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ABSTRACT
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A review of work on irradiation induced stresses in graphite
components of a nuclear reactor is given and the mechanism of
generatlon of - stresses described. A choice of a suitable flnltn
" element matrix displacement method is discussed. The finite
element model for graphite under mﬁltiazial stress is developed
‘and equations governing the stresses, strains and deformations
of graphite components/time are presented for plaﬁe strain
and axi-symmetric cases, Computpr programs are described which
solve the equations, stepwise in time, advancing in suitable time
'steps and- using always the gtresses fromvpreV1ous tlmg interval
to calculate the current creep strain increments,

Two versions of the finite element program have been develcoped.
" One version is based on Gaussian elimination (direct~band program)
the other on the Gauss-Seidel iterative procédure (iterative
prbgram) to solve the system of equilibrium equations for the
whole structure, For graphite components in a reactor in géneral,
temperature and neutron dose distribution and material properties
all vary in space and time, With particular reference to these
changes, the solution techniques (programs) Wefé compared, Other
influences on the stability of results, such as the choice of
time step, mesh size and pattern were also studied, Some
conclusions regarding the relative suitability of both solution
techniques are drawn,

The stress analysis of three more complex graphite components
has been attempted: a hollow rod fuel pin under temperature. tilt,
a teledial fuel pin and a multichannel graphite block. The
results are preééntéd and some conclusions are drawn regarding
the stress levels and suitability of the particular graphite
components, Also desirable techniques of providing mesh data and
temperature, neutron dose and material properties changes with
time when solving complex large size problems are described.
Finally some sugzestions for further work on reactor graphite and

other time depcendent problems are given,
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1. INTRODUCTION

e -

In the past twenty years graphite moderated and gas cooled
reactors of different types have been developed, designed and
built in a number of countries. Most of early graphite reactors
have been built in United Kingdom and France and use carbon
dioxide as coolant and graphite moderator blocks fﬁeled with
natural uranium metal clad in magnesium/aluminium alloy, called
Magnox. In the United Kingdom a second generation of Advanced
Gas—cooled Reactors (AGR), fueled with slightly enriched uranium
- oxide, clad in stainless steel and also cooled with carbon
dioxide is at present being built,

The current efforts in the development of graphite reactors,
- in Europe and America are however focused on High Temperature
' Gas Cooled Reactors (HTR) using graphite moderator and ceramic
fuel and cooled by helium, High Temperature reactors were
. designed with the aim of the developing an advanced converter
reactor with a high thermal efficiency and good conversion ratio,
- which should be at reasonable costs suitable for commercial
power stations. As far as the family of graphite power reactors
is concerned HTR's are also to some extent an extension of work
done on Magnox and AGR powver reactors and much previous
experience can be utilizied eventhough the work has been actually
in part carried out simultaneously. One of the key advantages
of HTR's is the use of improved graphites as moderator and core
structural material in the absence of any metallic canning or
structure within the core., Thus the outlet coolant temperature
is not strictly limited and it is possible to raise it to
900°C or more making possible also the direct cycle application
using gas turbines.

The HTR has been developed since the late fifties in the USA
and Europe and some prototype reactors have been built. In
Europé most of work has been done or sponsored by the Dragon
Project, established in 1959, in which 12 European countries
take part: Austria, Denmark, Euratom-countries, Norway, Sweden,

Switzerland and the United Kingdom in cooperation with the USA



designer of the HTR, Gulf-GA, The Dragon Project is centred

at the Atomic Energy Establishment Winfrith, England, where

the 20MW prototype HTR, Dragon, has been in operation since
Auvgust 1964, At present, further studies and the design of a
full scale commercial HTR are being carried out by the Dragon
Project and also by some large design consortia in the UK
(British Nuclear Design and Construction Ltd., The MNuclear Power
Group Ltd) and elsewhere (e.g. Brown Boveri Cie, Baden,
Switzerland).

At Imperial College .in the Nuclear Power Section, the
research work on the stresses in the reactor graphite has been
going on, for a number of years under supervision of Dr.J.L.Head
and supported by the Dragon Project, starting with the stress
analysis of Magnox and AGR graphite blocks and analysing at
present different graphite components of HTR.

The irradiation of graphite by high eneréf neutrons causes
the carbon atoms to be displaced from cryst&l lattice sites,
This damage to the crystal structure causes changes of the
physical properties of the graphite and also causes dimensional
changes (growth or shrinkage), termed usually as Wigner strains.
The magnitude of dimensional changes depends on several factors
including the graphite te&perature, the neutron dose and energy
spectrum. Alco, dﬁe to the elevated temperature of the graphite,
the material will expand causing the thermal strains. In the
reactor the graphite components will be subject to temperature
gradients and dose variations apd therefore spatial variations
of Wigner and thermal strains., Stresses will develop, analogous
to thermal stresses in a body which is not at a uniform temperature,
The- stresses in the graphite components will be modified by an
irradiation activated creep mechanism,

If the reactor is shut-down during the operation_and the
core is cooled to-the uniform temperature the effect of
differential thermal strains vanishes and a new stress distribution
is established. The stresses with the reactor shut-down (cold)
are termed in this thesis as residual stresses to distinguish them

A
[



1o,

from the stresses with the reactor at power (hot) called
opefating stresses, .

The calculation of stresses in a number of graphite components
of different reactors have been performed at Imperial College
by various authors [1,2,3,4,5,6,7,8,9] over a number of years,
however all of the analysés have been one-dimensional and use
numerical integration computer codes. .

This work is an attempt to develop and apply the method
used in these one-dimensional stress analysés, to analyse the
time depéndent stresses and strains in arbitrary two-dimensional
graphite core components using the finite element matrix
displacement methods, Next, the aim is also to develop the
corresponding computer programs and demonstrate the validity of
the finite element model.

In Chapter 2 of the thesis a short description of the core
ofVHigh Temperature Reactors is given together with basic reactor
date, Different forms of graphite core components: fuel pins
and multichannel graphite blocks, currently under consideration
for commercial HTR's are described and shown in Fig's 2,3,4 in
order to define the stress problems in the graphite core,

In Chapter 3 the basic equations of the problem are
established and corresponding finite element model developed
for two-dimensional plane strain and axisymmetric cases. The
inclusion of plane stress option and changes of equations if
the material is only transversely isotropic are given in detailed
form in App.I. A 3-dimensional form of creep law proposed by
Head fé] is adopted on the basis of theoretical considerations
and limited data from uniaxial creep tests, This chapter also
includes a review of previous work in the field.

The next step in the development of the finite element model
for graphite core components was to compare the results of the
finite element stress analysis with earlier results from one
dimensional analysis of the hollow rod fuel pin using the basic
operational data of Dragon reactor (Ch,6.1.1). When the results

of these analysis were found to be in reasonable agreement,
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a comparative analysis was performed, examining the accuracy

of results, stability of solutions and required computer time
and memory of two finite element computer programs developed
for this purpose. One program uses Gauss-Seidel iteration the
other Gaussian elemination to solve the system of algebraic
equations. The iterative version of the program was found to be
faster fof the same accuracy and more suitable for further
development, Both computer programs are discused at some length
in Chapter 4,

In Chapter 5 the initial calculations required by the finite
element program for mesh generation, temperature and equivalent
dose calculation and input of materials data are described,

These initial calculations, and the input of materials data have
been performed by subroutines or independent programs written
for this purpose and information supplied to the main program,

The stress ana1y51s of some complex HTR core components
has been performed using the iterative version and results are
presented in Ch,6, The finite element model has been demonstrated
by analysing three different reactor components: a hollow rod
fuel pin under temperature tilt (Ch.6.2.2), a teledial fuel pin
(Ch.6.3) and a multichannel graphite block (Ch.6.4) under
arbitrary temperature and” equivalent dose distribution,

In Chapter 7; concliusions are drawn, relating to the validity
of the chosen creep law, the comparison of matrix displacement
methods and on the particular 5raphite components analysed.,

An attempt is made to outline the possible future lines of
development, Only the graphite components of HTR?s have been
analysed but the finite element model and computer programs can
be.used in the analysis of graphite components of other graphite
moderated gas cooled reactors,

The finite element codes developed should in general enable
analysis of most of the stress problems in graphite core components
of graphite gas cooled reactors, especially the HTR. The codes

should enable in particular the solution of the complex stress
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cagses at radial and axial core reflector boundaries with tempe-
rature and equivalent dose gradients and perturbations (Fig.h)
not possible by earlier one-~dimensional models,

Finallj it seems that some of the results of comparafive
analyeis (Ch.6.2.1) using the finite element model can be-
utilizied in the stress analysis of some olther time depéndent

problems, such as time-dependent creep of concrete., Also some of

the peripheral programs and subroutines written for example to

generate the mesh data for complex structures can possibly be

utilizied in the finite element analysis of some other nuclear

or non-nuclear structures.
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2, THE GRAPHITE CORE OF HIGH TEMPERATURE REACTORS
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The Dragon Reactor is a graphite moderated and helium
cooled system using enriched uranium as fuel (see for ekample
Shepherd [16]). The size of the Dragon Reactér was chosen to
be the smallest which would adequately demonstrate the principles
on which any HTR would depend, The reactor has a small core
with an equivaient diameter of 107 cm and height of 160 cm and
consists of 37 fuel elements on a hexagonal lattice, each being
‘a cluster of 7 geometrically identical fuel rods. The fuel,
enriched uranium in the form of codated particles is placed in
graphite cartridges, filled inside with graphite filler pieces
and surrounded outside by graphite fuel tubes in the form of )
hexagons (Fig.2). The 20MW of heat produced is removed by helium
which enters at the bottom of thae core at 35000 and emerges at
750°C, cooling the fuel elements by passing through the core
along trefoil coolant channéls.

Many types of fuel elements have been constructed and tested
in the Dragon core and series of data were obtained about core
maﬁerials, operational conditions and reactor performances.,

One of the question of primary importance is the choice of a
suitable graphite, The earlier reactor graphites with low
permeability - to prevent the escape of fission produéts into
coolant channels - show a high rate of dimensional change
(shrinkage or growth) and anisotropic behaviour under irradiation,
undesirable for strain/stress buildup. A major change in
development occured in 1961 when the concept of coated particle
fuel was adopted and considered to be more suitable than
previously examined fuel, emitting fission-products.?nd coupled
with an expensive fission product purge system (see f;r

example Smith flé] ). As a consequence new types of reactor graphites
with higher permeability were developed - which proved to

undergo more moderate diﬁensional changes under irradiation

and had a higher degree of isotropy. One of the improved graphites
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is pressed Gilsoﬁarbon graphite used as material for all
the graphite components analysed in this thesis., A detailed
account of reactor graphites analysing their crystalline
structure, the process of manufacture and their behaviour
in reactof environments is given by Head [2].

After completion of the design and construction of the
Dragoﬁ reactor, the Dragon Project turned its attention to
large scale power reactor applications (see Lockett QHosegood [ii]).
Different fuel-cycleé ard core configurations for a full scale
commercial power HTR have been studied, Low - enrichment
uranium cycles were foﬁnq to be attractive for the HTR,
preliminary design studies for this fuel cycle involved strongly
heterogeneous core arrangments in which the fuel was concentrated
in channels of about 30 cm diameter in a fixed graphite
structure, However, subsequent studies of the low - enriched
uranium version related to a more homogeneoys core arrangmsnt
which appears in most respects to be superior to the hetero-
geneous arrangement. The core of the homogeneous reactor (Fig.l)
has the moderator built in block form with the fuel carried
within the blocks in a number of fuel pins placed in individual
coolant channels about 6-7 cm in diameter to form robust fuel
element assemblies. The m%ltichannel graphite blocks are changed
when fuel is changed and the problem of the long term dimensional
behaviour of graphite does not arise. This form is capable
of a high thermal power density with relatively modest fuel and
graphite temperatureé. \

Three proposed types of fuel pins: a hollow rod fuel pin,
a tubular interacting fuel pin and a teledial fuel pin are
shown in Fig.2. Next, two proposed types of multichannel
graphite blocks in the form of pentagon and hexagon are shown in
Fig.3. These fuel pins and graphite blocks are being-now
considered for commeftial high temperature reactors.

In Fig.hk typieal shrinkage, temperature and neutron dose
data at the end of fuel life in the core of a commercial HTR

are shown, The Attention of the .stress analysts is centred
. r .
]
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especially at the core - reflector boundary regions with
substantial temperature and equivalent dose gradicnts.
Some basic reactor data pf a commercial homogeneous HTR

are given in Ch.2.2.

2.2 Basic reactor data

e gt 3 ot e e ot ot et e gt

Thermal power of the reactor 20 M (4)

Core dimensions X : 107 cm dia.x 160 cm high
Lattice pitch 6.35 cm '

Radial power averaging factor 1.3

Axial power averaging factor 1.16

Average heat rating of rod 482,6 V/cm

Helium inlet temperature 350°C

Helium outlet temperature 75000

Number of fuvel elements 37

Number of fuel rods per elements 7

Assumed basic parameters in the calculations of stresses of
a Dragon reactor fuel pin (Fig.2):

Inner radius of fuel tube. 2.22 ¢m

Outer radius of equivalent cylinder

(calculated) 3.12 cem

2.,2.,2 A_typical homogeneous core_of a commercial HTR

e gt s ot St Gt e iy NN Gt G Bt T B WD e i it ey Bt Arnh o i W e e St Pt U S Gt W S b b 200 et

g
Thermal Power T T T 1500 MW

Mean core power density 6 I-iW/m3

Mean fuel rating 60 M{/tonne U

Mean burn-up 72000 MWd/tonne U

Fuel lifetime ) 1200 days .

Peak fast neutron dose in fuel L x 1021n/cm2(Dido-Nickel Eq.)
Mean outlet. coolant. temperature 800°¢ '

Peak systematic fuel temperature 1300°C



FUEL PINS

Hollow rod fuel pin

Inner radius

Outer radius (without considering the ribs)

Teledial fuel pin

Inner radius of fuel pin (coolant channel)
Outer radius of fuel pin (without copsidering
the ribs) '

Outer radius of fuel pin across the ribs
Radius of fuel holes

Diameter of fuel holes

Number of fuel holes

GRAPHITE BLOCKS

Pentagon graphite block

Approximate dimensions
one side of pentagon
maximum dimensions
no of coolant channels

diameter of coolant channels

Hexagon graphite block

Approximate dimensions
one side of hexagon
no of holes

dia of holes

16.

2.22 cm
3.12 cm
0.9335 em
2.9365 cm
3,3465 em
1.935 cm
1.203 cm
8
28 cM
43z CM
16-19
6-7 cm
20-30 cm
30 cm
20-30

6~7 cnm
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S THEORETICAL ANALYSIS
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The early work at Imperial College on the analysis of the
stresses in the moderator graphite of a nuclear reactor
was concerned with the so-called one-~dimensional stress model.
The stresses and strains were calculated for a state_of genera-
lised plane strain assﬁming axial symmetry for graphite components
of cylindrical shape, The mentioned one-~dimensional analyses
of stresses are all based on a step by step method of soclution
- similar to that proposed by Mendelson, Hrischberg & Manson [13)
and since used by many authors for solution of problems invelving
thermal creep (see for example Smith [153 ). This method of
solution was adapted by Head Céj to analysis of graphite stresses
and is given in more detail in Ch,3.3., The main assumption in this
approach is that the graphite behaviour in reactor environments
is equivalent to the response of a MHaxwell viscoelastic model,
with space and time dependent properties, It is assumed that
the strain tensor can be separated into an elastic strain tensor
related to the stress tensor by the Hooke’s law and a nonelastic
strain tensor consisting of thermal, Yigner and creep strains
(Ch,3,3,2,3). The basic equations of équilibrium, compatibility
and stress-strain relationship are derived and solved for
stresses in terms of the non-elastic strains and elastic constants
in an integral formulation, These cquations are then solved at
suitable time intervals, The thermal and VWigner strains are
estimated at each time interval directly from experimental data,
The incremental creep strains at the current time interval are
always found from a relationship between the creep strain rate
tensor and the general stress tensor (a flow rule) by iteration,
The total creep strains at each time interval are found by
summation of incremental creep strains over the previous and
current time intervals,

On this basis, the first computer programs, named later as

Nessan I and II, were developed by Sockalingam [é] for the
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calculation of stresses in the MHagnox reactor moderator blocks
and by Barnes [8] for the AGR moderator blocks. These programs
vere followed later by Nessan III, developed by Jezernik [3]
and Hassan developed by Alujevié[j9j for the calculation
respectively of the stresses in the hollow rod and tubular
interacting fuel pins (Fig.2) proposed for the HTR. ’

The early programs Nessan I and II calculate the stresses
with the reactor at power (hot) at a particular position in core.
In Nessan III the calculation of stresses at any position along
a partiéular channel and>ca1culation of stresses with reactor
shut-down (cold) was made possible in a single run, Additionally
"the effects of temperature and neutron dose on thermal conductivity,
the temperature dependence of the creep rate-and the influence of
fuel rating changes on the temperature distribution during the
lifetime éf the reactor core were-considered. The same features
were d&opted later in Hassan. Thus with Nessan III, a study of the
spatial variation of the stresses in the reactor core became
possible, giving an indication of the areas where the highest
stresses occur, The stresses with the reactor shut down are
usually more severe than stresses with the reactor at power,
A1l three Nessan programs and Hassan code have built-in temperature
roﬁtines i.e. the temperature distribution is calculated successively
for each dose interval, .

