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ABSTRACT

Linear programming has been used as a tool
for the investigation of corporate planning and
the valuation of resources, the management of bank
assets, etc. This thesis uses the LP framework to
develop a global corporate model for short to
medium term financial corporate planning, and shows
the difficulties inherent in both the large scale
use of such models and the theoretical application

of the dual evaluation process.

Fractional programming 1s used to analysev
corporate planning with respect to objectives
which comprise fractional terms. Duality and
bricing in_linear fractional programming are
discussed. Conditions for 'coherent pricing'in linear
fractional programming are dedUced, and sequential
methods for the decentralisation of planning

operations with fractional programmes are given.

The use of special methods for. fractional
programming ( integer programming, upper bound
techniques, sensitivity'ahalysis etc.) are also

presented.
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MATHEMATICAL NOTATION
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MODEL NOTATION
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sums over i,j,k, usually 1 = 1 ... m,

j=71 ...n, k=1...m

varies with, is approximately the same as

any of the symbols £ , = , =z ,according
to the problem specification.

- * -
particular values of x, x denoting the

optimal value of x
the optimal value of £(x)
the vector of basic X5

the elements of corresponding
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and d

and d

to x,. ( ¢ are also used in this

B
context.)

the value of the partial derivatives of £(x)

*
with respect to x , evaluated at x .
the set of x for which condition A holds

sometlimes used to denote corresponding
variables in the original fractional
and Charnes and Cooper forms,‘ﬁi being

the transform of the wvariable By

a model considering n products over

a planning horizon of m time periods.



ABBREVIATIONS

o.f. objective function

s.t. such that

rhs | right hand side

N + S, NS necessary and sufficient

KT, K-T Kuhn and Tucker

BB, B-B Balinski and Baumol

Lp iinear programming

Ip integer programming

FP fractional programming

CCp chance constrained programming
3 there.exists

REFERENCES

(1.31) ' equation 31 of Chapter 1

Fig. 1.31 figure 31 of Chapter 1

Taplé 1.31 table 31 of Chapter 1

1.3, 1.3.1 section 3 and section 3.1 of Chapter 1
Appendix 1.3 the third appendix for Chapter 1
(31) reference 31
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continue the ordering pertaining to the original chapter of
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Chapter 1. Linear Programming and Corporate Modelling:

A Review

1.7 LP and the Costing of Funds

Linear Programming is the description of problems of

the form
max P = 2 c.x.
3 J ]
s.t. 2aijxj“bi , i=1...m
]
x. 20
(cj, 255 b; constants) (1f;)

LP problems are characterised by thelr attempﬁ to optimise
the value of a function of several wvarlables {Xj}’ subject to
linear constraints on the levels that may be assigned to the
{Xj}' In the context of Management Science, the variables
{Xj} may be the activity levels of a system (corporation); the
function P then meésures an.objective of the management of
the system concerning the component variableé. The constraints
{bi} are the 'resources', and the constraint set {Eié,zﬁgg}
denotes the allowable (feasible) combinations of {Xj}’

Theoretical aspects of LP, solution methods; and
applications are considered in (16), (33), (55), (83); from
these, and many other sources, the advantages of an LP approach
to corporate planning may be deduced. We will not discuss
this point, but will trace the major advances in the uses-of
LP in planning and valuation.

LP was initilially utilised for solving problems of blending,
plant loading, diet calculation, etc. (see e.g. (33), (83)).
During the 1950's, more complex problems in Operational Research
and Financial Planning were formulated in LP terms. Charnes

Cooper and Miller, (24) consider the application of LP to the
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Warehouse Problem (10), and the implication of the dual
variables for evaluation. Their primal formulation of the
problem is the maximisation of undiscounted cummulative profit,
for which the dual variables have the dimensions of (compound)
interest rates (i.e. "pounds per pound invested per period").
Thus, by attaching financial constraiﬁts to production and
Vstorage equations, funds are evaluated with respect to optimal
corporate behaviour.

Dean (37) proposed a ranking of capital projects on the
basis of their internal rates of return (i.e. on the basis of
the internal discount rate that would reduce the net present
value of the project to zero); this method is criticised by
many authors (see e.g. (59)) in that it does not allow for
interdependent projects, negative cash flows etc. In this
respect, the ranking of projects via the duél evaluation, as
suggested in (24) represents a major advance in the field of

capital budgeting and resource valuatlion.*

1.2 Dual Interpretations for quitalvBudgeting

Lorrie and Savage (59) show that Dean's proposed ranking
of projects must fail if:

g.‘ the projects are interdependent

b. the total capital expenditure is limited in more

that one planning period, or

c. the stream of returns is not always positive.

* As noted in (24), there is a similarity between the
Warehouse Problem, and the problem of optimal flows
through a network; this latter approach is developed by
Ford and Fulkerson in (38). Although networks can aid
the conceptualisation of the problem, (via the use of
flow charts, such as Fig. 2.3 and Fig. 2.4,) the
Mathematical Programming approach has decisive economic
and computational advantages.
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Their formulation of the capital budgeting problem is
considered in depth by Weingartner, (88). Although Weingartner‘s
work essentially deals with long term planning, the theory
and methodology he develops are also applicable to medium and
short planning, and point the way to much of the work in this

thesis. His formulation is:

P = X .
max 2 bJXJ
]
S.t ? Ctjxj < Ct ) t=1 ... T
0 £ x, =
x:J 1 |
(x. integers) - (1.2)

J

where {bj} are the rewards (NPV's) associated with the projects

{j}, xj= 0 or 1 according as the j'th project is rejected or

accepted, T is the number of periods to the planning horizon,

cij is the outlay for project j in period i, and {Ct} are the

maximum possible expenditures for the periods t=1 ... T.

(The formulation (1.2) overcomes the last two points
raised in (59); the interdependence of projects may also be
included in the integer programme (IP), using inequalities
of the form Xy = X £ 0.) |

The discussion in (88) contains three important features:

i. the attempt to solve (1.2) using approximate LP techniques,
ii. the use of LP duality to rank the projects {Xj}’

iii. the use of IP algorithms to give a true optimum for
(1.2), and the attempt to associate a dual pricing
mechanism with the integer solution, by re-imputation.

Using the LP approximation to (1.2) Weingartner analyses

the dual, namely:



min g = ZpCL+ T p.
-1 © t 3 J
T
s.t Z c,. + lL: 2 b. =71 ... n
t=1pt t3 By i J
P> p,j 2 0 ' (1.3)

where: {pt} are the shadow prices (or opportunity costs)
associated with the budgetary constraints, and {uj} are the
dual evaluators of the upper bound constraints {xj < 1}. If
(bounded) optimal solutions exist for (1.2) and (1.3), LP

duality ensures that E* = T Weingartner associates the
. :
3

the difference between the value of the firm P, and the

T
value imputed to resources, & p;Ct ). Defining

t=1

{u;} with the goodwill generated by x (since T u; represents

Y;.=tjlp;ctj + u; - bj , Weingartner shows that the {ug, y;}
provide convenient rankings for the projects.

Baumol and Gomory (43) suggest a method whereby the dual
evaluators of the final LP in the method of Integeerorms for
IP (42) may be re-imputed to the origihal constraints to give

(1)

an efficient price allocation. The theoreticél difficulties
assoclated with recomputed.dual prices are discussed in
Chapter 5 of (88). Welngartner suggests an alternative dual
approach, hamely the use of the LP dual on the restricted
(optimal) IP formulation. This formulation does price out
resources (an improvement over the prices of Baumol and Gomory)
but does not clarify the concept of a free good.

Alcaly and Klevorick (2) have given another variant on

the re-imputation process, introducing subsidies to the activities

(1)

see Koopmans (56)



to ensure that LP duality theorems still hold; although their

prices are more acceptable economically, the authors note that
"the concept of a free good remains disturbing", and admit the
"tenuous relationship between dual prices and marginal revenue
product in IP".

Balas, (5), has recently formulated a generalised duality
theory for discrete programming, which furnishes marginal
values for integer programmes. The use of this theory for
fractional programmes 1s discussed in Section 6.6.3.

Although the theoretical application of pricing in IP is
still unresolved, Weingartner's work represents the first
formalisation of the capital budgeting problem, and forms the
basis for many of the later financial planning models. The
more realistic estimates of rates of return on capital give

a framework in which financing options may be compared.

1.3 LP for Accounting and Control

1.3.1 Goal Programming and Accounting Models:

Goal Programming (16, Appendix B) is the description

applied by Charnes and Cooper to‘problems of the form:

mn 3(s7 + )

ot
s.t g.x -y + ¥y = 9.0
A.x s »
X Y;7 YZ = O (1.4)

in which the varliables {Xi} are considered as 'sub-goals' to
the 'goal" dy .

Ijiri (53) shows how the analysis of break-even points
may be transfdred to a goal programming problem, aﬁd how the

formulation of (1.4) may be used to analyse the operations of



a firm which has multiple goals. Using 'non-archimedean'
weightings, Ijirli ranks goals in the order in which they are
to be achieved, producing a single objective function for
(1.4), and via the generalised inverse for A, (see e.g. 71),
devises methods by which deviations from goal attainment may
be controlled, (Appendix A (53)). Ijiri also applies goal
programming to the analysis of the spread sheet accounts of
a firm, via the incidence matrix of the accounting network.
The model presented in (53) uses the changes in accounts as
performance indicators; the objective of maximizing net addition
to retained earnings 1s optimised subject to restrictions on
the account levels and their inter-actions. (In this model,
each account is represented by a model variable.)

1.3.2 Feedback Indicators and Control of Performance

For the set of goals v, the sub-goals x,and the relationship

A.X=Db, Ijiri defines an indicator set w by:
c.x = W : (1.5)

(If x and w are n and k resp, ¢ is any kxn matrix).
He shows that the necessary and sufficient condition for v -
to a uniquely determined function of w is that each row of
A be expressable as a linear combination of the rows of ¢;
in this case, w is a perfect indicator set. (Where v is not
uniquely determined by w, the set w is sald to be in imperfect
indicator set). The case of>imperfect indicators is analysed
using the generalised inverse of A, whereby Ijiri demonstrates
how the imperfect indicators may be used to.determine whether
the system is operating within prespecified limits A.x_ and
é,%o. The development is important where management wish to
review a restricted number o« statistics (indicators) from which

a global (i.e. subgoal) performance may be surmised; and



controlled.

1.3.3 Opportunity Costing and Departmental Control

Samuels, (73), investigates a different aspect of control
derivable from the LP model. He attempts to formulate a model
in which the dual evaluators are used to price resources, and
the divisions of the company are charged (controlled) by
their deviation from optimal usage of resources.

The calculation of the (opportunity) costs to be charged
against erring departments is made using the dual evaluators
of resources at the previous optimum: Samuels asserts that,
by duality, the accounting procedures will balance up the
total optimal budgeted value with the opportunity charges to
product accounts and thelr marginal contributions.

The model discussed is one of three products (X; Y, 2),
and three resources, floor space, supervisor time and machine
time: |

max P 2X + 3Y + 47

I

S.t. 5 + Y + Z < 8000 (floor space)
X + 5Y + Z < 8000 (supervisor time)
X + Y + 52 < 8000 (machine time)
(1.6)

The optimal solution is P = £10,284, X =1142, Y = 1143,

‘ ; s (5. 12 19
Z = 1143, with dual evaluators (28’ 580 5 )

Samuels considers three situations:

a. Suppose X ovefproduces, (say Q = 1183) and this causes Z
to produce only 942 units, because of insufficient floor
space. (The nature of causality is not stated explicitly:

this is discussed in Appendix 3.2). Dept. X has caused

a net loss of &£722, (overproduction has generated extra



profits of 41 x £2, but has caused Dept. Z to lose

201 x £4), and is billed accordingly.

He further demonstrates that i1f Dept. X is more efficlent
in its use of supervisor tihe (i.e. it reduces the
coefficient of X in the second row of (1.6)), it can be
credited with this saving, (although no other section

uses this newly freed gquantity of supervisor time).

The final example, of overproduction by Dept. X with
simultaneous underproduction by Dept. Z is presented

thus: "Assume that, for one reason or another, the producers
of Z would not have produced more than 1,050 units even if
Dept. X had not exceeded its allotment. In this instance
the lower than optimal profit should be attached to the
departments of both products, X and Z.

The opportunity‘cost charged to Dept. X is profit
lost because the inputs used in the production of X
prevented Z from achieving its adjusted output figure of
1,050. Against this, Dept. X is credited with the returns
frdm the extra output it produced because Z could not use
all of its original budget.

The most severe restriction on X is floor'space; 93
units were made avalilable by Z's failing to achieve its
target (i.e. 1,143-1,050). As product X reguires 5 units
of floor space per unit, this enabled production of 19

extra units of X. This resulted in a credit of &£38 to

Dept. X.

Vi obnos 22 usles cooduced Ly Dope. X oabove the
budgeted cuopue Jlguoe waooe Wil conoirTes that should
have been uscd Ly @, g S0 A o oLe of the contribution

on these 1tems 1is given to Z.



X's share of '"Loss'":

4 x (1,050 - 942) = 108 x4 = 432
Less Contribution from
extra X profit = 19 x 2 = 38 3384
Z's share of "Loss'":
4 x (1,143 - 1,050) = 83 x4 = 372
Less Contribution from
extra profit - = 22 x 2 = 44 328
Total 'Losst 72 "

The accounting system presented by Samuels, (according to
Bernhard (9)), is:
i. Bill to Dept. X the revenue loss of Z.
ii. Credit to Dept. X the revenue it has generated by
using resources that Z had not planned to use.

iii. Bill to Z the loss caused by its inability to produce
more than the revised figure for its best berformance
(regardless of the behaviour of X).

iv. Credit to Dept. Z,  X's revenue obtained by using
resources allocated to Z that Z had planned to use.

Bernhard, (9), reviewing this system, remarks:

"The main point of Samuels' paper is that any
decrease in profit should be chérged as an opportunity
cost to whichever department(s) was responsible for
the deviation."

Commenting on case co Bernhard notices that ii and iii
in the accounting system are in conflict. Suppose Z could
have made 1142 units and not 1050. 1. suggests billing X
with &£722, iii. suggests billing X with £804 and crediting Z
with &£82. Although the net result is the same the second
process gives Z credit solely because X has infringed upon 1it!l

Bernhard suggests a modified accounting procedure,
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changing iii to:

1&;' Bill to X the revenue loss of Z. Credit to X the revenue
gained by utilizing resources assigned_to Z (whether Z
has planned to use them or nof). Bill to Z: (as before) ..

The algebraic sum of the penalties and bonuses remailns

the same, but the allocation has been rationalised.

Although Samuels notes that the external supply of
limiting factors, and the internal relationships of

technology may change within the span of the time period, he

does not consider the possibility that the behaviour of the

erring department(s) may be so far removed from the optimal
solution (plan), as to go beyond the range of the optimal
solution. This would invalidate the dual evaluators, and the
penalty/bonus scheme under which the department considered
itself to be operating.

The dual evaluators may also change due to information
flows during the period. These difficulties (associated with

the choice of time period) are discussed in Appendix 3.2.

1.3.4 LP and Asset Valuation

The use of dual prices for (long term) fixed asset
valuation (and depreciation) is discussed by Carsberg (11);
the article is based on two papers by Wright (94, 95). Wright
proposes a valuation of assets based, not on sunk costs, but on
the minimum of replacement cost, realizable value or output
value, and suggests that dual prices may be used as measures
of opportunity values.

Carsberg notes the following points:
a. due to degeneracy, the marginal values derived at the

optimum may be "direction dependent" (see Strum (76)).
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Thus they may measure change in the direction of either

an increase or decrease of asset holding, but not
necessarily in both. He suggests that separate calculation
is necessary before the margiﬁal values (of dual prices)
and opportunity values may be associated.

b. in situations where there is a limit on the possible holding
of an asset, the value associated with that asset by the

. dual may be 1in excess of replacement cost; this might
prove unacceptable under normal accounting conventions.

c. measuring the value of each asset according to either the
dual price (for increasing the asset holding) or the |
opportunity value (for decreasing the holding) will not
give a true valuation of assets that are lost 'jointly'.
Under these conditions, the dual prices are liable to
overvalue the firm with respect to its net cash flow.
Carsberg associates this overvaluation with the accounting
problem of 'jointness'.

Unfortunately, the model presented by Carsberg is very
simplified. Viewing the production of one item over five

years (X, ... XS), which is produced on two types of machines

1
5 and B (each of which has a life of two years), he deduces

a model of the type stown in Fig. 1.1. (Equations (1) to

(5) are sales constraints; equations (6) to (10) and (11) to
(15) are machine requirements for A and B). In this (single-
product) case, the optimal basis is very stable; the solution
is: "manufacture the product in each period up to capacity";

consequently the range of the solution is large. The use of

the dual evaluators. to evaluate all the machinery is possible

(if not theoretically desirable), since the loss of one machine,
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by parametric methods, will not invélidate the optimal basis.

If the model were to consider multi-product firms, the
loss of one machine (i.e. the loss of a predetermined number
of capacity units) might alter the production schedules and
invalidate the optimal basis; thus machines cannot be valued
for depreciation using only the optimal dual prices. Thé
sensitivity of the basis in the multi-product environment
mighﬁ imply very different accounting results for small changes
of inputs. Parametric analysis will be required even when
considering the loss of just one machine (aséet), "all other
things being the same". In this sense the dual evaluations
incorporate the concept of jointness into thelr pricing
mechanism; the dual price is the marginal change in.the
objective function per marginal change in a single resource
- "all other things remaining the same'". The attempt to
évercome this constraint in interpretation and ascribe values
to individual assets that will be independent of the remainder
of the firm must, to some extent, be arbitrary - and hence the
'over-valuation' of assets noted by Carsberg.

In this case, the philosophy of LP and the conventions
of accounting are in direct opposition. The difficulties of
jointness (c.f. Wright) can be overcome by the use of LP,
but, the LP solution cannot be dismembered to give valuations
that will accord with accounting conventions. A second instance
of this difficulty occurs with "free goods'". Machinery,
(resources) which are not fully ﬁtiliséd are given zero vaiue.
A tangible, useful, asset is written off instantly if it is
not utilised to capacity; i.e. if its associated constraint

is not binding.
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Futhermore, the valuations of an LP model are dependent
on the objectives of the firm; multiple values (differing
according to objective and utilisation) may be present where
a firm has more than one measure of performance, or can be put
into more than one operating environment. (Multiple values
are considered in Chapter 3). The extent to which the choice
of the basic time unit affects the.dual evaluators is discussed

in Section 3.3.4 and Appendix 3.2.

1.4 LP Models for Asset Management and Banking

1.4.1 Introduction

In the applications of LP to problems involving set-up
times, batch quantities, non-divisibility of resources, etc.
many assumptions have to be made regérding the relevance of
the purely linear approach. (See e.g. Sections 2.7, 3.3 and
Appendix 3.3). During the last decade, attention has been
focused on the uses of Mathematical Programming in Banking,
Portfolio Selection, etc. (e.g. (14), (29), (30), and (74)).
Much of this work is similar to the models emanating from the
simple Warehouse Model, but the detail is more refined. Also,
because of the nature of the resources, the assumptions of
linearity, divisibility, etc.vare easily justified.

1.4.2 The Chambers and Charnes Model (14)

This model of the operations of bankS uses a multi-period
LP formulation. The constraints deal with desired liquidity
ratios, security purchase restrictions, etc., the objective
function being the undiscounted return on the Dbank's loans
and investments. |

1.4.3 The Cohen and Hammer Model

Cohen and Hammer (29), develop a more detailed model for
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asset management, introducing many of the safety regulations

that abound in standard banking procedures; policy consideraﬁions,
loan-related feedback mechanisms, etc. The two models (14)

and (29) differ in their treatment of cash flows and the
availability of funds. Chambers and Charnes assume instantaneous
changes at inter-~temporal links - "the desired average balance

in a partical category is identically equal to the spot balance
of that category at every instant within each period". Coﬁen

and Hammer assume that the rates of cash flow are constant

within each period. The two systems are compared in Figure 1.2.

balance balance
/i a.

7

t .J L Lt

; N v

Chambers and Charnes Cohen and Hammer

Figure 1.2 Spot and Average Balances

As a result of these assumptions, the average period balance
sheets will balance in the Cohen and Hammer Model, but this
will not necessarily be.the case for any spot balances at the

beginning or end of periods.

(This 'unreality' is justified by the authors on the
grounds that their model is used for intermediate and long
range planning, not for day to day transactions. It is also

noted (29) that, "any degree of realism in this respect can
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be incorporated into the model by approepriately shortening the
durations of the planning periods".)
Cohen and Hammer consider three possible objective
functions for maximisation:
(1) the value of stockholders' equity during the final
period
(2) the present value of the net income stream plus
realised capital gains and losses during the
planning period |
(3) the sum of (2) and the net present value of (1)
Objective (1) avoids the calculation of an internal
discount rate, and implies a (true) willingness to postpone
current income in favour of an ultimately higher wvalue of
stockholders' equity. The second ébjective allows future gains
to be discounted against risk, but the optimal solution is
sald to be sensitive to discount rates. (3) is justifiable
because only the first period decisions are required; the
final value of stockholders' equity is included to allow for
the horizon in these decisions, (otherwise terminal stocks
will be deemed worthless). /

1.4.4 The Use of Unegual Time Periods

For the models presented in (14) and (29), the time to
the planning horizon was divided ihto equal periods. Orgler
(69), has suggested a model in which unequal periods of time
are used, varying from daily considerations near the decision
instant to longer (monthly) considerations at the planning
horizon.

In models for day to day decision making this approach
has the advantage of computationél brevity, since detail at

the planning horizon is not required. Where such detail is
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needed (in Chapter 2, etc.) unequal time periods will not be

so useful.

1.5 Normative Models and the Behavioural Science Approach

1.5.1 Assumptions in Normative Planning

In this review of normative models for industry and banking,
we have tacitly assumed that in most cases; the objective
function is a reasonable expression of management's aims,
thereby associating the short term optimisation with the
first stages of a global, corporate, long-term plan. The
validity of this approach is questioned by Charnes and Stedry
(26), (27). In (26), they re-iterate thé distinctions between
the normative (Operational Research, Economic) approach, and
the descriptive attempts of Cyert and March, Simon, etc.

(32, 36). The first approach is said to have the following
characteristics:
"i. explicit long-run profitability maximization for
the firm as a whole,
ii. focus on the dgsign of internal systems to achieve
“this aim, \
iii. the rigorous use of mathematical tools in the
solution of'the organizatiénél problems posed."
(see (26), page 147)
(The original abstraction that firms "maximize profit"
.is linked to a further assumption '"that the individuals within
the firm are 'rational'".) Although Charnes and Stedry concede
that the concept of profit maximization could be broadened
to include utility maximization, they suggest that "the
assumptions of long—run profit or utility maximization are
non-operational, (even) if, logically or tautologically, they

can be shown to be valid. Such aims as '"good employee morale",
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"no layoffs unless necessary'", etc. are not readily translatable
into terms of profit and loss'. Charnes and Stedry (26, page
150) find no evidence that firms do construct long term profit
functions from which they derive short term statements of
purpose. (See also Cyert, Dill and March (31)). In contrast
to the normative approach, the descriptions of the behavioural
scientist havé the advantages of encompassing all fhe aims

and aspirations of the firm, (at various levels of the
organizational heirarchy), but there is a dearth of viable
mathematical tools that can be used in analyses of the
relationships between aims, policies and strategles.

Two models are presented in (26) and (27) which broaden
the scope of mathematical programming for modelling the aims
and aspirations of management; Goal Programming (introduced
in Section 1.3.1) and Chance Constrained Programming.

1.5.2 Chance-Constrained Programming

}
uses the following formulation:

Initially developed by Charnes and Cooper (18), CCP

Replace Z aijxj:;bi’ (iQ=1 ... m), with the probabilistic
]
constraint:

Pr{? aijxjs:bi} = 1-—ai i=1 ... m. (1.7)

Each expression, (i=1 ... m), becomes a statement of
policy, with respect to the goal bi‘ The objective function
for the programme can take one of three suggested forms:

the E model: max E(c.x)

the V model: max E(c.x - cC .x')2
== 7 =550

the P model: max Pr{c.x Z C_.X l
== T =5"=0j

(See e.g. (19), (20), (21), (22))

Optimum decision rules for a limited (and severely
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restricted) élass of problems are considered in (20) and (21),

but, although the application of this technique to (large

scale) business problems is very attractive, the lack of

theoretical analysis and computer algorithms makes it ilmpossible.
Some work has been carried out by Charnes and Sten Thore

(28) on ligquidity levels for financial institutions, and

by Charnes, Cooper ahd Symonds, (25), on problems with very

special forms of associated probability laws. As yet, the

fqrms of constraints that can be accommodated are very limited;

most of the calculations in the literature are specific to

particular problems, and do not furnish general algorithms.

Nevertheless, managerial awareness of risk in financial

planning may not be ignored. Fractional Programming under

conditions of risk and uncertainty is considered in Appendix 6.4

and may well represent a fruitful field for further research.

1.6 Ratios, Performance Measures and Fractional Programming

1.6.1 Ratios

In recent times, British Industry has witnessed an
increasing emphasis on productivity and financial ratiosj
'productivity' has become an established yardstick in lakour
efficiency and wage negotiations, and the use of financial
ratios has been much publiciéed as the result of such takeovers
as that of A.E.I. by G.E.C. (Indeed, long term measurements
have assumed a short term importanée that completely distorts
the econonmic picture.) Both sets of ratios attempt to combine
into one factor a series of complex‘relationships. Cohen and
Hammer, (30), note "the fact that the bankers pay attention
to such simple and naive rules of thumb as the ratio of loans

to deposits, capital to risk assets and mortgages to savings
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deposits indicates their awareness of the interactions that
exist among these various accounts".

, initially, productivity ratios were simple, economic
guiaes to the output potentials of different plots of land,
.or the conversion efficiency of an engineering process. Even
-in their simplest form they represent two major forms of
comparison; the "input creativity" emphasizes the non-comparability
of inputs and outputs, whereas the ”conversion'efficiency" |
.stresses the reduction of both to common terms (e.g. B.T.U.
equivalents), (40). Recently, work has been published that
emphasizes the relationship between the productivity measures
and the aims of the organization: as Professér Gold states (40): .

"in‘as much as different systems are likely to have

different objectives, and each system is likely to have a
variety of performance criteria, it follows that each system
may be characterized by an array of productivity relationships
at a given time, and also that identical measurements may'have
a widely disparate meanings in different systems". -

1.6.2 Value Added and Total Efficiency

Gold's work on the uses of ratios within the company has
its parallel in inter-company and inter-industry studies.

‘Professor Ball, (7), also mentions this association between

aims and performance measures: "there is a great temptation

(here) to embark on the search for the Golden Index, the single

statistic that can be taken as a measure of the success and
efficiency of the enterprise. A popular candidate for this
role is the rate of return on capital." (7; page 6).

Giving reasons why no such "Golden Index" can exist, Professor

Ball writes: "The starting point in any discussion of'efficiency

must be to specify the set of objectives that one is seeking
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to attain. It 1s necessary to measure efficiency in relation
to objectives, otherwise it has no meaning". He proceedé to
argue that it is necessary to include a measure of '"value
added" to the battery of statistics that are gsed to assess
performance." He introduces the concept of the 'total
efficliency' of a firm - compounded of price and technological
efficiency, (analogous to the 'efficient points' in Koopmans
(56)). Comparison by 'total efficiency' is suggested as
method of inter-firm and inter-industry judgements, but serves
little purpose in advancing Ehe nérmative objectives of

management.

1.6.3 Programming with Ratio Reqguirements

Chambers (13) has considered the allocatlon of funds
between competing projects (over the medium term) where a
company wishes td\restrict the wvalues that will appear in
reported results. His model, similar to that of Weingartner
(88), includes constraints on the lower bounds that may be
taken by such ratios as current assets to current liabilities,
and return on gross assets. He also incorporates policy
decisions on the minimum acceptable growth of profits, and
shows how these constraints impinge on the optimal schedule
of investments;

The inclusion of minimum levels for ratios derived from

LP variables poses no new problems. The constraint

|%

+ cO '
) = A (1.8)
o)

o] lo

[%

is readlily converted into the linear constraint

(c = Ad).x teg - A, = 0 (1.9)

——

provided that d.x + do. is always positive.
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For a firm whose aims can be expressed as the attainment
C..X + C
of a set of goals A,, by the set of ratios { T Oi} , a
gi"5 + do

1

linear goal programming formulation may be derived. The

programme

min % Ys

i
s.t. c..x + coi Y = A; i=1 ... m
d;-X g
i
X, Y. = 0 d..x +d_ =0 (1.10)
7 4i 1 o5 :

can be approximated to by

min . . J
Ty
i

s.t. (g, - Md)ex+ (g = Ad) ) +y; =0
X, y; 2 0 (1.11)
(The linear nature of the Y5 has been lost; {yi} - include
a heavy weighting on the basis of the i'th denominator).

1.6.3 Fractional Programming

The problem

and d.x + d_ 4 0 for x € S : (1.12)
has been described by Charnes and Cooper (17) as "programming
with linear fréctional functionals™. In (17) they prove that
the optimal solution to (1.12) can be obtained by solving at

most two linear programmes, either
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d.y + dot = 1
vy, t &0 ' (1.13)
or max —-C.Y - cot
s.t. A.y - bt =0
—Q.X -— dot = 71
Yy, £t =220 (1.14)

If (y , t) is optimal for (1.13) or (1.14), then

« 1 x t
x = =,.y 1s optimal for (1.12).

t

Martos (65), has shown that the problem (1.12) can be
solved by "simplex—like" methods; such a method is given in
(64).

Wagner and Yuan (85) have pro&ed an algorithmic
equivalence between (17) and (64).

Joksch (54) considers a -more general class of objective
functions which may be solved by parametric methods. For

(1.12) the algorithm finds the value of 8 which maximises £(8),

where
£(g) = max c.x + g
8
s.t. A.Xx £ b
_d_._}s + go = e
x 2 0 (1.15)

The development of fractional programming (and the
corresponding recent developments in computer technology and
LP capabilities) enable such ratios as "return on capital®,

or "return on assets" to be included in the set of objectives

T In later theoretical work we assume that (1.13) is "the
Charnes and Cooper Form" of (1.12); generalisations to
include (1.14) present no added difficulties.
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for normative corporate planning. The considerable emphasis
placed on these ratios by contemporary managément, justifies
the inclusion of fractional programming as a useful managenment
tool. Although it cannot be claimed that‘réturn on assets'

is the unitary objective for corporate strategy, the use of
fractional programming enhances the normative approach to
corporate planning - making it more realistic for both

“management and the management scientist.
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Chapter 2 The Mathematical Model of the Firm

2.1 Introduction

The broad outline of the LP tools available for corporate
modelling has been sketched in Chapter 1. A primary intention
of the project was to use these techniques, and to develop
new methods, for modelling the planning process in a firm.

In the following sections, we describe the test firm,
its technology and planning process, develop the mathematical
formulation of the model, and show how the data for the model
is closely allied to both the structure of the firm, and the’
structure of the bounded variable‘algorithm for LP.

2.2.1 The Firm

As a basis for the development of the LP model, a study
of a partiﬁular firm was undertaken; the company studied is
part of an international corporation whose operations in the
United Kingdom consist oflthe import,.production,-marketing
and export of a range of electrical appliances. The1study was
limited to the operations within the United Kingdom, since the
individual companies have considerable autonomy.

2.2.2 The Product Range

The product range of the firm falls into two major
categories: domestic appliances, and industrial appliances,
and the, second category is further subdivided, according to
the particular specification of the product, into three
sub-catagories: light duty, medium duty, aﬁd heavy duty.

The numerical division of the product range betWeen thése
categories was: |

domestic light duty medium duty heavy dﬁty

55 13 44 113
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Further classifications were electrical wiring specifications,
earthing requirements, colour codes, éfﬁ. varying between
markets. Typically, a domestic product could have up to twelve
individual specifications; an industrial prodgct would have
at most three or four variants.

2.2.3 The Manufacturing Facllities

The manufacturing facilities of the company were divided
between its three factories in England; two of these being
'adjacent' in the London area - the third in the North of England.

Production was organised in batches,'according to the
pertaining production schedules and estimated requirements.

The final stages of production for each batch comprised assembly,
testing and packing, these activities being kept strictly
separate for the domestic and industrial ranges.

The machinery of the factories was coded into a series of
work centre classes. A typical (numerical) breakdown of the
basic machining centre is shown in Figure 2.1. Codes between
1000 and 9999 were used. Machinery (andvproduction) was
allocated between factories to keep the costs of transporting
unfinished parts to a minimum; factories w;re assumed to
specialise in particular ranges of product.

2.2.4 Raw Materials, Storage and Inventory

On each factory floor locations were assigned for raw
materials - mainly metal bar, electrical wire, and castings.
Materials were released from stores ‘according to production
schedules; work-in-progress was stored in;bins on the shop
floor, or returned (for temporary storage) to specified areas
of the factory floor.

After final aSsembly'and testing, finished goods passed

into the warehouses located at the factory. Goods were either
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- despatched immediately to purchasers or company warehouses, or
stored at the factory, (see 2.2.7). The company used its own
fleet of vehicles and public road hauliers.

2.2.5 The Market

The company divided the outlet for its product into five
categories, each market outlet having a different characteristic

and associated discount.'. These are shown below in Fig. 2.2.

. - e
{ ) '
 Market Sector | Repayment | ~ Orders |  Discount
1 I slow . large 30% '
2 | fast . large ' o
§ . (erratic) 40%
3 !  fast ' large : o |
: ; (steady) 40% [
4 { medium - large 40% §
> fast - medium | intercompany

Fig. 2.2 Discounts and Repayment Times

2.2.6 Marketing and Promotion

The firm employed a sales force whose major function was
marketing products via the dealer/distributor network. Dealers
and distributors were contacted regularly in order to ensure
that they were fully stocked to meet expected responses from
advertising campaigns.

The sales campaigns were organised by the Marketing Division
of the company, and used two primary methods of communication:
the press, and commercial television.

Much of the advertising in the press was carried out in
association with the Mail Order Houses, with whom costs were
shared. The television advertising campaigns were directly
controlled by the company, and geared towards promoting an
early response for seasonal fluctuations, i.e. towards extending
the periods of seasonal demand.

The response rates to promotion, i.e.monthly sales figures

were derived from an analysis of the returns of the guarantee.
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2.4 The Financial Flows
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~cards supplied with each product.

2.2.7 The Physical Flows through the 'Firm

A schematic chart of the flow of physical goods through
the firm‘is shown in Fig. 2.3. Inputs to the physical flows
for any period of time were determined (initially) by the
-financial situation at the planning moment, and the projections
of sales forecasts. Based on these estimates, materials were
. purchased; these eventually passed through the manufacturing
processes of the firm to be despatched as finished goods.

2.2.8 The Accounting Procedures and the Financial Flows

The company used an "integrated standard costing system”
based on the standard costs of some two years standing. Any
deviations from these costs were allocated to rate variance
accounts according to standard pfactices.

For the purposes of planning the corporate strategy over
the short/medium term; (i.e. 1/3 years), a flow chart for the
financial accounts was drawn up - Fig. 2.4. This chart shows
the financial flows corresponding to the physical flows of
Figure 2.3. The chart is given in-two sections. After the
derivation of the operating income, the balance could either
be transferred to assets (bank or cash) or could be used to
generate reserves. The generating of reserves was used to
supply extra funds for the marketing of goods - in particular,
reserves were used to increase promotional expenditure on
advertising.

