160-162. 

77. SWARUP' K.: Linear Fractional Functionals Programming, 

O.R.S.A. 13, pp. 1029-1036, 1965. 

78. SWARUP K.: Some Aspects of Linear Fractional Functionals 

Programming, Australian Journal of Statistics, Vol. 7 

No. 3, (1965), pp. 90-104. 

79. SWARUP K.: Some Aspects of Duality for Linear - Fractional 

Functionals Programming, ZAMM, 43, No. 3 (1967). 

80. SWARUP K.: Fractional Programming with Non-linear 

Constraints, ZAMM, 46, No. 7, pp. 468-469. 

81. SWARUP K.: Programming with Quadratic Fractional 

Functionals, Opsearch, Vol. 2 Nos. 3 and 4, 1965. 

82. TINTNER G.: A Note on Stochastic LP, Econometrica, 

Vol. 28 No. 2, April 1960. 

83. VAJDA S.: An Introduction to LP and the Theory of 

Games, Methuen, 1963. 

84. WAGNER H.M.: On the' Distribution of Solutions in LP 

Problems, American Statistical Association Journal, 

March 1958. 



- 155 - 

85. WAGNER H.M. and YUAN J.S.C.: Algorithmic Equivalence 

in Linear Fractional Programming, M.Sc., Vol. 14 No. 5, 

Jan. 1968. 

86. WALKER W.E.: A Method for the Optimal Dual Solution 

to a Linear Decomposition, O.R. Vol. 17 No. 2, 

pp. 368-370. 

87. WALKUP D.W. and WETS R.J.B.: Stochastic Programming 

with Recourse, Boeing Scientific Research Laboratories, 

Document, DI-82-0627. 

88. WEINGARTNER H.M.: Mathematical Programming and the 

Analysis of Capital Budgeting Problems, Prentice-Hall, 

Englewood Cliffs, N.J. 

89. WETS R.J.B.: Programming under Uncertainty, SIAM 

Journal, Vol. 14, 1966. 

90. WHINSTON A.: Theoretical and Technical Problems in 

Organizational Decision Making, O.R. and the Social 

Sciences, see (26). 

91. WHINSTON A.: Price Guides in Decentralized Organisations, 

New Perspectives in Organizational Research. Ed. Cooper, 

Leavitt and Shelley, John Wiley. 

92. WILLIAMS A.C.: Marginal Values in LP, SIAM Journal, 

Vol. 11 No. 1, March 1963. 

93. WOLFE P.: A Duality Theorem for Non-Linear Programming, 

Quarterly of Applied Maths., Vol. XIX No. 3. 

94. WRIGHT F.K.: Towards a General Theory of Depreciation, 

Journal of Accounting Research 2, (Spring 1964), pp. 80-90. 

95. WRIGHT F.K.: Measuring Asset Services; A Linear 

Programming Approach, Journal of Accounting Research, 

6, (Autumn 1968), pp. 222-236. 



- 156 - 

APPENDICES 



- 157 - 

AQ1Dondix 2.1 The Mathematical Formulation  

2.1.1 Th- size of the model is determined by a series of input 

parameters to the matrix generating programme, which define the 

extent of detail in the data. The variables defined in Table 2.2 

are used for exposition only; being activity levels. for the 

linear programme they appear as column names. Tables 2.3 and 2.4 

contain the basic data on the product ranges, production 

requirements, "use of technology", and basic accounting data, 

used in constructing the set of constraints. 

In order to model the time dependence of the accounting 

procedures, and the different rates of turnover for individual 

accounts, lags are introduced into the system. These provide 

the basic description of the possible cash flows through the 

planning period. The lags are derived from a study of the times 

between the incurring of a debt and the date at which it is 

settled, and are introduced into the mathematical formulation 

to ensure that the model will exhibit the same tardiness in 

settling accounts. 

Lags are also introduced into the sales/storage equations 

to ensure that finished goods remain in the warehouse for some 

time prior to despatch. Here again the length of the lag has 

direct bearing on the cash flow, the amount of capital tied up 

in stocks, and warehouse utilisation. 

The technological capacities and variable bounds model the 

physical and managerial restrictions on the possible operations 

of the firm during the planning period. Capacities and bounds, 

built in to the matrix generator are listed in Tables 2.6 and 

2.7. These arrays, and the data used in the model are amplified 

in Appendix 2.2. (In all the following equations, the time 
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subscript I = 0 or I 	0 implies an input to the model, rather 

than a variable activity level, e.g. RAWM (0,L) is the input 

to the model of the L'th type of raw material. 

Variable 	Interpretation 

NPROD 	number of products considered 

NWC 	number of work centres in the model 

NSUB 	i number of work centres that can be 

'subcontracted' 

NLF 	types of labour available 

NRM 	types of raw materials considered 

NSCS 	number of standard cost accounts in the 

model 

NOH 	number of overhead accounts in the model 

NM 	number of periods (months) to be considered, 

i.e. the planning horizon 

Table 2.1 The model parameters  



- 159 - 

Array 	Dimensions 	Interpretation 

PROD 

SALE 

SUB 

RAW-M 

RMIN 

MRKT 

STCS 

OVHD 

;CASH 

BNKL 

BNKR 

3NKC 

PAYS 

RECS 

I = 1, 

K = 1, 

I = 1, 

K = 1, 

I = 1, 

J E 

NM 	amount of product K completed in 

NPROD 	period I 

NM 	amount of product K sold in 

NPROD 	period I 

NM 	amount of hours of work centre 

SUBWC 	SUBWC (J) subcontracted during 

period I 

amount of raw materials of type J 

stored at the end of period I 

= a, 	NM 

= 1, NRM 

= 1, MM 

amount of raw materials of type J 

purchased during period I 

amount expended on promotion of 

= 1, NPROD product J in period 

= 1, NM J'th standard.cost of sales in 

= 1, NSCS period I 

= 1, NM J'th overhead account of period I 

= 1, NOH 

= 1, NM cash on hand at the end of period I 

= 1, MM .amount borrowed during period I 

= 1, NM amount repayed during period I 

= 1, NM interest charges in period I 

= 1, NM total amount payable in period I 

= 1, NM total amount receivable during 

I = 1, NM 

J = 1, NRM 

I 

J 

I 

J 

I 

J 

I 

J 

I 

I 

I 

I 

I 

I 

period I 

Table 2.2 The !Yodel Variables  
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Array 	i Dimensions i 	Interpretation 

ACREQ I = 1, 3 hours of work centre J, required 

J = 1, NWC in period I - 1 	before completion, 

K = 1, NPROD for one unit of product K. 

WCLF 	J = 1, N; WC hours of labour of type L required 

L = 1, NLF for one hour of production of 

facility J. 

RMREQ I = 1, 3 raw materials of type L required 

K = 1, NPROD in period I - 1 before completion, 

L = 1, NRM for one unit of product K. 

SUEWC 	J = 1, NSUB work centres on which subcontracting' 

is permissible. 

Table 2.3 Production/Technology Arrays  



- 151 - 

Array Dimension Interpretation 

LIST K = 1, NPROD list price of product K 

SPACE K = 1, NPROD volume of product K in storage 

SCSP J = 1, NSCS J'th standard cost of sale of one 

K = 1, NPROD unit of product K 

DISCP 

SUBP 

K = 

S = 

1, 

1, 

NPROD 

NSUB 

discount allowed on list price of 

product K 

cost of subcontracting one hour's 

work of facility SUDWC (J) 

WAGES J = 1, NLF hourly wage rate for J'th type of 

labour 

RKB J = 1, NRM cost per unit of raw materials of 

type J 

WIPP - I 	= 1, 2 value (for work-in-progress) of 

K = 1, NPROD the K'th product, I periods before.  

completion 

MARK • I 	= 1, NPROD 1  rates at which unit sales imply 

K = 1, NPROD costs of advertising (See Section 

2.7.5) 

OHRATE J = 1, NOH rate at which the J'th overhead 

account is calculated from the 

standard costs 

ALPHA 
	

the rate of interest on loans 

Table 2.4 Accounting Data  
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Interpretation 

minimum storage time for product K 

lag between despatch of product 

K and receipt of payment 

lag on payment for use of Jith 

subcontracting facility 

lag on payment of wages for J'th 

type of labour 

lag on payment for raw materials 

of type J 

lag on payment for marketing 

expenditure for product of type K 

lag on payment of Jith overhead 

account 

ALFLAG 	lag on interest payments 

Table 2.5 Accounting and Storage Lags  

Array Dimension 

LAG K = 1, NPROD 

RECLAG 	• K = 1, NPROD 

SUBLAG J = 1, NSUB 

•LABLAG J = 1, NLF 

RMLAG J = 1, NRM 

"MRKLAG K = 1, NPROD 

'OHLAG J = 1, NOM 



- 163 - 

Arrav Dimensions Interpretation 

CAPWC I = 1, NM capacity of work centre J in 

= 1, NWC period I 

CAPLF I = 1, NM capacity of labour force (of 

J = 1, NLF type J) in period I 

CAPST I = 1, NM storage capacity in period I 

Table 2.6 Technological capacities 

Bounds Dimensions Interpretation 

POLICY I = 1, NM minimum sales of product K in 

K = 1, NPROD period I 

,CASHLO I = 1, NM  minimum cash balance at the end 

of period I 

CASHUP I = 1, NM maximum cash balance at the end 

of period I 

BANKLO I = 1, NM minimum bank loan during period 

BANKUP I = 1, NM maximum bank loan during period I 

RMLO I = 1, NM minimum materials balance of 

J = 1, NRM type J at the end of period I 

RMUP I = 1, MM maximum materials balance of type 

J = 1, NRM J at the end of period I 

Table 2.7 Bounds on acceptable variable levels  
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2.1.2 The Intr.:a-Period Constraints  

Gross sales: NPROD 

/.1  

K=1 

 

Gross sales (I) = SALE (I,K) .LIST (K) 

I = 1...NM 	(2.6) 

ii. Standard costs of sales: 

NPROD 

STCS (I,J) = 	SALE (I,K) . SC SP (J,K) 

K=1 	I = 1...NM 
= 1...NSCS 

	 Overhead accounts: 

OVHD (I,J) = STCS (I,J) . 0ERATE (J) 

I = 1...NM 
J = 1...NOH 

iv. Discount on sales: 

NPROD 

(2.7) 

(2.8) 

Discount (I) = 	SALES (I,K) . DISCP (K).LIST (K) 

K=1 	I = 	(2.9) 

v. Net  sales: 	NPROD 

Net sales (I) = 	L  SALES (I,K) .LIST (K) 1-DISCP (K) i  

K=1 	I = 1...N1vi 	(2.10) 

Manufacturing margin 	 NSCS 

Manufacturing margin (I) = net sales (I) - 	
L, 

STCS (I,J) 

J=1 

I = 1...NM 	(2.11) 

2.1.3 The Inter-Period Constraints  

a. Accounting sums and equations  

Work-in-orogress: 2 

Work-in-progress (I) = ) PROD (i+J,K) . WIPP (3-J,K) 

J-1 I = 	(2.12) 

(appropriate adjustment is needed for end of planning horizon 

to allow for production beyond the NM'th period). 



RECS (I) = 	\ SALE (I,K) .LIST (K) 

K=1 	I = 1...NM 

-DISCP (K) 

(2.15) 
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.11. Finished goods: I NPROD 

   

Change in finished 
	

(PROD (1,K)- SALE (I,K)) . 

goods account over 
	J=1 K=1 	LIST (K) 

initial value 
	

(2.13) 

iii. Payables: 

Let I be an adjustment for I corresponding to the relative 

accounting lag: e.g. let BNKC (I) = BNKC (I - ALF-LAG) 

I = 1...NM 

then: 	NOH 	NRM 

PAYS (I) 	OVHD 	 RNIN (I,J) .RMB (J) 

J=1 	J=1 

NPROD 	 NSUB 

MRKT 	+ BNKC (I) 	L  SUB (I,J) SUEP (J) 

J.1 	 J.1 

NLF NWC 

WAGES (M) .WCLF (I,M) 

M=1 L=1  

2 NPROD 

(MCREQ (J+1,L,K) .PROD (I-FJ,K))- SUB (I,L) 

J=0 K=1 I = 1...NM 	 (2.14) 

(for consideration of the last term see b.i. below: (Work 

Centre Capacity)). 

iv. Receivables: NPROD 

V. Bank charges: I 

-ENKL (J) -'ENKR (J )- ALPHA 

J=1 	1...NM 

 

 

BNKC (I) 

 

(2.i6) 

If BNKC (I) is constrained to be positive 

total repayments cannot exceed total loans. 
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12 BNKC (I) is not constrained, the model is able to invest 

(a:.; wc.11 as borrow) at the interest rate ALPNA. 

Markoting Exoenses: 

 

NPROD 

MRKT (I,J) 	SALE (I,K) . MARK (J,K) 
z- 	• 

(2.17) 

 

K=1 

  

b. Capacity constraints  

 

    

i. Work centre capacity: 

2 NPROD 

L 
	

N7 MCREQ(J+1,L,K) . PROD(I±J,K) - SUB(I,L) s CAPWC (I,L) 

J=0 K=1 	 I = 1...NM 

L = 1...NWC 	(2.18) 

ii. Labour force capacity: 

NWC 	2 NPROD 

WCL F(L M ) . 	MCREQ(J+1,L,K) .PROD(i+J,K) 

L=1 	J=0 K=1 
-SUB(I,L) s CAPLF (I,M)' 

I = 1...NM 

M = 1...NLF 	(2.19) 

iii. Storage capacity: 

I NPROD 

(PROD(J,K) - SALE (J,K ) ) . SPACE (K) s CAPST(I) 

J=1 K=1 	 I = 1...NM 	(2.20) 

CAPST is the storage space (over and above that used at the 

onset of the model) available in period I. 

iv. Materials usage: 

2 

PROD 	. RMREQ (J-1-1,K L) s RAWM (I-1,L) 

J=0 	 I = 2...NM 	(2.21) 
1...NRM 

c. Continuity Constraints  

Material, balance: 

RAWM ( L ) = RAWM 	, L ) + RMIN I , ) - 	PROD (I+J,K) . 

J=0 

RMREQ (J+1,K,L) 	(2.22) 

= 1...NM 
L = 
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For I - 1, the initial input of raw materials is used on the 

right hand side, i.e. raw materials input = RAWM (0,L) 

Cash continuity: 

CASii (I) = CASH (I-1) - PAYS (I) 	RECS (I) 

I = 1...NM 	(2.23) 

iii. Storage requirements  

I-LAG(K) 

SALE (I,K) 	(-PROD 	,K) 	SALE(J,K) ) 

J=0 	I = 1...NM 	(2.24) 

2.1.4 The bounds on variable levels  

Minimum sales policy: 

SALE (I,K) z POLICY (I,K) 

K = 1...NPROD 

I = 1...NM 	(2.25) 

Cash balance: 

CASHLO (I) < CASH (I) s CASHUP (I) 

I = 1...NM 

iii. Limits on bank loans: 

BANKLO (I) s BNKL (I) s BANKUP (I) 

I = 1...NM 

iv. Raw materials balance: 

RMLO (I,J) 	RAWM (I,J) 	RMUP (1,J) 

= 1...NRM 

I = 1...NM 

2.1.5 The Objective Function  

(2.26) 

(2.27) 

(2.28) 

    

i. 'Change' in current assets: 

RN NPROD 

ASSETS = 	IPROD (I,K) - SALE (I,K)} . LIST (K) 

1=1 K=1 

NRM 

zs  
RAWM (NM,J) . PIKE (3) + 	. SALE (I,K) . LIST (K) 

J=1 	 I>NM 

(2.29) 1-1-)ISCID (K); + CASH (NM) 



where _L.= 	P.ECLAG (K) 

ii. 'Change' in current liabilities: 

XM 

LIABLES 
	

BNKL (I) - BNKR (I) 

I=1 
NSUB 

HUB (I,K) .SUBP (K)  / 	L 
'1>NM K=1 

NRM 	NPROD 

	

RNIN (I,K) .RMB' (K) + 	MRKT (I,K) 

K=I 	 K=1 

NOH 

OvFID (I,K) + BNKC (I) 

K=1 

where I = I + appropriate accounting lag 	(2.30) 

iii. Gross Sales: NM NPROD 

SALE (I,K) .LIST (K) 

1=1 K=1 

 

  

GROSSALE 

 

(2.31) 

2.1.6 The size of the model  

The size of the model is determined by the input parameters 

of Table 2.1. For the equations outlined above, these 

parameters determine the size of the problem as Follows: 

Let HIGH be the row dimension per period and LONG be the row 

dimension per period. Then 

HIGH = 3NTOOL + NWC + NLF + 2NRM + NSCS + NOH + 11 

LONG = 4NTOOL + NWC + NSUB + NLF + 2NRM + NSCS + NOH + 12 

(2.32) 

The total dimension of the initial tableau is 

NM x HIGH by NM x LONG; any objective functions are added to 

this. 
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Appendix 2.2 Model Data and the Aggregation Programmes 

2.2.1 Introduction  

The data for the models was obtained from the test firm, 

and processed for use with the LP model described in Section 2.4 

and Appendix 2.1. (The processing was carried out on an 

IBM 1130 machine). 

The input data for the model consists of: the technological 

data; the accounting data; the time lags; and the input 

parameters. Details of the data preparation for these sections 

are listed below. 

The work presented in this section gives details of the 

figures used in the 26/12 model; the small models 3/5, etc. are 

obtained by taking the first 3 items of production or 

accounting data. 

These computations were intended primarily to test the 

model, and its reactions to subsecuent analysis and theoretical 

applications. It is not in the interest of the test firm to 

present figures that bear too close a relation to their actual 

results, therefore, where data was not immediately available 

at the time of computation, broad assumptions have been made 

concerning the unknown figures. Thus, the numerical results 

presented do not conflict with the firm's wish that such items 

should be confidential. The 'assumed' data is in areas where 

no processing was necessary; prices, market requirements, etc. 

The treatment of all processed data, and the allied assumptions 

are fully documented. 

2.2.2 ]?he Technological Data  

2.2.2.1 Work-. C ntre Aggregation:  As mentioned in 

Section 2 	the company used a coding system for each of its 

work centres; an total there were 215 such work centre codes. 
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For each work centre, card data was available specifying the 

monthly capacity in machine hours. Such cards are shown in 

Table 2.8 for the months of June to October for centres 1101 

to 2702. 

From Appendix 2.1 we know that the row dimensions of the 

LP model vary with the number of work centres considered per 

month, thus using 215 centres in a twelve month model would 

immediately involve 2580 rows; (the capacity of standard LP 

packages is 4095 rows). 

Consultation with the production staff at the firm 

resulted in the conclusion that it would be adequate, for 

planning purposes, to consider eighteen 'aggregate' work centres 

for the model. (These 'centres' are listed in Table 2.9). Data 

such as that in Table 2.8 was then aggregated to give the firm's 

total monthly capacity for the new work centres, for the twelve 

month period October to September. This data is shown in 

Table 2.10 and was used for the work centre capacities of the 

models, i.e. the WCCAP array. 

Management policy insisted that all heat treatment, 

winding, packing, etc. be  done on the firm's machinery. Thus 

the work centres on which subcontracting was allowed were 

numbers one to nine, omitting three and four. This is summarised 

in Table 2.11. 

For the data arrays we have NSUB = 7, and 

SUdWC = 	2, 5, 6, 7, 8, 

2.2.2.2 Production recuirements: For each product of the 

firm's range, data was available showing how much time was 

required per hundred units of production. A typical 
	o 

requirements is shown in Table 2.12. This data was reorgani4ed 

to give brie requirements, per hundred units, on the aggre 4- 
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CENTRE JUN 

1101 20.35 	.1696 
1102 
1103 
1104 
1105 
1106 
1107 
1108 
1109 
1110 
1201 
1202 
1203 
1204 
1205 
1206 
1207 
1301 
1302 
1303 
1401 
1501 
1502 
1503 
1504 
1505 
1506 
1507 
1508 
1601 
1602 
1603 
1701 
1901 
2101 
2102 
2103 
2201 
2301 
2401 
2501 
2502 
2503 
2601 
2602 
2603 
2604 
2701 
2702 

— 

JUL 	AUG 	SE P 	OCT 

848 

212 424 

2035  
0 
0 

1017 
0 
0 
0 
0 

1526 
0 
0 

5 

'' 0 
0 
0 

0 
0 
0 
0 

652 
0 
0 
0 
0 
0 
0 
0 

652 
0 

0 
691 

0 
691 
345 

0 
691 
691 
345 
1036 

0 
2764 

0 
345 

0 

0 1 

0 

1696 
0 
0 

248 
n 
0 
0 
0 

1272 
0 
0 

0 
0 
0 
C 
0 
0 
0 
0 
0 
C 

544 
n 

0 
0 
0 
C. 
0 

544 
0 

U 
576 

0 
576 
28 

0 
576 
576
,, E 
664 

0 
2304 

0 
2F6 

0 

0 
0 

1017 
0 
0 
0 
0 

1526 
0 
0 

508 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

652 
0 
0 
0 
0 
0 
0 
0 

652 
0 

326 
0 
0 

691 
0 

691 
345 

0 

691 
345 
1036 

0 
2764

86f; 

0 
345 

0 

0 
0 

424 
0 
0 
0 
0 

636 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

272 
0 
0 
0 
0 
0 
0 
0 

272 
0 

136 72 326 
J (, 

0 
288 

0 
288 
144 

0 

288 
144 
432 

0 
1152 

0 
144 

C 

272  

0 
0 

848 
0 
0 
C) 
0 ., 

1272 
0 
0 

424 
0 
0 
0 
0 
0 
0 
0 
0 • 
0 
0 

544 
0 
0 
0 
0 
0 
0 
0 

544 
0 

2 
g 
0 

576 
0 

576 
288 

0 
691 288 M 

288 

2304 
0 

288 
C) 
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TABLE 2.R 	TYPICAL DATA OF YONTHLY WORK CENTRE CAPACITIES 



No. 	 Description 

	

1 	 Multi-spindle automatic lathes, 

single-spindle automatic lathes etc. 

	

2 	Other lathes and boring equipment 

	

3 	Heat treatment 

	

4 	Gear cutting 

	

5 	Grinding 

	

6 	Drilling 

	

7 	Milling 

	

8 	Pressing 

	

9 	Finishing 

	

10 	Field winding 

	

11 	Stator winding 

	

12 	Armature winding 

	

13 	Degreasing and hand spraying 

	

14 	Assembly ( domestic ) 

	

15 	Assembly ( industrial ) 

	

16 	Testing and inspection 

	

17 	Packaging 

	

18 	Final inspection 

Table 2.9 	The Aggregated Work Centres  



OCT 	NOV 	DEC . JAN 	FEB 	MAR 	APR 	MAY 	JUN 	JUL 	AUG 	SEP 

12090 12080 14494 12380 12090 14494 12080 12080 14494 12000 12080 6040 
16200 16200 19438 16200 16200 19438 16233 16200 19438 16200 16200 P1C3 
16136 16136 19359 16136 16136 19358 16176 16136 19358 16136 16136 806,4  
12720 12720 15262  12720 1 2720 15262 12720 12720 15262 12720 12720 6500 
11929 11929 14311 11925 11928 14311 11979 11928 14311 11929 11928 5964 
16368 16368 1969 16368 15359 19639 1638 16368 19639 16369 16365 9184 
4456 4456 5346 4456 4456 5346 34E6 4456 5346 4456 4456 2228 
11354 11394 13659 11394 11.394 13659 11304 11394 13659 11394 11384 5692 
11024 11024 13226 11024 11024 13226 11024 11024 13226 11024 11024 5512 
10000 10000 10000 1r'.000 10000 10000 10000 10000 10003 1: 000 10000 10000 
10000 10000 10100 10c,C0 10000 13000 10000 10000 10000 10000 10000 10000 
100.00 10000 lcono 10c0 10000 10000 10000 3.000 1000 luo(o 10000 10000 
10000 10300 10000 InCnO 1000 1C0r)u 	1L:L100 10000 1C00 10000 100.00 
10000 10()00 ibobb, 10020 19:)09 10000 19000 10000 100Q0 1000C. 10000 100o() 
10002 lnlnn 1.^c' 	1 002: 10000 10 	10000 1.000 10000 1000 10000 
10000 10070 10000 1c)0^0 1n000 10000. 10000 10000 10000 10000 10000 10000 
10000 10000 10300 1 000 10000 10000 1 0002 10000 10000 10000 10000 10000 
10000 10000 1n000 1n000 10000 10000 10000 10000 10000 10000 10000 10000 

1
2  
3 
4 
5 
6 
7 

9 
10 
11 
12 
13 
14 
15 
16 
17 
18 

TABLE 	10 	MONTHLY CAPACITIES FOR AGG:ETATED 'AORK CENTRES 

0,) K CENT 

 

1 	2 	3 	4 	5 	6 	7 	8 	9 	10 — 12 

    

LAcuR 7F0UIREIET 	.9651 .823 .5 	.75 1.2 1.0 1.0 1.0 1.0 1.0 
F.J3CCr:TP.ACTI 	YES YES NO NO YES YES YES YES YES NO 

TARLE 2.11 .  LAC)UR RECUP.EvE%1- 5, 	SUECC'TACTF%5 ON 1/2ORK CEVIRES 



E3quowu.:I.TnUael oilquoD :[JOLT TuDTuAJ, 

CE 	LO9I7 

ESE 	LOTJV 

SEG 	EOLI7 

SZZ 	LOL17  

OOL 	LOSE 

ZT7L 	COZE 

SZZ 	ZOZE 

SZOL 	LOLE 

SE 	LOSZ 

ZOLZ 

OS 	LOLZ 

SLL 	0092 

EOSZ 

ZZ 	ZOSZ 

LOEZ 

SE 	ZOLZ 

LT.T. 	LOLZ 

LOLL 

L9L 	E09-L 

SLE 	ZO9L 

EEE 	LO9L 

OSS 	I7OCL 

00S 	ZOSL 

ZEE 	LOqL 

OSE 	LOCI, 

LOZ 	90ZL 

ELL 	ZOZL 

EVL 	9OLL 

Z9L 	EOLL 

oeT7 	ZOLL 

LS 	LOLL 

s111,3qi 00T r d sanoTA 	Tua1- 
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work centres described in Table 2.9. For the twenty six products 

considered thus far, the machine requirements are shown in 

Table 2.13. 