The value and validity of Nessan programs is limited, by
the assumptions of plane strain and axial symmetry, to the central
region of a reactor core with flat radial flux and temperature
distribution and only low axial gradients of flux and temperature.
On the other hand Nessan programs are comparatively fast, so
far as computer time is concerned, and results relatively
accurate, If used together with more elaborate computer codes,
Nessan programs could be valuable in the first estimations of
the regions with highest siresses and for comparison of the
behaviour of different types of graphite, especially on account
of the computer time economy.

The aim of the analysis described in this thesis was to
develope a mathematical model and write a computer program for

a general two-dimensional case (plane stress/strain and
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axi-symmetric geometry) with, for example, non-symmetric flux

and temperature distribution and for complex gcometrical. shapes
like a multi-channel block or the teledial fuel pin (Figs.a,B).
This program should enable a more detailed analysis of the stresses
in graphite moderator covres, in particularl-- at radial and

axial core boundaries where temperature and flux tilts isually
have the highest wvalues, The finite element approach was chosen

‘as a method of solution as the method offers many advantages

as discussed later, Finélly some assessments, conclusions and

proposals for futher work are made.

3,2 The finite element method
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3¢2.1 A brief roview of work on the finite element method
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It is well known that by the use of classical mathematical
formulation of a problem only a limited number of engincering
field problems can be explicitly solved, Attempts to formulate
and solve explicitly complex problems often either fail or lead
to.sbphisticated nathematics and/or trivial solutions.

The finite element method can be regarded as a suitabhle
ansver and a practical engineering approach to the solution of
complex field problems, One of the main advantages of the
method is the piecewise continuous field definition enabling
irregular boundaries to be simply fitted., The credit of
approximating a continum by a number of elements with multiple
connecting points goes to Turner at al [15] in 1956, Clough [ié)
in 1960 and Argyris [ﬁé], 1955, \

It will be beyond the scope of this work to give a detailed
account of the development of the finite element methed since it
was introduced. It is possible however to state that most of
the problems to which it has been applied are of the structural
solid mechanics type and that major advances occured in the
formulation of the approach the introduction of different elements
and the developments of various computer techniques for solving

the system of equations for the whole structure,
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In the early sixties, the basic two-dimensional finite
element programs using for example Gaussian elemination or the
Gauss-Seidel iterative procedure to solve for nodal displacement
have been applied extensively to elastic problems (see for
example Zienkiewicz flé] and Wilson [19)) Thus today the'eiasticity
problems seem to be covered in considerable detail, The
observation that if the total number of degrees of freedom
associated with an element is increased, then equal accuracy can
be obtained with fewer degrees of freedom for the complete
structure leads to the introduction of more complex (isoparametric)
elements, Triangles and tetrahedra with nodes placed at midsides
were introduced by Veubeke [261 and Argyris [éi), respectively.
-Next, the isopafametric curved type elements were introduced
(see for example Ergatoudis, Irons & Zienkiewicsz [22] ) enabling
& close boundary representation with a smaller number of finite
elements. In the recent past énd at present the use of finite
element method is rapidly being extended into the nonstructural
fields of fluid mechanics, heat transfer etc, and to some more
complex structural problems of creep, plasticity and dynamics.
One of these extensions is the development of the finite clement
model for reactor graphite components.

A discusion of work on nonlinear problems of creep and
plasticity and a review of work on irradition induced creep

of reactor graphite is given in Ch.3,3,1.

The finite element method is a general method of structural
analysis in which a continuous structure is replaced by a finite
number of elements interconnected at finite number of nodal
points (Fig.s 9,10,11). Approximations are made concerning the
behaviour of the elements in an attempt to approxima£g>to the
behaviour of the continuous structure. To obtain a complete
solution the conditions of displacement compatibility and

equilibrium have to be satisfied throughout. The equilibrium

’
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condition has to be satisfied within an element and over all
the elements of the structure,.
Assuming elastic behaviour of the structure (material)
the sysfem of equations for overall equilibrium of the structure
will be of the form:

[K']zi ey = &) | (3.1a)

or

...l .

{6y = [x] {R} : (3.1b)

where K is termed _ the stiffness of the complete structure
and can be found by systematic addition of the stiffnesses of

all elements in the system. The stiffness of a typical element
is an expression for the corner forces resulting from unit

corner displacement,

is the system of nodal displacement of the structure and

- {3

are the external forces by which the structure is loaded

The system of equations (3.1) can be solved once the
prescribed support displacements have been substituted to
prevent rigid body movements of the structure. Without a minimum
number of prescribed displacement it is impossible to solve
this system, because the displacement cannot be uniquely determined
by the forces in such a situation.

Once the system of algebraic equations (3.1b) is solved
and the displacements of all nodal points of the structure
calculated, using the strain/displacement relationship and
stress/strain relationship within each element, the stresses in

each particular element can be calculated,



26,

The basic principles of the finite element method are well
established (see for example Zienkicwicz {18] and Przemienicky
[éjl), however, in this thesis the basic formulation of the
method is re-stated, with the modification necessary when applying
the method to the éolutiop of (time dependent) problems of

»

graphite core component analysis,

3.3 Finite_ element model for the_ time_dependent stress
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When graphite is irradiated with high energy neutrons,
carbon atoms ére displaced from 1attice.sites. This damage to the
crystal structure causes changes of the physical properties
of the graphiie and also causes dimensional changes (growth or
shrinkage). The magnitude of the dimensional changes depends on
several factors including the graphite temperature and neutron
dose and energy spectrum, In recent years, considerable progress
has been made towards understanding the mechanism of radiation
damage in graphite. A large volume of experimental data has
been accumulated on the effects of neutron irradiation on the
bulk dimensions and properties of various polycrystalline
graphites ( see for example Netley { Martin [24] g3 Bverett Graham
[}5] and Blackstone et al.[aél ) Due to the elevated temperature
of the graphite the material will also expand causing therefore
thermal strains. The magnitude of thermdl expansion coefficient
depends on temperature and neutron dose,

. In a nuclear reactor core, the graphite components will be
subject to temperature gradiehts and to spatial variations of
neutron energy spectrum. There will therefore be spatial
variations of the.dimensional changes and thermal stEéins.
Stresses will develop, analogous to thermal stresses in a body
which is not at a uniform temperature, The stresses in the
graphite components will be modified by an irradiation - induced

1 ]
1
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creep of the graphite.

With the further development of graphite moderated reactors
the irradiation induced stresses in the graphitc components
become a subject of increased attention. Most of the stress
analysées of graphite components up to the present day used
numerical integration methods of solution or finite difference
aﬁpfoximations. One of more significant contributions and als6
the earliest published analysis to take account of radiation
¢reep was that of Cornwall ¢ Jobson [é?] « In this analysis
the graphite block was regarded as a long thickﬁwalled cylinder
with axi~symmetric damage flux and temperature distributions
and with negligible axial gradients. The transient creep was
neglected (the graphite was regarded as a Maxwell material)
but the steady creep was talken into account by the use of ]
hereditary integral, The use of the hereditary integral means

that this method of analysis cannot take into account the

temperature dependence of the material properties, Witt £ Greenstreet

[ég] analysed the stresses in multichannel graphite blocks of the
American Experimental Gas Cooled Reactor (EGCR), which are not
exi-symmetric, using a {inite difference method. This analysis
also assumed that the blocks are long and axial\gradients of
damage flux are negligible., The temperature variation in the
block and the effect of radiation creeé were however neglected,
Very recently Chang & Rashid {29} developed a finite element
viscoelastic model for graphite materials in irradiation
enviromments, In their approach, the field equations are derived
by the aid of Laplace transform using a constitutive equation in
hereditary integral form for each element where the neutron
flux and temperature fields are assumed to be locally uniform,
This follows the classical approach to the solution of visco-
elastic problems in which the material elastic moduli_in the
elastic solution are replaced by the appropriate viscoelastic
moduli (corespondence principle),

Finally the development of finite element methods for the
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solution of the froblems of thermal creep and plasticity should
also be mentioned since these problems have some similarities
with finite element analysis of reactor graphite. One method
which émerged in recent years for the solution of elastic-plastic
and thermal crecp problems is the so-called method of initial
strain, This method is based on the idea of modifying the
equations of equilibrium so that the elastic equations can be
used throughout on the left hand side of the equations (3,la). The
development of the matrix equations has been attributed to

Padlog et al, Argyris et al, and Jensen et al, by Marcal [3@1.
Using this approach Greenbaum and Rubinstein E}i} developed a
direct finite element program for creep analysis of some
axisymmetric bodies., In their work the elastic solution is first
obtained (at the beginning of the calculation). Using these
stresses the creép strains for a small time interval are computed,
These are then regarded as initial strains for the next time
interval and are included in the evaluation of the nodal
displacements and element stresses and strains. The solution for
the next time increment proceeds in the same manner, The basic
assumption used in this approach is that the change in stress
during any time increment is small compared to the stress at the
beginning of that increment, i

The finite element analysis described in this thesis is
a development of the initial strain method for the analysis of
stresses in graphite core components, The step-by-step approach
used in early one-dimensional calculations of the stresses in
reactor graphite at Imperial College, as mentioned in Ch,3.1.
has been adopted in the analysis.

It may be concluded, from behaviour of graphite unaer
irradiation, that when subjected to uni-axial stress in a
reactor environment, its response exhibits the characteristics
of a L~parameter linear viscoelastic model consisting of Maxwell
and Kelvin elements in series Fig.5 (see for example Corawall &
Jobson [é?] and Head [é]). The dashpot lorces are proportional
to the rate of change of strain with respect to neutron dose,

The 4-parameter model under step function loading exhibits an
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initial elastic response, plus transient and steady creep.

For graphite, the experimental evidence (see for example
Perks % Simmons [32]) showed that the transient creep increment
represented in Fig.5 by the Kelvin element is proportionai to the
stress increment, is recoverable and occurs nearly instantancously.
Therefore the transient creep can be taken into account” by the
use of modified elastic constants. This is equivalent to the use
of a liaxwell model as shown in Fig.5, with the spring constant
modified to allow for transient creep., The Maxwell viscoelastic
model was chosen to represent the behaviour of graphite in three
dimensions also, but the possible choices of three-dimensional -
‘model are discused later in this thesis,

Similarly as in the one-dimensional programs (see Ch,3,1) the
solution is again advanced by short time step during which the
temperature distribution in the graphite component, and therefore
material properties may, be assumed to be constant, The strain
tensor is separated as discused in Ch.,3.l. In early prograns
(Nessan etc) the creep strains at each time step were found by
iteration., In this analysis the creep iteration proved to be
an uneconomic proposition since it requires, due to the features
of finite element solution techniques, an excessive amount of
ooﬁputer time (see discussion in Ch,4)., The time step has been
therefore suitably adjusted (decreased) and stresses from the
previous time interval used to calculate the creep strain
increments during the current time interval® . The total strains
are obtained by summation of the incremental creep strains for the
proceding and current intervals,

With choice of initial strain method and Maxwell viscoelastic
model to analyse stresses in reactor graphite the remaining task
is to modify the finite elcment equations, examine the suitability
of various finite element solution techniques

. 8 A% h ot S ek Tt Sy e D e L v S A i e A e S S S S S S T B i S S S T WP M6 P M S T n W e D S p S P e b S T B S

¥h partial creep iteration at each time step involving only
2-3 iterations may well be a suitable alternative, since it
will not excessively increase the computer time but will improve
the approximations for creep strain increments (see Ch.,h).
This partial iteration will probably be cspecially suitable
for analysis of components where the stresses change rapidly
with time,



and analyse in parallel also the possible choices of three- /
dimensional viscoelastic model. The problem is complicated by
the spatial variatiorn of temperature, due to the generation of
heat within the graphite components and the variation with time
of the temperature distribution resulting from the radiation
induced changes of thermal conductivity and changes in Tuel
burn-up. The viscoelastic parameters of graphite are temperature
dependent (see Ch.5) and therefore vary both spatially and
with time.

In the following Chapters, the step-by-step finite element
model for time dependent stress ahalysis of reactor graphite is

given for flain strain and axisymmetric geometry.

3e3e2 Plane strain
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3436241 Basic_assumptiouns
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The basic equations are derived for plane straiﬁ*(ez=éonst)
and transversely ‘isotropic material, It is assumed that the
z-coordinate direction coincides with the direction in which the
graphite is pressed or extruded and that the material is isotropic
in the transverse plane. Changes required in the equations to
analyse plane stréss problems or fully isotropic materials are
discused or given in App.I. Tt is further assumed that creep
occurs at constant volume. However the derivations can be used
also if creep does not occur aﬁ\constant volume and modifications
required are discused in App.I.- Triangular elements with a linear

displacement field are used throughout in the analysis,
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*in plane strain case ¢, = O or g = const. depending on
conditions - the strucfure is eifher restrained or free to
move in the axial direction. The conditions with ¢ = const.
are usually called the generalized plane strain cafe. In
general, the graphite components in HTR are free to move in
axial direction, thercfore the equations for generalized
plane strain conditions apply in this analysis.

- !
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3.3.2.2 Strain/displacement_relationship
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Fig.6 Triangular element
To calculate the stiffness of a typical element the three
components of strain within each element have to be expressed
in terms of six corner displacement. The displacement within
an element with a linear displacement field are uniquely defined

by six corner displacements:
wo= uw, o+ G (x i xi)- + ?2 (y - yi) (3.2a)
i

v = v. + C3 (x - xi) + Cp (y - yi) (3.2b)

where the matrix

. (3.3)

is defined in App.I.
From the assumed displacement field the strains within

the element can be obtained: !

e, = SR g ' " ' “— (3.ha)

g, = ~=°= = G (3.4b)



= C +- C (3.11'0)

The strain displacement relationship can be written in the. form:

e, | =[2] {6} (3.5)
'Z{xy ’

?

where matrix {§} represents six nodal displacements of nodes i,j,k

(W -

4

(3.6)

< £ 494 5

i
i
J
J
k

\ 'k

and matrix [3] is given in App.I.

3.3.243 Stress/Strain Relationship
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The strain tensor can be separated into an elastic strain
tensor eij related to the stress tensor by Hooke's law and a

nonelastic strain tensor e?j (see Mendelson et al [lj] ):

€55 = S35 * ©ij (3.7)

It is further assumed that the non-elastic strain can be
separated into a thermal strain tensor 'ezj, a Wigner strain
tensor 5?5 and a creep strain tensor egj and that these
tensors may be calculated separately:

n t v c

55 = ©ij toegg €55 (3.8)



The total strain matrix for plane strain and transversely

isotropic material is then as follows:

e t W [‘c
(ex (EX . €,
: ce Ex Ew' ec -
Y y Y J *
{ =7yt 4
{4 e 4 J t W -k c
€, €, €, €,
(3.9
d e c
\Jxy ©° © Uy
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" The stress tensor is related to the elastic strain tensor

with the equation of the form:

o} =[] {ee} ‘ . (3.10)

where {D] is a b x 4 matrix aLd‘{sﬂ' and{d} 4 x 1 column
matrices, The matrix Eb] varies for isotropic, transversely
isotropic and fully anisotropic materials. In general, the
matrix [ﬁ] for each particular case can be derived from the

6.x 6 compliance matrix of three-dimensional elasticity.,

3e3e2e3¢% Thermal Strain Tensor

If the material is transversely isotropic the thermal
expansion tensor Ezj must be invariant with any rotation about
z axise.

The thermal strains are related to the thermal expansion

tensor and temperature by the matrix equation:

oy
{g? = T oL b - ) (3.11)



34342434 Wigner_Strain Tensor

Similarly as for thermal strains the VWigner strain tensor
) . . . X .
€; 4 must be invariant with any rotation about z axis and the

matrix equation for VWigner strains is of the form:

W
€

L.
: W .
{; %} R (3.12)
: v ‘ -

&y

0

e . ‘Y .
The Wigner stralns{elk as a function of dose and temperature

~are obtained (Gh,5) directly from experimental data,

3e3.2.3.5 The creep strain tensor and_flow rﬁle for_graphite

At present time, theéere is no experimentally established
flow rule for graphite, therefore the form it might take must be
considerecd in the light of the existing experimental data on
the creep of graphite, all of which has been obtained from
uniaxial tests. A relationship is required between the creep
strain rate tensor and the general stress tensor (a flow rule),

A flow rule for reactor graphite in 3 dimensions has bheen
derived by Head (2] . This flow rule takes account of the
transverse isotropy of the graphite and incorporates the assumptions
that hydrostatic (normal) stress causes no permanent disortion
of an element and that there is no permanent volume change.,

Due to transverse isotropy, the creep compliance tensor must
bé invariant with respect to rotation about z-axis, The following

matrix equation for incremental creep strains is obtained:

bes (U+V), -V  ,~-V, O _W %% \
bl U, (U+V) ,~V , O o
be, v, -V ,2v, o0 o
C
6y o, O ,0, (hus2v) Ty




Where the compliances U and V are temperature dependent. The
above 4 x 4 creep compliance matrix is derived in App.I from
a general 4 x 4 creep compliance matrix (for 2 dimensions)

which can be used for conditions where creep does not occur

at constant volumé% provided the experimental data are available.