2.2.9 The Management Heirarchy and the Committee Structure

A study was made of the structure of the management
system, the relationships between the management and committee
structures,and the information flows. (A ‘chart of the

management structure is shown in Fig. 2.5).
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A 3-dimensional picture of the firm was composed: the
basic physical_and financial flows were drawn on to sheets of
clear perspex. Other sheets of perspex were used to' show the
basic management functions, and the inter-relationships between
the management and the committee structure. A final sheet was
used to identify the information flows between physical and
financial centres, and the management and committees concerned.

The sheets were drawn so that any number could be viewed
concurrently; a view through the chart of committee structures
and physical and financial flows showed the manner in which each
commiﬁtee interacted with these flows, both from the.central
'and informational view-points.

The total 'sandwich' is illustrated below in Fig. 2.6.

Information flow ; :

Committee structur '
str ure — /////F—f’ /////
Management tree ' —
g — / | /
Physical and :
financial flows B 4(///f7 /////

Fig. 2.6. The perspex charts

The committees appearing on the second perspex sheet

were:
i. Management Advisory Committee v. Finance Committee
(MAC)
ii. Management Operating Committee vi. Plant Loading
(MOC) Committee
iii. Marketing Committee vii. Inventory Committee

iv. ‘Manufacturing Committee
These are related, stratigraphically within the firm, in

three levels; the Board, the Planning Level, and the Control
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Level.
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Fig. 2.7 The Committee Structure

R e

The planning committees provided the inputs of policy and
objectiveé for the model; the output was intended for submission
at the planning level for épproval, then at the control level
for application. |

2.3 The Corporate Aims and Strategic Planning

2.3.17 The Planning Processes and Performance Measures

The policy of the corporation was to conduct its forward
planning in three stages: the construction of a ten-year
plan; the construction of a three-year plan (updated) to
correspond with the current ten-year plan; the construction
of annual (operating) plans and budgets.

The U.K.’company followed similar procedures. Eight
measures were listed in the company's report on Financial
Planning, by which performance was judged, and concerning
which the ten-year plan developed detailed projections.

They were: Return 6n Assets; Return on Fixed and Cur;ent
Assets; Ratlio of Net Sales to Total Assets; Ratio of Income
before Taxes to Net Sales; Growth of Total Assets; Growth of
Net Sales; Growth of Income before Taxes; Growth of Earnings
per Share. )

The ten-year plan was an extrapolation of these measures
over the coming decade. Once these estimates of performance

measures were published, they became the standard performance
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measures for current evaluation of operations;

The performance measures themselves were of different
importancé; a trend of the past decade has been towards the
reliance on the ratio of Return on Assets. (The concept of
Productivity of Assets has been reviewed in Seétion1.6, and 1is
- amplified in Chapter 3).

Considerable emphasis on "Return on Assets" and "Growth"
is prevalent in the medium and short term plans. (The medium
term plan is a more accﬁrate (and updated) version of the
ten-year plan).

2.3.2 The Annual Plan and Operating Budget

As a result of the planning operations i and ii above,
the annual budgets were planned in Aprii ; June. At the end
of the annual planning period, these budgets became operational,
i.e. they were the control budgets for the coming year (October
to October).

The construction of the annual operating budgets was
itself a three stage process.
Stage 1, April: A financial assessment was made of the Income
and Surplus, Balance Sheets and Cash Flows for the year éhead.
Stage 2, May-June: PRroduction plans, Market Policies etc. were
prepared, in order to achievé the proposals of Stage 1.
Forecasts were obtained on all market fronts for use in the
planning of operations. |
Stage 3, June-July: The forecasés and plans of stage 2 were
consolidated into a series of working plans and budgets which
becamé operational. |

The general nature of the planning process (for each

stage) is summarised in Figure 2.8.

The final stages of acceptance or suggestion of modifications
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initiate plan

derive input§ k
plan '
}

validate

accept,éiaﬁ %/////

suggest modifications

j further requirements

Fig. 2.8 The General Planning Process

s

or amendments, emphasise the circular nature of the planning
process.

The model for short term‘ planning was\intended to enter
the 'plan' stage for the one year exercises;it was designed. to
utilise the forecasts of Stage 2 of this process, and produce
a more detailed set of production plans and balanée sheets for
further appraisal by management.

The major advantage in the planning process would be the
speed with which Stage 3 could be enacted; this would allow a
series of possible budgets to be considered.

2.4 The Model

The planning model proposed for the firm was a multistage
LP model; the planning horizon (one year) would be split into a
series of (equal) periods (months) and the interaction of the
variables defining the period activities of the firm would thus
model the progress of the firm to the planning horizon. |

The advantages of the linear approach to such planning
problems have been discussed extensively. See e.g. (16), ﬂ83).
The addition of accounting systeﬁs to such formulations of

production planning poses no new problems; the accounting
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system, and in particular, the standard costing system, is a
linear concept of constant returns to scale.

Thé interactions of the variables of the model take two
forms; inter-period and intra-period types. These form two
distinct groups within the model, and model different functions
within the firm. An outline of these constraints is given in
Section 2.4.

For the 'initial model' it was assumed that the factories
should not be considered as separate units; the company was
assumed to be a homogeneous unit. No transportation costs
between factories were included;-(these would have been of
integer (i.e. non-linear) type).

The model would thus be useful as elther a global model
of the United Kingdom operations, of as a model of any
individual factory, which could be insefted into a decomposition
process. These (and further) assumptions are discussed in
Section 2.7.

2.4.1 Intra-Period Constraints

Thé intra—period constraints are répresentations of the
accounting procedures. In setting ﬁp the accounting network of
the firm, we have not used the explicit approach of.Ijiri (53).
This approach implies the inclusion of many variables as (explicit
combinations of existing variables, the calculations being
carried out in 'equality type' cénstraints of the form:

X, = ? Xjajk (2.1)

This is unnecessary when the row sum I Xjajk will suffice;
the inclusion of such equalities is computationally undesirable.
Thus most of the accounting activities are modelled by
unconstrained row sums of the corresponding multiples of -

variables. These accounting rows are:
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i,Gross Sales: The value of goods sold in each period is the

sum of the product of the sales figures and the list prices.

ii.Standard Costs of Sales: These row sums indicate the

standard costs incurred during the production of the goods sold
in each period.

iii.Overhead Accounts: These accounts are determined by

adjustments to the standard costs to account for rate and USage
variances (see Appendix 2.2). They are equality constraints

of the type outlined above, and are included because of the
importance of the overhead accounts (due to, the lack of updating

of the standard costs).

iv.Discount on Sales: The trade discounts on gross sales are

determined froﬁ the discount structﬁres of Section 2.2.5.
V.Net Sales: The net sales figures per period are deduced

from the gross sales and discount rates. |

viManufacturing margin: The estimated manufacturing margin

on current sales is calculated from the net sales, standard
costs and overhead accounts.

2.4.2 Inter-Period Constraints

The inter—-period constraints fall into three main
sections: accounting sums; capacity constraints; and

continuity constraints (balance equations).

a. Accounting sums and equations: The variables for "the

amounts stored in each period" were omitted; they ére
linearly dependent on "the amounfs produced and sold". This
means that some accounting and storage constraints are of the
inter-period type although they are logically of thé intra-
period type. Due to the method of formulation the following

are also inter-period constraints:

i.Work-in-progress: During the periods prior to the
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completion of a product, it will be accounted as work-in-progress.
This row is the sum over 'incomplete' products of their
contributions to the work-in-progress account.

ii. Finished Goods: The finished goods row accounts for the

change in the level of the finished goods account due to
production and sales during the periods of the total planning
period. Finished goods are valued at list price.
iii.Payables: The amounts falling due for payment in each
period are calculated; payments are staggered according to the
lag between receipt and the date for settling accounts.

iv, Receivables: The amounts expected in receipts are similarly

‘summed. Both 'Payables' and 'Receivables' are used in the Cash
Continuity Equation of part ¢, below.

v, Bank Charges: The interest charge for the period is

calculated on the difference between bank loans and repaymentsl
Bank charges also appear in the 'Payables' account.

vi, Marketing Expenses: The marketing expenses are calculated

on the basis of sales of the'present (or succeeding) periods.
(See Section 2.7.5.)

b. Capacity Constraints: At most stages of production and

storage, physical constraints of capacity are operative; these
.are:

i.Work centre capacity constraints: For each work centre,

the planned usage may not exceed the total capacity available.
Allowance may be included for subcontracted work.

ii.Labour force reqguirements: The labour force requirement

(for machine operatives) can be calculated from the proposed
work centre usages; the labour requirements may be bounded by
the maximum size of the labour force.

iii, Storage capacity: The spot balance of products stored at

the end of each period may not exceed the storage faCilities;
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the increase in stored prodﬁct may not exhaust the storage
space avallable at the beginning of the planning period. This
increase is calculated from the difference between production
and sales figures, in which the increase of stored product is
implicit.

iv, Materials usage: For each period, it is desired that the

raw materials required for production be on hand at the beginning
of the period; this requirement ensures a steady flow of
materials into the system, corresponding with the back up stocks
held on the factory floor.

The materials requirement is calculated from the production
plans for the succeeding three periods.

c. Continuity equations: In common with all multistage models,

the LP model outlined here requires inter-period constraints

to define the manner in which matefial balances, étc.,‘are
carried over between periods. These continuity equations are
often implicit (as in the case of storage of completed products).’

Continuity equations explicit in the model formulation are:

i,Materials balance eguation: Raw materials available in a
period is equal to the raw materials available in the previous one
adjusted for usage and extra purchése.

ii.Cash continuity equation: The cash on hand at the end of

a period is calculated from the cash on hand at the end of the
previous period, adjusted for payments and réceipts. The spot
balance adjustment is analogous to making up the monthly cash
accounts. o

A further set of constraints were added to the inter—periéd
set in order to reflect the time théﬁ different products remain
in Store before sales - in order to include the rate.of turnove;

of stocks into the financial. scheme.
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iii.Storage reguirements: No finished product is .available

for sale, unless it has been in store for an appropriate length‘
of time. This lag is determined by the storage lag data discussed
below in Appendices 2.2.1 and 2.2.4.

2.4.3 The»Bounds on Admissible Activity Levels

The levels at which activities may take place are controlled
by two sectiqns of the model:

a. the constraints: these define the allowable levels of
activities by requlating their inter-actions.

b. management policies: stipulating levels of activities that
ghey‘consideﬁ desirable;_these may be‘minimum sales targets,
cash balances, etc.

The management policy decisions are entered into the

‘model by bounding the activity levels of the model variables.

Explicit inclusion has been made of the following bounds:

i.Minimum sales: Sales of each product must exceed the
given minimum sales pattern.

ii.Cash balances: The cash balance at the end of each period

must lie between pre-specified limits.

iii,Bank loan restrictions: Upper and lower limits are placed
on the amount that may be borrowed per period.

iv,Raw materials balance: The materials balance at the end

of each period must lie within a specified range.

Other bounds may be introduced  into the model éftér the
initial tableau has been set up by the'matrix generatimng
programmé, e.g.

a. Total loan restriction: The total outstanding loan
may be restricted by bounding the admissible level
of interest payments.

b. Upper sales limits: If planned sales exceed the

market forecast, this forecast may be introduced as
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an upper limit on sales.

2.4.4 The Objectives

The matrix generating programme also formulated the basic
set of (unconstrained) rows which could serve as objective
functions for the programming model. These were:

1. Change in Current Assets.

2. Change in Current Liabilities.

3. Gross Sales.

From these three rows, and a knowledgé of the asset and
liability positions of the firm at the beginning of the planning
period, the performance measures of Section 2.3.1 can be deduced.

The company emphasised its desire td make operations
independent of current taxation policies, hence all measures
are calculated "pre-tax". Net sales, althoughvnot explicitly
included in the objective set, can be deduced from the row sums
of period sales.

The formulation of the objective functions was:

1. Chahge in Current Assets: Change in current assets is

accounted for by changes in finished goods, materials, cash
and. outstanding accounts.

2. Change in Current Liabilities: Additions to current

liabilities derive from changes in the outstanding loan, and
outstanding debt.

3. Gross Sales: The sum of all monthly gross sales for

the total planning period.

2.5 The Mathematical Formulation

.Corresponding to the logical exposition of the model in
Section 2.4 , a mathematical formulation was devised. This

is presented in Appendix 2.1.
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The arrays used for this formulation are shown in Tables
2.1 to 2.7. The features defined are:
i. the model parameters
ii. the model variables
iii. the production/technology arrays
iv. the accounting data
v. the accounting.and storage lags
vi. the technological capacities
vii. the bounds on the acceptable variable levels.
The matrix generating and report programmes are listed in
Appendix 2.3.

2.6 The Association with the Bounded Variable Algorithm

2.6.1 Normative models and planning procedures

Corporate planning may be characterised by the following
concepts; given the present organisation of the firm, its
'status-quo' in technological development and resources, and,
bearing in mind the objectives of its management, what plans
should be envisaged for ‘optimal! opefaﬁions in the coming
planning period.

These plans may encompass changes of the organisation itself,
advancements in technology, and adjustments to resources, and
will ihclude the proposed future use of each of these factors
in the manner most suited to management aiﬁs. The desirability
of any plan will not necessarily be quantifiable in such terms
as 'Return on Assets', ‘Saies', efc., (as in Z.Q. Sociological
norms will also be present, as well as factors not directly
under the company's control - market share, market value, etc.
Any plans which are 'normative' with respect toquantifiable
élements such as financial ratios, sales, etc. will also have

to be compatible with the'aspirations of the firm:and its
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management. In this context, the normative approach to planning
is one of validating the mathematically 'optimal' plan with
respect to the non-guantifiable demands of the firm, and

' rejecting (or re-formulating) such plans when they do not satisfy

such requirements.

2.6.2 The Elements‘of Normative Planning

The elements of normative planning outlined above are:

i. The organisation of the firm: This comprises its structure

both in the management and technological senses, and the
framework of the production processes that it utilises. Under
'‘organisation', we include the managemeht heirarchy, the
committee structure and the information flow, as well as the
basic framework of the flow diagrams of the physical and
financial resources, Figs. 2.3 and 2.4.

This outline is complemented by the technological factors
and resources to givg 'the model of the firm'.

ii. The technology and resources: The ways in which the basic

framework is utilised depend on the present state of the firm's
technological development and the resources it commands.

Its development is characterised by such items as the
product range, the use of the technological framework by the
product range, the firm's ability .to introduce innovations,
the productive efficiencies, etc. The resources on hand are
those factors which may be disposed of, by management, in
pursuit of production and sales.‘

iii. The objectives of the management: These are divided

between 'aims' and 'policies'. The aims of management comprise
their desire to optimise behaviodr, attain targets, 'perform!'
well, etc. Any attempts to achieve these aims may be constrained

by policies which describe the bounds in which management
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chooses to operate. These bounds may be on financial holdings
(cash, loans, etc.), stock holdings, or a restriction on
performance levels.

In this model, the policies form added restrictions
to rhe attainment of objectives.

2.6.3 The Bounded variable Algorithm:

The programming model, (described in Section. 2.4 and
Appendix 2.3) was designed for use with standard LP codes.
The package used for all solutions was the Mathematical
Programming System on an IBM 360/65 computer (the MPS/360
package). This code, in common with most standard LP codes,
uses the bounded variable form of the revised simplex algorithm,

(16) and (68); it solves the LP:

max Cc.X
s.t. A.x<b
.L=x=U (2.2)

where L and U are lower and upper bounds on the admissible
levels of the value of x, c.x is the objective function, and
{ﬁ&ﬂ-?&s _12} is the constraint set.
Considering the matrix A and the vector b, we may distinguish

two separate features of the c0nstraint set: the structure of
A and b, i.e. the positions of non-zero entries; the values
of ﬁvand b, i.e. the actual matrix entries. 'Three dimensionally'
the form of the bounded variable algorithm may be described
by Fig. 2.95. |

| These levels are related to the elements of normative
planning in the following way:

i. the underlying framework of constraints and capacities is

derived directly from the present organisation of the COmpany;

the layout of its production facilities; the current accounting
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procedures, the informa£ion'flows, etc.

1i. the present technology and resources determine the entries
into the frameworks for A and b (as defined by the present
organisation). Efficlencies determine the machine centre
usages, input requirements, etc., the résources determine the
plant capécities avallable, the material inputs, etc.

11i. the objectives and bounds are directly related to the
quantifiable aims and policies of management. Their aspirations
are measured in the set of objectives; the policy levels are
included in the bounds on admissible activity levels.

2.6.4 The Relationship between the Model and the

Committee Structuré

The committees directly related with the formulation of
the model are those of the planning level: the MAC and the
Marketing, Manufactyring and Finance Committees. (see Fig. 2.8).
These have an effect on two of the elements of planning, the

organisation and the objectives; they directly determine the

framework of the constraints (via the organisation) and the
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objectives and bounds, (via the aims and policies of management).

Thelir effects are:

i. Management Advisory Committee: The MAC provides

consultation to the Boérd on matters concerned with major changes

of structure in assets, research, facilities and organisation.

In terms of a mathematical model these enter as either the

framework for the constraints and capacities, or the proposals

for an integer programming, (capital budgeting) type of model.

Interest here is restricted to linear models, hence the

committee has the effect of suégesting the constraint framéwork.
It also establishes the new aims and objectives of the

firm, or modifications thereto, and specifically formulates

the profit objectives, i.e. its major role includes the inputs

for the bounds and constraints.

These inputs are further modified by:

ii. Marketing Committee: where marketing policy is formulated.
For the model this policy is included as saies bounds and
suggestions for marketing expenditures.

"iil. Manufacturing Commi : whefe manufacﬁuring policy is
proposed for the approval of the MAC.

The technology of the firm is not decided in committee
as a short term planning objective; use is made of the technology
to determine optimal policies. |

2.7 The Assumptlons

2.7.1 Introduction

The .model presented in Section 2.4 and Appehdix 2.1 is a
deterministic, multi-stage LP model, to be used as a planning
tool for upper management. Implicit in the formulation are
assumptions concerning both the nature of the interactions

allowed in the model, and the possible control parameters that
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can be utilised to govern such interactions. We will discuss
the general nature of these assumptions under three headings -
linearity, determinism, and time structure and stock control -
and append detalls of any further assumptions made in individual
constraints.

2.7.2 Linearity

In assuming that the planning processes can be modelled
using anLP format, all possibilities of capital investment on
plant and facilities, restrictions of minimum batch quantities,
and allowances for machine set—ﬁp times have been excluded.

The model was intended for short to medium term planning,
and it would be expected that any papital coﬁmitments arising
out of a scarcity 6f capacity during the planning period (and
demonstrated by the model) would require a lead time longer
than the planning period itself. (Capital expenditures
undertaken hefore the beginning of the planning period would
assume a deterministic form and any associlated changes in capacity
could be built iﬁto the model with the data outlined above).
>. The lack of restriction on minimum batch guantities is
somewhat more important; a failure to include such quantities
could lead to impractical planning. The inclusion of minimum
batches for production implies elther the association of
integer variables with production-aétivitﬁes,-or:nonlinear
equations of the form |

PROD (I,J) x (PROD (I,J) - MIN (I,J)) 2 O (2.3)

where MIN.(I,J) - minimum batch quantity for product I
in period J. (For definitions of PROD (I,J), etc., see
Appendix 2.1).

The non-negativity requirement on PROD (I,J) and the’

equation (2.3) would ensure that if PROD (I,J) were .non-zero,
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- it would be greater than MIN (I,J). Such an inequality can only
be handled in the LP environment using S'eperable Programming
(see e.g. (68), (51)); the inclusion of such constraints for
each product and evefy period would greatly expand the problem
size. It was assumed that deficiehcies introduced by omitting
batch quantities could be adjusted (post-optimally) by
manipulation.

Economic batch quantities can only be accommodated using
Integer Programming techniqués.

Set-up times have also been omitted, these again are non-
linear. A true estimate of utilised capacity is obtained by
the inclusion of set-up times: for each non-zero PROD (I,J) -
using Integer Programming. As with batch quantities, set-up
times have not been included, due to the size restrictions on
computable integer programmes, and the difficulties of dual
interpretations, (see Section 3.3.2). |

A post-optimal scan can be made, to assess the effect of:
both these omissions - the process of post-optimal adjustment
has been outlined in Section 2.3.2. fSuggesting modifiéatidns"
in Fig. 2.8 could include making allowances for the proposed
set—up times by appropriate reductions of capécities and cén
take care of minimum batch quantities by the addition of further
bounds on the non-zero production variables. (Such cdnsideratibns
have been made in Appendix 3.2).

The assumptions of‘linéarity and constant returns to scale
do not contradict the normal accounting procedures of standard
costing, indeed the action of the programme in making up accounts
at the end of each month, exactly models accounting practice,-
both with respect to linearity and time segmentation.

A further assumption associated with linearity is the fact

that products (variables) are independent - physically and
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algebraically. Hence, two products-will appear-totally
dissimilar if they differ by only one attribute - say standard
wiring. It is thus necessary to remove all trivial differences
between product items before defining the product set

(PROD (I,J) J = 1, ... NPROD). This implies a loss of detail
in the olanning, but will reduce the number of variable that
must be 1ncluded in the model.

2.7.3 Determinism

In Chapter 1 we have mentioned the Stochastic Apnroach to
Mathematical Programming proposed by Charnes and Cooper (18).
These methods have the advantages of introducing a well defined
concept of risk into the planning process, and of being much
more akin to management psychology in their treatment of
constraints, but this attractiveness is marred by the lack of
computational success, and the complexity of any programmes
- developed. It is still far from practical to attempt to model
a large scale operation using Chance Constrained Programming.
The only approach to risk, at present, appears to be the use
of deterministic models, with a post-hoc risk analysis made
by management on the basis of successive optimisations.

As has been shown by Wagner, the optimum of an LP approxX-
imation using mean value estimates may vary markedly from the
mean value of the stochastic programme. (See e.g. 84). Such
will be the case where many of the matrix elements are them-
selves stochastic. |

In this model (and in the short term planning context),
this stochastic nature need not present too much of an obstacleA
to a deterministic approach followed by adequate sensitivity
analysis, since the variation is not large.

The stochastic nature of forecasts is a necessary feature

- of the input data, and must be dealt with using comprehensive
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post-optimal analysis.

2.7.4 Time segmentation and stock control

The normal practice in multistaée models 1s to define
variables as pertaining either to the ends of respective periods,
(such as "cash at the end of period Iﬁi, or to some indefinite
time in period I, for accounting at the end of the period (e.g.
"materials purchased during period I"). (Equations such as
(2.22) and (2.23) in Appendix 2.1 define the continuity of these
variables at intertemporal links.)

We have already noted tha£ there are two approaches to the
method of specifying continuiﬁy and growth of stock holdings.
Cohen and Hammer propose a justification for the average balance
approach on the basis that, g‘the model 1s a medium/long- term
planning tool, and b time periods can be shortened (arbitrarily)
for greatervrealism. In the model described above, we have
assumed that holdings of cash, raw materials, finished goods
and work i1n progress are all to be considered as spot balances
referring to holdings at the end of respective periods. With
the wvariables for cash holding, this assumption is valid on
the grouﬁds of regular accounting practice. (The treatment
of finished goods and work-in-pfogress is similarly justified).

The reasons for regarding materials and stored product as
spot balances are two-fold: '

a. ' the balance equations are simplified,

b. with both materials and stock, the end of the periliod values
are used in equations modelling the flow of the respective

item through the system in addition to providing the continuity
equations. Average balances haVe little meaning in this case.
Difficulties arise in measufing the warehouse utilisatidn, (2.20).

The spot balance here is measured against the absolute capacity.
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It might be more meaningful to use some average measure

to compare with capacity, but both avefége and (adjusted) spot
balances are unrealistic. The quantity to be compared with
storage capacity is the maximum amount held during the period.

To obtain this figure we would have to make further assumptions
on the rates of change of stocks due to production and sales,

and might enter into non-linear systems when trying to cope with
both increasing and decreasing stock levels. In this case the
normal appeal to the correctness of the length of the time period
is made.

The final problem.associated with the time structure of the
models is its interpolation into the real time world; i.e. the
adjustments to the initial and final stages of the model to
ensure a smooth (and feasible) transition between true operating
time and the model's planning period and vice versa.

At the planning ﬁorizon, the accounts for work-in-progress
need adjustment allowing for work to be completed beyond the
scope of the model; use of machine facilities during the terminal
periods will be an underestimate of the actual use that will be

-

made; materials on hand at the planning horizon must allow for
a reasonable continuity of production:

‘These end conditions must be satisfied to prevent the
“model "running the firm into the ground". It is assumed that
such definitions can be provided - ab initio, or deduced by
the processes of sensitivity analysis and re-optimisation

outlined above.

2.7.5 Other assumptions

i. Work Centre Usage: To find the usage of each work centre
' per period (and to compare this with capaéity) the total sum

of hours planned for each facility is made, (2.18). Because
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of the linearity of this sum, no account can be taken of the
order in which jobs would be scheduled. The LP model assumes
that all feasible plans, (with respect to the constraint set
of Appendix 2.1) are also feasiblelfor scheduling through the
work shops. This will bevthe case 1f work-centre aggregation
is meaningful. In our case, either like machines are combined
.into work centres, or the work centre represents part of a
flow line. In both these instances the aggregation will not
lead to scheduling conflict.

ii. Marketing Eggenses:‘ In addition to the constraints of

Section 2.4, additional rows calculating the marketing

" outlays were included. For the 26/12 moael it was assumed that
a flat rate of &1 was paid per itém marketed; in this casevthe
marketing expense is equal to the monthly sales (in units).

No forward lag was allowed - the expense was made to fall due
during the period of sale. (This may be altered using the MARK
and MRKLAG arrays).

The association between advertising expenditure and sales
is necessarily deterministic in' this modél. .Other factors may
also include such as effects of substitution and correlation
between sales;

a. Substitution: Suppose sales of product i can be satisfied

with a sale Bij of product j. Then, considering say the maximum
possible market for sales of type i we could formulate the rows
"sales of i" £ maximum for i
of T (Bij x Xj) < maximum for i (2.4)
3
where Bij =1

b. Association: Conversely if the sale of product i implies a

possible sale of aij of product 3}, sales of product i may be

thought to increase the potential for sales of product j.
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i.e. "sales of i" < maximum + § aij ple Xj (2.5)
J

where aij =0

Both of these marketing models could be included in the model,
but data was available for neither the expenditure calculations
nor the substitution/association effects. It was thus assumed
that a constant rate of expenditure would be built into the
model; the rate at which unit sales imply ;nit marketing costs
being given by the diagonal elements of the MARK array.

It was further assumed that traﬁsportation and storage
costs were reflected in the standard costing system.

iii. Homogeneity of facilities: As mentioned in Section 2.4,

no account has been taken of the separation between factories.
The model‘is of a sihgle'production unit, and can model either.
the total U.K. operations, ignoring the separation into three
factories, or the operations of one factory. Three such
"models could be combined into a LP decomposition algorithm
"for global optimisation. The case of fractional objectives.
in decomposition is considered in Chapter 5.
2.8 Summary

An LP model for short to medium term planning has been
-proposed. This model is formalised in Appendix 2.1. The
discussion of the assumptions underlying this model has
concentrated on three aspects: linearity determinism and
time-segmentation. Further discussion is presented in
Appendices 2.2 and 3.2 and the dual evaluation is considered

in Chapter 3.
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Chapter 3 Performance Measures and Multipericd Modelé

3.1 Introduction

In the previous chapter the LP model for short term
planning was introduced. Example: of optimal soiucions,
sensiti&ity analyses, and other post-.::"mal tesi: are
presented in Appendix 3.1.
| Thié chapter concentrates on the assumptiéns»under
the interpretation of the dual variables in multistage LP's
as prices, and develops the use of LP dual evaluators and
reduced costs for resource valuation, ratio analysis and product
ranking.

3.2 Productivity and Financial Ratios

Interpretations of productivity and financial ratios
range from "evaluations of past performance" to "criteria
for management control"'" and "statistics for inter-firm
comparisons'". In many of theselcases different inferences
may be drawn from the same ratios, regardless of thelr primary
function, and regardless of the ijectives of the firm. It
has been suggested by Gold and Kraus (41) that for the purposes
of control some of these ratios may be shown to be part of’a
tree which disaggregates the basic ratio of "profit to total
investment'" into its constituent parts. (Such a tree is shown
in Figure13.1). In (41) they guote the different emphases
placed by various firms on sections of the tree, e.g. Dupont
consider (profit:sales), (sales:total investment) and (profit:
total investment) as key ratios. Monsanto on the other hand
use (prdfit:investment), (net income:investment), (sales:
property), (selling expenses:sales), (operating expenses:

sales) and (cost of goods:sales).
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Considering the use of ratios for either inter-firm or
intra-firm comparisons, and in both planning and reporting
situations, many of these ratios are ill-defined. ‘'Capacity’
is measurable as a unitary statistic , only if the firm
produces just one product, with a fixed statemen% of resources.

In ﬁormal industrial conditions, the capacity of a
production unit, manufacturing a number of interdependent
producté with fixed resources, cannot be defined as a single
statistic withou£ the'incluéion 5f some management objective
regarding the most desirable product mix. There'may_be many
‘efficient” combinations of production, and the mapping of these
combinations into one financial estimate of 'capacity' is |
meaningless if corporate objectives ére ignored. The applications
of LP to corporate planning amplify this aspect of business
ratios (i.e. their dependence on management objectives). As
we have noted in Appendix 2.3, the ratios derived from an LP
model vary with the objective fuhction used for optimisation ,
thus ratios may be expected to differ within an industry because
of differences of objectives,vas well as differences of
productive efficiency. (Amey uses LP to clarify the concepts
of economic efficiency and bﬁsiness efficiency - see (3)).A

Thisvpoint becomes more apparent when considering such
terms as ‘'output to capacity'. For plénning, 'capacityf may
be defined in two ways:

i. the 'capacity' to produce say goods and services, is
that valué of goods and services that is theoretically
attainable whilst the firm pursues some definite
objective (with fixedlresources).

i. 'capacity' is the maximum vélue of goods and services

that the firm can produce, regardless of its objectives.

" in the sense of Koopmans (56)
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Mathematically, 1f x is the vector of production, storage

variables ..eeeeeon. , the technological constraint set is

(| :
<% A.x:;b}, and the function 0(x) measures the value of

=, = =

output of goods and services, we may define C(x), the capacity,

as:

Clx) = {00o)|max £(x), A.xsb}

accérding to (1) . . (3.1)
or C(x) =-hm<M§ﬁ&§sg_

according to (ii). (3.2)

Alternatively, the two definitions may be thought of as:

c(x) = {O(zc_)gc_maximises ML £(x) +M,.00x),
8.t é_.lc_sp_}
- where
i. Mi’ M, have a non-archimedlian order property‘Ml:x>M2
(see (16 pp. 756-767)) - (3.3)
and ii. where M, = 0, M, =1 (3.4)

In the first case, fhe planned output and capacity may
be identicai; the objective function ié feflected in the
capacity level itself. The ratlio 'capacity to fixed investment'’
is the rate of turnover of the fixed investmgnt - planned with
respect'to the company's objective. 1In the second case, the
ratio 'output to capacity' is not unity; it represents the
extent to which managemeht have sacrificed the attalinment éf
maximum output in order to optimise their objective.

- Both approaches emphasize the central role played by the
objéctive function in determining the physical and financial
measures of performance.

Example: Consider a firm manufacturing three items on two
machines, A and B, each machine having a capacilty of 10 hours.

Every unit of product one requires 2 hours on machine A and
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1 hour on machine B. Units of product two and three each
require one hour on machine B. Let the net profit per unit
be &4, £2; &2 respectively and the 'output value"per unit be
£6, &8, &9 reépectively. The LP for maximising net profit is:

max 4x, + 2x2 + 2x3

1
S.t. 2x1 < 10 (machine A)
Xg * Xyt Xy 5 10 (machine B) |
X4 Xy, Xy 2 0 . (3.3)

The optimal solution is
X'l = 5
X, + X = 5

i.e. the value of output may range between &£70 and £75 without

affecting the objective. In this case, capacity (using the

first definition) is £75, (with respect to maximising net
profit). The maximum value of output is &£90, (when Xy = 10,
X, = %, = 0). Thus according to the second definition the

absolute capacity (regardless of objectives) is &£90.

(Similar treatment can be given to other ratios of
Figure 3.1 (e.g. 'sales to output') using examples of greatére
detail.) N |

3.3 Reduced Costs and Dual Evaluators -

3.3.1 Introduction

Thus far, we héve sho@n how the LP approach may be used
to generate optimal plans for company operations, how such
plans are interpreted as production schedules, financial
accounts and operating ratios, and how thése measures vary
with the objectives of the firm. But, the major advantage of
this approach is not in the attainment of the optimal éolution;
duality and the pricing of resources are the primary attractions

of the method, since each evaluator (or reduced cost) assigns
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a monetary value to a proposed (or possible) change. Moreover,
this evaluation is made in terms of the objective of the firm
i.e. withrrespect to the attainment (or ipcrease) of the
planning cobjective. (For the objectives mentioned in
Section 2.4.4 thesé may be such values as '"pounds change in
gross sales per ektra'unit of resource", or '"decrease in
profit per unit increase of producfion level").

For the short term corporate planner, the LP approach has
two advantages: | |

2. it gives a guide to 'optimal' policy

o

it evaluates resources with respect to that optiﬁum.
(These values may then be utilised in revising capital
investment decisions, company policies, etc.)

Such benefits rely heavily on the assumptioné of total
linearity in the system, the presence of a unitary objective
(which in iﬁself is 1linear) and the accuracy of the corres-
pondence between the 'model' and 'reality'. The cogency with
‘which these assumptions may be justified is the sble guide to
the acceptabllity of the approach.

3.3.2 The Linearity of the System

The model descfibed in Section 2.4 waS-constructed'on the
éssumptions of lineér relationships within the firm (of
production, storage, etc.) and possible further, linear,
reiationships between the firm and its external environment,
(e.g. marketing, the inclusion of'transportation in standard
costing, etc.) |

As a consequence of this assuﬁption, the dual evaluators
of the model are interpreted as the values of .the resources of
'the model' and hence as the resources of 'the firm'. In many

cases, the linearity is questionable; costs are certainly not
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linear, and, like overheads, cannot be considered deterministic
in the real environment; many of the variables of the model

imply solutions which should take account of the non-divisibility
of activities by the inclusion of integer specifications. The
theoret;cal and practical implications for duality in these
circumstances are important, as are the specific interpfetations
that are placed on the wvalues themselves.

The assumptions of linearity with respect to costs and
overheads have been considered in Section 2.7; they are
justifiable if the model is a planning tool, and do not impair
the useful interpretation of the dual variables. The assumption
concerning the integer values of certain variables is more
serious.

In Chapter 1, we have introduced the ideas of Baumol and
Gomory, (43), Weingartner (88), etc., concefniﬁg'priqing (and
duality) in Integer Programming} In both works, the implication
is clear: the association of dual-variableswith priceé of
resources is tenuous.

In our model we have included neither set-up times,
nor batch quantities for productioh runs. Does this ommission
in&alidate the pricing of machine capacity (and all other
prices)? The exclusion of set-up times was tested with respect
to the 3/5 model. The capacitieé for the various work centres
‘were decreased to allow for the set-up times implied by the
basic optimal set and the LP was re-optimised; allowances were
made for one set-up per month and one set-up per batch of a
hundred items. With both changes, the optimal (basic) set was
unaltered, thus the dual evaluators did not change.