Estimates of the set-up times required per product on the 

aggroga'le work centres were also obtained. This set of estimates 

is shown in Table 2.14. No account was taken here (or in the 

firm) of the effect of sequencing of products on the set-up 

times between production runs. The data of Table 2.15 is used 

for the MCREQ arrays of the model. 

7.2.2.3 The Labour Force Requirements: Many of the work 

centres (of the firm) did not involve full time operator 

attention, i.e. the time used on work centres was no direct guide 

to the labour force requirements. A study was undertaken to 

determine the operate_: time required per hour of machine time 

per aggregate work centre. The results are shown in Table 2.11. 

as the labour requirement (in hours) of each centre; per hour 

operating time. The estimated total available per month was 

90,000 man-hours. It was assumed, during these computations, 

that there was only one form of labour; the hourly wage was 

taken as 10.375. 

2.2.2.4 Raw Materials Requirements: For the testing of 

the model, it was assumed that there would be only one type of 

raw material input - thus !raw materials' could be considered 

as one homogeneous resource. The requirements for each product 

could be allocated according to the use of work centres and 

stages of production. 

As a starting assumption it was assumed that the materials 

requirement per month of the productionwere identical. Thus, 

for production spread over three months, a third of the raw 

materials input was required each month. This assumption over- 
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LIST STANDARD COSTS SIZE 

1 375.000 135.709 20.650 23.110 0.679 
2 570.000 142.430 38.970 1/4 8.110 0.765 
3 700.000 166.660 44.060 55.300 0.792 
6 330.000 124.770 19.170 21.940 0.686 
5 700.000 153.410 33.729 40.819 1.525 
6 500.000 144.739 62.360 51.829 0.686 
7 479.999 205.739 37.770 46.809 2.236 

479.999 158.210 37.660 45.019 1.286 
9 600.000 138.910 67.569 56.800 0.543 
10 675.000 163.340 58.919 71.660 0.543 
11 760.000 198.589 76.089 93.220 0.678 
1? 000.000 259.090 83.400 99.649 1.794 
13 700.000 186.130 63.599 78..360 0.792 
1L 930.000 173.070 68.590 83.500 1.149 
15 909.999 236.570 67.410 82.860 0.655 
16 945.000 238.529 66.619 81.779 0.655 
17 020.000 230.969 67.830 83.419 0.574 
18 175.000 199.029 61.639 75.509 0.655 
19 
20 

300.000 
950.000 

460.579 
562.119 

230.899 
161.329 

291.030 
203.230 

1.351 
3.126 

21 940.000 526.050 139.230 167.520 4.660 
22 715.000 512.609 115.080 139.540 3.326 
23 500.000 351.179 140.980 155.850 1.696 
?4 900.000 526.939 157.029 195.530 3.259 

900.000 453.809 153.109 190.809 3.225 
26 
[5 

350.000 661.810 329.450 421.179 2.156 

TABLE 2.15 LIST PRICES,STANDARD COSTS AND PACKAGE SIZES 
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stated the requirement, since it was noted .that for many 

products, the materials requirement was greater during the 

final production month. (Further study of materials requirements 

will be necessary before implementation. At present the firm 

uses no planning of raw materials associated with production 

plans, thus even the crude splitting by three will show a 

possible saving over present methods). The data for RMREQ is 

thus the standard cost of materials, of Table 2.15, the price 

(RMB) is unity. 

2.2.3 The Accounting Data  

2.2.3.1 Basic Figures: The basic accounting data for 

the twenty six product model is shown in Table 2.15; the figures 

are given per hundred items. The standard costs are in the 

order:materials, labour, overheads. Finished goods were stored 

in metal bins at the two main warehouses (attached to two of 

the factories, one near London and one in the North of England). 

Their capacities were 5130 and 1257 bins respectively, giving 

a total of approximately 6500 bins (allowing some storage at 

the third factory). The space figures of Table 2.15 are the 

number of bins required per hundred items of product. 

2.2.3.2 Treatment of Overhead Accounts: In the model,  

the standard cost of sales is calculated from the sum of the 

respective standard costs: it was proposed that the actual 

cost of sales be estimated in a similar way. Considering the 

accounts for 1966 and 1967, Table 2.17, we can estimate the 

total variances on each account, based on a summary of these 

figures. 



1966 Account 

- 180 

Standard 

- 

Rate Var. • Usage Var. 

Material 4,024,930 -141,488 	. -3.5 115,875 2.9 

Labour 791,635 42,489 5.3 91,707 11.5 

O'head 956,780 568,575 59.4 ^ 99,297 10.4 

1967 Account Standard Rate Var. Usage Var, 

Material 4,772,552: -146,517 -3.0 -17,617 -0.03 

Labour 940,175 58,311 	, 6.2 79,244 - 8.4 

O'head 1,140,157 444,639 39.0 86,576 7.6 

Table 2.16 The overhead accounts  

Using the total variance over the standard cost as an 

estimate of the deviation from standards we have: 
- 1  

!Unit Variance 	1966 	1967 	• 

Materials -0.006% -0.03 % 

Labour .169% 146% 

O'head .698% .465% 

Table 2.17 Estimates of unit variance  

From Table 2.17 we can judge the approximate rates for 

total variance per unit of standard cost. 

For the present valculations these were assumed*  to be 

materials: 0.03%, labour: 0.15%, o'heads: 0.7%. These are 

the values used for the OHRATE array, for calculation of 

overhead variance accounts from the incurred standard costs. 

J. 

the positive value of materials variance ensures an even 
greater demand for cash. 
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2.2.4 AccounLing and Storage Lags 

9.2.4..1 Storage lags: The purpose of the storage lag 

associated with each product was to ensure that the time flow of 

the oroduct through the firm was correctly modelled. Limited 

data was available on the storage of each product on a monthly 

basis. Initially, it was hoped to estimate the shelf life of a 

product (in storage) by calculating the time to sell all stocks 

held at the moment of completion of a product batch. This 

turnover period would estimate the time spent by this product 

batch, (on a FIFO basis) in the company's warehouse. However, 

for this exercise, data was required on stock holdings of all 

products at a fixed time, and all subsequent production and 

sales figures. These were not available. Records of monthly 

production, storage and sales were updated at irregular (and 

different) intervals of time. For some products it was possible. 

to estimate the 'shelf life' from the data available. The 

results achieved are shown in Table 2.18. 

Table 2.18 Estimated Lag Per Product (in Months) 

ITEM , AUG!SEP!OCTNOVDECJAN FEB MAR APR MAY JUN JUL; 
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It must 	remembered that these figures are a global estimPtr-

of 'shelf life' - covering all possible market outlets; they 

will thus disguise the Mail Order deliveries which would not 

appear in storage records due to the rapidity of their despatth 

after completion. The figures of Table 2.18 are thus an over-

estimate of the shelf life. 

It was felt necessary to make the lag of storage a variable 

input. In this way changes of market outlet per product can be 

judged by corresponding changes of the lags on despatch and 

payment, (LAG and RECLAG) and the discount allowed (DISCP). 

For the test calculations of the 26/12 model products were 

allowed to be sold immediately - i.e. if possible. The action 

of the LP model does not conflict with the desired FIFO basis 

for sales. 

2.2.4.2 Other accounting lags: The remaining lags on 

accounting constraints are divided between the periods in which 

the company settles its debt, or accounts for costs incurred, 

and the periods in which it expects to receive payments for sales. 

1. The periods over which accounts were stretched were zero for 

payments of wages, interest charges, and marketing expenses. 

Subcontracting fees were paid one month in arrears (for the test 

model). 

2. It was assumed that overheads  would be accounted for at the 

end of period in which they were incurred. 

3. It was further assumed that payments were made within a month 

of despatch. 

As with t e storage lc c , these values of input data may be 

altered at will, to model different marketing situations. 

Input paramciters  

The Input parameters for the 26/12 model are detailed below 
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in Tables 2.19 and 2.20. 

parameter NPROD NWC NSUB NLF NRIvi NSCS NOH NM 

value 
	26 18 7 1 1 3 3 12. 

Table 2.19 Input parameters for 26/12 model  

Item 	In-Jut value 

',Raw materials 	5 5,000 

:Cash 	 550,000 

T.Thished product' 	10 units of each product 

(1 unit = 100 items) 

Table 2.20 Input values  

Control Variables and policy levels  

For the initial test of the 26/12 model, cash and bank 

loans were bounded. No restrictions were placed on sales, and 

an upper limit on materials holding was set: at 5,5,000. 

Item 
	

;Lower bound 	Upper bound 

Cash 	£50 	. 5100,000 

hank loans 	- 	5150,000 

Materials 	- 	55,000 

Unit sales 	- 	- 

Table 2.21 Control variables and bounds  
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Appendix 2.3 The Programmes  

2.3.1 The matrix generating programme for the model is listed 

below. This programme provided the input data for the LP. 

2.3.2 The Output of the Model  

At the optimum of the LP, the output generated by the 

procedure SOLUTION comprises three parts; the objective 

function, the row values (and the dual evaluators) and the 

column values (and the reduced costs). Typical printout of 

this solution is shown in Figures 2.10 to 2.12. A report 

generator was written for the model which would translate the 

output of SOLUTION (filed onto magnetic disk) into the more 

useful form of optimal schedules for production, storage and 

sales. This routine also provided the month by month cash 

flow statements and income and surplus accounts. Details of 

this programme,(AKOUNT),are given below, and a sample of the 

output from AKOUNT for a run of the 3/5 model is shown in 

Figures 2.13 to 2.15. Given the asset position of the firm at 

the opening of the first period, the routine could also provide 

balance sheets, and the set of operating and financial ratios. 

Since the optimal solution to the model varies with the 

objective function, the operating and financial ratios derived 

from the model, will reflect management objectives. It will 

thus become clear that management objectives will have direct 

influence on the firm's optimal strategy, its financial 

accounts, its operating ratios, and its resource valuation . 
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The Matrix Generator - Main Programme  

INTEGE2 IA(4C0,2) 	. 
CO.,A101 IA(47300,2),AA(4j00),i:4(600), 

. 1 mCREO(3,18,50),'.2CLF(18,1),SPACE(50),YRE,50,2),LI,ST(50), 
2 vARK(50$50),SC5P(3o5)+DISCP(50),SUP(7),a>CJES(?),kMF(2), 
3 WI1•'P(2,50)tSUB1,iC(7),ICODE(800),NAAF4800,3),NAflEC(t;0b,3)*LAG(50), 
4OHXATE(6) 
CO%",10;•; .'.CNTH(12),ECLAG(50),SUBLAC,(7)pLAL:LAC(2),RMLAC(2), 
1 YRKLAC1(50),QHLAG(6),ALFLAG 

1NTOOLloSUR,RY,%5C,H 
COMMON PRE2INPRE1LOCK,%POST11POST2 
DIENSION NiViT.(50,2) 

INTEGER SUBC/HIGH,OHLAG,ALFLAG,MRKLAG,RMLAG,SUBLAGoRLCLAG 
C 
6000 riRMAT(?)6I2) 
6001 F0Jl."ATI1H19 1  DATA INPUT',//' NTOOL 	NC NSU(3 	NLF 	NRM 

1 	N\'',//t14,716) 
9991 FORYAT(2A4,2X95F-8•4) 
9992 FflRmAT(20X,F5.2). 
9993 FORMAT("3A2) 
9994 FORVAT(P0F4.3) 
999FORrAT(12P644) 
9996FORAT(70A1) . 
9997ORNIAT(7011) 
9998 -FORmAT(1F6.2) 
9999 FORYAT(12F6,2) 

C DATA INPUT 
C 

READ(5,600•?, )NTOOL,NWC,NSU,NLFoNRNINSCS,1`•+OH,NM 
RFAD(5,9995) ALPHA 
1/1RITE(696001) NTOOLoNC,NSUB,NLFI%RM,NSCS,NON,N 
READ(5,9991) ((NAME(I,J)•J=1,2),LIST(I),(SCSP(J,I),J=1,NSCS).• 
1 SPACE(I),I=1,NTOOL) 
READ(5,9992) (Rm, RED(19J91),J=1,NTOOL) 
CALL ACP.E0 	. 	. 
READ(5,9994) I(CLF(J,I),J=1,NWC),I=loNLF) 
DO 1 I=1,TOOL 

•Dr,  1 J=1 ,':TOO(_ 
MARK(I,J)=060 
IF(I.En.J)ARK(I,J)=1.0 

1 CONTILIF 
READ(5,9994) 	(DISCP(j),J=l+NTOOL) 
READ(5,9999) (SUBP(..)),J=1,NSUB). 
READ(5,9995) (1,VAGES(J),J=1,NLF) 
READ(5,9995) (RMF3(...1),J=11,NR) 
2.EAD(F.:1,Q997)(LAG(J),J=1,NTOOL) 
READ(5,(i9()7)(6U5WC(J),J=1,NSUB).  
READ(5,9995) (OHRAT'7(J),J=.1tNOH) 
READ(5t9997) (RECLAG(J),J=1,NI0OL) 

.READ(5,9997) (SURLAG(J),J=11NSUB) 
RFAD(r-.1,9997) (LABLA(J),J=1,NLF) 
READ(5,9997) (RY.LAG(J),J=10,N8M) 

DEAD (5,9997) (MRKLAG(J),J.=1,NTOQL) 
READ  (5,99'77) (OHLACi(J),J=1,NOM) 
RFAD(5,9997) ALFLAG 
HIGH=3*NTOOL+NV:C+NLF+2*NRY+NSCS+NOH+11 
LONG=4*NTOOL+NWC+NSUBA-NLF+2*NRM+SCS+OH4-12 

0
, 
=0  

K.ONTH=3 
CALL APRE1(KYONTH) 
CALL XLAC(1) 
NPRE2=RC 
‹YONTH=2 

• • CALL AP'''',E1( ;1ONTH) 
CALL XLAC(2) 
PRE.1=R,T4 

CALL APLOCK 
CALL XLAC(3) 
Nf:LOCK=t: 
CALL APC5T1 
CALL )LAG(4) 
• !'1POST1=NRU.,,i 
CALL APOST2 
CALL XLAG(5) 
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C 

6002 FORAT(/// 0 	ENTRIES ITO STORAGE ANHAYS 1 ,5X,5I10) 

60)3 FORMAT(///0 	SIZE OF EACH E(LOCK IS 	1 ,140 X 1 ,14) 

H7?,ITE(6,r,0n2) 	)P1=P:PRE.1,N;!LOCOST1,POST2 

'.,1 1-ITE(6,6003) HIGH,LnNG 

C 
•m.p.s. OUTWIT 

CALL TITLE(A.:EC,LONG) 
CALL TITLE(N/WER,HIGH) 
KI:=UIGH+1 
RE A0(5,9Y93) (NAMER(KK,J),J=1,3) 
CALL ASSETS 
CALL NPSOUT 
STOP 
END 

SUBROUTINE A'.1 CREO 
cc-Yor,! IA,AA(400),p(4()o0), 
1 !:-CRE0(73,18,50),CLF(18,1),SPACE(50),RREQ(3,50,2),LIST(50 ) ,  
2 'ARK(50,50),SCSP(3,50),DISCP(50),SUBP(7),WAGES(2),RMB( 2 ) ,  
3 ';;IPP(2,50),SUBWC(7),ICODE(800),NAER(800 ,3),NAMEC(P00,3),LAG(50),  
40H?ATE(()) 
CONV.ON "ONTH(12),RECLAG(50),SUBLAG(7),LABLAG(2),RMLAG(2),  

1 MRKLAG(50),OHLAG(6),ALFLAG 
COON LIABLE(4000) 
COVMON N' C\;  
COMMON Ki'iONTH 
COMMON I,J0f,N,NT,NM,II,JJ,ICOL,IRO,HIGH,LONG,ALPHA,NC,NLE,  

1NTOOLoNSUB,NRM,NSCS,NOH 
COrMON NPRE2,NPRE19NBLOCK,NPOST1,N1'OST2 
REAL LIAOLE 
REAL FCREO,LIST,MARK 
INTEGER SUBWC,HIGH,OHLAG,ALFLAG,MRKLAG,RMLAG,SUBLAG,RECLAG 
INTEGER SPRED 

C 
C WORK IN PROGRESS CALCULATIONS AND MATERIAL REQUIREMENTS 
C 

DO 11 J=1,NTOOL 
RY-RE0(1.1.1,1)=RREC(1,J,1)/3.0 
DO 12 1=1,2 

12 'APP(I,J)=LIST(J)*(340—FLOAT(I))/3.0 
DO 13 L=1*NRM 
DC) 13 1=1,3 

13 W'.IREO(IIJ,L)=RMREO(1,J,1) 
11 CONTINUE 

C 
C 	MACHINE REOUIREYENTS OF PRODUCTS, SPREAD OVER TIME 
C WORK C.E.TRES 	PREVIOUS TWO OR THREE i'1ONTHS ( READ SPRED) 
C 	CENTRES 10-18 LAST ;1.0NTH ONLY. - 
C 

IZXO=3 
SPRED =3 
DO 1 J=1,3 
DO 1 K=1,Nk'!C 
DO 1 L=1,NTOOL 

1 MCREQ(J1K,L)=0. 
DO 2 I=1,NTOOL 
READ(5,5002) (B(J),J=1,NC) 

5002 FORMAT(//,11X,10F6.0,/,11X,10F6.0) 
DO 3 J=1,NC 
GO TO (4,6,4,4,494$4,4,4,5,5,5,5,5,5,5,55,515),J 

4 CONTINUE 
DO 20 K=1,SPRED 
NN=IZXO—K 	• 
!,iCREQ(NY,J,I)=B(J)/FLOAT(SPRED) 

20 CONTINUE 
no 1.0 

5 CONTINUE 
MCRE(1,J,I)=13(-1) 

3 CONTI' 'OE 
2 CONTINUE 

EN6 
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1.93 
'5UH,;;;JTP,E Ar)1.E1(LTH) 

IA(4jr2,2) 

1 vC3.1 

3 WI(2,50).SUBC(7),ICUOL(60()),NALk(8.3),NA:-.LC(.3),LAO(5) 
14..;;HATE6) 

CU 	'.....TH(12),!(ECLA.L(50),SUBLA0(7),LAbLAC.(2).k:;LA'..A2), 
1 , ''sA:i(50).0tILAG(6)).ALFLA) 

LIflLFT.(600n) 

:..- PRE1,BLOCK,r;POST1.NPOST2 
REAL LIAL*E 
REAL MCR.EQ.LISTOIARK 
INTEGER SUBWC,HIGH.OHLAG,ALFLAG.KLAG,RMLAG,SUBLAO ,RECLAG 
KMONTH=LMONTH 

SETTING UP THE MATRIX BLOCK PRE1. 
FOR THIS MATRIX 1.ONTH=1 
FOR THE OTHER Y.ATRICES,PRE2 ETC. USE MONTH =3,4... 
NOW WE SET UP PkE2 IN THE PkEl AREA 

1 WORK CENTRE EQUATION 
DO 28 I=1.NWC 
DO 28 J=1,NTOOL 
NROW=NR04-1 
IA(NR01;/.1)=I 
IA(NR(Trit2)=J 

28 AA(NROW)=MCREQ(KMONTH.I,J) 
C 3 LABOUR FORCE REQUIREMENTS 

KROW=V::C 
DO 6 I=1,NLF 
IROW=KROW+I 
DO 7 J=1,NTOOL 
ICCL=J 
NROW=NR0+1 
IA(NR0.q.1)=IROW 
IA(NR0'4.2)=ICOL 
AA(NR0'...:)=0.0 
DO 8 K=1,rWC 

8 AA(NROW)=AA(NRO'vfl+WCLF(K,I)*CREQ(KMONTH,K,J) 
7 CONTINUE 
6 CONTINUE 

C 
C 8 INPUT REOUIREMENTS . 
C 

KR0'.'1=V:1C+NTOOLI.NLF+1 
DO 29 J=1,NTOOL 
DO 29 I=1.N.RM 
IROW=KRO+I 
NRORC'!!-1-1 
IA(NROW.2)=J 
IA(NROW,1)=IROW 

29 AA(NROW)=RvREQ(KYONTH.J.I) 

9 INPUT CONTINUITY 

KRON=KROV!.4-NM 
DO 30 I=1,NRM 
DO 30 J=1,NTOOL 
IROW=Kf!0 1:!+I 
NRO=NROW+1 
IA(NRO1:4.1)=IROW 
IA(NROW.2)=J 
AA(NRO)=RmREO(KMONTH.J.I) 

30 Cft':TIUE 

10 WORK IN PROGRESS ACCUNT 

KRO=KROW+NRV. 
IRO'fv=KR0+1 
DO 34 J=1,NTCOL 
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34 AA(%)=WIPP(L,J) 

11 v, ARKETIJ 

WAGES 
ASSU:',IING THAT :JAGES CANN:)T BE DEFRAYED Fn ANY LENGTH OF TIM.E. 

IRoa=34-0H+N5CS+2*NT3OL+2*M-01+LF+%wC+'..)  
DO 900 I=1,NTOOL 
ICOL=I 
NRU=NRO,e:+1 
IA(NR0,1)=IRCW 
IACNROW,2)=ICCL 
AA(NOW)=C).0  
DC 900 K=1,NC 
DO 900 J10E%L.F 

900 AA(NR0)=-A0)-CREQ(Kil.ONTH,K,I)*WCLECK$J)*WAGES(J) 
RETURN 
END 
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5un::,ur I !';F: 
I Hi 	r. )- 	I A (' 2 ) 
C\*C  

I 	cICREC; ( 3,1P 5P ) 	F C I 	1 ' 'SPACE( 	) 	2 ) t! :ST ( 	) 
2 	!-)Ale ( 5fl,) 5 ) S CSP ( 3 5!7. ) DI scr ( 90 ) SI.J?P 7 ) 'WAGES ' 2 ) 9 .:2) ( 2 ) 0 . 
3 ',%IPP( 2 	TC( 	) 	( 	",3) %AVEC ( 	, ) 'LAG ( 5 ) 
40HP A E ( ) 
co-4nN ,ONTH ( 12 ) RECLAG ( 5' ) 95,UF3LA 	) I- Ail!. AG ( 2.). r",!LAG ( 2 ) 

1 M.RK LAG ( 5C ) CILAC ( ) ALFLAC, 
COws0N L I ,̀\.Fq..E ( ono) 

r 	t 	91, 71 9 I I JJ 'COL ,I.V7),HIGH9LONC9ALPHA 	9NLE 

NPRE7.1 ,NBLOCK, NPOST1 NPOS T2 
! 

EAL 	HCE:C.: :LIST 9 vARK 
I 	SUPWC t H I 	, CHL AG 91...FL AG l'.1K.L.A(7.; FNLAG SU5LAG, RE CLAS 

r- 

e- 1 WORK CHTRE 1717.C,U I RFi'TNTS 

C..) 1 I'=1 
DO 1 I co,L=1 INTOOL 
Nr2.0',-,'=flr?,cMi+1 
7 A ( 	) 	p, 7)  
1 A ( HLW 9 2)= I COL. 

1 	AA(NRO ) = C E0(1 or R. 0, 	ICOL) 
K.COL= 
D) 	1=1 si',iSUB 

( 	). 

I A ( 	ROW91 )=i (7) 1.•.: 
IA ( N R `,.%' 2 ) =I COL  
AA ( Nrr.1)1,.•) ) =-1 
CONT INU 

C 3 LA5C!!R FOPCE 7EQUiREEHTS 

I =1 
:7fl:= KR (-)-+- 

7 J=1 91":TOOL 
CflL=J 

2V-1-1 
I A C 	9 1 ) = I 12 C; 
TA ( NRMI, 2 )=ICni_ 
AA ( 
DO 	=1 t N'6%1 C. 

8 AA 	=AA ( 1'1PC:!)+'.!CLE ( K I ) *MCREQ ( 3 	,J ) 
7 CC)'.T: HUE 
,-)fl 7 j=1 t 
I C 	• 7 	L+N 

t 2 ) = 
r: ( 	) 
:=-1•CLF(K,I) 

2 
6 
	

•!' ' 

C 6 STOV Or- CADAC I TY 
C 

1 
'.j=1   ,KTOOL 

( 	t 1 ) = I 
: 	. 	) 	I C L 
( . 	. = 'ICF(J) 

, 	: 	1 
( 	, 

A ( I 	C.) 
.1\c% (1.,(''C',; 	) 



rl
()

C
1:

10
()
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. . T S 

• = 	C+Nt.. F.+N T 
• 12 1= 1 9 

5(',  J2 J=1,YTOOL 

TA.(NR0'41:-. )=..) 
12 AA(NRO\..1=EQ(19J,I) 

9 INPUT COTP:UITY 
C 

`.')▪ O 25 I=19'1:Rm 

14 J=10':TCOL 

IA( 	91 ) = I ROY; 
A ( 	,2 )=J 

14 	A :,, 	) = 	E (1,J , I ) 

IA(v,o12)=IcoL. 
AA(V),G)=1.0 

I A ( 	R 	9 	) = 7k.  %" 
IA(";RU4,2)=ICOL 
to.A(NRC.,...1= —1.0 

13 CONTINUE. 
C 

11 GROSS SALES 
C 

:<CflL=2*T0flL 

DO '5 J=1,. TOOL 

IA(NRO'::91)=IP0 
IA(NROW,2)=ICOL 

15 AA(0'..1)=LTST(J) 
C 
C. 12 INCRF-.:-.%.:ET or FP'ISHED GOODS ACCOUNT 

Dc '6 J=1,:'!TOnL 

AA(V)=LIST(J) 

IA((;91)=F?fl 
I. A(NR.C';;92)=2*']TCOL J 
AA(N)=—LIST(J) 

16 

13 	ET INC EFFECTS 

AEN'.7,ED PRCnR.AME TO TAKE ACCOU1 vT CF THE MA:K ET I NG VAR AELES 
VARY I TH GROSS SALES 



1. 