3.3.2.,4 Stress resultants and element stiffiness
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The next step is to replace the uniform stresses acting on
the edges of the element with stress-resultants acting at the

corners of the element., The relationship is well known and

2k

the corner forces * expressed in terms of components of stress

as given by Wilson [1§] are:
sy = a [81° {o} (3.14)

where the matrices {S} ,[B}T' andﬁ@&for plane stress/strain are
derived in App.T.
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':¥At a recent UK/Euraton Conference on Stresses in Graphite
Structures related to HTR Design at Berkeley. Nuclear Laboratories
(17-19/5/1971), England, Dr.B.T.Kelly mentioned in gereral

"discusion the recent experimental evidence which indicates
that irradiation induced creep of graphite does not occur at
constant volume, In this analysis it was assumed that creep
occurs at constant volume since no experimental daia have been
available indicating volume changes (see also App.I).

#K
It should be noted that throughout the calculation when
deriving the expression for stress resultants and element
stiffness (Ch.3.3.2.4) and equilibrium equations for complete
structure (C%.B.B. ) the matrix (D] is a 3 x 3 matrix
and {é} ’ {s~} ’ {e‘f s {s are-3 x 1 matrices since the
stresses in plane x~y are evaluated first and longitudiual
stress o aftervards as given in Ch, 3.3.2.6. The 3 x 1 {&}
matrices” and 3x 3 [D} matrix are obtained from original
b x 1 and & x & matrices if the third row (and for matrix (D)
also third column) are ommited. The detailed equations
(Ch.3,3.2.4) are derived in App.I in appropriate form.
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Element stresses can be expressed in terms of corner displacement
by substituting eq. (3.5) into eq. (3.10), but [ D] is a

3 x 3 matrix (see footnote previous page):

{4 = I} fs) | 5.15)

Substituting (3.15) into (3.14)

(=" 61 (8 f] (5.16)

which is an expression for corner forces in terms of corner:

displacement and can be rewritten in the following form:

{s} = [k] {‘5} (3.17)

where [é} is the 6 x 6 stiffness matrix for one element

given by:

(] = @)° -DIB) & | (3.18)

The detailed derivations are again given in App.I.

1,

3434245 Equilibrium_Equations for Complete structure

The equilibrium of the system of elements in plane xy for the
complete structure is an expression for nodal point loads in
terms of nodal point'displacements. For elastic case it is
given by the following force/diéplacement matrix equation, as
defined in Ch,3,2:

{R}:[K] {a} _ (3.1a)

———

'(5} = [x]™ ':{R} ~ (3.1b)



where [ﬁ], the stiffness matrix for the complete agsembly is
formed by superposition of the element stiffness matrices and
{b} is here the displacement column matrix for the whole
structure, .

In the particular case of reactor graphite the systcﬁ of
equilibrium equations for the complete structure can be written

[«) {4} = {R} - {R!% (3.1c)
| {a} - [‘K]_]‘{é;} - {Rn}} (3.14)

where

B -

are nodal loads required to balance the nodal displacements
due to thermal, Wigner and creep strains{é?’, {;W and é;f}.

When solving the system of equations (3.1d) the non-elastic
strains in plane x-y are evalvated first, From the known
non~clastic strains the nodal forces required to suppress the
non~clastic strains in plane %~y can be calculated using equations
(3.10) and (3.,14). Thus when the system of equations (3.1d) is
solved the total displacements are obtained for the complete
structure, Finally the total strains are obtained from (3.5) the
non-elastic strains are subiracted and the stresses are obtained

for each element f£rom the equation (3,10) i.e:

SO = o

where {és is the total strain matrix defined in eq.(3.9) and

{s is the non-clastic strain matrix,



It should be noted that the stresses dx ) cy and Txy
in plane x~y are evaluated first and axial stress is calculated
separately aftervards as follows.

In the case of plane strain the axial stress on the n-th
element necessary to suppress the strain in the axial (z)

direction is:

(0,0, = Yy (0y + 00, = Ef(ey + ep + e0) (3.21)

b4 y'n z z’n

The total restraining force in the axial direction is given by:

P = zé- {L%cx + dy)n

v, e;);} A (3.22)

t
B £
u”(ez v,
In the present analysis, it is assumed that the graphite component
is free of axial restraint, the axial stress on the n-th element
is given therefore by: .

R 25 _ & t W c ’}
(dz)n = Atotal n{i&&dx + dy)n Ey (ez + e, + Ez)n A;&

- E“ (ez + ew + €°) (3,23)

/
+\1H(dx * dy) -4 z’n

n

3343 Axi-symmetric_stress analysis
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The same basic assumptions apply as for plane strain case
in Ch|3l3.2.

34363.1 Strain/displacements relationship

The crossection of a typical triangular ring element is
shown in Tig.6, In order to obtain the required axi;;&mmetric
geomefry ve have to replace in Fig.6 coordinate x with r and
coordinate y with z, considering also that the element is a

body of revolution, The displacement in the r-z plane within the
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element are assumed to be of the following form:

(py - + -
u (r,z) u, + C(r ri) ; CZ(Z zi)

h i

1t

(3.2%)

v (r,2) = v, + CB(r'—~ri) + Ch(z - zi)

, The constants Cl, CZ’ 03 and C4 are of the same form as for
plane strain case (eq.3.3) but considering the change of
coordinatesébq&e. |

The strains can be obtained froﬁ the assumed displacement
field:

g = ==== = C
z Al L
Du '
£ = behubedad = C (3025)
r Dr 1
) u T, Z.
u Z i i
. - —— 2L = % - ¢ ==
£q ol + C1 + C2 - C1 5 I
Qu_- . v
Y = === 4+ ==- = C_ +C
rz Dz Dr 2 3
Similarly as in the plane strain case:
€z
£
Ty o= [B‘] {a} (3.26)
‘e
Trz,

—

the matrix {és is defined later and matrix’:é]in App.I.
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e t 1%

aI‘ er 8I‘

{ e} = + + (3.27)

e t 9]

€o €y €o
e

YI‘Z» 0 0

3e3e3e2.2 SBtress/elastic straiﬁ tensor relationship
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The stress tensor is related to the elastic strain tensor

with the equation of the form:

g

{U}f :: ={D—} {ee} _ﬂ | . (3.28)

TI‘Z

‘ )
[ﬂ] is a 4% x 4 matrix and {eésa'h x 1 column matrix,., Similar
relationship apply for axi-symmetric case asderived in Ch.3.3.2.3
for. plane strain. Detailed form of equations are given or can

be derived from App.I.

JeDe3e> Stress reésultants and element stiffness
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Following the derivations in Ch,3,3.2.4, similarly:

{%} = [jﬁlTl{Q} ‘ ,.' ..'3 (3.29)
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In the axi-symmetric case the volume integral has to be taken

over the whole ring of material and:

kK = 2n j[B]T [D—_\[}ﬂ r dr dz (3.30)
In solving eq. (3.30) the simplest approximate procedure is to
evaluate [ﬁ} for a centroidal point T and 2 in this case as

a first approximation:

(¥ . -2 é[‘B]T BEE (3.31)

Finally, considering eq. (3.26 and 3.27):

{s}“: -2n A[ﬂT 7 (p) {a} = -2z [8)T T [ ) [ﬁ]{a}

SOl

Similarly as in the plane stress/strain case the system of
equilibrium eq. (3.1d) have to be solved considering the above
derivations. Finally the stresses are calculated in a similar
way as for plane strain (but of course the longitudinal stress
¢ is calculated directly form the matrix equation (3.27)).
The matrices [B] end [ﬁ]T are given in detailed form in App.I.
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In the stress analysis of graphite components-by the finite
element displacement method the system of simultaneous linear

equations:

e - {3};{@2‘% R ﬁf}? G
” {5,11 = [K_J-lé{ﬁ} - {R% - {R@‘ - {Rc}} (3.1d)

‘have to be solved for the displacementsinterms of the nodal
forces for each time step.

. The matrix displacement methods use mainly two approaches
for solving the system of equations (3,1d)., One referred to as
the direct approach uses Gaussian elemination technique, the
other called iterative approach uses the Gauss—Seidel iterative
procedure, The development of two-dimensional finite element
programs based on both techniques has been influenced by various
factors: the size of the problem (number of elements), the type
of element, the required central memory and compnting time,

" In the early sixties a computer program based on a modified
Gauss—-Seidel iterative technique and a direct so called
triple~band code based on Gaussian elemination have been developed
(see Wilson [1§3 and Zienkiewicz [lé] respectively)., It was
soon concluded that the iterative program is in general faster
but uses in comparison with the triple-band code more central
memory, especially for medium and large-size problems. The
direct triple-band program uses less central memory since magnetic
discs are used to store the large stiffness matrices and the
method is therefore suitable-for large-size problems, On the
other hand the prozram is more complex to run, Elastic versions

of both programs have been taken as the starting point in the



Iy,

development of the time-dependent finite element stress progranm
for reactor graphite, The iterative and direct-triple-band
program are described in Ch.%.2 and Ch,h.,3,

In the recent past another direct program has been developed
using the front-solution technique (sce for example Irons fi}ﬂ).
This program has certain advantages over direct—triple—%and
approach and it seems that its solution technique is especially
suitable for two-dimensional problems using higher order elements
and for three-dimensional calculations,

The first step in developing a finite element code for
stress analysis of reactor graphite was to examine basic two-
dimensional constant stress triangle finite element prozrams,
using iterative and direct techniques of solution for stress
analysis of elasticity problems., Then both elasticity versions
have been modificd and developed into time-dependent programs,
for plane stress/strain analysis of stresses in graphite ccre
components. The results of both versions for graphite have been
compared analysing first simple structures and then the iterative
version chosen for the further analysis since it was considered
to be faster and more suitable for stress analysis of particular
graphite components, The program was named STAG (Stress two-
dimensional analysis of graphite),

At present, different versions of STAG analyse different
graphite core components: a hollow rod fuel pin, a teledial fuel
pin and a multichannel graphite block, The possibility exsistis
to assemble the versions into one single program and include in
addition an axisymmetric option which is now in its final phase
of development.

In the program are incorporated some parts of the subroutines
developed in Nessan III, New subroutines (programs) have been
written especially to generate automatically the mesh data for
complex reactor core geometries, The subroutines are described
in Chapter 5.

In the following Chapters the flowcharts of both versions

of STAG are presented and .technigues discused and compared,
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The iterative method used is a modification of the Gauss-
Seidel iterative technigue which in solving the system of
equations (3.1d) involves the repeated calculation of new

disﬁlacements from the equation:

(s41) =~ -1 (5+1) (s)
6n = Knn {:Rn _ZE.Kni 6i fZZFni bi‘wx (4.1)

i=l,n-1 i=n+1,N

bearing in mind that (see eq. (3.19), Ch.3.3.2.5)

R = Rtot —-{Rt + Rw + Re} o (4,2)
n n n :

vhere n is the number of the unknown and s is the cycle of
iteration.

The equation (4,1) is simultaneously applied to both
conponents of displacement at each nodal point;*Therefore bn and
Rn'become vectors with x and y components and the stiffness

coefficients may be expressed in the 2'x 2 submatrix form:

(q)
(q) k k
Kogm = | X X (4,3)

k. k
xy ¥l q,

and the term kig) represents the forces developed on element q

at nodal point 1 due to unit displacements at nodal point m,
By calculating the change in the displacement of the nodal

point n between the cycles:: of iteration: =
G o DN C)) (k)
n n n



the rate of convérgence of the iterative technique c¢an be increased
by the use of an over-relaxation factor B.

The new displacement of nodal point n is then determined by:

n

6(54—1) - 6(8) + B .Ab(s) (4r,52)
n n .

or by substitution of eq, (4.1) into eq's(k.k)and then eq's(l.4)
into eq.(4.5a):

(s+1) . (s) -1 K (8+1) (s)
61’1 = 611 + B . Knn .{ Rn ZKni o —ZKni bi\} (Lngb)

i=l,n-1 = i=n,N

The optimum value of the factor B depends on the characteristics

of the pafticular problem and it is usually 1.85 approximately.

- 2y cwn e oot e S ae ane e 2w s Y n s 2w

"~ A generalized flow chart of iterative version of STAG for
plane stress/strain problems is given in Fig.7.

In the initial part of program the basic data are read in
or calculated in subroutines. The main DO LOOP (700 Jenables the
caiculations to be performed at prescribed number of axial
positions in the reactor and for cach érossection at a prescribed
number of time intervals. Inside the inner DO LOOP (700 )the
equivalent dose and temperature distributions are calculated or
read in. Then the dimensional changes (Wigner strains) creep
strains and thermal strains are calculated,

In principle the nonelastic strains (thermal, Wigner and
creep) are calculated at the beginning of time‘interval and nodal
point loads are then evaluated considering also other external
loads (e.g. surface pressures) if any. The gravity forces have
been neglected in the caleculation. The total stiffness arrays are
calculated and inversion of nodal point stiffnesses (2x2) performed

at each time interval., Before proceeding with the solution of the

equation (3.1d) the prescribed displacements have to be considered,
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Next, the system of equations (3.1d) is solved by iteration
- for nodal point displacement using equation (4,5b) on a given
tolerance, After iteration of nodal point displacements the
stresses and strainsin the xy plane with the reactor at power
are calculated, Assuming that axial strain e, = const, ., the
axial stress g, is calculated (see Ch.3.3.2.6) with the
structure not heing allowed to bend. The stresses with the
reactor at power are stored to calculate the creep strain incre-
ments in the next dose interval, )

The procedure is fepeated at the‘néxt andxsuccgssive time
intervals,

The total stiffness array, inversion of nodal stiffness and
modification of boundary flexibilities are evaluated only once
"if the elastic constants (E,Y ) do not vary with neutron dose
(time). " '

At prescribed time intervals the thermal strains are set ©

to

zero and residual stresses (reactor shut'down) calculated, In this

case also the total stiffness array, inversion of nodal stiffnesses

and modification of boundary flexilibities need not be revaluated,

- Only nodal forces at the right hand side in the system of equations
(3.1c) have to be modified and the system solved again.

N The total creep strainsat each time interval are obtained

by summation of the incremental creep strains over the previous

and current time intervals. In the early Nessan programs

(seg Ch.3,1) the incremental creecp strains occuring during a time

interval are obtained from a rglationship between the creep

strain rate tensor and the general siress tensor by iteration.

The finite element method however requires a considerable amount

of.central processor time and the creep strain iteration will

prolong the required time to an untolerable value, If creep

strain iteration is performed it means that the iteration of

nodal point displécements will have to be performed after each

creep strain appro&imation and the number of iterations of nodal

point displacements will be higher by a factor equal to the

number of creep iterations. ,Jhus the creep strain increments have
. , )
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been calculated without iteration using the stresses from

previous interval and chosing a short dose step. Thus for

exanmple a dose step equal to a half of dose step used in Nessan III
calculations gave an adequate accuracy, without iteration

(see also Ch.6). '

Since a non-elastic time-dependent calculation requires
substantially more coﬁputer storage than elastic analysis, the
central memory requirements of the program have been reduced, by
rewriting also the basic elastic version. Some variables, for
example thermal strains and differences between x and Yy
coordinates of triangles, normally 6aICu1ated once and stored
in the form of arrays have been changed to a single constant
form and values are calculated 3 times in the program when
required, This increases marginall& the computer time but
reduces the central mémofy requirements. Fof problemns with
large number of elements it is of advantage to read from tape
or cards the mesh data (once) and temperature and equivalent dose
distribution at each time interval and to prepare the mentioned
input data by separate programs, If mesh, temperature and dose
distribution data are read in from tapes or cards the capacity
of program to analyse the problems with a larger number of

finite elements is substantially increased.

k.,3.1 The_basic_principles

-t ———— oo > ot v 0wt o an P v >

The direct methods of solution differ from iterative techniques

" in solving the system of equations (3.1d):

O R R G LG SR

The system of equations (3.1d) can be solved also by
calculating the stiffness matrix [i] and its inverse for the

complete structure. However the size of matrix [K] and its inverse
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depends on the number of elements and nodal numbers of the
structure and (K] and [KIl have to be stored in central

memory. Therefore the number of elements of the analysed structure
is limited by the available computer central memory and further
the inversion of large size matrices consumes considerable
computer time. To overcome the limitations imposed by the size
of the available central memory, the direct approach has to be
suitably modified. Therefore the frinciple of sélving the system
" of equations (3.,1d) by a direct method is to proceed with
solving the system in séctions, considering always the coupling
effects between the two adjacent parts of the structure, The
‘matrix [K| and its inverse [Kfl for the complete structure need
not to be built and stored in the central memory and structures
with much larger number of elements can be considered.

In one of the direct displacement methods considered in this
analysis and sometimes referred as tri~-band method, the complete
structure is divided into a number of elemental regions (Fig.9)
called partitions. The matrix K and its inverse are calculated
for each region and stored on magnetic disc, The calculation
proceeds from one elemental region to the other and the coupling
effects between adjacent partitions are always considered and
stored in central memory. Except for the matrices [kﬂ in the
first and last partitions, every matrix is connected to two other
matrices only. This partitioning is known therefore as tridiagonal
i.e, partitions are connected in series,

It can be seen that if the elements of a structure are
numbered in a suitable order all non-zero elements will lie
close to the matrix diagonal or the matrix will have a narrover
band. For the same number of equation this will require less
solution time and central storage.

