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ABSTRACT 

- A review of work on irradiation induced stresses in graphite 

components of a. nuclear reactor is given and the mechanism of 

generation of-stresses described. A choice of a suitable firlite 

element matrix displacement method is discussed. The finite 

element model for graphite under multiaxial stress,is developed 

and equations governing the stresses, strains and deformations 

of graphite components/time are presented for plane strain 

and axi-symmetric cases. Computer programs are described which 

solVe the equations, stepwise in time, advancing in suitable time 

steps and-using always the stresses from previous time interval 

to calculate the current creep strain increments. 

. 	Two versions of the finite element program _have been developed. 

One version is based on Gaussian elimination (direct-band program) 

the other on the Gauss-Seidel iterative procedure (iterative 

program) to solve the system of equilibrium equations for the 

whole structure. For graphite components in a reactor in general, 

temperature and neutron dose distribution and material properties 

all vary in space and time. With particular reference to these 

changes, the solution techniques (programs) were compared. Other 

influences on the stability of results, such as the choice of 

time step, mesh size and pattern were also studied. Some 

conclusions regarding the relative suitability of both solution 

techniques are drawn. 

The stress analysis of three more complex graphite components 

has been attempted: a hollow rod fuel pin under temperature tilt, 

a teledial fuel pin and a multichannel graphite block. The 

results are presented and some conclusions are drawn regarding 

the stress levels and suitability of the particular graphite 

components. Also desirable techniques of providing mesh data and 

temperature, neutron dose and material properties changes with 

time when solving complex large size problems are described. 

Finally some suggestions for further work on reactor graphite and 

other time dependent problems are given. 
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1. INTRODUCTION 

In the past twenty years graphite moderated and gas cooled 

reactors of different types 'mire been developed, designed and 

built in a number of countries. Most of early graphite reactors 

have been built in United Kingdom and France and use carbon 

dioxide as coolant and graphite moderator blocks fueled with 

, natural uranium metal clad in magnesium/aluminium alloy, called 

Magnox. In the United Kingdom a second generation of Advanced 

Gas-cooled Reactors (AGR), fueled with slightly enriched uranium 

oxide, clad in stainless steel and also cooled with carbon 

dioxide is at present being built. 

The current efforts in the development of graphite reactors, 

in Europe and America are however focused on High Temperature 

Gas Cooled Reactors (HTR) using graphite moderator and ceramic 

fuel and cooled by helium. High Temperature reactors were 

_ designed with the aim of the developing an advanced converter 

reactor with a high thermal efficiency and good conversion ratio, 

which should be at reasonable costs suitable for commercial 

power stations. As far as the family of graphite power reactors 

is concerned HTR's are also to some extent an extension of work 

done on Magnox and AGR power reactors and much previous 

experience can be utilizied eventhough the work has been actually 

in part carried out simultaneously. One of the key advantages 

of HTR's is the use of improved graphites as moderator and core 

structural material in the absence of any metallic canning or 

structure within the core. Thus the outlet coolant temperature 

is not strictly limited and it is possible to raise it to 

900°C or more making possible also the direct cycle application 

using gas turbines. 

The HTR has been developed since the late fifties in the USA 

and Europe and some prototype reactors have been built. In 

Europe most of work has been done or sponsored by the Dragon 

Project, established in 1959, in which 12 European countries 

take part: Austria, Denmark, Euratom-countries, Norway, Sweden, 

Switzerland and the United Kingdom in cooperation with the USA 

8. 
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designer of the HTR, Gulf-GA. The Dragon Project is centred 

at the Atomic Energy Establishment Winfrith, England, where 

the 20MW prototype HTR, Dragon, has been in operation since 

August 1964. At present, further studies and the design of a 
full scale commercial HTR.are being carried out by the Dragon 

Project and also by some large design consortia in the UK 
(British Nuclear Design and Construction Ltd., The Nuclear Power 

, Group Ltd) and elsewhere (e.g. Brown Boveri Cie, Baden, 

Switzerland). • 

At Imperial College in the Nuclear Power Section, the 

research work on the stresses in the reactor graphite has been 

going on, for a number of years under supervision of Dr.J.L.Head 

and supported by the Dragon Project, starting with the stress 

analysis of Hagnox and AGR graphite blocks and analysing at 

present different graphite components of HTR. 

The irradiation of graphite by high energy neutrons causes 

the carbon atoms to be displaced from crystal lattice sites. 

This damage to the crystal structure causes changes of the 

physical properties of the graphite and also causes dimensional 

changes (growth or shrinkage), termed usually as Wigner strains. 

The magnitude of dimensional changes depends on several factors 

including the graphite temperature, the neutron dose and energy 

spectrum. Also, due to the elevated temperature of the graphite, 

the material will expand causing the thermal strains. In the 

reactor the graphite components will be subject to temperature 

gradients and dose variations apd therefore spatial variations 

of Wigner and thermal strains. Stresses will develop, analogous 

to thermal stresses in a body which is not at a uniform temperature. 

The stresses in the graphite components will be modified by an 

irradiation activated creep mechanism. 

If the reactor is shut-down during the operation.and the 

core is cooled to•the uniform temperature the effect of 

differential thermal strains vanishes and a new stress distribution 

is established. The stresses with the reactor shut-down (cold) 

are termed In this thesis 	'residual stresses to distinguish them 
.1 
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from the stresses with the reactor at power (hot) called 

operating stresses. 

The calculation of stresses in a number of graphite components 

of different reactors have been performed at Imperial College 

by various authors C1,2,3,4,5,6,7,8,0 over a number of years, 

however all of the analyses have been one-dimensional and use 

numerical integration computer codes. 

This work is an attempt to develop and apply the method 

used in these one-dimensional stress analyses, to analyse the 

time dependent stresses and strains in arbitrary two-dimensional 

graphite core components using the finite element matrix 

displacement methods. Next, the aim is also to develop the 

corresponding computer programs and demonstrate the validity of 

the finite element model. 

In Chapter 2 of the thesis a short description of the core 

of High Temperature Reactors is given together with basic reactor 

data. Different forms of graphite core components: fuel pins 

and multichannel graphite blocks, currently under consideration 

for commercial HTRf s are described and shown in Fig's 2,314 in 

order to define the stress problems in the graphite core. 

In Chapter 3 the basic equations of the problem are 
established and corresponding finite element model developed 

for two-dimensional plane strain and axisymmetric cases. The 

inclusion of plane stress option and changes of equations if 

the material is only transversely isotropic are given in detailed 

form, in App.I. A 3-dimensional form of creep law proposed by 

Head [2] is adopted on the basis of theoretical considerations 

and limited data from uniaxial creep tests. This chapter also 

includes a review of previous work in the field. 

The next step in the development of the finite element model 

for graphite core components was to compare the results of the 

finite element stress analysis with earlier results from one 

dimensional analysis of'the hollow rod fuel pin using the basic 

operational data of Dragon reactor (Ch.6.1.1). When the results 

of these analysis were found to be in reasonable agreement, 
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a comparative analysis was performed, examining the accuracy 

of results, stability of solutions and required computer time 

and memory of two finite element computer programs developed 

for this purpose. One program uses Gauss-Seidel iteration the 

other Gaussian elemination to solve the system of algebraic 

equations. The iterative version of the program was found to be 

faster for the same accuracy and more suitable for further 

development. Both computer programs are discused at some length 

in Chapter 4. 
In Chapter 5 the initial calculations required by the finite 

element program for me6h generation, temperature and equivalent 

dose calculation and input of materials data are described. 

These initial calculations, and the input of materials data have 

been performed by subroutines or independent programs written 

for this purpose and information supplied to the main program. 

The stress analysis of some complex HTR core components 

has been performed using the iterative version and results are 

presented in Ch.6. The finite element model has been demonstrated 

by analysing three different reactor components: a hollow rod 

fuel pin under temperature tilt (Ch.6.2.2), a teledial fuel pin 

(Ch.6.3) and a multichannel graphite block (Ch.6.4) under 

arbitrary temperature and`" equivalent dose distribution. 

In Chapter 7, conclusions are drawn, relating to the validity 
of the chosen creep law, the comparison of matrix displacement 

methods and on the particular graphite components analysed. 

An attempt is made to outline Vie possible future lines of 

development. Only the graphite -components of HTR's have been 

analysed but the finite element model and computer programs can 

be•used in the analysis of graphite components of other graphite 

moderated gas cooled reactors. 

The finite element codes developed should in general enable 

analysis of most of the stress problems in graphite core components 

of graphite gas cooled reactors, especially the HTR. The codes 

should enable in particular the solution of the complex stress 

.? 
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cases at radial and axial core reflector boundaries with tempe-

rature and equivalent dose gradients and perturbations (Fig.4) 

not possible by earlier one-dimensional models. 

Finally it seems that some of the results of comparative 

analysis (Ch.6.2.1) using the finite element model can be.  

utilizied in the stress analysis of some other time dependent 

problems, such as time-dependent creep of concrete. Also some of 

'the peripheral programs and subroutines written for example to 

generate the mesh data for complex structures can possibly be 

utilizied in the finite element analysis of some other nuclear 

or non-nuclear structures. 



2. THE GRAPHITE CORE OF HIGH TEMPERATURE REACTORS 

2.1 The core and graThite components 

The Dragon Reactor is a graphite moderated and helium 

cooled system using enriched uranium as fuel (see for ekample 

Shepherd [163). The size of the Dragon Reactor was chosen to 

be the smallest which would adequately demonstrate the principles 

on which any HTR would depend. The reactor has a small core 

with an equivalent diameter of 107 cm and height of 160 cm and 

consists of 37 fuel elements on a hexagonal lattice, each being 
'a cluster of 7 geometrically identical fuel rods. The fuel, 
enriched uranium in the form of coated particles is placed in 

graphite cartridges, filled inside with graphite filler pieces 

and surrounded outside by graphite fuel tubes in the form of 

hexagons (Fig.2). The 20MW of heat produced is removed by helium 

which enters at the bottom of -Lae core at3500C and emerges at 

750°C, cooling the fuel elements by passing through the core 

along trefoil coolant channels. 

Many types of fuel elements have been constructed and tested 

in the Dragon core and series of data were obtained about core 

materials, operational conditions and reactor performances. 

One of the question of primary importance is the choice of a 

suitable graphite. The earlier reactor graphites with low 

permeability - to prevent the escape of fission products into 

coolant channels - show a high rate of dimensional change 

(shrinkage or growth) and anisotropic behaviour under irradiation, 

undesirable for strain/stress buildup. A major change in 

development occured in 1961 when the concept of coated particle 

fuel was adopted and considered to be more suitable than 

previously examined fuel, emitting fission-products and coupled 

with an expensive fission product purge system (see for 

example Smith [1i3 ). As a consequence new types of reactor graphites 

with higher permeability were developed - which proved to 

undergo more moderate dimensional changes under irradiation 

and had a higher degree of isotropy. One of the improved graphites 

13. 



is pressed Gilsocarbon graphite used as material for all 

the graphite components analysed in this thesis. A detailed 

account of reactor graphitec analysing their crystalline 

structure, the process of manufacture and their behaviour 

in reactor environments is given by Head [2]. 
After completion of the design and construction of the 

Dragon reactor, the Dragon Project turned its attention to 

large scale power reactor applications (see Lockett iHosegood [113). 
Different fuel-cycles and core configurations for a full scale 

commercial power HTR have been studied. Low - enrichment 

uranium cycles were found to be attractive for the HTR, 
Preliminary design studies for this fuel cycle involved strongly 

heterogeneous core arrangments in which the fuel was concentrated 

in channels of about 30 cm diameter in a fixed graphite 

structure. However, subsequent studies of the low -*enriched 

uranium version related to a more homogeneous core arranamant 

which appears in most respects to be superior to the hetero- 

geneous arrangement. The core of the homogeneous reactor (Fig.l) 

has the moderator built in block form with the fuel carried 

within the blocks in a number of fuel pins placed in individual 

coolant channels about 6-7 cm in diameter to form robust fuel 

element assemblies. The multichannel graphite blocks are changed 

when fuel is changed and the problem of the long term dimensional 

behaviour of graphite does not arise. This form is capable 

of a high thermal power density with relatively modest fuel and 

graphite temperatures. 

Three proposed types of fuel pins: a hollow rod fuel pin, 

q tubular interacting fuel pin and a teledial fuel pin are 

shown in Fig.?_. Next, two proposed types of multichannel 

graphite blocks in the form of pentagon and hexagon are shown in 

Fig.3. These fuel pins and graphite blocks are being-now 

considered for commeltial high temperature reactors. 

In Fig.4 typical shrinkage, temperature and neutron dose 

data at the end of fuel life in the core of a commercial HTR 

are shown. The attention of the•stress analysts is centred 



especially at the core - reflector boundary regions with 

substantial temperature and equivalent dose gradients. 

- Some basic reactor data of a commercial homogeneous HTR 

are given in Ch.2.2. 

2.2 	Basic reactor data 

'2.2.1 	Dragon reactor 

Thermal power of the reactor 

Core dimensions 

20 MW (1) 

107 cm dia.x 160 cm high 

Lattice pitch 6.35 cm 

Radial power averaging factor 1.3 

Axial power averaging factor 1.16 

Average heat rating of rod 482,6 W/cm 
Helium inlet temperature 350°C 

Helium outlet temperature 750°C 

Number of fuel elements 37 
Number of fuel rods per elements 7 

Assumed basic parameters in the calculations of stresses of 

a Dragon reactor fuel pin (Fig.2): 

Inner radius of fuel tube, 	2.22 cm 

Outer radius of equivalent cylinder 

(calculated) 	 3.12 cm 

2.2.2 A typical homogeneous core of a commercial HTR 
tl 

Thermal Power' - 	1500 MW 

Mean core power density 	6 MW/m3  
Mean fuel rating 	60 MW/tonne U 

Mean burn-up 	 72000 MWd/tonne U 

Fuel lifetime 	1200 days 

Peak fast neutron dose in fuel 	4 x 1021  n/cm2  (Dido-Nickel BO 
Mean outlet coolant temperature 	800°C 

Peak systematic fuel temperature 	1300°C 

15. 
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FUEL PINS 

Hollow rod fuel pin 

Inner radius 
	 2.22 cm 

Outer radius (without considering the ribs) 
	

3.12 cm.  

Teledial fuel pin 

Inner radius of fuel pin (coolant channel) 	0.9335 cm  

Outer radius of fuel pin (without considering 

the ribs) 	 2.9365 cm 

Outer radius of fuel pin across the ribs 	3.3465 cm  

Radius of fuel holes 	 1.935 cm 

Diameter of fuel holes 	 1.203 cm 

Number of fuel holes 	 8 

GRAPHITE BLOCKS 

Pentagon graphite block 

Approximate dimensions 

one side of pentagon 	28 CM 

maximum dimensions 	43 CM 

no of coolant channels 	16-19 

diameter of coolant channels 	6-7 cm 

Hexagon graphite block 

Approximate dimensions 

one side of hexagon 

no of holes 

dia of holes 

20-3o cm 

30 cm 

20-30 

6-7 cm 

16. 



Fig. 1 

630 MW (e) HOMOGENEOUS HTR 

1. Concrete Pressure Vessel 
2. Core/Reflector Structure 
3. Boiler 
4. Circulator 
5. Refuelling Machine 
6. Coolant Inlet Plenum 
7. Coolant Outlet Plenum 
8. Thermal Shield 
9. Core Support Stand-off 

10. Fuel Storage/Helium Purification Pod 
11. Refuelling Stand Pipe 
12. Control Rod Guide Tube 
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PENTAGONAL BLOCK 	 HEXACOMA-L BLOCK 
Fig. 3 

MULTICHANNEL GRAPHITE BLOCKS AND 

PART PLAN OF A HTR CORE 
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3. THEORETICAL ANALYSIS 

3.1 Introduction and review of previous work 

The early work at Imperial College on the analysis of the 

stresses in the moderator graphite of a nuclear reactor 

was concerned with the so-called one-dimensional stress model. 

, The stresses and strains were calculated for a state of genera-

lised plane strain assuming axial symmetry for graphite components 

of cylindrical shape. The mentioned one-dimensional analyses 

of stresses are all based on a step by step method of solution 

similar to that proposed by Mendelson, Hrischberg 4Manson [131 
and since used by many authors for solution of problems involving 

thermal creep (see for example Smith [14] ). This method of 

solution was adapted by Head C2j to analysis of graphite stresses 
and is given in more detail .in Ch.3.3. The main assumption in this 

approach is that the graphite behaviour in reactor environments 

is equivalent to the response of a Maxwell viscoelastic model, 

with space and time dependent properties. It is assumed that 

the strain tensor can be separated into an elastic strain tensor 

related to the stress tensor by the Hooke's law and a nonelastic 

strain tensor consisting of thermal, Wigner and creep strains 

(Ch.3.3.2.3). The basic equations of equilibrium, compatibility 

and stress-strain relationship are derived and solved for 

stresses in terms of the non-elastic strains and elastic constants 

in an integral formulation. These equations are then solved at 

suitable time intervals. The thermal and Wigner strains are 

estimated at each time interval directly from experimental data. 

The incremental creep strains at the current time interval are 

always found from a relationship between the creep strain rate 

tensor and the general stress tensor (a flow rule) by iteration. 

The total creep strains at each time interval are found by 

summation of incremental creep strains over the previous and 

current time intervals. 

On this basis, the first computer programs, named later as 

Nessan I and II, were developed by Sockalingam pi1 for the 

21. 
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calculation of stresses in the Magnox reactor moderator blocks 
and by Barnes [8] for the AGR moderator blocks. These programs 

were followed later -by Nessan III, developed by Jezernik [3] 

and Hassan developed by Alujevia N for the calculation' 

respectively of the stresses in the hollow rod and tubular 

interacting fuel pins (Fig.2) proposed for the HTR. 

The early programs Nessan I and II calculate the stresses 

with the reactor at power (hot) at a particular position in core. 

In Nessan III the calculation of stresses at any position along 

a particular channel and calculation of stresses with reactor 

shut-down (cold) was made possible in a single run. Additionally 

*the effects of temperature and neutron dose on thermal conductivity, 

the temperature dependence of the creep rate-and the influence of 

fuel rating changes on the temperature distribution during the 

lifetime of the reactor core were considered. The same features 

were adopted later in Hassan; Thus with Nessan III, a study of the 

spatial variation of the stresses in the reactor core became 

possible, giving an indication of the areas where the highest 

stresses occur. The stresses with the reactor shut down are 

usually more severe than stresses with the reactor at power. 

All three Nessan programs and Hassan code have -built-in temperature 
routines i.e. the temperature distribution is calculated successively 

for each dose interval. 

The value and validity of Nessan programs is limited, by 

the assumptions of plane strain and axial symmetry, to the central 

region of a reactor core with flat radial flux and temperature 

distribution and only low axial gradients of flux and temperature. 

On the other hand Nessan programs are comparatively fast, so 

far as computer time is concerned, and results relatively 

accurate. If used together with more elaborate computer codes, 

Nessan programs could be valuable in the first estimations of 

the regions with highest stresses and for comparison of the 

behaviour of different types of graphite, especially on account 

of the computer time economy. 

The aim of the analysis described in this thesis was to 

develope a mathematical model and write a computer program for 

a general two-dimensional case (plane stress/strain and 
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axi-symmetric geometry) with, for example, non-symmetric flux 

and temperature distribution and for complex geometrical shapes 

like a multi-channel block or the teledial fuel pin (Figs.2,3). 

This program should enable a more detailed analysis of the stresses 

in graphite moderator cores, in particularl-  at radial and 

axial core boundaries where temperature and flux tilts usually 

have the highest values. The finite element approach was chosen 

'as a method of solution as the method offers many advantages 

as discussed later. Finally some assessments, conclusions and 

proposals for father work are made. 

3.2 The finite element method 

3.2.1 A brief review of work on the finite element method 

It is well known that by the use of classical mathematical 

formulation of a problem only a limited number of engineering 

field problems can be explicitly solved. Attempts to formulate 

and solve explicitly complex problems often either fail or lead 

to sophisticated mathematics and/or trivial solutions. 

The finite element method can be regarded as a suitable 

answer and a practical engineering approach to the solution of 

complex field problems. One of the main advantages of the 

method is the piecewise continuous field definition enabling 

irregular boundaries to be simply fitted. The credit of 

approximating a continum by a number of elements with multiple 

connecting points goes to Turner at al [15j in 1956, Clough [i6 
in 1960 and Arsyris Ethi, 1955. 

It will be beyond the scope of this work to give a detailed 

account of the development of the finite element method since it 

was introduced. It is possible however to state that most of 

the problems to which it has been applied are of the structural 

solid mechanics type and that major advances occured in the 

formulation of the approach the introduction of different elements 

and the developments of various computer techniqueifor solving 

the system of equations for the whole structure. 
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In the early sixties, the basic two-dimensional finite 

element programs using for example Gaussian elemination or the 

Gauss-Seidel iterative procedure to solve for nodal displacement 

have been applied extensively to elastic problems (see for 

example Zienkiewicz El63 and Wilson [1°1) Thus today the elasticity 

problems seem to be covered in considerable detail. The 

observation that if the total number of degrees of freedom 

associated with an element is increased, then equal accuracy can 

be obtained with fewer degrees of freedom for the complete 

structure leads to the introduction of more complex (isoparametric) 

elements. Triangles and tetrahedra with nodes placed at midsides 

were introduced by Veubeke [262, and Argyris [23-3 , respectively. 

.Next, the isoparametric curved type elements were introduced 

(see for example Ergatoudis, Irons Zienkiewicz [221 ) enabling 

a close boundary representation with a smaller number of finite 

elements. In the recent past and at present the use of finite 

element method is rapidly being extended into the nonstructural 

fields of fluid mechanics, heat transfer etc, and to some more 

complex structural problems of creep, plasticity and dynamics. 

One of these extensions is the development of the finite clement 

model for reactor graphite components. 

A discusion of work on nonlinear problems of creep and 

plasticity and a review of work on irradition induced creep 

of reactor graphite is given in Ch.3.3.1. 

3.2.2 The basic principles 

The finite'element method is a general method of structural 

analysis in which a continuous structure is replaced by a finite 

number of elements interconnected at finite number of nodal 

points (Figs 9,10,11). Approximations are made concerning the 

behaviour of the elements in an attempt to approximate to the 

behaviour of the continuous structure. To obtain a complete 

solution the conditions of displacement compatibility and 

equilibrium have to be satisfied throughout. The equilibrium 
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condition has to be satisfied within an element and over all 

the elements of the structure. 

Assuming elastic behaviour of the structure (material) 

the system of equations for overall equilibrium of the structure 

will be of the form: 

[1(.1 	.1.(6 = {111 
	

(3.1a) 
• or 

[ 	b} 

	
(3.1b) 

where K is termed _ the stiffness of the complete structure 

and can be found by systematic addition of the stiffnesses of 

all elements in the system. The stiffness of a typical element 

is an expression for the corner forces resulting from unit 

corner displacement. 

bl 
• 

n 
is the system of nodal displacement of the structure and 

RI 

are the external forces by which the structure is loaded 

The system of equations (3.1) can be solved once the 

prescribed support displacements have been substituted to 

prevent rigid body movements of the structure. Without a minimum 

number of prescribed displacement it is impossible to solve 

this system, because the displacement cannot be uniquely determined 

by the forces in such a situation. 

Once the system of algebraic equations (3.1b) 16 solved 

and the displacements of all nodal points of the structure 

calculated, using the strain/displacement relationship and 

stress/strain relationship within each element, the stresses in 

each particular element can be calculated. 

R
n 
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The basic principles of the finite element method are well 

established (see for example Zienkiewicz 1.11 and Przemienicky 

[23]), however, in this thesis the basic formulation of the 

method is 're-stated, with the modification necessary when applying 

the method to the solution of (time dependent) problems of 

graphite core component analysis. 