	

11 	I=1 , • 

lc: L. 	C.1_ ± 

IA(NY(';.:,2)=ICOL 
AAJ:N.,1)=A--)K(I,I)*LIST(I) 
IC(L=3*To0L+N',-.:C+SUP)+LF-t-2*NR::4+I 

= 
I A ( NUif 9 	) 

AA(NOw1= -1.0 
7 

C - • 
C 14 STANDAR'J COST OF SALES 

K 	K 	TLOL 
CC) 19 	=1 'N C5  

!-< 	= 	. • L • • 
Dc-) 	J=:, • 

Nr, 	= • • , „.. 
IA ( 	1= I 

• IAN- -.: , 	= ?COL 
20 	AA; f‘•! 	)=SCSP ( I • J) 

	

t = 	T 	2 

I 	( 	L 	11= IR (-)•,,, 
,21= ICOL 

AA( ,  
19 	C 	T I 	L..: 

C 15 OvETHEAD ACCOUTS 

Kt.:C.+LF÷2- TOJL-(-4+SCS+2*NRY,  
(COL=4*!NTOOL-f-N1‹.*NSUH+LF-1-2*NRSCS+.6 
DO 49 I=1,':OH 

N"?,r=%r7L. 
( 	, 1 ) = 

AA(VRO‘A=-1.c 
ICOL-3+4*NTOOL-1-24 -5Lfti+Nt':C+I 

LAL,E 7 C't,J,1)=IP(Th 
IA(Nc:00 9 )=ICC)L 

0-PATE(I 
40 CoNTI:-..LJE. 

(1
1-

)C
1
C
1
r)

 

THE. RE'vAi;A:;,G PART OF THE OVERHEA':; ACCfluT IS SET IN 

DISC;)YNT 

KR('')H.J-SCS-1-2*Nrc.)0L-4-2*(NLF+N',- C.f..5 
IFm .'K; 
DC) 71 ...)=11',TOoL 
ICnL=2*(.:TOOL+J 

21 AA(NRO)=DISCP(JLIST(J) 

C la mAt)FACTuRING (."III 

Tr-)fl=1-4-7 
1 	r` 

, , 1 q PAYAH.ES 
C 

197 

TOF 

TA( 



=IC: 
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I' FC oF 

!E 	TH2 BASIS OF 

=-%). 	+1 

DO 9tM 
()CO AA(`kriM)=Ai )—CREQ(19K,I)*',<LF(K,J) 41- AGES(J) 

DC) 	I:=19;,5LB 
C  II 

IA(:flc.:;,2)=ICOL 
AA( 'G.,)=0.0 

IF THFE IS 	LAG ON SUriCoNTRACTIG PAYMENTS 	HAVE TO ADJUST Ti 
RO,$): VALUE NDF7,?. Slip? BY THE CCST OF THAT CCNTACT 
THIS IS ',1 ECESSARY TO AVOID HAVING A DC.UBLE ETRY FOF: THE SAME 

mAT!UXPOSITIO') 

Do 901 I=1,NLF 
901 AA(0)=AAL',:).1-AGES(I)*CLF(II,I) 

IF(SUSLAC(II).) AAN\R(7))=AA(kC',q)-SUBP(II) 
902 CONTILJE 

C 
C 20 RECEIV/V3LES 
C 

ICaL=14.*TCL-t-C.4-SULF+2*NRA-4-NSCS-t- NOH+12 ,  
01/2 =NR(11 .1. 

IA(Nii;e1)=IRf')W 
A(WW92)=TCOL 
AA(NRO)=1.0 

C 
C 21 CASH COrTINUITY EQUATIC 
C 

KCOL=4ANT'DL+F.Y,,C+NSU9+NLF+2*\R 
TCCL=KCfiL+1 

AA ( 
ICOL=hC 

AA r,.• 	)= -1.0 
CC, ',.= 	' 

+1 
IA(' 

:-))=ICOL 
AA( 	)=1.0 

(-; 	• 
1 

I A 
IA 	‘Hn...'9?)=I COL 
A 	( 	. ) =1 

L 

)=1. 

-f - 
) 	H;(1•:,...• 

C
li- I

n
 

AG 



22 
C 

ICrt=CC;L+2 

IA(W)92)=TCOL 
A AO\HO)=—ALPHA 

IC%=!eCOL-i-1 

IA(NO,2)=ICOL 
AA("oWe!)=. ALPHA 
Icnt=KcoL+4,  

IA(NR091)=IRO':: 
IA(NROW12)=ICOL 
AA(NRO)=1.0 

C LAG REQOIREENTS FOR BLOCK 
C 23 LAG STORE REQUIREENT 

• c 
KCCL=2*'rrnOL 

KR0';!=2*NTOOL-4-NC-i-NLE4-2%R+NSC5+0H-+.11 
DO 3 .,-1 J=.19TODL 

TA(NR091)=IRC'4 
IA(NRC72)=ICOL 
AA(NROW)=1.0 

30 CO^jINUE 
r- 

TOOL LAG 
C 	

KR0=2*NTOOL+NWC+NLF+2*NRY+NSCS+NOH+11 
KCOL=NTOOL 
DO 56 Ji-119NTOOL 
IRW=K.k0W+J 
KKLILAG(j)-1-1 
GO TO (57,58959),KK 

57 CONTIMUE 
ICOL=J 
IA(NROW,1)=IRO 
IA(NR0,2)=ICOL 

58 CONTINUE 
59 CONTINUE 
56 CONTINUE 

C 
C OVERHEAD LAG 
C 

RETURN 
END 

199 
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SU9POUTINF APCST1 
I"!TFCF';2*2 IA(40'.)012) 
C0'.1vON IA,AA(4000),B(4')OC:), 
1•YCRE0(3,18,50)0',<LF(18,1),SPACE(!:0), (3950,i),LIST(50), 
2 mARK( )09.50),SCSP(39:-,0),DISCP(50),SU9P(7),WAGES(2),RB(2), 
3 WIPP(2,50),SUBC(7), IICODE(800),NAMER(80093),NAMEC(80093),LAG(50), 
40HRATE(6) 
COmON. ,',ONTH(12),RECLAG(50),SUBLAG(7),LABLAG(2)0RLAG(2), 
1 V<LAG(50),OHLAG(6),ALFLA3 
C("flN LIABLE(4000) 

K71ONTH 

1NTO3L,N6UR,NRMISCS,NCH 
COi•',\ION NPkE29NPRE1IINBLOCK,NPOST1iNPOST2 
REAL LIA6LE 
REAL YCRE.:.),LIST,MARK 
INTEGER SUBWC,HIGH,OHLAG,ALFLAG,YRKLAG,RMLAG,SUBLAG,RECLAG 

C 
C SETTING UP POST 
C THIS IS FOR THE AREA IM:,1EDIATELY UELOW THE MONTH'S MATRIX 
C 
C 
C 6 STORAGE CAPACITY 
C 

IRC=NTOOL+NLF+NWC+1 
DO 10 J=1,NTOOL 
ICOL=J 
NRO=NR04-1 
IA(NROW,1)=IPOW 
IA(NR0W12)=ICOL 
AA(NROW)=SPACE(j) 
ICOL=2*NTOOL+J 
NROW=NRO':!+1 
IA(NROW,1)=IROW 
1A(NROW12)=ICOL 

10 AA(NRCh!)=-SPACE(J) 
C 
C 8 INPUT REQUIREYENTS 
C 

KPOW=%';:C+NLF+NTOOL+1 
KCOL=3*NTOCL+WC+NSU3+NLF 
DO 31 I=1,RM 
IROW=KR0-1-1 
rcoL=Kc6L+I 
NROW=NROW+1 
IA(NROW,1)=IROW 
IA(NROW,2)=ICOL 
AA(NROW)=-1.0 

31 CONTINUE 

C 9 INPUT CONTINUITY 
C 

KROV':=KROW+NRM 
DO 32 I=1,NR 
IROW=KRO+I 
ICOL=KCOL+I 
NROW=NROWt1 
IA(NROW,1)=IROW 
IA(NROW,2)=ICOL 
AA(NRC›!)=-1.0 

32 CONTINUE 
C 
C 21 CASH CONTINUITY 
C 

KCOL=4*NTOOL+NWC+NSU8+NLF+2*NRM+NSCS+NOH+7 
KROW=NWC+NLF+2*NTOOL+2*NNSCS+NOH+10 
ICOL=KCOL 
IROW=KROW 
NRO=NROW+1 
IA(NR04;,1)=IRO 
• IA(NR%92)=ICOL 
AA(NROW)=-1,0 



C 22 :71.A`;'' CHA?GES 	 201 
C 

I CL):_=<..CL+1,, 

I A ( 	• I ) .4 I PC':. 
IA 	.2 ) = IC CI 
AA ( 	) =—ALPHA 
I CUL=KIC'Ou+2 

I A(N'.,01.c .1 I = 	C'A' 
I A I NR01.! 2 ) ICOL 
AA NROW ) =ALPHA 

KR.0'..‘,'=2*NTOOL+P.V,IC+NLF+2*N1P4+NSCS+NOH+2.1 
KCOL=NTOOL 
DO 56 J=1 NTOOL 
I R0';.'=KR0',.;+J 
KK=LAG(..J ) +1 
GO TO 	57.58.59 ) .KK 

57 CONT I NUE 
58 CONTINUE 

ICOL=J 

IA 	.1 )= IROW 
110 NROni; 92 )= ICOL 
A\C N 	) = — 1 0 
I COL=2*NTOOL+J 
NROw=NROW+1 
IA ( NROW . 1 )= I ROW 
IA( NROW92 )=ICOL 
AA ( NR01,.1) =1.0 

59 CONTINUE 
56 CONTINUE 

RETURN 
END 

C 
C TOOL LAG 
C 
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5U9ROUT:NE APOST2 
INTEGER142 IA(40%o2) 
C.:WMON IA.AA(40C, 0),F“400n)v 
1 mCE0(3,18,50),'‹LF(18,1),SPACE(50),RE0(3,50,2),LIST(50), 
2 mAK(50,50),SCS(P(3,50),DISCP(50),SUBP(7),WAZES(2),RYB(2), 
''..:IPP(2,),SU9'...:C(7),ICODE(800),NAm.ER(800,3),NAEC(b00,3),LAG(50), 

4f)HRATE(6) 
COMMON v_ONTH(12),RECLAG(50),SUBLAG(7),LAHLAG(2),RMLAG(2), 
1 MRKLAG(50),OHLAG(6),ALFLAG 
C(;"1"/.0N LIAP,LF(4000) 
COYON 
COMMON Km )NTH 
COMMON I,J,KeN,NT,Nm,II,JJ,ICOL,IROW,HfGhtLONG,ALPH,A,NWC,NLF, 

1NTOGL,NSUHINRm,NSCS,NOH 
COMMON NPRE2,''PRF1,NBLOCK,NPOST1,NPOST2 
REAL LIAFq.E 
PEAL iCREO,LIST,MAR'‹ 
INTEGER S11B1;:CoHIGH,OHLAGtALFLAG,MRKLAG,RMLAG,SUFLAC,RECLAG 

IROv1=NTOOL+NLE+NWC+1 
DO 10 J=1,NTOOL 
ICOL=J 
NRO'::=NR0+1 
IA(NROW,1)=IROW 
IA(NROW12)=ICOL 
AA(NROW)=SPACE(J) 
ICOL=2*NTOOL+J 
NRO=NROW+1 
IA(NROW,1)=IROW 
IA(NR0,2)=ICOL 

10 AA(NROW)=—SPACE(J) 
C 
C BANK CHARGES 

KCOL=4*NTOOL+NWC+NSUB+NLF+2*NRM+NSCS+NOH+8 
KROW=W.JC+NLF+2*NTOOL+2*NRM+NSC5+NOH+11.  
IROW=KPOW 
ICOL=KCOL 
NROW=NR0,11+1 
1A(NR0,1)=IPOW 
IA(NROW,2)=ICOL 
AA(NP0'4)=—ALPHA 
KCOL=KCOL+1 
IROW=KROW 
ICOL=KCOL 
NROW=NRIT:1+1 
IA(NROW,1).:=IROW 
IA(NROW,2)=ICOL 
AA(NROW)= ALPHA 

TOOL LAG 

KROW=2*NTOOL+NWC+NLF+2*NRM+NSCS+NOH+21 
KCCL=NTOOL 
DO 56 J=1,NTOOL 
I ROW=KROW+J 
ICOL=J 
NR01t1=NR0W+1 
IA(NPOW,1)=IROW 
IA(NROW,2)=ICOL 
AA(NROw)=-1.0 
ICOL=2*NTOOL+J 
NR0W=NP0'o!+1 
IA(NROW,1)=IROW 
IA(NPM`!,2)=ICOL 
AA(NROW)=1.0 

56 CONTINUE 
RETURN 
END 

C 
C 6 STORAGE CAPACITY 
C 



203 

SUROUTINE TITLF(A":rC,KNG) 
INTECE7*2 IA(40Th2; 
CO''" 	IAtAA(40),(4-), 

'.1..CRE- ( 13,1,50),CLE(1,1),SPACE(r50),RM(EQ(3,0,2),LIST(50), 
2 NIARK(50,0),SCP(3,5),DISCP(50),FUBP(7),WAGES(2),(?), 
3 'IPP(2,5)),SULiC(7),ICODE(800),NAMER(800,3),AAEC(E0:),3),LAO(50) 
tink!RATE((,) 
COW."ON vTH(12),RECLAG(5(.),SUBLA0(7),LALAG(2),RYLAG(2), 

1 MRKLAG(5n),O.iLAG(6),ALFLAG 
cOMMUN LIARLE(4000) 
c()MMO NR(11!:! 
COmON KmONTH 
COvON 

COYMON NPR[7.2.,^1 PRE1LOCK,NPOST1,NPOST2 
DI 	ION mAmFC(800,3) 
DImFNSION )1UMBER(10 
REAL LIABlE 
REAL mCREOILIST,NARK 
INTEGER SUBWC,HIGH,OHLAG,ALFLACIOIRKLAG,RMLACI,SUBLAGoRECLAG 
READ(5,2003) IBLAN 

2003 FORMAT(1A1) 
DO 30 I=1,E00 

DO 30 J=1,3 
30 MAmEC(IvJ)=IBLAN • 

READ(502000) 4NOM9ER(sfl,J=1,10.) 
?000 FORMAT(50A1) 

READ(5,2005) (MONTH(K),K=1,12) 
2005 FORMAT(12A2) 

L=0 
KROW=0 
READ(5,2004) NROW 

2004 FORMAT(I2) 
DO 2 I=1,NROW 
READ(5,2001) NAmE,NDIY,JCODE 

2001 FORMAT(A4,I2,A1) 
DO 3 J=1,NDIN4, 

KROW=KROW+1 
ICODE(KROW)=JCODE 
MAMEC(KROW,1)=NAMF 

3 CONTINUE 
C 
C DIMENSIONING THE COLUMN NAMES 
C 
C KTENS IS THE NUMBER OF TENS AT PRESENT REGISTERED 

C C KUNITS IS THE NUMBER OF UNITS REGISTERED 
C 

KTENS=0 
KUNITS=0 
LI=2 
LJ=3 
DC 6 KK=1,NDIN 
L=L+1 
KUNITS=KK—KTENS*10+1. 
IF(KK.GE.10) G310 7 
vANIEC(L,LI)=NUMBER(KUNITS) 
GO TO 6 

C 
C UPDATE KTENS EVERY TIME WE COME ACROSS ZERO AS OUR UNIT TERM 
C 1 

7 IE(KUNITS.EC.11) KTENS=KTENS+1 
IF(KUNITS.EC.11) KUNITS=1 
LTENS=KTENS+1 
,IAYLC(L,LI)=NUMBER(LTENS) 
MAMEC(L,LJ)=NUM9ER(KUNITS) 

6 CONTINUE 
2 CONTINUE 

C THE OLlJ/N AND ROW NAMES HAVEBEEN SET UP! 
'ETUPN 
EN0 



C 
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SUBROUTINE ASSETS 
INTEGER 4 2. IA(40fle,2) 
COMNIOP! IA,AA(40CW),Li(400C), 

1 vCREO(3$1j.!$50).WCLF(1d$1),SPACE('')0)$k:,,REU(3$50,2),LIST(50), 
2 	ARK(.500c:.0),SCSP(3,50),DISCP(50).SUBP(7),'4AGES(2),Rfl'iB(2), 
3 WIPP(2$50),SUBWC(7),ICODE(500),NAMER(800,3),NAMEC(L:00,3),LAG(50),  
40t-C-',ATE(6) 
COMI‘iON v„ONTH(12),RECLAG(50),SUBLAG(7),LAbLAG(2),RYLA:J(2), 
1 MRKLAG(50),OHLAG(6)0ALFEAG 
COMVON LIABLE(4000) 
COMMON NkOW 
COMMON KYONTH 
COMMON I,J,K,NoNT,NM,II$JJ,ICOL$IROW,HIGH,LONG,ALPHA,NWC4NLF. 
1NT0OL,NSUB$NRK,NSCS$N0H • 
COMMON NPRE2,PRE1,NULOCK,NPOST1,NPOST2 
REAL LIABLE 
REAL t''CREQ,LIST$MARK 
INTEGER SUBWC$HIGH,OHLAG,ALFLAG$MRKLAG$RMLAG$5UBLAG,RECLAG 

KK=NY*LONG 
DO 1 J=1$KK 
LIABLE(J)=0.0 

1 B(J)=0.0 

C RAW MATERIALS 
C 

KCOL=3*NTOOL+NWC+NSUB+NLF+(NM-1)*LONG 
DO 20 j=1,NRm 
ICOL=KCOL+J 

20 B(ICOL)=1.0 

C 
C 

C 

C 

C 

CASH 

ICOL=4*NTOOL+NWC+NSUB+NLF+2*NRM+NSCS+NOH+7+CNM-1)*LONG 
B(ICOL)=1.0 

DO 2 K=1,NM 

• WORK IN PROGRESS 

DO 11 1=1,2 
DO 11 J=1$NTOOL 
JJ=(NMI)*LONG+J 

11 B(JJ)=WIPP(I,J) 
C 
C 	FINISHED GOODS 
C 

DO 3 J=1$NTOOL 
ICOL=(K.-.1)*LONG+J 
B(ICOL)=EIST(J) 
ICOL=ICOL+2*NTOOL 

3 B(ICOL)=—LIST(J) 
C 
C BANK LOAN OUTSTANDING 
C 

KCOL=(1)*LONG+4*NTOOL+NWC+NSUB+NLF+2*NRM+NSCS+NOH+7 
ICOL=KCOL+1 • 
LIABLE(ICOL)=1.0 
ICOL=KCOL+2 
LIABLE(ICOL)=-1.0 

2 CONTINUE. 
C 
C SETTING UP THE LIABILITIES NOT YET PAID DUE TO LAGS 
C 

DO 10 K=1,2 
KK=(NM—K)*LONG 
KNM=K-1 

C 
C RECEIVABLES 
C 

DO 4 J=1,NTOOL 
IF(RECLAG(J).LE.KNM) GO TO 4 
ICOL=2*NTOJL+J+KK 
B(ICOL)=6(ICOL)+LIST(J)*(1.0—DI CP(J)) 

4 CONTINUE 
C 
C LIABILITIES 



DO 5 J=1,NSUB 
IF(SU(?LAG(J).LE.KNY) GO TO 5 
KCOL=3*NTOOL+NWC+J+KK 
LIAEiLECKCOL)=SUP,P(J) 

5 C.C.NTP:UE 
DO 6 J=1,NRM 
IF(RYLAG(J).LE.KNM) GO TO 6 
KCOL=3*NTOOL+NWC+,\LF+NkM+NSUB+J-KKK 
LIABLE(KCOL)=RMH(J) 

6 CCATI'WE' 
DO 7 J=1•NTOOL 
INMRKLAG(J).LE.KNM) GO TO 7 
KCOL=3*NTOOL+NWC+NLF+NSUB+2*NR+J+KK 
LIABLE(KCOL)=MARK(J,J) 

7 COI\TI,iUE 
DO 8 J=1,NOH 
IF(OHLAG(J).LL.KNM) GO 108_ 
KCOL=4-*NTUOL+Nv4C+NSUBI-NLF+*NV.+NSCS+6+J+KK 
LIABLE(KCOL)=1.0 

8 CONTINUE 
IF(ALFLAG.LE.K*) GO TO 9 
KCOL=4*i•JOOL+WC+NLF+NSU8+2*NRM+SCS+NOH+10+KK 
LIABLE(KCOL)=4.0 

?9• CONTINLJF. 
It CONTINUE 

RETURN 
END 

205 
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Output of MPS Data  

SU3 ,̀:OUTIE .'SCUT 
INTEGF.P.2 
COCN IA,AA(4000),FH400), 

1 i1C2EC ( 3,1d,5U),';;CLF(18,1),SPACL(5)),N 'Y1iRE0(3,50,2),LIST(j), 
2 %1ARK(50,50),SCSP(3,50),DISCP(50),SUP(7),0E5(2)(2), 
3 ',..IPP(2,50),SUBC(7),ICODE(600),NAMER(800,3),C(600,3),LAG(50) 
40HRATE(6) 

"g;jH(12)“2ECLAG(50),SUBLAG(7),LAbLAC(2),RMLAG(2), 
1 .'. :<LAG(50),UHLAG(6),ALFLAG 

LIMiLE(4000) 
rr 

1N%::.L,"..SUB,;4R,NSCS,NOH 
PRE2,NPRE1,NBLOCK,NPOST1,NPOST2 

IRHS(2) 
CAP'hC(18),CAPLF(2)+POLICY(50) 

REAL LIABLE 
REAL.-ICRE.,LIST0',ARK 
.:‘ITEGER SUBWC,HIGH,OHLAGoALFLAG,MRKLAG,RMLAG,SUBLAG,RECLAG 

2 	, 000 ORMAT(50A1) 
2001 FORm,AT(10A1) 
2002 Fr)RnAT(13F3.1) 
2995 FORAT(1X,'N't2XOLIABLE') 
1997 FORMAT(1X,IN 1 ,2X,IGRUSSALE') 
2998 FORMAT(1X,'',2X,IASSETS') 
2999 FORMAT(INA:1E'llOWJSHKLP1') 
3000 FORMAT('RO'15 1 ) 
3001 FORAT(1X,A1,2X,A2,A4,2A1) 
3002 FORMAT('CCLUNSI) 
3003 FORMAT(4X,A29A4,2A1,2X,A2iA4,2A1,t2X,F11.4) 
3004 FORMAT('RHS') 
3006 FORMAT('BOUNDS') 
5000 FORMAT(10F8.2) 
6000 FORYAT(4X,'JSHKRH ',2X,A2,A4,2A1,2X,F12.5)-  • 
7000 FORMAT(1X,'L0 1 ,1WJKBOUND 1 ,2X,A2,A4,2A1,2X,F121,5) 
7001 FORMAT(1WUP',1WJKB0UND ',2A,A2,A412A1,2X,F12.5) 
7002 FORMAT('ENDATAI) 
7004 FORMAT(/,' 	MINIMUM SALES',(/,27X,10F8.1)) 
70.05 FORMAT(/,' 	STORAGE',(/,27X,10F84.1)) 
7006 FORMAT(/,' LIMITS ON CASH',(/,27X,10F8.1)) 
7007 FORMAT(/,' 	LIMITS ON BANK DEALINGS',(/,27X,10F8.1)) 
7008 FORMAT(/,' 	LIMITS ON RESOURCE STORAGE',(/*27X,10F8m1)) 
8000 FORMAT(1H1,//410WCONSTRAINTS ON OPERATIO') 
8001 FOMAT(//95X,IMONTH ',I2) 
9000 FORMAT(1WL0',1WB0UND1 1 ,2X,A2,A4,2A1,2X,F1265) 
9001 FORMAT(lx,'UP',1Xf 1130UND1 ',2X,A2,A4,2A1,2X,F12.5) 
9003 FORMAT(4X,'3ASICRHS',2X,A2oA4,2A1,2X,F12.5) 

Nr --- M*LCNG 
"Y=1:'v*HIGH 

(9,2999) 
C 
C ROWS SECTION 

4';RITE(9,3000) 
DO 1 K=1, 

1 WRITE(9,3001) 
WRITE(9,2998) 
WRITE(9,2995) 
WRITE(9,2997) 

C COLUMNS SECTION 
C 

WRITE(9,3002) 
CALL SETA 

C 
C RIGHT HAND SIDE 

(ICODE(J),MONTH(G) (NAMER(J,L)•oL=1,3),J=1,HIGH) 