In fact, neither of the revised'capacity sets fell outside

the range for the row dealing with the respective capacity,



- 62 -

(Details are given in Appendix 3.3).
The real problem, including set-up times on machinery,

should contain the following rows:

2 aijxj + ; Sijyj < ¢y i = 1...m (3.4)
J J
and
. - k.y. =0 (3.5)
xJ JYJ | YJ integers

where aij is the usage of facility i by activity 3, s is the

ij
set-up time required by kj units of activity j on facility i,
there are m facilities.

We have solved the amended problems with

T oa..x. S c. i=41...m- ‘ (3.6)

REEEE i
and
a. .x. s‘c. - S..V. ‘ 4 ' (3.7)
? ij™j i ? i3Y5 .

where ?5 is an estimate of the number of set-ups required for
the jth activity.

If we can assume that the capacity'figures {ci} comprise
infinitely divisible resources, then the dual evaluators of
the LP's containing rows (3.6) and (3.7) will give the marginal
values of these resources. The 'range' for which these values
hold is given by the minimum of:

i. the variation of {ci} that preserve the present basis

(i.e. the LP range of_{ci})
gi. the change of {ci} that preserve the estimates . {EE}
This range can only be derived using parametric analysis of
the right hand side of (3.7); see Appendix 3.3. With respect
to increasing capacity (r.h.s.) valuéé, the objective function
will increase (where marginality holds) until the allowanceé

for set-ups become insufficlent. Wheﬁ’more capacity has been

generated (to allow for additional set-up) the objective function



- 63 -

will show an initial fall, (productive capacity has been
removed for set-up time), and then rise according the dual
evaluators during the new extent of set-up allocation. The
typical graph (Figure 3.2) is deduced in'Appendix 3.3.

validity of

OF (A set—up times_
capac1ty for
further set-up
e e > _
Work centre capacity
Fig. 3.2

The inclusion of the integer estimates does imply that
the dual evaluators will not price out resources (i.e. the
right hand side of the initial LP).

‘Based on the assumption thét production and sales activities
can take any real values,the concept of marginality is retained,
by the adaptation of the mixedéinteger problem to a series of
linear problems. (The integer problems of Baumol and Gomory,.
Welngartner, etc. (43), (88) are not so‘amenable, because of
the disparity between the integer and linear forms).

3.3.3 The Reality of 'One Objective!

In many of the models presented in Chapter 1, (Charnes'
Cooper and Miller (24), Chambers and Charnes (14), Ijiri (53),
Samuels (13), Carsberg (11), etc.) the aspirations of management
have been summarised in one, linear, objective function. If
the optimisation of this expression is accepted as the sole

aim of management, the duality of the LP model provides a
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unitary set of dual pricestxwhich maf tﬁenﬁbe used for the
marginal evaluation of resources. As already mentioned,
(Section 1.5), this normative approach to Corporate Modelling
has been queried by Charnes and Stedry in the light of studies
by behavioural scientists. The absence of a unitary long-term
objective function (31, also 26 page 147) makes the normative

.approach seem unrealistic, and throws doubt on the extent to
.which dual evaluators, derived from one objective function,

- may be used to price resources for management decisions.

For the two methods suggested in (26) there'are difficulties
in the use of duality for pricing. Dual variables can be
defined for the certainty equivalent of a Chance Constrained
Programme, (see e.g. (67)), but for large problems CCP is
impractical. The objective in Goal Programming is the
minimizétion of a distance function. Dual variables for the
férmulation in equations (1.4) represent the marginal change
in distance from goals per unit change of resource. (One
attractive feature in Goal Programming is the possible use of
the optimal canonical form to give the marginal rate of change
of the achievement of each goal with respect to changes of
each resource.

e.g. Consider a two goal problem; "2X + 3¥ to approach 44,
"X+¥ to aﬁproacﬁ 20 with constraints 2X+ ¥< 12, X, Y= 0.
The formulation is:

min s, + s,
1 2

s.t. 2X + 3Y + 51 = 44
X+ Y + S, = 20
2X + Y + Z = 12

X, ¥, Z, s s = 0

1’
¥
the optimal solution'is Y

-

12, s; = 8, s, = 8.

t in degenerate cases, the prices in this set may not be

unique - see e.g. Carsberg (11)
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For this optimum, the first-line of the canonical form reads

* *x . *

-4X &+ s, - 32 = (1, 0, =3)..

f\)»b\
N O,

i
{
|
)
{

\
|
!
|

)

with respect to changes in the

*

*

1

third resource (now at 12 units) is -3. This is the rate at

The rate of change of s

which the distance between performance and goal is being
decreased.

In Corporate Planning, a serles 6f objectives must be
.considered. (Eight such objectives have been listed in
Section 2.3.1 for linear or fractional programming). For each
‘objective function, there will be an optimal set of dual
evaluators, representing the marginal values of resources with
respect to that objective. In these situations, management
must review the arrays of prices, and arrive at a sﬁbjective
evaluation and ranking of all resources. (Alternatively, the
(linear) objectives may be weighted to form some utility function.
The dual evaluators will then rank resources with respect to
utility - but will not generate monetary prices).

The contrast between such dual prices (and their associated
optimal policies) may be extremely illumihaﬁing’for management.
The sets of dual prices provide financial evaluations which
take account of the firm's strategles, activities and poliéies;
they highlight the fact that resources can only be valued with
respect to corporate objeétives, operating constraints and the
external environment, and that these values may well differ from
economic or accounting values.

The existence of multiple sets of prices does vitiate the
use of dual evaluators as penalties and bonuses in control
models, (such as those of Samuels (73)), and casts doubt on the
use of dual prices for assets valuation and accounting, (as

suggested by Carsberg (11)). ( See Appendix 3.2.)
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3.3.4 The Effect of Time Segmentation

The multiperiod models used by Cohen and Hammer (29),
Chambers and Charnes (14), etc., were intended as operating
models, which would suggest strategies for the first period of
the pianning horizon. (The models would be run at the
beginning of every period to give the strategy for the
immediate period). In these cases, the time segmentation
(i.e. the length of period considered) is not so serious.
The only criterion that need be considered is whether the model
has included all future periods that might affect present
strategy, via their interactions with the present decision
variables.

The model of Section 2.4 has a different purpose. I1ts
function is to view the whole of the company's operations up
to the planning horizon; the evaluations thus obtained are
intended to éive a picture of the wvalues of'resources over the
whole planning period. Here, two problems must be resolved:
a. the selection of the correct length for the time period
b. the selection of the appropriate number of time perlods

beyond the horizon. -

‘2. The Time Period: As shown in Appendix 2.4, difficulties

were encountered wiéh models of over 1400 rows. Since the

row dimension per period is fixed, consideration of time.
periods of less than one month (even for the short term) would
make the model unwieldy.

One assumption that is implicit in 'time-segmented!
multiperiod models is that activitles that are scheduled for
a particular time periqd must be independent of time within
that period.

e.g. 1f the optimum schedule for period one is: Xq units
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of product 1, X5 units of product 2; then the manufacturing
processes of that period may be organized in any order,

provided that the totals x, and X, are attained. There 1is no

1
allowance made for further assumptions e.g. product 1 must be
made before product 2.

For planning, this assumption is justifiable. Taking 'a
month' as the basic unit of time, we can assume that the
produétion targets for each period can be satisfactorily
scheduled on the shop floor. (Production will appear to be
instantaneous in the model). The assumption.of 'scheduling
within the time period' is vital to the interpretation of the
model and the dual evaluators. In Appendix 3.2 we show that
the failure to define the correct time unit leads to failure
in the interpretation of the dual variables. The use of a
month as the basic time unit is not tenable for control models,
due to the rapidity of change within the period. From'Appendix.
3.2 it would appear tnat the size of model required for control
operations is large - and consequently expensi&e.

b. The 'End Effect': In Section 2.7.4 we have discussed the

amendments that must be made to the constraints (and resources)
of the later periods of the model, to make it correspond with
reality. The problem of identifying the effect of the termin-
ation of the model at an arbitrary point in time has not been
investigated; it can only be solved in conjunction with the
implementation of the model by the test firm.

3.4 Pricing and Rationalisation with Multistage Models

3.4.1 Capacity Evaluations

In Section 2.6.3, we have shown how the bounded variable
algorithm may be used to illucidate the structure of the

planning process. If x 1s the vector of planning variables
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for one time period only, the elements b, in equation (2.2)
represent the plant capacities etc. for that time periocd. If,
however, X spans two periods, the vector b may be split into
?_0_1 and _b_2

time period respectively.

referring to the capacities of the first and second

At the optimum, each capacity in 21 and b, will have an
assocliated dual evaluator. Table 3.1 1s the set of non-zero
evaluators for the 18 work centres of the 26/12 model, using
ASSETS as the objective function. These show a marked variatlon
over time, implying that there is no unitary value that can be
ascribed to increasing plant capacities etc. Such (marginal)
values are time-dependent as well as objective-dependent.

If new plant is'installed-for a particular work centre at
the beginning of a period, its total capacity 1s increased
for that period, and for all subsequent periods throughout the
life of the new plant. From the figures of Table 3.1, the
value (over the year) of installing an extra unit of capacity
for work centre 3, to be operating during January to December
is £17.86 4-i.e. the sum of the marginal values of extra
capacity for work centre 3 over each month. -

[The marginal values may be added, provided that the
system is linear, and that the proposed change does not
invalidate the present basis. (If the change in r.h.s. 1s
&b, and £_= b + 8b is within the range of acceptable 'b' for
the present basis to be optimal,”the change in value of the

1.6b"). Further consideration of

objective function is "c.B~

the summation of marginal values is given in Appendix 3.3,]
The extent to which capaclty may be increased without

invalidating the present (optimal) basis must be found using

parametric analysis.



!
4

iCentre 3 11 .13 14 15 18

) |
Jan. % 9.98 1.02 1.46 0.20 2.43  1.48
Feb. ; 0.0 1.02  1.46 0.20 2.43  4.67|
Mar . § 1.32  0.43  1.65 0.0 1.68 4.49ls

iApr. % 0.91  1.17 1.44 0.05 1.26  4.49
May  0.79  1.16 1.33 0.0 1.27 4.7%
Jun. | 1.17 1.4 1.36 0.02 1.28 4.44
Jul. | 0.48 1.22 1.38 0.0 1.22 4.8@
lAug. 44 113 134 0.0 1.29 - 4.4@
Sep. | 0.22 1.25 1.41 0.0 1.20 4.9ﬁ
Oct. § 1.59  1.13  1.32  0.01  1.30 5.4%
}Nov. § 0.0 1.29  1.44 0.0 1.18 o.og
Dec. % 0.0 1.5  1.36 0.0  1.03 0.0

i
{ !

Table 3.1 Monthly Changes of Dual Evaluators
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By summation, the monthly dual evaluators provide an
estimate of the value for the first year of a unit increase in
capacity; individually they demonstrate the distribution bf
this value over tme.

.The non-zero marginal values for increased capaclity for

the 26/12 model are shown in'Table 3.2

1
i

Work Centre' 3 f 11 0 13 | 14 15 18

Value

;
|
|

117.86 | 13.46 | 16.951 .49 17.57 43.94 |

Table 3.2 Marginal Values o f Extra Plant

In Table 3.2, work centre 18 seems to give the greatest
rewards for investment. From the theoretical viewpoint,
'limited' funds should be allocated to increasing the capacity
of work centre 18, provided that the units purchased do not
invalidate the present optimal basis, by increasing the right
hand side entries beyond the range of feasibility. (In general,
such investments must be judged using a new right hand side.)

3.4.2 Average Reduced Costs

The vectors X and b of (2.2) méy be split into sub-vectors
Kqy Xpy wewes DBgy Boy o eeee- where each pair (x;,b;) represent
the planning variables and (right hand side) capacities for
the i'th period. Each vector p.ey will have its own associated
set of optimal reduced costs, (representing the net losses that
would be sustailned by deviating from.the optimum activity
levels) .

For the production variables associated'with each period,
we will obtain a series of reduced costs. (Table 3.3 is the

set of reduced costs for the 26 products of the 26/12 model.

As with Table 3.2 the objective function was ASSETS.)












The average reduced cost (over twelve months) is shown
in Téble 3.5. For product rationalisation these statistics
are meaningless, apart from indicating which products arec
always basic - these have zero averagé reduced cost. In
Section 3.3.4 we consider three other statistics which produce
rankings that may be more meaningful to management.

3.4.3 The 'Sales to Costs' Ratio

At the aggregate level, the ratio 'sales to costs', of
Figure 3.1, estimates the total capability (efficiency) of
the firm's production system when converting 'costs' to
'sales'. This interpretation also holds at the disaggregated
(product by product) level; in both cases, costs aré measured
by average (or incurred) values.. |

The resource evaluation of the optimal solution to the
linear programming model gives a set of marginal (and average)
values for resources. (From these figures, resources may be
valued at their marginal rates).

Consider the normal formulation:

4]
p
g
1%
A
o

x = 0 (3.4)

*
Let the optimal solution be x , the columns of A be a.,

¢ ‘
the dual evaluators be v, and let {z.l = ic. - v.a.} be the
- 1) 1 — —1
reduced costs. Then v.a, represents the marginal value (cost)
of inputs to activity i (at the optimum), = represents the
return from (say) the sale of product i, and the ratio

6; = ¢ is the rate of conversion of input value to output
.a. ‘
=i

|<

value by activity i, (at the optimum). Ranking activities by

the 0 statistics in the single-period model we have:
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. an activity i1s basic if and only if
61 = 1 (l-e. Zi = O)
i. any activity for which 61 < 1 is rejected; non-basic
activities may be ranked by-ei (Os;eiS‘l)
FPor programmes in which variables xi-have upper bounds

a further modification may be introduced:

The model is now

max C.X
s.t. A.x <D . (3.9)
0sx=<U

Weingartner (88, page 54) associates a goodwill value with
the dual evaluator of any upper bound constraint that is tight
at the optimum. For basic activities x; not at their upper

is unity, since cy = V.g; = 0.

bound, the ratio ei = C., 2y

1
«a.
—1

I<

For a variable at its upper bound (say xj) let Py be the dual
evaluator of the constraint'xj < uj

.a. = u..p. = 0 ©(3.10)

Then, c. - Vv
J - =] J 7]
(optimality condition)
i.e. c. > v.a.
J = =]
ej =c, > 1 - (3.11)
V.a.
_-‘_.J

In the bounded variable model, the ranking by (ei) is
not confined to the range O:;eizsl- The properties of the

ranking with upper bounds are given in Table 3.6.

Non basic activities Basic activities
not at bound i at bound
‘ I :
8 <« 1 8 = 1 i 6 - 11
i

Table 3.6 @ Ranking for Upper Bounds
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Ranking by (ei) eliminates possible confusion between

columns that are near multiples of one another.

Suppose = ~kcj k >> 1
a ~ ka.
|
then ¢, - v.a. ~k(c. = v.a.)
1 - =1 ] - =)

i.e. the reduced cost of the j'th activity is %-times that
of the i1'th activity, yet, in cases where the corresponding

X

., X; are infinitely divisible, the net effect of changing
1 J

either Xy or Xj is the same. The fact that eiN ej reflects
this.

Example
Consider the capital budgeting problem posed in. (88)

max; 14x1+-17x24-17x34-15X44-4Ox54-12x64-14x74-10x84-12x9
s.t. 12x1+-54x24- 6x3+- 6x44-30x5-+ 6X6-F48X7-F36X8-F18X9 < 50.
3x14- 7X2-F 6x34- 2§4—+35x5-+ 6X6-F 4x7—+ 3X8-F 3X9 s 20
0 < x; =1 i=1...9 (3.i2)

The solution, reduced costs, 8 rankings (and Weingartner's

ranking) are shown below in Table 3.7

: ] | R i
r?rojectg ACtiVitYE Iﬁopsutt Ii?ﬁii: Reciusctedi‘ Ragio Ra?nki Rgnk
; ‘ ’ ‘
i 1 ! 1.0 1 14.0 ) 1.0 ; 6.77 : 1.94 | 2 | 2
L2 © 0.0 1 27.0 | 1.0 | -3.41  0.83 70007
3 0 1.0 17 - | 1.0 | 5.00 | 1.41 . 4 ! 3
4 0 2.0 15 | 1.0 10.45 | 3.20 0 1 | 1
L5 0.0 | 40.0 {-1.0 @ -29.31 | 0.57 . 8 8|
- 0.96  12.0 | 1.0 | 0.0 | 1.0 . 5 | 5 |
L7 0.04 ' 14.0 0 1.0 | 0.0 1.0 ., 5 | 5 |
. 0.0 : 10.0 . 1.0 | =-0.5 | 0.95 = 6 6
L9 1.0 12.0 ' 1.0 ©  3.95 1.49 -~ 3 ' 4 |
’ ‘ f:

Table 3.7 The Solution to Weingartner's Problem (88)
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3.4.4 Statistics for Product Ranking

For a multiperiod model, the {Gi} (corresponding to
similar activities in different time periods) will show a
time dependence. Data from the 26/12 model is presented in
Tables 3.3 and 3.4, the average reduced cost for each product
being shown in Table 3.5. The average reduced costs provide
little guidance for product ranking. Three further measures
are suggested: |
Let X be the optimal amount of x produ;ed ig period i,

a. be the corresponding 'column'

—1

s. be the entry for 'x.' in the objective function

V. be the dual evaluators

P(x) = Exisi

x; (v.a;)

Q(x) = 3Ds, .
nlv.a;)
and R(x) = l_i: i | _ (3.12)
N &~ v.a. ’
=

where N 1s the number of time periods being considered. P 1is
a productivity measure, aggregating the sales and cost figures
according to monthly production levels. The 'usefulness' of
a product 1s measured in terms of increasing values for P.
Q is a similar statistic, oﬁitting the weighting by production
level. R is the average of the 91 over the total planning
periods. Rankings for the 26 production variables of the
26/12 model are shown in Table 3.8; the monthly @ statistics
are given in Table 3.9.

Since the model has no upper bounds on production levels,
the P statistics are either 1 or 0, depending on whether the

product is produced, or not. (Either x; = 0 and s, # V-3,
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or x. # 0 and S, = V.3, by simplex optimality criteria). The
P statistics show which products might be dropped from the
range (i.e. those with zero values). With Q and R rankings
there are some small differences in rankings (with products
3, 8, 12, 18, 21 and 26). None of these differences suggest
major alterations in ranking. These statistics only give a
guide for product rationalisation. A true picture of |
rationalisation can only be obtained by re-optimising the
model, flagging out the products that are to be dropped.

The rankings P, Q, R, (and the dual evaluators and
reduced costs) are dependent on the objectives used in
optimisations -~ no single set can be proposed as the unique

ranking for the firm's products.

3.5 Conclusions

i. Planning criteria and performance measures are objective

dependent.

P.
|_J.

The dual evaluators and valuations are similarly

objective dependent.

iii. The underlying assumptions for dual pricing are:
a. linearity
b. one objective function
c. a close correspondence between model and reality.
Where these are contrédicted, (integer values, multiple
objectives, long time periods, etc.) dual prices must
be treated with céution.
iv. With multiperiod models, dual evaluators may have to
be summed to give estimates of the marginal value of

capacity.

Three statistics have been suggested to aid management

in‘this task.

V. ‘Reduced costs give little guide for product rationalisation.
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Chapter 4 Duality and.Pricinq in Fractional Programming

4.1.1 Introduction

In Chapter 3; ranking of resources with respect to a
series of objectives was discussed. As suggested in Section
2.3.1, corporate objectives may include such terms as 'return
on assets', which are not linear, but fractional. In this
chapter we investigate the nature of the dual prices in
fractional programming, for the general, and linear, constralnt
cases.

4.1.2 Duality Theorems for Fractional Programming

Considering the following problem:

max f(x) = =ZX*r< (4.1)

d.x+ 0
s.t. gi(é) < 0 i=1...m
Swarup (77, 79, 80) has proved the following theorems:
Theorem 1: Let £(x), gl(ﬁ)....gm(z) be diffe;entiable on
EY, £(x) as given ih (4.1), each gi(z) convex; then the

*
necessary and sufficient conditions for x €S to be a solution

* .
to (4.1) is that3u €E" s.t.

. v * vm*' * .
i Xf(z_) - V. I ui.gi(z,) = 0
: 1=1 ‘
> . m * (*) O
= ENeestx =0
(4.2)
iii gl(x ) =0 i=1...m
*
iv u; = 0 i=71...m
where

a s = {zﬁgi(z) <0, 1i1=1 ... m}

b d.x+ B # 0 for xe$S
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According to Wolfe (93), the dual problem to (4.1) is

min yx(x, u)

s.t. Vx(x, W =0, u=z0 | (4.3)
where x(x, u) = £(x) - u.g(x)

|
Let D(x, u) = {(&, E)‘ VX(x, u) =0 o uz= Q} with

X unconstrained. Swarup also proves:

Theorem 2: If Z: is an optimal solution for (4.1),
*® * *
= 3 u s.t. (x, u )eD
* * *
s.t. X(x , u) = £(x)
He does not use the non-negativity requirement on Xx,

i.e. x = 0 or —xj < 0. If we include these constraints

in (4.1) and extend u, to (Ef, Xf), then 4.2i reads
¥ 39, (x7) .
gi -z u;'axk vy =0
3k 3
* d3g, (x7)
2 f « 39 X .
or T - D Wesz— = -V, (4.4)
X, X .
ax; Ty K%, j
Now if x; > 0 we have v; = 0 (from ii of (4.2))
[ * 3G (x )\
* * 3
therefore X"\ax. Euk.a§f ] 0 )
i j /
U r F(x) * (x )] 0 (4.5)
or E-‘fx (x ) -V 2y .g (X {} = -2
Also from (4.4) and iv of (4.2), we have
* g, (x )
of * k'— *
- — = =v, < O
2%, "k Bx i
ie. U £(x g (x ) =0  (4.6)
i.e. V £(x ) - V&E U g (x ) Q (4.6

Hence, if we include the non-negativity requirement on X, we

must amend the equations (4.2) to:



ii x .l?&f(ﬁ ) - x&iuk.gk(g ), =0 (4.7)
-
iii pu.g(x) = 0
k
iv gk(ﬁt) = 0 k=1...m
vou, o= 0 k=1 ...m

This is the more usual form of the Kuhn Tucker Conditions (57)
and is the form of KT Conditions used by Balinski and Baumol
(6) in their work on the economic interpretation of the dual.
It is the form we will assume throughout this chapter.

4.2 The Interpretation of the Non-Linear Dual Variables as

Marginal Values

4.2.1 The power of the dual programme in LP is well
known, and its economic interpretation is in Widespread use.
The interprétation of the non-linear dual, although lacking
some of the desirable features of the linear dual, can still
prove a powerful tool in the evaluation of non-linear programming
problems. The extent of the interpretation depends on the
prOpertiés of the objective and constraint functions. - In
this section the main reference is the work of Bélinski and
Baumol (6). We will develop the ideas that they have presented
for the concave objective function, and show how these cannot
be applied to the FP case, where the objective function is
only continuous, differentiable and quasi-monotonic.

Define T = m(k) = {max f(z)%gﬁg) < b, x2 g}

We will refer to the u; of &4.7) aé the dual evaluators.
In order to interpret the dual evaluators of the LFP as the

marginal values (prices) of the resources b we need to show

k’

that u; ”Jaﬂ/abk, i.e. where the marginal value of T with

respect to bk is defined, its value is given by u;.

We show how far the dual analysis can be carried in FP,
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and why the concept of pricing is not always well defined.

4.2.2 Marginality where f is ‘concave

An outline of the work in (6) is as follows:
In order to interpret the dual variable u; as the 'marginal
value'(in terms of an economic price) for an extra unit of the
i'th resource, 1t is necessary to show that:
"o« 3w

u., = (4.8)
1 abi .

Even in LP, the discontinuities in 37m/3db. do not always
allow this result to be proved. However, it is possible to

show that

< u, = == ' (4.9)

and for any point where a’lT/abi is defined, its value is given
by (4.8). \
To lend credence to the 'price' allocation we need

diminishing returns to scale. This 1s also implied by (4.9);

S S 3o, and for & > 0, we have:
i i

1 {3n ) X »
: - < 0
28\(3 i]b.+5. [abi]b.—ia
» 1 1

i.e. where the second derivative of T with respect to Db exists,
it is negative.
In order to deduce the inequalities (4.9), BB define

: ;gi(ﬁ)r < bi,’ i#£k
Ty = max {f@)igk@ ‘v, }

and show that:
;_ﬂ(yk) exists in a neighbourhood of b,
ii m(y, ) is continuous, and

iii the partial derivatives of (4.9) exist.
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The proofs given in (6) depend heavily on the constraint
qualification for g, (%) and on the equivalence between tﬂe
Kuhn Tucker Conditions and the Saddle Point Conditions for
the Lagrangian.

Kuhn and Tucker (57) proved that the sufficient conditions
for a saddle point are the "Kuhn-Tucker Conditions™ (4.7) and
the concavity/convexity of £, g.

We do not have f concave; f is quasi-monotonic. This 1is
insufficient to prove the equivalence between the.Saddle Point
and Kuhn-Tucker Conditions. Thus we cannot show

X * ST
< u. <
5bi+ i abi_

Indeed a quasi-monotonic function need not have left and right
derivatives defined at all points. Consider the step function
that lies between two rays that pass through the origin;

/N
f(x) ,’/

....

Fig 4.1 A guasi-monddic function with no derivatives at x = 0O

f(x) is monotonic (quasi-monotonic) but there are no one-sided

derivatives at x = 0.

It is possible to give sufficient conditions for the

existence of the marginal values an/abk.
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*
Where the constraints are linear we have the X5 in terms
' . — © * —
of an optimal inverse basis @_1, since for basic X5 5_::2_}93
Hence £(x )= f(gf}g) and the partial derivatives can be shown

to exist.

In the non-linear case we can give a generalisation of

the equation 5f:=§f}g. For concave £, T is also concave:
W(ebk,-f(i—a)bk") = mix {f(z)%gi(z)féebk,-r(1—6)bku, x=0 }

z £{gx' + (1-8)x")

z 0f(x') + (1-6)£(x")-

= 67(o, )+ (1-0)T(b, ) | (4.10)

proved in (6), where x' and x" are the optimal solutions for
bk| and bk"'

For quasi-monotonic £ we do not have such a strong result.

r 1
= :
Let S, tﬁigi(z)Sbi, i#k, gk(g)SYK}.

Then vy, 2y, =» S = S =3 7a(y, ) 2 7(y,_ ) ' (4.11)
ki kz K1 K2 k,l k2 1

i.e. 7 i1s monotonic in each argumeht.

But this does not guarantee the existence of partial derivatives
at all points of‘En, nor does this give diminishing retﬁrns to |
scale.

4.2.3 Marginality where £ is guasi-monotonic

We can state sufficient conditions for the
partial derivatives of ﬂ(bk) to exist in segments of the total
range of bk'

Lemma 1: For b < bk < bk" the sufficient condition for

kl
the partial derivatives of ﬂ(bk) to exist (with appropriate
left and right hand derivatives at the ends of the range) is

:J..
that"@i(bk) s.t.

x; o= 2,(b) for all i
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®,: continuous, differentlable with respect to bk in the
range (bk" bk")o
Proof: If such @i exist, then
w(bk) = f(g}bk))
= f(@ﬁbk))
c.&(by ) +a
= <
= T8 )+ P Ppr & Dy = Dy
g,@jbk)-+5 > 0 by assumption, therefore partial derivatives

exist as required.
Hence we have:

LFP iii: IfE«@i(bk) as defined in Lemma 1 for each of the

. < )
required ranges bk bk < bk S e
0 1 2
then é%- andmg%- exist, .
9 K+ o K- '
. * 3T , . .
and we will haveu. = =— where this is defined.
i Bbk

But, as previously stated, we do not have the inequalities (4.9).
This reflects the general situation in fractional

programming that returns to scale need not be diminishing.

Since it is a requirement for a coherent pricing system that

there exist diminishing returns to scale, the dual evaluators,

although equivalent to the marginal values, will not serve as

'economic' prices in all cases. .

4.2.4 Linear Constraints

The case where the gi(z) are linear can be treated
separately.
It has been proved by Martos (65) that the problem
max f£(x) |

s.t. A.x <

|o

%z 0 | O (4.12)

has an extremum point solution. This result has a two-fold
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importance:
a. it allows us to use simplical methods for solving (4.12)

b. it implies that at the optimal vertex the optimal

%
solution x 1is given by:

*

X =B ".b

where §f1 is the inverse basis (see e.g. (44)).

The ranges bki"'bkn etc. are given by the points where
a further iteration is necessary, i.e. where the present
basis no longer remains optimal (or feasible).

Between changes of basis the 1'th rows of Efl provide
the @i of the previous lemma. Thus Lemma 1 of Section 4.2.2
provides proof that the dual variables can be equated with
the marginal values of resources, if the situation is one of
diminishing returns to scale.

We could, however, use the CC form of (4.12) to prove
the existence of %%; and %%; |

In the marginal work of Mills and Williams ((66) and (92)
respectively) we have the following conditions for the
existence of marginal values. (Once agéin we present theilr

theorems in order to aild exposition).

Marginal Values of Linear Programmes

(The notation used is that of Williams.) Consider the problems

i. max. c.x, %20, A.x=Dh
ii. min. 7T.b, mT=0, T.Az2cC
A A
Given H, b, ¢, define
- A
| N
i max. (c+oac).x, xz20, (A+aH).x=Db+ab
1 “ A
ii min. 7.(b+ ab), =0, T.(A+aH)=c+ac

The"marginal value' is discussed for small values of «

and is defined as:

(R + o) - @A)

04
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\

\
,

- \ o
where: A '——) , H =i

?

oy o=
o|o'?

j

/
and & is defined as the value of the LP (if it exists)

A
1y

i.e. &(A)

I
=3

ax CeXeo.

= mi

o
|2

.b...
£' (0) is the marginal value of Z\.\_ with respect to ﬁ
Let S(A) = {Ei x=z 0, é_.zsg} and T(A) = {E% m=z0, T.AzC
Theorem I (Williams). For given A, the N+S conditions that
' (0) exists for every ﬁ are that both the primal and dual
optimal sets of V_/_\: are bounded.

Equivalently, that the regularity conditions

R’_L: 120) _A_.XSO —,w.{;c_:_.1<0 |

R2: p= O) p-Az0 =5 p.b>0

are satisfied by g

(4.13)

Theorem II Let z satisfy (RI’ R,); then £'(0) of A is given by

2
£1(0) = 6ma;< mlg (E’ ﬁo’ Ko)
x°es”(A)  7%eT™(A)
where:
so(g) = Eo 5029, é.zosg, _c_:__._;_c_ozg._{, all _&85(}:)}

CTO(R)

1l
~
O
B

°z0, 1°.az¢, 1°.b<1.b, all mer(R)}

and y (H, EEO’ .TT_O) _ o o o o

These two t'heorems apply for thé simple LP model only,
(i.e. A.x<Db), since only for this type can’ the regularity
conditions be guaranteed (if’ there exist feasible solutions);
For the case where equalities are found in the copstraiht set,
we have further theorems.

besine T - [ D
efine & = |A)q Bgp By

Boq Bpo by
kgl .92 .Q.

with which we associate two LP's
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I @ max c .X, + C,.X, S.te. LSPEP P SPLE. 2sg1
Aoy thyp-X, =Dy
x, = 0
II°: min m,.b, + T,.b, Set. T A T, 2125
Tyl + Doy =
\ m, 20
e .// ~
also define H = wﬂii 25 21:
iﬂzﬂ_ 222 ézé
i |\91 éz 9

Theorem I N+S condition that £'(0) exists is that the primal

and dual sets of_g* are bounded or that the (amended)

regularity conditians (R;, R;) be satisfied by‘z,

¥. . S
Ryt (Xg» Xp) # 0 Y29 Byge¥y thpeXs 91.
DC. oY, +Crhe¥,<O0
Z2pqdq Y2 dp T E
*. 3 .\l
Ryt (24 £p) # 05 0,205 0By + 0857207
LoD, e D +02b2>0
A =0 { TV~ .
B85 % Bp=222 7 % |
Theorem II. Letlz* satisfy (R;, R;).
The marginal value £'(0Q) is given by:
. .
f'(o) = Omava* Omlnrv* (H ? .}_(O’ .EO)
x €5(A ) T-elr (A )
* - -
Where ¢y 1s the Lagrangian form
/ Vo
A o A o o 7° A A . 1
o= CpeX, FCoeXy v . b -kﬂz b2 (m L ) 11 12‘”. 5

\Apy Ao X2

We can use this marginality of the ordinary linear problem to
prove the existence of marginal values for the fractional
programme with linear constraints.

Using the CC Equivalence given in Chapter 1 we have

Fl1 = F2
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where

Ie
ks

+
max —————— s.t. A.Xx=<Db

+ B

F2 = max cy + ot s.t. A.y-bt=<0

-

'

B
"3
e)

{o?
[

-

d.y+B8t=1 y, t=0
(providing d.x + B is positive for all x s.t. A.x<b)
Now F2 is a linear programming problem of the second type,

and we can use theorems I* and II* to deduce that marginal

' ]
values exist with respect to changes in b, 1i1.e. 23aF2 exists,
-~ ’ . 3db.
. i
1 ] 1 '
. dF dF .
and by equivalence 1 = 2 . The form exists due
db., db.

1+ 1+

* * ~
to I and I1 above, wusing H = /O

o o>
O 10O,

Thus for the linear fractional programme we have an existence
theorem for the right hand derivatives with respect to each
of the resources, the existence of this derivative depending

only on the boundedness of the optimal solution set to the

problem.
an .
. Note: Bbi+ exists as a marglnal value of the LP (in terms
aFl
enunciated by Williams). 3% exists by equivalence, and
i+ :

since bi is a right hand side variable for F1 we have the
existence of the dual prices .. We are now in a position to
discuss the dual evaluators in terms of marginal returns and
losses. This we shall do following the strict economic
interpretation, but first we must discuss the more immediate -
implications of non-linearity. (Although the model we will
later present is one with linear constraints, (@ considerable
computational simplification,) we will discuss the general

case with convex g;(x).)
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4.3 The Economic Interpretation of the Non-Linear Dual in

Fractlonal Programming

4.3.1 The KT Conditions

Under the conditions stated in Section 4.2, the dual
evaluators for the fractional programme exist, and are
equivalent to the marginal value of resources, where there are
diminishing-returns to scale. |

As in (6) we could give an economic interpretation to
the Kuhn' Tucker Conditions (shown in Section 4.1) for such
cases of diminishing returns.

The KT Conditions are:

I

o v
vxf(gé) - vk% uk.gk(zé) <0

}<

o
@)

%
o
~

|
Y

3

o Assume uz is the marginal value of the i'th resource,

af(x™)

- is the marginal profit yield of x..
~ i

axi

3g, (x) . .
k= is the amount of the k'th input required to produce
X, .

i
the next unit of X, (at the optimum) - it is the marginal

input requirement for X -
o :
©3g, (x7) . . . C s
b U - k= " is the total 'value' of resources required
OX;
to produce the next unit of X5 (at the optimum) hence the set

of constraints 1 imply that the net rate of increase of value

of objective is less or equal to zero.



ii implies that, 1f the net rate of increase of value of

o
the o.f. 1s negative for any X;i that Xy is at its lower

limit - =zero.
o o o
If xi is positive, we must have af(?—(--)--'z:,uk.agk(’—(-) = 0
OX; 9%y

implying that a further increase in ﬁz will not increase the
value of f(g?)