3.3 Finite element model for the time dependent stress 

analysis-of graphite core-components- 

. 	..... 

3.3.1 Introduction 

When graphite is irradiated with high energy neutrons, 

carbon atoms are displaced from lattice sites. This damage to the 

crystal structure causes changes of the physical properties 

of the graphite and also causes dimensional changes (growth or 

shrinkage). The magnitude of the dimensional changes depends on 

several factors including the graphite temperature and neutron 

dose and energy spectrum. In recent years, considerable progress 

has been made towards understanding the mechanism of radiation 

damage in graphite. A large volume of experimental data has 

been accumulated on the effects of neutron irradiation on the 

bulk dimensions and properties of various polycrystalline 

graphites ( see for example NetleygMartin [241 , Everett Graham 

[25] and Blackstone et al.[26] ). Due to the elevated temperature 

of the graphite the material will also expand causing therefore 
ti 

thermal strains. The magnitude -of thermdl expansion coefficient 

depends on temperature and neutron dose. 

In a nuclear reactor core, the graphite components will be 

subject to temperature gradients and to spatial variations of 

neutron energy spectrum. There will therefore be spatial 

variations of the dimensional changes and thermal strains. 

Stresses will develop, analogous to thermal stresses in a body 

which is not at a uniform temperature. The stresses in the 

graphite components will be modified by an irradiation - induced 
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creep of the graphite. 

With the further development of graphite moderated reactors 

the irradiation induced stresses in the graphite components 

become a subject of increased attention. Most of the stress 

analyses of graphite components up to the present day used 

numerical integration methods of solution or finite difference 

approximations. One of more significant contributions and also 

'the earliest published analysis to take account of radiation 

creep was that of Cornwall ?, Jobson (-2] . In this analysis 

the graphite block was regarded as a long thick-malled cylinder 

with axi-symmetric damage flux and temperature distributions 

and with negligible axial gradients. The transient creep was 

neglected (the graphite was regarded as a Maxwell material) 

but the steady creep was taken into account by the use of 

hereditary integral. The use of the hereditary integral means 

that this method of analysis cannot take into account the 

temperature dependence of the material properties. Witt kGreenstreet 

[4 analysed the stresses in multichannel graphite blocks of the 

American Experimental Gas Cooled Reactor (EGCR), which are not 

axi-symmetric, using a finite difference method. This analysis 

also assumed that the blocks are long and axial gradients of 

damage flux are negligible. The temperature variation in the 

block and the effect of radiation creep were however neglected. 

Very recently Chang &Rashid 253 developed a finite element 

viscoelastic model for graphite materials in irradiation 

enviromments. In their approach, the field equations are derived 

by the aid of Laplace transform using a constitutive equation in 

hereditary integral form for each element where the neutron 

flux and temperature fields are assumed to be locally uniform. 

This follows the classical approach to the solution of visco- 

elastic problems in which the- material elastic moduli_in the 

elastic solution are replaced by the appropriate viscoelastic 

moduli (corespondence principle). 

Finally the development of finite element methods for the 
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solution of the problems of thermal creep and plasticity, should 

also be mentioned since these problems have some similarities 

with finite element analysis of reactor graphite. One method 

which emerged in recent years for the solution of elastic-plastic 

and thermal creep problems is the so-called method of initial 

strain. This method is based on the idea of modifying the 

equations of equilibrium so that the elastic equations can be 

used throughout on the left hand side of the equations (3.1a). The 

development of the matrix equations has been attributed to 

Padlog et al, Argyris et al, and Jensen et al, by Narcal 

Using this approach Greenbaum and Rubinstein [31] developed a 

direct finite element program for creep analysis of some 

axisymmetric bodies. In their work the elastic solution is first 

obtained (at the beginning of the calculation). Using these 

stresses the creep strains for a small time interval are computed. 

These are then regarded as initial Strains for the next time 

interval and are included in the evaluation of the nodal 

displacements and element stresses and strains. The solution for 

the next time increment proceeds in the same manner. The basic 

assumption used in this approach is that the change in stress 

during any time increment is small compared to the stress at the 

beginning of that increment. 

The finite element analysis described in this thesis is 

a development of the initial strain method for the analysis of 

stresses in graphite core components. The step-by-step approach 

used in early one-dimensional calculations of the stresses in 

reactor graphite at Imperial College, as mentioned in Ch.3.1. 

has been adopted in the analysis. 

It may be concluded, from behaviour of graphite under 

irradiation, that when subjected to uni-axial stress in a 

reactor environment, its response exhibiti the characteristics 

of a 4-parameter linear viscoelastic model consisting of Maxwell 

and Kelvin elements in series Fig. 5 (see for example Cornwall SZ. 

Jobson [21:1 and Head [2]). The dashpot forces are proportional 

to the rate of change of strain with respect to neutron dose. 

The 4-parameter model under step function loading exhibits an 
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initial elastic response, plus transient and steady creep. 

For graphite, the experimental evidence (see for example 

Perks g Simmons [32]) showed that the transient creep increment 

represented in Fig.5 by the Kelvin element is proportional to the 

stress increment, is recoverable and occurs nearly instantaneously. 

Therefore the transient creep can be taken into account'by the 

use of modified elastic constants. This is equivalent to the use 

' of a Maxwell model as shown in Fig.5, with the spring constant 

modified to allow for transient creep. The Maxwell viscoelastic 

model was chosen to represent the behaviour of graphite in three 

dimensions also, but the possible choices of three-dimensional 

model are discused later in this thesis. 

Similarly as in the one-dimensional programs (see Ch.3.1) the 

solution is again advanced by short time step during which the 

temperature distribution in the graphite component, and therefore 

material properties may, be assumed to be constant. The strain 

tensor is separated as discused in Ch.3.1. In early programs 

(Nessan etc) the creep strains at each time step were found by 

iteration. In this analysis the creep iteration proved to be 

an uneconomic proposition since it requires, due to the features 

of finite element solution techniques, an excessive amount of 

computer time (see discussion in Ch.4). The time step has been 

therefore suitably adjusted (decreased) and stresses from the 

previous time interval used to calculate the creep strain 

increments during the current time interval . The total strains 

are obtained by summation of the incremental creep strains for the 

proceding and current intervals. 

With choice of initial strain method and Maxwell viscoelactic 

model to analyse stresses in reactor graphite the remaining task 

is to modify the finite element equations, examine the suitability 

of various finite element solution techniques 

A partial creep iteration at each time step involving only 
2-3 iterations may well be a suitable alternative, since it 
will not excessively increase the computer time but will improve 
the approximations for creep strain increments (see ChM. 
This partial iteration will probably be especially suitable 
for analysis of components where the stresses change rapidly 
with time. 
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and analyse in parallel also the possible choices of three-

dimensional viscoelastic model. The problem is complicated by 

the spatial variation of temperature, due to the generation of 

heat within the graphite components and the variation with time 

of the temperature distribution resulting from the radiation 

induced changes of thermal conductivity and changes in fuel 

burn-up. The viscoelastic parameters of graphite are temperature 

dependent (see Ch.5) and therefore vary both spatially and 

with time. 

In the following Chapters, the step-by-step finite element 

model for time dependent stress analysis of reactor graphite is 

given for plain strain and axisymmetric geometry. 

3.3.2 	Plane strain 

3.3.2.1 Basic assumptions 

The basic equations are derived for plane straie(sz=const) 

and transversely' isotropic material. It is assumed that the 

z-coordinate direction coincides with the direction in which the 

graphite is pressed or extruded and that the material is isotropic 

in the transverse plane. Changes required in the equations to 

analyse plane stress problems or fully isotropic materials are 

discixbed or given in App.I. It is further assumed that creep 

occurs at constant volume. However the derivations can be used 

also if creep does not occur at constant volume and modifications 
ti 

required are discused in App.I.-Triangular elements with a linear 

displacement field are used throughout in the analysis. 

In plane strain case s = 0 or c = const. depending -on 
conditions - the structure is either restrained or free to 
move in the axial direction. The conditions with c = const. 
are usually called the generalized plane strain cage. In 
general, the graphite components in HTR are free to move in 
axial direction, therefore the equations for generalized 
plane strain conditions applly ih this analysis. 



c 11..  . c  = x/3c 	i 

cy  = 
	= c4 

--- (3.4a) 

(3.4b ) 

3.3.2.2 StrainZdisplacement relationship 

Fig.6 Triangular element 

To calculate the stiffness of a typical element the three 

components of strain within each element have to be expressed 

in terms of six corner displacement. The displacement within 

an element with a linear displacement field are uniquely defined 

by six corner displacements: 

(3.2a) u = la. + C (x - x.) + C
2 (y - yi) 1 	1 	1 

v = V. + 03  (x - xi) + C4 (y - yi) I 

where the matrix 

.3:2. 

C1 	
(3.3) 

L 
c4 

is defined in App.I. 

From the assumed displacement field the strains within 

the element can be obtained: 	 I 
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The strain displacement relationship can be written in the. form: 

ex) 
(3.5) 

  

ey 

 

    

where matrix {o} represents six nodal displacements of nodes 5-091( 

u. 

161 

	
v. 

	

3. 	
(3.6) 

u.  
J 
v.  
J 
u
k 

~vk)  

and matrix CB] is given in App.I. 

3.3.2.3 Stress/Strain Relationship 

3,3.2.3.1 The Strain Tensor 

The strain tensor can'be separated into an elastic strain 

tensor eli related to the stress tensor by Hooke r s law and a 

nonelastic strain tensor 
e.. 

(see Mendelson et al [13] ): 
Ij 

e 	n 
e.13 
. = ij e. 	3 1 + C. (3.7) 

It is further assumed that the non-elastic strain can be 

separated into a thermal stra 	Wigner strain 

3 tensor Z.andacreepstraintensorc?1.and that these 
13 	 3.3 

tensors may be calculated separately: 

n 	t 	W 	c 
X13 

= 	C.. 	4- 	6.. 	A- 	C.. 
13 	13 	13 	lj (3.8) 
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0 
‘uXy 

.)rC 

UXy, 

The total strain matrix for plane strain and transversely 

isotropic material is then as follows: 

3.3.2.3.2 Stress/Elastic Strain Tensor Relationship 

The stress tensor is related to the elastic strain tensor 

with the equation of the form: 

(3.10) 

r- -1  i where 1D is a 4 x 4 matrix ard 	andfcr 4 x 1 column 
matrices. The matrix 	varies for isotropic, transversely 

isotropic and fully anisotropic materials. In general, the 

matrix [16] for each particular case can be derived from the 

6.x 6 compliance matrix of three-dimensional elasticity. 

3.3.2.3.3 Thermal Strain Tensor 

If the- material is transversely isotropic the thermal 

expansion tensor e.. must be invariant with any rotation about 

z axis. 

The thermal strains are related to the thermal expansion 

tensor and temperature by the matrix equation: 

roti 

fc (3.11) 
01..11 

\0 
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3.3.2.3.4 Wisner Strain Tensor 

Similarly as for thermal strains the Wigner strain tensor 

e.. must be invariant with any rotation about z axis and the 

matrix equation for Wigner strains is of the form: 

(3.12) 

IJ 
The Wigner strains.te as a function of dose and temperature 

are obtained (Oh.5) directly from experimental data. 

3.3.2.3.5 The creep strain tensor and flow rule for graphite 

At present - tithe, - there is no experimentally established 

flow rule for graphite, therefore the form it might take must be 

considered in the light of the existing experimental data on 

the creep of graphite, all of which has been obtained from 

uniaxial tests. A relationship is required between the creep 

strain rate tensor and the general stress tensor (a flow rule). 

A flow rule for reactor graphite in 3 dimensions has been 
derived by Head 	. This flow rule takes account of the 

transverse isotropy of the graphite and incorporates the assumptions 

that lydrostatic (normal) stress causes no permanent disortion 

of an element and that there is no permanent volume change. 

Due to transverse isotropy, the creep compliance tensor must 

be invariant with respect to rotation about z-axis. The following 

matrix equation for incremental creep strains is obtained: 
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Where the compliances U and V are temperature dependent. The 

above 4 x 4 creep compliance matrix is derived in App.I from 
a general 4 x 4 creep compliance matrix (for 2 dimensions) 
which can be used for conditions where creep does not occur • 

at constant volume, provided the experimental data are available. 

3.3.2.4 Stress resultants and element stiffness 

The next step- is to replace the uniform stresses acting on 

the edges of the element with stress-resultants acting at the 

corners of the element. The relationship is well known and 

the corner forces expressed in terms of components of stress 

as given by Wilson [1'53 are: 

= v [BIT 	{ 
	

(3.14) 

r 	T • 
where the matrices IS} 103 	andfaifor plane stress/strain are 

derived in App.I. 

At a recent UK/Euraton Conference on Stresses- in Graphite 
Structures related to HTR Design at Berkeley_ Nuclear Laboratories 
(17-19/5/1971), England, Dr.B.T.Kelly mentioned in general 

'discusion the recent experimental evidence which indicates 
that irradiation induced creep of graphite does not occur at 
constant volume. In this analysis it was assumed that creep 
occurs at constant volume since no experimental data have been 
available indicating volume changes (see also App.I). 

xY7 
It should be noted that throughout the calculation when 
deriving the expression for stress resultants and element 
stiffness (Ch.3.3.2.4) and equilibrium equations for complete 
structure (ct.3.3.27/ ) thecmatrix [D3 is a 3 x 3 matrix 
and fej , -(6 I 2 	, (ej are 3 x 1 matrices since the 
stresses in plane x-y are evaluated first and longitudival 
stress az  afterwards as given in Ch. 3.3.2.6. The 3 x 1 {c 
matrices and 3 x 3 [D] matrix are obtained from original 
4 x 1 and 4 x 4 matrices if the third row (and for matrix [D] 
also third column) are ommited. The detailed equations 
(Ch.3.3.2.4) are derived in App.I in appropriate form. 
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Element stresses can be expressed in terms of corner displacement 

by substituting eq. (3.5) into eq. (3.10), but [D] is a 

3 x 3 matrix (see footnote previous page): 

= [DI [B] 	/E1 	 (3.15) 

Substituting (3.15) into (5.14) 

7 	. 51 [B] 4'63 A 	 (3.16) 

which is an expression for corner forces in terms of corner.  

displacement and can be rewritten in the following form: 

{51 
	

(3.17) 

where [k3 is the =6 x 6 stiffness matrix for one element 
given by: 

= [BI T  Dail  A 
	

(3.18) 

The detailed derivations are again given in App.I. 

3.3.2.5 Equilibrium Equations for Complete structure 

The equilibrium of the system of elements in plane xy for the 

complete structure is an expression for nodal point loads in 

terms of nodal point displacements. For elastic case it is 

given by the following force/displacement matrix equation, as 

defined in Ch.3.2; 

or 
= [K3 fol 

.1 



or 	

= [K3-161 - {re}} 
where 

[Ri 	+ 11Ri 

3s. 

where [K3, the stiffness matrix for the complete assembly is 

formed by superposition of the element stiffness matrices and 

N,  is here the displacement column matrix for the whole 
structure. 

In the particular case of reactor graphite the system of 

equilibrium equations for the complete structure can be written 

in the form: 

are nodal loads required to balance the nodal displacements 

due to thermal, Wigner and creep strainsfs , s 	and [eel'. 

3.3.2.6 The calculation of stresses in plane and 

longitudinal stress 

When solving the system of equations (3.1d) the non-elastic 

strains in plane x-y are evaluated first. From the known 

non-elastic strains the nodal forces required to suppress the 

non-elastic strains in plane x-y can be calculated using equations 

(3.10) and (3.11E). Thus when the system of equations (3.1d) is 

solved the total displacements are obtained for the complete 

structure. Finally the total strains are obtained from (3.5) the 

non-elastic strains are subtracted and the stresses are obtained 

for each element from the equation (3.10) i.e: 

[Di 	fc11/.} 

	

(3.20) 

where 	is the total strain matrix defined in eq.(3.9) and 

C  ‘.s 	
is the non-elastic strain matrix. 
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It should be noted that the stresses d
x 

dy  and T xy 
in plane x-y are evaluated first and axial stress is calculated 

separately afterwards as follows. 

In the case of plane strain the axial stress on the n-th 

element necessary to suppress the strain in the axial (z) 

direction is: 

, 	W 
(az)n = 1,01 (ax 	a y  )n  - E ke + ez + ez

c  
)n (3.21) 

The total restraining force in the axial direction is given by: 

= 	 -1( a  + a)  yn 	z
t 

z 
- E (c 	e

W 
+ sz)-n-1 An 	

(3.22) 
n Cx  

In the present analysis, it is assumed that the graphite component 

is free of axial restraint, the axial stress on the n-th element 

is given therefore by: 

(a ) 	
1  

z n 	Atotal n ax + cry)n - E (zt 	+ e)-1 A nS 

4.N,  (a 4. a
y
)
n 
- E

U (ez + ez + ez)n 
	(3.23) 

7,3.3 Axi-symmetric stress analysis 

The same basic assumptions apply as for plane strain case 

in Ch.3.3.2. 

3.3.3.1 Strain/displacements relationship 

The crossection of a typical triangular ring element is 

shown in Fig.6. In order to obtain the required axi-symmetric 

geometry we have to replace in Fig.6 coordinate x with r and 

coordinate y with z, considering also that the element is a 

body of revolution. The displacement in the r-z plane within the 



element are assumed to be of the following form: 

1
Clf,r - 	 C

2
(z - z.) 

(3.24) 

v (r,z) = v.1 	C
3
(r 	r.) + C4(z 	1 - z.) 
• 1   

The constants Cl,C2, C
3 

and C
4 

are of the same form as for 

plane strain case (eq.3.3) but considering the change of 

coordinates above. 

The strains can be obtained from the assumed displacement 

field: 

r• 
z 2 z 

= C4 

u_ 	
Cl 

 er  = 
r  

(3.25) 

ui 	z _ r. 
z 

	

1 	
. 1 

0 =-
-r = 	+ C

l 
+ C

2 Cl r 	2 r 
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Y = rz 
NED 

rdir = C2 + C3 Or 

Similarly as in the plane strain case: 

e  
z 

[B] 

rz 

the matrix cj is defined later and matrix [B in App.I. 

(3.26) 



3.3.3.2 Stress/strain relationship 

3.3.3.2.1 The strain tensor 

The total strain matrix is: 

ic  t ez 	 ez 

C. 
r 

tl 
ce  

r 

e 
Co  

y
e 
rz/  

(3.27) 

3.3.3.2.2 Stress/elastic strain tensor relationship 

The stress tensor is related to the elastic strain tensor 

with the equation of the form: 

c Di Lei (3.28) 

[6] is a 4 x 4 matrix and le ja
ti  

x 1 column matrix. Similar 
relationship apply for axi-symmetric case a5derived in Ch.3.3.2.3 

for, plane strain. Detailed form of equations are given or can 

be derived from App.I. 

3.3.3.3 Stress resultants and element stiffness 

Following the' derivations in Ch.3.3.2.41  similarly: 

{s} = [B]T- fa} 	• (3.29) 
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In the axi-symmetric case the volume integral has to be taken 

over the whole ring of material and: 

= 2n 
J[B]T  [1),3bil r dr dz 	(3.30) 

In solving eq. (3.30) the simplest approximate procedure is to 

evaluate [B] for a centroidal point T. and z in this case as 

a first approximation: 
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(3.31) 

  

Finally, considering eq. (3.26 and 3.27): 

 

{4 = -271 .633r = -211 

f°Sir  rid 

 

(3.32) 

Similarly as in the plane stress/strain case the system of 

equilibrium eq. (3.1d) have to be solved considering the above 

derivations. Finally the stresses are calculated in a similar 

way as for plane strain (but of course the longitudinal stress 

az 
is calculated directly form the matrix equation (3.27)). 

The matrices [I] and []T  are given in detailed form in App.I. 



COMPUTER PROGRAMS 

4.1 Introduction 

In the stress analysis of graphite components-by the finite 

element displacement method the system of simultaneous linear 

equations: 

[ilf5} = —ifRti fRi fRis (3.1c) 
or 

(3.1d) 

have to be solved for the displacementsinterms of the nodal 

forces for each time step. 

The matrix displacement methods use mainly two approaches 

for solving the system of equations (3.1d). One referred to as 

the direct approach uses Gaussian elemination technique, the 

other called iterative approach uses the Gauss-Seidel iterative 

procedure. The development of two-dimensional finite element 

programs based on both techniques has been influenced by various 

factors: the size of the problem (number of elements), the type 

of element, the required central memory and computing time. 

In the early sixties a computer program based on a modified 

Gauss-Seidel iterative technique and a direct so called 

triple-band code based on Gaussian elemination have been developed 

(see Wilson [1§3 and Zienkiewicz [lg.] respectively). It was 

soon concluded that the iterative program is in general faster 

but uses in comparison with the triple-band code more central 

memory, especially for medium and large-size problems. The 

direct triple-band program uses less central memory since magnetic 

discs are used to store the large stiffness matrices and the 

method is therefore suitable-for large-size problems. On the 

other hand the program is more complex to run. Elastic versions 

of both programs have been taken as the starting point in the 

113. 



development of the time-dependent finite element stress program 

for reactor graphite. The iterative and direct-triple-band 

program are described in Ch.4.2 and Ch.4.3. 

In the recent past another direct program has been developed 

using the front-solution technique (see for example Irons [33). 

This program has certain advantages over direct-triple-band 

approach and it seems that its solution technique is especially 

suitable for two-dimensional problems using higher order elements 

and for three-dimensional calculations. 

The first step in developing a finite element code for 

stress analysis of reactor graphite was to examine basic two-

dimensional constant stress triangle finite element programs, 

using iterative and direct techniques of solution for stress 

analysis of elasticity problems. Then both elasticity versions 

have been modified and developed into time-dependent programs, 

for plane stress/strain analysis of stresses in graphite core 

components. The results of both versions for graphite have been 

compared analysing first simple structures and then the iterative 

version chosen for the further analysis since it was considered 

to be faster and more suitable for stress analysis of particular 

graphite components. The program was named STAG (Stress two-

dimensional analysis of graphite). 

At present, different versions of STAG analyse different 

graphite core components: a hollow rod fuel pin, a teledial fuel 

pin and a multichannel graphite block. The possibility exsists 

to assemble the versions into one single program and include in 

addition an axisymmetric option which is now in its final phase 

of development. 

In the program are incorporated some parts of the subroutines 

developed in Nessan III. New subroutines (programs) have been 

written especially to generate automatically the mesh data for 

complex reactor core geometries. The subroutines are described 

in Chapter 5. 

In the following Chapters the flowcharts of both versions 

of STAG are presented and .techniques discused and compared. 
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4.2 Iterative proEram 

4.2.1 The basic theory 

The iterative method used is a modification of the Gauss-

Seidel iterative technique which in solving the system of 

equations (3.1d) involves the repeated calculation of new 

displacements from the equation: 

b(s+1) =K 	K b K-1 	(s+l) 	. . 
nn n 

 	 nil nI 

i=1,n-1 	i=n+l,N 

bearing in mind that (see eq. (3.19), Ch.3.3.2.5) 

R 	= Rtot - ,t Rt 	RW + Re 
.n 

(4.1) 

(4.2) 

where n is the number of the unknown and s is the cycle of 

iteration. 

The equation (4.1) is simultaneously applied to both 

components of displacement at each nodal point.-Therefore bn  and 

Rn'become vectors with x and y components and the stiffness 

coefficients may be expressed in the 2'x 2 submatrix form: 
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and the term k(q) represents the forces developed on element q lm 
at nodal point 1 due to unit displacements at nodal point m. 