';;RITE(913004) 
CALL SFTB 
DO 5 K=1, 
DO 5 I=1,HIGH 
II=(-1)*HIGH+I 
WRITil;:(9,6000) /(CNTH(K),(NAER(I 

5 CONTINUE 
C 
C TO OUTPUT THIS RHS I 	"PSOUT 



207 DO 4 K=1.':'-1 
DO 4 I=1,HIGH 
ii=(K-1)*;-±IGH+1 

4 WRITE(9,9033) MONTH(K),(NAvER(I,L),L=1,3),AA(II) 
WRITE(9,3006) 

C CHANOES FOR MPSOOT 

DO 19 J=1,NN 
[3(J)=0. l} 

19 AA(J)=0.0 
,C 
C INCLUDE BASIC RANGES IN THE AA ARRAY 
C • 
C 	STORE THESE IN AA FOR L0 ';;ER BOUNDS 

C 	STORE IN B FOR UPPER BOUNDS 
C 
C BOUNDS 
C 

WRITE(6,8000) 
DO 6 K=1, 
WRITE(6,8001) K 
KK=(K-1)*LONG 

C 
C MINI LA SALES FOR EACH PERIOD 

READ(9500)(POLICY( ,NT
1,

OOL)• 
Mf-ZITE

5
(6/7

0
!704) (POLICY(J)*J=NTOOL) 

DO 7 J=1,NTOOL 
ICOL=2*NT00L+J 
KCOL=KK+I CDL 
AACKCOL)=POLICY(J) 
WRITE(9,7000) MONTH(K),(NAMEC(ICOL0L),L=103),POLICY(J) 

7 CONTINUE 
C 
C FINAL CASH REQUIRED AT END.OF PERIOD 

READ(5,50001 CASHLO,CASHUP 
WRITE(697006) CASHLO,CASHUP 
ICOL=4*NTOOL+NWC+NSUB+NLF+2*NRM+NSCS+NOH+7 
KCOL=KK+ICOL 
B(KCOL)=CASHUP 
WRITE(9,7000) MONTH(K),(NAMEC(ICOL,L),L=1,3),CASHLO 
WRITE(9,7001) MONTH(K),(NAMEC(ICOL,L),L=1,3),CASHUP 

C 
C LIMITS ON BANK LCANS PER PERIOD 
C 

READ(5,5000) CASHLO,CASHUP 
WRITE(6,7007) CASHLO,CASHUP 
ICOL=4*NTOOL+NWC+NSUB+NLF+2*NRM+NSCS+NOH+8 
KCOL=KK+ICOL 
AA(KCOL)=CASHLO 
B(KCOL)=CASHUP 
WRITL(9,7%0) MONTH(K),(NAMEC(ICOL,L)oL=1,3),CASHLO 
WRITE(9,7001) MONTH(K),(NAMEC(ICOL,L),L=1o3)oCASHUP 

C LIMITS ON RAW MATERIALS AT END OF EACH PERIOD 
C LOWER SOUND 	UPPER BOUND 
C 

RFAD(5•5000) 	(POLICY(J),J=1oNRM) 
4 .RITE(6,7008) (POLICY(J),J=loNR(✓ ) 
KCOL=3*NTOOL+NWC+NSUB+NLF 
DO 12 J=1,NRY 
ICOL=KCOL+J 
WRITE(9,7000) MONTH(K),(NAEC(ICOL,L)9L=193),POLICY(J) 

12 CONTINUE 
READ(5,5000) (POLICY(J),J=1,NRM) 
DO.  13 	 IR ti  
ICOL=KCOL+J 
,4RITE(997001) YONTH(K),(NAMEC(ICOL L),L=193),POLICY(J) 
ICOL=KK+KCOL+J 
B(ICOL)=POLICY(J) 

13 CONTINUE 
6 CONTINUE 

NR=NY/3 
DO 20 K=1 ,NB 

C 
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C BOUNDIN:'..FINAL CASH 

Y.COL=(-1)*LON0*3+2*L6NG+4*NT..)0L+ • c+SUL5+%LF+2* SCS+NH+7 
AA(<C:.L)=LIALE(ACO) 
DO 20 j=191

C 
 

C BOUDING FINAL. RAW VATERIALS 
C 

KCOL=1K-1)*3*LON0+2*LONG+3NTOOL+N'fiC+t..SUB+NLF+J 
fi(KCOL)=R"El(J) 
AA(COL)=:B(J) 

20 CONTINUE 
DO 21 K=1,N 
Dr) 21 J=1,LONG 
I=1K-1)*LONG+J 
IF(AA(I).GT.C.0) WRITE(9,9000) MCNTH(K),(NAEC(JIL),L=1 *3),AA(I) 
IF(B(I).01.0.0) WRITE(9,9001) MONTH(K),(NAMEC(J,L),L=1 

21 CONTINUE 
C 
C RANGES 
C 

WRITE(90002) 
RETURN 
END 
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SUBROUTINE ALAG(NTYPE) 
INTEGER 4;2 IA(40TJ92) 
COMMON CA(4000,2)tAA(4000),B(4000), 
1 MCRE0(3918950)t.:1CLF(18.1),SPACE(50)9kMREQ(3,5092),LIST(50), 
2 m.AU(50,50),LCSP(3,50),DISCP(50),SUBP(7)*WAGES(2),RME(2), 
3 WIPP(2,50),SUBWC(7),ICODE(800),NAMER(80013),NAMEC(800,3),LAG(50) 
40HRATE(6) 
COW/.0% ':.ONTH(12),RECLAG(50),SUBLAG(7),LABLAG(2),RMLAG(2), 
1 mRKLAG(50),OHLAG(6),ALFLAG 
COMMON NROW 
COMMON K'IUNTH 
COMMON I,J,KIN,NT,NM,II,JJ,ICOL/IROW,HIGH,LONGtALPHA,NWCINLF, 

1NTOOL,NSUB,NR''',NSCS,NOH 
CW.NON NPRE2,NPRE1oNBLOCK,NPOST1,NPOST2 
REAL MCREO,LISTWARK 
INTEGER SUBWC,HIGH,OHLAG,ALFLAGPMRKLAG,RMLAG,SUBLAG,RECLAG 
KROW=N0H+NSCS+2*NTOOL+2*NRM+NLF+NWC+6 
IROW=2*NTOOL+NOH+NSCS+2*NRM+NLF+NW(+9 

C 
C RECEIVABLES 
C 

DO. 20 J=1,NTOOL 
ICOL=2*NTOOL+J 
X=—LIST(J)*(1.0—DISCP(J)) 
KK=RECLAG(j)+3 
IF(KK—NTYPE) 20,21,22 

22 IROW=KPOW 
21 CONTINUE 

NROW=NROW+1 
IA(NROW91)=IROW 
IA(NV:OW,2)=ICOL 
AA(NROW)=X 

20 CONTINUE 
C PAYABLES 

KROW=N0H+NSC54.2*NT0OL+241 NRM+NLE+NWC+7 
IROW=N0H+NSC54-2*NTOOL+2*NRM+NLF+NWC+8 

C 
C SUBCONTRACTING COSTS 
C 

DO 30 J=1,NSUL3 
IROW=II 
KK=SUBLAG(J)+3 
IF(KK.EU.3) GO TO 3C 
X=—SLBP(J) 
ICOL=3*NTOOL+NWC+j 
IF(KK—NTY0E) 30,31,32 

32 IROW=KROW 
31 CONTINUE 

NROW=NROW+1 
IA(NROWt1)=IROW 
IA(NROW92)=ICOL 
AA(NROW)=X 

30 CONTINUE 
C 
C RAW MATERIALS BOUGHT 
C 

DO 50 J=1,NRm 
IROW=II 
ICOL=3*NTOOL+NWC+NLF+NRM+J+NSUB 
KK=RYLAG(J)+3 
X=—RYB(J) 
IF(KK—NTYPE) .50,51052 

52 IROW=KROW 
51 CONTINUE 

NROW=NROW+1 
IA(NROW,1)=IROW 
IA(NROW,2)=ICOL 
AA(NROW)=X 

50 CONTINUE 
C 
C MARKETING EXPENSES 
C 

DO 60 J=1,NTOOL 
IROW=II 
ICOL=3*NTOOL+NWC+NLF+SUD+2*NRM+J 
KK=MRKLAG(J)+3 
X=—MARK(J,J) 
IF(KK—NTYPE) 60961,62 
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62 I'!ON=KO0 
61 CrINTINUE 

IA(NROW,1)=IRO;4 
IA(NRC,2)=ICOL 
AA(NR)=X 

60 CO%TIXUE 

OVERHLAD EXPENSE'S 

DO 70 J=1,NOH 

ICOL=4*NTOOL+Nv:C+NSUB+NLF+2*NRM+NSCS+6+J 
KK=OHLAG(J)+3 

IF(KK—';TYPE) 70,71,72 
72 IROW=KROW 
71 CONTINUE 

NROW=NROW+1 
IA(NROW,1)=IROW 
IA(NROW92)=ICOL 
AA(NROW)=X 

70 CONTINUE 

C BANK CHARGES 
C 

IROW=II 
ICOL=4*NTOOL+NWC+NLF+NSUB+2*NRM+NSCS+NOH+10 
KK=ALFLAG+3 
X=-1.Q 
IF(KK—NTYPE)90,91,92 

92 IRCP:!=KROW 
91 CONTINUE 

NROA=NROW-s-1 
IA(0';:o1)=IROW 
IA(NROW92)=ICOL 
AA(NRCM)=X 

90 CONTINUE 
RETURN 
END 



C 
C INPUT OF RAW MATERIALS 
C 

READ(5,5000) (RMB(J),J=1,NRM) 
WRITE(6,7002) (RB(J),J=1,NRM) 

211. 
SU3ROUTINE SETS 
INTEGER*2 IA(4000,2) 
cop,..oN IA,AA(4000),(4000), 
1 MCREQ(3,16,0),WCLF(16,1),SPACt(50),RREG(3,50,2),LIST(50),  
2 N'ARK(50,50),SCSP(3950),OISCP(50),SUBP(7),WAGES(2),RkB(2),  
3 WIPP(2,50),SUBC(7),ICOOE(80),NMER(800,3),NAEC(800,3),LAG(50)  
40HRATE(6) 
COMMON MONTH(12),RECLAG(50),SUt3LAG(7r,LABLAG(2),RMLAG(2),  
1 MRKLAG(50),OHLAG(6),ALFLAG 
COMMON LIABLE(4000) 
COMMON NI OW 
COMMON KMONTH 
COMMON' I,J,K,NoNT,NM,II,JJ,ICOL'IROW,HIGH,LONG,ALPHA,NC,NLF,  
1NTOOL,NSUB,NRMoNSCS,NOH 
COMMON NPRE2INPRE1pNBLOCK,NPOST1,NPOST2 
DIMENSION CAPWC(20),CAPLF(5) 

REAL LIABLE 
REAL MCREOiLIST,MARK 
INTEGER SUBWC,HIGH,OHLAG$ALFLAG,MRKLAGgRALAG,SUBLAG,RECLAG 
EQUIVALENCE(LIABLE(4000),CASHIN) 

C SETTING UP THE RIGHT HAND SIDE OF THE MATRIX 
C 

READ(5,5000) (CAPWC(J),J=1,NWC) 
WRITE(6,8002) (CAPWC(J),J=1,NWC) 

8002 FORMAT(/,' 	CAPACITY OF WORK CENTRES',(/127Xi10F8.1)) 
DO 10 K=1,NX 
DO 10 I=1,NWC 
IROW=(K-1)*HIGH+I 

10 B('IROW)=CAPWC(I) 
C 
C CAPACITY OF LABOUR FORCE PER PERIOD 
C 

READ(5,5000) CAPST 
WRITE(6,7001) CAPST 

7001 FORMAT(//,' 	STORAGE CAPACITY 	SINS') 
DO 2 K=1,NM 
I=(K-1)*HIGH+NWC+NLF+NTOOL+1 

2 BCI)=CAPST 

C INPUT OF TOOLS !NHS FOR STORAGE LAG INEQUALITY 

K=1 
KROW=(K-1)*HIGH+NWC+NLF+2*NTOOL+2*NRM+NSCS+NOH+11+NTOOL 
IROW=(K-1)*HIGH-1-C+NLF4-2*NTOOL+2*NRM+NSCS+NOH+12  
READ(5,5000) (B(J),J=IROW,KR= 
WRITE(7;,7004)(B(J),..J=IROW,KROW) 

7004 FORMAT(//0 	INPUT OF FINISHED PRODUCTS.. .',10F10.2) 
00 3 I=1,NTOOL 
KROW=NWC+NLF+2*NTOOL+2*NRM+11+NSCS+NCH+I 
DO 3 K=2 ,1 
IROW=(K-1)*HIGH+KROW 

3 B(IROW)=B(KROW) 

WRITE(6,7000) 
7000 FORMAT(1H1,//o10X,' INPUTS TO THE MODEL') 
5000 FORMAT(10F8.2) 
• MM=NM*HIGH 

DO 1 I=1.91M 
1 2(1)=0. 

C 
C WORK CENTRE CAPACITY 
C 

REA0(5,5000)(CAPLF(J),J=1tNLF) 
WRITE(6,7003) (CAPLF(J),J;=1,NLF) 

7003 FORMAT(/,' 	CAPACITY CF LABOUR FORCE',(/,27X,10F8.1)) 
DO 9 I=1,NLF 
DO 9 K=1,Nm, 
IROW=(K-1)*HIGH+I+NWC 
B(IROW).:=CAPLF(I) 

9 CONTINUE 
C 
C STORAGE CAPACITY 
C 
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DO 7 I=1•NRM 
4ROC-1-%LF+NTOOL+1+I 
5(IiWW)=Ri3(J) 
IRCW=IROW+NW 

7 13(-IT),O'v:).(I) 

INPUT OF CASH 

READ(5i5000) CASHIN 
WRITE(6,700:N CASHIN 

7007 FORMAT(//0 	INPUT OF CASH    1 ,F10•2) 
IROW=2*NTUOL+NWC+NLF+2*NRX+NSCS+NOH+10 
BCIROW)=CASHIN 

C 
C 	INPUT OF SECOND R.1.1.5 FOR USE. WITH BASIC 
C 
C FIRST SET OF ROWS ARE SPLIT IN THE RATIOS 1,1 
C 

DO 19 J=1•Wo. 
19 AA(J)=0.0 

KROW=2*NTO0L+NC+NLF+2*NRM+NSCS+NOH+11 
DO 202 i<=1, 
DO 202 J=1,NTOOL 
IROW=KROW+J+(K-1)*HIGH 
AA(IROW)=B(IROW)/FLOAT(NM) 

202 CONTINUE 
NB=NM/3 
DO 200 K=1,NB 
KK=3*(K-1)*HIGH 
JJ=NWC+NLF+NTOOL+1+NRM 
DO 201 1=1,3 
DO 201 J=1,JJ 
IRO=KK+J+(I-1)*HIGH 
AA(IROW)=B(J)*(4.0—FLOAT(I))/3•0 

201 CONTINUE 
DO 203 J=1,NRM 
JJ=N4t!C+NLF+NTOOL7i-NRM+1+J 
IRCW=KK+JJ 
AA(IRO)=U(JJ) 

203 CONTINUE 
JJ=2*NTOOL+NWC+NLF+2*NRM+NSCS+NOH+10 
I ROW=KK+JJ 
AA(IROW)=B(JJ) 

200 CONTI%UE 
RETURN 
END 

• '2.?) • .6t:-; • 	•6(J••33 
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SUBROUTINE SETA 
INTFGER*2 IA(4000,2) 
coNwnN IA,AA(4000)0(400), 
1 MCRE0(3918,50),WCLF(18,1),SPACE(50)+RMRED( 1,50e2).9LIST(50)* 
7 vARK(50950),SCSP(3,50),DISCP(50),SUBP(7),WAGES(2)9.RME(2), 
3 WIPP(2950),SUBWC(7),ICODE(800),NANER(800.3),NAmEC(800,3),LAG(50) 
4OHRATE(6) 
CO' 10N 70NTH(12),RECLAG(50),SUBLAG(7),LABLAG(2),RMLAG(2), 
1 mRKLAG(50),OHLAG(6),ALFLAG • 
CO:4MON LIABLE(4000) 	• 
COMMON NPOW 
COmMON KMONTH 
COMMON I,J,K,,NTINm,II,JJ,ICOL'IROW,HIGH,LUNG,ALPHA,NWC,NLE, 

1NTOOL,NSUB,Rtl:/NSCSINOH 
CM:AON NPRE29NPRE1,NBLOCK*NPOST19NPOST2. 
REAL LIABLE.  
REAL MCREQ,LIST,"1ARK 
INTEGER SUBWC*HIGH,OHLAGIALFLAG,YRKLAG,RMLAG,SUBLAO,RECLAG 
KCOL=4*NTOOL+NWC+NSUB+NLF+2*NRY+3 
Do 500 K=1,NM 
DO 500 J=1 ,LUNG 
GO TO (503,502,5049504,5049504,506,504,.504,504,504,504),K 

501 CONTINUE 
504 II=1 

JJ=NPRE7 
MONTH=K-2 

CALL WRITEA 
502 II=NPRE7+1 

JJ=NPRE1 
KMONTH=K-1 • 
CALL WRITFA 

503 II=NPRE1+1 
JJ=NBLOCK 
KMONTH=K 
CALL v i2ITEA 
IF(NM—K) 508,508,704 

704 II=NBLOCK+1 
JJ=NPOST1 
KYONTH=K+1 
CALL WRITEA 
IF(N—K-1) 508,508,505 

505 KYONTH=KYONTH+1 
II=NPOST1+1 
JJ=NPOST2 
CALL WRITEA 
IF(KMONTH—NM) 505'508,509 

508 CONTINUE 
IROW=HIGH+1 
KK=(K-1)*LONG+J • 
IF(B(KK).E0.040) GO TO 506 
vRITE(9,3004) MONTH(K),(NAEC(J,L),L=1,3)(NAMER(IROW,L),L=193), 

1 Fi(KK) 
506 CONTINUE 

IROW=HP-1H+2 
IF(LIABLE(KK).E0.0.0) GO TO 507 
4RITE(R,3004) MONTH(K),(NAMEC(J,L),L=1,3),(NAMER(IROW,L),L=293), 
1 LIABLE(KK) 

507 CONTINUE 
L=2*NTOOL+1 
LL=1*NTOOL 
KK=J-2*NTOOL 

WRITE(9,3005) MONTH(K)lo(NNYEC(J,N),N=1,3) 
19LiST(KK) 

3005 FORMAT(4X,A2/A6,2A1,7X,'GROSSALE',2X*F11.4) 
500 CONTINUE 

3003 FORMAT(4)(0A2,A4,-2A1,2XIA2,A4,24\1,2X0F11.4) 
3004 FORMAT(4X,A29A492A192X,3A212X,2X9F11.4) 

RETURN 
END 
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sun i,)nuT 	II FA 
I NTS:G.F.Pf .2 IA•( 60'97 
cr-, •.1 ,.; 	IA 	(itn!'C 	9.( 	) 

1 	 (1915' 	) 9'•'.CLF 	91 ) ,5",CIACE( ri)) .RMRE(-:;( 395`,-)1 L? ) 	L I ST ( 	)9 
7 vmK('tr“) )95C,PC'.3.5)) 	SCP ( 50 ) 95H.11 ( 7 ) 	 AGES( ? ) .1-01P,( 2 ) 
3 	( '9`50 ) 9SUB'‹17 9ICODE( POO ) 9NAMER( 80093 )9NAMEC( 	) 'LAG( 50) 
/40 H, A T E 	) 	• 

vO%THC 12 ) 9RECLAG ( 50 ) 9SURLAC;( 7 )9LAhLAG( 2 ) RY1. ACT( 2 ) 
1 "RK14C) ( 50 )9OHLAG( 6 )9ALFLACI 

• COYNION L. I tOLE(4r'nf) ) 
COON 
CC:Y..1 \10N KMONTH  
COON I 9.19K9N9NT,Nm,,I I 9JJ 9 I COL IRCAq,H ICiM,LONG,ALPHA,NWC9NLE, 

1NTOOL , NSUB NRM NSCS NOH 
C (..•"sel0 t‘! 	P F. 2 'NYRE' 9NRLOCK \IPOST19NPOST 2 
REAL LIABLE 
REAL VCRE( LI ST ,?ARK 
INTEGER SUC9)4,I0H9OHLAG9ALFLAG9MRKLAG, 1 MLAG9SUBLACJ9RECLAG 
DO 601 I I I 9JJ 
IFtIA( I2)—J) 60114019601 

401 	I ROAf I A ( I 9 1 ) 

	

TE (993003) MONTH( K )9 INAN1EC(J9L)9L=193 ) 	 ( KMONTH ) 
1 ( NAMER ( I ROW9L ).9L=19? ) ,AA( I) 

601 CONTINUE 
3003 FORMAT (4X 9 A29A492A1,2X9A29A492A1,7X,F11•4) 

RETURN - 
END 



C 

C 

C 
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DIMENSION ','!AriES(3) 
DIMENSION bETA(3) 
DIMENSION Y(50) 
DIMENSION X(4000),RX(4004) 
DIMENSION RN12(2),SURP(7),TOTLAB(2)0LIST(50),RMIN(2) 
DIMENSION RECLAG(50)+SUBLAG(7),LARLAG(2),RMLAG(2)i 
1 N'RKLAG(50),OHLAG(6) 
REAL LARREO(2) 
REAL LIABLE 
REAL LIST 

9WCLF(1892) 

DATA INPUT 

  

READ(5,6001)NTOOL,Nl‹,NSUB,NLF,NRM,NSCSoN0H,NM 
READ(5,5003) (LIST(J)eJ=1,NTOOL) 
READ(509994) ((WCLF(J,I),J=10Tvv. C),I=1,NLE) 
READ(5,5004) (SUBP(J),J=1,NSUB) 
READ(5950021 (WAGES(J),J=?.,NRM) 
READ(5,5002) (RMB(J),J=19o:RM) 
READ(5,9997) (RECLAG(J)*J=1,NTOOL) 
READ(5,9997) (S(1BLAn(J),J=1,NSUB) 
READ(5999)7) (LABLAG(J),J=1,NLF) 
READ(5+9997) (RMLAG(J)o.J=1,NRM) 

READ(519997) (MRKLAG(J),J=19NTOOL) 
READ(5,9997) (OHLAG(J),J=1,NOH) 
READ(509997) ALFLAG • 
• READ(5,5002) (Y(J)iJ=1,NTOOL) 
READ(5,5001) 	(RMIN(J),J=1,NRM) 
READ(5,5001) CASHIN 
READ(5+5005) ASSETS • 
READ(5,5001) 	(PETA(I),I=1,3) 

WRITE(6,6500) NTOOL9NOC,NSUBoNLF,-NRMoNSCS,N0HoNM 
WRITE(6,6501) 
WRITE(616502)(RECLAG(J),J=1*NTCOL) 
WRITE(6,6503)(SUBLAO(J),J=1,NSUB) 
WRITE(6,6504)(LABLAG(J),J=10LE) • 
ORITE(696505) (RMLAG(J) ,J=1,NRM) 
WRITE(696506)(MRKLAG(J),J=1,NTOOL) 
WRITE(6,6507)(OHLAG(J),J=1,NOH) 
WRITE(6,6508)ALFLAG 
WRITE(616509)(RmB(J),J=1,NRM) 
WRITE(66510)(WAGES(J),J=1,NRM) 
WRITE(6,.6511)CASHIN 
WRITE(616512)(Y(J)1J=1,NTOOL) 
ARITE(6,6515) (RMIN(J),J=1,NRM) 
WRITE (6,6514) ASSETS 
WRITE(696513) (9ETA(I),I=1,3) 

HIGH=3*T70L+NWC+NLF+211-NRM+NSCS+NOH+11 
LONG=3*NTOOL+NSUB-1-2*NRM+NSCStN0H+6 

DC 1 J=1,NLF 
1 TOTLAP(J)=0.0 	• 

OPINCM IS THE OPERATING INCOME TO DATE 

OPINCM=0.0 

KK=NHIGH4-3 
'IRITE(699q96) 	KK 
READ(3o5000tEND=800) 	(RX(J),J=1,KK) 
KK=LONG*NM 
WRITE(6,9996) 	KK 
RFAD(3,5000,END=P00) 	(X(J),J=1,KK) 

4000 	FORmAT(1H1) 
4001 	FORMAT (IH 	,//,' 	I'NCOM'E 	AND 	SURPLUS ACCOUNT MONTH 	1,13:. 

1///) 
400? 	Er'IRMAT(OH 	GROSS 	SALES ,F10.0) 
4003 	FORMAT(30H 	LESS CASH DISCOUNT ,F1C.0) 
4004 FORMAT (30H 	NETT SALES 9.F1.0) 
4005 	FORmAT(30H 	LESS STANDARD COST ,F10.0) 
4006 	FORMAT (30H 	CITER 	COSTS ,F10.01 
4007 FORM.AT(30H 	Tr:JAL COST OF 	SALES ,E10.0) 
400H 	FORMAT (30H 	YANtIFACTURI(NG MARGIN ,F10.0) 
4009 	FORMAT-(30H 	LESS DIRECT 	SALES 	• 07 104,0) 
4010 	FORMAT(30H 	• 	- PROMOTION IF10.0) 
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4011 
4012 
4C13 
-4014 
4015 
.4016 
4017 
4,018 
4019 
4020 
4021 
4030 
4031 
4032 
4033 
4034 
4035 
4036 
4037 
4038 
4040 
4041 
4042 
4043 
4044 
4045 
4049 
4050 
4051 
4052 
4053 
4054 
4056 
4057 
4059 
4059 
4061 
4062 
4063 
4064 
4065 
4056 
4067 
4068 
4069 
4070 
4071 
4072 
4073 
4074 
4075 
4076 
4077 