The system of matrix equations (3.1c)-can be written in a

triadiagonalized form as follows:
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equation (4,10) may be written:

[EI;}{bl}I * {CIB{;II;}I =(§I]}] | . (4‘1%)

The process of substitution and elemination goes on
until the last row egquation is reached. The displacements

in the last partitions are then fcund from the-equation:

BB e

Using the equations of the form (%,9) the displacements

’

for the whole structure are found by the ﬁrocess of back-

substitution. For the N-1 partition thus:

fd 6 G- B Ry e

and similarly in sequence the displacements for other partitions
are obtained.

4,3,2 The program_layout ' -

A gzneralized flow charf of the direct version of STAG for
plane stress/strain problems is given in Fig.0.

The initial part of the program is to some extent similar
to the corresponding part of iterative version. Additional input
data are required to divide the structure of elements into
partitions, The essential difference in comparison with the
iterative version is in assembling and storing the total stiffness
matrix for the complete structure and in solviné the system of
equations (3.1c,d).

After the calculation of nodal point loads the stifiness
matrices of partitions are formed, the prescribed displacements
introduced 3nd matrices stored on magnetic disc., The system of

equations (3.,1d) is solved in subroutine SOLVE for displacements
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by Gaussian eclimination, Finally the strains and stresses are
calculated in the main program with the residual stresses as
an option,

The flow chart given in Fig.8 includes the creep iteration
option vhich could be included into the iterative version also.
However in the present analyses of the structures with'a
large number of elements (feledial, graphite block) creep
iteration has not been used since it has been considered to be
too time consuming. Similarly as in the iterative version a
dose step equal to a haif'df dose step used in Nessan III
calculations gave an adeguate accuracy (see Ch.6).

. " If the elastic constants (E,¥Y ) do not vary with neutron
dose (time) only the nodal forces at the right hand side of the
equation (3.1c) have to be modified at each time step and the
stiffness matrices of partitions need to be calculated assembled
and stored on disc only once., Also in subroutine SOLVE the
forwvard elimination is performed only once angd the triangulated
form and the necessary multipliers are stored so that for each
new time interval, with a new set of nodal loads, the
backsubstitution can be carried out to obtain the displacements.
Since the process of inverting a large size matrix of a partition
is prticularly time consﬁming a considerable amount of computer
time is saved in the calculation if the above criteria is satisfied.

If the residual. stresses are calculated at prescribed time
intervals or creep iteration is performed similarly only the
nodal forces at the right handiside of the equation (3.lc) have
to be modified and the already.known stiffness matrices for the
particular time interval can be utilizied, Next in subroutine
SOLVE arain, only backsubstitution ca be carried out to obtain
the displacements,

The problem of computer storage is less critical using the
direct version since the magnetic discs are used to store the
stiffness ma%rices of the partitions, However, the central
nemory reqpiregents of the dircct version have bheen reduced by

reuriting the basic elastic version which wvas developed into

!
: t
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STAG similarly as the iterative version. Further, for example,
the use of 2 mzgnetic disc have been dropped to simplify the
program, but because of this the central memory requirements

have been increased slichtly.

punshpiEpnng - Spuviyri i e

The layoﬁt and calculation procedure of the iterative elastic
axi~-symmetric program is similar to the plane stress/strain
code, . |

A program could be developed which will include plane
gtress/strain and axi-symmetric geometry and in which nmost of
the program can be utilizied by both options., The required
<centra1 menmory will remain approximately the same,

If the axi-symmetric calculation is included into the existing
STAG the following main changes have to be added as options

for axial geometry:

(1) The calculations of creep strain using a 4 x 4 compliance

matrix (see App.I);

(2) The calculation of nodal point loads at the beginning

of computation as discused in App.I.

(3) The appropriate coordinates have to be considercd for

axial symmetry, thus r replaces x and z replaces ¥y.

(4) The matrix [D) has to be defined, also some terms of
matrix [B] and [E]T and multipliers to give the

appropriate element stiffness matrix [k] (see App.I.).

Considering the r-z coordinate system for axi-symmetric
geometry some mesh generation programs and some subroutines
for calculation of dimensional changes used in the plane
stress/strain version of STAG can be utilized, The téﬁperature
and equivalent dose distribution have to be provided by separate
programs, Most of Equations required to include axi-symmetric
option inté STAG are derived in Ch.3,3.3 and in App.I.

'
t
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In the calculation of stresses in reactor graphite, .in the
most general case the temperature and equivalent dose
distribution and material properties all vary in spage_aﬁd'time.
Also, the external loads (if any) may be time dependent,
Because of these changes with'time.the right hand side of
eq.(3.1c) must be modified at each time step., The stiffness
matrix [K] for the whole structure is a function of geometrical
"dimensions and elastic constants (E,¥ ). Since Yéﬁng’s modulus
. E of graphite normally‘changes‘w}th time (dqse) the stiffness
matrix (K] has*to be reéalculated,repeatedly and its inverse
found, at each time step., The stiffness matrix [K] has %6 be
recalculated also if the geometrical dimensions due to nonclastic
strains with time are large ap& fhus the basic dimensions change
considerably. )

If the equations (3.1d) are solved with direct %triple-band
approach the formulafion of stiffness matrix [K} and especially
its inversion is the most time consuning process since the
inversion of large size matrices (e.g. 40x40) is regquired
(see Ch.4,3). If the iterative procedure is used only small

'size matrices of the order 2 x 2 are inverted (Ch.k,2) and the
formation and inversion of total stiffness matrix reguires
considerable less time, however the iteration of nodal point
displacements may well be time-consuming (depends on the
changes of stresses/time). As seen in TABLE I the iterative
procedure is in general faster than direct triple-band approach
for the problems where the stiffness matrix [K] and nodal point
forces have to be recalculated at each time step, .

If the elastic constants and material dimensions do not vary
with time, the stiffness matfix Eﬁ} and its inverse have to be
calculated only once, nodal point forces modified and the
systen of equations (3,1d) re-solved at each time step.

In the dircect procedure only the backward - substitution

process using modified loads is performed vwhen solving the



equations (3.1d) since the values of matrix fﬁ] and [Krl
are stored for subregions (partitions) and read from disc,
For this particular case the direct approach may well use a
comparable amount of time as iferative procedure.

If tﬁe required central memory is compared between iterative
and direct versions of STAG the difference is less marked for
small and medium size problems but increases with the number of
elements and nodes. Thus for example for the 605 elements '
(see Table Ii).the difference in required central memory is
appr. 10,000 words but it is still possible slightly to-feduce
the required memory of the direct program for simple structures
by introducing a larger number of small partitions. For complex
problems for example a multichannel graphite block the
paftitions have to be relatively large and it is almost'impossible
to use very small partitions. With the increased number of
elements and nodes the central memory requirement of the iterative
version of STAG increases faster than that of the direct one,

A conclusion can be reached, that since the size of available
computers has increased considerably since the early sixties,

the central memory requirements do not represent any more & major
obstacle for use of the iterative technique for most 2-D
engineering problems if constant-stress triangles are used,

For example with appr. 100,000 words of central memory available,
graphite structures with up to approximately 1500 elements

and 1000 nodal points can be analysed by the iterative version,
and up to appr. 3C00-4000 elements by direct tri-ple band version,
Thus ‘only very complex - large size problems c¢an not be dealt
with the iterative program. For problems with many thousand
elements the very large computing time required may well become
an uneconomic proposition.

A futher factor in using either of the versions is the
amount of input data required, The direct version reaﬁires
considerably more effort to prepare the input data. A carefull
numbering of the structure has to be performed due to the

requirements of partitioning and the partitions defined separately
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by specifying in the -input data first and last nodes and

first and last elements in each partition. For large complex
problems this is a tedious and time-consuming task. The
iterative method has in this respect definite advantages-since
the structure can be arbitrarily numbered and partitions ‘are
not required. ) )

It was not possible to compare fully the accuracy of
results and stability of solﬁtions obtained by both methods,
The results obtained by both version compare favourably., It is
thought that regarding accuracy and stability of solution one
solution has nofdefinitg advanfageé over the other for most

.general engineering problems particularly since the accuracy
of results can be always improved~by using for example double
precision arithmetic for [K] in the direct method or smaller
tolerance in iterative procedure. A comparative analysis of
- both procedures may well be valuable since ié will point out

the means of improving the quality of results,
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TABLE I

Sample comparison of iterative and direct STAG code

- - v —— B > > SIE A S A A - T = S G P P G A = o e G G e A4 S S G TS i I D G M M el b S e b —os ol R ol e e

Capacity of the Iterative - Direct
'programs version version
No of elements 610 610
No of nodes 380 380
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No of elements 605
No of nodes 379
No of time intervals by

No of calculations of

residual stresses b

Computing tim5*$required

(Central processor) appr.1l200 secs (CDC 6600)
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*Values obtained on an example with 108 elements andN76 nodes
(Fig.20). The time for direct program could be slightly reduced
by a better choice of partitions.

K - . . . .
Elastic constants (E,¥ ) arc changing in time and space.
Iterative version used,
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Se INITIAL CALCULATIONS AND INPUT OF DATA

P = " TR R P T e T Mt R s G b Py b e S O A G U Vb B A GRS S Geb s

5.1 Calculations of the finite element mesh

P - - b A > e T S i e - T G S P L o e S e e Gt B S S B H T Gb P B S w0t o0 S

- et o e e o

In the analysis of a structure by finite elements, the
structure is considered to be divided into a large number of
small elemental regions, In this thesis triangular elements
are considered. A substantial amount of the data required in the
analysis ‘consists of'the co-ordinates of the corner points
'(nodes) and nodal and element numbers that are associated with
each element, The manual preparation and checking of this input
mesh data is lengthy and tedious,

- In recent years extensive use has been made of a coordinate
digitising table, the so called D-mac table, iinked to a card
punch, In principle the mesh data are generated by placing =
drawing of the proposed mesh on the table and by pointing the |
~D-mac pencil at the nodes of the structure, The éoordinates ol
each node are then automatically recorded and @ﬁnched on card
in the required format, Frederik et al. [34] prbposed a method
where the D-mac facility is used togetper with a computer program
to generate the complete mesh data in a form suitable for use
in direct - tri~band program. They claim that coordinates can be
recorded to an accuracy of*0.03 cm. If the D-mac facility is
used some manual effort is still required but complex meshes
with difficult topological restriction can be generated.

An alternative way is to write a mesh generation program,
.to generate, correlate and check the mesh data required by the
particular finite element stress program, This approach will
be especially suitable for structures with large numbers of
elements. .

In one technique for automatic generation of triangular

meshes, presented by Zienkiewicz [15] , it is sugested that the
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structure should be divided by a number of straight lines
and/or arcs of circles and each line should be divided further
to give the node data. To generate the nodal coordinates it is
neceésarykto define the coordinates at the eng of each row of
nodes and the spaces between nodes in each row, If unequal
"spacing of nodes is required, weighting'factors are int;oduced;
" The calculations have to follow a definite sequence i.e. row
after row, Finally the nodes on the lines are interconnected
into triangles in a way that gives optimum triangles for finite
element analysis. ‘ _

Lewis and Fullard [35] have described a similar 2 dimensional
mesh generation program FENMG.

Different automatic mesh subroutines have been written to
generate the mesh data for graphite core components. The
subroutines are written to some extent in gehéral form and can
be used as separate programs for preparatiop and storing of mesh
data on tapes or cards. An approach to be used in mesh generation
programs for some complex two-dimensional structures is suggested
in Ch.5.1.k.

The graphite-core of future commercial HTR will be built
from multichannel graphite blocks filled with fuelled graphite
tubes or. fuel pins, At present different types of fuel pins and
multichannel graphite blocks are studied. :

In this thesis the mesh d;%a for two types of fuel pin,
a hollow rod and a teledial fuel pin, and one form of multichannel
graphite block are required., The element and node numbering
should also satisfy the partioning scheme of the direct (tri-band)
version of the program. The mesh routines should be capable of
producing input data for different designs of fuel pinhs and

graphite blocks without major modifications.
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In the ideal case an automatic mesh program should generate
the required data if the origin of coordinate system, the
geometrical boundaries and the type and size of the element are
specified previously. ' .

In writing the mesh generation programs the desire to
specify a minimum of basic information about the structure to
generate the required mesh data has been given the priority. It
is thought that if lengthy preparation of input data for the
mesh generatioﬁ program is needed, the reguired man-hours may
well diminish the potential value of the program and some other
teEhnique like the use of a D-mac table becomes a more attractive
alternative,

In the mesh generation programs developed for this work,
the basic geometrical 'boundaries and the type and size of element
are specified, The program then calculates automatically all
" mesh data, In the case of large or complex structures, for

example the multichannel graphite block, the mesh-is built from
basic structural units and only the distance of the unit centre
from the coordinate origin has to be sﬁecified additionaily,
'Exceptions can be programmed separately, following again the same
principles and calculating and defining exception areas in
similar units as far as possible. _ )

The graphite tube (Fig.9) represents the simplest example.
By defining the inner radius, the thickness of the tube and the
origin of the coordinate system the subroutine needs only one
further piece of information, namely the element size (or the
number of elements across the tube thickness) to calculate the
complete set of mesh data. The mesh pattern and element type
is however predefined.Fig's 9,10, show the type of mesh generated
by this program . -

Similarly, a triangular mesh for a 450 sector of a teledial
fuel pin has been calculated (Fig.ll). Most of the nodes lie

at intersections between radial lines and arcs of concentric
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circles, or at intersctions between the radial lines or the

arcs with the geometrical boundaries of the pin. Some exceptions

are calculated separately. Mesh da?a for more complex geometries,

for example a multi-channel block, have been generated using as

a basic unit a prespecified hexagoﬁ%(Fig.lZ). Again, some exceptional
areas have been programmed separately, but as far as possible

these exceptional areas have been built up from similar units,

'With all of these programmes, the mesh can be partially or

completely refined (Fig.l3) by introducing some modifications,

5.1.4 Some conclusions about mesh generation

A e ) p S B s Hod Bt e HY Mt 8 e S8 D o et A M e e B e v md TE P et mt B et

It is possible to conclude from the work of Zienkiewicsz {lg],
Frederik et al.[35] and Lewis and Fullard [553 as vell as from
the work described in this thesis that the writing of automatic
mesh generation programs for various types of structure is a
éractical possibility. It seems that complexity of geometrical
shape is one of the main difficulties and that it will be indeed
very difficult if not practically impossible to write a mesh
generation program suitable for any arbitrary two or three
dimensional structure, Therefore, for the time being it seems that
a parallel use of automat%p mesh generation programs.and the
D-mac facility will be a sﬁitéble answer, It appears that the
D-mac facility is'e3peciaily suitable for very complex geometries,
however automatic mesh generation is attractive for very large
and moderately complex structures.

In nuclear power and in me@hanical engineering in general
& number of structures exibits a certain degree of similarity.

For the analysis of certain types of structure by finite element
methods, a general automatic mesh generation program which
requires a minimum of basic input data may well be a suitable

solution, : -—
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*Another example is shown in Fig.l3, which is a mesh generated
for the analysis of the top.cap of a prestressed concrete
pressure vessel, '
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In the particular example of the multichannel graphitc
block, the mesh program will generate the mesh data for
dimensionally different but similar in pattern multihole
structures. Only a few basic data such as the outside dimensions
of the structure, the origin of the coordinate system the-
coordinates and diameter of holes need be given, ’

The program could be used in the analysis of a number of
other multi-hole two dimensional structures used in nuclear
power and in mechanical engineering generally., For example,

calandria ends, heat exchanger and condensor tube plates.

5.2 Temperature calculations

In the earlier one-dimensional analysis using the program
Nessan III the calculations of temperature have been performed
by subroutines incorporated in the program.

One way to provide the femperature distribution data for
each time interval in the finite element stress analysis will
be to include in the program a two-dimensional finite element
code for the calculation of temperature distribution., The coupled
program could take account of changes of graphite conductivity and
changes of boundary conditions and could also consider long-tern
changes in power of fuel pins due to fyel burn-up during the
life of the pin., The set-up of a combined program was however
not attempted on account of the very long computing time and
storage required by such a code., Thus the temperature distribution
vere calculated separately and read in as input data.