By calculating the change in the displacement of the nodal 

point n between the cycles of iteration: 

6(s) = 6 
	b(s) (s+1) 	(s) 

n 	n (4.4) 



6 ni (s+1) 	(s) 
Kni 65. 	(4.5b) 

K  

i=n1N 

6
(s+1) = 6(s)  + p . K-1 n 	n 	nn 

Rn - 
i=1,n-1 
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the rate of convergence of the iterative technique can be increased 

by the use of an over-relaxation factor p. 
The new displacement of nodal point n is then determined by: 

6
n 	

. (s+1) = 	6(s) 	L1 6(8)  + pi 	 0.5a) n 	n 

or by substitution of eq. (4.1) into eq ls(4.4)and then eq ls(4.4) 

into eq.(4.5a): 

The optimum value of the factor p depends on the characteristics 
of the particular problem and it is usually 1.85 approximately. 

4.2.2 The program layout 

A generalized flow chart of iterative version of STAG for 

plane stress/strain problems is given in Fig.7. 

.In the initial part of program the basic data are read in 

or calculated in subroutines. The main DO LOOF(700)enables the 

calculations to be performed at prescribed number of axial 

positions in the reactor and for each crossection at a prescribed 

number of time intervals. Inside the inner DO LOOP(700)the 

equivalent dose and temperature distributions are calculated or 

read in. Then the dimensional changes (aligner strains) creep 

strains and thermal strains are calculated. 

In principle the nonelastic strains (thermal, Wigner and 

creep) are calculated at the beginning of time interval and nodal 

point loads are then evaluated considering also other external 

loads (e.g. surface pressures) if any. The gravity forces have 

been neglected in the calculation. The total stiffness arrays are 

calculated and inversion of nodal point stiffnesses (2x2) performed 

at each time interval. Before proceeding with the solution of the 

equation (3.1d) the prescribed displacements have to be considered. 
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Next, the system of equations (3.1d) is solved by iteration 

- for nodal point displacement using equation (4.5b) on a given 

tolerance. After iteration of nodal point displacements the 

stresses and strains in the xy plane with the reactor at power 

are calculated. Assuming that axial strain cz  = const,,the 

axial stress a
z 

is calculated (see Ch.3.3.2.6) with the 

,structure not being allowed to bend. The stresses with the 

reactor at power are stored to calculate the creep strain incre- 

ments in the next dose interval. 

The procedure is repeated at the next and successive time 

intervals. 

The total stiffness array, inversion of nodal stiffness and 

modification of boundary flexibilities are evaluated only once 

- if the elastic constants (E,Y ) do not vary with neutron dose 

(time). 

At prescribed time intervals the thermal strains are set to 

zero and residual stresses (reactor shut down) calculated. In this 

case also the total stiffness array, inversion of nodal stiffnesses 

and modification of boundary flexilibities need not be revaluated: 

Only nodal forces at the right hand side in the system of equations 

(3.1c) have to be modified and the system solved again. 

The total creep strains at each time interval are obtained 

by summation of the incremental creep strains over the previous 

and current time intervals. In the early Nessan programs 

(see Ch.3.1) the incremental creep strains occuring during a time 

interval are obtained from a re'lationship between the creep 

strain rate tensor and the general stress tensor by iteration. 

The finite element method however requires a considerable amount 

of central processor time and the creep strain iteration will 

prolong the required time to an untolerable value. If creep 

strain iteration is performed it means that the iteration of 

nodal point displacements will have to be performed after each 

creep strain approXimation and the number of iterations of nodal 

point displacements will be higher by a factor equal to the 

number of creep iterations. ghu.s the creep strain increments have 
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been calculated without iteration using the stresses from 

previous interval and chosing a short dose stop. Thus for 

example a dose step equal to a half of dose step used in Nessan III 

calculations gave an adequate accuracy, without iteration 

(see also Ch.6). 

Since a non-elastic time-dependent calculation requires 

substantially more computer storage than elastic analysis, the 

central memory requirements of the program have been reduced, by 

rewriting also the basic elastic version. Some variablesl for 

example thermal strains and differences between x and y 

coordinates of triangles, normally calculated once and stored 

in the form of arrays have been changed to a single constant 

form and values are calculated 3 times in the program when 
required. This increases marginally the computer time but 

reduces the central memory requirements. For problems with 

large number of elements it is of advantage to read from tape 

or cards the mesh data (once) and temperature and equivalent dose 

distribution at each time interval and to prepare the mentioned 

input data by separate programs. If mesh, temperature and dose 

distribution data are read in from tapes or cards the capacity 

of program to analyse the problems with a larger number of 

finite elements is substantially increased. 

4.3 Direct program 

4.3.1 The basic principles 

The - direct methods of solution differ from iterative techniques 

• in solving the system of equations (3.1d): 

(3.1d) 

The system of equations (3.1d) can be solved also by 

calculating the stiffness matrix NI and its inverse for the 

complete structure. However the size of matrix [K] and its inverse 
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depends on the number of elements and nodal numbers of the 

structure and [-K] and [KT' have to be stored in central 

memory. Therefore the number of elements of the analysed structure 

is limited by the available computer central memory and further 

the inversion of large size matrices consumes considerable 

computer time. To overcome the limitations imposed by the size 

of the available central memory, the direct approach has to be 

suitably modified. Therefore the principle of solving the system 

of equations (3.1d) by a direct method is to proceed with 

solving the system in sections, considering always the coupling 

effects between the two adjacent parts of the structure. The 

'matrix [KI and its inverse [V for the complete structure need 

not to be built and stored in the*central memory and structures 

with much larger number of elements can be considered. 

In one of the direct displacement methods considered in this 

analysis and sometimes referred as tri-band method, the complete 

structure is divided into a number of elemental regions (Fig.9) 

called partitions. The matrix K and its inverse are calculated 

for each region and stored on magnetic_disc. The calculation 

proceeds from one elemental region to the other and the coupling 

effects between adjacent partitions are always Considered and 

stored in central memory. Except for the matrices [K] in the 

first and last partitions, every matrix is connected to two other 

matrices only. This partitioning is known therefore as tridiagonal 

i.e. partitions are connected in series. 

It can be seen that if the elements of a structure are 

numbered in a suitable order all non-zero elements will lie 

close to the matrix diagonal or the matrix will have a narrover 

band. For the same number of equation this will require less 

solution time and central storage. 

The system of matrix equations (3.10-can be written in a 

triadiagonalized form as follows: 
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The first two matrix equations are: 

pca[61)  [c;11.5; 
	

(4.7) 

ci j.{6.11j 	[..c:4[ 'III = 'II 	. 	(4.8) 

From the first equation: 

= 	(R 

 

(4.9) 

 

and substituting in the second gives: 

(KI;1 4cTN-Ig-1  
By defining new symbols: 

=([-Ki;1 	[Ig-1  
-611 DC\ -1.[RI1  

  

  

 

(4.1o) 

  

 

RI'RII,RIII 	
RN are the nodal forces at the right hand 

side of eq. (3.1d). 



equation (4.10) may be written: 

(4.13) 

The process of substitution and elemination.goes on -

until the last row equation is reached. The displacements 

in the last partitions are then found from the equation: 

f
6i)I = [-gN3. RN 	 _0.14) 

Using the equations of the form (4.9) the displacements -
for the whole structure are found by the process of back-

substitution. For the N-1 partition thus: 

= [-KN-] 1 	kN--1\-1  VC11-11'W 

	
(4.15) 

and-similarly in sequence the displacements for other partitions 

are obtained. 

4.3.2 The proGram layout 

A generalized flow chart of the direct version of STAG for 

plane stress/strain problems is given in Fig,8. 

The initial part of the program is to some extent similar 

to the corresponding part of iterative version. Additional input 

data are required to divide the structure of elements into 

partitions. The essential difference in comparison with the 

iterative version is in assembling and storing the total stiffness 

matrix for the complete structure and in solving the system of 

equations (3.lc,d). 

After the calculation of nodal point loads the stiffness 

matrices of partitions are formed, the prescribed displacements 

introduced and matrices stored on magnetic disc. The system of 

equations (3.1d) is solved in subroutine SOLVE for displacements 
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by Gaussian elimination. Finally the strains and stresses are 

calculated in the main program with the residual stresses as 

an option. 

The flow chart given in Fig.8 includes the creep iteration 

option which could be included into the iterative version also. 

However in the present analyses of the structures with a 

large number of elements (teledial, graphite block) creep 

iteration has not been used since it has been considered to be 

too time consuming. Similarly as in the iterative version a 

dose step equal to a half of dose step used in Nessan III 

calculations gave an adequate accuracy (see Ch.6). • 

If the elastic constants (E,Ne) do not vary with neutron 

dose (time) only the nodal forces at the right hand side of the 

equation (3.1c) have to be modified at each time step and the 

stiffness matrices of partitions need to be calculated assembled 

and stored on disc only once. Also in subroutine SOLVE the 

forward elimination is performed only once and the triangulated 

form and the necessary multipliers are stored so that for each 

new time interval, with a new set of nodal loads, the 

backsubstitution can be carried out to obtain the displacements. 

Since the process of inverting a large size matrix of a partition 

is prticularly time consuming a considerable amount of computer 

time is saved in'the calculation if the above criteria is satisfied. 

If the-residual-stresses are calculated at prescribed time 

intervals or creep iteration is performed similarly only the 

nodal forces at the right hanclhside of the equation (3.1c) have 

to be modified and the already known stiffness matrices for the 

particular time interval can be utilizied. Next in subroutine 

SOLVE again, only backsubstitution ca be carried out to obtain 

the displacements. 

The problem of computer storage is less critical using the 

direct version since the magnetic discs are used to store the 

stiffness matrices of the partitions. However, the central 

memory requirements of the _direct version have been reduced by 

rewriting the basic elastic version which was developed into 
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STAG similarly as the iterative version. Further, for example, 

the use of 2 magnetic disc have been dropped to simplify the 

program, but because of this the central memory requirements 

have been increased slightly. 

4.4 Ai-symmetric program 

The layout and calculation procedure of the iterative elastic 

axi-symmetric program is similar to the plane stress/strain 

code. 

A program could be developed which will include plane 

stress/strain and axi-symmetric geometry and in which most of 

the program can be utilizied by both options. The required 

central memory will remain approximately the same. 

If the axi-symmetric calculation is included into the existing 

STAG the following main changes have to be added as options 

for axial geometry: 

(1) The calculations of creep strain using a 4 x 4 compliance 
matrix (see App.I). 

(2) The calculation of nodal point loads at the beginning 

of computation ab discused in App.I. 

(3) The appropriate coordinates have to be considered for 

axial symmetry, thus r replaces x and z replaces y. 

(k) The matrix CD] has to' be defined, also some terms of 
matrix [331 and [IT and multipliers to give the 
appropriate element stiffness matrix Lid  (see App.I.). 

Considering the r-z coordinate system for axi-symmetric 

geometry some mesh generation programs and some subroutines 

for calculation of dimensional changes used in the plane 

stress/strain version of STAG can be utilized. The temperature 

and equivalent dose distribution have to be provided by separate 

programs. post of equations required to include axi-symmetric 

option into STAG are derived in Ch.3.3.3 and in App.I. 
' 



4.5 Comparison of different solution -techniques and 

conclusions 

In the calculation of stresses in reactor graphitel.in the 

most general case the temperature and equivalent dose 

distribution and material properties all vary in space and time. 

Also, the external loads (if any) may be time dependent. 

Because of these changes with time the right hand side of 

eq.(3.1c) must be modified at each time step. The stiffness 

matrix [k] for the whole structure is a function of geometrical 

dimensions and elastic constants (E,( ). Since Young's modulus 

.E of graphite normally changes with time (dose) the stiffness 

matrix DC-3 has'to be recalculated. repeatedly and its inverse 

found, at each time step. The stiffness matrix DC-2 has to be 

recalculated also if the geometrical dimensions due to nonelastic 

strains with time are large and thus the basic dimensions change 

considerably. 

If the equations (5.1d) are solved with direct triple-band 

approach the formulation of stiffness matrix [k3 and especially 

its inversion is the most time consuming process since the 

inversion of large size matrices (e.g. 40x40) is required 

(see Ch.4.3). If the iterative procedure is used only small 

size matrices of the order 2 x 2 are inverted (Ch.4.2) and the 

formation and inversion of total stiffness matrix requires 

considerable less time, however the iteration of nodal point 

displacements may well be time-consuming (depends on the 

Changes of stresses/time). As seen in'TABLE I the iterative 

procedure is in general faster than direct triple-band approach 

for the problems where the stiffness matrix [0 and nodal point 

forces have to be recalculated at each time step. 

If the elastic constants and material dimensions do not vary 

with time, the stiffness matrix Ei) and its inverse- have to be 

calculated only once, nodal point forces modified and the 

system of equations (5.1d) re-solved at each time step. 

In the direct procedure only the backward - substitution 

prodess using modified loads is performed when solving the 

58. 
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r11-1 equations (3.1d) since the values of matrix [KI and LKI 

are stored for subregions (partitions) and read from disc. 

For this particular case the direct approach may well use a 

comparable amount of time as iterative procedure. 

If the required central memory is compared between iterative 

and direct versions of STAG the difference is less marked for 

small and medium size problems but increases with the number of 

elements and nodes. Thus for example for the 605 elements 

(see Table I .)the difference in required central memory is 

appr. 10.000 words but it is still possible slightly to-reduce 

the required memory of the direct program for simple structures 

by introducing a larger number of small partitions. For complex 

problems for example a multichannel graphite block the 

partitions have to be relatively large and it is almost impossible 

to use very small partitions. With the increased number of 

elements and nodes the central memory requirement of the iterative 

version of STAG increases faster than that of the direct one. 

A conclusion can be reached, that since the size of available 

computers has increased considerably since the early sixties, 

the central memory requirements do not represent any more a major 

obstacle for use of the iterative technique for most 2-D 

engineering problems if constant-stress triangles are used. 

For example with appr. 100.000 words of central memory available, 

graphite structures with up to approximately 1500 elements 

and 1000 nodal points can be analysed by the iterative version, 

and up to appr. 3000-4000 elements by direct tri-ple band version. 

Thus'only very complex - large size problems can not be dealt 

with the iterative program. For problems with many thousand 

elements the very large computing time required may well become 

an uneconomic proposition. 

A further factor in using either of the versions is the 

amount of input data required. The direct version requires 

considerably more effort to prepare the input data. A carefull 

numbering of the structure has to be performed due to the 

requirements of partitioning and the partitions defined separately 
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by specifying in the input data first and last nodes and 

first and last elements in each partition. For large complex 

problems this is a tedious and time-consuming task. The 

iterative method has in this respect definite advantages since 

the structure can be arbitrarily numbered and partitions are 

not required. 

It was not possible to compare fully the accuracy of 

' results and stability of solutions obtained by both methods. 

The results obtained by both version compare favourably. It is 

thought that regarding accuracy and stability of solution one 

solution has no definite advantages over the other for most 

general engineering problems particularly since the accuracy 

of results can be always improved by using for example double 

precision arithmetic for 10 in the direct method or smaller 

tolerance in iterative procedure. A comparative analysis of 

- both procedures may well be Valuable since it will point out 

the means of improving the quality of results. 



TABLE I 

Sample comparison of. iterative and direct STAG code 

Capacity of the 	Iterative 	Direct 

programs 	version 	version 

No of elements 
	610 	 610 

No of nodes 
	380 	380 

Program requirements 

Central memory 
	

40,000 wds 	30,000 wds 

Computing time required 
	

100 	250*  

An example - teledial fuel pin 

No o1 elements 	605 

No of nodes 	379 
No of time intervals 	41 

No of calculations of 

residual stresses 	4 
Computing time "required 

(Central processor) appr.1200 secs (CDC 6600) 

Values obtained on an example with 108 elements and 76 nodes 
(Fig.20). The time for direct program could be slightly reduced 
by a better choice of partitions. 

l Elastic constants (El q ) are changing in time and space. 
Iterative version used. 
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5. 	INITIAL CALCULATIONS AND INPUT OF DATA 

5.1 Calculations of the finite element mesh 

5.1.1 General 

In the analysis of a structure by finite elements, the 

structure is considered to be divided into a large number of 

small elemental regions. In this thesis triangular elements 

are considered. A substantial amount of the data required in the 

analysis consists of the co-ordinates of the corner points 
• 

(nodes) and nodal and element numbers that are associated with 

each element. The manual preparation and checking of this input 

mesh data is lengthy and tedious. 

In recent years extensive use has been made of a coordinate 

digitising table, the so called D-mac table, linked to a card 

punch. In principle the mesh data are generated by placing P 

drawing of the proposed mesh on the table and by pointing the 

D-mac pencil at the nodes of the structure. The coordinates of 

each node are then automatically recorded and punched on card 

in.  the required format. Frederik et al. [34.1 proposed a method 

*here the D-mac facility is used together with a computer program 

to generate the complete mesh data in a form suitable for use 

in direct - tri-band program. They claim that coordinates can be 

recorded to an accuracy of-10.03 cm. If the D-mac facility is 

used some manual effort is still required but complex meshes 

with difficult topological restriction can be generated. 

An alternative way is to write a mesh generation program, 

.to generate, correlate and check the mesh data required by the 

particular finite element stress program. This approach will 

be especially suitable for structures with large numbers of 

elements. 

In one technique for automatic generation of triangular 

meshes, presented by Zienkiewicz [18] 	it is sugested that the 
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structure should be divided by a number of straight lines 

and/or arcs of circles and each line should be divided further 

to give the node data. To generate the nodal coordinates it is 

necessary to define the coordinates at the end of each row of 

nodes and the spaces between nodes in each row. If unequal 

spacing of nodes is required, weighting factors are introduced. 

The calculations have to follow a definite sequence i.e. row 

after row. Finally the nodes on the lines are interconnected 

into triangles in a way that gives optimum triangles for finite 

element analysis. 

Lewis and Fullard [3.2 have described a similar 2 dimensional 

mesh generation program FEMG. - 

Different automatic mesh subroutines have been written to 

generate the mesh data for graphite core components. The 

subroutines are written to some extent in general form and can 

be used as separate programs for preparation and storing of mesh 

data on tapes or cards. An approach to be used in mesh generation 

programs for some complex two-dimensional structures is suggested 

in Ch.5.1.4. 

5.1.2 The mesh data input requirements 

The graphite•core of future commercial HTR will be built 

from multichannel graphite blocks filled with fuelled graphite 

tubes on fuel pins. At present different types of fuel pins and 

multichannel graphite blocks are studied. 

In this thesis the mesh data for two types of fuel pin, 

a hollow rod and a teledial fuel pin, and one form of multichannel 

graphite block are required. The element and node numbering 

should also satisfy the partioning scheme of the direct (tri-band) 

version of the program. The mesh routines should be capable of 

producing input data for different designs of fuel pins and 

graphite blocks without major modifications. 

.1 



5.1.3 The choice of approach and mesh generation programs 

In- theideal case an automatic - mesh program should generate 

the required data if the origin of coordinate system, the 

geometrical boundaries and the type and size of the element are 

specified previously. 

In writing the mesh generation programs the desire to 

specify a minimum of basic information about the structure to 

generate the required mesh data has been given the priority. It 

is thought that if lengthy preparation of input data for the 

mesh generation program is needed, the required man-hours may 

well diminish the potential value of the program and some other 

technique like the use of a D-mac table becomes a more attractive 

alternative. 

In the mesh generation programs developed for this work, 

the basic geometrical :boundaries and the type and size of element 

are specified. The program then calculates automatically all 

mesh data. In the case of large or complex structures, for 

example the multichannel graphite block, the mesh-is built from 

basic structural units and only the distance of the unit centre 

from the coordinate origin has to be specified additionally. 

Exceptions can be programmed separately, following again the same 

principles and calculating and defining exception areas in 

similar units as far as possible. 

The graphite tube (Fig.9) represents the simplest example. 

By defining the inner radius, the thickness of the tube and the 

origin of the coordinate system the subroutine needs only one 

further piece of information, namely the element size (or the 

number of elements across the tube thickness) to calculate the 

complete set of mesh data. The mesh pattern and element type 

is however predefined.Fig's 9,10. show the type of mesh generated 

by this program . 

Similarly, a triangular mesh for a 450  sector of a teledial 

fuel pin has been calculated (Fig.11). Most of the'nodes lie 

at intersections between radial lines and arcs of concentric 
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circles, or at intersetions between the radial lines or the 

arcs with the geometrical boundaries of the pin. Some exceptions 

are calculated separately. Mesh data for more complex geometries, 

for example a multi-channel block, have been generated using as 

a basic unit a prespecified hexagon*(Fig.12). Again, some exceptional 

areas have been programmed separately, -but as far as podsible 

these exceptional areas have been built up from similar units. 

'With all of these programmes, the mesh can be partially or 

completely refined (Fig.13) by introducing some modifications. 

5.1.4 Some conclusions about mesh generation 

It is possible - to conclude from the work of Zienkiewicz 01611  

Frederik et al.[34] and Lewis and Fullard [35] as well as from 

the work described in this thesis that the writing of automatic 

mesh generation programs for various types of structure is a 

practical possibility. It seems that complexity of geometrical 

shape is one of the main difficulties and that it will be indeed 

very difficult if not practically impossible to write a mesh 

generation program suitable for any arbitrary two or three 

dimensional structure. Therefore, for the time being it seems that 

a parallel use of automatic mesh generation programs. and the 
r. 

D-mac facility will be a suitable answer. It appears that the 

D-mac facility is especially suitable for very complex geometries, 

however automatic mesh generation is attractive for very large 

and moderately complex structures. 

In nuclear power and in mebhanical engineering in general 

a number of structures exibits a certain degree of similarity. 

For the analysis of certain types of structure by finite element 

methods, a general automatic mesh generation program which 

requires a minimum of basic input data may well be a suitable 

solution. 

/(-Another example is shown in Fig.13, which is a mesh generated 
for the analysis of the top. cap of a prestressed concrete 
pressure vessel. 
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AN EXAMPLE OF NULTIHOLE MESH 
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In the particular example of the multichannel graphite 

block, the mesh program will generate the mesh data for 

dimensionally different but similar in pattern multihole 

structures. Only a few basic data such as the outside dimensions 

of the structure, the origin of the coordinate system the,  

coordinates and diameter of holes need be given. 

The program could be used in the analysis of a number of 

other multi-hole two dimensional structures used in nuclear 

power and in mechanical engineering generally. For example, 

calandria ends, heat exchanger and condensor tube plates. 

5.2 Temperature calculations 

In the earlier one-dimensional analysis using the program 

. Nessan III the calculations of temperature have been performed 

by subroutines incorporated in the program. 

One way to provide the temperature distribution data for 

each time interval in the finite element stress analysis will 

be to include in the program a two-dimensional finite element 

code for the calculation of temperature distribution. The coupled 

program could take account of changes of graphite conductivity and 

changes of boundary conditions and could also consider long-term 

changes in power of fuel pins due to filel burn-up during the 

life of the pin. The set-up of a combined program was however 

not attempted on account - of the very long computing time and 

storage required by such a code. Thus the temperature distribution 

were calculated separately and read in as input data. 

The temperature distribution for the teledial pin shown in 

Fig.l1 was provided by Kinkead [361 and was calculated for the 

time in the life of the fuel pin when the maximum fuel temperature 

occurs. In the analysis described in this thesis, this temperature 

distribution was assumed to remain unchanged troughout the life 

of the fuel pin although the program permits the element 

temperatures to be re-read as frequently as required. 

The graphite block was assumed to be under an arbitrary 

temperature tilt. This arbitrary temperature distribution has been 
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determined by considering a temeprature distribution provided 

by P.J., Allen [470 and used in a design study on a typical HTR 

block. Thus the results presented (see Ch.6) should provide some 

indications about stresses in graphite blocks under real 

conditions in a HT.R. The temperature distribution in the graphite 

block also, was assumed to remain unchanged. 