DISTRITION 
T'AL 	:TXPENSES 

GEAFiZAL • 
LOAN ITEREST 
TOTAL SELLING EXPENSES 
S.E.T. 
c;')FRATING 
INCOME AEFORF TAX 

FORMAT (30H LESS TAX 
FCMMAT(10H NETT INCOME 
FORMAT (30H -PNOVISION FOR DEPRECIATION 
FORMAT(30H BALANCE SHECT 	MONTH 

FORMAT (30H ASSETS 
FORMAT(30H CASH 
FORt'.'AT (30H ACCOUNTS RECEIVAPLE 
FORMAT(30H INVENTORIES 
FORMAT(30H 	FINISHED GOODS 
FORMAT(30H 	W.I.P. 
FORMAT (30H 	mATFRIALS 
FORMAT(30H 	IN TRANSIT 
FORMAT (30H TOTAL CURRENT ASSETS 
FORMAT(30H TOTAL INVENTORIES 
FORMAT(30H P.P.F. 
FORMAT(30H AT ORIGINAL COST 
FORMAT(30H LESS ALLOWANCES 
FORMAT(30H TOTAL ASSETS 
FORMAT(1H1,//,' 	CASH FLOW STATEMENT 
FORMAT (30H CASH AT BEGINNING 
FORMAT(' 	EXPENDITURES 	) 
FORMAT(30H RAW MATERIALS 
FORMAT(30H WAGES 
FORMAT(30H OVERHEAD ACCOUNTS 
FORMAT('' RANK CHARGES 
FORMAT('' UECEIPTS 
FORMAT(30H NETT SALES 
FORMAT(30H CASH AT END 
FORMAT(//,' SALES TO ASSETS 
FORMAT(//,' 	INCOME TO' ASSETS 
FORMAT(//,' 	INCOME PER MAN HOUR 
FORMAT(//,' SALES PER MAN HOUR 
FORMAT(//,' 	STOCK TO SALES PATIO 
FORMAT(//,' VALUE ADDED PER MAN HR 
FORMAT(//,' VALUE ADDED TO ASSETS 
FORMAT(//,' 
FORMAT (//,' 
FORMAT (//,' 
FORMAT(//) 
FORMAT( 
FORMAT( 
FORMAT( 
FORMAT('  
FORMAT( 
FORMAT(30X, 

5000 FORMAT(F20.4) 
5001 FORMAT(10F8.2) 
5002 FORMAT(12E6.4) 
5003 FORMAT(1OX,F8.4) 
5004 FORmAT(12F6.2) 
5005 FORMAT(F1?.2) 
6000 FORMAT(1H1) 
6001 FORMAT(36I2) 
6002 FORMAT(//,'' MONTH ',I29/915XoyTOOL1'95X,ITOCL21,5X,'TOOL310  

15XOTOOL41 ,5X,'TCOL5 1 ,5X,'T00L61 ,5XIITOOL71 ) 
6003 FORMAT(/,' PRODUCE 1 ,(7F10.2)) 
6004 FORMAT(/,' STORE 	f,(7F10.2)) 
6005 FORMAT(/,' SELL 	1 9(7E10.2)) 
6006 FORMAT(1H0,/920X9 1  PRODUCTION4STORAGE AND SALES SCHEDULES') 
6500 FORMAT(1H 9//,' DATA INPUT' ,//,' PRODUCTS M/C S1 ,5X0SUBS',6XOLA 

1OUR 1 ,4X9IMATERIALS STANDARDS 0—HEADS1 1,3XOPERIODS',//98(2X,I4,4X) 
6501 FORMAT(///,' LAGS') 
6502 FORMAT(/,' 	RECEIPTS 	'48)(450'1) 
6503 FORMAT(/,' 	CONTRACT PAYMENTS',8X,5011) 
6504 FORMAT(/,' 	LABOUR 	PAYMENTS',8X,50I1) 
6505 FORMAT(/,' 	MATERIAL PAYMENTS',8X,50I1) 
6506 FORMAT (/,' 	ADVERT 	PAYMENTS1 ,8X,50I1) 
6507 FORMAT(/,' 	0—HEADS PAYMENTS',8X,50I1) 
6508 FORMAT(/,' 	INTEREST PAYMENTS',8X,50I1) 
6509 FORMAT(//,'.  RMB 	'9/920E6.2) 
6510 FORMAT(//,' WAGES 	',/,20E6.2) 

FORYATI?0,4  
FnR,AAT(7 1-1 
FORMAT (3('H 
FORNAT(30H 
FORMAT(3CH 
FORMAT(30H 
FOR MAT (30H 
FORNIATI3uM 

FINISHED GOODS 
CROSS SALES 
TOTAL ASSETS 
LIABILITIES 
VALUE ADDED BY FIRM 

9F10.0) 
,F10.0) 
9E10.0) 

'9E1090) 
'0E10.0) 

9F10.0) 
0F10.0) 

,F20.4) 
9E20.4). 
,E20.4) 
9E20.4) 
,F20.4} 
0720.4) 
9F20.4) 

VALUE ADDED TO SALES 	',F20.4) 
DEBTORS TO CREDITORS 	,F20.4) 

OPERATING RATIOS 	',//) 

I ) 

,F20.0,//) 
,F20.01//) 
,F20.00//) 
,F20.0,//) 
9F20.0.//) 

0E-10.::)) 
,F10.(-;) 
,E10.C) 
,F10.0) 
,F10.0) 
,F10.0) 

:P.86.(;:d 
,F10.0) 
,F10.0) 

,I5) 

,F10.0) 
0=10.0) 
9E10.01. 
,F10.0) 

,F10.0.) 
,F10.0) 
,F10.0) 

oF10.0) 
,F10.0) 
9F10.0) 

MONTH 
.9E10.0) 

,I2,///) 
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6511 FORMAT (//,' CASH IN 	 1 ,/,F12.3) 
6512 FORMAT(//,' PRODUCT INPUT 	'0/920E6.2) 
6513 FORMAT(//,' 9ETA RATES 	 ',/92.0F6.2) 
6514 FORMAT(//,' OTHER ASSET INPUT',/,F20.4) 
6515 FORMAT(//,' INPUT OF MATERIALS 1 ,/,10F1O.2) 
9994 FORAT(20F4.3) 
9996 FORMAT(///,'. DIMENSION 1 ,110) 
9997 FORMAT(70I1) 

C 
C WRITING OUT THE PRODUCTION SCHEDULES ETC. 
C FOR THE REMAINDER WE NEED THE INITIAL CONDITIONS THAT HAVE. BEEN 
C 	BEEN SUPPLIED TO THE MAIN PROGRAMME 
C 

WRITE(6,4000) 
WRITE(6,6006) 
DO 7 K=1,W1 
WRITE(6,6002) 'K 
KK=(0-.1)*LONG 
L=KK+1 
LL=KK+NTOOL 
WRITE(6,6003) (X(J),J=L,LL) 
L=LL+1 
LL=LL+NTOOL 
WRITE(6,6005) (X(J),J=LoLL) 
DO 8 J=1,NTOOL 
L=KK+J 
LL=KK+NTOOL+J 
Y(J)=Y(J)+X(L)—X(LL) 

8 CONTINUE 
WRITE(6,6004) (Y(J),J=1,NTOOL) 

7CONTINUE 
C 
C 
	

C=ALCULATING THE VALUE OF FINAL STOCKS 
C 

STOCK =0.0 
DO 30 J=1,NTOOL 

30 STOCK=STOCK+Y(J)*LIST(J) 
C 
C CALCULATION OF THE INCOME AND SURPLUS ACCOUNT 
C:INPUT FOR THIS WILL BE 	 THE FINAL VALUES FROM THE SIMPLEX TABLEAU 
C THE LENGTH OF EACH MONTHS •MATRIX, THE NUMBER OF TOOLS CONSIDERED, ETC. 

KNUM=3*NTOOL+NSUB+2*NRM 
C 
C INCOME AND SURPLUS 
C 

DO 6 K=1,NM 
KK=(K-1)*LONG 
KH=(K-1)*HIGH 
WRITE(6,4000) 
WRITE(h4001) K 

C 
C GROSS SALES 
C 

I =NWC+NLF+NTOOL+3+KH+2*NRM 
WRITL(6,4002) RX(I) 

C 
C DISCOUNT 
C. 

J=I+NTOOL+NSCS+NOH+2 
WRITE(6,4003) RX(J) 
WRITE(6,4077) 

C 
C NET SALES 
C 

Y(1)=RX(I)—RX(J) 
WRITE(6,4004) Y(1) 

C 
C STANDARD COST OF SALES 
C. 

- Y(2)=0. 
D0 . 2 J=1,NSCS 
I =KK+KNUM+J 

2 Y(2)=Y(2)+X(T) 
WRITE(6,4005) Y(2) 
WRITE(6,4006) 
WRITE(6,4007) 
WRITE(6,4077) 

C 

Yi 2) 



21.8 
C MANUFACTU7.ING MARGIN 
C 

Y(3)=Y(1)-Y(?) 
wPITE(6,4008) Y(3) 
Y(4)=0. 

C TOTAL SELLING EXPENSES 
C 

DO 7 J=1,NTOoL 
I=LK+2*tjOOL+NSUB+2*NR+J 

3 Y(4)=Y(/,)+X(I) 
WRITE(6,40(.39) 
WRITE(6.4010) 
WRITE(6.4011) 
WRITE(6.4012) Y(4) 

C AD'•%:IN AND GENERAL IS nivEN BY- BETA (1) TIMES THE TOTAL LABOUR FORCE.  
C 	CALCULATE THE REOUIRED LABOUR FORCE IN HOURS FROM THE ROW VALUES 

GIVING THE TIMES REQUIRED AT EACH MACHINE CENTRE 

DO 100 !=1,NLF 
LABREO(I)=0.0 
DO 100 J=1,NWC 
JJ=KH+J 
LABREG(I)=LABREO(I)+RX(JJ)*WCLF(J,I) 
TOTLAB(I)=TOTLAP(I)+LABREC(I) 

100 CONTINUE 
Y(5)=0. 
D0.4 J=1.NLF 

4 Y(5)=Y(5)+LABREO(J)*BETA(1) 
WRITE(6,4013) Y(5) 
Y(6)=0. 
WRITE(6,4114) Y(6) 
Y(7)=Y(4)+Y(5) 
WRITE(6,4015) Y(7) 

C 
C RATE AT WHICH S.E.T. IS PAID IS BETA(?.) 

C THIS COULD BE + OR 	AND COULD BE TAKEN TO REFER TO ANY OTHER GENERAL 
C 
C EXPENSE THAT VARIES WITH LABOUR FORCE 
C 

Y(8)=0. 
DO 5 J=1.NLF 

5 Y(8)=Y(P)+LABREO(J)*BETA(2) 
WRITE (6,4016) Y(8) 
WRITE(6.4077) 
Y(9)=Y(3)-Y(7)-Y(8) 

C 
• C 	INCOME BEFORE TAX 

C 
WRITE(6,4017) Y(9) 
WRITE(6.4019) Y(9) 
OPINCM=OPINCM+Y(9) 

C 
C COMPANY TAX IS ASSUMED TO BE PAID AT A FLAT RATE OF BETA(3) PER CENT 

Y(1O)=Y(9)*RETA(3) 
IF(Y(9).LT.0.0) Y(10)=0.0 
WRITE(6.4019) Y(10) 
WRITE(6.4077) 
Y(11)=Y(9)-Y(10) 
':P.ZITE(6,4020) Y(11) 

C 
C 	CASH FLO STATEMENT 

WRITE(6.4049) K 

GROSS SALES 

I=NWC+NLE+NTOOL+3+KK+2*NRM 
W 	6RITE(.4002) RX(I) 

C 
C INCOME BEFORE TAX 
C 

WRITE(6,4019) Y(9) 
WRITE(6.4071) 

C 
C CASH AT BEGINNING 
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7=CASHIN 
I=KK-LOI‘Tri.KNUNSCS+NOH+1 
IF(I.GT.0) 7=X(r) 
WRITF(6,405C) 
WRITE(6,471) 

C 
C EXPENDITURES 
C 
C 
C RAW MATERIALS 
C 

Y(10)=0.0 
DO 220 J=1,NR 
ICOL=KK-RMLAG(J)*LONG+2*NTOOL+NSUB+NRM+J_ 
IF(ICOL.LE.0) GO TO 220 
Y(10)=Y(10)+X(ICOL)*RMB(J) 

220 CONTINUE 
WRITE(6,4052) YUO) 

C 
C WAGES 
C 	

Y(11)=0.0 
DO 23 J=1,NLF 

Y(11)=Y(11)+RX(IROW)*WAGES(J) 

IROW=KH-LABLAG(J)*HIGH+NWC+J 
IF(IROW.LT.0) GO TO 23 

23 CONTINUE 
WRITE(6,4053) Y(11) 

C• 
C OVERHEAD ACCOUNTS 
C 

Y(12)=0.0 
• DO 24 J=1,NOH 
ICOL=KK-CHLAG(J)*LONG+KNWil+NSCS+J 
IF(ICOL.LE.0) GO TO 24 
Y(12)=Y(12)+X(ICOL) 

24 CONTINUE 
WRITE(6,4054) Y(12) 

C 
C BANK CHARGES 
C 

WRITE(6,4057) 

C .NETT SALES 

WRITE(6,4004) Y(1) 
WRITE(6,4071) 

C CASH AT END 
C 

I=(K-1)*LONG+KNUM+NSCS+NOH+1 
WRITE (66,4059) X(I) 

6 CONTINUE 
C 	PRINTING OUT THE OPERATING RATIOS 

WRITE(6,4000) 
WRITE(6,4070) 

C 	ASSETS,LIABILITIES AND GROSS SALES ARE THE LAST THREE ROO VALUES 
C 	CALCULATING THE COSTS OF MATERIALS INPUT AND CONTRACT INPUT_ 
C 	SUBRACTED FROMi GROSS SALES THESE GIVE THE VALUE ADDED 13Y THE FIRM 
C .  

COSTS=0.0 
DO 31 K=1,NM 
I=(K-1)*LONG+3:(NTOOL+NSUB+2*NRM+1 
.COSTS=COSTS+X(I) 
DO 31 J=1,NSUB 	• 
j=(K-1)*LONG+2*NTOOL+J 

31 COSTS=COSTS+X(I)*SUBP(J) 

KK=NM*HIGH 	• 
,,J=KK4-1 
70TASS=RX(J)+ASCETS 

Y(13)=0.0 
I=K15.-ALFLAG*LONG+KNuM+NSCS+NOH+.4  
IF(T.GT.0) Y(13)=X(I) 
WRITE(6,4056) Y(13) 

C 
C RECEIPTS 
C 
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J=KK+2 
LIM-ILE=RX(J)• 
J=KK4-3 
SALES=RX(J).  
VALADD=SALES—COSTS 
WRITE(694 0U) 
WRITE(6,4072) STOCK 
WRITE(5.4071) SALES 
WRITE(6,4074) TOTASS 
WRITE(6.6075) LIABLE 
WPITE(6.4076) VALADD 

C 
OPERATING INCOf'E HAS ALREADY BEEN CALCULATED 

C 	ALL THE FIGURES 	BE GROSSED UP TO AN EQUIVALENT TWLEVE MONTH 
C 	PERIOD RY USING THE FACTOR 12/NM 
C 

AFACT=12.0/FLOAT(NM) 

Z=SALES*AFACT/TOTASS 
WRITE(6.4061) Z 

C 
C 	INCOME TO ASSETS 
C 

TLABHR=0.0 
DO 35 I=1,NLF 

35 TLABHR=TLABHR+TOTLAB(I) 
C 
C 	INCOME PER MAN HOUR 
C 

Z=SALES/TLABHR 
vRITE(6,4064) Z 

C 
C 	VALUE ADDED STATISTICS 
C 
C 	VALUE ADDED PER MAN HOUR 
C 

Z=VALADD/TOTASS 
WRITE(6,4067) Z 

C 
C 	VALUE ADDED PROPORTION OF SALES 
C 

Z=STOCK*AFACT/SALES 
WRITE(6,4065) Z 

C 	DEBTORS TO CREDITORS 
C. 

Z=-1.0 
1F(LIABLE.GT.0.0) Z=ASSETS/LIAhLE 
WRITE(6./1069) Z 
GO TO 802 

8P WPLTE(69801) J 
801 FORATC//iir ERROR OCCURED AT 
802 CONTINUE 

STOd 
END 

C 

C 	SALES TO ASSETS
C  

• Z=OPINCM*AFACT/TOTASS 
WRITE(6,4062) Z • 

C 	LABOUR PRODUCTIVITY 
C 

Z=OPINCM/TLABHR 
WRITE(6,4063) Z 

C 
C 	SALES PER MAN HOUR 
C 

Z=VALADD/TLABHR 
WRITE(6,4066) Z 

C 
C 	VALUE ADDED TO TOTAL ASSETS 
C 

Z=VALADD/SALES 
WRITE(6,4068) Z 

C 
C 	STOCK TURNOVER 
C 
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Appendix 2.4 Computational Difficulties  

and Solution Strategies  

2.4.1 LP Models  

The model described in Chapter 2 is a second version of 

the matrix generating programme (MGP). The initial version 

contained many of the row sums and implied variables as 

explicit column values, (e.g. work in progress, work centre 

usage, etc.), and had a larger column dimension than the 

version described in Chapter 21(compare examples 6 and 7 in 

Table 2.23). With small models, this earlier formulation was 

found to be satisfactory; the explicit formulation enabled 

management to comprehend the model more readily; larger models 

soon gave rise to computational difficulties and the revised 

form of the MGP was used. (Apart from example 6 of Table 2.23, 

all results are obtained using the formulation of Section 2.5 

and Appendix 2.2). 

NO ROWS COLS DATA TIME 	LP/CC CRASH 	COMMENTS 

238 150 3/5 0.66 	LP YES 

2 239 151 3/5 0.5 	CC NO 

3 239 151 3/5 0.4 	CC NO 

4 238 150 3/5 0.49 LP YES 

5 258 151 3/5 0-co. CC NO INDIFFERENCE 

1
6 565 684 3/12 9.07 LP NO ROW AND DJ CHECKS 

7 576 360 3/12 1.63 LP YES 

8 240 150 3/5 0.79 LP' YES 

9 239 150 3/5 4.59 LP YES INDIFFERENCE 
M66-1274, 4.1 MIN 

Table 2.23 Sample Times for Smaller LP Models  

2.4.1.1 Small Models: The computation times for small 

models (i.e. 3/5 and 3/12 models)are compared in Table 2.23. 

The use of the: CRASH:t procedure is noted in the CRASH.column; 

for MPS terminology see (51) 
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the entry LP (or CC) in the LP/CC column denotes the use of the 

linear oc Charnes and Cooper(fractional) programming, algorithm. 

The time noted is for optimisation only, i.e. from the time of 

setting up of the problem to its optimisation. Generally a 

further 3-5 minutes must be added to this time to allow for 

the matrix generating, compilation and .data conversion steps 

outlined in Appendices 2.2 and 2.3. 

Although the use of 'CRASH' appears to have retarded the 

solution of small problems, later experience with this routine 

proved beneficial. Even with such small jobs, some difficulties 

were manifest. Example 9 of Table 2.23, arrived at an indifference 

plane during computation; for 1208 iterations the objective 

function remained constant, i.e. the degeneracy due to 

'computation' had not been overcome. 

All jobs detailed in Table 2.23 were run using the HASP 

system (50), i.e. with core size restricted to 32K bytes but 

with no charge for input/output time. The critical level of 

row dimension between HASP and NON-HASP was found to be between 

900-1000 rows. Above 1000 rows, jobs had to use total core 

(65K bytes) and were run using the on-line, NON-HASP, system 

with a consequent rise in computation time. 

2.4.1.2 Large Models: A 26/8 model was set up and run 

under the HASP system. (The, dimensions for this model, and 

the 26/12 model are shown in Table 2.24). Computation had to 

be effected in four stages due to time restrictions on the 

computer unit. The carry-over of information between stages 

was effected using the basis preservation techniques. For 

this model, the solution time was 103 minutes. Part of this 

large solution time was due to the difficulty of finding the 

first feasible solution. Since the model was run under the 



Total Normal Free Fixed'Bounded 

I 
26/8 	Rows (LOG. VAR.) 

Columns (STR. VAR.) 

26/12 	Rows (LOG. VAR.) 
Columns (STR. VAR.) 

930 	224 
1192 1016 

1395 1260 i 
1188 1152 1 

2 1 704 ' 0 
0 0 1 176 

75 i 60 0 
0 I 0 36 

1 
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HASP system, CRASH gave little help. (A discussion of the 

value of the CRASH routine is presented below in 2.4.1.3). 

The eta files soon exhausted core, and the routine did not 

complete its second phase satisfactorily. - 

The difficulties of the 26/12 model are discussed below 

in 2.4.1.3. The large number of fixed rows (equalities) in 

the 26/8 model was due to the explicit inclusion of all 

Table 2.24 The 26/8 and 26/12 model dimensions  

accounting variables in,equality rows. For the 26/12 model, 

and all subsequent models, the row sums (normal rows) were 

used. 

2.4.1.3 The 26/12 Model: The normal setting of MPS 

tolerances was used to attempt the computation of the 26/12 

model; computational difficulties arose immediately. These 

were: 

i. row checks; left and right hand sides of row sums 
differing by more than XTOLERR 

ncpn-zero reduced costs (DJ's) for basic variables 
(i.e. DJ's in excess of XTOLDJ) 

iii. singularities in the basis during inversion. 

All three signify computational, rather than theoretical 

errors, (orerrors of formulation). 

The process of amending the tolerances to facilitate 

solution is presented in Table 2.25. 



NO. SCALE XEPS CRASH XFREQINV XTOLPIV XTOLV XTOLDJ 	XOBJ COMMENTS 

1 no 0.1 no 100 *10.0 *50.0 '10.0 	ASSETS DUAL effective but singularities 
occur at iteration 132 

2 no not 
used 

yes 50 *90.0 '50.0 '10.0 	11  Slower convergence to feasible  
solution. Singularities at 
iteration 183, after 18 min. 

3 no 0.1 yes 50 *100.0 0.5 0.5 	It 
Etas ex-core during CRASH. 
206 infeasibilities; loss of 
control. 

4 no 0.1 
• 

yes 50 '100.0 0.05 0.05. 11 
Singularity at first inversion  
XTOLV or XTOLDJ too high. 

5 no 0.1 no 30 '1000.0 0.5 0.5 	If XTOLPIV not critical above 10-6 (DUAL) 

6 yes 0.1 no 50 	*100.0 0.5 0.5 GROSSALE Unsatisfactory control of infeasibility 
after iteration 44.. XTOLPIV is not 
affecting the accuracy 

7 yes 0.1 no 50 	*100.0 0.5 0.5 ASSETS Similar to No.6 XFREQINV too high ? 

Better than Nos. 6 & 7. 
8 yes 0.001 no 35 	*100.0 0.5 0.5 11 

XTOLDJ and XTOLV are too large 

able 2.25 The solution strategies for the 26/12 model. Standard tolerances are given in No.10 

Scale factors for tolerances are denoted *10.0I 
L_ 	 i 

i  



NO. SCALE XEPS CRASH XFREQINV XTOLPIV XTOLV XTOLDJ XOBJ COMMENTS 

9 yes 0.1 no 50 
• 
*10.0 *10.0 *10.0 ASSETS 

Near feasible after 70 iterations. 
Sum of infeasibilities increases 
thereafter. 

10 yes u nosetd no 35 10  8 ..,0  -7 -1 10 -7 II Normal controls are too low  r. 

11 yes 0.001 twice 50 *10.0 *10.0 *10.0 tt 
22.9 min. for CRASH-INVERT-CRASH-INVERT 
5 infeasibilities at the end. 

12 yes 0.01 twice 50 *10.0 *10.0 *10.0 It 
12.4 min for 	CRASH-INVERT-CRASH-INVERT 
Feasible after 2 min. 

13 yes 0.001 - 50 *10.0 *10.0 *10.0 ft 

Basis from No.11 not feasible. 
XEPS is too small. 

14 no= 0.01 - 50 *10.0 *10.0 *10.0 

. 
ft 

Very slow rise in OF. System error 
during the use of XDZPCT = 0.1 

15 yes 0.001 - 50 *10.0 *10.0 *10.0 . 	It 
Continuation of No.14. Large number 
of singularities. Basis abandoned. 

16 yes not 
used twice 50 *10.0 *10.0 *10.0 ft $O min. to solution,XPRICE = 4 

17 yes 	' 0.01 twice 50 '10.0 *10.0 *10.0 It 60 min. to solution,XPRICE = 4  

18 yes 0.01 three 
times 50 *10.0 *10.0 *10.0 It Third CRASH ineffective. 

• 
19 	yes 	0.01 twice 50 

	*10.0 	'10.0 *10.0 	 • 11LUi V 1- • 

able 2.25 continued.  
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Row Checks: The maximum row error, (even after scaling), was 

less than 10-3. In all strategies the row check marker was 

put to zero until the 'optimum' was reached, (XCHECKSW = 0); 

row errors thus introduced were removed by inversion. 

Use of the Dual Algorithm: The first few strategiei (1, 5, 6, 

7, 8) attempted to use the dual algorithm, since this should 

be More effective in removing infeasibilities. For these 

problems, this was not found to be true. 

The dual algorithm operates on major iterations only, and 

the consequent loss of speed (especially under NON-HASP) was 

found to be unjustifiable. 

Scaling: Automatic scaling was soon utilized; the intrinsic 

scaling introduced in the data was insufficient and it was 

deduced (from comparisons between 4,5 and 6,7) that the lack 

of further scaling was detremental to the condition of the 

inverse basis. The condition of the inverse basis was further 

improved by the use of the slower (but more accurate) form of 

the inversion routine - i.e. XINVERT was set at 1. 

The tolerance levels: After a few initial attempts at .raising 

the tolerances by more than a factor of ten (strategies 1 to 8) 

it was deduced that such action was not aiding solution; a 

comparison of the "paths", i.e. a comparison of the incoming 

and outgoing vectors in 5, 6, 8 and 9 showed that XTOLDJ and 

XTOLV should not be raised by more than a factor of 10.0. 