The temperature distribution for the teledial pin shown in
Fig.1ll was provided by Kinkead [Bé] and was calculated for the
time in the life of the fuel pin when the maximum fuel temperature
occurs, In the analysis described in this thesis, this temperature
distribution was assumed to remain unchanged troughout the life
of the fuel pin although the program permits the element
temperatures to be re-read as frequently as required,

The graphite block was assumed to be under an arbitrary

temperature tilt. This arbitrary temperature distribution has been
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determined by coﬂsidering a temeprature distribution provided
by P.J., Allen [4%] and used in a design study on a typical HTR
block, Thus the results presented (see Ch.6) should provide some
indications about stresses in graphite blocks under real
conditions in a HTR, The témperature distribution in the graphite
block also, was assumed to remain unchanged, ’

For the purpose of comparing STAG and NESSAN III results for
a hollow rod fuel pin-with axi-symmetric temperature distribution,
the temperature routine TEMPR written for Nessan III, was also
incorporated in STAG, This did not involve too great an increase
of computing time and storage as in this case the temperature
calculation is one-dimensional. For testing STAG under conditions
of temperature tilt, a subroutine was written which generates
an arbitrary temperature distribution varying sinusoidally
around the fuel pin,

53 §guiva1ent dose

The equivalenf* dose distribution has to be calculated
within the program or read in similarly.
The stresses in both types of fuel pin, the hollow rod and
the teledial, have been calculated up to a maximum equivalent
21
dose of 4 x 10

n/cmzNi—Dido. The stresses in the graphite block
‘ 2 2
have been calculated up to an equivalent dose of 1 x 10“1n/cm_Ni-Dido.
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The production of damage in the graphite of a power reactor is
determined largely by the burnup of the adjacent fuel, and by

the neutron energy spectrum, Bell et al [37 proposed that
allowance should be made for neutron spectrum variations. by
defining an 'equivalent dose’, The equivalent dose received by

the graphite at a point X in a reactor lattice is defined as the
burnup of the fuel in a Calder reactor which causes the same
number of carbon atom displacements per unit volume of graphite

at a standard position in a Calder reactor as occur at the point X,
Currently, the equivalent dose is expressed in ynits megawat -

day per adjacent tonne (MWD/Ate) or neutrons/em~ Ni-Dido, Bell

et al give a converiion factor between these two units of

1000 MWD/Ate 2 1x10 0n/cm Ni-Dido, In this thesis the terms
neutron dose or dose are sometimes used instead of equivalent dose,



It has been assumed that the equivalent dose received by the
graphite has a constant value over the cross-section of all
7gfaphite components analysed, With modification of the computer
program it is however possible to take account of any equivalent
dose variation across the fuel ﬁin. The equivalent‘dose‘wés
calculated for each time interval and dose steps in the range

1 =x lOaOn/cm2 to 2 x 102

The dose step 2 x lOzOn/cm2 was used in earlier Nessan III

On/cmzNi-Dido were used in the_calculationge.

calculations of Dragon reactor fuel pin,
The calculation of équivalent dose for a Dragon reactor
fuel pin has been performed by Reed Efé] using Monte-Carlo
method., Reed estimated that an equivalent dose of 15x1020n/cm2Ni-Dido
will correspond to approximately 300 days of fuel pin 1lifé in
the Dragon reactor at power, In a commercial HTR, maximum inte-
grated fast neutron doses of up to 25x1020 tov30x1020n/cm2Ni-Dido
are expected to be received b& the graphite components during
their life in the reactor (see Fig.4). Thus the stress calculations
- in this thesis, which are continued to a dose up to
40x1020n/cm2Ni-Dido cover adequately the life of the graphite
fuel pins in the reactor. The value 4x1021n/cm2Ni-Dido has been
chosen because the experimental data for graphite are known up
to this equivalent dose. The stresses in the graphite block have
been calculated up to lower dose 1x1021n/cm2Ni-Dido and therefore only

some characteristic results are presented (see Ch,6).

5.t Graphite data

—— — s —— - o - - -

In this thesis the stresses in graphite components made from
a pressed, near - isotropic Gilsocarbon graphite have been

analysed. The physical properties and irradiation data for

%%ince the equivalent dose is assumed to be constant over the
cross-scction of the fuel pin, we may use the term dose step
in place of the time step.
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Gilsocarbon graphites have been assembled by Everett and
Manzel LBéj + All Gilsocarbon graphite data used in this

analysis have been taken from this reference.

—— - " —— . .

Data on the irradiation induced changes of the thermal
conductivity of a Gilsocarbon graphite, are shown in Fig.1lh.
To introduce these experimental data into the computations of
stresses, polynomialsAwere fitted to the data, using a least
square curve fitting programme, Non-linear interpolation has been
.used to determine the values of thermal conductivity for

intermediate dose values, as discused in Ch.5.5.

5.4.2 " Fuel rating changes

For hollow rod fuel pins it was assumed that the heat
rating falls by a factor*'Z during the time which coresponds to
'4Ox1020n/cm2 Ni-Dido, cormesponding to the lifetime of about
2.5 years in the Dragon reactor. For the teledial fuel pin and
graphite block it was assumed that the fuel rating remains constant,

5.4,3 The coefficient of thermal expansion

Thé coefficient of thermal ex?anéion'(C.T.E.) of graphite
changes with temperature and with neutron dose. The variation
of C.,T.E with neutron dose for isotropic Gilsocarbon graphite has
been given by Everett and Grahanm [25] e The C,T.E initially
increases with dose reaches a maximum value about 14‘70 higher
than the unirradiated value then falls approximately to the
initial value. Since the changes of C.T.E with dose are small
and transient they have been neglected and the data for the

unirradiated graphite used throughout the analysis,.The temperature

ﬁﬁrhis information was originally provided by Dragon Project [hé}
and was used in the analysis of hollow rod fuel pins to
examine the influence of fuel rating changes on the strain/stress
history
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dependence of C.T.E has been taken into account by fitting
straight lines to the experimental data for unirradiated

graphite, The following expressions were used:

~Longitudinal direction: v

6

-0
ol, = 6.15 .20 ° + 1,92 .10 ° (T - 500)°

I

Transverse direction:

-6

oAy= 6.0 .10° +1.5 . 1072 (T - 500)%

—

- 2 i B et i et G e 2 2w S0 e

The dimensional changes are shown graphically in Fig.l5
and 16, The Gilsocarbon graphite behaviour is slightly
anisotropic but the pattern of dimensional changes in the
transverse and longitudinal direction is similar. Polynomials
have been fitted to the data and non-linear interpolation
used to termine the VWigner strains for intermediate temperatures.

as discused in Ch.5.5.

S5..5 Cre ep_Data

A summary of irradiation creep data for different graphites,
including Gilsocarbon graphite, is given in Fig.l?7. In this
analysis, a linear variation of creep constant with temperature
was assumed. The lower of the two lines Fig.l7 was used, so
tending to undenstimate the creep and overestimate operating
stresses. All information about irradiation creep has been
obtained from uniaxial tests. The choice of a three-dimensional
creep law for use in the analyses is discussed in detail

in Ch.,3 and App.I.

S.ka6 Elastic_constants and strength of material

Young s modulus of graphite is increased by neutron irradiation.

Data given by Everett and Manzel show a rapid initial increase
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(Fig.18), the modulus change then temporarily saturating at a
value which depends on the irradiation temperature,

The values of Young's modulus saturate at equivalent doses
between 2 and 6x102 n/cm2N1~D1do. Further substantial changes
occur for hlgher doses at temperatures between 900°C and 1200 C

In this analys;s constant values of Young's modulus were
used for hollow rod fuel pins and graphite block, equal to the
irradiated values, taking some account of the irradiation
temperature,

For the hollow réd fuel pin and the graphite block for
which the temperature are lying in the ranges 750-800°C and
675—72500 respectively only one value has been used in the
analysis in each case since in these temperatures ranges Young's
modulus changes little after reaching the saturated value,

The value used in the analysis of hollow rod fuel pin was:

1.18° x 106N/cm2

14
E = I:'1.1.n3‘.rrad.. + 38/

and for graphite block:

0
E = Eunirrad. * 44/4

I3

Most of the teledial temperatures are above 90000 and in this

2
1,241 x 106N/cm

region the Youngis modulus changes substantially with equivalent
dose not only initially, but also later in life time (see Fig.18).
The changes of Young's modulus used in analysis with respect

to dose and temperature have ﬂperefore been considered in a
exact step-wise way.

Thus, the values of Young's modulus follow closely the
900°C and 1200°C curves interpclating later linearly between the
curves for the high equivalent dose,

Value of Poissons ration 0,18 was used in all éalculations.

Table IT zives the approximate strength of unirradiated
pressed Gilsocarbon graphite over the temperature range of
interest (600-1200°¢C),
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TABLE IT

Strength of unirradiated pressed isotropic

Gilsocarbon graphite in temperature range 600-1200°C

St G 0 2 D e et e B e T e > s S et oy R Sl D D ot S . W i D oy D D S Al D o oy S o . e S B S D Al B D D B ot BT Nt i S s S S e

Direction Tensile Strength Compressive Strength
N/cm2 N/cm

Longitudinal 1,200 6,100

Transverse 1,400 6,100
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P et it o B S et B o ot e S PO P oy P > 8 v 0 e e e ot By S e T S  t  t A - ——

Thermal conductivity, dimensional change, thermal expansion,
creep rate and Young's modulus data are all functions of
current temperature and irradiation dose (Fig.1l%,15,16,17,18).
In most cases the equations which describe this dependence can
be simplified by use of linear interpolation without decreasing
the accuracy but this is not so for changes of thermal conductivity
and Yigner strains, .

It can be seen from Fig.lhk and Fig's 15, 16 that the thermal
conductivity and Vigner strains change non-linearly over a
wide range of temperature and irradiation doses, A standard
procedurc to obtain the values for an arbitray temperature and
dose by interpolating linearly between different temperatures
and doses (this procedure is refered sometimes as double linear
interpolation) will clearly oversimplify the changes of the
corresponding variable, If for example the equivalent dose at a
point in the graphite component increases from a value just below
5 x 1020 o a value just above 5 x 10°°n/em® Ni-Dido-and the
temperature remains the sane SOOOC, reference to Fig. 1% shows
that linear interpolation implies & discontinuity in change of

thermal conductivity, This is certainly an unrealistic



representation of the physical behaviour of the graphite and
has an effect on the accuracy of results. The same conclusions
apply for dimensionel changes,

In this analysis polynomials were fitted to the data by the
method of least squares. It was found that second order
polynomials adequately fitted the experimental curves for
thermal conductivity (Fig.1l4) and third order polynomials the
experimental curves for dimensional changes (Fig.15,16). Between
the polynomials the values have been interpolated nonlinearly
using Newton forwards and Newtons backward's difference formulas
(equations are given by Conte [4i}) of the second order for
‘thermal conductivity changes and of the third order for dimensional
changes, both with constant step, :

It is thought that the use of polynomials and nonlinear
interpolation represents better.the temperature and dose
dependence of thermal conductivity and dimensional changes than
~ linear interpolation, The analyses have indicated for example
that the use of linear interpolation for dimensional changes can
cause the stresses to be as much as 100/0- 30% different from
nonlinearfinterpolation for certain graphites., Further, if more
data are available, nonlinear interpolation can be improved
also by the use of highe? order difference formulas,

In using nonlinear -finite difference interpolation, it is
necessary that the temperature and dose steps between the
polynomials are constant, If the temperature or dose step are
not constant other épproaches.@ave to be used such as Newtons

divided difference interpolation (see fqr example Noble Lhé] ).
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6.1 Review of analysis
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The first step in checking the finite element prograﬁ
(STAG) for graphite core éomponents was to compare the xresults
of the finite eclement stress analysis with earlier results
. calculated by Nessan III program for Dragon fuel tubes with
symmetrical temperature and equivalent dose distribution. After
results obtained from STAG showed a resonable agreement with
the Nessan III results the comparison between results of the
iterative and direct versions of STAG was made, The iterative
version of STAG has been chosen for use in further analysis,
since it was faster for the same accuracy and considered more
suitable, Further comparative analys¢s of a Dragon tube with
symmetfical loading have been performed examining the influence
of mesh size, mesh pattern, element shape and different time
steps on the results., After initial comparative studies the
stress analysis of three particular more complex graphite
components has been attempted: a hollow rod fuel pin under
temperature tilt, a teledial fuel pin, and a multichannel
graphite block, “

In all analysés the. equivalent neutron flux was assumed
to be uniform over the cross~section of graphite components
(Ch.5.3). If not stated otherwise on the graphs, equal dose
increments of 1 X 1020Ni-Dido were used. All analyses except
that of graphite block (calculgted to a dose 10 x 2020n/cm2Ni-Dido)

were continued to a Dido equivalent Ni-dose of Lo x 1020n/cm2.

6.2 Analyses of hollow rod fuel pin

@t ot e 0 - b - > G o b Kot B e S et L Gt ek e b b Bt U Bt T S T et T et S T - -

ot i s s T s b e A s et s i i il B Wl G D Gt . G i P o B i ot ot D

The hollow rod fuel pin with a symmetric temperature

distribution and a constant equivalent dose across the tube

i
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has been analysed in some detail using a step-by-step method
of solution with computer program Nessan IIT and the results
show a reasonable agreement with experimental values obtained
by the Dragon Project (sece Jezernik ¢ Head [ﬁ,é}). The Nessan IIX
results have therefore been considered as the starting point
- for the present work,

The stress analysis has been performed for half of the
graphite tube using two different mesh sizes (Fig.9, Fig.10).
A half of the hollow rod fuel pin was analysed instead of a
narrow segment to study the influence of mesh pattern on the
results as discused later. It is assumed that at the cross-sections
at both ends of half ring, the nodal points on y axis are free
to move in the y direction but restrained from moving in the
x~direction, The mesh data have been calculated by the‘subroutine
MESHR (Ch.5.1). The temperature at nodal points for both mesh
sizes have been calculated using the subroutine TZMPR as
explained in Ch,5.,2 but considering & maximum of only 7 points
across the tube wall in comparison with 10-point calculation
in Nessan III, The difference between these temperature distri-
butions can be regarded as negligible., The element temperatures
have been calculated by averaging the node temperatures., It has
been assumed that the temperature dist?ibution changes with
time due to fuel burnup and thermal conductivity change as
discussed -in Ch.5,2 and Ch,5.%. The initial and maximum temperature
distribution through the fuel tube is given in Fig.19. The
final temperature distribution is almost identical with initial
temperature distribution,

In Fig.20 the minimum in~plane principal stress for element
10 and a coarse mesk¥ is compared using the direct and iterative
codes (and somc earlier values of clastic constants for Gilso-
graphite), The results are in good agreement but the-iterative
version uses about 2.5 times less computer time, In both

calculations the stiffness matrix for the whole structure hoas been
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Tn further analyses of the hollow rod fuel pin (Fig.20 to Fig,31)
a fine mesh (Fig.10) is always used if not stated otherwise
on the graph,
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formed at each time step simulating the general case that the
temperature and equivalent dose distribution of a graphite
component changes continuously with time and therefore the elastic
constants change with time also. It is in this case that the
iterative method shows a relative advantage over direct approach
but in addition less work is necessary to prepare the input

data for the iterative program.

The accuracy of results is influenced by the magnitude of
the element but the overall trend of stress changes/time remains
siﬁilar (see Fig.21). In the calculations with a large number of
elements the increased influence of rounding off errors was
‘noticable and it appears that the accuracy could be improved by
use of double precision for stiffness matrices. The shape of
triangles with length/depth ratio close to 1:1 was found to
give more accurate results than of those with ratios 3:) or more.
A mesh pattern of the type shown in Fig.9 and 10 where a number
of symmetry lines can be drawn gave better resulis than a

less symmetric mesh as indicated in Fig.9 by doted lines,

A larpge dose step causes slight oscillations in the plot of
stresses against time since the creep strain increments are in
turn over-estimated and under-estimated as shown in Fig.22.

Thé oscillations are particularly marked if the stressés change
rapidly with time, . . .

A chosen set of STAG results for fine mesh and short dose
step has been compared with Nessan III results in Fig,23,24 and
25. The results are in good agreement particularly the hoop and
axial stresses., It will be noted that the hoop stress as
calculated by STAG passes through zero slightly earlier and
finally reaches slightly lower levels than the stresses calculated
by Nessan IIL1, The small difference initially is probably due
to omission of the creep iteration process in the finite element
analysis. In the step by step calculation the stresses from the
previous time interval are always used in the caleculation of the
current creep sitrain increment and this in turn causes a

slight overestimation of the creep strain increments when the
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stress is rapidly reducing initially, hence the mentioned faster
decrease of stress, Slightly lower values of stresses later in

the lifetime (when tho stress/time remains approximately constant)
of the fuel pin are probably due to other reasons, The STAG
residual stresses are slightly higher than Nessan III hoop stresses,
~The radial stiresses calculated by STAG are higher than those
estimated by Nessan III probably due to finite element idealization,
‘The changes of axial stress/time compare with Nessan III., results

slightly better .than the changes of hoop stress/time.
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The next analysis is related to a hollow rod fuel pin under
temperature tilt as shown in Fiz.26 and prevented from bowing,
. The principal stresses across the fuel tube for cross-sections
Cl-Cl and CZ-C2 are plotted in Fig.,27 for time zero. The overall
shape of the variation of stress/radius is sﬁmilar to that for
the symmetric case but in addition axial stresses are all compressive
on the hot side and tensile on the cooler side, With irradiation
the stress distribution across the fuel tube is reversed as given
in Fig.28 which relates to time int.35:{3;4 % lOZlN/cmaNi~Did0).
Cooling down of the reactor causes the stresses to rise since the
thermal expansion effect, ;hich opposes the dimensional change
~effect, vanishes, As a'reéult, the residual stresses are always
of the form of distribution shown in Fig.29, Fig%.BO and 31
illustrate the variation with time of two of the principal stresses
for two typical elements one at?inner boundary of the tube and

one at outer boundary (el.25 and 408),
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As shown in Figs.19 to Fig.31, good results can be obtained
using constant stress triangular elements providing that
sufficient are used. The results obtained by STAG compare
favourably with the Nessan III. results (Ch.6,2.1).

t
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In a hollow graphite tube under temperaturc tilt and
restricted from bowing, the operating axial stresses are very
high at the beginning of tube-life but decrease rapidly due to
irradiation creep and differential dimensional changes. A shut
down of the reactor will however cause the stresses to rise
to high values with the possibility of failure, In reality the
gfaphite tubes will be only partially restricted from bowing ‘
and therefore the axial stresses (operating and residual)
will have lower values than those calculated, The amount of
bowing depends on the clearance between the tube and channel
and the amount of bowing of the multichannel graphite block.
It is expected that the equivalent dose tilt will have similar
effects on the stress pattern in the hollow tube as the

temperature tilt,
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Fig.9 shows a sector of the teledial fuel pin, bounded by
planes of symmetry and the mesh used in the analysis. The assumed
temperature distribution, shown in Fig;32 was provided by
_Kinkead [36] and corresponds to the time in the 1life of the fuel
pin when the maximum fuel temperature occurs (see Ch,5.2).