For the purpose of comparing STAG and NESSAN III results for 

a hollow .rod fuel pin with axi-symmetric temperature distribution, 

the temperature routine TEMPR written for Nessan III, was also 

incorporated in STAG. This did not involve too great an increase 

of computing time and storage as in this case the temperature 

calculation is one-dimensional. For testing STAG under conditions 

of temperature tilt, a subroutine was written which generates 

an arbitrary temperature distribution varying sinusoidally 

around the fuel pin. 

.5.3 Equivalent dose 

The equivalent*  dose distribution has to be calculated 

within the program or read in similarly. ' 

The stresses in both types of fuel pin, the hollow rod and 

the teledial, have been calculated up to a maximum equivalent 

dose of 4 x 1021n/cm2Ni-Dido. The stresses in the graphite block 

have been calculated up to an equivalent dose of 1 x 10
21

n/cm Ni-Dido. 

The production of damage in the graphite of a power reactor is 
determined largely by the burnup of the adicent fuel, and by 
the neutron energy spectrum. Bell et al [37] proposed that 
allowance should be made for neutron spectrum variations. by 
defining an 'equivalent dose'. The equivalent dose received by 
the graphite at a point X in a reactor lattice is defined as the 
burnup of the fuel in a Calder reactor which causes the same 
number of carbon atom displacements per unit volume of graphite 
at a standard position in a Calder reactor as occur at the point X. 
Currently, the equivalent dose is expressed in pits' mcgawat - 
day per adjacent tonne (MWD/Ate) or neutrons/cm Ni-Dido. Bell 
et al give a conversion factor between these two units of 
1000 MWD/Ate lx10 °n/cm Ni-Dido. In this thesis the terms 
neutron dose or dose are sometimes used instead of equivalent dose. 
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It has been assumed that the equivalent dose received by the 

graphite has a constant value over the cross-section of all 

graphite components analysed. With modification of the computer 

program it is however possible to take account of any equivalent 

dose variation across the fuel pin. The equivalent dose was 

calculated for each time interval and dose steps in the range 

1 x 10
20
n/cm

2 
to 2 x 10

20
n/cm

2
Ni-Dido were used in the calculations . 

The dose step 2 x 1020n/cm
2 

was used in earlier Nessan III 

calculations of Dragon reactor fuel pin. 

The calculation of equivalent dose for a Dragon reactor 

fuel pin has been performed by Reed DEi3 using Monte-Carlo 

method. Reed estimated that an equivalent dose of 15x10
20

n/cm
2
Ni-Dido 

will correspond to approximately 300 days of fuel pin life in 

the Dragon reactor at power. In a commercial HTR, maximum inte- 

grated fast neutron doses of up to 25x10
20 

to.30x10
20
n/cm

2
Ni-Dido 

are expected to be received by the graphite components during 

their life in the reactor (see Fig.4). Thus the stress calculations 

in this thesis, which are continued to a dose up to 

40x10
20
n/cm

2
Ni-Dido cover adequately the life of the graphite 

fuel pins in the reactor. The value 4x10
21
n/cm

2
Ni-Dido has been 

chosen because the experimental data for graphite are known up 

to this equivalent dose. The stresses i,n the graphite block have 

been calculated up to lower dose lx10
21n/cm

2Ni-Dido and therefore only 

some characteristic results are presented (see Ch.6). 

5.4 Graphite data 

In this thesis the stresses in graphite components made from 

a pressed, near - isotropic Gilsocarbon graphite have been 

analysed. The physical properties and irradiation data for 

''since the equivalent dose is assumed to be constant over the 
cross-section of the fuel pin, we may use the term dose step 
in place of the time step. 



Gilsocarbon graphites have been assembled by Everett and 

Manzel 	. All Gilsocarbon graphite data used in this 

analysis have been taken from this reference. 

5.4.1 Thermal conductivity 

Data on the irradiation induced changes of the thermal 

conductivity of a Gilsocarbon graphite, are shown in Fig.14. 

To introduce these experimental data into the computations of 

stresses, polynomials were fitted to the data, using a least 

square curve fitting programme. Non-linear interpolation has been 

used to determine the values of thermal conductivity for 

intermediate dose values, as discused in Ch.5.5. 

5.4.2 Fuel rating changes 

Foi- hollow rod fuel Pins it was assumed that the heat 

rating falls by a factor*  2 during the time which coresponds to 

40x1020n/cm
2 Ni-Dido, comsponding to the lifetime of about 

2.5 years in the Dragon reactor. For the teledial fuel pin and 

graphite block it was assumed that the fuel rating remains constant. 

5.4.3 The coefficient of thermal expansion 

The - coefficient of - thermal exl'iansion'(C.T.E.) of graphite 

changes with temperature and with neutron dose. The variation 

of C.T.E with neutron dose for isotropic Gilsocarbon graphite has 

been given by Everett and Graham [2;1 . The C.T.E initially 

increases with dose reaches a maximum value about 14 0/o higher 

than the unirradiated value then falls approximately to the 

initial value. Since the changes of C.T.E with dose are small 

and transient they have been neglected and the data for the 

unirradiated graphite used throughout the analysis._The temperature 

711-. 

This information was originally provided by Dragon Project P+6) 
and was used in the analysis of hollow rod fuel pins to 
examine the influence of fuel rating changes on the strain/stress 
history 
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dependence of C.T.E has been taken into account by fitting 

straight lines to the experimental data for unirradiated 

graphite. The following expressions were used: 

Longitudinal direction: 

= 	6.15 . 10 6  1.92 . 10-9  (T 	500)°C 

Transverse direction: 

001, 1  = 	6.0 	. 106  1.5 . 10-9  (T - 500)°C 

5.4.4 Dimensional changes 

The dimensional changes are shown graphically in.Fig.15 

and 16. The Gilsocarbon graphite behaviour is slightly 

anisotropic but the pattern of dimensional changes in the 

transverse and longitudinal direction is similar. Polynomials 

have been fitted to the data and non-linear interpolation 

used to termine the Wigner strains for intermediate temperatures. 

as discused in Ch.5.5. 

5.4.5 Cree2 _ Data 

A summary of irradiation creep data for different graphites, 

including Gilsocarbon graphite, is given in Fig.17. In this 

analysis, a lineer variation of creep constant with temperature 

was assumed. The lower of the two lines Fig.17 was used, so 

tending to undela5timate the creep and overestimate operating 

stresses. All information about irradiation creep has been 

obtained from uniaxial tests. The choice of a three-dimensional 

creep law for use in the analyses is discussed in detail 

in Ch.3 and App.'. 

5.4.6 Elastic constants and strength of material 

Young s modulus of graphite is increased by neutron irradiation. 

Data given by Everett and Manzel show a rapid initial increase 
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(Fig.18), the modulus change then temporarily saturating at a 

value which depends on the irradiation ;temperature. 

The values of Young's modulus saturate at equivalent doses 

between 2 and 6x1020n/cm2Ni-Dido. Further substantial changes 

occur for higher doses at. temperatures between 900°C and 1200°C. 

In this analysis constant values -of Young's modullis were 

used for hollow rod fuel pins and graphite block, equal to the 

irradiated values, taking some account of the irradiation 

temperature. 

For the hollow rod fuel pin and the graphite block for 

which the temperature are lying in the ranges 750-800°C and 

675-725°C respectively only one value has been used in the 

analysis in each case since in these temperatures ranges Young's 

modulus changes little after reaching the saturated value. 

The value used in the analysis of hollow rod fuel pin was: 

E = Eunirrad. 
387 = 1.189 x 10

6
N/cm

2 
0 

and for graphite block: 

E = Eunirrad. 
44X = 1.241 x 106N/cm2  

Most of the teledial temperatures are above 900
o
C and in this 

region the Young's modulus changes substantially with equivalent 

dose not only initially, but also later in life time (see Fig.18). 

The changes of Young's modulus used in analysis with respect 

to dose and temperature have therefore been considered in a 

exact step-wise way. 

Thus, the values of Young's modulus follow closely the 

900°C and 1200°C curves interpolating later linearly between the 

curves for the high equivalent dose. 

Value of Poissons ration 0.18 was used in all calculations. 

Table II gives the approximate strength of unirradiated 
pressed GilsocarbOn graphite over the temperature range of 

interest (600-1200°C). 

.1 
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TABLE II 

Strength of unirradiated pressed isotropic 

Gilsocarbon graphite in temperature range 600-1200°C 

Direction 	Tensile Strength 	Compressive Sti,ength 

N/cm
2 	

N/cm
2 

Longitudinal 
	

1,200 	6,100 

Transverse 
	

1,400 	6,100 

5.5 The input of data and interpolation techniques 

Thermal conductivity, dimensional change, thermal expansion, 

creep rate and Young's modulus data are all functions of 

current temperature and irradiation dose (Fig.14,15,16117,18). 

In most cases the equations which describe this dependence can 

be simplified by use of linear interpolation without decreasing 

the accuracy but this is not so for changes of thermal conductivity 

and Wisner strains. 

It can be seen from Fig.14 and Fig's 15, 16 that the thermal 

conductivity and Wisner strains change non-linearly over a 

wide range of temperature and irradiation doses. A standard 

procedure to obtain the values for an arbitray temperature and 

dose by interpolating linearly between different temperatures 

and doses (this procedure is refered sometimes as double linear 

interpolation) will clearly oversimplify the changes of the 

corresponding variable. If for example the equivalent dose at a 

point in the graphite component increases from a value just below 

5 x 1020 to a value just above 5 x 1020  n/cm2  Ni-Dido-and the 

temperature remains the same 500°C, reference to Fig. 14 shows 

that linear interpolation implies a discontinuity in change of 

thermal conductivity. This is certainly an unrealistic 
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representation of the physical behaviour of the graphite and 

has an effect on the accuracy of results. The same conclusions 

apply for dimensional changes. 

In this analysis polynomials were fitted to the data by the 

method of least squares. It was found that second order 

polynomials adequately fitted the experimental curves for 

thermal conductivity (Fig.14) and third order polynomials the 

experimental curves for dimensional changes (Fig.15,16). Between 

the polynomials the values have been interpolated nonlinearly 

using Newton forwards and Newtons backwards difference formulas 

(equittions are given by Conte [411) of the second order for 

thermal conductivity changes and of the third order for dimensional 

changes, both with constant step. 

It is thought that the use of polynomials and nonlinear 

interpolation represents better the temperature and dose 

dependence of thermal conductivity and dimensional changes than 

linear interpolation. The analyses have indicated for example 

that the use of linear interpolation for dimensional changes can 

cause the stresses to be as much as 14- 3n  different from 

nonlinear interpolation for certain graphites. Further, if more 

data are available, nonlinear interpolation can be improved 

also by the use of higher` orderorder difference formulas. 

In using nonlinear-finite difference interpolation, it is 

necessary that the temperature and dose steps between the 

polynomials are constant. If the temperature or dose step are 

not constant other approaches have to be used such as Newtons 

divided difference interpolatibn (see fcgexample Noble L423 ). 



6. 	RESULTS 

6.1 	Review of analysis 

The first step in checking the finite element program 

(STAG) for graphite core components was to compare the 4:esults 

of the finite element stress analysis with earlier results 

calculated by Nessan III program for Dragon fuel tubes with 

symmetrical temperature and equivalent dose distribution. After 

results obtained from STAG showed a resonable agreement with 

the Nessan III results the comparison between results of the 

iterative and direct versions of STAG was made. The iterative 

version of STAG has been chosen for use in further analysis, 

since it was faster for the same accuracy and considered more 

suitable. Further comparative analyses of a Dragon tube with 

symmetrical loading have been performed examining the influence 

of mesh size, mesh pattern, element shape and different time 

steps on the results. After initial comparative studies the 

stress analysis of three particular more complex graphite 

components has been attempted: a hollow rod fuel pin under 

temperature tilt, a teledial fuel pin, and a multichannel 

graphite block. 

In all analyses the. equivalent neutron flux was assumed 

to be uniform over the cross-section of graphite components 

(Ch.5.3). If not stated otherwise on the graphs, 	equal dose 

increments of 1 x 10
20

Ni-Dido were used. All analyses except 

that of graphite block (calculated to a dose 10 x 20
20

n/cm
2
Ni-Dido) 

were continued to a Dido equivalent Ni-dose of 40 x 10
20
n/cm

2
. 

6.2 Analyses of hollow rod fuel pin 

6.2.1 Comparative. analysis of hollow rod with symmetrical 

temperature and e3uivalent dose distribution 

The hollow rod fuel pin with a symmetric temperature 

distribution and a constant iequivalent dose across the tube 
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has been analysed in some detail using a step-by-step method 

of solution with computer program Nessan III and the results 

show a reasonable agreement with experimental values obtained 

by the Dragon Project (see Jezernikliead 	153). The Nessan III 

results have therefore been considered as the starting point 

for the present work. 

The stress analysis has been performed for half of the 

graphite tube using two different mesh sizes (Fig.9, Fig.l0). 

A half of the hollow rod fuel pin was analysed instead of a 

narrow segment to study the influence of mesh pattern on the 

results as discused later. It is assumed that at the cross-sections 

at both ends of half ring, the nodal points on y axis are free 

to move in the y direction but restrained from moving in the 

x-direction. The mesh data have been calculated by the subroutine 

MESHR (Ch.5.l). The temperature at nodal points for both mesh 

sizes have been calculated using the subroutine TE!IPR as 

explained in Ch.5.2 but considering a maximum of only 7 points 

across the tube wall in comparison with 10-point calculation 

in Nessan III. The difference between these temperature distri-

butions can be regarded as negligible. The element temperatures 

have been calculated by averaging the node temperatures. It has 

been assumed that the temperature distribution changes with 

time due to fuel burnup and thermal conductivity change as 

discussed.in Ch.5.2 and Ch.5.4. The initial and maximum temperature 

distribution through the fuel tube is given in Fig.19. The 

final temperature distribution is almost identical with initial 

temperature distribution. 

In Fig.20 the minimum in-plane principal stress for element 

10 and a coarse meshes is compared using the direct and iterative 

codes (and some earlier values of elastic constants for Gilso-

graphite). The results are in good agreement but the-iterative 

version uses about 2.5 times less computer time. In both 

calculations the stiffness matrix for the whole structure has been 

4'111 further analyses of the hollow rod fuel pin (Fig.20 to Fig.31) 
a fine mesh (Fig.10) is always used if not stated otherwise 
on the graph. 
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formed at each time step simulating the general case that the 

temperature and equivalent dose distribution of a graphite 

component changes continuously with time and therefore the elastic 

constants change with time also. It is in this case that the 

iterative method shows a relative advantage over direct approach 

but in addition less work is necessary to prepare the input 

data for the iterative program. 

The accuracy of results is influenced by the magnitude of 

the element but the overall trend of stress changes/time remains 

similar (see Fig.2l). In the calculations with a large number of 

elements the increased influence of rounding off errors was 

'noticable and it appears that the accuracy could be improved by 

use of double precision for stiffness matrices. The shape of 

triangles with length/depth ratio close to 1:1 was found to 

give more accurate results than of those with ratios 3:1 or more. 

A mesh pattern of the type shown in Fig.9 and 10 where a number 

of symmetry lines can be drawn gave better results than a 

less symmetric mesh as indicated in Fig.9 by doted lines. 

A large dose step causes slight oscillations in the plot of 

stresses against time since the creep strain increments are in 

turn over-estimated and under-estimated as shown in Fig.22. 

The oscillations are particularly marked if the stresses change 

rapidly with time. 

A chosen set of STAG results for fine mesh and short dose 

step has been compared with Nessan III results in Fig.23,24 and 

25. The results are in good agreement particularly the hoop and 

axial stresses. It will be noted that the hoop stress as 

calculated by STAG passes through zero slightly earlier and 

finally reaches slightly lower levels than the stresses calculated 

by Nessan III. The small difference initially is probably due 

to omission of the creep iteration process in the finite element 

analysis. In the step by step calculation the stresses from the 

previous time interval are always used in the calculation of the 

current creep strain increment and this in turn causes a 

slight overestimation of the creep strain increments when the 
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stress is rapidly reducing initially, hence the mentioned faster 

decrease of stress. Slightly lower values of stresses later in 

the lifetime .(when the stress/time remains approximately constant) 

of the fuel pin are probably due to other reasons. The STAG 

residual stresses are slightly higher than Nessan III hoop stresses. 

The radial stresses calculated by STAG are higher than those 

estimated by Nessan III probably due to finite element idealization. 

'The changes of axial stress/time compare with Nessan III. results 

slightly better.than the changes of hoop stress/time. 

6.2.2 Analysis of hollow rod under temperature tilt- 

The next analysis is related to a hollow rod fuel pin under 

temperature tilt as shown in Fig.26 and prevented from bowing. 

The principal stresses across the fuel tube for cross-sections 

C
1
-C
1 
and  C2-C2 are plotted in Fig.27 for time zero. The overall 

shape of the variation of stress/radius is similar to that for 

the symmetric case but in addition axial stresses are all compressive 

on the hot side and tensile on the cooler side. With irradiation 

the stress distribution across the fuel tube is reversed as given 

in Fig.28 which relates to time int.35 ,(3.4 x 1021N/cm
2
Ni-Dido). 

Cooling down of the reactor causes the stresses to rise since the 
r. 

thermal expansion effect, which opposes the dimensional change 

_effect, vanishes. As a result, the residual stresses are always 

of the form of distribUtion shown in Fig.29, Figis.30 and 31 

illustrate the variation with time of two of the principal stresses 

for two typical elements one attlinner boundary of the tube and 

one at outer boundary (e1.25 and 408). 

6.2.3 Discussion of results 

As shown in Figs.19 to Fig.31, good results can be obtained 

using constant str.ess triangular elements providing that 

sufficient are used. The results obtained by STAG compare 

favourably with the Nessan III. results (Ch.6.2.1). 
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In a hollow graphite tube under temperature tilt and 

restricted from bowing, the operating axial stresses are very 

high at the beginning of tube-life but decrease rapidly due to 

irradiation creep and differential dimensional changes. A shut 

down of the reactor will however cause the stresses to rise 

to high values with the possibility of failure. In reality the 

graphite tubes will be only partially restricted from bowing 

and therefore the axial stresses (operating and residual) 

will have lower values than ;;hose calculated. The amount of 

bowing depends on the clearance between the tube and channel 

and the amount of bowing of the multichannel graphite block. 

It is expected that the equivalent dose tilt will have similar 

effects on the stress pattern in the hollow tube as the 

temperature tilt. 
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HOLLOW ROD FUEL PIN. 

SYMMETRICAL TEMPERATURE DISTRIBUTION, 
COMPARISON OF HOOP STRESS/TIME 

FOR COARSE AND FINE MESH (EL.10-Fig.9,EL.31-Fig.10) 
REACTOR AT POWER AND SHUT DOWN. 
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HOLLOW ROD FUEL PIN. 

SYMMETRICAL TEMPERATURE DISTRIBUTION, 

COMPARISON OF PRINCIPAL STRESSES ACROSS THE FUEL PIN 

BETWEEN STAG (CROSS-SECTION Cl-Citsee Fig.10) 

AND NESSAN III CODE. 

TIME ZERO. 
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HOLLOW ROD FUEL PIN. 

SYMMETRICAL TEMPERATURE DISTRIBUTION $ 

COMPARISON OF AXIAL STRESS/TIME 

USING NESSAN III AND STAG CODE (ELEM.19), 
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HOLLOW ROD FUEL PIN. 

NON-SYMMETRICAL TEMPERATURE DISTRIBUTION, 
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AND  C2-C2 (see Fig.10). 
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6.3 	Analysis of teledial fuel pin 

6.3.1 Basic data ane. results 

Fig.9 shows a sector of the teledial fuel pin, bounded by 

planes of symmetry and the mesh used in the analysis. TIle assumed 

temperature distribution, shown in Fig.32 was provided by 

Kinkead [36] and corresponds to the time in the life of the fuel 

pin when the maximum fuel temperature occurs (see Ch.5.2). 

The initial (thermal) stresses are shown in Figis.33, 34 and 

35, Figs. 36, 37, 38 and 39 show the distribution of operational 
and residual principal stress in four most highly stressed regions 

of the fuel pin (as indicated in Fig.11) at several times in the 

life of the fuel pin. The region with highest stresses in axial 

direction is in the rib but the other two principal stresses 

there have low values. Figs. 40,41,42 and 43 show the variation 

with time of the stresses in highly stressed elements of the fuel 

pin crossection. These graphs again show the stresses on these 

elements with fuel pin at the operating temperature and also 

residual stresses assuming that the fuel pin is allowed to cool 

to a uniform temperature. 

t. 

6.3.2 Discussion:of results 

As Fig.32 shows, the highest graphite temperature occurs 

in the ligaments between the fuel holes. With the particular 

boundary conditions used in the, thermal analysis, the region 

inside the fuel hole pitch circle is generally hotter than the 

outer region. The lowest graphite temperature occurs in the rib, 

which locates the fuel pin in the channel. The high temperature 

in the ligaments causes a moderately high compressive radial 

stress initially in these regions (see Fis.34). The high 

temperature generally, inside the fuel hole pitch circle and 

lower temepratures:in outer regions of fuel pin, cause in the 

x-y plane, compressive stresses in inner regions and tensile 

stresses in outer regions.. 

102. 
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The compressive stresses in the inner region are concen-

trated around the inner edge of fuel hole (see Fig.34). It is 

in this region (e1.488)• that the highest stress in x-y plane 

occurs. Outside the fuel hole pitch circle, the tensile stresses 

in xy plane have moderate.values (Fig.33) with a concentration 

in the corner of the rib. (The mesh used is too coarse to give 

a true indication of the peak stress). As shown in Fig.35, the 

highest axial stresses occur in the rib. 

Figs.36, 38 and 40, 42.6.how the way the principal stresses 

vary_with time in inner and outer regions. In the plane x-y 

the high compressive stresses developed around the inner edge of 

fuel hole and the more moderate tensile stresses in outer regions 

reduce rapidly in magnitude due to the combined effects of creep 

and a-differential irradiation shrinkage of the graphite (the 

shrinkage rate generally increases with increasing temperature). 

It is apparent that towards the end of the life of the fuel 

pin, the stresses in these regions change sign and a form 

of reversed stress distribution is established. 

If the reactor is shut-down, the stresses increase and high 

residual stresses of the reversed pattern are established4-, 

A routine has be'en written to calculate elastic stress (the 
pin is assumed to be at a uniform temperature) due to internal 
pressure in the fuel hole of the teledial sector. By considering 
the elastic stresses in plane. (xy) due to pressure and residual 
stresses after irradiation of the pin in the reactor and 
comparing the combined stresses with ultimate tensile strength 
(UTS) of the material, the pressure in the fuel hole can be 
calculated required to break an irradiated pin. Alternatively 
the pressure required to break a teledial fuel pin after irra-
diation in the reactor can be determined also experimentally. If 
the experimental and calculated values obtained for the required 
breaking pressure are compared some conclusions can be reached 
about the magnitude of maximum stress levels in a teledial pin 
after irradiation in the reactor. Stresses in a teledial sector 
at a uniform temperature of 20°C with internal pressure 
1 bar (=10 N/cm): were calculated for the Dragon Project 
(where they intend to perform the experiment) but results are 
not given -here. 
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an effect observed in the results of the analysis of the hollow 

rod fuel pin. 

Figs, 37,39 and 41 show the pattern of changes of principal 

stresses in the ligament regions. It is possible to notice a 

similar rapid decrease with time in the magnitude of the stresses 

and the formation of a reverse stress pattern later in life of 

fuel pin. Again high residual stresses of a reversed pattern are 

'developed if the reactor is shut down. 