Raising XTOLPIV to 10-7 (i.e. multiplication by 10.0) 

was found to be vital; this, and: the need for the accurate 

form for inversion imply that the inverse basis would soon 

become unstable again, if the dimensions of the LP were 

increased any further. 

Initial infeasibility and the CRASH routines: Despite the 
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change of form in the MGP (introducing inequalities into the 

system, and removing equalities) the major computational 

difficulty was the attainment of the first (good) feasible 

solution. In small programmes CRASH was found to be of little 

value since there were few infeasibilities; 'this value increased 

with programme size, as long as the eta vectors (the components 

of the inverse basis) could remain in core. For the 26/8 

model under HASP, CRASH was very ineffective. The result of 

the etas exhausting core during a CRASH procedure is to leave 

the basis in a worse position for later (PRIMAL) optimisation 

(see eg.'strategy 3 in Table 2.25). 

Under NON-HASP, with the 26/12 model, a 'double crash' 

procedure was tried, using inversion between the 'crashes' to 

concentrate the eta files and enable them to come into core 

again. The limit of the "multiple crash" procedure was found 

to be CRASH - INVERT - CRASH - INVERT; a further CRASH had 

little effect, (strategy 18). In. Table 2.26, the START, FINISH 

columns give the number of infeasibilities at the beginning 

and the end of the CRASH routine; the time taken by CRASH is 

noted under the TIME column. 

XEPS START FINISH TIME SCALE COMMENTS 

.0. 24 5 6.1 NO 

.0 24 6 7.1 YES INVERT CALLED 
6 4 4.8 

.0 24 6 7.2 YES INVERT CALLED 
6 4 4.8 

.001 36 18 12.0 YES ETAS EX-CORE 
18 .5 10.3 )' 	- INVERT CALLED 

.01 60 33 10.1 YES ETAS EX-CORE 
33 5 11.1 INVERT CALLED 

.01 60 33 11.1 YES 	ETAS EX-CORE 
33 	5 11.0 INVERT CALLED 

.1. 24 	206 0.7 NO 	ETAS EX-CORE 

Table 2.26  - Epsilon Perturbation and the CRASH Routine  
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Epsilon perturbation: As can be deduced from the formulation 

of the initial tableau in Chapter 2, the right hand side 

vectors contain .a large number of zeros. (For the 26/12 

model, approximately 60% of the r.h.s. is zero.) Perturbation 

methods, (50) are available in MPS - according to user- 

specified values of E; the perturbation strategy uses a 

perturbed r.h.s. to find a 'pseudo optimum', which is assumed 

to be near to the real optimum (with e = 0). Two values were 

tested; E = 0.01 and E = 0.0001. Their effect on the CRASH 

procedure is clearly recognizable - as the results in Table 2.26 

show. The eta files fill up more quickly with the higher 

values of.E 	= 0.1). (For the strategies (161  17 and 19) 

the movement from 'pseudo-optimal' to optimal solution using 

the statements 	XEPS = 0.0 

DUAL 

PRIMAL 

was very rapid, requiring, at most, one or two minor iterations). 

The effect of epsilon perturbation on the time to solution 

cannot be deduced so easily from the results obtained. It 

would seem that the value of epsilon does not affect the 

nature or quality of the inverse basis produced by CRASH; it 

only affects the time taken by the procedure' itself. Thereafter, 

the choice between perturbations is governed by the ultimate 

proximity of the pseudo and real optima - an unknown. 

For the 26/12 data the minimum positive right hand side 

was 10.0, hence at most the perturbation was by 1%. 

Multiple pricing: Pricings of 21  4 and 7 were used. The 

results are shown in Table 2.27. The average inter-inversion 

times were 2.9, 2.0 and 2.5 respectively. (Although a lower 

level of pricing can also extend the time to solution, by 

increasing matrix reading time as opposed to 



ricing 	Inter-inversion times 	Average  

7 	2.62, 2.66, 2.85, 2.14, 2.45. 	2.58 
2.50, 2.86 

4 	3.22, 1.80, 1.79, 1.62, 1.59 	2.00 

2 	2.24, 2.15, 2.16, 4.53, 4.11 	2.91 
2.3 
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introducing too many vectors of only little merit, it was 

assumed that a pricing of 4 would be the most appropriate level 

for this problem.) The reduction in matrix reading time for 

each inter-inversion period was judged to be more valuable even 

allowing for the possible increase in the number of inversions 

required. 

Table 2.27 Inter-inversion times with multiple pricing  

Systems faults: Apart from the computational errors that 

occurred during the attempts to optimise the 26/12 model, 

system failures also occurred. With such extensive use of 

disk files and data transfers the probability of either finding 

a 'bad track' or of an input/output error is high. Such 

errors occur in reading the matrix, transferring data between 

scratch files, updating the eta vectors, etc., and are natural 

hazards of large-scale LP work. A careful control of the 

disks was attempted; files were separated across disk drives 

to minimize reading times using the 'SEP' parameter of the 

IBM/360 Job Control Language (see (49)). 

A controlled method of saving the basis was implemented. 

The feasible basis was updated on the problem file (PBFILB) 

every 15 to 20 minutes. This meant that any loss of programme 

control due to system faults coul,d'only waste a maximum of 20 
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minutes computation; the end effect of ope'rator cancellation 

of the job' was also eliminated by storing the final inverse 

basis before allowing the job to terminate. 

2.4.1.4 Solutions of the 26/12 Model: The solution of 

the 26/12 model is shown in Tables 3.3 and 3.4*, and is 

discussed in Appendix 3.1. 

2.4.2 Fractional Models  

2.4.2.1 Introduction: The difficulties in computation 

of the fractional programme. arise directly from the form of 

the constraint set itself. Using the Charnes and Cooper form, 

the constraint set is 

A.y-bt s 0 	
(2.33) 

d.x.+13t = 0 
.where 0 is arbitrary for the problem. 

In the original form the constraint set is 

A.x s b. 	 (2.34) 

We can note immediately that: 

i. the right hand side of (2.33) is composed of all, but 

one, zero terms. 

ii. computationally, the level of 0 is important when 

referencing in incoming vector, andmay•affect the feasibility 

of the solution procedure by allowing 'wrong' decisions 

when pivoting. 

The major difficulties of fractional programming are that: 

a. due to the appearance of the right hand side vector in the 

.constraint set, the inverse basis maybe ill-conditioned. 

b. .due to the formulation of the right hand side, degeneracy 

is unavoidable. 

c. the initial, value of t as it enters the basis must be 

non-zero in order for the solution to be attained. 

fi using the Charnes and Cooper method 
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2.4.2.2 The Inverse Basis: From equations (4.17)' we 

know that the inverse basis for (2.33) is given by (B )-1  

where 

(B*)-1  

- M11 

- M12 

M21 

-22 

= 

= 

= t  

M 	M -11 	-12 

M 	M  
-21 	-22 

B-1 - x*.t*.d*".13-1  _ 

, t* .X* 

-t* 	(d*.B71) 

- 1  and B is the inverse basis of the corresponding basis 

to (2.34). 

The terms of the M. matrices may give an ill-conditioned 

matrix (B*)-1  even though B-1  is itself well-conditioned. 

The level of t will be important; this is dependent on 0. 

2.4.2.3 The initial difficulties: The difficulties 

with the Charnes and Cooper method for solving (2.33) with 

the 3/5 data arose when the computation arrived at a solution 

in which the programme was feasible, with a zero value for 

the objective. Further iterations showed no improvement in 

this level, although there, was little evidence of cycling. 

(See strategy 1 of Table 2.28). At the second attempt, the 

pivot tolerance was increased; as a result the programme 

hovered between the feasible regions, with a zero value for 

the objective. 

Inspection of the solution showed that 't' had become 

basic at the zero level, due to the use of CRASH; once t 

becomes basic, the problem iterates endlessly. Two strategies 

were attempted; epsilon perturbation, and lower bounds for 

admissible t. 
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Tha Strategies: 

i. Epsilon Perturbation: 	As in 2.4.3.1 above, perturbation 

proved very useful. It ensures that, initially, no degeneracy 

occurs, i.e. t cannot enter at the zero level. 

ii. Bounding t: An arbitrary lower bound on 't was entered 

into the BOUNDS section of MPS. (This was FEAS: t a 0.00001). 

The programme was optimised twice, with and without this 

bound, using the-first optimal basis as a starting point for 

the second optimisation, via the SAVE/RESTORE routines. The 

programme was: 

SETUP ('MAX';' 'SCALE', 'BOUND', 'PEAS') 

CRASH 

PRIMAL 

SAVE 

SETUP ('MAX', 'SCALE') 

RESTORE 

PRIMAL 

The first SETUP.ensures that CRASH does not enter t at 

zero; the second SETUP (by omitting the vector FEAS), removes 

the arbitrary bound on t. This method is analogous to the two 

stage method of perturbation, but has the disadvantage of 

requiring three extra routines, (SAVE, SETUP AND RESTORE). 

Both strategies 7, 8 and 9 (in Table 2.28) used a double 

CRASH procedure. This has not proved useful in the cases 

where 0= 1', but has shown some reduction in solution time for 

the case using-perturbation of 0.01 and e= 10,000; (this 

seems to be due to the fact 'that the epsilon differs markedly 

from the only non-zero right hand side entry). 
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No 0 XEPS BOUNDS CRASH TIME 

1 1.0 0.0 NO YES co 

2 1.0 0.01 NO YES 0.47 

3 1.0 0.0 YES YES 0.41 

4 104 0.0 NO YES co 

5 104 0.01 NO YES 1.25 

6 104 0.0 YES YES 0.49 

7 104 0.01 NO TWICE 	0.9 

8 1.0 0.01 YES TWICE 	0.59 

9 1.0 0.0 YES TWICE 	0.51 

Table 2.28 Strategies for Fractional Programming  

Table 2.29 Dimensions of ,3/5 model' 

2.4.2.5 The Parametric Approach: A further approach 

tp the problem of fractional programming is the parametric 

approach of Joksch; this method uses parametrization of 6 in 

the problem 

max (c.x + ) 0 
s.t. A.x s b 
	

(2.36) 

d.x 0 - 
xZ 0 

This method was attempted for the 3/5 model, taking the 

denominator over a wide range of values. The results were: 

i. time to solve (2.36) for 8-13 = 20,000 was 0.44 minutes 
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ii. total time including parametric analysis,0.97 min. 
In fact the optimum for the model occured when d.x was 

a minimum, i.e. at d.x. 0. 
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Appendix 3.1 General Results and Model Capabilities  

The data and results for the first optimisation of the 

26/12 model have been described in Chapters 2 and 3, and the 

computational difficulties with the models have been considered 

in Appendix 2.4. For tests i and ii of the model, the 26/12 

model was used; the remainder were based on 3/5 models. The 

tests were: 

i. Change of minimum sales policies  

The minimum sales policy for the non-basic products 1, 12 

and 20 (shown in ,Table 3.10) was imposed on the optimum of the 

.26/12 model. 

ProductJFMAM.JJASOND 

1 5 5 5 10 15 20 25 15 5 5 5 5 

12 10 10 15. 20 25 15 10 5 5 5 5 5 

20 10 10 10 10 10 10 10 10 10 10 10 10 

Table 3.10 The Minimum Sales Policy  

Without the minimum sales policy the optimal profit (maximum 

ASSETS) was £2,152,960. The loss due to the policy was 

£18,951. The 'decision' was further tested by increasing the 

minimum sales policy-for product 1 by x% of the amount shown 

in Table 3.12. The levels x% at which basis changes occurred 

are shown below in Table 3.11. The graph of profit (ASSETS) 

against x is shown in Figure 3.3. The cost of the decision 

to increase x can be measured directly by the loss of profit. 

ii. The evaluation of raw matetials  

The dual evaluators of the raw materials balance equations 

were '1.48', implying that if the system could include extra 

units of raw materials into these balances the net increase in 
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x% ASSETS 

0.39 £2,125,763 

6.94 £2,120,280 

12.27 £2,115,755 

13.61 £2,114,610 

14.43 £2,113,912 

15.71 £2,112,996 

16.60 £2,111,994 

19.97 £2,108,772 

22.97 £2,105,840 

23.45 £2,105,387 

26.36 £2,102,497 

Table 3.11 Variation of ASSETS with X%  

profit would be £1.148 per unit. Since units were assumed 

to cost £1 each, this figure represents the maximum price the 

firm should pay for its raw materials. 

The input of raw materials to the model was £5,000. This 

amount was increased (by parametric analysis); the return of 

£1.148 per unit was maintained up to the input level £5,440. 

Thereafter, the row "input of raw materialg' was not a binding 

constraint, and the dual evaluator for increasing input fell 

to £1 per unit - i.e. the cost price. (This is shown in 

Figure 3.4). From the formulation of Section 2.4 it can be 

seen that raw materials and cash are to some extent inter-

changeable where there are no lags on payments and the input 

of materials is tight. Hence the initial dual evaluator for 

the cash continuity constraint was also £1.148. (This was the 

case for the rows calculating overheads, payables, etc., since 

a unit change in any of these rows would imply a unit change 

of cash holding.) 
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iii. The marginal evaluation of plant capacity  

The remarks of Appendix 3.3 and of Section 3.3.4 apply 

to all cases of marginal evaluation. Thus, although Figure 

3.4 represents the linear change of profit with raw material 

input, the underlying, mixed-integer, structure of the problem 

must be borne in mind. 

iv. The range of the solution  

For the 3/5 model used in v. below , the range of 

the initial solution (i.e. the LP solUtion with no allowance 

for set-up times) is shown below in'Table 3.12, together with 

the 'activities' of each of the rows. The range of the optimal 

solution has less power in the case of the financial planning 

models for two reasons: 

a. the underlying structure is a mixed integer (non-linear) 

programme (c.f. Section 3.3.2) 

b. changes in one right hand side entry may imply alterations 

to other entries (e.g. increasing capacities in January as 

in Section 3.4.1). The range of the LP solution is valid 

for changes in only one r.h.s. entry at a time. 

v. Parametrics  

Work centre parametrisation will be shown in Appendix 3.3. 

Other parametrisations were carried out to test the model's 

adaptability to cash shortage. 

A 3/5 model was used which had the followirig inputs: 

£5,000 raw materials, £5,000 cash, and 10 units each of product. 

A minimum sales policy of (10, 0, 20) units per month was 

imposed for the three products; market expenditure was assumed 

to be 25% of gross sales value. There were no lags on payments 

Financial bounds on the model were: 

	

Cash: 	lower bound £0 upper bound £5,000 

	

Bank loan: 	lower bound £0 upper bound £5,000 
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The optimal solution (maximising ASSETS) was £52,357. The 

results of decreasing cash input are shown in Table 3.13. 

The column ''DUAL,  is the associated dual evaluator, and the 

amount of decrease is given by XPARAMx£1,000, (the parameter 

value times the amount of change). 

XPARAM 	ASSETS 	DUAL 

0.0 52357.0. 1.414 

1.08 50821.0 1.419 

2.59 48683.0 1.475 

Table 3.13 Parametric Analysis of Cash Input  

Clearly, the more the input of cash is lowered, the 

greater becomes the value associated with return on extra 

cash. Because there were no lags on payments, the model was 

always able to generate sufficient funds to maintain 

feasibility, even when the initial input of cash was decreased 

to zero. (There was no basis change above XPARAM = 2.59) 

The uses of parametric analysis to test the sensitivity 

of the model to changes in the right hand side (or objective 

function) are straightforward. Testing the sensitivity of the 

model to input data is more difficult. The normal sensitivity 

analysis allows for changes of any row - or column, but not for 

changes throughout the matrix. Since the model is composed 

of a series of similar submatrices, the effect of changing 

input data is to change many rows (or columns) simultaneously. 

These changes cannot be fully investigated without setting up 

entirely new sets of problem data. Methods similar to Section 

5.6 and outlined in the theorems I and II of Section 4.3 could 

be used to test the marginal rate of change of the objective 
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function with respect to a matrix of perturbations. Sections 

of input data for which the marginal rate of change of the 

value of the LP is small changes of data, are not sensitive 

regions. Those areas for which the marginal rates of change 

are high will be areas of sensitivity; in these cases input 

data should be verified. 

vi. Inclusion of bounds on financial ratios  

The ratio 'current assets to current liabilities' was 

bounded in two 3/5 models. In both cases it was assumed that 

the initial level of the account was zero, thus the required 

ratio was ASSETS/LIABLE. Two sets of data were used: 

A: A 3/5 model with accounting lags of one period. 

Input of cash £50,000 	• 

Input of materials £50,000 

Bounds on cash £50 to £50,000 

Bounds on loans £0 to £50,000 

Bounds on materials £50 (lower bound) 

Minimum sales (10, 0, 10) per month 

B: A 3/5 model with accounting lags of two periods. 

Input and bounds as above 

Minimum sales (10,•0, 20) per month. 

Both sets of data calculated market expenditure as 25% of 

gross sales. 

a. Using Data A and the constraint ASSETS/LIABLE z 1.7, 

the following results were obtained. , 

Row Objective Function 

ASSETS GROSSALE 

ASSETS 140414. 21195. 
LIABLE 74584. 12526. 
GROSSALE 53750. 215949. 
A/L ratio 1.875 1.7 

Table 3.14 Results with A/L z 1.7  
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b. Using Data B and the constraint ASSETS/LIABLE a 1.5, a 

similar analysis gave: 

Row Objective Function 

ASSETS GROSSALE 

SSETS 186909. 165158 
IABLE 124606. 110105 
ROSSALE 88750 186522 

fk/L ratio 1.5 1.5 

Table 3.15 Results with A/L z 1.5  

Comparing Tables 3.14 and 3.15 with ASSETS as the objective 

function, we see that the ratio A/L has become binding in the 

second case, because of the increase of minimum sales and the 

lengthening of the accounting lags. 

Using the new row(ASSETS - 1.5 LIABLE) as the row to be 

parametrised, it is possible. to subtract multiples of LIABLE 

to sweep out the series of solutions for the various levels 

of the constraint. Initial levels of current assets and 

liabilities can be included by adjusting the right hand side 

entry corresponding to the 'ratio'-constraint. 
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Appendix 3.2 LP Models for Control  

In Chapter 1 we introduced Samuels' model for financial 

control using the dual evaluations of the optimal solution to 

a linear programming model of the firm, and Bernhard's comments 

on the accounting procedures. The,  model, (1.6), was: 

max P = 2x + 3y + 4z 

s.t. 	5x + y + z s 8000 (floor space) 

x + 5y + z s 8000 (supervisor time) 

x + y + 5z s 8000 (machine time) (3.13) 

The optimal solution was: 

{P 	£.10,284, x = 1142, y = 1143, z = 1143} 

with dual evaluators iXi  = 5/8, X2  = 12/28, X3  = 19/281.  

The underlying assumptions of both papers require careful 

examination. If we use a formulation such as (3.13) for planning 

purposes, we assume that activities of production etc. take 

place instantaneously (at the beginning or end of a period), 

or that the order in which these activities (or any fraction of 

the activities) are carried out is; unimportant. (Indeed for 

planning .purpOses these assumptions have been justified in 

Section 3.3.4; they are dependent on the time period chosen, 

and are implicit in an LP formulation). As we have shown in 

Chapter 3, if the assumptions of linearity, the existence of 

one objective, and the reality of the time segmentation do 

hold, the dual evaluators may be interpreted as the marginal 

value of resources. 

If we use (3.13) as a control tool, there must be some 

further assumption regarding the information flow - within 

the model time period. (Samuels has implied a time-structure 

within his operating period by suggesting that overproduction 

by department X has caused department Z to produce only 942 
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units - "because there were not enough units of floor space 

available after department X used more than its budget"; but 

he gives no suggestion as to the knowledge of department Z at 

the time when it was about to start production.) Clearly 

information and control systems should be closely related. 

Departments can only be rewarded (or penalised) for their success 

in achieving company aims at their current state of knowledge. 

IfXoverproduces, and Z cannot make more than 942 units, (say 

it produces 900 units) its penalty should reflect the total 

failure (243 units) (unmitigated by the chance factor of 

overproduction by X), and not its relative failure (of 43 units). 

Moreover, these penalties should be at the rate which department 

Z believes to be operative. Conversely if there is an information 

system, which instantaneously recognizes overproduction of 

department X the controlling mechanism should alter the targets 

for departments Y and Z and the penalty/bonus scheme, and they 

should be informed of the new operating situation. 

Consider example (3.13) with the following two assumptions: 

i. departments use production facilities consecutively, 

ii. at the end of a particular run, all departments know the 

state of the firm's resources, and aims are updated 

accordingly. 

(a) Suppose Y is the first to utilise production facilities 

and produces the required amount, X overproduces, and Z is 

forced to underproduce; the accounting procedure should be 

that of Samuels in Chapter 1. 

(b) Suppose X is the first to use facilities, and overproduces, 
A 

(X = 1183). The 'optimal' situation has changed and both 

planning and Control should reflect this. For the remainder 

of the period the problem is: 



- 245 - 

max (2X)+ SY + 4Z = P 

s.t. (5X)+ Y + Z s 2085 

(X) + 5Y + Z s 6817 

(X) + Y + 5Z- s 6817 

This has an optimal solution 

P* 
	
= .E7438, X*  = 0, Y • = 902, Z • = 1$831 

(3.14) 

(The right hand side entries give the capacities remaining, 

after department X has utilised all facilities.) 

Originally the total profit was £10,284. Now it is 

£1183 x 2 + £7438 = £9804. Department X has caused a loss of 

£480 if departments Y and Z are informed about their new 

targets, and are capable of changing plans, (i.e. there is no 

ordering of parts, or other time dependence). Given the 

information structure we have defined, the loss caused by 

department X is much less than that of Samuels' work. How 

does this opportunity cost relate to the marginal, use of 

materials? What dual evaluators should be used for accounting 

purposes if we wish to keep to the original idea of a marginal 

cost system? 

If 'X produces optimum value X • = 1142, the.new programme 

is given by: 

max 3Y + 4Z 

s.t. 	Y + Z s 2290 

	

5Y + Z s 6858 	 (3.15) 

Y + 5Z s 6858 

(by optimality of X we may drop it from (3.15)) with the 

solution iP
* 
 = £8001, Y • = 1143, Z • = 1143} and dual evaluators 

i
Xi.= 0, X2  = 11/24, X3  = 17/24} 	 (3.16) 

profit of department X = sum of resources used = £2 x 1142. 

Now we can see precisely what happens when X overproduces by 
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41 units. Initially it uses up resources at the costs given 

by the X's in (3.16), but by parametric analysis we can show 

that there is a basis change after production of an extra 

6/7 units of X. 

At the basis change the dual evaluators become 

{Xi  = 11/4, X2  = 0, X3  = 1/4} 	(3.19) 

The gross opportunity cost to be charged against X in 

this case is 

(5 	+ 1  • 1214 + 1 12-74 ) 
6 23 231 56 
71-6  24 +  7 • 4 

(4  
(c  

7) • 4
11 

÷ 1'0+  1 -) 

= 	1 + 562 	= 	£563 

But X has made an extra return of £.2 x41. Allowing for 

rounding to integers we have: 	net billing to X = £.563 -82 = £480, 

the opportunity cost under our assumed information structure. 

(c) The cases of 'simultaneous' over- and under-production. 

These have already been quoted above; a combination of 'over- 

production causing underproduction' and 'overproduction 

recouping losses due to underproductidn'. Under our assumptions 

this is impossible and it seems unlikely that a working 

situation could be found for which Samuels' assumptions 

would be valid. 

If, according to Samuels, both X and Z act simultaneously, 

X should bear the penalty for overproducing regardless of 

Z's failure, and Z should bear the cost of its underproduction, 

regardless of the fact that its loss was partially recouped 

by another department. The opportunity cost is the cost that  

could have been caused, not that which actually was caused 

due*to a fortuitous (and simultaneous) occurence. The 

imbalance would have to appear in a rectification account; 

this would be the cost of lack of information. 
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i.e. bill to X (-£2 x 41 +£804) .. £722 

bill to Z : £4 x (1143-942) 	£804 

rectification: £804 : the amount about which Z 

was uninformed. 

From these examples it is clear that if the assumption 

of ordering activities within the time period is violated (as 

it is in the example presented by Samuels) the duality theorems 

will not give correct marginal evaluations. Samuels has taken 

a time period that is too long. If the time period were 

short enough, the problem of ordering activities would disappear, 

but the problem would expand to unmanageable (and uneconomic) 

dimensions. 

Further criticism may be made of Samuels' paper and the 

recent work of Carsberg, because both assume the existence of 

only one objective function for the firm. For planning or 

control, this assumption is somewhat difficult to justify, 

consequently the use of duality for such explicit pricing 

exercises as financial penalties and depreciation is open to 

serious questioning. 
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Appendix 3.3 The Effect of Set-Up Times  

3.3.1 The Model  

The effect of set-up times for machines was tested on 

the 3/5 model, ( a model considering the first three products 

of Table 2.16 (in Appendix 2.2) over a period of five months). 

The model used was a simplified, yet extreme case; cash was 

bounded by £50 and £50,000, bankloans by E.0 and £50,000; the 

inputs of raw materials and cash were £5000 and £5000 

respectively; all payments were lagged by two months and 

ASSETS was used as the objective function. - 

For this model, the optimal solution gave the following 

results: 

(a) ASSETS = £229,360 

(b) Production schedules of {01  23.4, 30.7} per period 

(3) Work centre capacity constraints 13 and 14 of each period 

were binding, with dual evaluators £2.222 per unit and 

£1.265 per unit respectively 

(4) No set-up times were allowed, i.e. all of the 10,000 hours 

per period on centres 13 and 14 were used for e  production 

The set-up times for each product batch are shown in 

Table 3.16. (We have assumed that these are the set-up -. 

requirements for a batch of 10 units in the model solution). 