The condition iii provides the concept of free goods:
A free good is one whose increase of supply will not increase
the possibilities of increasing the objective function. If a
particulaf constraint gk(éé) is strictly negative,

o o 5.0
U 9 (x™) =0=u =0,

i.e. 1t is a free good. Thus,
if a resource b, is a free good, it has a zero marginal
(accounting) value.

4.3.2 Economic Rent

*
Economic rent R 1is defined as the rent payable to the

owner of scarce facilities without which a company cannot

operate (58). This will be the difference between the total
vield f(gﬁ) and the marginal value of all inputs, (at the
optimum). |
ie. R = f -q = f(zf) - E'di.gk(z?)'

This term appears in the non-linear dual problem in (6).

In LFP, where the constraints are linear, we will show
how the dual evaluators, the objective function, and the
economic rent vary with changes of resource avallability.

4.3.3 Summary

We have thus far shown how the application of the price

concept to the dual variables of fractional programming is

weakened because of two factors:
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i. the existence proofs for the partial derivatives

Xl Eﬂ ’ L are less powerful, and
3b 7 b b
k+ k~ k

ii. there is the possibility that returns to scale may not

.

be diminishing.

Where the partial derivatives do exist, and the returns
to scale do diminish, we can allow a full economic inter-
pretation of the Kuhn Tucker Conditions. In the remaining
sections we will consider the case with linear constraints,
and show which cases do, in fact, engender a coherent pricing
system with diminishing returns to scale.

4.4 Association between the duals of the original form and

the CC form

4.4.1 An Algebraic Approach

CoX+ O
The initial problem is max f(x) = E:g:&g
s.t. A.x =D (4.14)

Le*l:.zrF = dual evaluators of the original fractional
programme, (4.14),

(XCC’ v) = dual evaluators of fhe CC form, with v

referring to the denominator row.

We will show that v = £ Similar results for 'reduced

P Yeee
costs' are given in Appendix 4.2.

The dual of (4.14) is min v_.b

e
S.t. V,.A 2 == « (4.15)
1 > PR
~ [of -TRRER |
Let E.=!§§ "
P ix=x (with rearrangement where necessary)

The dual of (4.15) is max éﬂﬁ

s.t. A.x £ Db (4.16)

By the equivalence of (4.14) and (4.16) the dual

evaluators of (4.16) will be V-
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Wagner and Yuan (85) have shown the association between
the optimal inverse basis.of the CC form and the 'original'
inverse basis.

Let the original basis be B.

*
Then the CC basis is B where

/B )

E :‘i ® ).
,\g- B/
T
: M M, 0\
Now let (Eﬁ)—l = BECEREC
Mg Mo
corresponding to the B, -b, d , B

They show that:

Mo, =B 3+ a" 3TN
* =1 -1 -1
M, = (B+d .B".0) ".B"".b
(4.17)
L R
My, = -(B+d .B"".p)7d .B
* -1 -1
My, = (B +4d .B ".b)
Now 37%.b = x
1 .
and (B + d .B 1.p) 7% = ——— =t
(¢ .x + B)
therefore we can write (4.17) as:
-1 S |
M, = B -x .t .d .B
3% *
Bip =t -X
y P (4.18)
—21 = = 4 .37
*
Moo = ¢
Now the dual evaluators are given by:
N % -1
_V:F =L ‘E_
* * 1
(v v) = (¢ a).(B ) . (4.19)



‘Using (4.18) we can write:

Yoc = & Hyg v by
c.X + 1
f(}_i. = E.—}E—:—B' M and t = ;d"-g‘_:—'g
3f c,(d.x + B) - d, (c.x + o)
therefore, S S T 5
i (dex + B)
A ¥ ’
i.e c. = (c. - d..f ).t
=1
Now ¢ .M = c .B Y - ¢ .x .t .4 .87t
: - (¢ - x .t — eyt
therefore Yoo = & —C X . -4 -ot .d ).B
* * * * * -1
= (c-(c .x +a)t .4d ).B .
( * * f*) -1
Hence Yoo = & - d . .B
* * *® -1 *
v = (c - d .f ).B .t
—p —_— —_
i.e. v =t .v

—=F —CC Q.E.D. (4.20)

4.4.2 Variation of Marginal Values (dual evaluators)

with Change of Resources: Returns to Scale

At the optimum point we know that the 'fractional'

evaluators are 't' times the evaluators of CC formulation.

*
i.eo KF = t .:/:.CC
x 1 1
Now at this point,t = —5——3 = ———7

d .x + B d .B “.b+ B

where Efl is the current inverse basis.

If some of the resources are allowed to vary, i.e. we
allow a change 0b, this basis may still remain optimal (as
in LP), assuming that the préblem has no degeneracy.

Assuming that the basis has not changed, the evaluators
of the rows of the CC formulation will not have chaﬂged;

these are pilecewise constant.



- 97 -

A
Thus for such a point b = b + 0b
hav Q = 1 v
we n c 2 5 < R " —CC
(d .B ".b + B)

We can predict what the marginal values will be up to
the next basis change. The next basis change can be deduced
by ranging the right hand side of the CC formulation or by
parametric analysis on the last column of that tabieau.

Thus we have nearly as much knowledge about the marginal
values of the fractional programme as we have about the dual
variables of thé linear programme.

The elements of (g*.gfi) will determine whether the

marginal value increases or decreases with bk:

N 1 , - ]
Vo, TV where Gi = (d .B 7). (4.21)

(Z8.b. + B) -t
1

i
and if 6i2>O 4 diminishing returns to scale,
.
Thus the d - vector plays a vital role in determining whether

prices exist or not.

e, i y
oby L(zep, + p)t T T<C )
and - OVp < g &Hg. 20 | (4.22)
3b 1 ‘ 4 :

Similarly we can fully determine the value of the
objective function, the total value of input factors, and

the economic rent, and their marginal rates of change

A g*.£+-a g*.gfi.ga-a : :
£ = T ST (4.23)
~ A ~ C* B_i.g+ x - %.V

R=f -7 ==—"Fp—0 — ¢ (2.24)



Let - (a .p™hH.
- "= i
. -
¢, = (c .B 7,
by = (& = Ve
. N
b 2.0+
£ = ==
8.5+ P
~ N
;ﬁa_ ) (0.2+B)%, - (2.b+x)0;
0y (9.5+ B)°
2 5, ohea
£ Wkt ==
oo 20T oo £
i i 6.b+ B
Similarly
‘ ~N
A ~ /s E.D+ o
R =% -7 = —
d.b+ P
A U E.éﬂ-& A
_3%)13_ = O‘ff/*gj—_ z yy R
i 8.+ B

A knowledge

(4.25)

(4.26)

of the present inverse basis 1s sufficient

to determine the marginal rates of increase of objective

function and rent with increases in factor input.

Thus,

for the case of FP with linear constraints the returns to

scale are determined by (gf.gf

Tf 9. = (d .8"%). , then
1 bt - 1

pa

and 9, < 0 some i =¥ increasing returns to scale.

1

4,4,.3 A Check via the CC Form

as follows:

We have shown that the conditions for diminishing

returns to scale are that:

9. 2 0Yi=" diminishing returns to scale (d.r.t.s)

(4.27)



where gf is the vector of the denominator entries
corresponding to the basic variables. According to (4.17)
we can derive the optimal inverse basis of the CC form in
- £ 71 is gi ] £ .a".e™h
erms of B ~. ¥M,, 1s given oy'ﬂ21 = -t .(d .B .

the condition that Gi be positive is the same as requiring

Thus

that the components of M,. be negative.

21
*
t 1s positive by assumption, hence

0, 2 0&(1,,); =0 o (4.23)

mfhere the calculation has been made using the CC
form, an inspection of the last row of the optimal inverse
gives the conditions for diminishing returns to scale.
4.5 gpnclusigggv

Although the economic interpretation of pricing cannot
easily be applied to the general case of LP with nonlinear
(convex) constraints, we have shown conditions under which
the dual variables of the FP with linear constraints do
have an economic interpretation.

In so doing we have used only the optimal inverse basls
and the &enominator, thus the coherence of the marginal
pricing is easily checked.

Examples in Appendix 4.1 show that even simple FP

problems can exhibit increasing returns to scale.
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Chanter 5 Decomposition of Linear PPractional Programmes

5.1 Decomposition and Decentralisation

5.17.1 The Linear Decomposition Principle of Dantzig
and Wolfe (36), has found use in two applications of
mathematical programming:

(i) it is a method of solving large programmes with special

structure, namely max Zga.zd
s.t. A..xX = Db. i=1...m
—1 -1 1
Y M..x. = Db
.—l_l_j_. >~
x, =2 0
2T

(ii) it is also a method of formalising the planning process
of a decentralised firm.
The importancé of linear decomposition in‘the analysis of
the decentraiisation arises from its analogy with a 'transfer-
price mechanism' for decentralised planning. In Sections 5.2
onwards we present two approaches to the decomposition of
Linear Fractional Programmes, together with an analysis of
the transfer prices generated in such applications.

5.1.2 Decentralisation and Transfer Pricing with

Nonlinear Objectives

The economist's approach to decentralised planning has
been characterised by an attempt to apply a "market clearing
mechanism" (simple price/guantity relationships) to the
decentralised firm, surmising that market adjustments within
the firm will enable each division to act in a manner which
is optimal both with respect to its own objectives and with
respect to the aims of the organization. Thus, from the
economic standpoint, the problem is a search for that set of
prices - the transfer prices - which will equate supply and

demand within the organization for each market. Arrow and
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Hurwicz (4) have shown that gradient methods can be used to
calculate such prices - but the method is one of infinite
iteration. For cases where the objectives of the divislons
and the technological constraints are linear, the Decomposition
Principle provides a finite mechanism for such calculations.
(See (36) and other references guoted in (23)).
Considering the following problem:
min £(u) = 91(51) + QZ(EQ) + o Gn(gn)
s.t. B (u) 2,
B, (uy) . =D
T Blwy <
and : Cilu) + Colud+ .. clu) =0
where f(u) is the objective function for the corporation,
{Ei(gi) < Ei} are the sets of divisional constraints, and
ZC; (u;) =2 0 are the corporate constraints,

Charnes, Cooper and Kortanek (23) have shown that
decentralised planning by price alone, where the objective
function is separable, 1s possible only 1f each Gk is strictly
convex. Other models require more'information during the
planning process than can be provided by a pricing system of
penalties and subsidies. .

Whinston (90, 91) discusses the problem of transfer
prices via the Kuhn Tucker Conditions assoclated with the
optimal allocation of fesources in the firm. He considers

models of the form:

max %

i
s.t. >
i

and concludes that, from an interpretation of the KT

Conditions, namely:
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3f 3g. . )
o) i
— _ A% — < 0
ox P BAi
-
o ;Bfi o Bgi.?
XL L= - D A-. :—'1' = 0
i7iox . ] oX. i
: 1 ] 1 ‘
- O
5og..(xT)E k.
RS 3
AS. (Zg..(x7) -k.)= 0
SRR R A j
x, Ay 20 for all i, ]

a pricing-correction mechanism can be derived. These

adjustments are:

dA. 0 if A, = 0 and k., - Z g..(x.) >0
i j SRR

o if{? gij(xj) f,kj} otherwi se

This analysis is similar to that of Koopmans (56),
using tbe 'custodian' price setting technique.

Whinston further shows that in the case of externalities
in the objective function (indicating a technological or
economic dependence between divisions), other information
such as lower bounds on production, may be reguired to
promote optimal divisional behaviour, e.g. for the ocbjective
function:

max £.(x,, X,) + £5(x,) + .. £ (x)
subject to ? gij(gi) < kj j=1...m
% =20
a gaming situation develops between divisions one and two.
Price guides are no longer sufficient as a mechanism for
motivating optimal behaviour.

Hass (45) considers the decomposition of a guadratic

programme:



max 7 (X, Y) = P.X + Q.Y + Z2.4.2
s.t c.z2 = R
£.(Y) = s. i=1... a
3 - 1
g.(X) = t. i=1... a

1
X, Y= 0

where: P

| <

are m vectors
Q, Y are n vectors
Z = (2<_7 _Y_>

# is (m+n) by (m+ n) symmetric and negative definite

|+h
Io)

are convex, etc.
, R have dimension k by (m+ n) and k respectively.

He partitions @ and C as follows:

!
,/@1, R
@ - C /C IC \> k
A __‘l ~ = ~ I_
\-—3 \ 1 | 2
m n m n
and shows that the quadratic decomposition is effected by
supplying correction factors to P, Q according to the optimal
solution of the present 'executive programme’.
If A = (A, ... A are the (provisional) ‘marginal costs

VAN /A

(or revenues) associated with corporate resources, and X, Y

are the present optimal solutions for X, Y in the executive
programme, the amendments are:

1
P>P + 0 ﬁ'c-l+.2ﬁ3 for div. 1
~

[=> <>

Q>Q+ f,.Y - Couh + 2 B for div. 2

In this case, not only the prices (Ki) but also the
inter—divisional dependencies Qéﬁg and gé.ﬁ are being given
to the divisions. | |

Hass shows that this is equivalent to a search for

'efficient' functions, rather than 'efficient' prices - these



functions are shown to be linear, e.g. demand curves of the
form a - DbX.
The interest of Hass's work lies in the possible inclusion

of price dependence between divisions; the profit for an

activity'Xi may depend on Y -~ this is reflected in the @
. L IVAN
of the total objective, and the profit amendments f,.X

roA
and QB.X of the revised divisional programme.

5.1.3 Decomposition with Fractional Objective Functions

The decomposition of a linear fractional programme 1is
complicated by the non-separability of the objective function.

For the programme:

max —1=1 * £2%p
g/_]_ﬁ/l + §_2§_2 + B
s.t. (1) A=, = by
(1ii) AsX, < b, (5.1)
(iii) Mox, o+ Mox, = b
Xgs X5 =2 0
where d x, + d %, + B > 0 and bounded for all feasible

52))no 'divisional' objective function presents itself.

(%15
The denominator acts as an externality between the divisions.

We will consider two approaches to the problem:

1. The linear approach: Using the Charnes and Cooper

Equivalence, divisions will be given linear objective
functions. The form of the master programme will have
slight differences from that of the ordinary linear
decomposition.

ii. The fractional approach: The objective function of (5.1)

will be split into two parts, each division will be asked
to optimise a function derived from marginal values of

activities at the previous executive optimum, subsidised
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or penalised with the usage of corporate resources at
these marginal values. An equivalence is érawn between
the two approaches.
(A decomposition principle has keen anunciated by Chadda
(12) but this method does not allow for iterative planning
processes.)

5.2 The Linear Approach

5.2.1 The Charnes and Cooper-Form

Consider the CC form of (5.1). This is:

MEX - Cadg DoY)
s.t. (1) ALY, - Eit <0
(11) AY, - ggt" <0
(1ii) My, + Myy, —bt =0 (5.2)
(iv) dyy + Sy, + Bt =1

Yqr Yo =z 0 t >0
Although the constraint set of (5.1) was in decomposable
form, that of (5.2) contains a further dependence between the
divisions one and twoj; the objectivevfunction, however, is
now separable, and linear. By the initial conditions on
9154 + g252 + B, t is always positive and non-zero.

Rewrite (5.2), introducing two variables ti’ t2 as follows.

Max  Lq¥q F 2pdp
s.t. (1) Ay, - Dbt , . < 0
(11) Ay, - byt =0
(1ii) Myy, + Moy, - bt =0 (5.3)
(iv) diyq + 4oy, - Bt =1
(v) $q - t=0
t, - t=0
ti’ t2’ Yq0 ¥ 20, t >0
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The cocfficient matrix of (5.3) is

| .
b0 0 o)

A TRq 9
0 0 Ay By 0
M, 0 t¥, 0 -b]
T T2 o (5.4)
_d_j_ 0 fgg 0 :»B ‘
L0 10 0 -1
| - l
| E : 5
L 0 0 0 1 -1
S =/

Clearly this is now in linear decomposition form.

The divisional programmes are:

- - <
max fa oYy s.t. éa‘la Ea'ta 0
o= 1, 2 | (5.5)

These are unbounded 1n ta’ thus according to Dantzig
and Wolfe (36) the master program neéa only consider non-
negative combinations of divisional programmes, (and not
convex combinations of such programmes).

Assume divisions one and two have submitted programmes
ili’ ti}, i=1 .00k, @=1,2

At this point the master programme will be:

o od i ] 3
max ; R eCyedy * & V7 CheY5
1 J
i ~ ] J '
s.t. (1) Z p~ .M, .y> + L v .M,.y5 - bt =0
- 1°+1 - —2 "~ = -
1 J
. i i -~ ] ] .
(11) Zp dg.yy + B Vj.ge.zé + Bt =1
1 J
(1) T pt.t] -t =0
i
(iv) 5 vl td -t =0
) J
v, vl 20 (5.6)
where sums are for: 1 = 1 ... k1

j: 1 * & o X

Let the dual evaluators at the optimum of (5.6) be
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(m, @ 7.,) corresponding to rows (i), (ii), (iii) and
i =

ar Ty
(iv). According to Baumol and rabian (8), we may interpret
these as 'provisional prices' and use them to form subsidy/
penalty revisions for the divisional programmes.

The decomposition process is as follows:
(a) assume k. solutions from division o, (a = 1, 2J.
(b) form master programme (5.6) and optimise.

(¢) revise objective functions for divisions in exactly the

same manner as for linear decomposition, but omit the

last two rows. The new divisional objective functions
are:
T(c T.M 7,.d ) o 1, 2
—_— . — . r =
;1 o — . d “x. ) Yo ?

1 i i i

The 'denominator row' is considered to be a 'corporate

resource'. (M is the i'th column of M)
=05 =
(d) solve the divisional programmes and test for optimality.
A A
Let the new divisional optima be fa' If ﬁa = fa
(oo = 1, 2), the present solution is optimal. (This
A
condition is proved later). If Ty < fa for o = 1 or 2,

update k, and go to step (b).

5.2.2 Bounding the divisional subprogrammes

In order to obtain bounded solutions to (5.5) it may be
necessary to put an arbitrary bound on t. (Let this be £°.)
(In the original programme (5.2), t is always bounded since

t = d.x, + dox, + B .and d.x, + d.X, + B > 0 for all

S4%q * S2%p ’ Sq%q * S%
feasible (§i§2)-by assumption).

Lemma: = or the LP
tmax i = C.Y

(5.7)

0
cf
|
k<
I
|o
ol

IN
1O

i
A
s

Ev}iatzoa JCO>O
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3%
if a (boundcd) optimum exists, say £ , then:

t = +% or £ = 0 and 0 = t

b

*» . O
= T .

4.

Proof: Suppose a (bounded) optimum exists. Let 1 be the
dual evaluator of the last row of (5.7).

Then, by LP duality

*
~

£ o= nt.to with m_ = O (5.8)

But t° > 0, therefore:

*

either £ = 0 4>’ﬁt = 0; the last row of (5.7) is slack
%
or £f >0 rj;nt > 0; the last row of (5.7) is tight
*
=t = t°.
Q.E.D.

Corollary: Eguivalence: For 0 < t <=, and y = X.t, the

programmes:
max f = c.y  sS.t. A.y - bt =0 £ = ¢° (5.9)
max c.x s.t. A.x < b (5.10)

are equivalent 1f bounded solutions exist for (5.10) for
which f* > 0. |
proof: £ > 0 = t*'= £,

Equivalence by division.
In this chapter we will assume that divisions only tender
programmes of strictiy positive value. We also assume that
"ttt is strictly positive (and bounded). Thus we may amend
the decomposition method of (5.21) as follows:

(a)~-(c) remain the same

(d) solve the eguivalent divisional subprogrammes

max o (c - .M - T..d_ J)x
. Cl. - . d’ «. o
i i 1 i i
s.t. A .x_ = Db
— "= =
z 0 (5.171)

&x



(e) assume t 1s the optimal value of t in the master

programme about to be solved in step (b). This is permissible

Eg
because any arbitrary t may be chosen.
(f) go to (b)), i.e. solve (5.6)
N.B. Assumption (e) alters the form of rows (i1ii) and (iv)

These are now:

2 pT -~ 1= 0} i.e. convexity constraints
i \

Twvl - 120"

J J

5.2.3 The Optimality Criterion-

The optimality criterion cited in (d) now becomes
clear; it is identical in application with that of the
crdinary linear decomposition:

g& 1s the net profit contributicn of the new solution from
division o

na is the relative marginal profitabiiity of a transfer of
some company resources to division a.iSee (8), page 13)

AN
For optimality =m_ = £
- 04 o

5.3 The Fractional Approach

5.3.1 The Executive Programme

Assume that, in. accordance with step (d) of Section

5.2.2, the divisions have tendered the plans
(5;} i=1...k, , a=1,2

Assume that the corporate management now wish to use these
plans to form a global optimum; the methcd of forming the
executlive programme corresponds with the linear decomposition
approach.

The executive programme 1s:



|
KN
JEEN
O
!

by —1 { i + b TJ j
L Ci-li v 22.52
max — T — >
5 D ¥
LAY gﬂ.ﬁi + B VT dy K5 o B
£ Y ow Th oM xt 5 57 J <
s.t. (1) ¥ p M XL v M, X5 = b
(11) o = 1
(iii) = v = 1 (5.12)
(where the sums over i and j are as (5.6)), @i,DJZ 0

Equations (ii) and (iii),the convex combinations are
required to maintain feasibility.

The CC form of (5.12) is

ot RS N J
max L0 .Cqe Xyt LY. X5
R VN | b i,
s.t. (1) Z o SUPRP.SEE VA Y R bt = 0
oy s i i j i _
(1i1) T « g%+ Ly .d,.%, + Bt 1
(1i1) T o | - t=0
(iv) P YJ - t =0
o, y? = o0 ' (5.13)
where the transformation
— ~
t.n = g—i_ has been applied, t > 0.
— r/ .
£ty = x|
- J

Lemma: The optimal solution vectors to (5.13) and (5.6)
differ only by the scale parameter t‘ applied to the unbounded
solutions to (5.7) in Section 5.2.2.

Proof: Re-write the activities and constraints in (5.13) as:
A
i “ - *
Dl e (xhet)
\,t ;.' . 1
N/

The (x".t ) are the same as the (y©). Thus the activities

max

L

- y j— B (I
- and uo arce ldentical,

t
i.e. o = t . (5.14)
Corollary: The dual evaluators of both (5.6) and (5.13) are

identical.



Proof: Given two problems
max C.X s.t. A.x =b
A
and max SekX s.t. ¢ .kx =D
k ’ -7

the dual evaluations are identical, if k is non-zero and
constant.
For k = t©t , the above result follows.

5.3.2 The Fractional Algorithm

Let =, El’ T,, be the dual evaluators of rows (i), (ii)
and (11i) at the optimum, of (5.12).
The proposed algorithm is:
(a) assume k, solutions from division a, (o = 1, 2).
(b) form the executive programme (5.12) and optimise.
Let x = (zl, 52) be the ‘'optimal' programme derived.

(c) derive the marginal values oif production for each

variable 51 , §2 at the present solution levels,
i j Fa, -
. ~ ; T — :
i.e. form the vector I =—— - TW.M-
i OX e
} mi i

(d) present each division with these new marginal figures
and request optimisation with respect to these new
(linear) objectives.

N

(e) test for optimality with new divisional solutions fa'

/s v
Ifn, > f (a = 1, 2) the present solution to (b) is

o o
optimal.
If E& < fa (o0 = 1 or 2), update k., @nd go to step (b).

5.3.3 Comments on Algorithm

As will be shown in Section 5.4, the two approaches to
the dccomposition of (5.1) are identical apart from constant
factors at each level of updating the master programmes.

The linear method stresses the planning approach of

treating the denominaltor as a corporate resource that divisions



are ‘'allowed Lo use'. This approach also makes ik guite
clecar to divisions that a penalty/subsidy process 1s belng
used.

In the second algorithm, the emphasis on the iractional

nature of the problem 1s mailntained, by concentrating on the
net marginal increase to a fractional objective function.

The optimality condition (e) of Section 5.3.2 follows
from the assoclations derived in Section 5.4 aﬁd the optimality

conditions for the linear approach.

5.4 The Assoclilation between the Two Algorithms

5.4.1 The dual evaluators of the master programnmes

Let the optimal value of the denominator of (5.12) be

/‘\ N . ,"'\_1
d, and let t = d 7.

By fractional programming duality, and by the lemma of

Section 5.3.1,

AN _ = —
t(m, Tyy T ) = (m, T

5 T, Ty, Ty) (5.16)

5.4.2 The association between the revised divisional

objective functions

Assume that divisions 1 and 2 have submitted ka
propositions (a = 1, 2).
According to the linear algorithm, the objective function

for division o 1s revised to

(
= Cq. — E-M, - nd‘da.} Yo o = 1, 2
i i i i i
. N (5.17)
<~ )
or Z1c, — ‘.M - T,.d x o =1, 2
< L oy —0 d aif oy

in the revised version.
According to (5.15) of the fractional approach of
Section 5.3, the divisional objective is a vector whose i'th

component 153
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" — i
ZZE - T.M (5.18)
S ==,
; (048 1
L, .* EEN
X = X
A A £
Now — : = (¢ .t
p i ( o. — f£.d )
o i .
— L ~ 1
X = X

But, by linear and fractional duality on (5.6) and (5.12)

£ =W, 1 (5.19)

Using (5.19) and (5.16) we can write (5.18) =as

(e, - mg-d, ).t -t M
i 1 i
/\r
= tic - .M - T,.d } (5.20)
L o — 0 d aiJ

Comparing (5.17) and (5.20) we see that at the ka'th
stage the objective functions for divisions &« are in effect
the same, whichever algorithm is used, the difference being

a scalar multiplier.

5.5 7The Optimal Dual Sclution

5.5.1 Introduction

Walker (5) has shown that for linear decomposition, the
final tableaux of the executive and divisional programmes
provide, not only the primal solution vector, but also the
full dual evaluation. The final executive programme gives
the dual evaluators of the rows of the ‘éxecutive' section of
the initial tableau, whilst the derived divisional programmes
give the-dual evaluation of theilr respective rows.

Thus for the problem:

Max Siﬁi + Cohs
sl (}) &1&1 e 21
Cii) QQAQ . EZ {(5.21)
e 1 v <
(1ii) M. 1 2.52 b

>)
I
lo
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the final executive programme gives the dual evaluators

E3

for rows (iii). TLet these be T .

The (dual) solutions to

min T_ .o
— =X
s.t. T LA = ¢ - 7 .M (5.22)
. — "=, = —pb -
T =z 0
__a —
o = 1, 2

give the dual evaluators for (1) and (ii) according as
o = 1, 2. ((5.22) are simply the dual forms of the final
divisionalVsubprogrammes).

In the linear case, the {E;, E;} are automatically
generated by the final iterations; Walker's proofs rely upon
the linear duality theorems equating the optimal primal and
dual objective functions, i.e. he relies on the fact that:

£ ES 3%
C A, + Cahny = 2T b + T
0=,

Mg+ Sl T, .b (5.23)

-Because of the non-linearity of the fractional objective
function, (and the presence of economic rent in the dual
objective), this equality is not upheld in the fractional
case. The value of the primal objective function does not

equal the total implied value of all resources, i.e.

&

+ EQAZ ,

+_§2Aé + B

e

b+ T b (5.24)

A

gl . 5

fan = ELTTS)
o —C" = b

I

~4

R

14

0.

%

*
where the A 's and T 's refer to the optimal solutlon to

max S+ Sohs
d A, + d A, + B = £()
—1=1 —2=2
+ 5 2 9 <
S.T (i) 1£1 21
(1i) AsA, b, (5.25)
(111) M. A+ MyA, = B
A, =20
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—

Let the optimal value in (5.25) be f(ﬁ*) = =

We will show that Walker's proof can be adapted to the
non-~linear case, and will prove that the dual eyaluators of
the final tableaux for the method outlined in Section 5.3
are the dual evaluators for the total problem.

5.5.2 The dual programmes

% 3 *

The dual to (5.25) is:find (E* T v Ay Ao

17 _27 __TE_

s.t. 6 is the solution to:

i T : X T .1
min i.b._, + 3222 + T.Db

—1=1
~ il 2—\'-_}
s.t. Efy v EH, =
'Oﬁli %
Tohy, + T M, 2 0F é
- A=A
?‘af-‘ 1% —
Let B, . = %5 = L5
S S
where L* is optimal for (5.25). Form the primal:
’_l* ,_'*' — —
max L X+ Ip Xy T CyeXg ot SpXp
s.t (i) A%y < b,
- < 1
(ii) AsXs 2, (5.27)
e <
(iii) Moxy + My, b
(5.27) is a linear decomposition problem.
Consider the following programmes:

Assume that ka_solutions have been tendered from
divisions «, (o = 1, 2) for the decompdsition of (5.27).
The master programme 1is:

ST RS Kooi - 4
b Pl P
max R @1.21.11 + L7 PS5l
i=1 i=1
. Ly e i i . i i
s.t ‘L) LopylMoAL L opy.Mylhy, =R
(ii) Z ul = 1
Tl
(iidi) p> o = 1 (5.28)
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Assume vhat the dual evaluators for rows (i)-(iii) of

(5.28) a o,, 0,)

1 2

The final divisional programmes for (5.27) are

L

©

—

&
<

max 5 (c, =T .M. )\, .
o s — =o. L
i i i
s.t. A A =D (5.29)
oo O
(e = 1, 2)
The dual of (5.29) is:
min T _Db
oo
—_— #
s.t. ®w .A =2 c - T .M
-0 o - T
(v = 1, 2)
*
Lemma: Let x Dbe the optimal vector for the problem
X o+
F = —— ' <
max f(x) = e s.t. A.x <h (5.30)
%xz0
= * *
Let £f(x ) = £ , and let the optimum duvual evaluators be T .
Consider the probklem:
' - 3F | |
max L X.. , = (5.31)
i 1 ©OX. "
Dx o= x
s.t. A.x =D
x =0

F

Then: x 1s optimal for (5.31) and Eé are the dual evaluators.

J

roof: By Martos (65), the fractional programme has one
unique solution over the constraint set 1&.5 =L, x = O}
i.e. (5.30) has a unique solution. From Swarup's work, the

KT Conditions for such an optimum are that there exists

x,n =0

i L of >E * _
(1) ; . A =0

L. is i'th column of A



a
11 # 9L K
(11) K, - T LA, =0 %/
i OX. . — =1 Vo
. X=X
(iii) A.x £ Db ° (5.32)
(iv) . (A.x — b) =0

But conditions (5.32) are the KT Conditions for the problem

(5.31), i.e. (x , @ ) is & sadde point for (5.31) But there

is only one solution to (5.31), hence proof .....

Theorem: (Walker (86)). If (5.28) is the final optimunm
®
tableau for the executive programme for (5.27), then m , and

the corresponding T I, from (5.30) are the components of

19
the dual evaluators of (5.27).
Proof: see (86)

Lemma: The dual evaluators E* from (i) of (5.28) are the

dual evaluators of the rows (iii) of (5.25).

Proof: By the theorem just quoted, the E¥ of (5.28) are also
the evaluators of rows (iii) of (5.27).
By the lemma just proved, the dual evaluators of (5.27)

and (5.25) are-identical, hence:

Corollary 2: The Final Fractional Dual, (eguivalent to the
theorem of Walker). The final dual solutions to steps (b),
(c) and (d) of the decomposition of 5.3.2 give the dual
evaluators of the programme (5.25).

Proof: Using lemmas already proved.

Example of computation are shown in Appendix 5.1.

5.5.3 The final 'prices'

A8 has been shown, the final solutions to the executive
and divisional programmes furnish the dual (marginal)
evaluations of the total probklem, thus they provide the

desired 'transier prices!'. These 'prices' however , are
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the marginal value of inputs and outputs; they do not
cquate the value of total subply and demand in each market
due to the non-linearity of the objective function.
As can be surmised from the work on strictly convex
functions by Charnes, Cooper and Kortanek (23), these
marginal prices will be insufficient to promote optimal
behaviour from divisions. (Methods of coatrol in decentralised

“irms are discussed in Section 5.8).

5.6 The Ontimal Inverse

5.6.1 Introduction

According to Chapter 4, the optimal inverse basis 1s
needed in order to test the 'returns to scale' of any
fractional programme. Without this definition of 'returns',
it is impossible to associate the dual evaluators (marginal
values) with economic prices. For any sensitivity énalysis
to be effected, the optimal inverse basis 1s also a pre-
reguisite.

In this séction we will consider the methods available
for the calculation of the optimal inverse basis. This will
beé approached indirectly by first considering the problem
of finding the range of possible changes in right hand side
elements that 'maintain' the present basis. Throughout this
work we will assume that the problem is non-degenerate at
all vertices of the simplex.

Most techniques of post-optimal analysis in LP use the
optimal inverse basis as a starting point.

i.e. for the problem: max C.

N

[

s.t.

| =
[52
A
o)
n
w
W

|
W
‘o

B

o b -1 . —_
we have X = B “.b for some B 1 (5.34)
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With a non-degenerate problem (at its optimum):

OX . 1

\b* = (B )i.

0. i 3
J

and the range of values over which any bk can vacy wnilst tne

problem recmains optimal/feasible is given by the extent

to which b in (5.34) 'preserve' the condition that

x = 0 . { See c.g. (44
axi
We will use the marginal values Bb» calculated
J

indirectly to form the optimal inverse basis for the decomposed
iinear fraction programme. To aid exposition the linear case
is presented, and the Baumol and Fabian metaphor of corporate
planniny is maintained. Clearly the method can be interpreted
as an adjunct to decomposition for the Soiution of large’
scale problems.

5.6.2 Notation

In tne following sections the divisional weights have

not been separated. The solutions £, i e I, are of the form

! ;
/%, ‘0

3 }(from division 1).0; . (from division 2).
\ 0O /'! ) VX
LT \—2,

3

o is the optimal weight attached to the i'th plan
b, refers to the k'th entry in the relevant r.h.s.
k

5.6.3 The marcinal variations of basic Ki with

changes in resources

We will assume that the information available to the
central organization is:

(1) the series of solutions 151}‘

. roo%
(ii) +the optimal weights ip.l (5.35)

i
(1i1) tnhe optimal inverse basis of the final executive

- - ~ 2 has I\_/'l'
programme B |



(iv) the technology matrix and r.h.s. of the Corporatc

section of (5.21),

a. Chanae of bi containecd in corporate constraintaos

Using (1) and (ii) of (5.35) we have the optimal
programme
¥ L %

i

i =i

Since the problem i1s not degenerate, (assumed), a
small change in bi in the corporate section will not induce
& change in any of the sets of penalties and subsidies given
Lo divislionsgs,

i.e. the divisional solutions igz} are 'independent' of b,

(for corporate resources). Consider changing a particular
ging p

resource level in the corporate r.h.s., say bk' (5.36) can
Le written as
£ % #
= 2
£ 2opy By ) Xy
i
2 (b, )
"‘ p‘ b %
and X L oLk ¢ (5.37)
. ob =1
5bk i k .

But, from (iii) of (5.35), and the assumption of non-degeneracy:

/1 N\

! 3 /, — \'\_ s

b
B3 __1 { ' o .
il Ep 3 1 for basic p,

. 4

- ES
(We ignore non-~basic pi and assume that p comprises the non-

zero [, only).