Fig.43 shows the variation of axial stress for el.4 in the 

rib. Very high residual axial compressive stresses develop if 

reactor is shut down. 
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6.4. 	Analysis of a }ITR multichannnel graphite block 

6.4.1 Basic data arid results 

A half of a typical hexagonal multichannel graphite block 

as shown in Fig.44- has been analysed using a coarse mesh of a 

similar pattern as in Fig.12 with approximately 350 elements. 

The graphite block was assumed to be under an arbitrary 

temperature tilt and approximate temperatures are indicated 

in Fig.44 (see also Ch.5.2). The results presented in Table III. 

should provide some indications about stresses in graphite blocks 

under real conditions in a HTR, The assumption that the equivalent 

dose is constant accross the graphite block is unrealistic, but 

it is possible to apply, at least in part, the conclusions 

derived from the results for a temperature tilt to indicate the 

behaviour of the graphite block under a neutron dose tilt. 

Some characteristic results are presented in Table III and 

areas with maximum stresses indicated in Fig.44. In general the 

left hand side of the graphite block is hotter than the right 

hand side. In addition all outside boundary regions are hotter 

than inner regions of the block. The temperature differences in 

ligaments between the holes are moderate (5°C to 10°C). 

At time 0 the highest stresses are axial stresses, being 

compressive at the hotter left hand side and tensile at the 

cooler right hand side of the block. The highest principal 

stresses in plane develop at.the inner part of the graphite block 

along the horizontal symmetry-line. It is interesting to note 

that only relatively moderate stresses (in plane and axially) 

develop in the ligaments between the holes. (see Table III) 

The operating stresses are rapidly relaxed with time and 

it can be assumed that an axial stress distribution of a reversed 

pattern with tensile axial operating stresses at the left hand 

side and compressive stresses at the right hand side of the 

block will be established later in the life-time of graphite block. 

The principal-stresses in plane x-y are relaxed to more moderate 
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values with compressive and tensile values close to zero. 

If the reactor is shut down the stresses rise and an axial  

stress distribution of reverse pattern is established. 	[ 

t 
I 

It is possible to conclude from characteristic results 

presented; that the highest operating and residual stresses 

'in a graphite block under temperature tilt (at for.example 

core reflector boundary) are axial stresses and that the magni-

tude of these stresses depends on the temperature difference 

across block, the equivalent dose and graphite block.  dimensions. 

The axial stresses will be partially relaxed by the bowing of 

the block and it is the amount of bowing which will determine 

the magnitude of the maximum axial stress levels in the block. 

An equivalent dose tilt across the block will have similar 

effects as a temperature tilt. If the structure is already under 

temperature tilt and in addition there is a *neutron dose tilt 

across the structure of the same shape the axial stress pattern 

in the structure will be amplified. 

r. 	 fi 

P 

. 	• 
By the time this thesis was completed, the input data and 
STAG program have been prepared for very complex stress 
analyses of graphite blocks under arbitrary temperature and 
equivalent dose distribution and using a large number of 
elements (fine mesh). Thus for example mesh data for a half 
of a large hexagonal graphite block have been calculated with 
appr. 1500 elements and 1000 nodes. The block has more than 
30 holes and a part of the mesh is shown in Fig.12. The 
results of this work are commercial and are therefore not 
included. 

6.4.2 Discusion of results 



MINER  REGIONS appr  6750- 690°C  
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X 

Fig.44 
1 	 GRAPHITE BLOCK. 

TEMPERATURE DISTRIBUTION, 

HIGHLY STRESSED REGIONS (ELEMENTS 331,337,307,177), 
AND A TYPICAL LIGAMENT REGION (ELEMENT 190) 

(see TABLE III). 



TABLE III. 

OPERATING STRESSES (N/cm2) RESIDUAL STRESSES (N/cm2) 

DOSE 0 (Int.1) 	a 	a 	z a 	a 	a . 	a max min 	max min z  

	

Eum.337 	19 .1.3 -11.3 173.5 

	

331 	42.o -2617 - 27.5 

	

307 	88.3 11.6 269.7 

	

177 	-18.5 -110.9 :32617 

	

190 	73.5 - 16.1 136.8 

Dose 4 x 1020n/cm2 Ni-Dido (Int.5) 

ELEN.337 ,54.0 11.2 4o.o 29=9 -147.9 -133.5 
331 -59.5 -82.o -68.5 167.7 -114.7 - 41.0 
307 39.o 23.5 34.6 '13.6 - 51.6 -235.1 
177 -16.8 -38.8 -31.1 79.8 - 	5.9 +295.5 
190 19.0 -20.4 4.8 - 4.4 - 54.6 -132.0 

Dose 9 x 1020n/cm2 Ni-Dido (Int.10) 	.. 

ELEN.337 30.9 11.3 18.7 
331 -6o .1 -74.6 -68.1 
307 27.1 24.1 17.2 
177 -10.0 -18.8 - 4.3 
190 1.9 -18.0 -11.0 

The maximum stresses develop in el.s 337, 331, 307 and 177 and 
in each element the underlined value represents the maximum 
stress. Stresses which develop in el.190 represent typical 
value for ligament regions. 

12.0. 



121. 

7. SUMARY CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK 

In previous Chapters a finite element stress analysis model 

for irradiation induced stresses of graphite core components 

has been developed and demonstrated. It appears that by using the 

step-by-step method and triangular elements with linear 

displacement field, sufficient accuracy can be achived, provided 

sufficient numbers of elements are used. The accuracy of results 

depends on the mesh size, element shape and mesh pattern in a 

similar way as 'in elastic analysis. Creep iteration has not been 

used in the computations since the computing time involved 

makes its application uneconomic at' present. However, with the 

choice of a suitable time (dose) step, depending on the rate 

of change of stress with time, the results were found to be 

sufficiently accurate. 

For the given type of problem, a graphite core component 

with continously changing temperature and equivalent dose 

distribution and therefore with elastic constants changing with. 

time (and position) the iterative method of solving for nodal 

point displacements has been found to be faster and more suitable 

than direct band method. If the elastic constants can be 

assumed constant during the life of a graphite component in the 

reactor, the direct tri-band and iterative methods may well use 

a comparable amount of computer time since the lengthy inversion 

of stiffness matrices fOr the structure partitions (in the direct 

program) has to be performed only once and not at each time 

interval. If the iterative matbix displacement method is used 

structures with up to 1500-2000 constant stress, triangular 

elements can be analysed with the current large computers having 

approximately 100,000 words of central memory available. This 

seems to be sufficient for most (graphite reactor) engineering 

problems. Using the direct-band method possibility exists to 

analyse structure's with appr. 5000-4000 elements for the same 

size of computer. :Special program rewriting will be required for 

larger structures. It seems. that other direct methods such as the 
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front method will be more suitable for very large structures 

using a smaller number of higher order (isoparametric) 

elements. In the analysis of graphite core components it is 

however unlikely that analysis of structures with many thousand 

elements will be needed. If so, the computer time required will 

run into hours. 

At present the temperature distribution and equivalent dose 

' changes with time can be read into the program from cards or 

tapes at the beginning of each time interval and these input data 

are calculated by separate programs. It is thought that this 

arrangment makes the program more flexible since intermediate 

results can be always checked and also turn-round time is shorter 

for a short program. The mesh data are calculated by a separate 

program and read in at the beginning of the calculation. For 

long runs a restart facility could be included to enable the 

termination and restart of the calculation at any time. 

Several possible directions of further development are 

indicated by the present work. One desirable development is the 

inclusion in the STAG code of axi-symmetric and plane stress 

options for which the basic relationships have already been 

developed (Ch.3 and App.I). The partial creep iteration could 

be included as well. 

Another attractive line of development is probably the 

comparison of different matrix displacement methods for 

viscoelastic and other time.- dependent problems. It seems that 

not only the running time and central memory required but also 

the accuracy and stability of results vary for different matrix 

displacement methods. One particular matrix displacement 

method may well have advantages over others for a particular class 

of problem. 

The time-dependent analysis of graphite components in three 

dimensions will probably remain for some time to come an 

uneconomic proposition because of the large amount of computing 

time required. It is possible that some conclusions 
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from comparative analyses of matrix displacement methods in two 

dimensions could contribute to the development of the three 

dimensional work. 

The accuracy of peripheral programs which provide mesh 

data, material properties.data etc, could significantly 

influence the results. The automatic mesh generation programs and 

nonlinear interpolation of material properties data are prefered 

to manual preparation of mesh data and linear interpolation. 

In general, the level of accuracy of peripheral programs should 

be comparable or better than the accuracy of suplied experimental 

values. 

Finally some conclusions can be drawn regarding the relative 

suitability of different graphite core components. 

Stresses in a hollow rod fuel pin under symmetric loading 

are relatively moderate. A substantial temperature tilt causes 

very high axial stresses if the pin is restricted from bowing. 

An equivalent dose tilt accross the rod of the same shape as 

temperature tilt is expected to amplify the exsisting stress pattern 

in the rod. Since it is unlikely that the graphite block and fuel 

pin will undergo the same amount of bowing, the fuel pins will 

be partially restrained and the amount of possible bowing of fuel 

pin will determine the magnitude of maximum axial stresses. The 

stresses in plane (x-y) are only slightly influenced by tempera- 

ture (or dose) tilt and their values and pattern are similar to 

those for symmetric loading. The hollow rod pins are most likely 

to fail in regions of high temilile axial (residual) stresses due 

to restricted bowing. The magnitude of overall stress distribution 

for symmetric loading can be reduced by reducing the thickness 

of .the hollow rod tube wall and for non-symmetric loading by 

reducing the tube diameter. However in both cases, this is 

clearly possible only to a limited, extent due to other (for 

example reactor physics) design requirements. 

The stresses in a teledial fuel pin are substantially higher 

than in the hollow rod fuel pin. The most serious conditions in 

a teledial seem to be at inner edge of the fuel hole (e1.488,Fig.11) 
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for the temperature distribution without a temperature tilt. 

In the ribs of the teledial fuel pin very high stresses develop 

since they are normally overcooled. These very high stresses 

will however probably not cause a serious concern since they 

may cause only local cracking and can be to a large extent 

eleninated by cutting horizontal grooves into the rib at several 

positions along the fuel pin. The same conclusions can be 

applied for axial stresses in the ribs of a hollow rod fuel pin. 

A comment that may be nade is that the calculated stressesin the 

teledial, particularly the residual stresses which occur at 

the end of the fuel pin life are almost certainly an overstimate 

of the true stresses, as the reduction of pin power, due to 

burn-up has been neglected. 

For both fuel pins the residual or shut-down stresses 

are much higher than the operating stresses. 

In a graphite block under temperature tilt the axial stresses 

reach the highest values. For the time (dose) range presented the 

highest are initial axial (thermal) stresses but it can be 

assumed that the residual axial stresses are most severe after 

a prolonged irradiation in the reactor. Similarly as for hollow 

rod fuel pin it is the amount of bowing which will determine the 

magnitude of the maximum axial stress levels. Equivalent dose 

tilt of the some shape as temperature tilt will amplify the 

existing stress pattern. The stresses which develop in the 

ligaments are relatively moderate. The most serious stress 

condition will probably be represented by a large size block at 

high temperature (for example 800°C - 1000°C) and under substantial 

temperature and flux gradients. In general a smaller graphite 

block may well be more desirable from the point of maximum 

stresses but again a very small block may be in contradiction 

with the other design requirements. 

One general comment which can be made is that the stresses 

which develop in the graphite block for the temperature 

distribution assumed in the analysis are relatively moderate in 

comparison with the stresses which develop in fuel pins. 
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9. NOTATION 

A 	area of element 

[B] 	displacement/strain transformation matrix 
• 

C
1,2,3,4 

constants 

C 	C
II' 

C
N 

stiffness matrices for subregions (partitions) 

TD3 	elasticity matrix 

De 	equivalent neutron dose 

Young's modulus 

stiffness matrix for complete assembly 

KAIK1.1 stiffness matrices for subregions (partitions) 
5c3 	stiffness matrix for element 

P 	axial restraining force 

[Q] 	creep compliance matrix 

nodal force matrix 

{R} 	nodal forces to suppress displacement 

{S~J 	element corner force matrix 

[s] 	6 x 6 elastic compliance matrix 
temperature 

U,V 	elements of 4 x 4 creep compliance matrix 
12,7 	element displacements in plane 

xly 	cartesian coordinates 

r,z,e 	axi-symmetrical coordinates 

oC 	thermal expansion coefficient 

the convergence factor 

element corner or structure displacement matrix 

'{6 	total strain matrix 

feel, 	elastic strain matrix 

/(.5 	
nonelastic strain matrix 

creep strain matrix 
e 

thermal strain matrix 

Wigner Strain matrix 

130. 
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Poissonsi s ratio 

stress matrix 

shear stress 

shear strain 

Subscripts 

x,y,z 

z,O,r 

iljlic 

11 11_ 

cartesian coordinates 

axi-symmetrical coordinates 

node numbers 

parallel, perpendicular directions 

Superscripts 

e 	elastic 

n 	nonelastic 

c 	creep 

W 	wigner 

t 	thermal 

Other symbols are defined where they occur in the text 

Units 

Stress: 1 N/cm2  = 1.45 psia 

Temperature °C 

Length (dimensions): cm 

Neutron dose: Calder equivalent dose 1000MUD/Ate = 1020n/cm
2
Ni-dido 

dose 



APPENDIX I , THEORETICAL ANALYSIS 

The matrix equations for plane stress/strain and axisymmetric 

problems are derived here in detail considering the derivations 

by Wilson DJ', Head .2-1 and notes of selective postgraduate 

lectures about the finite element method at Imperial College 

given by Wood and Blomfield in 1968/69 	. 

A.1.1 Strain/displacement relationship 

Displacements with an element with an assumed linear 

displacement field are defined for plane stress/strain (eql s 

3.2a, 3.2b in Ch.3) by: 

u = u. 	C (x 	x.) 	C2(y -yi  .) 	(A.1.1) 

C3 (x - x.) 	1 C4(y - y.) 	(A.1.2) 

The equations are of the same form for axisymmetric 

analysis (eq.3.24) except that coordinates x and y have to be 

replaced by r and z. We can define six simultaneous equations 

of the above form and the constants C
1
, C2, C

3 
and C

4 
can be 

determined in terms of nodal displacements (eq.3.3): 
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The strains within the element can be obtained from the assumed 

displacement field (see eq's 3.5 and 3.26), 

= 51 
	

(A..1.4) 
The matrix [B] for plane strain/stress and for axi-symmetric 

geometry is given in detailed form at the end of this Appendix. 

A 1.2 Stress/Strain Relationship 

A 1.2.1 The Strain Matrix 

It is assumed that the total strain matrix can be separated 

into elastic thermal, aligner and creep strain matrices (see ees 3.9): 

„ 

 

(A.1.5) 

  

  

These matrices have been given in expanded form in Ch.3. 

In this Chapter the derivation of the elasticity matrix [D1 

and creep compliance matrix NA are discused or given in more 

detail)for different 2-dimensional cases. 

A 1.2.2 Stress/Elastic Strain Relationship 

In the general three-dimensional case and for anisotropic 

material the stress/strain relationship is of the form: 

(A 1.6) 

The elasticity matrix Moan be derived as follows: Hooke's law, 

for small strains, may be written: 

e s.. 	= sijkl akl (A 1.7) 

where sijkl 	elastic compliance tensor. 
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The compliance tensor is of the fourth order and has 

81 elements. It can be shown (see for example Sokolnikov[441 ) 

that since: 

and 
13 = 	3 a.. 1 

C.. = C.. 
13 

(A 1.8) 

.(A 1.9) 

only 36 of elementsare independent and we may restate Hooke's 

law in the form of the matrix equation: 

= ray {ay 	 (A 1.10) 

where 

6 x 1 elastic strain matrix, the elements of which 

are the strains 

6 x I stress matrix, the elements of which are the 
stresses 

6 x 6 compliance matrix 

Hearmon [45] uses the principle of conservation of energy 

to show that 6 x 6 compliance matrix s--j is symmetrical and 
has therefore only 21 independent elements in the case of a 

completely anisotropic material. 

The properties of graphite usually do not vary significantly 

between directions in a plane transverse to extrusion or 

pressing: in other words material is transversely isotropic. 

Thus, if we assume that the direction of the z axis coincides 

with the extrusion or pressing direction of the graphite block 

or fuel pin, the compliance matrix should be invariant with 

respect to any rotation about z - axis. It can be shown that the 

number of independent compliances is reduced to 5 for a 
transversely isotropic material. Equation (A 1.10), written in 

expanded form, therefore becomes: 
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1.11) 

'We must now relate the elements of the compliance matrix to 

experimentally measured elastic constants. For graphite, the 

constants which are normally measured are as follows: 

E 	EJ, = Young's modulus measured on specimens cut with 

their axes respectively parallel and perpendicular 

to the extrusion (or pressing) direction. 

11-1- 	Poisson is ratio measured in a plane transverse to 

the extrusion (or pressing) direction. 

Nil it  = Poisson's ratio measured in a plane parallel to the 

extrusion (or pressing) direction: ratio of strain 

in the direction perpendicular to extrusion 

(or pressing) to strain in the direction parallel to 

extrusion (or pressing). 

Expressing the compliances in terms of these elastic constants, 

we have for example: 

8
11 

= strain in coordinate direction x due to unit stress in 

direction x 

1_ 

and similarly 

\(.111 = 	s 	= _1_ 	_ _ 
12 

= - 
'37.3 	E ' 33 El' 	G (A 1.12) 



1
II

(1+ vii) 1. 	0 

1 \fill(1.4'.(.12 	9 	0 	(A 1.16) 

• .. 

 

0 	, 	0 ,22:-(1-V_L1-2m2?i11  ) 

1_m2? 
'

\‘,11 
 m2 i

ytl 
 

, 2 2 	2 2 
\1111 , 1"1 

(1+ 11 , \(111(1+Yl1) 

In terms of the experimentally measured elastic constants 

equation (A 1.11) may be written: 
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Equation (1.13) can be regarded as origin for deriving all D6.3 
matrices for plane stress/strain and axi-symmetrical geometry 

for fully isotropic and transversely isotropic materials. 

Eq. (A 1.11) or (A 1.13) can be written in symbolic form also: 

or 
fa.1 = Es]-1 	= [D] 

= [1 

By omitting the corresponding rows and columns of matrix [s] 

for plane stress/strain and axi-symmetric geometry and by 

inverting it, the corresponding matrix Lii3can be obtained. 

Thus, for example, for plthle strain and transversely 

isotropic material the forth and fifth columns and rows of 

matrix [e] have to be omitted and after inversion matrix ED-1 
is as follows: 

D 	 
(14A2(1 -Y -2 2 rn 

2 . where m = E-IL  /E 
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If material is fully isotropic El = E" = E and 

X111- v1~ = 'f and the above matrix [DI-for plane strain 
simplifies to: 
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In a similar way the matrices [DI can be derived for 
plane stress and axi-symmetric geometry, for transversely 

isotropic or fully isotropic materials. 

A 1.2.3 Creep Strain matrix 

As derived by Head D] for a transversely isotropic Maxwell 
material the creep compliance matrix in 2 dimensions is of 

the form: 

where the dot indicates the rate of change with respect to neutron 

dose. Compliances q
11 

and q
33 

have been measured experimentally, 

but compliances q
12 

and q 
13 have not been measured. 

In this analysis, q
12 

and q
13 were obtained by assuming that 

creep occurs at constant volume. There is some evidence that this 

is the case for pyrocarbon (see Kaae [46] ). Kelly has suggested 

recently that nuclear graphite exhibits a volume change, and that 

compliances q12 and q13 are related to q11 and q33 by the elastic 

Poisson's ratios (see footnote, Ch.3.3.2.3.5). 
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The assumption that there is no permanent volume change 

implies additional relationships between the elements of the 

creep compliance matrix. The rate of change of volume of an 

element of material will be: 

ex  .c + e 
.c
y  + ez 

.c 
- 	(q11 -Fq12 1-q13 )(a +a y) + (2q13-1-q33)cs

z x  
(A 1.19) 

If the right hand side of equation (A 1.19) is to be zero 

for all stress conditions, the following equations between the 

creep compliances must be satisfied: 

q
11 

4.  q
12 

+ q
13 

= 0 	

(A 1.20) 

2q
13 

+ q
33 
	= 0 

Using equations (A 1.20) to eliminate q12  andand q13 
multiplying the right hand side by the neutron dose increment, 

equation (A 1.18) can be written as follows: 
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Introducing a simplified notation: 

U = q -- q
}
, /2 11 	3 

V = 2 
c133/  

(A.1.21) 

(A 1.22) 
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• (A 1.23) 

the equation (3.13) are obtained: 

139. 

If the material is fully isotropic U = V and the eq. 3.13 

.is simplified. 

Equation (A 1.21) is the required flow rule from which 

the incremental creep strains can be derived. 

A 1.3 Stress resultants and.element stiffness 

The corner forces expreSsed in termsof three components 

of stress are given in Ch.3 (eqs. 3.14 and 3.27), or in terms 

of the corner displacements, for plane stress/strain we have (eqs 3.16 

fsl = 	[D3[Bif.5 
	 (A 1.24) 

and for axisymmetrical geometry (eq.3.31) we have: 

-2n A[Blir  (A 1.25) 

or in both cases (eq. 3.17 and 3.32) 

= [1 1] M 

	
(A 1.26) 

where [Id is the stiffness matrix for one element. 
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140. 

For plane strain and isotropic material the 'detailed form 
of ecits is as follows: 

(yj-Yk) -(xj-xk) 

0 ,-(xj-xk), (yj-yk) 

• /, 0 

1 -2N7 
2 
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O 0 9  
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-o 	 j ,-(x.-x.), (y.-Y) 1 	1 	ti 
-‘:'--------..r-----.______,—T 	[-D] 

Yj-Y 

A"  [ (331-  

k 	I 	
0 	

'''(Yi:Yk)1 	
0 . ,-(yj-yk), 	0 

1 . 	0 	1-(xj-xk), 	0 	, (x.3.-x..K), 	0 	,-(x.1-x) j 
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it 

(A 1.27) 

• 
xjyk x y. xj 

-(xi-xk )/ (y j_y k),  

  

[k]= 1/2 

and 

(A 1.28) 

For different plane cases (plane stress, transversely isotropic 

material etc) only matrix [D] have to be replaced. 

[D] is here a 3 x 3 matrix, see footnote Ch.3.3.2.4 
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For axisymmetrical geometry: 

11-1 = -221. 
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where 

141. 
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r 
The detailed expression for corner forces tS1 can be derived 

from eq. (3.32). The matrix [D] can be derived from eq.A 1.13. 



• APPENDIX II 

LISTING OF PROGRAMS STAG 

(ITERATIVE AND DIRECT VERSION) 

142. 

e: 

t, 



143. 

JOB(UMEM0401J121CM400009T500) 
	JEZERNIK 9 STAG • ITERATIVE 

FUN(S 	11554) 
LGO. 