3.3.2 The Revised Problem  

Assuming that the probable set-up requirements for the 

model would be 3 'set-ups' per month, per product, the 

capacities for work centres were changed (in the right hand 

side vector), and the model was re-optimised. This optimal 

solution gave the results 

(1) ASSETS = £213,668 

(2) Production schedules of {01  21.3, 27.9} for each product 
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in each period 

(3) Work centre capacity constraints 13 and 14 of each period 

were binding, with dual evaluators £2.222 per unit and 

£1.265 per unit respectively 

(4) The utilised capacity in work centre 14 was 9100 hours. 

900 hours were taken by set-up -requirement (150 hours 

each for six batches), 

CENTRE PRODUCT 1 PRODUCT 2 PRODUCT 3 

1 460 730 160 

2 0  0 120 

3 40 120 130 

4 20 100 150 

• 5 100.  150 160 

6 0 150 130 

7 0 30 50 

8 30 50 40 

9 0 30 0 

10 150 150 150 

11 u ,/ II 

12 II II II 

13 ii rl II 

14 It . 	II If 

15 II It IT 

16 It II /I 

17 II II 	, It 

18 ti tl ,, 

Table 3.16 Work Centre Set-Up Times  

The allowances of set-up times for the batches have 

caused a drop in the monthly production figures from 

i
0, 23.4, 30.7} to i0, 21.3, 27.9} and a corresponding change 

in objective function, £229,360 to £213,666, but the optimal 

basis from the original solution gave an optimal solution to 
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the revised problem without requiring any further iterations, 

thus the dual evaluators for work centres 13 and 14 show no 

change - the marginal values of extra capacity are unaltered. 

Also, the allowance for three batches per month for 

products 2 and 3 implies that the,mixed integer solution should 

be sought for the range 

20 s PROD (I,J) s 30 I = 1...5 
J = 2, 3 (3.18) 

The optimal schedules for the revised problem adhere to 

this; the solution may be assumed to be the required 'mixed-

integer' optimal solution. 

3.3.3 Parametrisation of Capacities  

Neither products 1 nor .3 utilise work centre 14, (see .Table 

2.13 of Appendix 2.2). Parametrisation of work centre 14 was 

carried out, as if new plant were installed at the end of 

(the previous) December, to be operative through the months 

January to May, (i.e. the change column added capacity to the 

right hand entries for work centre 14 for each month, January 

to May). 

(a) The Original Model  

With parametric analysis applied to the original problem, 

the first basis change occurred when, the input requirement 

constraint for period three became binding, (i.e. when the 

input of raw materials became insufficient to allow for 

production. during periods 3, 4 and 5, without purchases in 

period 3). This basis change (occuring when utilised capacity 

on centre 14 was 14662 hours and ASSETS were £368,902. (At 

this basis change capacity on work centre 11 during periods 

1, 2, 3 became binding). 
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(b) The Revised Model  

In order to remain within the logical range allowed 

by the set-up times (i.e. only 3 batches per month for 

products 2 and 3), the variables PROD (1,J), were bounded 

above by 30 , for I = 1...5, J = 2, 3, using the REVISE 

procedure. 

The demand XDOFREQI was directed to printing out a 

solution at the rate XFREQ1 = 1, i.e. at every iteration: 

Parametrisation was used to detect the point at which the 

new limits PROD (1,J) s 30 became binding - this point 

corresponded to the following solution: 

(1) ASSETS = £236,944 

(2) Production schedules of {0, 30.0, 27.5} for each product 

in each period 

(3) Work centre capacity constraints. 13 of each period were 

binding, with dual evaluators £2.222 per unit 

(4) The utilised capacity on work centre 14 was 12,780 hours 

(900 hours were taken by set-up requirements). Total 

capacity was 13680 hours. 

(The basis of this solution was punched onto cards.) 

The binding constraints 

	

PROD (I, 2) s 30.0 	I = 1...5 
	(3.19) 

make the capacity constraints for work centre 14 appear 

slack. To allow the variables PROD (1,2) to take values 

greater than 30.0 further allowances for set-up times were 

made on all work centres, apart from work centre 14. 

Parametrisation of work centre 14 was continued from the 

'revised' utilisable figure of 12780, assuming that the 1050 

hours required for set-up times (four batches of product 2, 

	

three batches of product 3) 	would be accounted for by 
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the installation of new plant at the end of December. 

With the assumption that plant had been installed that 

would be just sufficient to allow for the required four 

set-ups for product 2, an optimal solution was obtained, 

(utilizing the punched basis). This solution was: 

(1) ASSETS = £235,277 

(2) Production schedules of {0, 30.0, 27.0} per product per 

period 

(3) Work centre capacity constraints 13 were binding in all 

periods, with dual evaluators £2.222 per unit. Capacity 

constraints on work centre 14 were binding in period 2, 3 

4 and 5, with dual evaluators £1.265 per unit 

(4) The utilised capacity on work centre 14 was 12,780. 

(1050 hours were taken by set-up requirements). Total 

capacity was 13,830. (The change of production of item 

three from 27.5 to 27.0 is caused by the set-up time of. 

product 2 on work centre 13. Product. 3 uses 315 hours 

on work centre 13 (per unit of product); a reduction in 

capacity of 150 hours for the set-up time of-product 2 

reduces the production of item 	3 by approximately 0.5 

The bounds on PROD (1,2) were altered to 

PROD (I1 2) s 40.0 . I = 1...5 	(3.20) 

to allow the production of item 2 to utilise the next range 

30.0 s PROD (2,J) s 40.0: J = 1...5, and the parametric 

analysis was continued. 

The constraint on input requirement in period three 

became tight, at the following point: 

(1) ASSETS = £262,222 

(2) Production schedules of {0, 40.0, 26.6} per period 

(3) Work centre capacity constraints 13 of each period were 



./' 
basis change due to 
input requirement 

1 

fall in ASSETS due to 
inclusion of further 
set-up times on other • 
work centres 

denotes linear optimum 

	 denotes 'mixed integer' optimum 

• t 	 r-> 
14,000 15,000 16,000 17,000 18,000 

ASSETS4 ( x 10 

26 	- 

25 _ 

) 

fall in ASSETS due to the 
original set-up times on 
all work centres 

24 	- 

23 	- 

22 	- 

A 
21 

10,000 	11,000 	12,000 131,000 

Fig 3.5 Variation of ASSETS with Work Centre Capacity  Capacity on Wor}c  Centre Capacity 
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binding, with evaluators £2.222 per unit 

(4) Tbe utilised capacity on work centre 14 was 17040 hours 

(total capacity being 17040+1.050 = 18090 hours). 

Allowing for one further batch of product 2, the solution 

x2  = 40.0 (40.0 s x2 s 50.0) was: 

(1) ASSETS = £260,555 

(2) Production schedules {R,40.0, 26.15} per period 

(3) Utilisation of work centre 14 was 17040 hours (total 

capacity being 17040+ 1200 = 1840 hours) 

The evaluators for work centre 13 and 14 remained unchanged 

at £2.222 and £1.265 per unit, and did not change with 

parametrisation until the constraints x2 s 50.0 became binding. 

These results are summarised in Figure 3.5. 

3.3.4 Conclusions  

From the results of Section 3.3.3, and Figure 3.5 we may 

conclude that: 

(a) the dual evaluators given by the revised solutions, within 

the logical range of allowable production do give the 

marginal values of resources. The range of applicability 

of these values is, however;  more severely restricted; 

this has been noted in Section 3.3.2. 

(b) the actual change in objective function due to simultaneous 

changes in right hand side elements, may be deduced from 

the sum of the dual evaluators and the respective amounts 

of change, if the amounts of change do not extend beyond 

the optimality (feasibility) of the present basis. 

Considering the range AB on Figure 3. 5, the change in 

profit is £23,276 (= £2361944- 21.3,668). The dual 

evaluators for each of the five work centres is £1.265 

per unit and the'number of extra units on each is 
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3680 = {.13,680- 10,000}; for these extra units: 

£23,276 = 5 x 1.3680 x £1.265} 

(c) with multiple resources and set-up times the general 

change of profit with resource is a toothed function. 

Losses are caused when generating capacity for set-up 

times, due to the reduction of overall production levels. 

This reduction is caused by the removal of utilised 

capacity from existing bottlenecks, in order to allow 

for (non-productive) set-up times. 



(4.29) 

105.5  
7.5 

For increases in b2 we have, x1  x2  b2 
(until the denominator approaches zero); 

105x 
- 10-0.5x 

s.t. x s  b 

the problem is, in effect, max F 
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Appendix 4.1 Examples: Returns to Scale 

a. Problem 1 

   

100x1 + 5x2 

 

   

max f 

 

    

x1- 1.5x2  + 10 

 

	

s.t. x1 - x2 	0 

	

x2 	5 

x x2  0 V  

The solution is: x1•= x2 	5 

Now consider changes in b2'. 

(4.30) 

* 
x =b 105x 

* * 10-0.5xF 
* 

6 630 7 90 

8 840 6 140 

10 1050 5 210 

12 1260 4 315 

14 1470 3 490 

16 1680 2 840 

Table 4.1  

From Table 4.1, the problem (4.29) clearly exhibits 

increasing returns to scale. 

Now d
/1 1 * = (1, -1.5), and the inverse basis = 	= B-1, 
\O I

) 

 

8 =d*.B 1  = (1, -0.5), i.e. Eli< 0, as proved above. 

b. Problem 2  

 

max f = (10x1+ x2)/(1.5x1- x2 ÷ 6) 

s.t. xi  - x2  s  0 

x2 5 

x1' x2 	0 

(4.31) 



A =(1  0 -1\ 
1/ 

The solution is: 

For changes 

b = /0 

\5 

xi  = x2  = 5. 

of b2 the function 

Dual evaluators and aTi 
ab. 

1 

At the optimum to Problem 1, f 

c. 
* 	(100,5).(x1, 
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exhibits diminishing 

- returns to scale. The inverse basis is B-1  = 1 1
1 
 ' 

0 1/ 

d = (1.5, -1) , and 0 = d.B-1  = (1.5, IA 1 1 = (1.5, 1). 

( 
0 1,) 

All 0. a  0 --> diminishing returns to scale. 

The problem becomes: 	max F = 	11x  
(0.5x + 6) 

x s  b (4.32) 

* x =b ii x* 0.5x* 	+ 6 * F  

6 66 9 7.33 

8 88 10 8.8 

10 110 11 10.0 

12 132 12 11.0 
14 154 13 11.846 

Table 4.2  

As can be seen by Table 4.2, the function exhibits 

diminishing returns to scale, i.e. 3F--- is decreasing. 
ab 

(1, -1.5).(x1, x2  )+ 10 
* 	* 

Now 	xi, x2) 

therefore 7ra  ( b2) 

B-1 .b 
(100, 105).(b1, b2)' 

 

(1, -1.5). h1 
17-rb1  

\0 1Ab2  

  

 

10 

105b2 	= 0 ) 
10 - 0.5b2 

and 
* 

3.1f 
ab2 

105(7.5+ 2.5) 10 
7.52 	= 105'7.5 • (4.33) 
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100b1  + 525 Also q (b1) = 	b + 7.5 . 5 ) 

and 

The 

[ 
an' 	. 30 
abiI 

b = 0 	7.5  1 
Charnes and Cooper form of problem 1, (4.29), is: 

max 100y1 + 5Y2 

(4.34) 

s.t. Y1 - Y2 

	

0 	 (4.35) Y2 - 5t  

y1- 1.5y2 + 10t = 1 

	

y 	t z  0 

* 2 * 5 	4 
for which the optimal solution is: yi  =7, y2. 	t

* 
= 30 

4 . 30, vCC2 	
105.7 , i.e. xi 	5, x2 	5 CC1 

and from the dual evaluators of the CC form, we have: 

30 	6e7  
/IF1 = 7.5 = 61)

b =0 1 

	

_ 105.10 	

[61 
vF2 - 	6b2 

Although the dual evaluators exist, and can be derived 

from either the original or the CC form, no concept of pricing 

can be given, due to increasing returns to scale. 

The optimal inverse basis to 

	

11 	4 	1  2-) 

	

3 	7 	1 7 

(4.32), 	1,is given. by: 

B* -1  
3 7 	3 (4.36)  
:4 2 	 14 
30 30 	1 30,)  

Now according to (4.28) the signs of the entries in M21  should 

be negative for diminishing returns to scale; the second 

entry is positive showing that for b2, the returns to scale 

are increasing. 
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Changes of d2   in problem 1; 

Suppose d2  changes by an amount Ad2; will there be a 

change to diminishing returns to scale? 

let d 	d +.Ad d • 2 	2 	2' d1 

for B-/  . 1 1  

( 
* 1\ d 	.B. (1, a2)(1  

\O 
(1,  1+ d2) 

i • e• 1+ 2 > 0 > 0 -->1+1."4,54.Ad2  

Ad2 > -2.5 

Further implications of changes in d are considered in 

later work. 

If d1 were to change, d1 would have to increase beyond 

1.5 for the returns to scale to be diminishing. 

From the form of M
21 in (4.18) it is clear that, for 

eachdil therangeofvaluesforthis divided into only two 

disjoint parts, one of diminishing returns to scale, and one 

of increasing returns to scale. 

Problem 3  

max 4x
1  + x2 + 4x3  + x4  

x1+ x2 + x3 + x4+ 1 

	

s .t . 	x + 2x2 	+ 2x3  + x4  • 40 

	

X1+ x2 	• 30  

	

2x1+ x2 	• 20 

x
3 	

1.0 

x4 • 10 

x3 + x4 • 15 

The problem is solved using the CC form. 

0 1/ 



t
* 

' 

, u 3 

2 _ 
' /73 	= 

2 

4 4 
- 42 

8 

42 	' 	/14 = 

4  

21 

= 
422 212  

, 	u4  - 	2. 
21 

Optimal solution is: 

20 	*20 
Y1 = 42 ' y3 = 42 

i.e. x* = 10 , x* = 10 
3 

' 

Optimal inverse is: 

's 
s2 
x1  
x3 
s5 
s6 

0-2 
i 71 0 

1-2 
i 0 0 

0 1 
2 0 0 

0 0 1 0 

0 0 0 1 

0 0 0 0 

0 

0 

n..., 0 

0 

0 

0 

0 

b 

0 

0 
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ds 	(0, 0, 1, 1, 0, 0) 

e 	= 	d: B-1  = (0, 0, 2,  1, 0, 0) 

O. > 0 	diminishing returns to scale. 



^ 
a. 

By Wagner and Yuan (85), A. = 1 t  

A 

where a. is the 1 

activity. (Call this ai) 

7 
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Appendix 4.2 The Reduced Costs of Fractional Programming  

In the normal LP usage, 'reduced costs' a. 	 e defined 

as a. = c.-c_.B-1.a. 1 1 — —1 

where a.a.  is the i'th column of the original tableau. Nowt  

af if f(x) = c x 	c. = X. and 1  1 

of . _ L:tOx. A 
X = X x=

A  
x 

- .B 1  .a. (4.37) 

   

where of --- denotes differentiation with respect to basic Ox B 

  

variables only. This concept of 'reduced cost' may be 

considered as a marginal return, and may be generalised to 

the fractional casel f(x) defined as in (1.12). 

ThuswhenMartos(64)usesthetermsA.1  to rank incoming 

activities, where 

Al  = (d0  +d x ).(ci -cB. B
-1  a.) - (c0 +c13*B  x 	1 	 B .B

-1.  .a.) —  	 a 

(4.38) 

he is, in effect, using a multiple of the marginal return for 

each activity, since 

A. • * * 
2 	 - 	- di  .f 	-(cB -dB• f) • (c1 + d x ) 0 B*B 

.a..t * (4.39) 

where t = (d0  + dB• xB )
-1.  and f*  is the value of the objective, 

for the present solution x
B 
 = B-1.b 

— — — 

i.e. Ai.(t*)2 rafi 	- Of .1 
17
L
71 A  1 'Ox 

LBix = xA  

-1 B .a. (4.40) 

A..(t*)2 is the marginal return for introducing the i'th 
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reduced cost (marginal return) in the CC form, 

a.  . c. 1 	1 - (ca).B 	. —437 

	

	-- 	d. 
*_1 

\ 1  A 
Hence a. = tc. 11 

(4.41) 
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Example: 

Appendix 5.1 The Decomposition Process  

max 4x1  + 2x2  + 4y1  + 3y2  

  

     

x1  + x2 + y1 	Y2 + 1 

s.t. x1  + 2x2 + 
	

+ Y2 • 15 

	

x1  + 3x2 
	• 30 

	

+ x2 	• 20 

	

1 
	• 10 

Y2 • 10 

Y1 Y2 • 15 

x., y. 	z 0 
	

(5.56) 

Optimal solution is: 
A 

= 2 
0  

X
1 
 = 10 , X2  = 0 , yl  = 2.5 , y2  = 0 10 

'  

Dual evaluators .--#(0.14, 0.0, 0.07, 0.0, 0.0, 0.0) for the CC form, 

Assume an initial all-slack basis: 

Solution: 	f • = 0, Vi  = 7r 2  = 	= 0 

Using the first method, of Section 5.22, the divisional 

programmes are: 

Div. 1 	max 4x1  + 2x2 	s.t. 	x1  + 3x2 	30 

2x1  + 2 20  

x. z 0 
A 

Solution: 	x1  = 6, x2  = 8, f1  =,40 

(We neglect the solution x1  = 10, x2  = 0, in order to force 

iterations). 

Div. 2 	max 4y1  + 3y2 	s.t. 

Y2 

Y1 Y2 

Yi  

• 10 

• 10 

s 15 

Solution: 	Y1.= 10, y2  = 5, f2  = 55 
A 

Policy: Accept both since f a z 1T a , cc= 1,2 
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Form Executive Progrdmme: 

  

This is: max 	0111  + 40112 + 0 v1  + 55v2 

  

 

0111. + 14112   + 0 v2 + 15v2 + 1 

  

s. t. 	011 + 22112 + 0 v1.  + 25v2 	15 

1 	112 	
= 

 

  

+ 	v2  = 1 

(5.57) 

   

The optimal solution to the CC form of (5.57) is 

= 1  
2 	- 	3 	A 	.3.  

Ti 	, 1 	10 	V1 = 50 ' v2 = 50 ' t  = 10 

2 	3 A 165 Hence 111  .,1, v1  = -s-, v2  = 7, f = 50 

165 g = 0, g2 = 0, g = 1 	d 50 

  

gcC = 0 (duals of CC form equivalent to (5.6) of 

Section 5.2.1) 

Revise divisional objective functions: 

Method 1  (Section 5.2.2) 

Revise according to ci  - 	d 2-Tcc'Ei)  

where IT are dual evaluators of executive rows in the CC -cc 

form of (5.57). 

Method 2  (Section 5.3.2) 
A A 

Revise according to (c.1  - d.1.f)t - 

where ITF  are dual evaluators of executive rows in (5.57). 

Now IT = t. -F 	g -CC' 

 

we will use the first method throughout. 

• • 	not optimal f
1 
 > IT

1  
Optimality test: 

  

Revised objectives are: 

Div. 1 c1 

c2 

c 1 

c2  

: 

: 

: 

: 

4 

2 

4 

3 

165 
 - 	1. 7 0 50 

165 - 	1. 

- 	(1 ). 10  

-13 

Div. 2 

0 

- 1.165 

0(2).  10  

0C2). - 	— 50 

- 1. 505 

0 

-3 
- 0(1)= Tu 
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Now proposals are: 

Division 1 	x1  = 10, X2  = 0, 

Division 2 y1  = 10,  y2 = 0, 

A 
f1 = 40 > g2  = 0 :. accept. ^ 
f2 = 40 > 

TT
2 
= 0 .. accept. 

New executive programme has the solution: 

111  = 	0112 = 0 113  = 1  

v1  = 	-3-4  V
2  = 0 V

3  = i 
4  

100 
' 27 
40 	100 	4 

71.1 = "Ti 	'72 = 0 	17 '
d 

= 27 	Tr  = 27 

(duals of CC form equivalent to (5.6) of Section 5.2.1) 

Revised divisional objectives are: 

	

100 	4 	4 Div. 1 	c1 	4  - - 	= 

	

1 	27 	27 	27 

	

_ 100 	8 2 	27 - 27 = -2 

1_ Div. 2 	c1 	00 - 2 8 
	0 

	

27 	7 

	

100 	4 	-23 

	

c2 	= 

	

27 	27 	27 

New solutions are: 

40 
Division 1 : 1  = 10, x2  = 0 f1  = -27-7 = vi 

:. do not accept 

Division 2 : y 1 = •0, y2  = 0 f2 = 0 s 17.
2 

   

.. do not accept 

solution to the previous executive programme is optimal. 

i.e. solution is 	x1  = 10 	x2 = 0 

yi  = 2.5 y2  = 0 

100 f = 27 

The optimal dual evaluators: 

From the CC form of the final executive programme ircc = 27 
4 2 	8 .. for original fractional form gF  = 27  77-7 

For the divisions we have the final programmes: 

(27)2 
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Div. 1  
4 max 27 x1 - 2x2 

  

s.t. 	x1  + 3x2 	
30 

	

2x2 + x2 	20 

	

x1,  x2 	0 

Div. 2  max 0.y1  23 
27 Y2 

  

s.t. yi 	s 10 

	

Y2 
	10 

	

+ Y2 
	1.5 

y1, y2  z  0 

2 Dual evaluators are (0, -277) and (0, 0, 0). 

Thus for the CC form of (5.56) we have the dual evaluators 

(
4 
27  7 	7  27 , 0, 0, 0) 

A 
Now t 	2 :. the evaluators for fractional form are 

(.14, 0.0, 0.07, 0.0, 0.0, 0.0). 2 
27 
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Appendix 5.2 Sensitivity Analysis and the 

'Perturbed Inverse Basis 

Example: The problem (5.58) is taken 

	

P= x1 + 	x2 	+ 2y1  + 2y2  

	

x1  + 	2x2 	+ 2y1  + 	y2  

	

x1  + 	3'x22 

	

+ 	x2 

Y1  

Y2 

Y2 

47 	Yi J. 

inverse basis is B-1 where, 

from Baumol 

40 

30 

20 

10 

10 

s 15 

(". 
x2 

slack 

x1 

Y1 

slack 

Y2 

and 

(5.58) 

(5.59) 

Fabian (8) 

max 

s.t. 

Optimal 
*--- 

	

f'-2 	1 	2 	2 ' 

	

3 	0 	
-3 	-3 	0 	3 

	

5 	1 	5 	5 

	

1 	0 

	

-3 	3 	3 	3 , 

	

10 	0 2 	1 	1 

	

-3 	3 	3 	3 

	

0 	0 	0 	1 	0 	0 

	

0 	0 	0 	1 	1 	0 

	

0 	0 	0 	-1 	0 	1 

Final tableau of executive programme is: 

	

max 	10313  + 14114  + 	0 v1 	25 v 4  

	

s.t. 	101,3 	22114  + 	0 v l 	25 v4  s  40 '  

113 	+ 	114 
v4  . 	1 (5.60) 

Optimal inverse basis: 

0 1. 

4 
1 	10 25 B-1 (5.61) 12 	12 12 

1 	22 25 
Z,/ ,,,12 	12 1.2.,/ 
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Tendered solutions are: 

	

For 1113, 	(10, 0, 0, 0) 

114 	( 6, 8, 0, 0) 

	

'vi' 	( 0, 0, 0, 0) 

	

'v4' 	: ( 0, 0, 10, 5) 

Change of corporate resource 

(5.62) 

': (initially at 40 units) 

343 	6v4  
3b - 12 ' ab

6114 - 12 ' ab - 0 , given by first column of B-1  = 
* 	* 	* 	* 

-1 	a xl  = 	.1 From B 	we know: 	6x2 = 1 	61,1 = 61,2  = 0  
,-3 7 	3 , 

ab 	ab 	ab 	6b 

* 
ax. 	* 	* 

Using the formula 6b1  = 	
"1. . xi 	

(5.37) of 5.6.3 , ab 

(5.63) 

we have: 
* 

ax
1 10 1 	

12 = 
1) 	1 

-12 + ab - 	 3 

ax . 	'1.) 	2 

ab
2 	

0 - --.2) + 
	12 	3 

3y1  

ab 	- 0 .(10) 	= 	0 	(5.64) 

6Y2 5 0 ( ) 	. 	0 
ab - 	 Q.E.D. 

Change in bk:bk  contained in divisional r.h.s. 

We now use the formula: (5.38) of Section 5.6.3 
- * 

i.e. ax 	611. 4  * 3x. 
u j  abk ' ab + 

k 
3 

The second terms are known from the solutions and the 

respective optimal inverse bases. 
* 

The au. will be calculated from these and further LP's as 1 
abk  

follows: 

1. Use inverse bases of the various divisional solutions 

to give xi(bk) 



: inverse is 
2 

-1\ 
5 
3 
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2. derive abk  
3. form the final executive programme in terms of a variable 

bk, i.e. form the p(bk) 

4. solve for (10(bk) and (p(bk  + 5bk) and from analytical 

expressions derive the 	. 
bbk 

1. Divisional subproblems: 

Division 1: constraints are 	x1 + 3x2 	30 

	

2x1 + x2 	20 

For .  

For x, ^a 
x1 

Putting xi  in terms of b we have 

x* 

x* x* 

	

-b1 3 	* 2, 1 . 	+ 7  . 	--i., - -b -4 • 	41 	b2 ' x42 = 5 1 	5 2 	(5.65) 
5 

Suppose we are considering changes of a resource of division 1. 