3 p
: Hi ‘a=1.
Hence Y = B 7
Dk Rt VA )
A <1k X
. -1 . =i ; . . .
Since D is known, the terms 5 may be calculated directly.
T O~ .

k

L. Change of b, contained in a divisional r.h.s.:

K

[ =% L N
i'or this casc, both ip,w and EX,W are b —devendent.
(O —1 K -



ES /// 5 w .
3% F T . o,
Hence o = I — L%, s B \ri . (5.38)
ob - ob J j ob :
Ik Joo k ko

Assume thatbt cach division supplies the marginal values

of the optimal solutions with respect to its own resources,

-

. SN ' - -
i.e. assume =i are known. (In the computational approach
ob
k ~,
XK.
for large programmes, the 351 are known from the 1nverse
k %
. Q

e

. \ N
basis of the 'divisional' programmes.) The 33 ¥ may be
kJ
calculated as follows:

-1
i. formulate the executive LP, ¢, in terms of the (B, ")

¥ kS
—

o ] . . -1, ﬁ ‘
and b instead of X,, using X, = (B, ".b). For a small change

in b, € b

. € B, ©» and {p;} vary with b, i.e. ¢ = @(b ), and the

X7
solutions to the final executive programme are p; = pi(bk).
ii. if the marginal values of the LP ¢ exist, we can find
p;(bk.+lAk), for some small A, .

The N + S conditions for the existence of the marginal
values of an LP have been consildered in Section 4.2.3; they

are due to Williams (92).

Assuming that these hold for the executive programme,

5
-

; . o . ; .
the terms °Mi may be derived from

3b,

3. Lo ) * (o, )\

i lim R T S by (5 39)
3, T A0 A, i .

(By the assumption of non-degeneracy, we can assume that
—a 0, s.t. for A, < &, the p. (b, .+ A ) are defined and that
k k I'd i 7k k

the limit exists).

The executive programme @(bk) will be of the form:



- -1
max c. Zp.(pn ) B.7(b+ 4)
- 17k 1 = —
- =1 - 5 4
s.t. Mo Z p.(b ) B. (b + A) = b (5.40)
- 17k -1 — - —
L
g 1 4 - ~r7 4.
Z g = 1 convexity
- 2 constralints
%ol = 1 -
where: A = (0, 0, .... b, 0, 0 ve....0), b is corporate

r.h.s., and the p%, ui refer to respective divisions, p?’ = 0.
From the formulations (5.39) and (5.40), the right hand side
of (5.38) may be obtained.

Since these calculations have only. depended on the
linearity of the constraint set, they are applicable to
linear fractional programming; the theorems of Williams
will not be immediately applicable, but, ;sing methods

similar to Section 5.5, they may be used via the Charnes and

Cooper Equivalent forms.
O .

i
abk

i1s shown below in

A direct method for computing
Séction 5.6.4.

Calculations illustrating the theory of Sections 5.6.3,
and 5.6.4 are presented in Appendices 5.2 and 5.3.

5.6.4 Direct calculation of the "perturbed inverse

basis"

Assume that the columns of the executive programme for

%

basic p. are given by A. (A 1s m by m)
A small change 1in bk will change the column values of A
according to the matrix elements oXi , (assuming that the
ab
k

change is sufficiently small to retain optimality/feasibility
etc.)

Assume that the perturbed matrix for A is A + Eﬂébk),
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. Lled

where bbk represents the small change in b, . The ncw inverse
basis is A + H(dL, )~

Ko

which exists, if the conditions

=
4]

cenunciated by Williams are satisfied, (and A + E(bby)

non-singular). Now: Eﬁébk) is linear in 0Ob,, since it 1z
the weignted sum of terms which are linear in 6bk, l1.e. 1t

can be written as H.bbk where H is a matrix of scalar
= ] =

values.
po(p) = Aty
* ) ] N\
and W (b, + O0b.,) = A + I1.0b, : D
= k k = — k! - )
where E is the r.h.s. of the executive programme, E“ = b+ 5%
e - -1 N
~ JUA + H.6b11 “.b - A 1.b\
31t (b, ) . Do — i - —_ = . 44
55 k' = lim s ! (5.471)
k 6bk940' Kk /
: . /
(if the r.h.s. exists)
- -1 _ LT 1 g
;é + i'ébki = ié'Lg + A .E,ébks
= - T R
- T+ atmoen, TTATh
il - < -
But we may make 6bk as small as we please, i.e. 1F
D = A—i.H.éb = (d..) we can find g€, & s.t.
- — — k ij .
{ |
o < e f .
dij! e for 6bk <0
Hence we can ensure that (é_1.§,6bk)msg9, as m—>
and can expand (I + 2)*1 to give:
(1 + D)7t - ;—g+22 (5.42)
Using (5.42) we can re-write (5.41) as
Y _ 4 . _ A
3l b, ) Samt Cpatt o p?ah s - amtny
L e
k ob 3»0\ k /
\ 4
/o A"t E.a" p.ep, + 008D, )
: T A K
= lim —_ 55
60157’0\ K



Typical calculations for Il arc also shown together with

the worked example in Appendix 5.3.

a1
A

N.B. .b is the present solution (imnedlately availlcble)
-1 . , " . . . - .o \
A "~ is the optimal inverse (immediately availakle)
only H need be determined. -
5.7 The Provisional Dual Pricing Theorems

5.7.17 Provisicnal pricing in the linear case

For the LP

max c.X S.t. A.X = D
x = 0 (5.44)
VAN —
Lot % = BT 4.b
A N 1 . N\
c e the i term corresponding Lto X
m=c.nt

/"'\
For any solution X, not necessarily optimal, Baumol and
Fabian have proved the following theorems:

Theorem 71: For non-basic x the marginal change in objective

k?
function upon inclusion of Xy is given by
A = - T.A,_ + C, " : ‘ (5.45)
k —"—k K

where A, 1s the column of A pertaining to x .

Theorem 2: For basic Xj’ A, =0

j
i.e. T.JA. = cC. (5.46)
- J
Theorem 3: T.h = é;g (5.47)

These theorems are proved in (6), and allow the
interpretation of the w's of executive programmes in
linear decomposition as provisional dual prices.

5.7.2 Provisional pricing for fractional decomposition

In steps (d) of 5.2.2 and (c) of 5.3.2, we have amcnded
the obijcctive Funclbions of the divisional programmes WS Ind
N pr o

Lhie et of Lhe corpornte conoltrainlt rows as masglinal values



of the corporate rccources. We formed, the expressions:

N o 1
max Ly C - T.M - T,.d_ X

PR 4 — 0. d™ o) o
i i i 1 1
-, of —

and max = (== - T.M ) X
. OX — . .
1 . i i

i

In so doing it was assumed that the Provisional Dual

Pricing Theorems quoted in 5.7.1
executive programmes. This will
duality relationships derived in
same notation as in Section 4.4,
assume the initial problem is

max C.x + s.t. A

(04
d.x + B

The 'Charnes and Cooper form' of

max c.y + ot s.t. A.y

held for the fractional

now be proved, using the

Section 4.4. We use the
namely:

<b

=z 0 (5.48)
this is

- bt =0

+ Bt = 1 (5.49)
y, t =0

-1

Let the present solution to (5.48) be described by X = B .

. 3 . - - -1 .
The corresponding inverse basis of the CC form, (B ) is

b

given by , .
M M A
B 3
(87t - 11 121
W Mag Moo/
- Lo S
where: My, =B 1 -x.t.d.B B
¥ - I
Ixiz = t.iC_
,-‘1\ _1
M, = -t(d.B ™)
My, = t. (5.i93
In Chapter 6 we show that if a,_ = B 1a , then w,_ = (3"t
S T = K “k =714

is given by’



-1 -1
3 TLa, + tox(d, - d.n TLal )
W= —k — 'k - K
t (4, - d.B ~.a.) (5.571)
k ——= =k
Define T., by:
2 B
iye! -1
T o= = . B (5.52)
—F FOX A —
X = X

A
fouy

where £ is differentiated with respect to basic xj only.

Define w_ ., 7. by:
—CcC d

# =1 -
(T Ty = (g, x).(B) (5.53)

Lo

(This is the same definition as in 5.7.71 for the linear
case).

Theorem 1F: For non-basic x, in (5.48), the marginal change

k
upon inclusion of X is given »y Ak’ where
’ Faf
— - ;i o= 4
b = T IpeRy 7oaxl A (5.54)
LK X =X |

Prcof: Theorem 1 holds for the Charnes and Cooper form of

(5.48).

. N A
Let the corresponding solution be (y, t)

Then: .
/‘1\_ "\\
by = ﬁﬂcc'{_ké "
i \d,
LK N
JALN
P - —k\‘:
= -(c, a).(B ) a Sy
T k/
/\ _/_L FANEIVAN A N 1
= -c.B &y E_-l{.'t(dk - 4.B 'ék)
N 8N 1
- t(dk - d.B .gk) G
N I\ I\
Now (c.x + o)t = £
\ _ ANA _ 3 N
S A = - yc.B 1.“, - £.d.B 1.a P+ (¢, = d,..f)
v, SeE Ty 4.3 .3 T %
r /N 7 -1
= I_C_:_ - _L._Cl)." . (E .ék) + (Ck - f.dk)
EAN 1 -\”,: ’
Now ¢ — f.d = = \\ i
- - C OX

fo —
. X o= X



and ¢, - .4 = =
K k T OX, ¢ s
N .
Tx= X
. 1 Taf )
e A, = T UTTeeA v T [
1. T i< . -
- X o= X
but 4, = t Ay by relation t.x = y (shown in Appendix 4.2)
¥ - i
e -~ i
) A, = =TI A+ of
T k —[ =k L OX, ! A
k;
R
Theorem ZF: For basic x., A. = 0
J J
T3rE
. (O
i.e. MW .A = = |
—Ir "=k 0X. | .
— JJX = E
Proof: The samc proof applies; but A = 0 because y. ic
k J
basic, .. A, = 0 (x. is basic)
3 J
- A
. T A lOI !
1.€. J « = _—
'—F '—"'k IaX.! ./\
i JJZ:_ = X

N.B. Theorem 2 has no fractional eguivalent, i.e.

H A

&N e

- of

T..D # Z Koo | =—

- = ] Coox. ! A
iX. basic ~ It :

j / : X = X

AN

The normal failure due to non-linearity of the objective
funccicn occurs, but the lack of Thed:em 3% dces not preclude
the interpretation of the 7m's of the fractional executive
programme as marginal values.

The full interpretation as economic prices would
require diminishing returns to scale, etc. But as has been
seen, these are not necessary for the operation of the
decomposition algorithms.

5.8 Control in Decentralised Organizations

5.8.1 Control in Decentralised Organizations

At the termination of a decomposition process, the

'executive' calculates the optimal weilghts to be attached to
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q

the divisional subprogrammes. As has been ocutlined in (8)

rm convex comblnations of divisiocnal

Q

these welghts £

b

olutions; the optimal divisional programme 1s an interior

93]

- the divisional constralnt set - and cannot ke

L

oy

n @]

=

©]

T

reached by programming methods which have extremum point
optima.

Thus pricing alone is insufficient (in the linear case)
to ensure that divisions act optimally. At the end of the
decomposition the optimal solutions are announced as pfoduction
fiats. This will also be the case in fractional programming
because of the persistence of the divisional extremum pointv
solution.

Charnes Cooper and Kortanek (23) have shown that it is
possible to set goals for each division, based on the optimal
solution; divisions are then asked to optimise a function
containing severe penalties for any deviations from the

rescribed gdals. These are termed 'pre-emtive goals'.

Such goals are also definable for the divisions in the
fractional cases; they will differ little from those of the
linear case, due to the similarity of the divisional programmes
in both the linear and fractional decompositions.

5.9 Summary

In this chapter we have shown how decomposition methods
may be applied to fractional programming problems, using
both the original and Charnes and Cooper forms.

We have proved the appropriate duality and pricing
and have shown how the bases of

theorems (where possible),

the decomposition method can be used in the construction of
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Chapter 6 Special Methods in Fractional Programming

6.1 Introduction

In this chapter we discuss the special methods available
in FP, which can be based on the equivalence between the
algorithms of Martos (64) and Charnes and Cooper (17).-
Emphasis is placed on the latter approach since it utilises
existing codes; IP with fractional objéctives is also
considered together with aspects of pricing with integer
programmes. Stochastic Programming with fractional objectives

is reviewed in Appendix 6.4.

6.2 Basis Relationships in FP

Wagner and'Yuan (85), have shown the eguivalence of the
algorithms of Martos. (64) and Charnes and Cooper (17). Their
work shows that the two methods proceed to the oﬁéimum via
the same pivdt paths. Charnés and Cooper have also shown that
for any vector (y, t), feasible for (1.23), t is strictly
positive. ' | |

Thus we may assume that any set‘of pivot operations
{remove xs,lintroduce—xr} has a corresponding set of operations
in the CC form, namely'{remove ys; introduce yr},

6.3 The Bounded Variable Algorithm

6.3.1 The CC Form

Consider the problems

max f£(x) = = X*&
d.x+8
s.t. i A.x S b
ii 0sxs<U (6.1)

and

max f(y) = c.y+at
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s.t. 1 A.y -bt=0
| d.y + Bt = 1
ii y-Ut =0 ,y=20 (6.2)
(6.2) is the CC form of (6.1), but it does not display
the upper bounded variable characteristics of (6.1), because
of the inclusion of the variable t in the rows ii. For a
problem of this form, with many upper bounds (e.g. the capital
bﬁdgeting problem where projects are bounded by unity), the
resulting CC form (6.2) appears cumbersome due to the-explicit
inclusion of all upper bounés in the rows ii of (6.2).
The CC form cannot be used for a bounded variable

algorithm for the solution of fractional programmes.

6.3.2 The Parametric Approach

Using the method of Joksch (54), the problem (6.1)

becomes
C.X +
max ————— = £(8)
9
s.t. A.Xx =D
dx+ p=296
0=x=U : (6.3)

For any fixed 8, (6.3) is a normal bounded variable LP,.

6.3.3 Variations on Martos' Algorithm

In order to solve (6.1) directly, the only variation
required for the normal LP bounded variable algorithm is
that of the selection of the pivot column; this can be
achieved by.adaptation of Martos' algorithm, ((64)) ,

according to methods outlined in (35) and (68).
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6.3.4 Dual evaluators in upper bound formulations

Weingartner (88), uses the dual evaluators associated
with thé upper bound formulation to rank basic- and non—baéic
projects. Such rankings can be applied in FP; once again
the mapping is effected via the variable 't°’.

Consider the problem:

C.X + o
max f(x) = T X 78
s.t. i A.x <D
i %<1 i=1...n (6.4)

Let the dual evaluators for (6.4) be (T

py Mp), and the

* *
optimal value be f = f(x )
The CC form of (6.4) is

max f(y) = c.y + at

ii oy - et sQ | (6.5)
where e is the vector (1, 1, 1, ... 1). Let the evaluators

*
of (6.5) be (7., 7 , p.). By LP duality, T,;= f .

d
Let Yy = 'zj - <y defined for the CC form ('y' variables
only) as in (88)., y. = {Yj)
. *
then Yj = Ec'ﬁﬁ + dj.f + pcj - S5
( *
= Toehy + pcj ~lcy = dy.f )
Now T = T 3& and = 1} (from'section.4 4.1)
¢ T =T - Be = Bp-g ’ -
therefore v, = Lm A+ o - (c. = d..f*)g? ‘ (6.6)
S A i T

But the numerator of (6.6) is the marginal value sum of
inputs for the j'th variable minus the marginal return,

evaluated at the optimum of (6.4).
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i.e. Y.t = WA, + p - E%i- = v
- - e — _—F._—' . a . - .
J J FJ XJ-JX=X* F_]

where Y, 1is the 'Yj' defined for the form (6.4)
. j .
. 1
l1.€. lc = lF--_E.* :
The natural ranking of (y, p) is preserved in FP, and can be

deduced from the ranking in the CC form.

6.3.5 Productivity Ratios

In Chapter 3, we have suggested a second ranking for
variables (projects), the ratio of marginal return to the
sum of the marginal values of inputs (i.e. for LP the

ratios g, = Cj ). These rankings are not strictly preserved
v.a.
- =3

between the CC form and the original'fractional form.
Considering the CC form (6.5), the definition of 8

would give
C.

) = %
i {ﬂ A, + d..f }
—C =] J )

(ignoring the upper bounds)

A
ej’ the equivalent 9's for the original form would be

A A ,
8 < 6 _AK06 & .
3 > %% 3 > Y because of the term dj.f )

defining Qj for the CC form as E-j , the ranking is

ToAL
preserved. : .

6.4 Sensitivity Analysis in FP

In order to describe the optimai solution to a mathematical
programming problem, three pieces of information are required:
the primal solution, the dual vériables, and the 'robustness'
of the solutiOn to changes of input data. Sensitivity is
required before the solution can be used for decision making.

Sensitivity in FP can be approached using the sensitivity
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analysis of LP applied to the CC form, as outlined in the
following sections.

6.4.1 Changes in the r.h.s elements {bk} that 'preserve'
optimality are derived from the optimal inve;se baéis using
the formula

x = B7b

For changes of b, the basis is feasible only if the corres-
ponding‘ﬁ* is positive. ( See e.g. (68).)

In the CC form, the elements b appear in the matrix of
constraints. Nevertheless the range for {bk} can be deduced
from the-range of the r.h.s. of the CC form.

Assume that the range of the k'th row of the CC form is

6, (for an increase in bk): then, a basis change occurs when

A N

k

A A ‘ i
where (y, t) is the value of (y, t) at the end point of the
range of the k'th row. Up to this point the present basis

is optimal, i.e.

A A
N R
or A .x < Db 4 —— (6.7)
=k = N
o}
therefore the range of b, (increasing) is given by 7%

k
' A.

where 6k is the range of the k'fh row of the CC form and t
is the value of t at the limit of the range. (Similar

analysis applies for decreasing b worked examples are

"
shown in Appendix 6.1)

6.4.2 Changes in the {ci} terms

Allowable changes in the {ci} terms may be deduced

directly from the CC form; this is an LP, for which sensitivity

A

to changes in {ci} is readily available, see e.g. (68).
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.
6.4.3 Changes in the idi} terms

Let Oi(di) be the i'th reduced cost in the CC optimal

tableau, let the dual evaluators be (7 7). Let the i‘*th

_ / —CC?
column of the initial tableau be (é;> and the optimal
d. _ ' '
solution be N i
. *
f* _ .C_:.'}._C. + X _ B: . , With m = f
- * - *

d.x + B v
Let G,(d;) be the i'th 'reduced cost' in the original form.

Consider changes caused by perturbation of di by an amount Ai

where d, + A, = d.
i i i
From Appendix 4.2 (4.41) we know that

1 —
9; = o 9

3] - _q

Now 5. = 25| _ £ Lo la (6.8)

i axi. " . [oX% [ . - —i
Hx=x X=X

1

where igé} are basic activities, B” " is the optimal inverse

of the original fractional fofm,

J— * *
therefore, 0. = (c, - d, . £t - % (c. - d..£ )t .a...
Rt i i 3 j 3 ij

where B—i.A. = a.
= =i T =

and 0, = (c, —d,.£) - % (c. -—d..f ).a.. (6.9)
i i i 3 3 3 ij
. :
a. Non-basic {xi}: f and aij are independent of di’
therefore, for the present basis to be optimal ‘we reQuire

that

. ] * *
o;(dy) = ¢; - (d; + A)f - ? (cy - dy.f)ea;y <0

V non basic i

*

i.e. 0.(d) = 0. —A..f <0
1 1 1 1

therefore, di may be reduced by an amount
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g,
i

t

i
A, S|—E
i
l

5 whilst xi remains non

’ * *
b. Basic {xi}: If xi_is basic, £ and t

optimality is preserved if Ok(d;) < 0 for

k
. %
i.e. if o (d.) = c_ - d_. =
kod k k Vti-A..Xf
i"71
L 3
- u (c., - dj — ) 2y 3
J£i v +-Ai.x. :
( *®
- (e, - (@, +0,) —2— 2 4.
* * * v*+-A..xf/ kel
A R |
<0 non basic k. (6.112)
* . . * * * _1
Let t vary with A, i.e. t = (v + A, .x.)
‘ i i°74
Rearranging terms we have
( 1 *'—_ ( * *) L]
Oy di) =t lfk v *'Ai'xi - dy.u
* * aq
- Z {c.(v +-Ai.xi) - d..u I
341 J J J
{c, v ") -« u'}
- ety *'Ai'xi - di'*Ai U oA
*® ! " * * *
=t iﬁ?{ck.xi - ; Cj'xi'akj*'u aki}
J
* d * z( * *
+Cev - d.u =2 cj.v - dj.u )aki]
J
* 2 * *
Let My = CpX; - : Cj'xi‘akj*'u .aki‘
P I
then Gg di) =t gef; + V .0 p < 0
V x (6.12)
. ,
i.e. A, s TV 9%
1.
3
*
v
di may be decreased by an amount Py ='ﬁ; I before X

will become a 'profitable non-basic' acti

for d.l is min{pk}

-basic (6.10)

vary with di;

all non-basic x

vity; hence 'range'
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(Worked examples are given in Appéndix 6.1; all components of

{pk}‘are obtainable from the CC optimal solutions)
Alternatively, an algebraic formulation may be used,

i.e. noting the changes of the inverse basis with changeé

of {di}. The approach is shown in Appéndix 6.1.3: although

useful for exposition, it has no computational value.

6.5 IP with Fractional Objective Functions

6.5.1 In the exposition of FP methods we have thus far
assumed that variabies are real valued, but many formulations
are only meaningful iﬁ model variables are integer valued
(e.g. capital budgeting, etc.). Branch and Bound Techniques
for (linear) IP may easily be adapted for FP, at the possible
expense of computational efficiency in the tree search.

Cutting plane methods (42), (43), may also be applied
to FP3; Swarup (78) has given one approach via the direct
method, formulating his own dual algorithm for FP. The CC
form may also be utilised for integer work as follows.

6.5.2 An Integer Algorithm for FP

Consider the problem:

C.X + « .
max —_— s.t. A.X £ Db
d.x + B
x=0
X5 integers : (6.13)

where ¢, d, A, b have integer entries.
(6.13) has the CC form:

max c.y + ot s.t; Ay - bt =

d.y + Bt

Y, t =

i
1O

o »

(6.14)

with the added requirement that 1 _* pe

_* .-——.

- integer valued.
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The convexification algorithm utilising the CC form may be

stated as follows:

*

.1 optimise the CC form and test JL-l for optimality

x *

t
(i.e. for integer values)
. *
ii aII'Z; integers - stop.
: *
t
if not .

iii map the final CC tableau back to the original form,
giving 'the greatest fractional row'.
iv form the cutting plane and add it to the constraint sgt.
v map the new constraint into the CC form.,
vi use the LP dual simplex method to restore feasibility)and

optimise. Go to ii.
' A

Let éCC be the present (optimal) canonical form for the

* * * *
CC method, and the solution vector be y = t .x . Let {Xk}
denote the fractional part of xg. Using the Method of

{ *
Integer Forms, (42), we select the row for which txk} is a

*
%*

maximum, i.e. for which [Yk] is a maximum, say X, .
e ’

Assume that the original (optimal) canonical form is 3:: (a
A

2ec
The cutting plane is

1]

(Mappings for %>§jare given in Section 6.5.3)

{3, |- x, = {x:} | (6.15)"
]

ij . 1)

i.e. in the CC form this constraint is

DRET [ = 0 (6.16)
E e Yy T -1
A
(6.16) is added to the matrix Acc» and the dual simplex

algorithm implemented as in step vi.

(Worked examples are shown in Appendices 6.2 and 6.3).
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6.5.3 The mapping between optimal tableaux

Two methods are available for finding the.equivalent
canonical form mentioned in the previous paragraph.

i. The optimal solution can be deduced from the basic rows
in the CC form, using the eqguivalence between pivoting
sequences outlined in 6.5.1.

The .optimal inverse of the original for% can be deduced
from the sequence of pivots in -the CC form. The efficiency
of inversion routines makes this heuristic method attractive
for large scale programming; it also provides an accurate
computation of the row elements of the original form.

ii. The second method utilises the Wagner-Yuan Equivalence

W
Let W, = Wiy be the k'th column of the 'optimal' tableau
t of the CC form. |
Létgk be the k'th column of the optimal tableau of the
original form. ‘ |
Let E’i’be the CC inverse basis

Let Yg be the first m entries of the present r.h.s. of the

CC form 0
0
i.e. yg = (E)_i.

s e

e

t

) . [
Let X5, QB ««.. Correspond to Yp e@nd let 2 denote the k'th

column of A. Then, using the equivalence outlined in

Section 4.4.1, we have

7N\ -1 -1
. /B ".a + tx,(d_-d,.B ".a, )
W= (E)“i,./ék O —B 'k B =X
—* = a_ | -1
k / tld, - dg.B "3 )
_p~1
Now z. =B =
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/é + t.x_(d, - d_.z )
therefore, W, = K Bk Bk

The last entry in the column W,. is known (or can be readily

k
calculated if the revised simplex method is used); this is
1
'Wk - the entry in the denominator row.
t
e 1\
fue Nz v ygeW .2
Thus W, =y | =k\ kB kTt )
) -
W/ /
) _ t ky
I/J ’
W
Ze = W -y kt\ (6.17)

\,\ t/

Thus all the required elements of the optimal tableau of
the original form may be calculated (see Appendix 6.2).

6.6 Pricing for Integer Programming with Fractional

Objective Functions

6.6.1 Introduction

With the emergence of algorithms to solve (linear)
integer and mixed integer programmes, economists and experts
in mathematical programming have been faced with the problem
of interpreting the value of resources in the light of such
optimisations. Since the dual pricing mechanism for linear
programmes is so powerful, duality has provided the major
springboard for (such) resource évaluation.'

Methods have been devised by Gomory and Baumol (43),
and Alcaly and Klevorick (2), for "re-imputing" the dual
variables(at the optimal tableaﬁ of the cutting plane
algorithm)back to the original resources.

A similar method has been used by Weingartner (88)
as outlined in Section 1.2.
Dual pricing mechanisms have been seen to fail

in some LFP cases , . because of the lack of diminishing
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returns to scale; both marginality and diminishing returns to
scale are absent in integer programming. Frank (39a) has

Az
proposed defining the marginal value of resources as 7{p.
: i

where the Abi represent unit changes in the resources, and
Az the concommitant changes in objective function, but the

results are not generally applicable.

6.692 Pricing via Recomputed Dual Variables

In LP, the recomputation process has the folloWing h
properties:

i the recomputed prices eliminate the possibility of
profitable output - i.e. récomputation preserves the normal
linear optimality criteria,

ii a good has a zero price if it is a free good in the
economic sense,

iil if there exist'n'original inequalities such that these
alone determine the same integer optimum as the total problem,
the dual evaluators of thg reduced problem give a unique

set of recomputed pfices. ( See (88).)

The general deficiencies of non-unique recomputations,
tﬁe inability td cope with free goods (i.e. a good should be
a free good if and only if it has a zero price), etc. all
throw doubt on the pricing system'of recomputed dual variables.

The fact that the optimal integer solution has been
found using 'combinations of resources' as cutting planes
indicates that resources can no longer be considered indepen-
dent. Weingartner notes that the concept of a free good is
‘not one which has a unique interpretation in integer program-

ming.
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Consider the programme of Figure 6.1. (The integer

points are those on the lattice points.)

] | | ~N
=

Figure 6.1 A typical integer lattice

Only the resource level corresponding to hyperplane D
represents a truly free good. Either B or C may be removed
without affecting the optimum; but the removal of both gives
a different optimum[ Neither B nor C represents a truly
free good; they are not independent.

A further criticism of the Baumol/Gomory Prices has
been made by Alcaly and Kle§orick (2). In the linear case,
the recomputed prices do not exhaust input factors; i.e. the
pricing does not equate the value of inputs with the value
of outputs. |

Alcaly and Klevorick suggest two methods to overcome
this; the first introduces a constant term to balance input

and output. This is a 'subsidy' to the firm to keep it to

'integer production'. The method has all the failings of
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the Gomory and Baumol Method. The second method is one
which redistributes prices amongst goods in suth a way as
to (artificially) ensure that a free good has a non-zero
prite.

All these methods are of doubtful practical use, but
since they can easily be applied to the fractional program—
ming case, the appropriate recomputations have been
considered in Appendix 6.3. |

There is an additional problem when recomputing dual
evaluators in a non-linear environment; the dual evaluators
of the intermediate non-linear programmes are not piecewise
constant.

(The dual evaluators of the CC Form, (an:LP), are piece-
wise linear, but those of the original form are not.) An .
implicit assumption in recomputed dual 'prices' 1s that the
dual evaluators, themselves, are piecewise constant. This
does not hold in the fractional case (or any case with a non-
linear objective function). The recomputed prices of Appendix
6.3 ignore this non-linearity; like all recomputed prices
they can only serve as guides to resource evaluation.

6.6.3 Pricing via Minmax Duality Theory

The difficulties of pricing by recomputed duals highlight
the fact that the integer programming problem, as formulated
in (6.13), has no dual - hence any interpretation of 'dual’
prices is erroneous.

Balas (5), in his work on Duality in Discrete Programming
has suggested the following approach to the dual of‘the
integer programming problem. His work amplifies that of

Wolfe (93), Mangasarian (61, 62) and Huard (48).
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Let Xl’ Ul be arbitrary sets of vectors.

Let Xé, U2 be sets of vectors in real space.

Balas defines two problems:

min max K(x, u) - u, V., K(x, u
v X Yy =2
s.t. Vv, K(x, u) =0 | |  (6.18)
=2
X5y Uy 20
X188y LqBUy
and
max min = K(x, w) - x,.V_ K(x, u)
X B X =2
s.t. Vv, K(x, u) =0 o (6.19)
: =2
X5y Wy =0

3{_18X1 u, €U

where K(x, u) is the Lagrangian function
K(x, u) = f(x) - u.F(x)

Balas proves that (6.18) and (6.19) are symmetric .dual
to each other. (Assumptions are made concerning the
separability of K(x, u) with respect to either u, Or.ﬁi)‘
Let U, denote integer valued dual variables

1

U2 denote real valued dual variables

X1 denote integer valued primal variables
X2 denote real valued primal variables

We are at 'liberty' to assume that the dual variables
for the dual to (6.11) are real or integer valued. 1In the
case of the linear objective function, integer programming
implies discrete, integer-valued changes in the value of

the objective for discrete changes of resources. Hence
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integer values are logically acceptable. In the case of the
fractional objective, as in (6.11), this assumption is less
justifiéd due to the non-linearity of the objedtive function.

In either case, (real or integer-valued dual variables),
it is readily seen that for a pure integer problem (6.11)

Xq

X2 = @

1l

]
iset of integers}

The constraint set of (6.19) ié empty, and the objective
function is optimised for non-negative {22}.

Thé implication. éf Balas' formulation is that dual
'prices' do not exist in pure integer programming since any

‘reasonable allocation of dual variables in (6.19) will be
'possible. (If the dual variables are also integers the
constraint set of (6.18) is emﬁty. If they are real, (6.18)
is the 'normal' integer programming problem with ar additional
allocation for u, which is unconstrained).

Prices are generated in the mixed integer case. (Such
prices are similar to the marginal values derived in
Appendix 3.4). Here a penalty can be applied to, say,
'opening a new factory', when the returns to production are
known. The penalty/subsidy mechanism in mixed integer
programming derives its meaning from the pricing mechanism
generated for the real valued variables and resources; in
this case the Balas formulation preserves the normal economic

criteria for profitable production.



- 145 -

Chapter 7 Summary and Conclusions

7.1 Fractional Programming

In Chapters 4, 5, and 6 we have shown that LP methods
have close counterparts in fractional programming, except in
the application of duality and marginal priéing. We have
given the conditions under which the marginal values of a
fractional programme do show diminishing returns to scale.
The methods of decomposition in FP, integer programming,
post-optimal analysis, etc., have also been covered, and we
" have noted that a form of goal programming is also possible.

7.2 LP and Corporate Planning

The role of LP in corporate planning has not yet been
defined. Linear models such asvthose of Cohen and Hammer
(29), Chambers (13), and Chambers and Charnes (14) have been
'proposed as viable approaches to financial planning; the
model developed in this thesis is intended to aid cdrporate
financial planners in their short to medium strategic planning.

As we have seen, some authors demur. Objections are
raised against the use of ﬁormative programming methods for
corporate planning (and in particular against LP) because of
the implied use of only one objective function, the disparity
between the model and the real system, and the total neglect
of sociological factors inherent in planning. In Chapter 3,
we have shown that the optimal strategy and valuation of a
.firm varies according to the objectives (and environment),
and that the differences between the model and the real system
make the use of dual prices more difficult than LP theory
would suggest. However, these difficulties, (an absence of
one objective function, a multiplicity of interests, and an

abstraction for planning purposes) are inherent in the planning
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exercise itself. They are not introduced by the LP approach.
In this respect, the tool used for the 'solution of a )
problem' cannot be blamed for the initial infractibility of
the problem itself. Multiple objectives, compromises with
reality, etc., are bart of the difficulty of corporate
planning. |

The inclusion of fractional programming for corporate
modelling considerably broadens the scope of the linear
approach. As we have seen, ratios can now be included as
both objectives and constraints, without altering the basic
linear approach. Fractional programmes can be used to rank
alternatives as well as evaluate reSourCes.v This availability
of a range of mathematical forms for the objective in oné
model framework, the present advances in integer and mixed-
integer programming, and the speed and sophistication of the
LP approach to planning (as compared to that of the accountant/
economist) still weigh heavily in favour of the use of linear
models for corporate planning, (with the provisos outlined
in Chapter 3).

The same justification cannot be applied to LP models
used for control, or the valuation of assets, where it is
vital to have a cloée correspondence between the model and
the real system. The compiexity of such models, and the
difficulties associated with their solution (and interéretation)
imply that control models based on LP would be impractical
and expensive, even if the difficulties raised in Chapter 3
could be overcome. Similarly there are éerious doubts
attached to the use of LP models for asset valuation because
of the presence of multiple corporate objectives.

Further work is necessary in the area of fractional
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programming in order to increase its 'planning power'. The
compatability of the performance ratios of divisions and
central management needs further study, as does the possibility
of using decomposition in the setting of target performance
ratios for a decentralised organisation. A second major

area that requires further research is the analysis of risk

and uncertainty in FP, using the methods outlined in

Appéndix ©.4, and the use of goal programming to analyse the
importance of performance objectives fof ﬁhe corporate

planner.
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APPENDICES



Appcndix 2.1 The Mathematical Formulation

2.7.1 ‘the size of the model 1s determined by a scries of input
parameters to the matrix generating programme, which defince the
extent of detail in the data. The variables defined in Table 2.2
are used for exposition only; being activity levels for the
linear programme they appear as column names. Tables 2.3 and 2.4
contaln the basic data on the producﬁ'ranges, production
requlirements, "use of technology”,-and basic accounting data,
used in constructing the set of_constraints.

In order to model the time dependence of the accounting
procedures, and the different rates of turnover for individual
accounts, lags are introduced into the system. These provide
the basic description of the possible cash flows through the
planning period. The lags are derived from a study of the times
between the incurring of a debt and the date at which it is
settled, and are introduced into the mathematical formulation
to ensure that the model will exhibit the same tardiness in
settling accounts.