PROGRAM STAG (INPUT'OUTPUT,TAPE5=INPUT9TAPE6=OUTPUT) 
DIMENSION TAE(10)9RCEN(10)9HEADX(6) 
1,HEADY(6),TITLE(6),XLIM(2).YLIM(2) 
DIMENSION NPNUM(100)9DSX(300)9DSY(300)9XLOAD(300),YLOAD(300) 
DIMENSION NUME(500),SIGXX(500),SIGYY(500),SIGXY(500),SLOPE(300) 
19SIGZZ(500)+NPB(300),NFIX(300), 	LM(3)9A(696)9S(696),8(696) 
29ECX(500),FCY(500)9ECXY(500)9ECZ(500)9C0C(500) 
39STXR(500),STYR(500),STZR(500),STXYR(500) 
49NOW(50) 
COMMON NP/(500),NPJ(500)9NPK(500),XORD(300),YORD(500),TIEL(500) 
19TAEL(500),EWX(500),EWZ(500),J090C90G,NUMEL,NUMNPITOS,DOSEINUSIZE 
29NURAE,NUSEC,NUELE 
COMMON C111C129C139C14,C151C169C179C189.C199C201C21,C229C231C249C25 
19C269C279C281C29,C309C319C329C339C349C359C369C379C38,C399C409C41 
20C429C439C449C459C469C47,C489C499C509C519C529C539C549C559C-96,C57 

C 
C 	READ AND PRINT OF DATA 

READ(5931) ARA,AZAtARB,ARC 
0G=249 
NUSIZE=1 
NWRITE=2 
NUMEL= 108 
NUMNP=76 
NUMBC=8 
NOPIN=1000 
NCPIN=1000 
NCYCM=2000 
PRESS=10e 
NBNP=58 
TOLER=0•00002 
XFAC=1.85 
DATA(E900(J),J=192)/0.862,1•0344/ 
DO 36 J=3917 

36 E900(J)=1•0689 
_ DATA(E900(j)9j=18941) /1•07791.08611•10311•12591015591•1980 
11•24191.29391•34591•41491.474914952691•57791•62591•67291•7159 
21.•75811.802.1•8191•82491•82791.8391.83291.833/ 
DO 37 J=1926 

37 E1200(J)=E900(J) 
DATA(E1200(J),J=27941) /1•39691•43991•48311.51391.534.1.5529 

'11•56991.57711•58691.5991.59591.59591059591•59591•59/ 
DO 38 J=1141 
E900(J)=E900(J)*10000004 

38 E1200(J)=E1200(J)*1000000• 
WRITE(6931) (E900(I),I=1,11.1) 
WRITE(6,31) (E1200(I)9I=1141) 
WRITE(6911)NUMEL 
WRITE(6,12)NUMNP 
WRITE(6913)NUMBC 
WRITE(6914)NCPIN 
WRITE(6115)NOPIN 
WRITE(6916)NCYCM 
WR/TE(6917)TOLER 
WRITE(6,18)XFAC 
DATA (NPB(L),L=198)/11203,4,73974975976/ 

"In 



DO 45 L=1,8 
NFIX(L)=1 

45 CONTINUE 
READ(5.36) EtPIR 
READ(5,36) CU 

36 FORMAT(2F15•4) 
READ(5131)C119C12,C131C14.PC15,C16,C17,C181 C19,C20,C21,C22,C23,C24,  

IC25 
READ(5,31)C26$C27,C28,C29,C30,C31,C32,C33,C344C35,C369C371C38,  

1C39*C40,C41,C42,C43qC44,C451C461C47,C48,C49,C50,C511C52.C53,  

2C54,C55,C561C57 
DO 46 J0=1,50 

46 NOW(J0)=04.0 
DO 47...J0=5130,5 

47 NOW(J0)=J0 
CALL MESHR 
DO 700 MOVE=1,8 
READ(5132) INCePOS,OCtTOS 
DO 700 J0=1,40 
ETX=1 • 
STEP=FLOAT(INC) 
MA=INC*(J0-1) 
DOSE=FLOAT(MA) 
CALL TEMPRI 
IF(JO.LE.1) GO TO 52 
CALL WIGN 
GO TO 56 

52 CONTINUE 
DO 55 I=1,NUMEL 
EW*(I)=0•0 
EWZ(I)=00.0 
ECX(I)=0•0 
ECY(I)=0•0 
ECXY(I)=0•0 
ECZ(I)=0•0 	

c 

55 CONTINUE 
56 CONTINUE 

IF(J0-1) 62,62959 
59 DO 60 I=1,NUMEL.  
60 CONTINUE 
62 CONTINUE 	 '..t 

DO 57 M=1,NUMNP 
XLOAD(M)=0•0 
YLOAD(M)=0•0 
DSX(M)=0•0 
DSY(M)=0;0 

57 CONTINUE 
SURF=0•0 
DO 180 N=1•NUMEL 
IF(TAEL(N).LE.900.) GO TO.  109 
E=E900(J0)—((E900(J0)—E1200(j0))*(TAEL(N)-900•))/300. 
GO TO 110 

109 E=E900(JO) 
110 CONTINUE 

IF(ETX•E0•0.0) GO TO 65 
TADA=TAEL(N)-500• 
ARTO=ARA+ARB*TADA 
AZTO=AZA+ARC*TADA 
TADB=TAEL(N)-20• 



1115. 
ETX=ARTO*TADB 
ETZ=AZTO*TADB 

65 CONTINUE 
I=NPI(N) 
J=NPJ(N) 
K=NPK(N) 
AJ=XORD(J)—XORD(I) 
AK=XORD(K)—XORD(I) 
BJ=YORD(J)—YORD(T) 
BK=YORD(K)—YOPD(I) 
SUR=(AJ*BK—BJ*AK)/2. 
CU=CV=FUNCTO(TAEL(I).DOSE) 
CW=4.*CU+2.*CV 
ECX(F)=FUNCT1(CUscV.STXP(I).STYR(I).STZR(I)ISTEP+1) 
ECY(I)=FUNCT1(CUscV.STXR(1).STYR(I),STZR(I),STEP,2) 
ECZ(I)=FUNCT1(CVIcV.STXR(1),STYR(I)ISTZP(1).STEP+3) 
ECXY(1)=FUNCT1(CW.O..STXYR(I).0•.0..STEP.4) 
XLOAD(I)=FUNCT2(ETX+ETY,EWX(N).EWY(N),ECX(N)•ECY(N),ECXY(N)+ 
1 XORD(1).YORD(I),X0RO(J),YORD(J).XORD(K).YORD(K).E.PR.1) 
YLOAD(I)=FUNCT3(ETX,ETY+EWX(N)•EWY(N)+ECX(N)+ECY(N),ECXY(N)+ 
1 XORD(I)+YORD(I),XORD(J)+YORD(J).XORD(K)+YORD(K)•E+PR+1) 
XLOAO(J)=FUNCT2(ETX.ETY,EWX(N)+EWY(N),ECX(N).ECY(N)+ECXY(N),  
1 XORO(I),YORD(I).0..0.,XORD(K).YORD(K).E.PR.2) 
YLOAD(J)=FUNCT3(ETX,ETY+EWX(N),EWY(N)•ECX(N)+ECY(N),ECXY(N),  
I XORD(1),YORD(I)10..0..XORD(K),YORD(K).E.PP.2) 
XLOAO(K)=FUNCTp(ETX.ETYIEWX(N).EWY(N),ECX(N)9ECY(N).ECXY(N). 
1 XORD(I),VORD(I),XORD(J)+YORD(J).0.,0•.E+PR+3) 
YLOAD(K)=FUNCT3 (ETX4ETY,EWX(N).EWY(N),ECX(N),ECY(N).ECXY(N),  
1 XORD(I).YORD(1).XORD(J),YORD(J).0..0..E.PR.3) 
SUpF=SURF+SUR 

180 CONTINUE 
C 	TUBE UNDER INTERNAL PRESSURE 

FORCE=10.*PRESS 
DATA(NOVI(N).N=1,6)/251.259,267.275.283.284/ 
DO 120•N=7+21 

120 NOVI(N)=N+286 
DATA(NOVI(N),N=22.37)/285.286.2761268,2601252,244.236.228,220.211.1  
1210.1994198.185,184/ 
DO 121 N=38,48 

121 NOVI(N)=206—N • 
DATA(NOVI(N),N=49+60)/182+183+196+197+208+209.219,227+235+243• 
1251.259/ 
XCEN=3.3465-1.935*COS(0.39?_70) 
YCEN=1.935*SIN(0.39270) 
RA=0.6025 
DO 130 N=1•NBNP 
I=NOVI(N) 
J=NOVI(N+1) 
K=NOVI(N+2) 
XA=XORD(I)—XORD(J) 
YA=YORD(I)—YORD(J) 
XYA=SORT(XA**2+YA**2) 
XB=XORD(J)—XORD(K) 
YB=YORD(J)—YORD(K) 
XYB=SORT(X5**2+YB**2) 

130 FANOD(N+1)=(XYA+XYB)/2. 
FANOO(I)=FANOD(NBNP+1) 
DO 140 N=1.NBNP 
ASI.GN=1. 



BSIGN=1. 
CSIGN=10 
I=NOVI(N) 
IF(XORD(I).LT.XCEN)ASIGN=-1 
DSA=(XORD(I)—XCEN)*ASIGN 
ALFA(N)=ASIN(DSA/RA) 
IF(XORD(I)oLTeXCFN) BSIGN=-1. 
IF(YORD(I).LT.YCEN) CSIGN=-1. 
AXLOAD=FORCE*SIN(ALFA(N))*BSIGN*FANOD(N) 
AYLOAD=FORCE*COS(ALFA(N))*CSIGN*FANOD(N) 
XLOAD(I)=XLOAD(I)+AXLOAD 
YLOAD(I)=YLOAD(I)+AYLOAD 

140 CONTINUE 
WRITE(6•25) (XLOAD(I).11=11NUMNP) 
WRITE(6,25) (YLOAD(I)11=1,NUMNP) 

.141 CONTINUE 
C 	INITIALIZATION 

NCYCLE=O 
NUMPT=NCPIN 
NUMOPT.4:NOPIN 
DO 175 L=ItNUMNP 
DO 170 M=1,9 
sxx(L,m)=0.0 
sYx(L,m)=0.0 
SXY(LtM)=0•0 
SYY(L,M)=0.0 

170 NP(LtM)=0 
NP(L,10)=0 

175 NP(L,1)=L 
C 	FORMATION OF STIFFNESS ARRAY 

DO 200 N=ltNUMEL 
IF(TAEL(N).LE.900e) GO TO 177 
E=E900(J0)—((E900(J0)—E1200(J0))*(TAEL(N)-900.))/300. 
GO TO 178 

177 E=E900(JO) 
178 CZ=E 

I=NPI(N) 
j=NPJ(N) 
K=NPK(N) 
AJ=XORD(J)—XORD(I) 
AK=XORD(K)—XORD(I) 
BJ=YORD(J)—YORD(I) 
BK=YORD(K)—YORD(I) 
SUR=(AJ*8K—BJ*AK)/2. 
COC(N)=(SUR*NUMEL)/SURF 
COMM=0,2*E*(1.—PR)/((14,4-PR)*(1•-26*PR)*SUR) 
A(101)=BJ—BK 
A(1,2)=0,0 
A(1,3)=BK 
A(1,4)=0.0 
A(145)=—BJ 
A(116)=0410 
A(2,1)=0.0 
A(242)=AK—AJ 
A(213)=0.0 
A(2,4)=—AK 

' A(2,5)=0.0 
A(2,6)=AJ 
A(341)=AK—AJ 



A(3+2)=BJ—BK 
A(3,3)=—AK 
A(3,4)=BK 
A(3,5)=AJ 
A(3,6)=—BJ 
B(1,1)=COMM 
13(1,2)=COMM*PR/(1.—PR) 
B(1,3)=0.0 
B(2,1)=8(1+2) 
B(2+2)=COMM 
B(2•3)=0.0 
6(3,1)=0.0 
B(312)=0•0 
B(3,3)=COMM*(1*-2**PR)/(2.*(16—PR)) 
DO 182 j=1,6 
DO 182 1=1+3 
S(I,J)=0.0 
DO 182 K=1,3 

182 S(I,J)=S(I,J)+B(1,K)*A(K,J) 
DO 183.J=1,6 
DO 183 1=1,3 

183 B(J11)=S(IIJ) 
DO 184 J=1+6 
DO 184 1=1,6 
S(I,J)=0•0 
DO 184 K=1,3 

184 S(I,J)=S(IeJ)+13(11K)*A(K,J) 
C 

LM(1)=NPI(N) 
LM(2)=NPJ(N) 
LM(3)=NPK(N) 
DO 200 L=1.3 
DO 200 M=1+3 
LX=LM(L) 
MX=O 	 4 

185 MX=MX+1 
IF(NP(LX,MX)—LM(M)) 190.195+190 

190 IF(NP(LX,MX)) 1851195+185 
195 NP(LX,MX)=LM(M) 

IF (MX-10) 196,702+702 
196 SXX(LX,mX)=SXX(LXIMX)+S(2*L-102*M71) 

SXY(LX+MX)=SXY(LX$MX)+S(2*L-1,2*M) 
SYX(LX,MX)=SYX(LX,MX)+S(2*L+2*M-1) 

200 SYY(LXIMX)=SYY(LX,MX)+S(2*L+2*M) 
C 	COUNT OF ADJACENT NODAL POINTS 

DO 206 M=).NUMNP 
MX =1 

205 MX=MX+1 
IF (NP(M,MX)) 206,206,205 

206 NAP(M)=MX-1 
C 
C 	INVERSION OF NODAL POINT STIFFNESS 

DO 210 M=1,NUMNP 
COMM=SXX(M11)*SYY(M+1)—SXY(M11)'*SYX(Mt1) 
TEMP=SYY(M,I)/COMM 
SYY(M+1)=SXX(Mol)/COMM- 	, 

SXX(M+1)=TEMP 
SXY(M,1)=—SXY(M+1)/COMM 

210 SYX(M+1)=—SYX(Mo1)/cOMM 



C 	MODIFICATION OF BOUNDARY FLEXIBILITIES 
DO 240 L=1,NUMBC 
M=NPB(L) 
NP(M,1)=0 
IF(NFIX(L)-1)225,220.215 

215 C=(SXX(M•I)*SLOPE(L)—SXY(M,1))/(SYX(M•I)*SLOPE( L)--SYY( M•1)) 
R=1•0—C*SLOPE(L) 
SXX(M•1)=(SXX(M,1)—C*SYX(M•1))/R 
SXY(M*1)=(SXY(M41)—C*SYY(M,1))/R 
SYX(MI1)=SXX(M,1)*SLOPE(L) 
SYY(M,1)=SXY(M.1)*SLOPE(L) 
GO TO 240 

220 SYY(M'91)=SYY(Mv1)—SYX(Mr1)*SXY(M,I)/SXX(M,1) 
GO TO 230 

225 SYY(M41)=0•0 
230 SXX(Me1)=0•0 
235 SXY(M•1)=0•0 

SYX(M,1)=0.0 
240 CONTINUE 

C 
C 	ITERATION ON NODAL POINT DISPLACEMENTS 
C 

243 WRITE(6121) 
244 SUM=0•0 

SUMD=O• 
DO 290 M=IoNUMNP 
NUM=NAP(M) 
IF (SXX(11/401,1)+SYY(M91)) 275,2909275 

275 FRX=XLOAD(M) 
FRY=YLOAD(M) 
DO 280 L=2•NUM 
N=NP(M,L) 
FRX=FRX—SXX(M•L)*DSX(N)—SXY(M,L)*DSY(N) 

280 FRY=FRY—SYX(M,L)*DSX(N)—SYY(M•L)*DSY(N) 
281 DX=SXX(M11)*FRX+SXY(M,1)*FRY—DSX(M) 

DY=SYX(M,1)*FRX+SYY(M91)*FRY—DSY(M) 
297 DSX(M)=DSX(M)+XFAC*DX 

DSY(M)=DSY(M)+XFAC*DY 
SUMD=SUMD+ABS(DSX(M))+ABS(DSY(M)) 
IF(NP(Mt1))285+290.285 

285 SUM=SUM+ABS(DX)+ABS(DY) 
290 CONTINUE 

SUM=SUM/SUMD 
C 
'C 	CYCLE COUNT AND PRINT CHECK 
C 

NCYCLE=NCYCLE +1 
IF (NCYCLE—NUMPT) 305,3004300 

300 NUMPT=NUMPT+NCPIN 
WRITE(6,22) NCYCLE,SUM,SUMD 

305 IF(SUM—TOLER) 400,400,310 
310 IF(NCYCM—NCYCLE)400,400,316 
315 IF (NCYCLE—NUMOPT) 244.3209320 
320 NUMOPT=NUMOPT+NOP/N 

C 
C 	PRINT OF DISPLACEMENTS AND STRESSES 
C 

400 CONTINUE 

148. 
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CZ=1330000. 
P=0.0 
DO 390 I=1,NUMEL 
IF(ETX•E0•0•0) GO TO 388 
TADA=TAEL(I)-500•  
AZTO=AZA+ARC*TADA 
TADB=TAEL(I)-20• 
ETZ=AZTO*TADB 

388 CONTINUE 
P=P+CETZ+EWZ(I)+ECZ(I))*CZ*C0C(I) 

390 CONTINUE 
672 IF(JO•GT•1) GO TO 676 

WRITE(6,673)POS 
673 FORMAT(1H0.18H CHANNEL POSITION oF5•1,3H CM) 
676 WRITE(6,679) JOIDOSE 
679 FORMAT(17H0 INTERVAL NUMBER.13,18H 	EQUIVALENT DOSEsF8•1) 

NCASE=NWRITE/2 
GO TO (680,682,684) NCASE 

680 WRITE(6.681) 
681 FORMATC2(67H ELEM NODE NO TEMP X—, Y—, MAX—. MIN—, Z—, AND XY—, S 

1TRESSES ANGLE)) 
GO TO 685 

682 WRITE(6,683) 
683 FORMAT(4(33H ELEM PRINCIPAL STRESSES 112131 )) 

GO TO 685 
684 CONTINUE 
685 CONTINUE 

K1=1 
K2=2 
K3=3 
K4=4 
DO 420 N=1,NUMEL 
IF(TAEL(N).LE.900.) GO TO 402 
E=E900(J0)—((E900(JO)—E1200(JO))*(TAEL(N)-900.))/300. 
GO TO 403 	

r. 

402 E=E900(JO) 
403 CZ=E 

NUME(N)=N 
IF(ETX•EQ•060) GO TO 690 
TADA=TAEL(N)-500• 
ARTO=ARA+ARB*TADA 
AZTO=AZA+ARC*TADA 
TADB=TAEL(N)-20• 
ETX=ARTO*TADB 
ETZ=AZTO*TADB 

690 CONTINUE 
I=NPI(N) 
J=NPJ(N) 
K=NPK(N) 
AJ=XORD(J)—XORD(I) 
AK=XORD(K)—XORD(I) 
BJ=YORD(J)—YORD(I) 
BK=YORD(K)—YORD(I) 
EPX=FUNCT4(YORD(4),YORD(J),YORD.(K).DSX(I).DSX(J),DSX(K)01) 
EPY=FUNCT4(X0PD(1)IXORD(J).XORD(K)IDSY(I).DSY(J)IDSY(K).2) 
GAM=FUNCT5(XORD(1)IXORD(J),XORDIKY,YORp(I).YORD(J),YORD(K)+OSX(I)o 

' 1 DSX(I),DSY( I )1DSX(J),DSY(J),DSX(K).DSY(K) ) 
X=FUNCT6(EPX.EPY.FTX.ETY.EWX(N),EWY(N).ECX(N),ECY(N),ECXY(N),E,PRI 
1.XORD(I),XORD(J),X0W)(K).YORD(1).YORD(J),Y0PD(K)11) 



150, 

Y=FUNCT6(EPX,EPY,ETX4ETY,EWX(N),EWY(N),EtX(N)+ECY(N)+ECXY(N),EIPP,  
1 XORD(I)4XORD(J)IXORD(K),YORD(I),YORD(J),YORD(K)*2) 
XY=FUNCT7(GAM,ECXY(N),E9PP,XORD(1),XORD(J),XORD(K),YORD(I),YORD(J) 
1•YORD(K)) 
SIGXX(N)=X 
SIGYY(N)=Y 
SIGXY(N)=XY 
C=(X+Y)/2.0 
P=SORT(C(Y—X)/2•0)**24-XY**2) 
XMAX=C+R 
XMIN=C—R 
PA=0•5*57•29578*ATAN(2e*XY/(Y—X)) 
IF(2.*X—XMAX—XMIN) 405.414.414 

405 IF (PA) 410.4141412 
410 PA=PA+90.0 

GO TO 414 
412 PA=PA-90.0 
414 CONTINUE 

SIGZZ(N)=P#C0C(N)/NUMEL—(ETZ+EWZ(N)+ECZ(N))*CZ*COC(N) 
1+PR*(SIGXX(N)+SIGYY(N)) 
IF(N.NE.K1) GO TO 415 
XMAXA=XMAX 
XMINA=XMIN 
PAA=PA 
K1=K1+NWRITE 

415 IF(N•NE•K2) GO TO 416 
XMAXB=XMAX 
XMINB=XMIN 
PAB=PA 
K2=K2+NWRITE 
IF(NWRITE*E04,4) GO TO 416 
WRITE(644) NUME(N-1)•NPI(N-1)+NPJ(N-1)•NPK(N-1)•TAEL(N-1)• 
ISIGXX(N-1)tS/GYY(N-1),XMAXA,XMINA9SIGZZ(N-1)ISIGXY(N-1)1 PAA,  
2NUME(N),NPI(N)INPJ(N),NPK(N),TAEL(N),SIGXX(N),SIGYY(N),XMAXB,  
3XMINB4SIGZZ(N),SIGXY(N),PAB 
GO TO 420 

416 CONTINUE 
IF(N.NE.K3) GO TO 417 

_XMAXC=XMAX 
XMINC=XMIN 
PAC=PA 
K3=K3+NWPITE 

417 IF(N.NE.K4) GO TO 420 
XMAXD=XMAX 
XMIND=XMIN 
PAD=PA 
WRITE(645) NUME(N-3)+XMAXA•XMINA+SIGZZ(N-3)•PAA+NUME(N-2)+XMAXB+ 

1XMINB,SIGZZ(N-2),PABINUME(N-1),X.MAXC,XMINC,SIGZZ(N-1),PAC,  
2NUME(N).XMAXD•XMIND+SIGZZ(N),PAD  

K4=K4+NWRITE 
420 CONTINUE 
4 FORMAT(2(I4,3I3.6F7.1+2F6.0)) 
5 FORMAT(4(1544F7e1)) 

IF (SUM—TOLER) 440,440,430 
430 IF (NCYCM—NCYCLE) 44014404243 

C 
440 CONTINUE 

C 

i 

r - 



C 	PRINT OF ERRORS IN INPUT DATA 
C 
701 WRITE(6.28) 
702 WRITE(6,29) 

IF(ETX.EQ.O.0) GO TO 695 
DO 470 I=1.NUMEL 
STXR(I)=SIGXX(I) 
STYR(I)=SIGYY(I) 
STXYR(I)=SIGXY(I) 
STZR(I)=SIGZZ(I) 

470 CONTINUE 
IF(JO•NE•NOW(J0)) GO TO 695 
ETX=0.0 
ETZ=0:0 
GO TO 62 

695 CONTINUE 
CALL START(2) 
READ(5.103) (HEADX(I),I=106) 

103 FORMAT(6A6) 
READ(5.103) (HEADY(I),I=1.6) 
READ(5.103) (TITLE(I),I=1,6) 
READ(5.100) (XLIM(I),I=1,2).(YLIM(1)+1=1.2) 

100 FORMAT(4F10.2) 
CALL CPLOT (XLIM,YLIM,2,001HEADX.HEADY.TITLE/2,215) 
NPTS=3 
DO 696 1=1,3 
II=NPI(I) 
JJ=NPJ(I) 
KK=NPK(I) 
XCEN=(XORD(II)+XORD(JJ)+XORD(KK))/3. 
YCEN=(YORD(II)+YORD(JJ)+YORD(KK))/3, 
RCEN(1)=SORT(XCEN**2-4-(3.12—YCEN)**2) 