The solutions tendered by division 2 are independent of changes 

in resource level of division 1. Thus we form the executive 

programme 

b2 	-b1 3b2 2b1 b2 max }a3  [-14. 31,4[. 5+ 5i_ 
5 - 5 	+ 0 v1  + 25v4  

bo  -b 3b2 4b 2b 
s.t. 	[A+ 314  [ 51 + 	+ 5

1 	
5
21 + 0 v1 + 25v4 s 40  

113 	÷ P'4 

V1. + 	v4 	1. 

(5.66) 

This is the same as 

axi  

2\ inverse i 

K 1J 

/slack 

31- 22 ' x32 
= 0 



max 

s.t. 

(5.69) 

Optimal solution is 

v
4(5) = 1 

/14(5) 	
5  

12 + 35/5  

7+ 36/5 
1'3(6) - 12+ 36/5 

assuming 35 22 + 5 
5 12 + 3 	> 0 5 
5 18 _ 3 	> 0 5 

and 

3113  

Wo1 

• Hence: 

3 7 + 5 > 0 5 

( 	7 + 35  lim 	 5 	7 
->0 5 

	

\ L12 + 35 
	12 

—5—  
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lim 
= 570 

61'4 _1 
ab1 - -48 

- 48 

(5.70) 

b 
1 

2b2 + 	/14 + 
+ 	0 v

1 
+ 25v4 t_ 5 5  _ 

b 
u4  + + 25v4 40 + 	51 

 

14  = 1. 

v1  + 	4 v" = 1 (5.67) 

+ 6, 	b2 

1011 3  

10113  

+ 

+ 

20. 

14 + 

22+ 

5- 

The executive programme becomes: 

1'4  + 0 v1  + 25v4 

114 + 0 v1  + 25v4 	40 

11'4 
+ 	v4  = 	1 

5 

Consider changes of first resource in division 1, i.e. put 

b1 = 30 

max 

s.t. 

(5.68) 

113 

365 215 
5 	5 

1445 



and applying the 

ax i 
= 

= 

1 

formula 

(10 

( 	n — 

(5.38) 

- 6) 	+ 

A.) - -, 	+ 
ax2 

 

ab1  48 

I  
3b1 

48  

of 5.3.6 we have: 

a -.-1-2-7  . 0 + 5  -:-7z  ,, • - 5 l- 
- 

-1 
12 .0 

5 1 
   + 1.2 	5-  

= 0 

= 0 
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Now from a knowledge of total optimal inverse basis we know 

* 	* 
ax 	ax2 1. = 	= 0 ab1 	alp1  

Similarly 

Using b1  

V4  = 

	

113(6) 	= 

	

14(5) 	- 

Q.E.D. 

we may test changes with respect to b2. 

= 30, b2  = 	20+6, 	a similar analysis, leads to: 
1  

6 
7  

1_2 - 

5 + 

36 
10 

5 -s- 

12- 35 — 10 

6113 
	

;6 /4 	1_ 
ab2 	32 	43b2 - 32 

From the 'total' inverse basis we know that: 

ax1 2 ax 2 	1 
ab2 	3 	6b2 - -3 

Apply the formula: 

ax
1 1 	7 1 5 3 2 (10 - 6) + 	+ 	- = alp2 - 32 	12' 2 	12.  5 	3 

ax1 
- 
1  
-3- 	

7 
ab2 	(-8) 	12' 0 	152(+ = 

Q.E.D. 

Thus by calculating all terms ax. 	the total inverse basis 

may be derived. 
	k 
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The fractional case is no different except that the 

executive programme is more difficult to compute. The 

theory remains the same since at all stages the 'x = B-lb' 

optimal relationship holds. 



/14 v4 

22 25 

1. 

0 1 
./ 

22 25s  
12 12 

10 25 
12 12 

0 1./ 

3 
-5- 0 

0 0 

0 0j 

' 113 

10 

A . 

0 

0 

0 

0 

H 
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Appendix 5.3 Direct Calculation of the 'Perturbed  

Inverse Basis' 

In the calculations of Appendix 5.2, the basic columns of 

the final executive tableau are 

from (5.68) of Appendix 5.2. 

40 

b = 	1. 

Using the formula (5.43) of section 5.6.4 we have: 

. 
=- 	• A 	•H A • b 

k -1 A. H . '12 

5 
12 
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/.0 	_
20 
1_ 

1 n 	5 
0 — 

20 	12 

0 0/ / 

f" 1 	/- 1 
48 	48 
1 	1 
48 = - 	- -48 
0 	0_, 

These are the sam as the marginal figures derived 

in (5.70) of Appendix 5.2. 
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Appendix 6.1 Sensitivity Analysis  

6.1.1 Changes in r.h.s. elements  

Consider the problem: 

max 3.1x1  + 3x2 

x1 x2 + 1 

s.t. x1 	s 2 	 (6.20) 

x2 	2 

1 
-I- x2 

s 3 x. z 0 

Direct approach: let the slacks be S1'2' S3 

Optimal basis is (x1, x2' S2) 

(1 0 0 

Inverse basis is 	-1 0 	1 \ -. B-1  

1  1 -1)) 

Consider changes in b3) say 5b3; optimality (and feasibility) 

conditions are that: 

. B-1 	2 _ . 
2 

3 + 

i.e. 0 01  2 

02  = - 2 + 3 + bb3 	0 

03  = 2+ 2- 3- bb3 	0 

-1 s  bb3 	1 

The CC Form of (6.20) is 

max 3.1y1  + . 3y2  

s.t. y1  + y2  + t + So 

1 	- 2t + S
1  = 0 

Y2 	52 = 
- 2t + 	0 

Y 1 	Y2 - 3t + S3 	0 	/1, Si, t Z 0 

(6.21) 

0 ptimal basis is (Y17 t' 52' y2)  

0 



Consider changes 

= 

= 0 

of b3 by say 6. 

0 is required for feasibility 

1 

5 

4 
4 

7 
( 1 

2 

1 
4 

1. 
4 

1 
4 

= B 

1 0 

0 

1 	1. 

-1 0 
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Inverse basis is 

r 
1 
() 
10 
(0 

/77\ ;J o  
b1 

 2  

To 3J 

= 

g 	i(1-56) 

03 	= 4(14-36)J 

Now at 5 = 5 

i.e. 	xl = x2 

At 6 = —T  

= 

12 

i.e. 	-- 3 

2 
= Y1 	7 

79 	1  1 	t 	= 5 
82  = S2 = 0 

2 
-63 = Y2 	-5- 

2 	t = 1  5 

To  . yi  . 7  

01 = 	t 	
= i 

3 
2 

02 - S2 = 7 

d3 = y2  = 0  

6 < 5 

i.e. x 1 = 2 S 2 	2 t= 7  

thus we have —T s 6 	s • 

implying 	-1 5: 6b3 1-*. 1 
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Hence limits for range of bb are given by the appropriate 

corrections to the range of bb as in Section 6.4.1 

• 6.1.2 (a) Changes in c. 

Consider a third activity x3/  i.e. 

max 3.1x3 + 3x2 + yx3 

x1 + x2 + x3 + 1 

s.t. x1 + x3 s 2 

	

x2 + x3 	2 	 (6.22) 

	

x1 + x2 s 3 	x. a 0 

Assume y is initially zero. What value must y attain 

in order for x3 to enter the basis. 

. Solution is 	x
1 	

2, x2  = 1, S2  = 1, f 
• 942 = 2.3 

B-1 	
0 0 	(a\ 

-1 0 1 

	

1 -1 	

A3 = [1 

1- 0 

Using the CC form of the (6.22) 

1 0 

-1 0 

1 1 
(6.23) 

1 0 0 	1  

(Rows have been arranged to have denominator last.) 

c • = (3.1, 3, 0, 0) (y1, y2, S, t) 

-CC 7  IT) = (.1, 0, .7, 9.2)  ( 

d3 	0 

\I) 
.. (53  = y - 94 - 0.1 	96 = y -  1  



1. 1 0 1  2 

3 
71- 	

1 
 4 4 

5 1 
-4 4 

0 0 1 1 -4 4 

1 1 
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therefore, for y < 2.4 x3  does not enter -the basis 

y a 2.4 x3 replaces x1 

(As x3 replaces x1, the constraint on x2 is relaxed; i.e. 

x3    x2  /I) 

(b) Changes in basic c. 

Suppose y = 2. At what level of c1  will x1  leave the 

basis of (6.22). 

For the basic set, (y1, y2, S, t), the CC inverse basis 

is of the form 

(c 7 M) 	(C
1' 

3, 0, 0) 

(71.—CC' g) = (c1-3, 0, -c1 + 9, cl + 3) 
2 4 2 4 

As is column associated with slack variable s1. 
1 

As  = (1, 0, 0, 0) 
1 

A 	= (0, 0, 1, 0) —S 

A3  = (1, 1, 0, 1) 

Consider the 'reduced costs' a. : 

as = 0 - (c1 - 3) s 0 if c1 	3 
1 

a3 L. 2 - (c1 	2 - 3) - -- - 3  0 if 
3c1 17 
2 	4 

i.e. if c
1 
	1.7 

6 
c 

6s3 = 0 
- (-9 - i ) 	s  0 if c  s3 	2 	1' 2 

For the present basis to be optimal: 
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c
1 	3 (otherwise S1 will enter the basis) 

9 c1  7  (otherwise S3  will enter the basis) 

6.1.3 Changes in d. 

Suppose y is fixed at 1; by how much must d3 be reduced 

in order for x3 to enter the basis. Let the change be Ad3 

By (6.10) of Section 6.4.3 (a), 

If Ad3 o3 , x3 will not enter the basis 

f 

1 - 2.4 = -1.4 Now o"3 

therefore, for x3 to enter the basis d3 must be reduced by 

an amount Ad3' where 

1 
Ad3 = 1 2

.

.3 
1 

 

Changes in basic d.: 

Consider, changes in d2' in the original form and the 

CC form. 

1 1 0) 	1 1 -1 

We use the equation (4.18) for Mil  in terms of d2. 

(2 

=C1) 
* 

d .B 	= (1-d2'  0, d2) 

-1 	1 	1  
- 2 + d2 + 1 - 3 + d2  

	

1 0 0 	(1 0 0 

	

B = 0 1 1 	-1 0 	1 .... 

B-1  .b 

= ( 

Hence: 2 
, -1 	1 

M11 = 	- (3+ d2)' 1 .( 1 - ds 2' 	d2 )  
1 

2-2d 2 	2d2 

( 77-c-r- 
1 ). 1-d2 	0 	d2 

L
1-d2 0 d2_,.) 



-2d2 
3+d2 

0 

3  
3+d2 
-3-2d2 
3+d2 

1 

M12 

(- 
1+3d2 

2 

-4 
3+d2 
2+2d2 
3+d2 

r  2  
(3+d

2 
 ) 

1  
(3+d2) 

on the columns As1, A3, and  As
a.  

-(3.1, 3, 0, 0) /-1+3d2 
3+d2 

-4 
3+d27 

2+2d2 
3+d2 

,-(1-d2) 

3+d 

Consider the changes of d2 

s1  
0 - (c la)B-1(d2  
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1  
(3+d2) 

M21 	
1-d2 7  (- 	0, - 2  
3+d2 	3+d2 

1  
M22 = 3+d2 

for d2 . 1 	M11 

M12 

= 

. 

= 

.\, 

1 	0 

0 	1. 

1 	1 

/ 
1 
2 
i. 4 

.1- 
.1 1 
(0, 	0, 

a 
2 
3 
7 
5 
49 

-i) M21 

M22 
 . J.. 4 

(c 	a) = (3.1, 3. 0, 0) 
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-1 (3.1 + 9.3d2 - 12) • 3+d2 

if d2 	8.9 (ignoring the solution d2  s -3) 

Similarly: 

3 • 
.0 - (3.1, 3, 0, 0)B 1(d2) 

• 

(3+d ).a 2 	s3 = (3.1)(2d2) - 9 

	

6.2d2 - 9 s 0 	if d2 	6 - 

If d2 > 6.2 s3 will enter the basis. 

Also 
\ 1. 

a3  = 1 - (3.1, 3, 0'  0)B 1(d2  ) 	
1 

• 0 
1 

(--3+3d2 = 1 - (3.1, 3. 0, 0) 	(3+d2) 

-3  
(3+d2) 

6+3d2 
(3+d2) 

d2 

31(3+3d2) 	9 - 	 (3+d2) 	(3+d2) 

2.7 - 8.3d2 

(3+d2) 

2.7 03 s 0 	d2 	8.3 

Hence the range for d2  is 8'9 	d2 < 6.
9
2 9.3 

0 
\ 

0 

0 
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Appendix 6.2 Integer Programming  

Consider the problem 

max 2x1. + x2 + 1. 

xl  + x2 + 

x1 + 2x2 s 4 

x2 s 3 2x1  + 

x1' x2 integers 
z  O. 

Optimal tableaux are: 

(6.24) 

original form CC form 

X2  x3  X4  t Y2 Y3 
II 

0 a IT  
1 7  

a 

0 

a -7  
1 7  

a 7  
3 .2 

1 

0 

0 

0 

1 

1 -- 

2 

4 7  

0 

1 

o 

a if ---f  ii -f  
fi 

-1U 1 
1! 	3 1 IL_ , 	 , 	, 

.-) 	 ! 	- 

(N.B. For ease of programming, the denominator has been 

made the first row of the CC form, and t' the first 

column). 

Consider the column for y2  

2 (1, - 3  f) t 	"F- 	W k  = 	W
t2 2 

Using the formula (6.17) we.have 

2) (1\ 	(2\ ill  2 

z2 	4 - 3 •1 5 

	

— 	4 	3 
-5- 	— 5 2 \5,/ 	5) V.0 

Similarly, calculations can be made for all the required 

columns. 

N.B. x1 is basic in second constraint row as is ya. 

x2 is basic in first constraint row as is y2. 

Thus pivoting on (row 2, x1) and (row 1, x2) for the original 

form will produce the optimal tableau. 

The cutting row is derived from the'second constraint. 



'3 
5 
0 

0 0 	1 0 

0 1. 1 
2 

4 
5 
1 
2 

1 
5 

1 

0 0 
4 	1 
5 	5 

t yi  y2  y3 y4 Y5 

(1) 0 1  5 o 

0 0 2 1. -1 0 1 

0 

0 

0 

1 
2 
7 

2 
7 
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({a)) = (0, 2 7 o, 4.) 

In the CC form the cutting plane is 

it - iY2 - iY4 s  0 
At this point the (infeasible) tableau in the CC form is 

Pivot on t to restore canonical form; thereafter, pivoting 

according to the dual simplex rules leads to the optimal 

tableau 

1 
2 
5 

2 
2 

y3  

0 0 

1. 	0 

1 

0 0 

1 1  
5 
2 

1 1  

2 

t 	Y2 Y4 
	5 

Optimal solution is: 

1 	3 t 	yi  = 7, y3 = 7, y4 = 

giving x1  = 1, 	x
3  = 3, x4  = 1 
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Appendix 6.3 Recomputation of Dual Evaluators 

Consider the problem: 

3x1  + x2 + 1 	ZI  max 

s.t. 	10x1 + 5x
2  s  11 

x2 1 

x1, x2 	0 (integers) 

The algorithmic approach is shown in figure 6.2. 

At the LP optimum the solution is 

11 X1  = 10 

X2  = 0 

x1 + x2 + 1 

(6.25) 

t 10 = 21 (6.26) 

* 	43 z 
LP 21 

The cutting plane is given by 

1 
7 x2 	lo"

, 
 1 ,  10 

In the Charnes and Cooper Form this is 

1 
7 Y2 1051 10' 

Inserting this, the optimal tableau (6) is obtained 

(6.27) 

(6.28) 

The integer programming optimum to (6.25) is 

t = 2  x = 1 'S' = 1 'S3 =.1 2 

ZI  = 2  

The dual evaluators of the corresponding form are 

= 0. 	1'2  = 0 	7T3 = 

(In the CC form they are 

V 	= 0 	IT 	0 	'IT 	= 1 ) CC 	CC2 	. CC 

Now the cutting plane in terms of {x!} was given by (6.27), 

hence using Baumol and Gomory (48) we have the recomputed 

duals 
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1 	1 _ 1 
IT = 0 10.2 	- 20 

g2 0 0 

= 0 

The LP duals at the optimum were 

2 10 Tr 
77.77. 

_ 20  

(21)
2 

2 = ° 

Because of the structure of the problem the dual evaluations 

are very similar. 

N.B. The recomputation has been made assuming a linear 

change between the LP optimum and the IP optimum. From 

Chapter 4 we know that this is not true for fractional 

programmes. Evaluators are not piecewise constant. However, 

the added complication of such calculations seems out of all 

proportion to the associated gain of information. 

The associated subsidy (Alcaly and Klevorick (2)) 

would be the r.h.s. value of the cutting plane constraint, 

i.e. 

aI  = 

= 

1 
10. 

value of 

0), 

inputs from recomputed duals 

/11\ 11 
)\0 	= 	To 20' 

SI subsidy 1 
- 75. 

13 
SI aI = 20 

But Z I  = 2 

thus value of inputs < value of output, a typical result of 

integer programming. 

Any balance would be of the form of economic rent - but 

clearly this definition of 'value' is a tenuous one. 
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Y1 	Y2 	
s
1 
	rhs 

* 1 1 1 0 0 1 

s
1  

-11 10 5 1 0 0 

s
2 

-1 0 1 0 1 0 

-1 -3 -2 0 0 

comments 

non-basic 

1 1 0 0 1 

0 21 • 16 1. 0 11 

s
2 

0 1 2 0 1 1 

0 -2 -1 0 0 

basic 

t 

y1 

s
2 

 

1 

0 

0 

o 
5 
71 
16 

-1 
o 

1 

10 

i 
 

21 
1 
21 	

o 

-1 

21 
11 

21 
26 

21 
10 

21 21 	1  21 

0 0 
11 2 

21 i : 43  21 21 

optimal 

Y 1 

is2 

4., 

1 

0 

0 

0.1 

0  

1 

0 

0 

5 
Ti. 
16 	' 

-1 
0  

° 

1 

0 

0 

1 

. 

1° 
21 
1 
71 
-1 

21 
11 

21 
26 

21 
10 

21 

-0.5 

21 

-0.1 

21 

0 

0 11 
00 

2 
71 21 

non-basic 

Fig. 6.2 Tableaux for Integer Algorithm 
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Y1 Y2 	s2 
	rhsj comments 

t 

y1 

s2 

s3 

1 

0 

0 

0 

0 

0 

0 

5 
- 
16 

-1 

0 

1  
0 

0 

0  

1 

10 
21 0 21 

1 
21 
11 

21 
26 

21 
-1 

21 
11 

21 
-11 

21 
-2 

21 
-1 

21 21 21 

0 • 0 11 2 
-2-1. 0 0 21 

infeasible 

t 

y1  

s2 

s3 

1. 

- 	0 

0 

0 

0 

1 

0 

00 

2 
1 
2 
3 
2 
11 

0 

0 

1 

0 

0 

1 

0 

NHIC
V
 N—lic\I N—II

N
 c—IIN

 

c—1 	
c\J I  

O
IN

  O
IC\I  I

  IN
  I
  
"
  

1  

2 

0 0 ' 	0 0 	. 0 1 

integer 
optimum 

Fig. 6.2 (Continued)  



r + 

	

-1   ro z 	(r + r0  ) ( s + s0  ) 
	= 

s 	0 	s ) 2 
s0 	s0 

1 
0 
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Apaendix 6.4 Risk and Uncertainty  in FP 

6.4.1 Introduction 

Much literature has been devoted to the extension of LP 

for cases in which the programme data are subject to stochastic 

variation (e.g. (25), (28), (34), (39), (60), (82), (84), 

(87), and (89).) Such extensions deal with the maximisation 

of the expected value of• a linear objective e.g. (25), 

maximisation of some merit and penalty function (89), etc. 

Some formulations do allow extensions to FP, the resultant 

programmes being quadratic, or convex problems. 

6.4.2 The Expected Value Approach  

Using the assumption that distributions of variables 

are 'normal', significant simplifications are made in stochastic 

LP, e.g. (22, 25); in (20) and (25) the resultant programmes 

are LP's. With FP, such simplifications do not readily occur; 

the assumption of the 'normal' distribution is not helpful. 

c.x + 
Consider z- d.x 	, 

where c•7  a, d, p are normal variates 

(with known parameters). z can be written z = — where r 

and s are normal. 

Assume r and s have, say, N(0, ar) and N(0, as). z has a 

Cauchy distribution of the form f(z) = 	1  

0 
where p a . However, this assumes that the denominator 

can take all values. It is possible to expand the function 

r + z = 	ro 

s + so  

py(i)2+1) 

(r+ r0  )(s0  -s) •  (6.29) 

 

s2 0 

  



Ex.x.a.. 

	

a 	j 
d.x + p 	2 (d.x + (3)2 

max 
c.x + a 

f(x) 
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If r has the distribution (6, Cr) and s has (6, Os), 

then z can approximately be described by the distribution 

2 rn 	ar 	,r 

s 	a) where c 	2 + (1-s
2 	

2 
0 

. ( `") 	2  	2  

0 
0 	\ssoi 

6.4.3 The Utility Theory Approach 

R.J. Freund (39) uses a utility approach to risk, 

maximising the form jr.C1-e-ar )dr (where r is some measure 

of return.) 

For objectives which have a normal distribution, the 

maximisation becomes 

max E(u) = 
-(t.-11)

2 
 A 

j( 	- e-ar  )e 	.dr 
_00 

where r has (µ, 

a 
max E(µ) = µ - 7 a2  

a). If we consider a fraction z 

(6.30) 

c.x + a 

d.x + 

for deterministic d, a, p and normal cil  for any choice of 

x z has a normal distribution 

c.x + 

, 2 2 . a. a2 	x -a i 

or 	x.x.a.. 
j  3_3  

(d.x + P)2  

where 10-.1 are the standard deviations of each c. and a.. 
2.3 

is the variance/covariance matrix. 

The utility approach then has the form 

f(x) = 
(c.x + a)(d.x + 13) - 2  L x.x.aI.. I  

(6.31) 
(d.x 	(3)

2 
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This non-linear fractional programme can be solved 

using Swarup's Algorithm (81). 

6.4.4 Uncertainty  

Considering the linear form: 

min c.x + Ec(g, 2.) = f(x) 

s.t. 	A.x 	s b 

T.x + M.Y = C 

x, y_ Z  0 

The convex certainty equivalent is of the form 

min 	c.x + Q(x) . Examples 	are given in (87), but these 

rely on the linearity of c.x. 

This analysis applied to a fractional programme the 

certainty equivalent would have the form 

c. max f(x) = -  - x + Ec  (2.1  i) 
d.x + p 

N(x) 
= max 	 

D(x) 

which can be optimised using Ritter's method (72), if N is 

convex, and D is linear. 

6.4.5 Chance Constrained Programming  

Charnes and Cooper (18) consider three objective 

functions for the Chance Constrained Programme: 

f(x) = E(c.x) 

E(c.x - c0  .x0  )
.2 

- - 

= Pc.x zE0-1(01 (6.33) 

known as the E, V and P models. 

If c is random, d deterministic, the linear decision rules 

(20) may be useful. 

The P form gives a simple formulations since 

,-c.x + a 	1  Of -7--  21(C - ed).x 	(a - Op) 	0 
d.x + p 

(6.32) 
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The fractional and linear P models are identical. 

Unfortunately, the P model is not easy to solve; but its use 

in Corporate Planning (maximising the probability of achieving 

a given return on assets say) is attractive. 

6.4.6 Conclusions 

Although the fractional objective function presents 

certain difficulties in Stochastic Programming, the assumption 

the d is deterministic offers 'some simplification. 

Situations in which c is stochastic
, d deterministic might 

represent stochastic return on known investments, etc., and 

might find some use in Corporate Planning, as might the use 

of satisficing ratio demands using chance constrained 

programming. 


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167
	Page 168
	Page 169
	Page 170
	Page 171
	Page 172
	Page 173
	Page 174
	Page 175
	Page 176
	Page 177
	Page 178
	Page 179
	Page 180
	Page 181
	Page 182
	Page 183
	Page 184
	Page 185
	Page 186
	Page 187
	Page 188
	Page 189
	Page 190
	Page 191
	Page 192
	Page 193
	Page 194
	Page 195
	Page 196
	Page 197
	Page 198
	Page 199
	Page 200
	Page 201
	Page 202
	Page 203
	Page 204
	Page 205
	Page 206
	Page 207
	Page 208
	Page 209
	Page 210
	Page 211
	Page 212
	Page 213
	Page 214
	Page 215
	Page 216
	Page 217
	Page 218
	Page 219
	Page 220
	Page 221
	Page 222
	Page 223
	Page 224
	Page 225
	Page 226
	Page 227
	Page 228
	Page 229
	Page 230
	Page 231
	Page 232
	Page 233
	Page 234
	Page 235
	Page 236
	Page 237
	Page 238
	Page 239
	Page 240
	Page 241
	Page 242
	Page 243
	Page 244
	Page 245
	Page 246
	Page 247
	Page 248
	Page 249
	Page 250
	Page 251
	Page 252
	Page 253
	Page 254
	Page 255
	Page 256
	Page 257
	Page 258
	Page 259
	Page 260
	Page 261
	Page 262
	Page 263
	Page 264
	Page 265
	Page 266
	Page 267
	Page 268
	Page 269
	Page 270
	Page 271
	Page 272
	Page 273
	Page 274
	Page 275
	Page 276
	Page 277
	Page 278
	Page 279
	Page 280
	Page 281
	Page 282
	Page 283
	Page 284
	Page 285
	Page 286
	Page 287
	Page 288
	Page 289
	Page 290
	Page 291
	Page 292
	Page 293
	Page 294
	Page 295
	Page 296
	Page 297
	Page 298