Lags are also introduced into the sales/storage equations
to ensure that finished goods remain in the warehouse for some
time prior to despatch. Here again the length of the lag has
direct bearing on the cash flow, the amount of capital tied up
in stocks, and warehouse utilisation.

The technological capacities and variable bounds model the
physical and managerial restrictions on the possible operations
of the firm during the planning period. Capacities and bounds,
puilt in to the matrix generator are listed in Tables 2.6 and
2.7. 'These arrays, and the data used in the wodel are amplificd

in Appendix 2.2. (In all the following equations, the time



0 o

IS
i

I 2 0 implies an input to the model, rather
b J

than a varlable activity level, e.g. RAWM (0O,L) is the input

to the model of the

'th type of raw material.

Variable ; Interpretation

? NPROD % numper of products considered

E NWC % number of work centres in the model

g NSUB i number of work centres that can be

; g 'subcontracted!

? NLEF % types of labour availlable

g NRM § types of raw materials considered

% NSCS é number of standard cost accounts in the

% E model

% NOH i number of overhead accounts in the model

i NM é number of perlods (months) to be considered, |

g g i.e. the planning horizon g
Table 2.4 The model parameters




Array Dimensions Interpretation
PROD I =1, MM amount of product K completed in
K = 1, NPROD period I
i:’SALE I = 1, N4 amount of product K sold in
K = 1, NPROD period I
SUB I =1, NM amount of hours of work centre
J g SUBWC SUBWC (J) subcontracted during
“ period I
ERAWM I =1, NM amount of raw materials of type J"%
J =»1, NRM stored at the end of period I
ERWIN | I =1, NM amount of raw materials of type J
- J = 1, NRM purchased during pericd I
MRKT I =1, WM amount expended on promoticn of
J = 1, NPROD product J in periocd I
3TCS I =1, NM J'th standard cost of sales in
J = 1, NSCS periocd T
OVHD I =171, M J'th overhead account of periocd I
J = 1, NOH
SCASH I =1, MM cash on hand at the end of period I
3BNKL I =.1, NM amount borrowed duriﬁg period T
:BNKR I =1, NM amount repayed during period I
BNKC I =1, NM interest charges in period I
PAYS I =1, N total amount payable in period I
RECS I =1, NM total amount receivable during
period I
Table 2.2 The Model Variables
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i ! §
Array Dimensions ! Interpretation E
i t '
3 ?
MCREQ ; I = 1, 3 ' hours of work centre J, required |
E L J = 1, NwC | in period I - 1 before completion, |
F 1 i !
! : | i
{ K =1, NPROD | for one unit of product K.
P ? i
WCLF L g = 1, NwC hours of labour of type L required f
? | i
f ; L = 1, NLF ; for cone hour of production of :
' i . facility J. _
; | | !
RMREQ I =1, 3 ; raw materials of type L required :

YK = 1, NPROD f in period I - 1 before completion,

¢ L = 1, NRM ? for one unit of product K.
SUBWC J =1, NSUB i work centres on which subcontracting:

is permissible.

Table 2.3 Production/Technology Arrays




é ALDEHA

Array Dimension Interpretation

LIsT K = 1, NPROD list price of product'K

SPACE K = 1, NPROD volume of product K in storace

SCSP J = 1, NSCS J'th standard‘cost of sale of one

K = 1, NPROD unit of product K

DISCP K = 1, NPROD discount allowed on list price of
product K

SUBP J = 1, N5UB cost of subcontracting one hour's
work of facility SUBWC (J)

WAGES J = 1, NLI hourly wage rate for J'th type of
labour

RMB J = 1, NRM cost per‘unit of raw materials of
type J

WIPP I =1, 2 value (for work--in-progress) of

K = 1, NPROD the K'th product, I periods before
completion ;
. MARK I =1, NPROD rates at which unit sales imply
K = 1, NPROD costs of advertising (See Section
2.7.5)

OHRATE J = 1, NOH rate at wnich the J'th overhead
account is calculated from the
standard costs
the rate of interest on loans

Table 2.4

Accountinag Data
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:Array Dimension ; Interpretation
LAG K = 1, NPROD - minimum sStorage time for product K
'RECLAG K = 1, NPROD | lag between despatch of product

K and receipt of payment

SUBLAG J =1, NSUB lag on payment for use of J'th
subcontracting facility

LABLAG J = 1, NLF lag on payment of wages for J'th
type of labour

RMLAG

J = 1, NRM lag on payment for raw materials
of type J
MRKLAG K = 1, NPROD lag on payment for marketing
expendlture for product of type K
"OHLAG J = 1, NOH : lag on payment éf J'th overhead
account
CALFLAG lag on interest payments

Table 2.5 Accounting and Storage Lags
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Array Dimensions Interpretation :
CAPWC I =1, NM capacity of work centre J in

J = 1, NWC period I
CAPLF I =1, MM capacity of labour force (of

J =1, NLF type J) in period I
CAPST I =1, MM storage capaclity in period I

Table 2.6 Technological capacities

Bounds Dimensions f Interpretation
POLICY I =1, NM minimum sales of product K in

X = 1, NPROD period 1
:CASKLO 1 =1, MM minimum cash balance at the end

of pericd I
CASRHUP I =1, MM maximum cash balance at the end
of pericd I

BANKLO I =1, W minimum bank loan during period I
BANKUP I =1, WM maximum bank loan during period I
RMLO I =1, WM minimum materials balance of

J = 1, NRM type J at the end of period I
RMUP I =1, WM maximum materials balance of t*pe'

J = 1, NRM J at the end of period I

Table 2.7 Bounds on acceptable variable levels




Intra-Period Constrainis

2.1.2 The
L. Cross sales NDROD
—
Gross sales (I) = ;7 SALE (I,K) .LIST (X)
=1 T = 1...NM (2.6)
ii. Standard costs of sales:
NPROD
sres (I1,J3) = . SALE (I,K) . SCsP (J,K)
Lo .
- K=l I = 1...NM (2.7)
J = 1...NSCS
iil. Overhead accounts:
ovib (I,J) = STCS (I,J) .OHRATE (J)
I = 1...0NM (2.8)
. J = 1...NCH
iv. Discount on sales:
NPROD
Discount (I) = }i SALES (I,K) . DISCP (K),LIST (X)
K=1 T = 1...0M (2.9)
V. DNet sales: NPROD -
< _ C B
Net sales (I) = Yy SALES (I,XK) .LIST (K)| 1-DISCP (K)J
=1 I =1...\NM (2.10)
Manufacturing margin NSCS
Y“\
Manufacturing margin (I) = net sales (I) - ZJ STCS (I,J)
J=1
I=1...0M (2.11)
2.1.3 The Inter—Period Constraints
a. Accounting sums and eqguations
i Work-in-progress: >
<
Work-in.progress (I) = » PROD (I+J,K) . WIPP (3-J,K)
J=1 T o= 1....NM=2 (2.12)

(appropriate adjustment is needed for end of planning horizon

to allow for production beyond the NM'th period).



ii. PMinished goods: . .
== = — — I NPROD
Change in finished = . (PROD (I,K) = SALi (L,KJ) .
. J=1 K=1 I
goods account over Lrstm (K)
initial value i (2.13)
iii. Pavables:

N

Let I be an adjustment for I correspending to the relativ

M

accounting lag: e.g. let BNKC (I) = BNKC (I — ALFLAG)

I = 1...0NM

NOH ; NRM ’

PAYS (I) =  OVHD (I,J)+ . RMIN (I,J).ZRMB (J)
J=1 J=1 (
NPROD NSUB

s n e ~
5 MRKT (I,J) + BNKC (I) + ) SUBE (X,J) . SUBP (J)
J=1 J=1
NLF NWC

T \
Y

f) /'WAGES (M) . WCLF (I,M) .
M=1 L=7 .
2 NPROD
R < )
1 ; (MCREQ (J+1,L,K) . PROD (I+J,K)) - SUB (I,L)
J=0 K=1 T = 1...\M (2.14)

(for consicderation of the last term see b.i. below: (Work
Centre Capacity)).

iv. Receivables:

= NPROD )
RECS (I) = ?' SALE (E,K) . LIST (K) ?1-Dzscp (K)]
K=1 T = 1...\M (2.15)
v. Bank charges: T .
BNXC (I) = Z: {BNKL (J) - BNKR (J)} ALPHA
J=1 I = 1...MM (2.16)

If BNKC (L) is constrained to be positive

I
>‘imNKL (J) — BNKR (J)E = 0
J=71

Loe. total repayments cannot exceced btotal loans.



L5 BNKC (L) is not constrained, the model iz able to invest
{as well as borrow) at the interest rate ALPHA.

vi. Markeling Expenses:

NPROD .
=

MRKT (I,J) =  SALZ (I,K) .MARK (J,K) (2.17)
K=1

h. Capacitv constralnts

i. Work centre capacity:
2 NPROD

o N
5 > MCREQ(J+1,L,K) . PROD(I+J,X) - SUB(I,L) = CAPWC (I,L)
J=0 K=1 T = 1...NM
L = 1...NWC (2.18)
ii. Leabcocur force capacity:
NWC 2 NPROD
T . AN Y I+J
) WCLE{L,M) .4 ) v MCREQ(J+1,L,K) . PROD(I+J,K) -
LN~ i
L=1 J=0 K=1 N
-SUB(I,L); < CAPLF (I,M)’
I = 1...0M
M = 1...NLF (2.19)
iii. Storage capacity:
I NPROD
< T
/ v (PROD(J,K) = SALE(J,K)) . SPACE(K) = CAPST(I)
J=1 K=l I =4...0M (2.20)

CAPST is the storage space (over and above that used at the
onset of the model) available in period I.

iv. Materials usage:

2
, PROD (I+J,X) .RMREQ (J+1,K,L) < RAWM (I-1,L)
Lou
J=0 T = 2...0 (2.21)
L = 1...NRM
c. Continuity Constraints
1. Materials balance: 5
R&WM (I,L) = RAWM (I-1,L) + RMIN (I,L) - > PROD (I+J,K) .
J=0
RMREQ (J+1,K,L) (2.22)



For I = 41, the initial iInput of raw materials 1s used on the

right hand side, i.e. raw materials input = RAWM (O,L)
il. Cash continuitvy:

CASH (I) = CASH (I-1) — PAYS (I) + RECS (I)

~—

I = 1...0NM (2.23

qid . Storaqgae rooulrements:

I-LAG(K)
SALE (I,K)s< 5 ( PROD (J,K) = SALE(J,K) )
J=0 T = 1...NM (2.24)
2.1.4 The bounds on wvarlable levels
1. Minimum sales policy:
SALE (I,K) = POLICY (I,K)
K = 1...NPROCD
I = 71...0M (2.25)
;;, Cash balance:
CASELO (I) < CASH (I) = CASHUP (I)
I=1...NM (2.26)
iii. Limits on bank loans:
BANKLO (I) = BNKL (I) < BANKUP (I)
I = 1...NM (2.27)
iv. Raw materials balance:
RMLO (I,J) < RAWM (I,J) < RMUP (I,J)
J = 1...NRM
I = 1...\M (2.28)
2.1.5 The Objective Function
i. 'Change' in current assets:
NM NPROD
b T
ASSETS = ;  4PROD (I,K) - SALE (I,K)? . LIST (K)
T=1 K=1
NRI
& ¢ RAWM (NM,J) . RMB (J) +  SALE (I,K) .pIst
T=1 T>NM

1-DISCP (K) i + CASH (NM) (2.29)
.



whaere i»: I + RECLAG (K) ’
ii. "Change' in current liabilities:
' M
LIABLES =  (BNKL (I) - BNKR (I)]
To1 |
NSUB ]
N \E;.{ ;A [SUB (I,K) . SUBP (K)j
T>NM K=l
NRM NPROD
i‘RMIN (I,K) - RMB (K) +  MRKT (I,K)
K=1 K=1
NOH
ZyOVHD (I,K) + BNKC (I) }
K=1
where T = I + appropriate accounting lag (2.30)
iii. r0ss Sales: -NM NPROD
GROSSALE = f ' SALE (I,XK) .LIST (K) (2.31)
| I-1 K=1

2.1.6 The size of the model

The size of the model is determined by the input parameters
cf Table 2.1 For the equations outlined above, these
parameters determine the size of the problem as follows:

Let HICGH be the row dimension per period and LONG e the row
dimension per period. Then
HIGE = 3NTOOL + NWC + NLF + 2NRM + NSCS + NOH + 11

LONG = 4NTOOL + NWC + NSUB + NLF + 2NRM + NSCS + NOH + 12

The total dimension of the initial tableau is
NM x HIGH by NM x LONG; any objective functions are added o

this.
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Appendix 2.2 Model Data and the Agaregation Programmes

2.2.1 Introduction

The data for the models was obtained from the test firm,
and processed for use with the LP model described in Section 2.4
and Appendix 2.1. (The processing was carried out on an
IBM 1130 machine).

The input data for the model consists of: tne technologilcal
data; the accounting data; the time lags; and the input
parameters. Detalls of the data preparation for these sections
are listed Dbelow.

The work presented in this section gives details of the
figures used in the 26/12 model; the small models 3/5, etc. are
ocbtained by taking the first 3  items of production or
accounting data.

These computations were intended primarily to test the
model, and its reactions to subsecuent analysis and theoretical
applications. It is not in the interest of the test firm to
present figures that bear tooc cleose a relation to thelr actual
results, therefore, where data was not immediately availabdle
at the time of computation, broad assumptions have been made
concerning the unknown flgures. Thus, the numerical results
presented do not conflict with the firm's wish that such items
should be confidential. The 'assumed' data is in areas where
no processing was necessary; prices, market reguirements, etc.
The treatment of all processed data, and the allied assumptions
are fully documented.

2.2.2 The Technological Data

2.2.2.1 Work Centroe Agarocation:  As mentioned in

Scotlion 2.2.4, the company used e coding system for each of its

work ccntres; in total there were 215 such work centre codes.



For each work.centre, card data was available cpecifying the
monthly capacity in machine hours. ‘Such cards are shown in
Pable 2.8 for the months of June to October for centres 1101
to 2702.

From Appendix 2.1 we know that the row dimensions of the
LP model vary with the number of work centres considered per
month, thus using 215 centres iq a twelve month model would
immediately involve 2580 rows; (the capacity of standard LP
packages 1s 4095 rows).

Consultation with the production staff at the firm
resulted in the conclusion that it would be adeguate, Ior
planning purposes, to consider eighteen 'aggregate' work centres
for the model. (These !'centres' are listed in Table 2.9). Data
such as that in Table 2.8 was then aggregated to give the-firm's
total monthly capacity for the new work centres, for the twelve
month period October to September. This data is shown in
Table 2.10 and was used for the work ééntre capacities of the
models, i.e. the WCCAP array.

Management policy.insisted that all heat treatment,
winding, packing, ctc. be done on the firm's machincry. Thus
the work centres on which subcontracting was allowed were
numbers one to nine; omitting three and four. This is summarised
in Table 2.11.

For the data arrays we have NSUB = 7, and

SUSWC = 41, 2,5, 6, 7, 8, 9F.
S J
2.2.2.2 Production recuirements: For each product of the

firm's range, date was available showing how much time was
reculired per hundred units of production. A typical set of

racgulrements is shown in Table 2.12. This data was reorganised

7

. RN
regace

e}

to give tne requirements, per hundred units, on tnhe ag
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MNo. Jescription

1 Multi-spindle automatic lathec,

single-spindle automatic lathes etc.

2 Other lathes and boring eguipment

w

Heat treatment

4 Gear cutting

5 Grinding

5 Drilling

7 . Milling

8 Pressing

S Finishing

10 Field winding
11 Stator winding
12 Armature winding

13 Degreasing and hand spraying
14 Assembly ( domestic )
15 Assembly ( industrial )
16 Testing and inspection
17 Packaging

18 Final inspection

Table 2.9 The Aggregated Work Centres
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Centre Hours per 100 TITtems
1101 57
1102 £80
1403 162
1108 43
1202 113
1206 207
1301 350
1501 333
1502 5600
1504 550
1601 333
1602 375
1603 167
1701 43
2201 117
2102 35
2301 5
2502 22 S
2503 2
2603 175
2701 50
2702 19
2801 35
3101 1025
3202 225
3203 742
3501 . 100
47101 225
47103 735
4401 353
46071 33

Table 2.12 Tyvpical Work Centre Requircments




work centres described in Table 2.9. Tor the twenty Six products

-

considered thus far, the machine requirements are shown in

Estimates of the set-up times regquired per product on the
aggregate work centres were also obtained. 'This set of estimates
is shown in Table 2.14. No account was taken here (or in the

firm) of the eifect of sequencing of products on the set-up

used

)]

times between production runs. The data of Table 2.15 1
for the MCREQ arrays of the model.

2.2.2.3 The Labour Force Reguirements: Many of the worl

centres (of the firm) did not involve full time cperator
attention, i.e. the time used on work centres was no direct gulde
to the labour force requirements. A study was undertaken to

de

determine the operatc. time required per hour of machine tine
per aggregate work centre. The‘results are shown in Teble 2.11
as the labour requirement (in hours) of each centre, per hour
operating time. The estimated total available per month was
90,000 man-hours. it was assumed, during these computations,
that there was only one form of labouré the hourly wage was

taken as £0.375.

2.2.2.4 Raw Materials Reqguirements: For the testing of

the model, it was assumed that there would be only one type of
raw material input - thus 'raw materials' could be considered
as one homogeneous resource. The reculirements for each product
could be allocated according to the use of work centres and
stages of production.

Az a starting aséumption it wés assumed that the materials
reaquircement per month of the producticonwere iderntical. Thus,
for production opread over three months, a third ot the raw

materials Input was requlired each month. Tfihiis assunpclon over-
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ated the regulrement, since 1t was noted thot for mony
products, the materials requirement was grecatcer during the

final production month. (Further study of materials reguirements
will be necessary before implementation. At presént the firm
uses no planning of raw materials assoclated with production
plans, thus even the crude splitting by three will show a
possible saving over present methods). The data for RMREQ 1sg
thus the standard cost of materials, of Table 2.15, the price
(RMB) is unity.

2.2.3 The Accounting Data

n

or

+

2.2.3.1 Basic Figures: The basic accounting data :

the twenty six product model is shown in Table 2.15; the figures

&)

re given per hundred items. The standard costs are in the
order:materials, labour, overheads. Finished goods were stored
in metal bins at the two main warehouses (attached to two of
the factories, one near London and one in the North of England).
Their capacities were 5130 and 1257 bins respectively, giving

a total of approximately 6500 bins (allowing some storage at
the third factory). The space figures of Table 2.15 are the
number of bins regulired per hundred items of product.

2.2.3.2 Treatnment of Overhead Accounts: In the modely

the standard cost of sales is calculated from the sum of the
respective standard costs: it was proposed that the actual

cost of sales be estimated in a similar way. Considering the

D

accounts for 1966 and 1967, Table 2.17, we can estimate the

i

total variances on each account, based on a summary of these

figurces.



1966 Account Standard Rate Var. % C Usage Var, %
Material 4,024,930  -141,488 = -3.5 115,875 2.9
Labour 791,685 42,489 5.3 91,707 11.5
O'head 956, 780 568,575 59.4 ° 92,297 10.4

1967 Account Standard Rate Var. % Usage Var, e
Material 4,772,552 -146,517 =3.0 17,617 =0.02
Labour 940,175 58,311 = 6.2 79, 244 3.4
O'head 1,140,157 444,639  39.0 86,576 7.5

Table 2.16 The overhead accounts

Using the total varliance over the standard cost as an

estimate of the deviation from standards we have:

- ——

| Unit Variance 1966 1967

' Materials .~ -0.006%  -0.03 %
~Labour v .169% .146%
- O'head ‘ .698% f AB5%
Table 2.1 Estimates of unit variance

Prom Table 2.17 we can judge the approximate rates for
total variance per unit of standard cost.

IPor the present valculations thesc were assumed to be
materials:  0.03%, labour: 0.15%, o'heads: 0.7%. These are
the values used for the OHRATE array, for calculation of

overhead variance accounts from the incurred standard costs.

the positive value of materials variance ensures an even
ter demand for cash. '



2.4 Accounting and Storacge Lags

2.2.4.1 Storage lags: The purpose of the storaege lag

associated with each product was to ensure that the time flow of
the product through the firm was cbrrectly modelled. Limited
data was available on the storage of each product on a monthly
basis. Initially, it was hoped to estimate the shelf life of a
product (in storage) by calculating the time to sell all stocks
held at the moment of completion of a product batch. This
turncover perlod would estimate the time.spent by this product
batch, {(on a FIIFO basis) in the company's warehouse. However,
for this exercise, data was required on stock holdings of all
products at a fixed time, and all subsequent production and
sales figures. These were not available. Records of monthly
production, storage and sales were updated at irregular (and
different) intervals of time. For some products it was possible
to estimate the 'shelf life' from the data available. The

results achieved are shown in Taeble 2.18.

Table 2.1 Estimated Lag Per Product (in Months)
'ITEM | AUG' SEP' OCT NOV DEC'JAN'FEB MAR APR MAY JUN JUL:
9 14’3 3i3,2 2. 2'2 3 3 5 7

0 5 5 6 6 4 3 3:3 3 2 2 1
17 4 3 3 3 .2 2 2 2 2 2 1 3
12 1 2 2 3 3 3.3 3 4 3 2 2
15 > 3 35,5 .6 6 5 4 3 2 5
16 1 2 2 4 3 4 3 3 2 1 1 2
17 1 2 2 3 3 3 2 2 1 1 3 3
48 2 1 2 2 3 3 4 3 2 3 3 2
19 2 2 4 2 2 2 1 2 2 1 3 3
20 6 4 4 3 4 5 5 4 3 3 1 2
21 5 5 4 3 2. 2 4 5 5 5 4 4

00 1 1 4 1 1.1 1 1 1 1 1 2

2 ] 1 1 1 1 1 2 2 3 2 1 1

2 11 1 1 2 4 5 4 G 5 5 05

5 4 3 2 2 2 2 1 1 2 3 3 i

N
G
(o0}
O
O
(€8]
<
(6]
o
(Ox}
U
.
Lo
L2




It must be remempered that these figures are a glokal esztimate
cf 'shelf life' - covering all possible market outlets; they

will thus disguise the Mail Crder deliveries which would rnot
appear in storage records due to the rapidity of thelr despatch
after completion. The figures of Table 2.18 are thus an over-
estimate of the shelf life.

It was felt necessary to make the lag of storage a variable
input. In this way changes of market cutlet per product can be
judged by corresponding changes of the lags on despetch and
payment, (LAG and RECLAG) and the discount allowed (DISCP).

Tor the test calculations of the 26/12 model products were
allowed to be sold immediately - i.e. 1f possible. The action
cof the LP model does not conflict with thevdesired FIFO Dbasis
for sales.

2.2.4.2 Other accounting lags: The remaining lags on

accounting constraints are divided between the periods in which
the company settles its debt, or accounts for costs lncurred,

and the pericds in which it expects to receive payments for sales.

oxr

Hh

1. The pericds cover which accounts were sctretched were zero

payments of wages, interest charges, and marketing expenses.

Subcontracting fees were paid one month in arrears (for the test

2. It was assumed that overheads would be accounted for at the

end of period in which they were incurred.

3. It was further assumed that payments were made within a month
f despatch. |

Az with thiec ctorage lags, these values of input datae may be

altered at will, to model different marketing situztions.

2.2.5 Inpult paramoters
I'tie input paramcters for the 26/12 model are detailed below



in Pables 2019 and 2020,

sarameter NPROD NWC NSUB NLF NRM NSCS NOH N

EFRS o

3 3 12:

=

vaiue 26 18 7 1

Table 2.19 Input parameters for 26/12 model

§ Item ? Inout value
‘Raw materials : & 5,000
Cash ; . £50,000
‘Finished product: 10 units of each product
(1 unit = 100 items)
Teble 2.20 Input values

Control Variabkles and policy levels

For the initial test of the 26/12 model, cash and bank
loans were bounded. No restrictiocns were placed on sales, and

an upper limit on materials holding was set at &£5,000.

! ! ; N
| Item i Lower bound ! Upper bound
Cash ; £50 ? £100, 000
Bank loans 1 - § £150,000
Materials - ? £5,000
Unit sales ! - | _

Table 2.21 Control variables and bounds




Appendix 2.3 The Programmes

2.3.1 The matrix generating programme for the model is listed
below. This programme provided the input data for the LP.

2.3.2 The Output of the Model

At the optimum of the LP, the output generated by the
procedure SOLUTION comprises three parts; the objective
function, the row values (and the dual evaluators) and the
column values (and the reduced costs). Typical printout of
this solution is shown in Figures 2.10 to 2.12. A report
generator was written for the model which would translate the
output of SOLUTION (filed omto magnetic disk) into the more
useful form of optimal schedules for production, storage and
sales. This routine alsc provided the month by month cash
flow statements and income and surplus accounts. Details of
this programme,h (AKOUNT), are given below, and a sample of the
output from AKOUNT for a run of the 3/5 model is shown in
Figures 2.13 to 2.15. Given the asset position of the firm at
the opening of the first period, the routine could also provide
balance sheets, and the set of operating and financial ratios.

Since the optimal solution to the model varies with the
objective function; the operating and financial ratios‘derived
from the model, will reflect management objectives. It will
thus become clear that management objectives will have direct
iﬁfluence on the firm's optimal strategy,'its financial

accounts, its operating ratios, and its resource valuation .
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Appendix 2.4 Computational Difficulties

and Solution Strategies

2.4.1 LP Models

The model described in Chapter 2 is a second version of
the matrix generating programme (MGP). The initial version
contained many of the row sums and implied variables as
explicit column values, (e.g. work in progress, work centre
usage, etc.), and had a larger column dimension than the
version deécribed in Chapter 2,(compare examples 6 and 7'in
Table 2.23). With small models, this earlier formulation was
found to be satisfactory; the explicit formulation enabled
management to comprehend the model mofe réadily; larger models
soon gave rise to computational difficulties and the rgvised
form of the MGP was used. (Apart from example 6 of Taﬁle 2.23,
all results are obtained usiné the formulation of Section 2.5

and Appendix 2.2).

NO | ROWS | COLS | DATA | TIME % LP/CC | CRASH ‘ COMMENTS

1| 238 |" 150 | 3/5 o.eeé e | ves |

2| 239 | 151 |3/5 | 0.5 . cc .| NO |

31239 | 151 | 3/5-1 0.4 ; cC | NO |

4| 238 | 150 | 3/5 | 0.49 | 1p | ves

5| 258 | 151 | 3/5 | oo cc NO ! INDIFFERENCE
(6] 565 | e84 | 3/12) 9.07| e | WO | Row AND DJ CHECKS
7|576 | 360 | 3/12| 1.63 | LP | YES |
8 | 240 | 150 | 3/5 | 0.79 | LP YES

9 239 150 3/5 4.59 ~LP YES INDIFFERENCE -

, " | M66-1274, 4.1 MIN

Table 2.23 Sample Times for Smaller LP Models

2.4.1.1 Small Models: The computation times for small .
models (i.e. 3/5 and 3/12 models)are compared in Table 2.23.

The use of the:CRASﬁrprocedure is noted in the CRASH column;

T for MPS terminology see (51)
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the entry LP (or CC) in the LP/CC column denotes the use of the
linear or Charnes and Cooper(fractionab programming, algorithm.
The time noted is for optimisation only, i.e. from the time of
setting up of the problem to its optimisation. Geherally'a
further 3-5 minutes must be added to this time to allow for

the matrix generating, compilation and data conversion steps
outlined in'Appendices 2.2 and 2.3. |

Although the wuse of 'CRASH"appears to have retarded the
solution of small problems, later experience with this routine
proved beneficial. EQen with such small jobs, some difficulties
were manifest. Example 9‘df Tablé 2.23, arrived at an indifference
.plane during computation; for 1208 iterations the ogjective
function remained constant, i.e. the degeneracy due to
'computation' had not been overcome.

All jobs detailed in Table 2.23 were run using the HASP
"system (50), i.e. with core size restriéted to 32K bytes but
with no charge for input/output time. The critical level of
row dimension between HASP and NON-HASP was found to be between
900-1000 rows. Above 1000 rows, jobschad to use tbtél core
(65K bytes) and were run using the on-line, NON-HASP, system

with a consequent rise in computation time.

2.4.1.2 Larqé Models: A 26/8 model was set up and run
 under the HASP sysfem. (Thégdimensions for this model, and
the 26/12 model are shown in Table 2.24). Computation had to
be effected in four stages due to time restrictions on the
computer unit. The carry-over of information between stages .
was effected using the basis preservation techniques. For
this model, the solution time was 103 minutes. Part of this
large solution time was due to the difficulty of finding the

first feasible solution. Since the model was run under the

.
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HASP system, CRASH gave little help. (A discussion of the
value of the CRASH‘routine is presented below in 2.4.1.3).
The eta files soon exhausted core, and the routine did not
complete its second phase satisfactorily. - |

The difficulties of the 26/12 model are diécussed below
in 2.4.1.3. The large number of fixed rows (equalities) in

the 26/8 model was due to the explicit inclusion of all

Total Normal Free: leeijounded
i ! ,
26/8 .  Rows (LOG. VAR.) 930 224 E 2 | 704 | 0
Columns (STR. VAR.) | 1192 | 1016 | 0 | 0 | 176
26/12  Rows (LOG. VAR.) | 1395 | 1260 1 75 | 60 | O
Columns (STR. VAR.) | 1188 & 1152 | 0 E 0 | 36

Table 2.24 The-26/8 and 26/12 model dimensions'

accounting variables- in equality rows. For the 26/12 model,
and all subsequent models, the row sums (normal rows) were

used.

2.4.1.3 The 26/12 Model: The normal setting of MPS

tolerances was used to attempt the computation of the 26/12
model; computational difficulties arose immediately. These

were:

i. row checks; left and right hand sides of row sums
differing by more than XTOLERR

ii. non-zero reduced costs (DJ's) for basic variables
(i.e. DJI's in excess of XTOLDJ)

iii. 51ngu1ar1t1es in the basis during inversion.

All three sighify computational, rather than theoretical
.errors, (or: errors of formulation).
The procesé of amending theﬁtolerances to facilitate

solution is presented in Table 2.25.



NO. SCALE

XEPS CRASH XFREQINV

XTOLPIV XTOLV XTOLDJ XOBJ

COMMENTS

1 - no 0.1 no 100 *10.0 *50.0 *10.0 ASSETS DUAL effective but singularities
_ : occur at iteration 132 .
. Slower convergence to feasible
2 no not yes 50 *90.0 *50.0 *10.0 " solution. Singularities at
used iteration 183, after 418 min.
S . Etas ex-core during CRASH.
3 no 0.1  vyes 50 *100.0 0.5 0.5 " 206 infeasibilities; loss of
. ' control.
’ ' Singularity at first inversion
4 no 0.1 yes 50 ' *100,0 0.05 0.05 . " XTOLV or XTOLDJ too high.
5 no 0.1 . no 30 *1000.0 0.5 0.5 - " XTOLPIV not critical above 10-6 (DUAL)
6 ~  yes 0.1 no 5b +100.0 0.5 0.5 GROSSALE Unsatisfactory control of infeasibility
K : after iteration 44. XTOLPIV is not
affecting the accuracy
7 yes 0.1 no 50 *100.0 - 0.5 0.5 'ASSETS - Similar to No.6 XFREQINV too high ?
Better than Nos. 6 & 7.
8 yes 0.001 no 35 *100.0 0.5 0.5 " XTOLBJ and XTOLV are too large
able 2.25 The solution strategies for the 26/12 model. (;£andard tolerances are given in No. 10 —Tl

»Li?ale'factors for tolerances are denoted

1 L
*1000 ,

—
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NO. SCALE XEPS CRASH _XFREQINV XTOLPIV XTOLV XTOLDJ XOBJ COMMENTS
v Near feasible after 70 iterations.
9 yes 0.1 no 50 «10.0 «10.0 *10.0 ASSETS Sum of infeasibilities increases
thereafter.
10 yes ngd no 35 10—8 10—7 10?7 " Norgal controls are too low
. : 22.9 min., for CRASH-INVERT-CRASH-INVERT
11 yes 0.001 twice 50 *10.0 *10.0 +10.0 " 5 infeasibilities at the end.
. 12.4 min for CRASH-INVERT-CRASH-INVERT
12 yes 0.01 twice 50 *10.0 *10.0 *10.0 " Feasible after 2 min.
: : Basis from No.11 not feasible.
13 yes  0.001 - 50 *10.0 *10.,0 *10.0 " XEPS is too small.
: _ ' : Very slow rise in OF. System error
14 no= 0.01 - 50 *10.0 *10.0 *10.0 " during the use of XDZPCT = 0.1
- - Continuation of No.14. Large number
15 yes 0.001 - 50 *10.0 *10.0 *+10.0 " of singularities. Basis abandoned.
16 yes not twice 50 «10.0 «10.0 *+10.0 " 80 min. to solution,XPRICE = 4
used -
17 yes - 0.01 twice 50 +10.0  *10.0 *10.0 " 60 min, to solution,XPRICE = 4
18  yes 0.01 three 50 «10.0 «10.0 *10.0 " Third CRASH ineffective.
times
19 yes 0.01 twice 50 «10.0 £10.0 +10.0 " 90 min to soln. XDZPCT =}O.25 too high
able 2.25 continued.
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- Row Checks: The maximum row error, (even after scaling), was
less than 10—3. In all strategies the row check marker was
put to zero until the 'optimum' was reached, (XCHECKSW = 0);

row errors thus introduced were removed by inversion.

Use of the Dual Algorithm: The first few strategies (1, 5, 6,

7, 8) attempted to use the dual algorithm, since this should
be more effective in removing infeasibilities; For these
problems, this was not found to be true.

The dual algorithm operates on major iterations only, and
the consequent loss of speed (especially under NON-HASP) was
found to be unjustifiable.

Scaling: Automatic scaling was soon utilized; the intrinsic
scaling introduced in the data was insufficient and it was
deduced (from comparisons between 4,5 and 6,7) that the lack
of further scaling was detremental to the condition of the
inverse basis. The condition of the inverse basis was further
improved by the use of the slower (but more accuratg) form of
the inversion routine - i.e. XINVERT was set at 1.

The tolerance levels: After a few initial attempts at raising

the tolerances by more than a factor of ten (strategies 1 to 8)
it was deduced that such action was not aiding solutionj; a
comparison of the "paths", i.e. a compérigon of‘the incoming
and’outgoing'vectors in 5, 6, 8 and 9‘shqyed that”XibLDJ and
XTOLV should not be raised by more than a factor of.10.0.

Raising XTOLPIV to 1077

(i.é. multiplication by 10.0)
“was found to be vitai; this, andfthe need for the accurate
form for inversioh imply that the inverse basis WOuld soon
become unstable again, if the dimensions gf the LP were

increased any further.

Initial infeasibility and the CRASH routines: Despite the
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change of form in the MGP (introducing inequalities into the
system, and removing equalities) the major computational
difficulty was the attainment of the first (good) feasible

solution. In small programmes CRASH was found to be of little

value since there were few infeasibilities; this value increased

with pfogramme size, as long as the eta vectors (the components
of the inverse basis) could remain in core. For the 26/8
model under HASP, CRASH was very ineffective. The result. of
the etas exhausting core during a CRASH procedure is to leave
the basis in a worse position for later (PRIMAL) optimisation
(see'e,g;:strategy 3 in Table 2.25).. |

Under NON-HASP, with the 26/12 model, a 'double crash'’
procedure was tried, using inversion betwéen the 'crashes' to
concentrate the eta files and enable them to come into core
again. The limit of the "multiple craSh" procedure was found
to be CRASH — INVERT — CRASH - INVERT; a further CRASH had
little effect, (strategy 18). In Table 2.26, the START, FINISH
columns give the number of ihfeasibiiities at the beginning
and the end of the CRASH routine; the time taken by CRASH is

' noted under the TIME column.