. The initial (thermal) étresses are shown in Figh.33, 3% and
35, Figs. 36, 37, 38 and 39 show the distribution of operational
and residual principal stress in four most highly stfessed regions
of the fuel pin (as indicated in Fig.1ll) at several times in the
life of the fuel pin. The region with highest stresses in axial
direction is in the rib but the other two principal stresses
there have low values, Figs. 40,41,42 and 43 show the variation
with time of the stresses in highly stressed elements of the Tuel
pin crossection. These graphs again show the stresses on these
elements with fuel pin at the operating temperature and also
residual stresses assuming that the fuel pin is allowed to cool

to & uniform temperature,
4

6.%,2 Discussion. of results

As Fig.32 shows, the highest graphite temperature occurs

" in the ligaments between the Tuel holes, With the particular
boundary cenditions ﬁsed in the, thermal analysis, the region
inside the fuel hole pitch circle is generally hotter than the
outer region., The lowest graphite temperature occurs in the rib,
which locates the fuel pin in the channel, The high temperature
in the ligaments causes a moderately high compressive radial
stress initially in these regions (see Fig.34). The high
temperature generally, inside the fuel hole piteh circle and
lover temepratures:in outer regions of fuel pin, cause in the
%~y planc, compressive stresses in inner regions and tensile

stresses in outer regions,.
’ t

- - - -
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The compressive stresses in the inner region are concen-
trated around the inner edge of fuel hole (see Fig.3k). It is
in this region (el.k88) that the highest stress in x~y plene
occurs, Outside the fuel hole pitch circle, the tensile stresses
in xy plane have noderate velues (Fig.33) with a concentration
in the corner of the rib. (The mesh used is too coarsc éo scive
a tfue indication of the pecak stress). As shown in Fig.>5, the
'highest axial stresses occur in the rib,
Figs.36, 38 and 40, 42 show the way the principal stresses
vary.with time in inner and ounter regions, In the plane -y
the high compressive stresses deveioped around the inner edge of
fuel hole and the more moderate tensile stresses in outer regions
reduce rapidly in magnitude due to the combined effects of creep
and a.differential irradiation shrinkage of the graphite (the
shrinkage rate generally increases with increasing temperature).
It is apparent that towards the end of the life of the fuel
pin, the stresses in these regions change sign and a form
of reversed stress distribution is established,
If the reactor is shut-down, the stresses increase and high

‘residual stresses of the reversed pattern are establishedﬁb,

A routine has been written to calculate elastic stress (the

pin is assumed to be at a uniform temperature) due to internal
pressure in the fuel hole of the teledial sector. By considering
the elastic stresses in -plane. (xy) due to pressure and rcsidual
stresses after irradiation of the pin in the rcactor and
comparing the combined stresses with ultimate tensile strength
(UTS) of the material, the pressure in the fuel hole can be
calculated recquired to break an irradiated pin. Alternatively
the pressure required to break a teledial fuel pin after irra-
diation in the reactor can be determined also experimentally. If
the experimental and calculated values obtained for the required
breaking pressure are compared some conclusions can be reached
about the magnitude of maximum stress levels in a teledial pin
after irradiation in the reactqr, Stresses in a teledial sector
at a uniform tegperature of 20°C with intcrnal pressure

1 bar (=10 N/cm™ ) were calculated for the Dragon Projcct

(where they intend to perform the experiment) but results are
not given.herec. ’

. . - '
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an effect observed in the results of the analysis of the hollow
rod fuel pin,

Figs, 37,39 and 41 show the pattern of changes of principal
stresses in the ligament regions. It is possible to notice a
similar ropid decrease with time in the magnitude of the stresses
and the formation of a reverse stress pattern later in tife of
fuel pin. Again high residual stresses of a reversed pattern are
developed if the reactor is shut down,

Fig.43 shows the variation of axial stress for el,4 in the
rib, Very high residual axial compressive stresses develop if

reactor is shut down,
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A halfl of a typical hexagonal multichannel grarhite block
as shown in Fig.lhl has been analysed using a coarse mesh of a
similar pattern as in Fig,1l2 with approximately 350 elements,

The graphite block was assumed to be vnder an arbitrary
temperature tilt and approximate temperatures are indicated

in Fig.t4 (see also Ch,5,2), The results presented in Table IIT.
should provide some indications about stresses in graphite blocks
.under real conditions in a HTR, The assumption that the eguivalent
dose is constant accross the graphite block is unrealistic, but

it is possible to apply, at least in part, the conclusions

derived from the results for a temperature tilt to indicate the
behaviour of the graphite block under a neutron dose tilt,

Some characteristic results are presented in Table III and
areas with maximum stresses indicated in Fig.hkh, In gencral the
left hand side of the graphite block is hotter than the right
hand side. In addition all outside boundary regions are hotter
than inner regions of the block. The temperature differences in
ligaments between the holes are moderate (5°c to 10°0).

At time O the highest stresses are axial stresses, being
compressive at the hotter left hand side and tensile at the
cooler right hand side of the block, The highest principal
stresses in plane develop at ‘the inner part of the graphite block
along the horizontal symmetryﬁline. It is interesting to note
that only relatively moderate stresses (in plane and axially)
develop in the ligaments between the holes. (see Table III)

The operating stresses are rapidly relaxed with time and
it can be assumed that an axial stress distribution of a reversed
pattern with tensile axial operating stresses at the left hand
side and compreggive stresses at the right hand side of the
block will be established later in the life-time of graphite block,
The principal.stresses in plane x~y are relaxed to more moderate

- - t
) 1
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values with compressive and tensile values close to zero,
If the recactor is shut down the stresses rise and an axial
stress distribution of reverse pattern is established,

A}

6.4,2 Discusion of results

o B > 0 Pt - . B B et o - S S - S —

It is possible to conclude from characteristic results
presentczf that the highest operating and residual stresses
+in a graphite block under temperature tilt (at for .example
core reflector boundary) are axial stresses and that the magni-
tude of these stresses depends on the temperature difference
across block, the equivalent dose and graphite block dimensions.
The axial stresses will be partially relaxed by the bowing of
the block and it is the amount of bowing which will determine
the magnitude of the maximum axial stress levels in the block.,
An equivalent dose tilt across the block will have similar
effects as a temperature tilt. If the structure is already under
temperature tilt and in addition there is a neutron dose tiit
across the structure of the same shape the axial stress pattern

in the structure will be amplified.
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STAG program have been prepared for very complex stress
analyses of graphite blocks under arbitrary temperature and
equivalent dose distribution and using a large number of
eléments (fine mesh). Thus for example mesh data for a half
of a large hexagonal graphite block have been calculated with
appr. 1500 elements and 1000 nodes. The block has more than
30 holes and a part of the mesh is shown in Fig.l2., The
results of this work are commercial and are therefore not
included, |
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Fig. bl
} GRAPHITE BLOCK.
TEMPERATUREZ DISTRIBUTION,
HIGHLY STRESSED REGIONS (ELEMENTS 331,337,307,177),
AND A TYPICAL LIGAMENT REGION (ELEMENT 190)
(see TARLE III).
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TABLE III.

2
OPERATING STRESSES (N/cma) RESIDUAL STRES3ES (N/cm )

DOSE 0 (Int.l) o o o g g . g

max min Z max min z
ELEM.337 195.3 -11.3 173.5
331 k2,0 -236,7 - 27.5
307 88.3 11.6 269.7
177 -18.5 -110.9 -326.7
190 '73.5 - 16.1 136.8

Dose &4 x lOZOn/cm2 Ni-Dido (Int.5)

ELEM, 337 -~ 54,8  11.2 40.0 29.9 -147.9 -133,5
331 -59.5 z82.0 -68.5 167.7 -11k.7 - k.o
307 39,0 23,5 _3k.6 "13.6 - 51.6 -235,1
177 -16.8 -38.8 -31.1 79.8 - 5.9 +295.5°
190 19.0 -20.k 4.8 -4k - 54,6 -132.0

Dose 9 x 102°n/cm2 Ni-Dido (Int.10)

ELEM.337 30.9  11.3  18.7
331 -60 .1 -74.6 -68.1
307 27.1 2kl _17.2
177 -10.0 -18.,8 - 4,3
190 1.9 -18,0 -11.0

e P G D B . G S S T A > . T ot P B Gt} Gt} B i T il G i ey i Bl e S P P W W - R Y - P - - v . - . vy = W = -

The maximum stresses develop in el.s 337, 331, 307 and 177 and
in each element the underlined value represents the maximum
stress. Stresses which develop in el.190 represent typical
value for ligament regions.
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In previous Chapters a finite element stress analysis model
for irradiation induced stresses of graphite core components
has been developed and demonstrated, It appears that by using the
step~by-step method and triangular elements with linear
displacement field, sufficient accuracy can be achiyed,'provided
sufficient numbers of elements are used, The accuracy of results
depends on the mesh size, element shape and mesh pattern in a
similar way as in elastic analysis, Creep iteration has not been
used in the computations since the computing time involved
makes its application uneconomic at’ present. Howaver, with the
choice of a suitable time (dose) step, depending on the rate
of change of stress with time, the results were found to be
sufficiently accurate,

For the given type of problem, a graphite core component
with continously changing temperature and equivalent dose
distribution and therefore with elastic constants changing with.
time (and position) the iterative method of solving for nodal
point displacements has been found to be faster and more suitable
than direct band method, If the elastic constants can be
assumed constant during the life of a graphite component in the
- reactor, the direct tri-ﬁ;nd and iterative methods may well use
a cdmparable amount of cbmputer time since the lengthy inversion
of stiffness matrices for the structure partitions (in the direct
program) has to be performed only once and not at each time
interval, If the iterative mathix displacement method is used
structures with up to 1500-2006 constant stress, triangular
elements can be analysed with the current large computers having
approximately 100,000 words of central memory available., This
seems to be sufficient for rost (graphite reactor) engineering
problems, Using the direct-band method possibility exists to
analyse structures with appr. 3000-4000 clcments for the same
size of computer, Special program rewriting will be required for

larger sbrgctures. It seems. that other direct methods such as the

R
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front method will be more suitable for very large structures

using a smaller number of higher order (isoparametric)
elements. In the analysis of graphite core components it is
however unlikely that analysis of structures with many thousand
elements will be needed. If so, the computer time required will
run into hours, ’

At present the temperature distribution and equivalent dose
changes with time can be read into the program from cards or
tapes at the beginning of each time interval and these input data
are calculated by separate programs, It is thought that this
arrangment makes the program more flexible since intermediate
results can be always checked and also turn-round time is shorter
for a short program. The mesh data are calculated by a separate
program and read in at the beginning of the calculation, For
long runs a restart facility could be included to enable the
termination and restart of the calculation at any time,

Several possible directions of further development are
indicated by the present work. One desirable development is the
inclusion in the STAG code of axi-symmetric and plane stress -
options for which the basic relationships have already been
developed (Ch.3 and App.I). The partial creep iteration could
be included as well,

Another attractive line of development is probably the
comparison of different matrix displacement methods for
viscoelastic and other time .- dependent problems. It seems that
. not pnly the runmning time and central memory required but also
the accuracy and stability of results vary for different matrix
displacement methods, One particular matrix displacement
method may well have advantages over others for a particular class
of problenm,

The time-dependent analysis of graphite components in three
dimensions will probably remain for some time to come an
unecononic proposition because of the large amount of computing

time required, It is possible that some conclusions



from comparative analyses of matrix displacement methods in two
dimensions could contribute to the development of the three
dimensional work,

The accuracy of peripheral programs which provide mesh
data, material properties.data etc, could significantly
influcnce the results., The automatic mésh generation prégrams and
nonlinear interpolation of material properties data are prefered
to manual preparation of mesh data and linear interpolation,

In general, the level of accuracy of peripheral programs should
be comparable or better than the accuracy of suplied experimental
values.

Finally some conclusions can be drawn regarding the relative
suitability of different graphite core components,

Stresses in a hollow rod fuel pin under symmetric loading
are relatively moderate, A substantial temperature tilt causes
very high axial stresses if the pin is restricted from boving,

An equivalent dose tilt accross the rod of the same shape as
temperature tilt is expected to amplify the exsisting stress pattern
in the rod, Sincé it is unlikely that the graphite block and fuel
pin will undergo the same amount of bowing, the fuel pins will

be partially restrained and the amount of possible bowing of fuel
. pin will determine the ma%nitude of maximum axial stresses, The
stresses in plané.(x—y) are only slightly influenced by tempera-
ture (or dose) tilt and their values and pattern are similar to
those for symmetric loading. The hollow rod pins are most likely

- to fail in regions of high tensile axial (residual) stresses due
to restricted bowing. The magnitude of overall stress distribution
for symmetric loading can be reduced by reducing the thickness

of ‘the hollow rod tube wall and for non-symmetric loading by
reducing the tube diameter, However in both cases, this is

clearly possible only to a limited extent due to other (for
example reactor physics) design requiréments,

The stresses in a teledial fuel pin are‘substantially higher
than in the hollow rod fuel pin. The most sérious conditions in

a teledial seem to be at inner edge of the fuel hole (el.488,Fig.11)
. : [} g )
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for the temperature distribution without a temperature tilt,

In the ribs of the teledial fuel pin very high stresses’develop ‘
since they are normally overcooled, These very high stresses
will however probably not cause a scrious concern since they
may cause only local cracking and can be to & large extent
eleminated by cutting horizontal grooves into the rib at several
positions along the fuel pin, The same conclusions can be
applied for axial stresses in the ribs of a hollow rod fuel pin.
A comment that may be nmade is that the calculated stressesin the
teledial, particularly the residual stresses vhich occur at

the end of the fuel pin life>arc almost certainly an overstimate
of the true stresses, as the reduction of pin power, due to
burn-up has been neglected,

For both fuel pins the residual or shut-down stresses
are much higher than the operating stresses,

In a graphite block under temperature tilt the axial stresses
reach the highest values, For the time (dose) range presented the
highest are initial axial (thermal) stresses but it can be
assumed that the residual axial stresses are most severe after
a prolonged irradiation in the reactor. Similarly as for hollow
rod fuel pin it is the amount of bowing which will determine the
. magnitude of the maximum axial stress levels. Equivalent dose
tilt of the same shape as temperature tilt will amplify the
existing stress pattern. The stresses which develop in the
ligaments are relatively moderate. The most serious stress
. condition will probably be represcnted by a large size block at
high'temperature (for example 800°% - 1000°C) and under substantial
temperature and flux gradients, In general a smaller graphite
block may well be more desirable from the point of maximum
stresses but again a very small block may be in contradiction
with the other design requirements, o

One general comment which can be made is that the stresses
which develop in the graphite block for the temperature
distribution assumed in the analysis are relatively moderate in

comparison with the stresses which develop in fuel pins,
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9. NOTATION

(2]

c
1,2,3,4
C11Cr1aCy

o}

De

(x]

(K
i)

area of element

displacement/strain transformation matrix
constants '

stiffness matrices for subregions (partitions)
elasticity matrix

equivalent neutron dose

Young'!s modulus

stiffness matrix for complete assembly
stiffness matrices for subregions (partitions)
stiffness matrix for element

axial restraining force

creep compliance matrix

nodal force matrix ) ]

nedal forces to suppress displacement

element corner force matrix

6 x 6 elastic compliance matrix

temperature ‘

elements of & x L creep compliance matrix
element displaéements in plane

cartesian coofdinates

axi~symmetrical coordinates

thermal expansion coefficient

the convergence factor

element corner or structure displacement matrix

total strain matrix

elastic strain matrix

nonelastic strain matrix

creep strain matrix —
thermal strain matrix

Wigner strain matrix

1350.
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Y Doissons's ratio
{6} stress matrix

T shear stress

Y shear strain

Subscripts |
XY 42 cartesian coordinates

z,0,r axi-symmetrical coordinates

i,j,k node numbers

”‘_L parallel, perpendicular directions

.Superscripts

e elastic

n nonelastic

c creep

W wigner

t thermal

Other symbols are defined where they occur in the text

Units

Stress: 1 N/cm2 = 1,45 psia

Temperature °c

Length (dimensions): cm
Neutron dose: Calder equivalent dose 1000MiD/Ate = loaon/cmZNi-dido

dose



APPENDIX_I , THEORETICAL ANALYSIS
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The matrix equations for plane stress/strain and axisymmetric
problems are derived here in detail considering the derivations
by Wilson [lé], Head {2] and notes of selective postgraduate
lectures about the finite element method at Imperial College
given by Wood and Blomfield in 1968/69 [Qﬂ .