696 TAE(I)=TAEL(I) 
CALL CPLOT (RCEN,TAE,NPTSsliHEADX.HEADY,TITLE.2,2,2) 
CALL ENPLOT 

700 CONTINUE 
C 
C 	FORMAT STATEMENTS 
C 

2 FORMAT(12I5) 
3 FORMAT(I5,2F15.8,I5.2F1508) 
11 FORMAT(29HONUMBER OF ELEMENTS 	=.I4/) 
12 FORMAT(29H NUMBER OF NODAL POINTS 	=o14/) 
13 FORMAT(29H NUMBER OF BOUNDARY POINTS =.14/) 
14 FORMAT(29H CYCLE PRINT INTERVAL 	=1I4/) 
15 FORMAT(29H OUTPUT INTERVAL OF RESULTS =.14/) 
16 FORMAT(29H CYCLE LIMIT 	=.I4/) 
17 FORMAT(29H TOLERANCE LIMIT 	=.E124.4/) 
18 FORMAT(29H OVER RELAXATION FACTOR 	=1F6.3) 
20 FORMAT (20H BOUNDARY CONDITIONS) 
21 FORMAT(34H0 	CYCLE 	FORCE UNBALANCE) 
22 FORMAT(I11.2E20e6) 
23 FORMAT (42HONODAL POINT X—DISPLACEMENT Y—DISPLACEMENT) 
24 FORMAT(3(I11,2E15.8)) 
25 FORMAT(15F9.2) 
26 FORMAT(120H1 ELEMENT 	X—STRESS 	Y—STRESS 

1 	XY—STRESS 	MAX—STRESS ' MIN—STRESS 	DIRECTION) 
27 FORMAT(1110.6F2048) 
28 FORMAT (32HOZERO OR NEGATIVE AREA. EL. NO.=1I4) 

I 



152 . 
29 FORMAT (33HOOVER 8 N.P. ADJACENT TO N•Po.N0.1I4) 
31 FORMAT(4E16e9) 
32 FORMAT(I10,13F10412) 
33 FORMAT(2F15.8) 

STOP 
r: ND 

SUBROUTINE MESHR 
DOUBLE PRECISION ALSTEP 
DIMENSION RI(20),X(30012),NOD(500,3) 
COMMON NP1(500),NPJ(500)*NPK(500),XORD(300),YORD(5001,TIEL(500) 
1ITAEL(500),EWX(500),EWZ(500),JOIOC,OGINUMEL,NUMNPITOS,DOSE,NUSIZE 
2INURAE,NUSEC,NUELE 
IF(NUSIZE,GTol) GO TO 50 

C 	INPUT DATA LARGE MESH SIZE (108 ELIS,76 NODES—HALF TUBE) 
DATA(131(1)•1=1,4)/2.22,2•5212.82+3.12/ 
NUSEC=10 
NURAS=1 
NURAE=4 
NUJUMP=36 
NUNEXT=6 
NELEM=108 
NPOIN=76 
GO TO 52 

50 CONTINUE 
C 	INPUT DATA SMALL MESH SIZE (432 EL=SS,259 NODES—HALF TUBE) 

DO. 51 1=2,7 
RI(I)=RI(I-1)+0.15 

51 CONTINUE 
NUSEC=19  
NURAS=1 . 
NURAE=7 
NUJUMP=126 
NUNEXT=12 
NELEM=432 
NPOIN=259 

52 CONTINUE 
C 	CALCULATION 
C 	ADITIONAL INPUT DATA 

NUSEGM=2*(NUSEC-1) 
TOSEGM=FLOAT(NUSEGM) 
NUELE=NURAE-1 

0C 	CALCULATION OF COORDINATES X AND Y FOR ONE OARTER 
C 	ANGLE STEP 

ALSTEP=31415926.53589793/(TOSEGM*I0**7) 
ALPHE=O.O 
DO 54 IB=NURAS,NURAE 
K= IB 
DO 53 IA=11NUSEC 
X(K01)=RI(IB)*SIN(ALPHE) 
X(K,2)=3•12—RI(I8)3COS(ALPHE) 
K=K+NURAE 
ALPHE=ALPHE+ALSTEP 

53 CONTINUE 
ALPHE=0•0 

54 CONTINUE 

r-- - • 



153. 
C 	X AND Y COORDINATES IN SECOND QARTER 

DO 56 ID=NURAS,NURAE 
K=ID+NUJUMP 
DO 55 1C=11NUSEC 
X(K91)=RI(ID)*COS(ALPHE) 
X(K92)=3.12+RI(ID)*SIN(ALPHE) 
K=K+NURAE 
ALPHE=ALPHE+ALSTEP 

55 CONTINUE 
ALPHE=0.0 

56 CONTINUE 
C 	CALCULATION OF NODE NO'S FOR ONE HALF OF TUBE 

K=0 
DO 6f IE=1,NUSEGM 
NEW1=NUNEXT*(IE-1) 
NEW2=NEW1+NUELE 
DO 60 IG=1,NUELE 
NOD(IG+NEW111)=IG+K 
NOO(IG+NEW192)=IG+K+NURAS 
NOD(IG+NEW193)=IG+K+ NURAE 
NOD(IG+NEW291)=IG+K+NURAE 
NOD(IG+NEW292)=IG+K+NURAS 

60 NOD(IG+NEW293)=IG+K+NURAS+NURAE 
61 K=K+NURAE 

C 	WRITING AND PUNCHING OF RESULTS 
2 FORMAT(3(189315)) 
3 FORMAT(15.2F1549891592F15418) 
70 CONTINUE 

DO 72 1=10NUMNP 
XORD(I)=X(191) 

72 YORD(I)=X(192) 
DO 74 J=19NUMEL 
NPI(J)=NOD(J91) 
NPK(J)=NOD(J92) 

74 NPJ(J)=NOD(J93) 
RETURN 
END 

SUBROUTINE TEMPR 
DIMENSION CDO(50)+OCC(50),OGG(50),XB(20),TCB(20),TCD(20)9TCE(20)9 
1TCF(20)9DEB(20)IDEC(20),OED(20),DSOA(20),DSOB(20)10CUA(20),  
2DA(50),DD(50),OC(90),TCA(20),TC(19),XA(19),R(20)9TA(20)9TI(20) 
31TINOD(150),TANOD(150)9TINODE(3),TANODE(3) 
COMMON NP/(500)9NPJ(900)9NPK(500),XORO(300),YORD(500)9TIEL(500) 
19TAEL(500),EWX(500),EWZ(500),J090CIOG,NUMEL,NUMNP,TOS,DOSE,NUSIZE 
29NURAEINUSEC,NUELE 
COMMON C119C129C139C149C151C169C179C1B,C199C209C219C22.,C231C249C25 
11C269C271C28,C299C309C319C329C33,C349C359C369C379C389C39.C409C41 
29C429C439C44,C45,c46,C479C489C49,C509C519C529C539C541C55.C569C57 
DATA (R(1)91=197)/2.229293792•5212.67929829299793.12/ 
J=JO 
TI(7)=TOS 
IF(J.GT.1) GO TO 161 
DO 160 K=196 
I=7-K 
XA(I)=(TI(I+1)+3.)/1000. 
TC(I)=(C13*XA(1)+C12)*XA(I)+C11 



TI(I)=TI(I+1)+0,159155*(0C+OG*(R(I)**-R(1)**2)*3.14159) 
1*ALOG(R(I+1)/R(1))/TC(I)+0.25*OG*(R(1+1)**2-R( 1)**2 
•2-2.*R(1)**2*ALOG(R(14.1)/R(I)))/TC(I) 

160 CONTINUE 
161 CONTINUE 

_ CDD(J)=1.-(DOSE-10000.1/20000. 
OCC(J)=0C-0.5*0C*DOSE/40000. 
OGG(J)=0G-0.5*OG*OOSE/40000. 
TA(7)=TOS  
DO 250 K=1,6  
I=7-K 
IF(TOS.LT.820.) GO TO 211 
XB(I)=(TA(I+1)+3.)/1000. 
GO TO 214 

211 X8(I)=(TA(I+1)+4.1/1000. 
214 TCB(I)=(C13*XE)(1)+C12)*XB(I)+C11 

TCD(I)=(C19*XB(I)+C18)*XB(I)+C17 
TCE(I)=(C22*XE1(I)+C21)*XB(I)+C20 
TCF(I1=(C25*XB(I)+C24)*X13(I)+C23 
DEB(I)=TCD(I)-TCB(I) 
DEC(I)=TCE(I)-TCD(I) 
DED(I)=TCF(I)-TCE(I) 
DSOA(I)=DEC(I)-DER(I) 
DSOB(I)=DED(I)-DEC(I) 
DCUA(I)=DSOB(I)-DSOA(I) 
IF(DOSE.GT.5000..) GO TO 215 
DA(J)=DOSE/5000. 
DD(J)=DA(J)*(DA(J)-1.)/2. 
DC(J)=DA(J)*(DA(J)-1.)*(DA(J)-2.)/6. 
TCA(I)=TCB(I)+DA(J)*DEB(I)+DD(J)*DSOA(I)+DC(J)*DCUA(I) 
GO TO 217 

215 IF(DOSE.GT.10000.) GO TO 216 
DA(J)=(DOSE-5000.)/5000. 
DD(J)=DA(J)*(DA(J)-1.)/2. 
DC(J)=DA(J)*(DA(J)+1•)*(DA(J)-1,)/6. 
TCA(I)=TCD(I)+DA(J)*DEC(I)+DD(J)*OSOA(I)4DC(J)*OCUA(I) 
GO TO 217 

216 TCA(I)=TCF(I)-1-(TCE(I)-TCF(I))*CDD(J) 
217 TA(I)=TA(1+1)+0.159155*(OCC(J)+OGG(J)*(R(I)**2-R(1)**2)*3.14159) 

1*ALOG(R(I+1)/R(I))/TCA(I)+0.25*OGG(J)*(R(I+1)**2-R(I)**2 
2-2.*R(I)**2*ALOG(R(I+1)/R(I)))/TCA(I) 

250 CONTINUE 
L=0 
DO 260 I=1,NURAE 
TINOD(I)=TI(I+L) 
TANOD(I)=TA(I+L) 
IF(NUSIZE.GT.1) GO TO 260 
L=L+1 

260 CONTINUE 
NUSEGM=2*(NUSEC-1) 
K=NURAE 
DO 262 J=1,NUSEGM 
DO 261 I=I,NURAE 
TINOD(I+K)=TINOD(I) 

261 TANOD(I+K)=TANOD(I) 
. K=K+NURAE 
262 CONTINUE 

DO 265 N=1,NUMEL 
JJ=NPI (N) 

t 



1 

155. 
KK=NPK(N) 
LL=NPJ(N) 
TIEL(N)=-CTINOD(JJ)+TINOD(KK)+TINOD(LL))/3. 
TAEU(N)=-(TANOD(JJ)+TANOD(KK)+TANOD(LL))/3. 

265 CONTINUE 
RETURN - 
END 

SUBROUTINE WIGN 
COMMON NPI(500)4NPJ(500)1NPK(500),XORD(300),YORD(500),TIEL(500) 

1 ,TAEL:(500);EWX(500),EWZ(500)+JOIOC,OG,NUMEL,NUMNP+TOS,DOSE,NUSIZE 
2INURAEINUSEC,NUELE  
COMMON C11,C12,C139C14,C151C16,C17,C189C19,C201C21 ,6C221C231C244C25 
11C26,C27,C28,C29,C30,C31,C32,C33,C34,C35,C36,C37,C3B,C39•C401C41 
29C42,C431C44,C451C46,C47,C4B,C49,C50,C51,C52,C531C54,.C55,C561C57 
MULE=0 
XE=DOSE/10000• 
EWRA=((C29*XE+C26)*XE4-C27)*XE-1-C26 
EWRD=((C33*XE+C32)*XE+C31)*XE-1-C30 
EWRB=EWRA-1-(EWRD—EWRA)*100•/300. 
EWRC=EWRA-1-(EWRD—EWRA)*200./300. 
EWRE=C(C37*XE+C36)*XE+C35)*XE-1-C34 
EWRF=C(C41*XE+C40)*XE+C39)*XE4-C38 
EWZA=C(C45*XE+C44)*XE+C43)*XE-4-C42 
EWZD=C(C49*XE+C48)*XE+C47)*XE4-C46 
EWZB=EWZA+(EWZD—EWZA)*I00,/30046 
EW7C=EWZA-1-(EWZD—EWZA)*200e/300. 
EWZE=((C53*XE+C52)*XE-1-051)*XE-1-050 
EWZF=C(C57*XE+C56)*XE+C55).*XE+C54 

C 	DIFFERENCE TABLE 
00TR=EWRB—EWRA 
ONER=OOTR 
TWOR=OOTR 
THRR=EWRE—EWRD 
FOUR=EWRF—EWRE 
OOTZ=EWRB—EWZA 
ONEZ=OOTZ 
TWOZ=OOTZ 	 II 
THRZ=EWZE—EWZD 
FOUZ=EWZF—EWZE 
SONOTR=0, 
SQONER=0. 
SOTWOR=THRR—TWOR 
SQTHRR=FOUR—THRR 
SONOTZ=O• 
SOONEZ=O• 
SOTWOZ=THRZ—TWOZ 
SQTHRZ=FOUZ—THRZ 
CUNOTR=O• 
CUONER=SOTWOR 
CUTWOR=SOTHRR—SOTWOR 
CUNOTZ=O• 
CUONEZ=SOTWOZ 	t 

CUTWOZ=SQTHRZ—SQTWOZ 
DO 350 I=1•NUMEL 
IF(TAEL(I)•GT•6004.),G0 TO 310 



EWX(I)=EWRA 
EWZ(I)=EWZA 
GO TO 319 

310 IF(MULE.GT.1) GO TO 312 
C 	LINEAR INTERPOLATION 

EWX(I)=EWRA-1-(EWRD-EWRA)*(TAEL(I)-600.)/300. 
EWZ(I)=EWZA+(EWZD-EWZA)*(TAEL(I)-600.)/300. 
GO TO 319 

C 	INTERPOLATION WITH NEWTON FORWARD DIFFERENCES 
312 IF(TAEL(I).GT.900.) GO TO 313 

SA=(TAEL(I)-800.)/100. 
SB=SA*(SA-1.1/2. 
SC=SA*(SA-1.)*(SA-2.)/6. 
EWX(1)=EWRC+SA*TWOR+SB*SOTWOR+SC*CUTWOR 
EWZ(I)=EWZC+5A*TWOZ+SB*SOTWOZ+SC*cUTWOZ 
GO TO 319 

C 	INTERPOLATION WITH NEWTON BACKWARD DIFFERENCES 
313 IF(TAEL(I).GT.1000.) GO TO 314 

SA=(TAEL(I)-1000.)/100. 
SB=SA*(SA+1.)/2. 
SC=SA*(SA+1.)*(SA+2.)/6. 
EWX(I)=EWRE+SA*THRR+SB*SQTWOR+SC*CUONER 
EWZ(I)=EWZE+SA*THRZ+SB*SOTWOZ+SC*CUONEZ 
GO TO 319 

314 5A=(TAEL(I)-1100.)/100. 
SB=SA*(SA+1.)/2. 
SC=SA*(SA+1.)*(SA+2.)/6. 
EWX(I)=EWRF+SA*FOUR+SB*SOTHRR+SC*CUTWOR 
EWZ(I)=EWZF+SA*FOUZ+SB*SQTHRZ+SC*CUTWOZ 

319 CONTINUE 
'EWX(I)=EWX(I)/100. 
EWZ(I)=EWZ(I)/100. 

350 CONTINUE 
RETURN 
END 

156. 



JOB(UMEM0401J12*CM40000.1.500) 
	

JEZERNIK 	STAG o DIRECT 
FUNS 	11554) 
LGO. 

PROGRAM STAG (INPUTIOUTPUT,TAPE5=INpUToTAPE6=OUTPUT,TAPE2ITAPE4) 
DIMENSION STX(500)oSTY(500)1STZ(500).STXY(500),IST1(500),ST2(500), 
1ST3(900).ECX(500),ECY(500),ECZ(500),ECXY(500)0C0C(500),XE(3o2) 
21STXR(500),STYR(500).,STZR(500)ISTXYR(500) 
31ECXP(500),ECYP(500),FCZP(500)+ECXYP(500) 
4,PAA(500),NOW(50) 
COMMON C(6+6),DBA(396),DB(3,6),A(6,6)18(3,6)0NSTART(30);NEND(30), 
1NFIRST(30)oNLAST(30),NF(90),NB(90,2)1BV(90o2)1X(300,2),NOD(500,3), 
2ST(40180)*U(600,1),UF(600,1)1TIEL(500),TAEL(500),EWX(500),EWZ(500) 
3,J010C90G,NELEMoTOS,DOSEINUSIZE,NURAEINUSEC,NUELE 
COMMON C110C124C13,0C141C15,C16,C179C1S1C191C20.1C21,C22,C23,C24,C25 

1.1C26,C2TIC28,C29,C30,C319C321C331C341C35,C36,C37,C3SoC39,C40oC41 
2,C42,C43,C44,C45,C461C47,C4,34C491C50,C51.C52,C53,C54,C55,C56,0C57 
READ(5.31) ARA•AZA,ARB+ARC 
QG=2.0 
NUSIZE=1 
NWRITE=2 

4 FORMAT(2(1413I3o6F7e1o2F6.0)) 
5 FORMAT(4(I5o4F7o1)) 
10 FORMAT(715) 
11 FORMAT(8F8o4) 
12 FORMA-J.(314,2E16.8) 
13 FORMAT(2F15.4) 
14 FORMAT(4E16.9) 
15 FORMAT(10F13.8) 
16 FORMAT(20I5) 
17 FO.RMAT(I10,3F10.2) 
21 FORMAT(5(I4o2F10.4)) 
22 FORMAT(2(1412F11.3,2E16.18)) 
23 FORMAT(I4o13F10.7) 
24 FORMAT(414,9F11.2) 
25 FORMAT(15F9.2) 

DO 750 LA=lol 
READ(6,10) NPARTINPO/NoNELEM,NBOUNINCOLNINFREEINCONC 
WRITE(6,10) NPARToNPOIN,NELEMINBOUNINCOLNINFREE,NCONC 
DO 42 I=11NBOUN 
READ(5112) NF(I).NB(I+1)•+NB(I+2),RV(I.1),BV(I+2) 

42 WRITE(6912)NF(I)INB(I+1)*NB(142),BV(I11).BV(112) 
NPART1=NPART+1 
DO 44 I=1oNPART1 
READ(5+10)NSTART(I)+NEND(I)•NFIRST(I)+NLAST(I) 

44 WRITE(6,10) NSTART(I)oNEND(I)oNFIRST(I)INLAST(I) 
READ(5o13) EoPR 
WRITE(6,13) EIPR 
READ(5,36) CU 
READ(5114)C11,C121C131C141C15,C16,C17,C18•C19.0C209C21,C22,C23,1C249 
1C25 
READ(5,114)C26,C27,C28,C291C301C31,C321C33,0C344C35,0C36,C37,0C384,  
1C39,C40.C41,C421C434C44.C451C46tC47,C481C49,C50.C510C521C53. 
2C54,C951C56,C57. 
DO 46 J0=1150 

	

46 NOW(J0)=0.0 	 3 

' DO 47 J0=5,30.5 
47 NOW(J0)=J0 

CALL MESHR 
:• 



IDEM=0 
DO 700 MOVE=1,8 
READ(5,17) INCIPOSt0C,TOS 
DO 700 J0=1.40 
ETX=1. 
MA=INC*(J0-1) 
DOSE=FLOAT(MA) 
STEP=FLOAT(INC) 
CALL TEMPR 
IF(JO.LE.1) GO TO 306 
CALL WIGN 
GO TO 312 

306 CONTINUE 
DO 310 I=1,NELEM 
EWX(I)=0•0 
EWZ(I)=0•0 
ECX(I)=0•0 
ECY(I)=0•0 
ECZ(I)=0•0 
ECXY(F)=0.0 

310 CONTINUE 
312 CONTINUE 

NPOIN2=NPOIN*2 
DO 313 I=1,NPOIN2 

313 U(Is1)=0•0 
IF(JO-1) 322,322.317 
IF(ETX.EQ.O.0) GO TO 322 

317 DO 320 I=1.NELEM 
CU=CV=FUNCTO(TAEL(I).DOSE) 
CW=4e*CU+2,*CV 
ECX(I)=FUNCT1(CU.CV,STXR(I) 
ECY(I)=FUNCT1(CU•CV+STXR(I) 
ECZ(I)=FUNCT1(CV.CV.STXR(I) 
ECXY(I)=FUNCTI(CW.0•45TXYR( 

320 CONTINLX.  
322 CONTINUE 

SURF=0.0 
324 DO .330 N=I1NELEM 

IF(ETX•E0•0•0) GO TO 326 
TADA=TAEL(N)-500•  
ARTO=ARA+ARB*TADA 
TADB=TAEL(N)-20• 
ETX=ARTO*TADB 

326 CONTINUE 
K=NOD(Ntl) 
L=NOD(N.2) 
M=NOD(N.3) 
DO 325 1=1.3 
JJ=NOD(NtI) 
XE(I.1)=X(JJ.1) 
XE(I12)=X(JJ,2) 

325 CONTINUE 
AI=XE(3.1)—XE(2•1) 
AJ=XE(2,1)—XE(1+1) 
AK=XE(3,1)—XE(1.1) 
BI=XE(212)—XE(3.2) 
BJ=XE(2.2)—XE(1.2) 
BK=XE(3.2)—XE(1•2) 
$UR=CAJ*BK—BJ*AK1/24 

On' 

,STYR(I)•STZR(I tSTEP,1) 
.STYR(I).STZR(I .STEP12) 
.STYR(I)ISTZR(I tSTEP.3) 
I),O.,O..STEP.4 

r 



159 . 

it 

XLOAD(1)=FUNCT2(ETX,ETY,EWX(N)9EWY(N),ECX(N)rECY(N),ECXY(N)* 
1 XORD(I),YORD(I),XORD(J)9YORD(J)4XORD(K)9YORD(K),E,PRII) 
YLOAD(I)=FUNCT3(ETX,FTY,EWX(N),EWY(N),ECX(N)*ECY(N),ECXY(N)1  
1 XORD(I)IYORD(I).XORD(J),YORD(J)IXORD(K),YORD(K)*EIPRo1) 
XLOAD(J)=FUNCT2(ETX,ETY9EWX(N),EWY(N),ECX(N),ECY(N),ECXY(N)9  
1 XORD(I)+YORD(I).0..049XORD(K)9YORD(K)9E9PR92) 
YLOAD(J)=FUNCT3(ETX,ETY,EWX(N),EWY(N)1ECX(N),ECY(N),ECXY(N),  
1 XORD(I),YORD(I)90.90.9XORD(K),YORD(K),E9PR 92) 
XLOAD(K)=FUNCTP(FTX,ETYIEWX(N),EWY(N)rECX(N),ECY(N),ECXY(N),  
1 XORD(I)9YORD(I)0(ORD(J),YORD(J)90•90.9E1PRI3) 
YLOAD(K)=FUNCT3(ETXIETY,EWX(N),EWY(N)4ECX(N),ECY(N)9ECXY(N),  
1 XORD(I)9YORD(1),XORD(J),YORD(J)90.90.9E9PR93) 
SURF=SURF+SUR 

330 CONTINUE 
WRITE(6925) (U(191)+I=1,NPOIN2) 
REWIND 4 
IF(IDEM•GT.1) GO TO 502 
INTER = 0 
DO 405 1=1,40 
DO 405.J=1,40 

405 ST(19J)=0* 
DO 500 II=19NPART 
NST=NSTART(II) 
NEN=NEND(II) 
K=NFIRST(II) 
L=NLAST(II) 
MINUS=K-1 
DO 445 LK=NST,NEN 
MM = LK — INTER 
DO 410 1=193 
JJ= NOD(LK91) 
XE(I.1) = X(JJ411) 

410 XE(192)=X(JJ92) 
CALL FEM(XE,E9PRoMM,LK) 
DO 445 LL=193 	4 

DO 445 KK=193 
IF(NOD(LK,KK)—K) 4459432943 

432 IF(NOD(LK,KK)—L) 434,434,445 
434 M=NFREE*(NOD(LK,KK)—K) 

N = NFREE*(NOD(LK,LL) — K) 
I = NFREE*(KK — 1) 
J = NFREE*(LL — 1) 	ti 

IF(N) 4459436,436 
436 DO 440 NJ=19NFREE 

DO 440 MI=19NFREE 
MMI = M + MI 
NNJ = N + NJ 
IMI = I + MI 
JNJ = J + NJ 

440 ST(MMI,NNJ)=ST(MMI,NNJ) +C(IMI,JNJ) 
445 CONTINUE 

DO 460 I=19NBOUN 
M=NF(I) — K 
MM = NF(I) — 1 
IF(M) 460.4479447 

447 M1=NF(I)—L 
IF(M1) 449.449.460 

449 DO 455J=19NFREE 
IF(NB(I,J)) 455.451.455 



451 NMI=NFREE*M+J  
ST(NMI,NMI)=ST(NMI+NMI)*.1E+22 
JNJ = NFREE*MM + j 

. U(JNJ,1)=ST(NMI,NMI)*BV(Itj) 
455 CONTINUE 
460 CONTINUE 

INTER = NEN 
M=NFREE*UNFIRST(II+1)-1)-(NFIRST(1I)-1)) 
WRITE(4)M,((ST(I,J),J=1•M)+I=1•M) 
IF(NPART-II) 462,5004462 

462 MM=M+1 
NN=NFREE*UNFIRST(II+2)-1)-(NFIRST(I1)-1)) 
N=NN-MM+1 
WRITE(4)M,N,((ST(I,J),J=MM,NN),I=IIM) 
LR=NFREE*(L-(NFIRST(11)-1)) 
LRMM=LR-MM+1 
LRMMI=LRMM+1 
JXR=MM 
JIR=1 

464 JXC=MM 
JIC=1 

466 ST(JIR,JIC)=ST(JXR.IJXC) 
JXC=JXC+I 
JIC=JIC+1 
IF(JXC-LR) 466+466,468 

4.68 JXR=JXR+1 
' JIR=JIR+1 
IF(JXR-LR) 4641464,472 

472 CONTINUE 
DO 475 I=1,LRMM 
DO. 475 J=LRMM1,40 

475 ST(I,J)=0•0 
DO 480 I=LRMM1,40 
DO 480 J=1,40. 

480 ST(I+J)=0.0 
500 CONTINUE 

IDEM=2 
502 CONTINUE 

REWIND 2 
REWIND 4 
CALL SOLVE(NPART,NCOLN,NFREE.NBOUN) 
DO 615 N=I,NELEM 
IF(ETX•EQ•0.0) GO TO 607 
TADA=TAEL(N)-500. 
ARTO=ARA+ARB*TADA 
TADB=TAEL(N)-20. 
ETX=ARTO*TADB 

607 CONTINUE 
K=NOD(N11) 	 _ 

L=NOD(N,2) 
M=NOD(N93) 
DO 610 1=193 
JJ=NOD(NII) 
XE(I,1)=X(JJ,1) 
XECI,2)=X(JJ,2) 

610 CONTINUE 
AI=XE(3,I)-XE(2,1) 
AJ=XE(2,1)-XE(191) 
AK=XE(3,1)-XE(191) 

160. 