XEPS '| START | FINISH| TIME | SCALE COMMENTS
{.0.. | 24 5 6.1 | NO
1.0 24 6 7.1 | YES | INVERT CALLED
6 4 4.8 |
.0 24 6 7.2 | YES | INVERT CALLED
6 4 4.8
.001 36 18 12.0 | YES | ETAS EX-CORE
18 5 10.3 { ¥ 44 INVERT CALLED
.01 60 - 33 10.1 | YES | ETAS EX-CORE
33 5 11.1 - | INVERT CALLED
.01 60 33 11.1 | YES | ETAS EX-CORE
33 | 5 11.0 ! INVERT CALLED
.1 24 | 206 : 0.7 { NO | ETAS EX-CORE

. Table 2.26 - Epsilon Perturbation and the CRASH Routine
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Epsilon perturbation: As can be deduced from the formulation

of the initial tableau in Chépter 2, the right hand side
vectors contain a large number of zeros. (For the 26/12
model, approximately 60% of the r.h.s. is zero.) Perturbation
methods, (50) are available in MPS - according to user-
specified values of €; the perturbation strategy uses a
perturbed r.h.s. to find a 'pseudo optimum', which is assumed
to be near to the real optimum (with e = 0). Two values were
tested; € = 0.01 and € = 0.0001. Their effect on the CRASH
procedure is clearlgfrecognizablé - as the results in Table 2.26
show. The eta'files fili up more quickly with the higher |
values of. € (e.g. € = 0.1). (For thelstrategies (16, 17 and 19)
the movement from ‘pseudo-optimal"to optimal solution using
the statements  XEPS = 0.0
DUAL
' PRIMAL

was very rapid, requiring, at most, one or tWo minor iterations).

‘The effect of epsilon perturbation on the time to solution
cannot be deduced so éasiiy from the results obtained. It
would seem that the value of epsilbn doés‘not affect the
nature or quality 6f fhé inverse basis produced by CRASH; it
only affects the time taken by the procedure'itself. Thereafter,
- the choice between perturbations“isbgoverned by the ultimate
proximity‘of the pseudo and real optima - an unknown.

For the 26/12 data the minimum positive right hand side
was 10.0,lhénce at most the perturbation was by 1%.

Multiple pricing: Pricings of 2,:4 and 7 were used. The

results are shown in Table 2.27. The average inter-inversion
times were 2.9, 2.0 and 2.5 respectively. (Although a lower
level of'pricing can also extend the time to solutioh, by’

increasing matrix reading time as opposed to
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o
introducing too many vectors of only little merit, it was
assumed that a pricing of 4 would be the most appropriate level
for this problem.) The reduction in matrix reading time for
each inter-inversion period was judged to be more valuable even

allowing for the possible increase in the number of inversions

required.
Pricing Inter-inversion times Averagei
7 2.62, 2.66, 2.85, 2.14, 2.45 2.58
2.50, 2.86 . :
4 3.22, 1.80, 1.79, 1.62, 1.59  2.00
2 2.24, 2.15, 2.16, 4.53, 4.11 2.91
" 2.3 :

Table 2.27 Inter-inversion times with multiple pricing

Systems faults: Apart from the computational errors that

occurred during the attempts to optimise the 26/12 model,
system failures also occurred. With such extensive use of
disk files and data?transfers the probability of either finding
a’;bad track' or of §n input/output error is high. Such
errors Qccur in reading the matrix, transferring data between
scratch files, updating the eta vectors, etc., énd are natural
hazards of large-scale LP work. A careful control of the
disks was attempted; files were separated across disk drives
to minimize reading times using the 'SEP' parameter of the
IBM/360 Job Control Language (see (49)).

A controlledkmetﬁod of savihg the basis was implemented.
The feasible basis was updated on the problem file (PBFILE)
evéry 15 to 20 minutes. Thfs.meant that any loss of programme

1

control due to system faults could only waste a maximum of 20
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minutes computation; the end effect of operator cancellation
of the job was also eliminated by storing the final inverse
basis before allowing the job to terminate.

- 2.4.1.4 Solutions of the 26/12 Model: The solution of

the 26/12 model is shown in Tables 3.3 and 34, and is
discussed in Appendix 3.1.

' 2.4.2 Fractional Models

2.4.2.1 Introduction: The difficulties in computation
of the fractional brogrammet arise.directlyvfrom the form of
the constraint set itself. Usiné the Charnes ana Cooper form,
the constraint set is |

A.y-bt < 0 o
. (2.33)

| d.y+Bt =0
.where @ is arbitrary for the problem.
In the 6riginal form the constraint.set is
A.xsb. - | B - (2.34)

‘We can note immediately that:
" i.  the right hand side of (2.33) is composed of all, but
one, zero terms. |

ii. computationally, the level of § is important when

referencing invincoming véctor,anﬂhmybaffect the feasibility

of the solution procedure by allowing 'wrong'ldécisibns
when pivoting. |
The major difficulties of fractional programming are that:
a. due to the appearance of theiright hand side vector in the
.constraint set, the inverse basis may. be ill;coﬁditioned;'
b. :due to the formulation of the right hand side, degeneracy
.is unaVoidable; |
¢. the initial wvalue of ¢t as it enters the basis‘mdst be

non-zero in order for the solution to be attained.

T uUsing the Charnes and Cooper method
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2.4.2.2 The Inverse Basis: From equations (4.17) we

know that the inverse basis for (2.33) is given by (E!)-i
where
' Bi1 B2
@)™t =l
=21 =22 ’
M4 = Efi = §f°t"_f;§T1
M, =t |
My, = -t* (a*.B7)
Boo = *°
and_§-1_is the inverse basis of the corresponding basis
to (2.34).

- The terms of the -ﬂij matrices may give an ill-conditioned.
matrix (§‘)-1’even though gfi is itself well-conditioned.

The level of t will be important; this is dependent on §.

2.4.2.3 The initial difficulties: The difficulties
with the Charnes and Cooper method for solving (2.33) with
the 3/5 data arose when the computation arrived at a solution
in which the programme was feasible, with a zero value for
the objective. Further iterations showed no improvemeﬁt in
this level, although there&was little evidence of cycling.
~(Seé strategy 1 of Table 2.28). At‘tﬁe second attempt, the
pivéﬁ tolerance was increased; as a result the programme
hovered between the feasible regions, with a zero value for
‘the objective.

Inspection of the solution showgd that 't' had become
basic at ﬁhe zero level, due to the use of CRASH; once t
becomes basic, thevpfoblem iterates endléssly. Two straﬁegies
were attempted; epsilon perturbation, and lower bounds for

admissible t.

-
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2.4.2.41 The Strategies:

i. Epsilon Perturbation: As in 2.4.3.1 above, perturbation”

proved very useful. It ensures that, initially, no degeneracy
occurs, i.e. t cannot enter at the zero level.

- ii. Bounding t: An arbitrary lower bound on 't was entered

into the BOUNDS section of MPS. (This was FEAS: t =z 0.00001).
The programme was optimised twice, with and without this
bound, using the-first optimal basis as a starting point for
the second optimiéation, via the SAVE/RESTORE routines. The
programme was:
'SETUP  ('MAX',  'SCALE', 'BOUND', 'FEAS')
CRASH | | |
PRIMAL
'SAVE
© SETUP ('MAX', 'SCALE')
RESTORE
PRIMAL
The'firsﬁ SETUP ensures that CRASH does not enter t at
zero; the second SETUP (by omitting the vector FEAS), removes
the arbitrary bound on t. This method is analogous to the two
stage method of perturbation, bdt has the disadvantage of
>requiring three extra routines, (SAVE, SETUP AND RESTORE) .
Both strategiés 7, 8 and 9 (in Table 2.28) used a double
CRASH procedure. This has not proved usefui‘in the cases
where g = 1, butihas.shown some reduction in solution time for
the case using~pefturbatidn of 0.01 and 6= .10,000; (this
seems to be due to ghe‘fact that the epsilon differs markedly

from the only non-zero right harid side entry).

-
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No | @ XEPS | BOUNDS | CRASH | TIME
1 (1.0 0.0 " NO YES ®

2 {1.0 | ‘0.01 NO YES 0.47
3 1.0 | 0.0 YES YES 0.41
4 {10* | 0.0 No | YES @

5 {10% | 0.01 NO YES | 1.25
6 {10* | 0.0 | yES YES 0.49
7 110* | 0.01 NO TWICE | 0.9

8 {1.0 | 0.01 | ¥ES TWICE | 0.59
9 1.0 | 0.0 YES TWICE | 0.51

- Table 2.28 Strategies for Fractional Programming

TOTAL | NORMAL | FREE.

FIXED BOUNDED

Rows 254 171 27 | 56 0

cols | 151 | 151 o | 0o o0

1648 Elements - density = 1.60

Table 2.29 Dimensiods of ‘3/5 model’

2.4.2.5 The Parametric Approach: A -furthér approach

_té-the problem of fractional programming is theﬁpérametric
approach of Joksch; this method'usés pa:ametrizétion of 6 in
the problem ' S : o |

| max (g,gfgai/e |

s.t. A.x<b | . '» (2.36)

~§-§_=6-B
x20

This method was attempted for the 3/5 model, taking the
denominator over a wide range of values. The results were:

i. time to solve (2.36) for §-p = 20,000 was 0.44 minutes
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i. 'total time including parametric analysis, 0.97 min..

d.X was

In fact the optimum for the model occured when

a minimum, i.e. at d.x=0.
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Appendix 3.1 General Results and Model Capabilities

The data and results for the first optimisation of the
26/12 model have been described in Chapters 2 and 3, and the
computational difficulties with the models have been considered
in Appendix 2:.4. For tests i and 1i of the model, the 26/12
model was used; the remainder were based on 3/5 models. The

tests were: {

i. Change of minimum sales policies :
.The minimum sales policy for the non-basic products 1, 12
and 20 (shown in Table 3.10) was imposed on the optimum of the

. 26/12 model.

Product|{J F M A M. J J A S0 N D

1 5 5 5 10 15 20 25 15 5 5 5 5
12 10 10 15.-20 25 15 10 5 5 5 5 5
20 |10 10 10 10 10 10 10 10 10 10 10 10

Table 3.10 The Minimum Sales Policy

Without the minimum sales policy the optimal profit (maximum
ASSETS) was £2,152,960. The loss due to the policy was
-£18,951. The 'decision' was further £ested by increasing the
minimum sales policy-for productAi by x% of the amount shown
in Table 3.1é. ' The levels x% at which basis changes occurred
are shown below in Table 3.11. The graph of profit (ASSETS)

against x is shown in Figure 3.3. The cést of the decision

to increase x can be measured directly by the loss of profit.

ii. The evaluation of raw materials
The dual evaluators of the raw materials balance equations
were '1.48', implying that if the system could include extra

units of raw materials into these balances the net increase in-
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x% ASSETS
0.39 £2,125,763
6.94 £2,120,280
12.27 £2,115,755
13.61 £2,114,610
14.43 £2,113,912
15.71 | £2,112,996
16.60 £2,111,994
19.97 £2,108,772
22.97 £2,105,840
23.45 £2,105,387
26.36 | £2,102,497

Table 3.11 Variation of ASSETS with X%

profit would be £1.148 per unit. Since units were assumed
to cost &1 each, this figure represents the maximum price the
firm should pay for its raw materials.

The input of raw materials to the model was £5,000. This
iamount was increased (by parametric analysis); the return of
£1.148 per unit was maintalned up Eo'the input level £5,440.
Thereafter, the row "input of raw materiald' was not a binding
- constraint, and the du;l evaluator for increasing input fell.
to £1 per unit - i.e. the cost price. . (This is shown in
Figure 3.4). From the formulation of Section 2.4 it can be
seen that raw maferials and cash ére to some extent inter-
changeable where there are no lags on payments and the input
of materials is tight. Hence the initial dual e&aluator for
the cash continuity constraint was also £1.148. (This was the
case for the rows calculating overheads, payables, etc., since
a unit chahge in any of these rows would imply abunit change

of cash holding.)
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iii. The marginal evaluation of plant capacity

The remarks of Appendix 3.3 and of Section 3.3.4 apply
to all cases of marginal evaluation. Thus, although Figure
3.4 represents the linear change of prgfit with raw material
input, the underlying, mixed-integer, structure of the problem
must be borne in mind.

iv. The range of the solution

For the 3/5 model used in v. below , tﬁe range of

the initial solution (i.e. the LP solution with no allowance

for set-up times) is shown below in 'Table 3.12, together with

the 'activities' of each of the rows. 'fhe range of the optimal
solution has less power in the case of the financial planning
models for two reasons: ) - \

a. the underlying structure is a mixed integer (non-linear)
programme (c.f. Section 3.3.2)

b. changes in one right hand side entry may imply altérations
to other entries (e.g. increasing capacities in January as
in Section 3.4.1). The range of the LP solution is valia
for changes in only one r.h.s.'entry at a time.

Vv. Parametrics

Work centre parametrisation will be shown in Appendix 3.3.
Other parametrisations were carried out to test the model's
adaptability to cash shortage. )

A 3/5 model was used which had the following inputs:
£5,000 raw materials, &£5,000 cash, and 10 units each of product.
A minimum sales poiicy of (10, 0, 20) units per month was
imposed for the three proaucts; market expenditure was assumed
to be 25% of gross sales value. There were no lags on payments

-

Financial bounds on the model were:

Cash: lower bound &£0 wupper bound &£5,000
Bank loan: lower bound £0 upper bound £5,000



- 240 -

| The optimal solution (maximising ASSETS) was £52,357. The
results of decreasing cash input are shown in Téble 3.13.
The column 'DUAL' is the associated dual evaluator, and the
amount of decrease is given by XPARAMx£1,000, (the parameter

value times the amount of change).

XPARAM . ASSETS | DUAL

0.0 | 52357.0. | 1.414
]

1.08 ‘ 50821.0 1.419

2.59 l 48683.0 1.475

Table 3.13 Parametric Analysis of Cash Input

Clearly, the more the input of cash is lowered, the
greater becomes the value associated with return on extra
cash. Because there were no lags on payments, the model was
always able to generate sufficient funds to maintain
feasibility, even when the initial inpUt of casﬁ was decreased
to zero. (There was no basis change above XPARAM = 2.59)

The uses of parametric analysié tovtest the sensitivity

"of the model to changes in the right hand side (or objecﬁive
function) are straightforward. Testing the sénsitivity of the
model to input data is more difficult. The norﬁal sensitivity
-analysis allows for changes of any row- or column, but not for
changes throughout the matrix. Since the model is composed
of‘a series of similar submatrices, the effect of changing
input data is to change many rowé (or columns) simultaneously.
These changes cannot be fully investigated without setting up
entirely new sets of problem data. Methods similar to Section
SJSandoutlinedijléhe theorems I and II of Section 4.3 could

be used to test the marginal rate of chanée of the objective
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function with respect to a matrix of perturbations. Sections
of input data for which the marginal réte of change of the
value of the LP is small changes of data, are not sensitive
regions. Those areas for which the marginal'rateé of change
are high will be areas of sensitivity; in.these cases input
data should be verified.

vi. Inclusion of bounds on financial ratios

The ratio 'current assets to current liabilities' was
bounded in two 3/5 models. In both cases it was assumed that
the initial level of the account was zero, thus the required
ratio was ASSETS/LIABLE. Two sets of data were used:

A: A 3/5 model with éccounting lags of one period.
Input of cash &£50,000
Input of materials &£50,000
Bounds on cash £50 to £50,000
Bounds on loans &0 to £50,000
Bounds on materials £50 (lower bound)
Minimum sales (10, 0, 10) per month
B: A 3/5 model with accounting lags of two periods.
| Input and bounds as above
Minimum sales (10, ‘0, 20) per month.
Both sets of data calculated market expenditure as 25% of
gross sales. 1

a. Using Data A and the constraint ASSETS/LIABLE z 1.7,

the following results were obtained. .

Row Objective Function

ASSETS GROSSALE

ASSETS 140414. 21195.

LIABLE 74584 . 12526.

GROSSALE 53750. 215949.
A/L ratio 1.875 1.7

Table 3.14 Results with A/L 2 1.7
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b. Using Data B and the constraint ASSETS/LIABLE 2 1.5, 2

similar analysis gave:

Row Objective Function

ASSETS | GROSSALE

A SSETS 186909. | 165158
| TABLE 124606. | 110105
GROSSALE | 88750 | 186522
ﬁ/L ratio 1.5 , 1.5

Table 3.15 Results with A/L = 1.5

Compafing Tables 3.14 and 3.15 with ASSETS as the objective
function, we see that the ratio A/L has become binding in the
second case, because of the increase of minimum sales and the
lengthening of the accounting lags.

Using the new row(ASSETS - 1.5 LIABLE) as the row to be
parametrised, it is possible to subtract multiples of LIABLE
to sweep out the series of solutions for the various levels
of the constraint.~ Initial levels of current assets and
liabilities can be included by adjusting the right hand side

entry correspdnding to the 'ratio' constraint.
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Appendix 3.2 LP Models for Control

In Chapter 1 we introduced Samuels' model for financial
control using the dual evaluations of the optimal solution to
a linear programming model of the firm, and Bernhard's comments
on the accounting procedures. The model, (1.6), was:
max P = 2x + 3y + 4z _
s.t. Sk + y + =z < 8000 (floor space)
X + 5y + z < 8000 (supervisor time)
X + Yy + 5z < 8000 (machine time) (3.13)

The optimal solution was:

{p* = 210,284, x" = 1142, ¥ = 1143, z = 1143} |
with dual evaluators {Al = 5/8, Az = 12/28, k3 = 19/28}'

The underlying assumptions of both papers require careful
examination. If we use a formulation such as (3.13) for planning
purposes, we assume that activities of production etc. take
place instantaneously (at the beginning or end of a period),
or that the order in which these activities (or any fraction of
the activities) are carried out is;unimportant. (Indeed for
planning purposes these gssumptions have been justified in
Section 3.3.4; they are dependent on the time period chosen,
and are implicit in an LP formulation). As we have shown in
Chapter 3, if the assumptions of 1inearity; the existence of
one objective, and the reality of the time segmentation do
hold, the dual evaluators may be interpreted as the marginal
value of resources.

If we use (3.13) as a control tool, there must be.some
further assumption regarding theAinfo;mation flow - within
the model time period. (Samuels has implied a time—étructure
within his operatiﬁg period by suggesting that overprdduction

by départment X has caused department Z to produce only 942
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units - "because there werevnot enough units of floor space
available after department X used more than its budget"; but
he gives no suggestion as to the knowledge of department Z at
the time when it was about to start production.) Clearly
infofmation and control systems should be closely related.
Departments can only be rewarded (or penalised) for their success
in achieving company aims at their curreht‘state okanowledge.
If X overproduces, and Z cannot make more than 942 units, (say
it produces 900 units) its penalty should feflect the total
failure (243 units) (unmitigated by tﬁe chance factor of
overpraduction by X), and not its relative failure (of 43 units).
Moreover, these penalties should be af the rate which department
Z believes to be operative. Conversely'if there is an information
system, which instantaneously recognizes overproduction of
department X the controlling mechanism should.alter the targets
"for departments Y and Z and the penalty/bonus scheme, and they
should be informed of the new operating situation. |

Consider example (3.13) with the following two assumptions:

i. departments use production facilities consecutively,

ii. at the end of a particular run, all departments know the
state of the firm's resources,'and aims are updated
accordingly. A

(a) Suppose Y is the first to utilise production facilities

and produces the required amount, X overproduces, and Z is

forcea to underproduce; the accounting procedure should be

that of Samuels in Chapfer 1.

(b) Supposé X is the first to use facilities, and overproduces,

(§.= 1183). The 'optimal' situation has Changed and both

planning and control should reflect this. For the remainder

of the period the problem is:
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P

max (2X) + 3Y + 4Z
s.t. (Sk)a- Y + Z < 2085
(X) +5Y + 2z < 6817 . - ‘ (3.14) .
(X) + Y + 5Z2- < 6817 '
This has an optimal solution
{p' - §9438, X = 0, Y = 902, 2" = 1683}
(The right hand side entries give the capacities remaining,
after department X has utilised all facilities.)
Originally the total profit was &£10,284. Now it is
£1183 x 2 + £7438 = £9804. Department X has caused a loss of
£480 if departments Y and Z are informed about their new
targets, and are capable of changing plans, (i.e. there is no
ordering of parts, or other time dependenqé). Given the
information structure we have defined, the loss caused by
department X is much less than that of Samuels‘ work. How
does this opportunity cost relate tb Ehe marginal use ofv
materials? What dual evaluators should be used for accounting
purposes if wehwish to keep to the original idea of a marginal
cost éystem?
If X produces optimum value X!_= 1142;-the.new.programme
is given by: o
max | 3Y.+ 4z
s.t. Y + 2 < 2290 |
5Y + Z < 6858 (3.15)
Y + 52 < 6858 |
(by optimality of X we may drop it from (3.15)) with the
solution {p" = £8001, Y = 1143, 2" = 1143} and dual evaluators
I, =0, ny = 12724, 2, = 17/24} (3.16)
profit of department X = sum of resources used = £2 x 1142.

Now we can see precisely what happens when X overproduces Dby
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41 units. Initially it uses up resources at the costs given
by the A's in (3.16), but by parametric analysis we can show
that there is a basis change after production of_an.éxtra
6/7 units of X.
At the basis change the dual evaluators become
A, = 1274, 2, = 0, Ay = 1/4} | (3.19)
The gross.opportunity cost to be charged against X in

this case is

6 11, .47 _6y4 4L 1
> (5.0+1.24+1.2‘4> + (41-7 é.4 +1.0+1.4> |
1

~

_ 6 23,231 56

= T28777 4

= 1+562 = £563

But X has made an extra return of £2 x41. Allowing'for
rounding to integers we have: net billing to X = £563 - 82 = £480,
the opportunity éost under our aésumed information structure.
(¢) The cases of féimultaneous‘ over- and under-production.
These have already been quoted above; a combination of 'over-
production causing underproduction' and 'overproduction
recouping losses due to _underpfoductidn'. Under our assumptions
this is impossible and it seems unlikely that a working
 situation could be found fo; which Samuels!' assumptions
would be valid. |

If, according to Samuels, both X and Z act simultaneously,
X should bear the penalty for overprodﬁcing regardless of

Z's failure, and Z'Should bear the cost of its underproduction,

regardless of the fact that its loss was partially recouped

by another department. The opportunity cost is the cost that

could have been caused, not that whidh actually was caqéed

due to a fortuitous (and simultaneous) occurence. The
imbalance would have to appear in a rectification account;

this would be the cost of lack of information.
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i.e. Dbill to X (—£2x41+K£804) .= £722
bill to Z : &4 x (1143 - 942) = £804

rectification: £804 : the amount about which Z
was uninformed.

From these examples it is clear that if the assumption
of ordering activities within the time period is violated (as
it is in the example presented by Samuels) the duality theorems
wili not give correct marginal evaluations. Samuels has taken
a time period that is too long. If the time period were
short enough, the problem of ordering actiyities would disappear,
but the problem would expand to unmanageable (and uneconomic)
‘dimensions. | |

Fnrther criticism may be made of’éamuels' paper and the
recent work of Carsberg, because both assume the existence of
only one objective fqnction for the firm. For planning or
control, this assumption is somewhat‘difficult to justify,
conéequently the use of duality fer such explicit pricing
' exercises as financial penalties and depreciation is open to

'serious questioning.
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Appendix 3.3 The Effect of Set-Up Times

3.3.1 The Model
The effect of set-up times for machines was tested on
the 3/5 model, ( a model considering the first three products
of Table 2.16 (in Appendix 2.2) over a period of five months).
The model used was a simplified, yet extreme case§ cash was
bounded by &£50 and £50,000, bankloans by &£0 and £50,000; the
inputs of raw materials and cash Qere £5000 and £5000
respectively; all payments were iagged by two months and .
ASSETS was used as the objective function. -
For this model, the optimal solutiqn gave the following
resulté:
(a) ASSETS = £229,360
(b) Production schedules of {O; 23.4; 30.7} per period
 (3) Work centre capacity constraints 13 and 14 of each period
were binding, with dual evaluators &£2.222 per unit and
£1.265 per unit respectively
(4) No set-up times were allowed, i.e. all of the 10,000 hours
| per period on centres 13 and'14 were used for production
The set-up times for each product batch are shown in
fable 3.16. (We havé assumed that these ére the set—ﬁp”"
requirementé for a batch of 10 units in the model solution).

3.3.2 The Revised Problem

Assuming that the probable sét—up requirements for the
model would be 3-Yset—ups' per month, per product, the
capacities for work centres were changed (in the right hand
side vector), and the model was re-optimised. This optimal
solution gave the results :

(1) ASSETS = £213,668

-(2) Production schedules of {O, 21.3, 27.9} for each product
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in each period

(3) Work centre capacity constraints 13 and 14 of each period
were binding, with dual evaluators &£2.222 per unit and
&£1.265 per unit respectively

(4) The utilised capacity in work centre 14 was 9100 hours.
900 hours were taken by set-up ‘requirement (150 hours

each for six batches),

CENTRE PRODUCT 1 PRODUCT 2 PRODUCT 3
1 460 730 160
2 o 0 120
3 a0 | 120 130
4 20 100 150
5 100, 150 160
6 0 150 130
7 0 30 50
8 30 50 40
9 0 30 ) 0
10 150 150 150
11 " noo "
12 " " "
13 " n "
14 n n _ "
15 " " "
16 " " "
17 " " "
18 " n "
s 1

Table 3.16 Work Centre Set-Up Times

The allowaﬁces of set-up times for the batches have
caused a'drop in the monthly production figures from
{Q, 23.4, 30.7} to {O, 21.3, 27.9} and a corresponding change
'iniobjective function, £229,360 to £213,666,:but the optimal

‘basis from the original solution gave an optimal solution to
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the revised problem without fequiring.any further iterations,
thus the dual evaluators for work centres 13 and 14 show:mo
change - the marginal values of extra capacity are unaltered.
Also, the allowance for three batches per month for
products 2 and 3 implies that the mixed inteéer solution should

‘be sought for the range

I

20 = PROD (I,J) = 30 I

1".5 .
375 (3.18)

The optimal schedules for the revised problem adhere to
this; the solution may be assumed to be the required 'mixed-
integer' optimal solution.

3.3.3 Parametrisation of Capacities

Neither products 1 nor "3 utilise work centre 14, (see Table
2.13 of Appendix 2.2). Parametriéation of work centre 14 waé
carried out, as if new plant were installed at the end of
(the previous) December, to be operative through the months
January to May, (i.e. the change column added capacity to the
right hand entries for work centre 14 for each month, January

to May).

(a) The Original Model

With parémetric analysis applied to the original problem,
the first basis change occﬁrred when the input requirement
constraint for périod three became binding, (i.e. when the
input of raw materials became insufficient to allow for
production: during periods 3, 4 and 5, without purchases in
period 3). This basis change (occuring when utilised>capacity _
on centre 14 was 14662 hours and ASSETS were £368,902. (At

this basis change capacity on work centre 11 during periods

‘1, 2, 3 became binding);
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(b) The Revised Model

In order to remain within the‘logical range allowed
by the set-up times (i.e. only 3 batches per month for
products 2 and 3), the variables PROD (I,J), were bounded
above by 30 , for I = 1...5, J = 2, 3, using the REVISE
procedure. |

The demand XDOFREQ1 was directed to printing out a
solution at the rate XFREQ1 = 1, 1.e. at ever§ iterationﬁ
Pérametrisation was used to detect the point at which the
new limits PROD (I,J) s 30 became binding - this point
corresponded to the following solution:
(1) ASSETS = £236,944
(2) Production schedules of {O, 30.0, 27.5} for each product

in each period '
~(3) Work centre capacity constralnts 13 of each period were

binding, with dual evaluators £2.222 per unit
(4) The utilised capacity on work centre 14 was 12,780 hours

(900 hours were taken by set-up requirements). Total

capacity was 13680 hours. | ' ‘
(The basis of this solution was bunched onto cards.)

The binding constraints

PROD (I, 2) < 30.0 I=1...5 (3.19)

make the capacity constraints fgr'work centre 14 appear
slack. To allow the variables PROD (I,2) £o take values
greater than 30.0 further allowancés’for set-up times were
made on all work Centres; apart from work centre 14.
Parametrisation of wofk centre 14 was continued from the
'revised' utilisable figure of 12780, assuming that the 1050
hours required for set-up times (four batches of product 2,

three batches of product 3)  would be accounted for by
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the installation of new plant at the end of December.

With the assumption that plant had been installed that
would be just sufficient to allow for the required four
set-ups for product 2, an optimal solution was obtained,
(utilizing the punched basis). This solution was:

(1) ASSETS = £235,277
(2) Production schedules of {0,'30.0, 27.0} per product per
period
(3) Work centre capacity constraints 13 were binding in all
periods, with dual evaluators £2.222 per unit. Capacity
constraints on work centre 14 were binding in period 2, 3
4 and 5, with dual evaluators £1.265 per unit
(4) The utilised capacity on Qork centre 14 was 12,780.
(1050 hours were taken by sét—dp requirements). Total
capacity was 13,830. (The change of production of item
three from 27.5 to 27.0 is caused by the set-up time of.'
product 2 on work centre 13. Product. 3 wuses 315 hours
on work centre 13 (per unit of product); a reduction in
capacity of 150 hours for the éet—up time of product 2
reduces thevprodﬁction of item 3 by approximately 0.5)
The bounds on PROD (I,2) were altered to _
PROD (I,2) < 40.0 . I = 1...5 . (3.20)
to allow the production of item 2 to utilise the next range
30.0 £ PROD (2,J) < 40.0: J = 1.;.5, and the parametric
analysis was continued.
The constraint on input requirement in period three
' became tight, at the following point:
(1) ASSETS = £262,222 |
(2) Production schedules of {O,~40.0, 26.6} per period

(3) Work centre capacity constraints 13 of each period were



A

ASSETS4 .
( x 107 ) e
‘ /N ’ ) - ) 1 / ‘\—/
26 — -t v
HEARN
P ,/”““Tﬁl
basis change due to ,
‘ input requirement

25 - ‘

24

23

22

21

fall in ASSETS due to the
original set-up times on
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binding, with evaluators £2.222 per unit
(4) The utilised capacity on work centre 14 was 17040 hours
(total capacity being 17040 + 1050 = 18090 hours).
Allowing for one further batch of product 2, the solution
X, = 40.0 (40.0 < x

2 2
(1) ASSETS = £260,555

< 50.0) was:

(2) Production schedules {8?40.0, 26.15} per period
(3) Utilisation of work centre 14 was 17040 hours (total
capacity being 17040 + 1200 = 1840 hours)

The evaluators for work centre 13'and 14 remained unchanged
at £2.222 and £1.265 per unit, and did not change with
parametrisation until the constraints Xy S 50.0 became binding.

These results are summarised in Figure 3.5. |

3.3.4 Conclusions

Frgm the results of Section 3.3.3, and Figure 3.5 we may
conclude that:

(a) the dual evaluators given by the revised solutions, within

| the logical range of allowable production do give the‘

- marginal values of resources. The range of applicability
of these values 1is, however; more severely restricted;
this has been noted in Sectiqn 3.3.2.

(b) the actual change in objective function due to simultaneous -
changes in right hand sidé elements, may be deduced from
the sum-of the dual evaluators and the respective amounts
of change, if the amounts of change do not extend beyond
-the optimality (feasibility) of the present basis.
Considering £he range AB on Figure 3. 5, the change in
profit is £23,276 (= £236,944 - 213,668). The dual
evaluators for eaéh of the five work centres is £1.265

per unit and the number of extra units on ‘each is
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3680 = {13,680 - 10,000}; for these extra units:

£23,276 = 5 x {3680 x£1.265}

with multiple resources and set-up times the general

change of profit with resource is a toothed function.

Losses are caused when generating capacity for set-up‘
times, due to the reductioﬁ of overall production levels.
This reduction is caused by the removal of utilised
capacity from existing bottlenecks, in order to allow

for (non-productive) set-up times. -
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Appendix 4.1 Examples:

Returns to Scale

increasing returns to scale.

Now‘g* = (1, -1.5), and the

§_ =g'o§—1.= (1, —0.5), i.e.
b. Problem 2
max f = (10x
s.te. x1 - x2
X2

X1 X2

a Problemli 100x1+-5x2
max £ =
x1—1.5x2+10
s.t. %X, - x5, =0 )
17 %2 A =(1 -1)
xzvs 5 0 1
0
Xgy X, 20 §,=( ) (4.29)
5
- N LY _105.5
The solution is: Xy = Xy = 5 f = 7.
Now consider changes in b,
- . ¥ B
For increases in b2 we have, Xq = Xy .= b2
(until the denominator approaches zero); ‘
fthe problem is, in effect,. max F = Eﬁ%gg%gf (4.30)
s.t. X = Db
» *® * *
X =b 105x 10 - 0.5x F
6 630 7 - .90
8 840 6 140
10 1050 5 210
12 1260 4 315
14 1470 3 490
16 1680 2 840
Table 4.1
From Table 4.1, the problem (4.29) clearly exhibits

inverse basis = (1 1. B”
' "o 1)
8;<0, as proved above.
1+x2)/(1.5x1--x2+ 6)
=0
(4.31)
s

= 0

1

?
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The solution is: x, = X, = 5.

For changes of b, the function exhibits diminishing

0 1
d = (1,5, -1), and 8 = d.B" 7 = (1.5, 1).(1' 1= (1.5, 4).
: . | 0 ?/

returns to scale. The inverse basis j_s._I;"1 :(? 1)’

All Bi 2 02 diminishing returns to scale.

The problem becomes: max F = —22X x < b (4.32)

' (0.5x + 6) '

™ "B *

x*=b | 11% | 0.5x* + 6| F

6 66 9 7.33

8 88 10 8.8

10 110 11 10.0

12 132 12 11.0

14 154 13 11.846

Table 4.2

As can be seen bleable 4,2, the function exhibits
*

diminishing returns to scale, i.e. Bg is decréasing.
3
| o 3T
£. Dual evaluators and S5 ¢
i ]
. (100,5L(x1, X, )

At the optimum to problem 1, f = -

(1, —1.5L(x1,-x2)+ 10
. = * -

Now (x14 xz} = B 1m§

(100, 105).(b,, D

(1, -1.5).(% 1)/(P1l+ 10
0 1/ib,

therefore ”‘(bz)

105b
= 2 (b, =0)
10 - 0.5b, 1
* 105( 7.5+ 2.5)
X _ . 10 _
and Bbz = 7.52 | = 105.775 . - (4,.33)
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100b_ + 525

* 1 . '
T — —_
Also (b,l) = b1+ 75 ( b2 = 5)
'ﬂ'*
and _a___j| = _30 S (4.34)
obq 7.5 ~ \
b, =0

The Charnes and Cooper form of problem 1, (4.29), is:

max 100yi.+ 5y2

Y, - 5t 0 | | (4.35)
y,l—.1.5y2+ 10t = 1
Yi» £ 20 .
. . s . * 2 * S £ = 4
for which the optimal solution is: Y 57T Yo =T, 5 = 35
3 4 . * »*
VCC1'= 0, vCc2 = 105.% , l.e.xy = 5, X, = )
and from the dual evaluators of the CC form, we have:
30 31 o
""F1 - 7.5 T Ea?ﬂ '
' b,=0
v. o 205.10 _ am’
F, (7.5) ~ |ob
2 2 b. =5

2
Although the dual evaluators exist, and can be derived

from either the original or the CC form, no concept of pricing

can be given, due to increasing returns to scaie.