—— o o o Dn - —————————— ————— —— - ——

Displacements with an element with an assumed linear
displacement field are defined for plane stress/strain (eq's
3.22, 3.2b in Ch.3) by:

uo= w4 Cl(x - xi) + Ca(y - yi) (A,1.1)

Vo= v 03(x - xi) + 04(y - yi) . (A,1,2)

The equations are of the same form for axisymmetric
analysis (eq.3.24) except that coordinates x and y have to be
replaced by r and z, We can define six simultaneous equations

of the above form and the constants Cl, C ¢ and Ch can be

2' 73
determined in terms of nodal displacements (eq.3.3):

Cl‘\ ] ryj-yk, Y ,-(yi-yk), 0 ,(yi-yj), 0 u,
C, L -(xj-xk), 0 , (xi-xk), 0 ,-(xi-xj), 0 Z;
C, =2A O ¥y 0 - (y7y)s O ,(yi—yj) :j
94 ] \ 0 ,T(xjtxk), o |, (xi-xk), o] ,-(xi—xj) vi
and .
1 1l T (A.1.3)
2AT T T 5'15'35;5'3'§c5137;3§;5'1'£;(§;3§55
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The strains within the element can be obtained from the assumed
displacement field (see eq's 3.5 and 3.26),

=G {of . (h2.)

The matrix [ﬁ]for plane strain/stress and for axi—symmet?ib

geometry is given in detailed form at the end of this Appendix.

?
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It is assumed that the total strain matrix can be separated

into elastic thermal, Wigner and creep strain matrices (see eq's 3,9):

= 3 - {et} LA {} L)

These matrices have been’'given in expanded form in Ch.3.
In this Chapter the derivation of the clasticity matrix [D]
and creep compliance matrix {Q} are discused or given in more

detail)for different 2-~dimensional cases,

A 132.2 Stress/Elastic Strain Relationship

In the general three-dimensional case and for anisotropic

material the stress/strain relationship is of the form:

{o} =[] {e} (A 1.6)

The elasticity matrix [ﬁ]can be derived as follows: Hooke 's law,

for small strains, may be written:

e
€55 = sijkl %1 _ _ (A 1.7)

o—

where 85 = elastic compliance tensor.

jk1
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The compliance tensor is of the fourth order and has
81 elements, It can be shown (see for example Sokolnikov[ﬁ41 )

that since:

6.. = d.. ' : (4 1.8)
ij ji
and

E. . = €., '(A 1.9)
1] Ji

only 36 of elementsare independent and we may restate Hooke's

law in the form of the matrix equation:

9 -[s1. {o} (A 1.10)

where

{ef
{of
[s]

6 x 1 elastic strain matrix, the elements of which

are the strains

6 x 1 stress matrix, the elements of which are the

stresses

6 x 6 compliance matrix

it

Hearmon (hé] uses the principle of conservation of energy
to show that 6 x 6 compliance matrix [ s is symmetrical and
has therefore only 21 independent elements in the case of a
completely anisotropic material,

The properties of graphite usually do not vary significantly
between directions in a plane transverse to extrusion or
pressing: in other words material is transversely isotropic.
Thus, if we assume that the direction of the z axis coincides
with the extrusion or pressing direction of the graphite block
or fuel pin, the compliance matrix should be invariant with
respect to any rotation about z - axis. It can be shown that the
number of independent compliances is reduced to 5 for a
transversely isotropic material. Equation (A 1,10), written in

expanded form, therefore becomes:



[é; réll 815 513 0 0 0 g,
a; 812 511 s11 0] 0] 0 ay
° J|f i3 % °° ° ° (£ 1.11)
) Yya 0 0 0 s, O 0 L '
Yzx © © © O sy © Tox
ny _o 0 0 0 0 a(sll—sla) Ty
‘We must now relate the elements of the compliance matrix to

experimentally measured elastic constants. For graphite, the

constants which are normally measured are as follows:

E||

we

811

y B4 = Young's modulus measured on specimens cut with
; their axes respectively parallel and perpendicular

to the extrusion (or pressing) direction.

. { . .
{LL = DPoisson s ratio measured in a plane transverse to

the extrusion (or pressing) direction.

=
I}

Poisson's ratio measured in a plane parallel to the
extrusion (or pressing) direction: ratio of strain

in the direction perpendicular to extrusion

(or pressing) to strain in the direction parallel to
extrusion (or pressing).

Expressing the compliances in terms of these elastic constants,

have for example:

= strain in coordinate direction x due to unit stress in

direction x

- -l —~-
E 1

similarly

o Yy . Nt 1 1

£, 37T BT gt (132
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In terms of the experimentally measured elastic constants

equation (A 1,11) may be written:

- ¥

x 1 AR \(“ X
A
- Al B 0 0 o o
y “+ E i y o
c© ST S (XTI VPP .
Z B joH E 2
- I I I Rk (A 1.13)

e
Yyz 0 -0 0 /60 O Ton
e
Yox 0 0 0 0 1/6 0 T,
< 1o o o o o iy
xy/ - Eﬂ_ j & Xy

Equation (1.13) can be regarded as origin for deriving all [ﬁ]
matrices for plane stress/strain and axi-symmetrical geometry
for fully isotropic and transversely isotropic materials,

Eq. (A 1.11) or (A 1.13) can be written in symbolic form also:

T R L S B (n 1.28)
[«J7* =Lo]

(o]

. (A 1,15)
By omitting the cbrrespoﬂding rows and columns of matrix [é~]
for plane stress/strain and axi~-symmetric geometry and by
inverting it, the corresponding matrix [ﬁ]can be obtained.
Thus, for example, for pldpe strain and transversely
isotropic material the forth and fifth columns and rows of
matrix Es] have to be omitted and after inversion matrix [ﬁ]

is as follows:

~ 2 2
R TI T R AT A TR T “‘
22 2.2 _‘
D = ________________'_J:(ifm N o Ry AV, O (A 1.16)
= 53
(1) (=Y, 2wV (1+ Vi, Y (1+Y, ) ,—%(1— by s o
: : 1 2
Lo v io s 0 FaY e Lub

-2
where m = %L /E”

AY
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If material is fully isotropic E, = Ej= E and
Y1u= YLL= Y and the above matrix [ﬁj—for plane strain
simplifies to:
1 , V-0, Yey), o
o EQY) V-, 1, VasY), o (1.17)
“*V’““ZV)\Vu»n,‘Vuﬁn , 1 , o0 |

' o, o , O , (1-2Y)/2(1-Y)
In a similar way the matrices [D] can be derived for
plane stress and axi-symmetfic geometry, for transversely

isotropic or fully isotropic materials.

A 1l.2,3 Creep Strain matrix

s e s Bt 40 s G e SO it s et Bt e v G0

As derived by Head Eé] for a transversely isotropic Maxwell

material the creep compliance matrix in 2 dimensions is of

the form:
‘c — O‘ ~
€x 91 %o Y3 (;x
&° q q q 0 g ‘
y (2|12 "11 713 ) y (A 1.18)
2 C .
ez N3 Y3 933 O 9y
oC -
Xy Lo o} o} z(qll qu)J ery

where the dot indicates the rate of change with respect to neutron
dose. Compliances qll and q33 have been measured experimentally,

but compliances q12 and q13 have not been measured.

In this analysis, 95 and ql3 were obtained by assuming that
creep occurs at constant volume. There is some evidence that this
is the case for pyrocarbon (see Kaae [Lé] ). Kelly has suggested
recently that nuclear graphite exhibits a volume change, and that
compliinces 95 and q13 are related to 959 and q33 by the elastic
Poissons ratios (see footnote, Ch.3,3.2,3.5),



The assumption that there is no permanent volume change
implies additional relationships betwecen the elements of the
creep compliance matrix, The rate of chaenge of volume of an

element of material will be:

-c .C .C — R ; * Q
EetE = (qllfqlarqls)(cxwy) + (ZC113+c133)<3z (A 2.19)
If the right hand side of equation (A 1.19) is to be zero

for - all stress conditions, the following equations between the

creep compliances must be satisfied:

97 * 90 F 93
(4 1.,20)

1
(&}

2413 *+ 433

Using equations (A 1,20) t» eliminate 45 and qy and
2
multiplying the right hand side by the neutron dose increment,

equation (A 1,18) can be written as follovs:

. .

6sx qll ’—(qll—qBB/Z) 9 -q33/2,
(o] .

"yl ey | TR
(o]

be,, "933/2 0 952 4 a5p

6Y:y .o 0 , 0

(A,1,21)

Introducing a simplified notation:

U

49 ~ q33/2

v = q33/2 (A 1,22)
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the equation (3.13) are obtained:

65; (Usv), -U , -V, O {c}x
65.; -y, (U+V), =V , © o
L Y= 6(De) * (A 1.23)
6sz v , -V ,2v, O g,
C
6 ey 0 , 0 , o,wanjlt

If the material is Eully isotropic U = V and the eq. 3.13
‘is simplified.
Equation (A 1,21) is the required flow rule from which

the incremental creep strains can be derived.

A 1.3 Stress resultants and-.element stiffness

The corner forces expressed in terms of three components
of stress are given in Ch.3 (egs. 3.14% and 3.,27), or in terms

of the corner displacements, for plane stress/strain we have (eqs 3,16

{s} = [8)* [D][B]{by ‘ (4 1.28)

and for axisymmetrical geometry (eq.3.31) we have:

{s} I ) (»] [Ta] {6} (A 1.25)

or in both cases (eq. 3.17 and 3.32)

{s} =[] {6} (A 1.26)

where [k] is the stiffness méatrix for one element. -
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!
For plane strain and isotropic material the detailed form

of eds is as follows:

(yj"yk ' , —(kj—xk)
0 ,-(xj—xk), (yj-y§> ] )
-(yi-yk), o, (x;-x) 1=V, ¥, 0
r ' E N ,1-V,0
[k} 12 o Geg=:,0) = (9| 7359 75257) 129
o ,0, 2
(}'i"‘yj), 9] ’ _(Xi-xj)' ] B
] -0 ,-(xi-xj), (yi yj) “]
o (D
t T
_ 8]
yj-yk , 0 ’"(yi-yk)’ 0. ’-(yj-yk)’ 0
____E____ 0 ,—(xj-xk), 0 (xi-xk), 0 ,-(xi-xj)
* XY, "X Y. ’
PEI )y Gy Gy v = (7370 =G )= (o oy, )
!___’"—-’———\(' /J'
. i
(A 1.27)
and [Eq
vy
v.
1
ga} = | Y (A 1.28)
N V.
J
Yy
Yk

For different plane cases (plane stress, transversely 1sotroplc

material etc) only matrix [D} have to be replaced,

[D] is here a 3 x 3 matrix, see footnote Ch.3.3,2.4



For axisymmetrical geometry:
7 - A -
0 ,-(rj—rk), 0 ,(ri-rk), 0 —(r.-? )“
(zj—zk) ’ 0 ,-(zi—zk) ,y 0 (zi-zj)’ 0"
' (rjzk—rkzj)/rj+ . 0 ,(zk—rk.é), 0 ,ra.i-zj), 0
r(zj-zk)-(rj-rk)/r,
--(rj—rk) . (zj-zk),(ri—rk) ,-(zi-zk),-(ri-_-rj),(zi-_-zj)
(4 1.29)
where
1
o g g Sy A (329
i"J k J ik k1 3j
and A {ﬁ{XP _ -
- r.z -r Z. ]
0 ,(zj-zk), J-L{;-B-JT +(zj--zk)-_-(ri-'-rk).;z,-r(rg.-rk)
_(rjfrk), o |, 0 s (zj—zk)
A 0 v~ (252, ), (zk-rk.-) s (ri-rk)
T2 -(r;-r, ), O ' 0 ,-(zi-zk)
4) s (zifzj)' _(rjri-Z.) ,-(ri-rj)
'(ri'_rj)' 0 ' 0 R (.;i-zj)
Th;—detailed expression for corner forces {é} can be derived
from eq. (3.32). The matrixquj can be derived from eq.A 1.13.

141 L

(A 1.31)
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APPENDIX IT

LISTING OF PROGRAMS STAG

(ITZRATIVE AND DIRZECT VER3ION)




JoB (U
FUNI(S

LGO.
L]

36

37

38

| R

b3,

MEMO40+J12+CM40000.T500) JEZER’NIK +« STAG « ITERATIVE
ver el 1554)

PROGRAM STAG (INPUT sOUTPUT«TAPES= INPUT s TAPE6=0UTPUT)

DIMENSTION TAE(10)«RCEN(10)+HEADX(6)

1 yHEADY (6) s TITLE(6) +XLIM(2) s YL IM(2)

DIMENSION NPNUM(300) +DSX(300)+DSY(300) + XLLOAD(300) « YLOAD ( 300)

DIMENSION NUME (500) +SIGXX(500) +SIGYY(S00)+SIGXY(500) «SLOPE (300)
1+S1GZZ(500) +NPB(300) «NFIX(200) LMI3)1Al616)15(616)18(616)
2+ECX(500) +ECY (500 ) ECXY(500)sECZ(500) »COC(500)
3+STXR(500) « STYR(500) +STZR(S500) 1 STXYR(500)

4 «NOW(50)

COMMON NP 1(500) «NPJ(500) 'NPK (500 + XORD ( 300) +YCRD(500)+ TIEL (500
1sTAEL (500 )+EWX(500)+gWZ(500) + JO+QC QG s NUMEL +NUMNP + TOS s DOSE sNUSI ZE
2+ NURAE + NUSEC « NUELE

COMMON Cl114+C124CI34C144C15sC169C1T7+1C1810C19+C20+C21+C221C234C24+¢C25
1+C26+C271C281C29+C30¢C31+C321C334C344C35¢C26:C379C38+C39+C4CCa1
2eCa21CaA3+1CaL sCL5+CE6+CHTICLBYCAT1C501C51+C521C531C541C551C561C57

READ AND PRINT OF DATA

READ(S5+31) ARA+AZA+ARB+ARC

QG=2Ze

NUSIZE=1

NWRITE=2

NUMEL =108

NUMNP=76

NUMBC=8

NOPIN=1000

NCPIN=1000

NCYCM=2000

PQESS‘:IOQ

NBNP=58

TOLER=0,00002

XFAC=1e85

DATA(EQOO(JU)YIJ=1+2)/0.8621+10344/

DO 36 J=3+17

EQ00(J)=1.0689

DATA(ESOD(J) e J=18¢481) /1407711408649 16103+1a125116155+14198»
1102410102930 1634531481411,47411e52611e57711e66251166721167150
2167584168021 1¢821+1e82411¢8274¢1e8311:483291.833/

DO 37 J=1:26

E1200(J)=EQ00(W)

DATA(EI200(J) e J=2T7141) /139611443911 e¢48391e51311e534¢1e5520
11456941 e57741a58641¢5911859541e6595¢1e595+11459541e59/
DO 38 J=1+41

E900(J)Y=E900(J)Y* 1000000,

E1200(J)Y=E1200(J)y*1000000,

WRITE(6+31) (EQ0C(I)s1l=19s41) -
WRITE(6431) (E12C0(I1)es1=1441)

WRITE(6s11)NUMEL

WRITE(6+«12)NUMNP

WRITE(64+13)YNUMBC

WRITE(G6+14)NCPIN

WRITE(6+15)INOPIN

WRITE(6+16)NCYCM

WRITE(6+417)TOLER

WRITE(6+18)XFAC

DATA (NPB(L)YsL=1+8)/192¢324¢73eT74 75076/

™
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DO 45 L=1+8
NFIX(L)=1
45 CONTINUE
READ(S5¢36) E«PR
READ(5+36) CU
36 FORMAT(2F15.4)
READ(S5431)C11+C12+C13¢C14+C15+C16+C1T1C183C19+C204C214C22:C234C24
1cas
READ(S131)C261C27+C28+C294C301C31+C32+1C33+9C341C354C36+C371C38
1C39'C409C41~C42'C43~C449C451C46!C479C48!C4°'C509C51~C5? " C53+
2C5441C55+C56+C57
DO 46 JO=1450
46 NOW(JO)=0.0
DO 47 J0=5+30+5
47 NOW(JO)=JO
CALL MESHR
DO 700 MOVE=1+8
READ(5+32) INC«POS+QCTOS
DO 700 JO=1+40
ETX=1
STEP=FLOAT(INC)
=INC*(JO-1)
DOSE=FLOAT(MA)
CALL TEMPRI
IF(JOeLE.1) GO TO 52
CALL WIGN
GO TO 56
52 CONTINUE
DO 55 1=1+NUMEL
EWX( 1)=0.,0
EWZ(1)=0,0
ECX(1)=0,0
ECY(1)=0.0
ECXY(1)=0.0
ECZ(1)=0,.,0
55 CONTINUE
56 CONTINUE
IF(JO=1) 62+62459
59 DO 60 I=1+NUMEL
60 CONTINUE ' . .
62 CONTINUE Y
DO 57 M=1sNUMNP
XLOAD (M) =040
YLOAD (M) =040
DSX(M)=04.0
DSY(M) =040 '
57 CONTINUE
SUQF=0¢0 s
DO 180 N=1+NUMEL - —
IF(TAEL(N) «LE«+900.,) GO TO 109
E= E900(J0)—((EQOO(JO)—EIZOO(JO))*(TAEL(N)~900.))/300.
GO TO 110
109 E=E900(JO)
110 CONTINUE
IF(ETX+EQe0+0) GO TO 65
TADA=TAEL (N)~-500,
ARTO=ARA+ARB#*TADA
AZTO=AZA+ARC®TADA
TADB=TAEL (N)~20, . . T