16a 
BI=XE(2,2)—XE(3,2) 
BJ=XE(212)—XE(102) 
BK=XE(3,2)—XE(1,2) 
SUR=(AJ*BK—BJ*AK)/2. 
COC(N)=(SUR*NELEM)/SURF 
EPX=FUNCT4(YORD(I)+YORD(J),YORD(K)IDSX(I),DSX( J)IPSX(K),1) 
EPY=FUNCT4(XORD(1),XORD(.1),XORD(K),DSY(I)'DSY(J)9DSY(K)12) 
GAM=FUNCT5(XORD(I)"ORD(J),XORD(K),YORD(I),YORD(J),YORD(K),DSX(I)+ 
1 DSX(I),DSY(I)IDSX(J),DSY(J),DSX(K)IDSY(K)) 
X=FUNCT6(EPXIEPY,ETX,ETY,EWX(N),EWY(N)sECX(N),ECY(N),ECXY(N),E,PRI 
1 XORD(I)+XORD(J),XORD(K),YORd(1),YORD(J),YORD(K),1) 
Y=FUNCT6(EPX4EPY,ETX4ETY,EWX(N),EWY(N)tEtX(N),ECY(N),ECXY(N),EIPP, 
1 XORD(I),XORD(J),XORD(K),YORD(I),YORD(J),YORD(K)12) 
XY=FUNCT7(GAM,ECXY(N),E+PR,XORD(I),XORD(J)IXORD(K),YORD(I);YORD(J) 

1,YORE5(K)) 
STX(I)=X 
STY(I)=Y 
STXY(I)=XY 

615 CONTINUE 
CZ=1330000• 

622 P=0•0 
DO 625 I=1,NELEM 
IF(ETX•LT•0•00001) GO TO 623 
TADA=TAEL(I)-500. 
AZTO=AZA+ARC*TADA 
TADB=TAEL(I)-20• 
ETZ=AZTO*TADB 

623 CONTINUE 
P=P+CETZ+EWZ(I)+ECZ(I))*CZ*COC(1) 

625 CONTINUE 
DO, 630 I=1,NELEM 
IF(ETX.LT.O.0000I) GO TO 628 
TADA=TAELCI1-500. 
AZTO=AZA+ARC*TADA 
TADB=TAEL(1)-204 
ETZ=AZTO*TADB 

628 CONTINUE 
STZ(1)=P*C0C(I)/NELEM—(ETZ+EWZ(I)+ECZ(I))*CZ*C0C(I) 
1+PR*(STX(I)+STY(I)) 
ST3(I)=STZ(I) 

630.  CONTINUE 
DO 635 I=IgNELEM 	ti 
FIR=(STX(I)+STY(I))/26 
SEC=SORTMSTY(1)—STX(I))/2•0)**2+STXY(I)**2) 
XMAX=FIR+SEC 
XMIN=FIR—SEC 
PA=0•5*57•29578*ATAN(2•*STXY(I)/(STY(I)—STX(I))) 
IF(STX(I)—FIR) 6311634,634 

631 IF(PA) 632,634,633 
632 PA=PA+9060 

GO TO 634 
633 PA=PA-90• 
634 PAA(I)=PA 

ST1(I)=XMAX 
ST2(I)=XMIN 

635 CONTINUE 
IF(ETX,LTe0•00001) GO TO 647 
DO 645 1=10NELEM 
ECXP(I)=ECX(I) 



162. 
ECYP(I)=ECY(I) 
ECZP(I)=ECZ(I) 
ECXYP(I)=ECXY(1) 
STXR(I)=STX(I) 
STYR(I)=STY(I) 
STZR(I)=STZ(I) 
STXYR(I)=STXY(I) 

645 CONTINUE 
IF(TOS.GT.530.) GO TO 672 
POS=0.0 

672 IF(J0.GT.1) GO TO 676 
WRITE(6,673)POS 

673 FORMAT(1H0,18H CHANNEL POSITION .F5.1,3H CM) 
676 WRITE,(6.679) JOIDOSE 
679 FORMAT(17H0 INTERVAL NUMBEP,I3•18H 	EQUIVALENT DOSE+FB•1) 

NCASE=NWRITE/2 
GO TO (680,682.684) NCASE 

680 WRITE(6.681) 
681 FORMAT(2(67H ELEM NODE NO TEMP X—t Y—, MAX—. MIN—. Z-1 AND XV—. S 

1TRESSES ANGLE)) 
GO TO 685 

682 WRITE(6.683) 
683 FORMAT(4(33H ELEM PRINCIPAL STRESSES 1.213. )) 

GO TO 685 
684 CONTINUE 
685 CONTINUE 

NW=NELEM+NWRITE 
DO 690 N=1.NW.NWRITE 
GO TO (6869687.6889689) NCASE 

686 I=N+1 
WR•ITE(6+4) N,(NOD(N,J)•J=1.3)•TAF_L(N),STXR(N)+STYR(N),ST1(N), 

1ST2(N) tSTZR(N) oSTXYR(N).PAA(N). I t (NOD( I.J),J=1.3)ATAEL( I). 
2STXR(I)ISTYR(I)IST1(I).ST2(1).STZP(I).STXYP(I).PAA(I) 
GO TO 690 

687 I=N+1 	• 
J=N+2 
K=N+3 
WRtTE(6.5) N.ST1(N).ST2(N).STZR(N).PAA(N),I.ST1(I).ST2(I).STZR(I),  
1PAA(I),J,ST1(J),ST2(J)+STZR(J)+PAA(J)+K•ST1(K)+ST2(K)+STZR(K)• 
3PAA(K) 
GO TO 690 

688 CONTINUE 
689 CONTINUE 
690 CONTINUE 

IF(JO.NE•NOW(JO)) GO TO 647 
ETX=0•0 
ETZ=0•0 
GO TO 312 

647 CONTINUE 
700 CONTINUE 
750 CONTINUE 

STOP 
END 

SUBROUT I NE,  MESHR 



163 
SUBROUTINE TEMPR 

SUBROUTINE WIGN 

$IBFTC SUB1 
SUBROUTINE FEM(XE,E9PRoMM,LK) 
DIMENSION 0(3,3)90TDBA(6,6)9XE(392)9 .ZX(3)9ZY(3) 
COMMON C(696),DBA(396),DB(396)9A(696)9B(396),NSTART(30)+NEND(30), 
1NFIRST(30)1NLAST(30),INF(90),NB(9092),BV(9092)9X(30092),NOD(50093), 
2ST(40980),U(60091),UF(60091)9TIEL(500)9TAEL(500),EWX(500)*EWZ(500) 
3,J090C9OG9NELEMITOS9DOSE,NUSIZEINURAE,NUSEC,NUELE 
COMMON C119C121C139C141C151C169C171C1B9C199C209C211C229C239C249C25 
19C261C27,1C289C299C309C319C329C33,C341C359C369C379C389C399Ca09C41 
29C42,C439C449C459C46,C479C4B1C499C509C519C529C539C549C55tC569CS7 
DO 20 J=196 
DO 21 1=193 
B(11.1)=0, 
DB(19J)=0.. 

21 DBA(I,J)=0. 
DO 20 1=196 
A(I,J)=0. 
BTOBA(I.J)=0. 

20 C(I,J)=0. 
DO 22 J=193 
DO 22 1=1,3 

22 D(19J)=0* 
ORX = (XE(191) + XE(291) + XE(3,1))*.333333 
ORY = (XE(112) + XE(292) + XE(3,2))*.333333 
DO 5 I = 1,3 
XE(191) = XE(191) — ORX 

5 XE(I,2) = XE(I12) — ORY 
ZX(1) = XE(292) — XE(392) 
ZX(2) = XE(392) — XE(192) 
ZX(3) = XE(1,2) 	XE(292) 
ZY(I) = XE(311) 	XE(291) 
ZY(2) = XE(1,1) 	XE(391) 
ZY(3) = XE(291) 	XE(191) 
ZK = XE(291)*XE(392) — XE(311)*XE(292) 
Z=3•4(2K 
A(191)=ZK/Z 
A(291)=ZX(1)/Z 	

ti A(3,1)=ZY(1)/Z 
A(492)=A(111) 
A(592)=A(2,1) 
A(692)=A(391) 
A(193)=ZK/Z 
A(293)=ZX(2)/Z 
A(393)=ZY(2),Z 
A(494)=A(113) 
A(594)=A(293) 
A(614)=A(393) 
A(195)=ZK/Z 
A(295)=ZX(3)/Z 
A(3,5)=ZY(3)/Z 
A(496)=A(1,5) 
A(596)=A(215) 
A(696)=A(395) 
B(192)=16 
B(393)=1. 



e t, 

B(3,5)=1. 
B(2,6)=1. 
DEN=E*(1,—PR)/((1.+PR))(1,-2.-gPR)) 
D(1,1)=DEN 
D(212)=DEN 
D(2,1)=DEN*pR/(1.—PR) 
D(1,2)=D(2,1) 
D(3,3)=DEN*(1.-2.*PR)/(2.*(I.—PR)) 

72 DO 30 J=1,6 
DO 30 I=1,3 

DO 30 K=1+3 
30 DB(Is..1)=DBCI,j) + D(I,K)*B(K,J) 

DO 40 J=1,6 	- 
DO 40 1=1'3 
DO 40 K=1,6 

40 DBACI+J)=D5A(I,J) + DB(I,K)*A(K•J) 
IF (MM) 1261126,127 

127 CONTINUE 
126 CONTINUE 

VOL=0.5*Z 
DO 50 J=1,6 
DO 50 1=1,6 
DO 50 K=1,3 

50 BTDBA(I,J)=BTDBACI•J) + 5(KII)*DBA(K,J)*VOL 
DO 60 J=1,6 
DO 60 1=1,6 
DO 60 K=1,6 

60 C(I,J)=CCI,J) + A(K,I)*BTDBA(K,J) 
RETURN 
END 

$IBFTC SUB2 ' 
SUBROUTINE SOLVE(NPART+NCOLN,NFREEINBOUN.) 
DIMENSION AM(40,80)90M(40,40),YM(40,40),TF(401 1),RS(40,1),  

1DI(40,1),F(4091) 
COMMON C(6.6)+DBA(3.6)•DB(3+6)+A(6+6)+B(3+6)+NSTART(30),NEND(30),  
1NFIRST(30)INLAST(30),MF(90),N8(90,2),BV(90,2),X(300,2),NOD(5000-3),  
2ST(40,80),U(600,1),UF(60011),TIEL(500),TAEL(500),EWX(500),EWZ(500) 
3•JO+QC,QG+NELEM.TOS,DOSE,NUSIZE,NURAE•NUSEC+NUELE 
COMMON C119C12,C13,C14,C159C16.C17,C16,C190C20.C21,C221C23.1C24,C25 
1,C26,C274C2B4C291C301C31*C32,C33,C34,C35,C361C37,C3B+C399 C40,C41 
21C421C430C44,C45,C46,C47,C4B,C49,C50,C51,C529C531C54.C551C56,C57 
EQUIVALENCE (AM(1,1),ST(141)),(BM(111)1AM(1141)) 
DO 140 1=1,40 
TF(I.11)=0.0 
RS(I,I)=0.0 
DO 140 J=1,40 

140 YM(I,J)=0.0 
D0144LL=1,NPART 
READ(4)M.(CAM(I'J)•J=1+M)•1=1,M) 
LS=NFREE*INFIRST(LL))-1 
DO 424 I=11M 
F(1+1)=U(LS•1)—TF(I.1) 
DIS(I,1)=F(Ill) 
LS=LS+1 
DO 424 J=1IM 

r 



165. 
424 AM(1,J)=AM(1,J)-YM(19J) 

CALL SPNIST(AM,Mt40,ISIG) 
IF(NPART-LL) 666,666,555 

555 READ(4)M,N,((BM(19J),J=1,N),I=1,M) 
667 WRITE(2) M,N+((AM(I+J)+I=I•M),J=1,M)+((BM(I'J)+I=1 ,M),J=1,N),  

1((F(ItJ),I=1,M)0J=1,NCOLN) 
GO TO 878 

666 WRITE(2)M+((AM(I.J)•I=1+M),J=1,M),((FlI,J)+I=1•M)+J=1,NCOLN) 
878 DO 200 L=1•NCOLN 

DO 200 I=1,M 
DIS(19L)=0•0 
DO 200 K=1,M 

200 DIS(19L)=DIS(1,L)+AM(I,K)*F(KIL) 
IF(NPART-LL) 437,4379303 

303 DO 300J=19NCOLN 
DO 300 L=1•N 
TF(L,J)=0•0 
DO 300 I=19M 

300 TF(L.J)=TF(L+J)+BM(I•L)*DIS(I+J) 
DO 110 J=1•N 
DO 110 I=1,M 
YM(ItJ)=0•0 
DO 110 K=1•M 

110 YM(I,J)=YM(I,J)+AM(I,K)*BM(KtJ) 
DO 111 J=1•N 
DO 111 I=1,N 
AM(ItJ)=0•0 
D0111 K=l,M 

111 AM(I,J)=AM(I,J)+BM(KtI)*YM(K9J) 
_ 	pp 112 I=19N 

DO 112 J=1•N 
112 YM(I,J)=AM(I,J) 
144 CONTINUE 
437 REWIND 4 

JJ=NPART 
LS=NFREE*(NFIRST(JJ))-1 
DO 438 I=1•M 
UF(LSt1)=DIS(191) 
LS=LS+1 

438 CONTINUE 
IF(NPART-1) 600,6001601 

601 NA=NPART-1 
D0441 LL=1•NA 
II=LL+1 
JJ=NPART+1-II 
LS=NFREE*(NFIRST(JJ))-1 
BACKSPACE 2 
BACKSPACE 2 
READ(2)M+N•i(AM(I,J),I=1+M)+J=1'N),((BM(I+J)+I=1+M)+J=1+N),  
1((FlI,J),I=1•M)+J=1•NCOLN) 
DO 462 L=19NCOLN 
DO 462 I=19M 
TF(1,L)=0•0 
D0462 J=1,N 

462 TF(19L)=TF(I,L)+BM(I,J)*DIS(J,L) 
DO 444 J=1,NCOLN 
DO 444 I=1•M 

444 F(I+J)=F(I•J)-TF(I•J) 
DO 465 L=1,NCOLN 

i 
1 ,....'..-. 



DO 465 I=1,M 
DIS(I,L)=0•0 
DO 464J=1,M 

464 DIS(I,L)=DIS(I,L)+AM(I,J)*F(J,L) 
UF(LS,1)=D1S(I+L) 
LS=LS+1 

465 CONTINUE 
441 CONTINUE 

DO 500 LL=1,NPART 
II=(NPART+1)—LL 
IZ=NPART—LL 
READ(4)M,UST(IeJ),J=1,M),1=1,M) 
M2=M+1 
IF(NPART—LL) 656,657,656 

656 NN=NFREE*((NFIRST(LL+2)-1)—(NFIRST(LL)-1)) 
REAP(4)M,N,UST(I,J),J=M2,NN)11=1,M) 

657 CONTINUE 
DO 290 I=1,NBOUN 
K=NFIRST(LL) 
L=NLAST(LL) 
M5=NF(I)—K 
MM = NF(I) — 1 
IF(M5) 290,242,242 

242 M1=NF(I)—L 
IF(M1) 243,243,290 

243 DO 230 J = 1,NFREE 
IF (NB(I,J)) 230,345,230 

345 NMI=NFREE*M5+J 
ST(NMI,NMI)=ST(NMIoNMI)**1-E-20 

230 CONTINUE 
290 CONTINUE 

IF(NPART—LL) 100411003,1004 
1004 DO 1001 I=1,M 

DO 1001J=M2tNN 
K=J—M, 

1001 YM(IcK)=ST(1,0J) 
DO 1002 I=1IM 
DO 1002J=1,N 

1002 BM(I+J)=YM(I,J) 
1003 CONTINUE 

DO 1000 r=1.m 
DO 1000J=1•M 

1000 AM(I•J)=ST(10J) 
IF(NPART—LL) 6591658.659 

659 CONTINUE 
658 DO 510 J=1INCOLN 

DO 510 I=1,M 
LS=NFREE*(NFIRST(II))-1 
LZ=NFREEX(NFIRST(IZ))-1 
F(I,J)=RS(I,J) 
DO 512 K=1,M 
F(I,J)=F(I,J)+AM(ItK)*UF(LS,J) 
LS=LS+1 

512 CONTINUE 
IF(NPART—LL) 662,510,662 

662 DO 520 L=IoN 
F(I,J)=F(I,J)+8M(IoL)*UF(LZ,J) 
LZ=LZ+1 

520 CONTINUE 

166. 



167. 
510 CONTINUE 

IF(NPART-LL) 663.500,663 
663 DO 700 I=1.N 

LS=NFREE*(NFIRST(II))-1 
RS(191)=0.0 
DO 700 K=101 
RS(1,1)=RS(1,1)+BM(KII)*UF(LS,1) 
LS=LS+1 

700 CONTINUE 
500 CONTINUE 
600 CONTINUE 

RETURN 
END ,  

$IBFTC INVIST DECK 
SUBROUTINE SPNIST(A,M.KKIISIG). 
DIMENSION A(1) 
ISIG = 0 
N = M 
NN = KK 
N2 = N + N 
DO 10 J=1,N - 
NJCOL = (N + J - 1) * NN 
DO 10 I=11N 
KINJ = NJCOL + I 
IF(I-J)41614 

4 A(KINJ) = Op 
GO TO 10 

6 A(KINJ) = 1. 
10 CONTINUE 

C DETERMINE MAXIMUM ABS OF VARIABLE BEING ELIMINATED. THIS BECOMES PIV 
C 	OTAL ROW 

L = 0 
12 L = L + I 

LCOL = NN*L-NN 
_ KLL = LCOL + L 
IF(L - N)13.30,1000 

C FIND THE LARGEST ELEMENT IN THE LTH COLUMN. 
13 JI = L 

C=ABS(A(KLL)) 
LI = L + 1 
DO 20 I = LlIN 
KIL = LCOL + I 
X=ABS(A(KIL)) 
IF(C - X)14.20.20 

C RECORD THE NUMBER OF THE ROW HAVING THE GREATER ELEMENT: 
14 JI = I 

C C BECOMES THE GREATER. 
C = X 

20 CONTINUE 
C INTERCHANGE ROW JI WITH ROW L. JI IS THE ROW WITH THE LARGEST ELEMENT 
C TEST TO SEE IF INTERCHANGING IS NECESSARY. 

IF(J1 - L)22,30,22 
22 DO 24 J = L.N2 

JCOL = NN*J-NN 
KJIJ = JCOL + JI 



HOLD = A(KJIJ) 
KLJ = JCOL + L 
A(KJIJ) = A(KLJ) 
A(KLJ) = HOLD 

24 CONTINUE 
C IF THE LARGEST ABSOLUTE ELEMENT IN A COLUMN IS ZERO 14E HAVE A SINGUL 
C AR MATRIX 

30 IF (ARS(A(KLL)) - .00000001)33933'32 
33 WRITE(6.100) 

ISIG = 4 
GO TO 1000 

C 	ZERO ALL THE ELEMENTS IN THE LTH COLUMN BUT THE PIVOTAL ELEMENT. 
32 Ll = 1 

L2 = -L - 1 
IF(L2)3211321,323 

321 IF(L-N)322.46,322 
322 LI = -L + 1 

L2 = N 
323 DO 324 1 = L1.L2 

KIL = LCOL + I 
Z = -A(KIL)/A(KLL) 
DO 324 J = LIIN2 
JCOL = NN*J - NN 
KIJ = JCOL + I 
KLJ = JCOL + L 

324 A(KIJ) = A(KIJ) + Z*A(KLJ) 
IF(N - L2)12.12,321 

C DIVIDE BY DIAGONAL ELEMENTS. 
46 DO 48 I = 1.N 

KKK = NN*I - NN + I 
ZZ = A(KKK) 
DO 48 J = 10\12 
KKI = NN*J - NN + I 

48 A(KKI) = A(KKI)/ZZ 
C RETURN AFTER PUTTING A INVERSE INTO B 

49 DO 50 J = ItN 
JCOL = NN*J - NN 
NJCOL = NN * N + JCOL 
DO 50 I = 1,N 
KIJ = JCOL + I 
KINJ = NJCOL + I 

50. A(KIJ) = A(KINJ) 
100 FORMAT(//20X.42H MATRIX IS SINGULAR, NO INVERSE OBTAINABLE///) 

1000 RETURN 
END 
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