' -1

. L R .
The optimal inverse basis to (4.32), B s 1s given by:

(1 2 b2
3 3 |3
] -2 4 12 '
B -5 37,5 (4.36)
-4 2 |4
3
\30 0 ,30/

" Now according to (4.28) thé signs of the entries in M,, should
be negative for diminishing returns to scale; the second
entry is positive showiné that-for'bz, the returns to scale

are increasing.
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Changes of d,_in problem 1;

Suppose d2 changes by an amount Adz; will there be a

change to diminishing returns to scale?

~S

let d2 = d2+.Ad2', d1 = 1
S
for gt 1 1
0o 1
FaYd - ~ ~s
a .7t = (1, dz)(i Y= (1, 14dy)
\\0 1

i.6. dor.t.s. &> 14+d, >0 €1+115+Ad, > 0

2
& Ad2 > =2.,5

2

Further implications of changes in d are considered in
later work.

If d, were to change, d, would have to increase beyond

1 1
1.5 for the returns to scale to be diminishing.
From the form of M, 4 in (4.418) it is clear that, for
each di’ the range of values for'di is divided into only two

disjoint parts, one of diminishing returns to scale, and one

of increasing returns to ‘'scale.

Problem 3
4x + Xyt 4x3+-x4

max 1
x1+-x24-x34-x4+-1
s.t. x1+-2x24-2x34-x4 < 40
X4+ Xy _ < 30 .
2x1+- X, . s 20
x3 < 10
X, = 10
Xy + X, = 15

'The problem is solved using the CC form.
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Optimal solution is:
« 20 . 20

Y4 =77 0 Y3 T 42

i.e. X, = 10 , x3 = 10
Optimal inverse is:
{é; 1 0
S, {10 1
X, 0 O
X4 ~10 O
55 0 O
s 0 0
6
\
_Q, = (07l07 1, 1, 07 0)
8 = a4t =
6. > 0

1

O O O np nps N

O O » O O p

=
» V3 T 42 0
2_ 4

’
21°

(0, 0, %, 1, 0, O)

O p O O O O

diminishing returns to scale.
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Appendix 4.2 The Reduced Costs of Fractional Programming

In the normal LP usage, 'reduced costs' o, are defined

as G. = c.—c_.B t.a.
1 i —B'— —1

where 25 is the i'th column of the original tableau. Now,

. © of
if £(x) = ¢c.x, ¢ =3§; , and
M1 :
o, =[1¥L S Ny (4.37)
i {?Xi " -h 4 A= =i
x=x LU Blx=x

agB

where EQEJ denotes differentiation with respect to basic
Qariables only. This concept of 'reduced cost' may be
considered as a marginal return, and méy be generalised to.
the fractional case, f(x) defined as in (1.12).

Thus when Martos (64) uses the terms Ai to rank incoming
activities, where

-1 -1

Ay = (do+gB.§B).(ci-gB.§ 3;) = (eg+gep.xp).(d; =dg.B ".a,

(4.38)
he is, in effect, using a multiple of the marginal return for

each activity, since

Ay

={c.
2 i
(dy + dg.xp)

. _ . . A
where t = (dj+ dg.xp) 1 and f is the value of the objective,

for the present solution x, = B el

r ] o
* 2 ' df i of | -1
_ _ier . 4,40
l.2. Ai-(t ) - i-gjc—i‘l A ‘a_)_CB{ N .E .E._i ( )
U tx=% [TBlk-%

¥ 2 . . ; . .
A, .(t )7 is the marginal return for introducing the i'th

activity. (Call this 3&)

Q>

. A
1

By Wagner and Yuan (85), A; = —5 , where o, is the

t

» * ( ' * _1 * 9
—di.f .)Qt - SB_Q’B‘f )OE og_iot (4.3 )

)
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Ireduced cost (marginal return) in the CC form,

" | 121\
O'i = C, - (EB, CX.) OE_ -. di

Hence Ei = to ' (4.41)
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Appendix 5.1 The Decomposition Process

1

x1 + x2 + y1 + y2 + 1

Example: max 4x, + 2x2 + 4y1 + 3y2

<
Sete X, + 2x2 + 2y1 + Y, 15

x1 + 3x2 . < 30
N L. S
2x1 + x2 20
<
y1 10
Yo < 10

Y ot Yy, =15

Xi, ¥, 20 (5.56)
Optimal solution is:
~ 100
f = S50 X4 o= 10 , Xy = o, Y, = 2.5 , Yy = 0

Dual evaluators ~(0.14, 0.0, 0.07, 0.0, 0.0, 0.0) for the CC form,

Assume an initial all-slack basis:

Solution: f =0, W1 = W2 =T =0

Using the first method, of Section 5.22, the divisional

programmes are:

. ' . S
Div. 1 max 4x1 + 2x2 S.t. X4 +'3x2 30
<
2x1 + X, 20
x. 2 0
i
. . A
Solution: X, = 6, X, = 8, f1 = 40
(We neglect the solution X, = 10, X, = 0, in order to force
iterations).
Div. 2 max 4y1 + 3y2 Set. Y, < 10
Yo < 10
Y, + Yy < 15
y; 2 0
. N A - -
Solution: Y,.= 10, Yy = 5, f2 = 55
A
Policy: Accept both since f(xz Tor»&= 1,2
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Form Executive Progrdmme:

This is: max oun, + 4OD2 + Ov1 + 55v

1 2
O1-L1 + 14D2 +<O'v2 + 15v2 + 1
Sete. oui + 22D2 + 0 v, o* ZSV2 < 15
u1 + Ué 7 = 1
V1 + V2 = 1
B, v 20 (5.57)
The optimal solution to the CC form of (5.57) is
—~ 1 — 2 = 3 N1
=30 V9 =TS0c Y230t 70
_2 _ 3 F._a85
Hence pﬁ =,1, V, =%y Vy = T f = T
_ _ 165
m, =0, 1, =0, Ty = F5
7. =20 (duals of CC form equivalent to (5.6) of

Section 5.2.1)

" Revise divisional objective functions:
Method 1 (Section 5.2.2) .
Revise according to c¢; - (d;.my - m_ .M.)
where T are dual evaluators of executive rows in the CC
form of (5.57). |
Method 2 (Section 5.3.2)

AN
Revise according to (c., -~ d,.f)t = T_.M .
i i —F =i

where 7. are dual evaluators of executive rows in (5.57).
N
Now T = t.ECC; we will use the first method throughout.
N
Optimality test: f1 > T, <+ not optimal
Revised objectives are:
: i 165 7
Div. 1 C1 i 4 - 1.—50 - 0(1)= 10
) 165 _ =13
Cy 2 2 = 1l - 0(2)= 10
. i 165 _ 7
Div. 2 ¢, -,4 - 15 - 0l2)= =5
. . 165 =3
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Now proposals are:

It
(@]

Division 1 : x 10, x .. accept.

il

2 = 1 2

A
0, £, = 40 > 7
N\
Division 2 : Yq = 10, Yo = o, f2 = 40 > T,

1]
(@]

accept.

New executive programme has the solution:

By =0 u, =0 nugy=
v, = T Vv,=0 wvg-= 1
I "2=O."d=197o'”=§%7‘

(duals of CC form equivalent to (5.6) of Section 5.2.1)

Revised divisional objectives are:

- : 00 4 _ 4
Div. 1 c1 : 4 - 57 = 59 = 57
100 8
Cp P 2=y -y o= 72
. 100 8
Div. 2 c1 : 4 - ST T 37 = 0
: 100 _ 4 _ -23
oy P 3 -THy -37 < 7
New solutions are: ,
Division 1 : x, = 10, x, = 0 ?A = 49 = T
—_— 1 ™. ? T2 1 27 1

.. do not accept
N\
‘Division 2 : vy, =0, y, =0 £, =021,

.. do not accept

.. solution to the previous. executive programme is optimal.

i.e. solutlon is x1 = 10 x2 =0
y,1=2.5 y2=0

100

£ =57

The optimal dual evaluators:

From the CC form of the final executive programme Toe = ;%
.« for original fractional form T, = Ji-{ii- = 2

For the divisions we have the final programmes:
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. 4
Div. 1 mag 55 x,-L - 2x2
s.t. x1 + 3x2 < 30
2x2 X, = 20
Xqy Xy Z 0
. : - 23
Div. 2 max O.y1 - 57 Y,
. < '
s.t Y, 10
Yo s 10

Yqr ¥y 20

Dual evaluators are (O, g%) and

(0, 0, 0).

Thus for the CC form of (5.56) we have the dual evaluators

4 2

(_2_7",0,'2"7"707 O’ 0)
N 2 .
Now t = ST e
(.14, 0.0, 0.07, 0.0, 0.0, 0.0).

the evaluators for fractional form are

2

7
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Appendix 5.2

Sensitivity Analysis and the

Example: The problem (5.58) is taken from Baumol and

'Perturbed Inverse Basis '

Fabian (8)
max P = X+ Xy ¥ 2y1 + 2y2
s.t. X  * 2x2 + 2y1-+ Yo = 40
Xy + 3x2 = 30
2x1 X, < 20
<
Yq : 10
<
y, = 10
Yq o+ Yo 5'15
| X5y ¥y =2 0
Optimal inverse basis is p~1 where,
/_2. 0 _j: _2 0 _-g\ /x \
3 3 3 3 2
5 1 5 5
—’§' 1 3 3 0 3 slack
' 1 2 1 1
1.3 9 3 3 9 3| .| %
o0 0 1 0 O ¥4
0 O 0 1 1 0 slack
Q 0 0 -1 0 1 y
2
20

Final tabieau of executive programme is:

max 1Ou3 +w14u4 + Ov1 +
s.t. 1Ou3y+ 22u4 + OV1
3 v Hy
v‘,l +
Optimal inverse basis:
Vo 0 0 1
4 10 25|
P ¥ T2 T2 712 -
n 12. 12 12

o+

725v4
< .
25v4 40
= 1
V4= 1
B-i

(5.58)

(5.59)

(5.60)

(5.61)
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Tendered solutions are:

For ‘'uy' (10, 0, 0, 0)
' : (6,8, 0,0 (5.62)
'Vi' : (0,0, 0, 0)
'v,' ¢ (0,0, 10, 5)

Change of corporate resource 'b': (initially at 40 units)

1

—3 - -1 EE& - L —& 0 iven by first column of B~
S0 - "4z '3 -~ 412 'S0 - 7 9 Y =
* * * %*
From B-i we know ax1 = -% ’ sz = %-,vayi 8y2 =0
ab ' db ab b
* (5.63)
axi 3 * " ’ .
Using the formula ——= = E: i L ox, (5.37) of 5.6.3
ob - 1 9
b .
we have:
a *
X
1 1 1 1
56 - 0 (‘12) * 6(12) = 3
*
ax 1 1 2
2 - 0 (_-—) . s(—) . 2
5D 12 12 3
*
ay1 ‘
35 = O{’”) =, 0 (5.64)
*
Y2 _ ofs | - 0
ab , Q.E.D.

Change in by :b, contained in divisional r.h.s.

We now use the formula: (5.38) of Section 5.6.3

%®
oOX .
=]

i.e. _85*' Bu
| )

Bbk

L
The second terms are known from the solutions and the
respective optimal inverse bases.
»* .
The du 5 will be calculated from these and further LP's as
3b,_ '

follows:
1. Use inverse bases of the wvarious divisional solutions

»
to give x; (b, )
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»
i
abk

3. form the final executive programme in terms of a variable

2. derive

b, i.e. form the w(bk)
4. solve for ¢(bk) and <p(bk + ébk) and from analytical
x .
expressioné derive the aui .
' ab

k

1. Divisional subproblems:

"Division 1: constraints are X, + 3x2 < 30

1
, 2x. + X, = 20
* ,='//X2 _2_ _;l_ 1 2
For X, : 1nverse is/{ 5 5
=4, )
\X,l _1 é
A 5 5
/ _1
For x;a/ Sla?k. : 1inverse is 1 2
- x : o 3
1
Putting x; in terms of b we have
* * b2 * '
X3 P ¥317 £ %2 = 0
« . .t _ b 3 *_ 2 1
Xq i Xy = _7% + T.by , X5 = b, - £b, (5.65)

Suppose we aré considering changes of a resource of division 1.
The solutions tendered by division 2 are independent of changes
in resource level of division 1. Thus we form the execuﬁive
pfogramme |

b -b 3b 2b b ' '
2 1 2 2
max fy [—2:]+p.4[ =+ 5 ¢+ 51 - ——5] + 0 v,.L + 25v4

b -b 3b 4b 2b
2 1 2 1 2
s.t.p,3 [T]+p,4l:5 + e 4 5 - 5] + ov,.L + 25v4 < 40

By +p4 = .1

v, + v, = 1

(5.66)

This is the same as
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W3
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=

40

1

1

(5.67)

Consider changes of first resource in division 1, i.e. put:

1

max 1Ou3 +

s.t. 101],3 + 22+—5—

1w

b, = 30 + 6, b

3

Optimal solution is

v4(6) =

u4(6)

u3(6)

assuming

and

Hence: N
au3
db

2:
14 + g-u + 0 v, + 25v
5|74 S 1 4
[~ 35
]u4 + 0 vyt 25v4
+ u4'
v, +
1
—_—
12 + 36/5
7+ 35/5
12 + 30/5
. 35
22'+-§->O‘.
36
12+'—5—'>0
_ 3
18 T > 0
7+-3§9- > 0
- 35
. i 7 + ==
lim 1! 5 7
6->01\ o 30 T 12
L}? + %
36 216
lim S - 5 1
5=>0 48

40

20. The executive programme becomes:

(5.68)

7 (5.69)

(5.70)
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|1 1
Now from a knowledge of total optimal inverse basis we know

and applying the formula (5.38) of 5.3.6 we have:

*

3% . . _
1 _ 1 e ST U )
5b1 = 78 (10 - 6) + 12.0 * 45 mE = 0
3%, -

X

2 1 7 5‘ 1_
aTh =Z—8-(O—8)+'i"2-.0+‘1—2'[5—‘—0

QTE.D.

Similarly we may test changes with respect to b2.

Using b1 = 30, b2 = 20+ 0, a similar analysis leads to:
Vg = 1
9)
W (6) = / * %
3 35
12 -« ==
1
5+%
10
M3 a2 a4
ab2 32’ Bbz 32

From'the 'total' inverse basis we know that:

* *
a2 o 4
8b2 3 - o 5 3
Apply the formula:
; . >
ox
1_ 1 2 41,5 3_2
5, =32 (0 -8+ 43313 T3
a*
X
1_ 2 L 2 o1y 1
b, =3 "8+ 3.0 plm) = 3
- Q.E.D.
Thus by calculating all terms axi the total inverse baéis
db

may be derived. k
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The fractional case is no different except that the
executive prdgramme is more difficult to compute. - The
theory remains the same since at all stages the 'x = gfig'

optimal relationship holds.
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Appendix 5.3 Direct Calculation of the 'Perturbed

Inverse Basis'

In the calculations of Appendix 5.2, the basic columns of

the final executive tableau are

) Yy Va

10 22 25
A = 1 1 0
0 0 1
(1 22 25
~12 12 12
A-1T_ (1 _10 25
- = 12 12 12
\. O 0 1
d 3
0 T 0
H = 0 0 0
(0 0 0

from (5.68) of Appendix 5.2.

40
b= |1
1
-1 7 5 R
A ".b = <’l—2— 'y A3 1) = (11-39 Vg V4)
Using the formula (5.43) of section 5.6.4 we have:
"%%" - -at. m.a1.p
. 2 Z-4 L
a1l g (T
= -2 7.H.o73
=N
2
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1 7
0 -5 O\ 1z
- 4 2
= -9 35 Ol 12
0 0 0 1
-1 A
48 48
_ 1 R B
- 48 T 1748
0 0

These are the same as the marginal figures derived

in (5.70) of Appendix 5.2.
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Appendix 6.1 Sensitivity Analysis

6.1.1 Changes in r.h.s. elements

Consider the problem:

max 3.1x., + 3x2

1
x1 Xy 1
s.t. X, < 2 = , (6.20)
X £ 2 |
X, + %X, <3 x; 20

Direct approach: 1let the slacks be Si,'sz, Sy

Optimal basis is (xi? X595 S,)

_ 1.0 O\
- Inverse basis is -1 0 1 \ "= Eﬁl
1 1 —1/

Consider changes in b3, say 6b3; optimality (and feasibility)
conditions are that:

-1 R

9 =871 2 ‘zo
}

'3-+6?§j

i.e. 61 = 2 = 0
62 = = 2 4+ 3 + 6b3 2 0
63 = 2 + 2 - 3 —~ 6b3 2 O

P et - 1 < 6 b 3 < 1

The CC Form of (6.20) is

max 3.1y, +'3y2.

s.t. Yq *t Yy ¢t t + SO = 1
v -2t + 8, =0
1 ' 1 (6.21)
y2 — Zt + SZ =0
0

Yq ¥ Yy - 3t + 53 = Yo S £t=>=0

O ptimal basis is ﬁyi, £, Sy, ¥y)
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(1 1\,
'z 1 0 =
Z 00 -3 —
Inverse basis is = B
1 4 5
7 1 -1 -z
1 3
F 0o
_
1) £
— o) b1
B = : = B—
e T2
(o 23
y, /

Consider changes of 33 by say &

9 = E_l.E 2 0 is required for feasibility
"e‘o=-}(1-6)
gi ) %(1_6) >>~ 'i.e. ~% < § < %
8, = $(1-56)
53 = %(1+36))
Now at & = 5 50 =y, = %
B, =t =%
6, =5, =0
e3=Y2=%
l.e. X, =%, = 2 t = %‘
At():'% §O=Y1=“23‘
B,=t =%
9, =5, =%
93 = ¥y = 0
i.e. x1 = 2 'S2 =2 t = %

thus we have ~% < b < %

4N
o
o)
A
"y

implying -1
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Hence limits for range of &b are given by the appropriate
corrections to the range of &b as in Section 6.4.1

6.1.2 (a) Changes in cj

Consider a third activity x5, i.e.

max 3.1x3 + 3x2 + Y%,

X + X

Xy + Xg < 2 ' (6.22)
+ X, < 3 X, = 0
Assume Y is initially zero. Wnat value must y attain

in order for x, to enter the basis.

3
Solution is x, = 2, %X, = 1, S. = 1, £ = 222 - 2.3
. 1= 2% X3 =1, S5 = 1, =T = 2-
1 0 0 (1
-1 |
= (-1 0 1 Ay = |1
1 1 -1 0

- Using the CC form of the (6.22)

- 1 1
10 = Ew
3 1
B "= (6.23)
= 1 1 > & -
Z 1
1 1
0 0 -5 =
Z 7
N J

(Rows have been arranged to have denominator last.)

»
c = (3.1, 3, 0, 0) T~ (Yia Yoo S, t)

(T ™ = (.1, 0, .7, 252)
1
3\ |1
a3/ |o
1
) 5.2 | 9.6
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therefore, for vy < 2.4 X4 does not enter -the basis

Yy z 2.4 X4 replaces X4

(As X3 replaces X the constraint on Xy is relaxed; i.e. .

17
%y f=dxy N =Dy 1)

(b) Changes in basic Cj'

Suppose Y = 2. At what level of Cq will Xq leave the
basis of (6.22).
For the basic set, (yi,»yz, S, t), the CC inverse basis

'is of the form

e 1 1)

10——2--2-

301

4 1077

B = 5 1

| 11 -7 37

\ .

. /

(c , &) = (ci, 3, 0, 0)

(T ey M = (c,=3, 0, 1+ 9, 1+ 3)
—c 17 5~ 4 3 4

'As isvcolumn associated with slack wvariable Si'

(1, 0, 0, 0)

""'Si ‘
'

4 =1(0, 0, 1, 0)
3

Ay =(1, 1, 0, 1)

Consider the 'reduced costs! o,

Q
Il

0 - (c, =3) =0 if ¢, 2 3

51 1 1
0’3=2—(c1-3)-%1—%50if32clz—%—7-
| i.e. if Ci ZA%;
I, = 0 - (F - 2 < o i c, =2

For the present basis to be optimal:
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(otherwise 51 will enter the basis)

3
% (otherwise S, will enter the basis)

6.1.3 Changes in dj

Suppose y is fixed at 1; by how mﬁch must d3 be réduced
in order for X, to enter the basis. lLet the change be Ad3
By (6.10) of Section 6.4.3 (a), |

Oq

*

If.Ad3'S

y Xg will not enter the basis

Hh

Now © 1 - 2.4 = ~-1.4

3=
therefore, for Xq to enter the basis d, must be reduced by

an amount Ad3; where

. -1.4
'Ad3”= 2.3l

- Changes in basic dj:

Consider changes in ds, in the original form and the

CC form.
1 0 0 1 0  0)
B={0o 1 1) B t=(-1 0 1
1 1 0 1 1 -1

We use the equation (4.18) for M in terms of d,.

11

w
II
[ ]
o
I
PG
N

« -1
_d-_ .E = (1_d2, O, d2)
A * -1 ., =1 1 1
t =(B+d.B".D) 7+vd,+1 ~374q,
Hence: 2
-1 1 ‘
1
= (ﬁ 0 0 t2—2d2 0 2d2i
-1 -d |
d



12

21

22

for

Consider the changes of d, on the columns A_ , A

*
0 - (¢ ,x)B
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(3.1, 3. 0, 0)

1
“1(a ¥ O

2 \O
0

\
1+3ia . —2d2
3+d2 3+d2
3+d2 3+d2
2+2d2 . —3—2d2
3+d2 3+d2
g J
20
(3+d )
2
1
(3+d2
1
t(3+d2)
(- 92 o, -9
3+d2 3+d2
1
3+d2
~ N
1
= 1 . IVI11 =11 O -5
3
0 1 Z
5
Q1 3
()
Mpp =12
iy
4
3
. — iy
Moo = 3

1

37

and AS .
3

- —(3.1, 3, 0, 0) ( 1+3d

3+d

=
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Z1 (3.1 + 9.3d, — 12)

+d2 2
< 0 if d 8.9 (ignoring the solution d, < -3)
2 9.3 2 :
Similarly:
o] —_—1 0
s = 0 - (3.2, 3, 0, 0)B “(d,){0
3 - 2 1
‘10
(3+dy).0g - (3.1)(2d,) - 9
3 2° .
. 9
=6.2d2—9 < 0 ldeSm
If d2 > E%? s3 will enter the basis.
Also
. — 1
1
| //3+3dé\\
= 1 - (3.1, 3. O, O) 4
, , (3+d,)
-3
(3+d2§
6+3d2
(3+d2)
{ d2
k£3+d2l/
. 3,1(3+3d,) . 9
(3+d2) _ (3+d2)
i 2.7 - 8.3d2
(3+d2).
2.7
63 =0 d2 = T3
8.9 9
Hence the rangeAfor d2 is 53 < d2 <53
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Appendix 6.2 Integer Programming

Consider the problem

max %Xi * X2

X, + X
2

+] +
RN (N

2x., + X, < 3 ; (6.24)

Xq5 %o integers 2 0.

Optimal tableaux are:

original form CC form
Xqg Xy X3 Xy vy, Yy v; Y4§
| 10 =+ o -4 é%
0 13 1 —%_ 3|0 0 2 1 -1 ?1

(N.B. For ease of programming, the denominator has been
made the first row of the CC form, and 't' the first
column) .

Consider the column for Yo

2\
3 2 1
l = (1, -—) t = — w =_£.. W = -
B 5 5 ko, 5/ t, 5
Using the formula (6.17) we.have
2 (/1 2 ¥ 3
2, =l4a)-{3}5-3 =(4a]-l3]) 4 °
5 \5 5 10 %

Similarly, calculations can be made for all the requiréd
columns. v
N.B. x1 is basic in second constraint row as is yi.
Xo is basic in first constraint row as is Yoo
Thus pivoting on (row 2, #1) and (row 1, x,) for the original

form will produce the optimal tableau.

The cutting row is derived from the second constraint.
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In the CC form the cutting plane is

‘}t - %‘Y2 - :21‘Y4 =0

At this point the (infeasible) tableau in the CC form is

] [
Yy Yy, Y3 Y, Ygii
e X 5
(1)' 0 £ 0 & 0%
0 0O 2 1 =1 0|1
4 1 3
0 1 ¢ 0 £ 0%
1 1 1
) 0 -5 0 - 1 0
. 4 .
0 o = 0 £ 0

Pivot on t to restore canonical form; thereafter, pivoting

. according to thevdual simplex rules leads to the optimal

tableau
- i
E Yqi Yy Y3 Y4 Yg
% I
1,1 0 3z 0 035
z 313
4o 0z 10 53
: 3 5 1
o0 5 01 g
T *”*1m - x 1,, |
0 0 > 0 0 ~§E
Optimal solution is:
1 1 3 1
=%, ¥)=% Y¥3=% Y4=7%

1
giving X, = 1, x, =0, Xy = 3, x, = 1
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Appendix 6.3 Recomputation of Dual Evaluators

Consider the problem:

3X, + %, + 1 - 7
max x'l + x2 + 1 *
1 2
s.t. 'le,l + Sx2 < 11
xz,s 1

X , X5 20 (integers)
Thelalgorithmic approach is shown in figure 6.2.

At the LP optimum the solution is

x. = X%
1~ 10
x2 = 0

_ 10

€ =57

5 A3

Lp T 271

The cutting plane is given by

1

= T0

1 1
> X2 *t ooq

In the Charnes and Cooper Form this is

1

1 1 1
100t

T Yy *t Igeq 2

Inserting this, the optimal tableau (6) is obtained

The integer programming optimum to (6.25) is

t=3 x,=1 'sy=1"s, =.1

2 37
The dual evaluators of the corresponding form are

(In the CC form they are

T =0 il =0 T = 1)
CC1 cc2 . CC3

(6.25)

(6.26)

(6.27)

(6.28)

Now the cutting pléne in terms of {x;} was given by (6.27),

hence using Baumol and Gomory (48) we have the recomputed

duals



! 1 1 1
T =0+357% = 35
' .

W2 =0 + 0

]

7T3=O

The LP duals at the optimum were

7 . .2 10 _ _20_
1% 2121 (212
1T2 = O.

Because of the structu;e of the problem the dual evaluations
are .very similar.
N.B. The recomputation has been made assuming a linear
change between the LP Optimum and the IP Optimum. From
Chapter 4 we know that this is not true er fractional
programmes. Evaluators are not piecewise constant. However,
the added complication of such calculations seems out of all
proportion to the associated gain of information.

The associated sﬁbsidy (Alcaly and Klevorick (2))

would be the r.h.s. value of the cutting plane constraint,

. 1
l.e. T(-)-
X = value of inputs from recomputed duals
' A .
- (=X 0) 1 b.o11 .
- 20 o /- 0
S_. = subsidy = :L
I 10
13
¢r *+ S =35
t Z. =2
Bu ZI =

thus value of inputs < value of output; a typical result of
‘ integer programming.
Any balance would be of the form of economic rent - but

clearly this definition of 'value' is a tenuous one.
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t Y, Yo S, §2 rhs comments
* 1 1 1 0 0 1
sq -11 10 5 1 0 0 non-basic
5, -1 0 1 0 1 0
-1 =3 -2 0 0
_
t 1 1 1 0 0 1
S, 0 21 16 1 0 11 basic
5, 0 1 2 0 1 1
!
0 -2 -1 0 0
i
5 -1 A, L 10
€ 1 0 21 21 0 L 57
16 1 11 .
Yy 0 1 51 51 0 5T optimal
26 -1 10
S2 0 oz a1 | 21
11 2 . 43
, 0 0 21 51 -0 21
b i
el -1 |10
t 1 0 1 21 O Wi
i
v, 0 1 %% i o 0 1 % non-basic
. 26 -1 i 10
P 0 0 21 21 1 0 21
!
. 0.1 © -0.5 -0.1 0 1 o)
11 2 2
0 0 31 21 0 >

Fig. 6.2 Tableaux for Integer Algorithm
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i
E t y1 | Yo s1 Sy rh J comments
5 -1 10
£ 1 0 31 71 O O 127
16 1 11 . .
Yq 0 1 51 . 5T 0 0 57 infeasible
26 -1 : 11
Sy 0 0 51 71 ¢ 0 21
-11 -2 -1
S3 0 0 21 21 O 1 21
11 2
0] 0 57 51 0 0
1 1 1
t 1 0] > 0 0 5 )
y1 0 1 % 0] 0 ,% %- integer
optimum
s 0 0 2 0 1 =t
2 z 2 2
11 : =21 1
S3 0 0 - 1 0 >0l 3
0 0 0 0 0 1

Fig. 6.2 (Continued)
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Appendix 6.4 Risk and Uncertainty in FP

6.4.1 Introduction

Much literature has been devoted to the extensioﬁ of LP
for cases in which the programme data are subject to stochastic
variation (e.g. (25), (28), (34), (39), (60), (82), (84),

(87), and (89).) Such extensions deal with the maximisation
of the expected value of a linear objective e.g. (25),
maximisation of some merit and penalty function (89), etc.
Some formulations do allow extensions to FP, the resultant
programmes being qdadratic, or convex problems.

" 6.4.2 The Expected Value Approach

Using the assumptidn that distributions of variables
are 'norﬁal‘, significant simplifications are made in stochastic
LP, e.g. (22, 25); in (20) and (25) the resultant progfammes
are LP's. With FP, such simplifications do not readily occur;

the assumption of the 'normal' distribution is not helpful.

, C.X + O '
Consider z = I %X+ B where ¢, o, d, B are normal variates
. . r
(with known parameters). 2z can be written z = 5 where r

and s are normal.

Assume r and s have, say, N(o, 0.) and N(Q, 0 ). =z has a
' Cauchy distribution of the form £(z) = —t—s-
AN
Bm(—B-) +1)
I
where § = 5 - However, this assumes that the denominator
s

can take all values. It is possible to expand the function

zZ = f_f o ;
5 + s,
r+r
z = (r+r0)(s+so)_1 = —3 0 1 - §L + 0 (-EEE—)2
’ 0 0 0

J&_(rﬁ-ro)(s - s)

= 52
0

0 (6.29)
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If r has the distribution (8, dr) and s has (8, GS),

then z can approximately be described by the distribution

£ o° 2

(—9, 0) where 02 - —= 4 52_{_Q'

0 - 2 ST\ g2
S s

0 \"0/

6.4.3 The Utility Theory Approach

R.J. Freund (39) uses a utility approach to risk,
maximising the form jr.Cl-—e‘ar)dr (where r is some measure
of return.)

For objectives which have a normal distribution, the‘

maximisation becomes

. 2
“m —(E=Hy 1
max E(u) = j(l-—e_ar)e o .dr
a .2
= max E(p) = p - 50 (6.30)
C.xX + Q
where r has (p, 0). If we consider a fraction z = Ix T8

for deterministic d, o, B and normal c;, for any choice of

X, 2 has a normal distribution

C.X + O
- PF -

2 2
o2 = T X Oy

(d.x + B)°

or L xX.X.0,.

— ] 1]

(d.x + B)°

where {Oi} are the standard deviations of each ci and qij

is the wvariance/covariance matrix.

The utility approach then has the form

C.X + n DX X0,
max —_— - = = f(x)
d.x + 2 (d.x + B)Z
(c.x + a)(d.x + B) - %—Z

. X.O0. .
L L) (6.31)
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This non-linear fractional programme can be solved
using Swarup's Algorithm (81).

6.4.4 Uncertainty

Considering the linear form:

min g.5'+ Ecﬂg, y) = £(x)
s.t. A.x - = b
I.x + My =¢
X, v 20 (6.32)

The convex certainty equivalent is of the form
min c.x + Q(x). Examples are given in (87), but these
rely on the linearity of c.x.

This analysis applied to a fractional programme the

certainty equivalent would have the form

>
max f(x) = < E* & EC(Q" V)
d.x + B
N(x)
= max grey

which can be optimised using Ritter's method (72), if N is
convex, and D is linear.

6.4.5 Chance Constrained Programming

Charnes and Cooper (18) consider three objective

functions for the Chance Constrained Programme:

f(x) = E(c.x)

2
= BE(c.x - g5-%g)
{ A '
= PIE’E -3 So-%p ] (6.33)

known as the E, V and P models.
If ¢ is random, d deterministic, the linear decision rules

(20) may be useful.

The P form gives a simple formulations since

RS I 917

St

P{(c - 6d).x + (x - 8B) = O
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The fractional and linear P models are identical.
Unfortunately, the P model is not eésy to solve; but 1ts use
in Corporate Planning (maximising the probability of achieving
a given return on assets sa&) is attractive.

6.4.6 Conclusions

Although the fractional'objédtive function presents

certain difficulties in Stochastic Programming, the assumption
the d is deterministic offers 'some simplification.
Situations in which ¢ is stochastic, d deterministic might
represent stochastic return on known investments, etc., and
might find some use in Corporate Planning, as might the use
" of satisficing ratio demands using chance constrained

p rogramming.



	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167
	Page 168
	Page 169
	Page 170
	Page 171
	Page 172
	Page 173
	Page 174
	Page 175
	Page 176
	Page 177
	Page 178
	Page 179
	Page 180
	Page 181
	Page 182
	Page 183
	Page 184
	Page 185
	Page 186
	Page 187
	Page 188
	Page 189
	Page 190
	Page 191
	Page 192
	Page 193
	Page 194
	Page 195
	Page 196
	Page 197
	Page 198
	Page 199
	Page 200
	Page 201
	Page 202
	Page 203
	Page 204
	Page 205
	Page 206
	Page 207
	Page 208
	Page 209
	Page 210
	Page 211
	Page 212
	Page 213
	Page 214
	Page 215
	Page 216
	Page 217
	Page 218
	Page 219
	Page 220
	Page 221
	Page 222
	Page 223
	Page 224
	Page 225
	Page 226
	Page 227
	Page 228
	Page 229
	Page 230
	Page 231
	Page 232
	Page 233
	Page 234
	Page 235
	Page 236
	Page 237
	Page 238
	Page 239
	Page 240
	Page 241
	Page 242
	Page 243
	Page 244
	Page 245
	Page 246
	Page 247
	Page 248
	Page 249
	Page 250
	Page 251
	Page 252
	Page 253
	Page 254
	Page 255
	Page 256
	Page 257
	Page 258
	Page 259
	Page 260
	Page 261
	Page 262
	Page 263
	Page 264
	Page 265
	Page 266
	Page 267
	Page 268
	Page 269
	Page 270
	Page 271
	Page 272
	Page 273
	Page 274
	Page 275
	Page 276
	Page 277
	Page 278
	Page 279
	Page 280
	Page 281
	Page 282
	Page 283
	Page 284
	Page 285
	Page 286
	Page 287
	Page 288
	Page 289
	Page 290
	Page 291
	Page 292
	Page 293
	Page 294
	Page 295
	Page 296
	Page 297
	Page 298