ETX=ARTO*TADB
ETZ=AZTO*TADB

65 CONTINUE
T 1=NPI(N)

J=NPJIN)
K NPK{N)
AJ=XORD(J)—=-XORD( 1)
AK =XORD (K }-XORD( 1)
BJ=YORD({ J)—-YORD( 1}
BK=YORD(K1-YORD(1)
SUR= (AJ¥BK~BJ%AK) /2«
CU=CV=FUNCTO{TAEL (1) +DOSE)
CW=4a#CU+24%CV )

ECX(II=FUNCT1I (U cVeSTXRIT)I«STYRII)I«STZR( 1} +STEP+ 1)
ECY(1)=FUNCT1(CUcVISTXR{1)+STYR(I)IISTZR(1)+STEP 2)
ECZ(I)=FUNCT1(CVacVISTXRIT)}+STYR(TI I +STZR(II+STEP3)

ECXY(I)=FUNCTI1(CWsOe +STXYR(]) 0 e10s+STEPR4)

XLOAD (1 ) =FUNCT2(ETXsETY+EWX(N) +EWY (N) +ECX (NI vECY(N) ¢sECXY(N) o
1 XORD(1)1«YORD(I)«XORD(J} ¢ YORD(J) ¢ XORD(K) s YORD (K} sEsPRe 1)

YLOAD (1 )=FUNCTI(ETX1ETY s EWX (NI +EWY (N) s ECX{NI'ECYI{N) +ECXY{N) s
1 XORD(1)sYORD(I)IsXORD(J) sYORD(J) + XORD(K) ¢« YORDIK) vEaPRe 1)

XLOAD( J)=FUNCT2(ETXsETY+EWXIN) s EWY (N) +ECXINIsECY (M) +ECXY (N} »
1 XORD(I3sYORD(I)+0e 906+ XORDIK)s YORD(K)+sEsPR2)

YLOAD( J) =FUNCTI(ETXIETY+EWXIN) +EWYIN) sECX(N) vECYIN) ¢ ECXY (N) »
1 XORD(1)eYORD(1340490,+X0ORDIK)+YORD(K)+E«PRs2)

XLOAD (K ) =FUNCT 2 (ETXsETY EWX(NIsEWY (N) sECXINI'ECYIN) sECXY (N) »

1 XORD(I)+YORD(I) s XORD(J)YIYORD(JI 10090 41E+PR*+3)
YLOAD (K)=FUNCTI(ETX ETY+EWUXINI1EWY (N) +ECX{N) +ECYIN) sECXY (NI »
1 XORD(1)YsYORD(1)31+XORD(J) +YORD(JI10e10e2E+PR13)

SURF =SURF +SUR

180 CONTINUE

c TUBE UNDER INTERNAL PRESSURE

FORCE=10,4%PRESS -
DATA(NOVI(NIsN=1+6)/251+259+267+275+283+284/
DO 120 .N=7.21

120 NOVI(N)=N+286
DATA(NOVI (N} eN= 22-37)/2850286027602681260!252 12464 1+236+228122021 14
1210¢1994+41984185+184/
DO 121 N=38.+48

121 NOVI(N)=206-N
DATACNOVI(N)N=49:6031/182+1831196+¢1971208+20992191227+2351243
1251 259/
XCEN=3¢3465~1.935%C0S(0+39270)
YCEN=1+935%SIN(0,39270)
RA=0,6025

) DO 130 N=1,.NBNP

I=NOVI(N)
J=NOVI (N+1) . )
K=NOVI (N+2) -
XA=XORD (] }-XORD(J)
YA=YORD( 1)-YORD(J)
XYA=SQRT ( XAX¥2+YAX*2 )
XB=XORD (J)=-XORD{K)
YB=YORD(J)-YORD{K)
XYB=SQRT (XB*#2+YB%*%2)

130 FANOD(N+1)=(XYA+XYB) /2.

' FANOD(1)=FANOD({NBNP+1)

DO 140 N=1+NBNP
ASIGN=14



140

141

170

175

177
178

BSIGN=1.

CSIGN=1e

I1=NOVI(N)

IF(XORD(1)eLTeXCEN)ASIGN=—1
DSA=(XORD(1)=XCEN)*ASIGN
ALFA(N)=ASIN(DSA/RA)

IF (XORD( 1)eLTeXCEN) BSIGN==1,

IF (YORD{1)+LT«YCEN) CSIGN=-1.
AXLOAD=FORCE¥S IN{ ALFA(N) ) *BS I GN*FANOD (N)
AYLOAD=FORCE*COS(ALFA(N) )#CSIGN*FANOD (N}
XLOAD( 1) =XLOAD( 1) +AXLOAD :
YLOAD (1) =YLOAD(I)+AYLOAD

CONTINUE

WRITE(6¢25) (XLOAD(I)s 1=1+NUMNP)
WRITE(6+25) (YLOAD(I)s =1 +NUMNP)

CONT INUE

INITIALIZATION

NCYCLE=0

NUMPT=NCP IN

NUMOPT=NOPIN

DO 175 L=1+NUMNP

DO 170 M=1.+9

SXX(L+M)=0,.,0

SYX(L+M)=040

SXY(L+M)=0.0

SYY(L+M)=0.0

NP (L eM)=0

NP (L +10)=0

NP(Ls1)=L

FORMATION OF STIFFNESS ARRAY

DO 200 N=1+¢NUMEL

IF(TAEL(N)«LE+9004) GO TO 177
E=EQ00(JO)~( (ESQ0 (JO)~-E1200(J0) ) ¥ ( TAEL (N} ~900.) )/300,
GO TO 178

E=EQ00(JO)

CZ=E

I=NPI(N)

J=NPJ(N)

K=NPK(N)

AJ=XORD (J)=XORD( 1) ) .

AK =XORD (K ) ~XORD( 1 ) \

BJ=YORD(J)=YORD( 1} -

BK=YORD(K)-YORD (]}

SUR= ( AJXBK-BJ%AK) /2

COC(N)=({ SUR%¥NUMEL ) /SURF
COMM=0¢25%#E% (1 ¢~PR)/((1e+PR)* (1 ¢=2,%FPR)#*SUR)
A(1¢1)=BU-BK

A(142)=040 )
A(1+3)=BK : —
A(1+4)=0,0

Al145)==BJ

Al1+6)=0,0

Al24+1)=0,0

Al242)=AK=AJ

A(2+3)=0,0 .
A(244)==AK : T
A(2+45)=0.0

A(246)=AU

A(3s1)=AK-AJ . : -

(A

-d

¢
ol

(04



182

183

184

185

190
195

196

200

205

206

A(3.2)=BJU-BK

A{3:3)=—-AK

A(3+4)=BK

A(3+45)=AJ

A(3+6)=-BJ

B(1l+«1)=COMM
B(1+2)=COMMXPR/ (1 +~PR)
B(143)=0.0

B{2+1)=B({142)

B(2+2)=COMM

B(2+3)=040

B(3+1)=0,0

B(3+s2)=0
B(3+¢3)=COMM¥ ({1 4=24%¥PR)/(2%(1«=PR))
DO 182 J=146

DO 182 I=143

S(I+J)=040

DO 182 K=14+3
S{IeJ)=S{I«J)4+B(] K)%A(Ks D)
DO 183 J=1.6

DO 183 I=1+3

B(Je1)=S(1+J)

DO 184 J=1+6

DO 184 =146

S(I1+J)=0,0

DO 184 K=1.3
S(IeUI=S{IeNHB(I KI)HFA(K )

LM{1)=NPI (N)

LM(2)=NPJ(N)

LM(3)=NPKI(N)

DO 200 L=1.3

DO 200 M=1+3

LX=LM(L)

MX =0

MX=MX+1 N .
IF(NPLXsMX)=LM{M)) 19041954190
IF(NPILX«MX)) 18541954185

NP (LXsMX) =LLM(M)

IF (MX=~10) 196+702+702
SXXILXeMX)=SXX{LX«sMX)+5(2%]_~ 1-2*Mql)
SXY(LX s MX)=SXY{(LX+MX)+S (2% ~1+2¥M)
SYX(LXaMX)=SYXILX«MX)+S (2% L 12%M~-1)
SYY(LXsMX)=SYY(LXsMX)+S(2F# ] +2¥%M)
COUNT OF ADJACENT NODAL. POINTS

DO 206 M=1NUMNP

MX =1

MX=MX+1

IF (NP(MysMX)) 206+4206+205
NAP (M) =MX~-1

INVERSION OF NODAL POINT STIFFNESS

DO 210 M=1+NUMNP
COMM=SXX(Ms1)%#SYY(Ms1)=SXY(Me1Y%SYX(Me1)
TEMP=SYY (M4 1) /COMM P
SYY(Ma1)=SXX(Ms1),/COMM" !
SXX(Ma1)=TEMP
SXY{Me1)==SXY{Ms1)/COMM
SYX(Me1)==SYX(Me1)/COMM

.
.
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aOoo0n

220
225
230
235

240

243
244

275

280
281

297

285
290

300

305
310
315
320

400

148,

MODIFICATION OF BOUNDARY FLEXIBILITIES

DO 240 L=1NUMBC

M=NPB (L}

NP (M+1)=0

IFI(NFIX(L)—~112254220+215
C=(SXX(Me1)%SLOPE(L)~SXY (M 1))/ ISYX(Me 1) ¥SLOPE(LI~-SYY (M 1))
R=1e0-C*#SLOPE (L.}
SXX(Me1)=(SXX(Ms])-CxSYX(Me1}))/R
SXY(Me1)=(SXY(Ms1)-C#S5YY(Ms1))/R
SYX(Me1)=8XX(Ms1)%SLOPE (L)
SYY(Me1)=SXY(Ms1)%#SLOPE (L)

GO TO 240
SYY(Me13=SYY{M11)=5YX(Mes1)%SXY(Me1)/SXX (M1
GO TO 230

SYY{Ms1)=0.0

SXX{(Me1)=04,0

SXY{M+1)=0.0

SYX(Me1)=0,0

CONTINUE

ITERATION ON NODAL POINT DISPLACEMENTS

WRITE(6.:21)

5UM= 0] [y (0]

SUMD—-O.

DO 290 M=1 +NUMNP

NUM=NAP (M}

IF (SXX(Me13+SYY(Mel)) 275:2904275
FRX=XLOAD (M)

FRY=YLQCAD (M)

DO 280 L=2.NUM

N=NP{MsL)
FRX=FRX=-SXX (ML) ¥DSX(NI=-SXY (M+LI)*DSY(N)
FRY=FRY=SYX(Ms_)%#DSX(M)-SYY (ML) *DSY(N)
DX=5XX(Ms 1) %#FRX+SXY (M1 ) ¥FRY-DSX(M)
DY=5SYX{M+ 1) ¥FRX+SYY (M 1) ¥FRY~-DSY (M)
DSX (M) =DSX(M)+XFAC*DX
DSY(M)=DSY(M)+XFAC*DY
SUMD=SUMD+ABS(DSX (M) )+ABS(DSY (M))
IF(NP(M+«1))285+290¢285
SUM=SUM+ABS (DX) +ABS(DY)

CONTINUE

SUM=SUM/SUMD

CYCLE COUNT AND PRINT CHECK

NCYCLE=NCYCLE +1

IF (NCYCLE-NUMPT) 30543004300 a
NUMP T=NUMPT+NCP IN

WRITE(6+22) NCYCLE +SUMSUMD

IF (SUM—TOLER) 4004400+310

IF (NCYCM=NCYCLE)400+400+315

IF (NCYCLE-NUMOPT) 2443204320

NUMOPT=NUMOPT+NOPIN

PRINT OF DISPLACEMENTS AND STRESSES -

CONTINUE

[RONSEP



]

CZ=1330000.
P=0.0

DO 390 I=1+NUMEL
IF(ETX«EQe0.0) GO TO 388
TADA=TAEL (1)-500,
AZTO=AZA+ARC*TADA
TADB=TAEL (1)~20,
ETZ=AZTO*TADB
388 CONTINUE
P=P+(ETZ+EWZ(I)+ECZ (1)) *CZ%¥COC(1)
390 CONTINUE
672 IF(JO«GTel) GO TO 676
WRITE(6.673)P0S
673 FORMAT (1HO«18H CHANNEL POSITION +FS5el1¢3H CM)
676 WRITE(6+679) JO1DOSE )
679 FORMAT(17HO INTERVAL NUMBERsI3s18H EQUIVALENT DOSEsF8e1)
NCASE=NWRITE/2
GO TO (680:682+1684) NCASE
680 WRITE(6.681)
681 FORMAT(2(67H ELEM NODE NO TEMP X—r Y=:¢ MAX—+¢ MIN—~¢ Z—+ AND XY-s S
1 TRESSES ANGLE))
GO To 685
682 WRITE(6+:683)
683 FORMAT(4(33H ELEM PRINCIPAL STRESSES 1+42+3s ))
GO TO 685
684 CONTINUE
685 CONTINUE
Kl=1
K2=2
K3=3
Ka=4
DO 420 N=14NUMEL
IF(TAEL(N)+LE+900s,) GO TO 402
E=EQOO(JO)—((E900(JO)—E1200({O))*(TAEL(N)-900.))/300.
. GO TO 403 ’
402 E=E900(J0O)
403 CZ=E
NUME (N) =N
IF(ETXeEQe0+0) GO TO 690
" TADA=TAEL (N)-500,
ARTO=ARA+ARB*T ADA
AZTO=AZA+ARC*TADA
TADB=TAEL (N)~20,
ETX=ARTO*#TADB
ETZ=AZTO*TADB
690 CONTINUE'
[=NPI(N)
J=NPJ(N) .
K=NPK (N) : —
AJ=XORD(J)-XORD(1)
AK =XORD(K)=-XORD( 1)
BJ=YORD(J)—YORD( 1)
BK=YORD(K)=YORD(1)
EPX=FUNCT4(YORD(I) s YORD(J) s YORD(K) sDSX (1) +DSX{JI1DSX(K) s+ 1)
EPY=FUNCTA&(XORD (] )+ XORD{J) +XORDIK) «DSY (1) +DSY(J)DEY(K)+2)
GAM=FUNCTS(XORD (1) s XORD ¢ J) + XORD{I<) s YORD( 1) + YORD (J) s YORD (K) +DSX( 1)
"1 DSXUI)DSY([)sDSX(U)sDSY () sDSXIK) +DSY (K
X=FUNCTE(EPXsEPY ETXETYSEWXINIaEWY (NI 1ECXIN) ¢ECY (N} +ECXY (N} +E PR
1 - XORD(1)+XORD(J)+XORD(K) sYORD(1)+YORD(J) s YORD(K )+ 1)

! .
* .



Y=zFUNCTGIEPXERY+ETXSETY 1 EWXIN) sEWY (NI sECXIN) *ECY (N) +ECXY(N) sE+ PR
1 XORD(I)+XORD(J) e« XORD(K) *YORD( )+ YORD(J) + YORD(K)*+2)
XY =FUNCT7(GAMIECXY(N) ¢«EsPRyXORD (1) +XORD(J) «XORD (K) + YORD (1)« YORD (J)

"1+ YORD (K) )

SIGXXIN)Y=X
SIGYY(N)=Y

T SIGXY(N)=XY

405
410

412
414

415

416

417

420
4
S

430

440

C=(X+Y)/2.0
R=SART({ (Y=-X)/2+.0)##24+XY%%#2)

XMAX=C+R

XMIN=C~R
PA=0¢5%57e29578%ATAN (2 ¥ XY/ (Y~-X))

IF (24 %X—XMAX~XMIN) 405+414+414

IF (PA)Y 41044144412

PA=PA+90,0
GO TO 414

PA=PA-90,0
CONTINUE

S1GZZ(N) =P*COC{N) /NUMEL~(ETZ+EWZ(N)+ECZ(N))*#CZ*COC(N)
1+PR®¥(SIGXXINI+SIGYY(N))

IF(N.NE+K1) GO TO 415

XMAXA=XMAX

XMINA=XMIN

PAA=PA

K1=K]1+NWRITE

IFI{NsNE«K2) GO TO 416

XMAXB=XMAX

XMINB=XMIN

PAB=PA

K2=K2+NWRITE

IFINWRITE«EQs4) GO TO 416 :

WRITE(S6s4) NUME(N~1)aNPI(N~1)sNPJIN=1) « NPKIN=1) s TAEL(N~1)s
1SIGXXIN~=1) ¢SIGYY(N~1) s XMAXA+XMINA¢SIGZZ(N=-1)sSIGXY(N~1) «PAA~
2NUME (N) «NPT (N) sNPJIN) sNPK (N s TAEL (N) ¢ SIGXX(N) 1 SIGYY(N) ¢+ XMAXB ¢
3XMINBsSIGZZIN) «SIGXYIN) +PAB

GO TO 420

CONTINUE

IF(NeNE«K3) GO TO 417
~ XMAXC=XMAX

XMINC=XMIN

PAC=PA

K3=K3+NWRITE

IF(NeNEeK4)Y GO TO 420

XMAXD=XMAX

XMIND=XMIN

PAD=PA

WRITE(6+5) NUME(N=3) + XMAXAsXMINA+SIGZZ(N-3) +PAAYNUME (N~2) ¢« XMAXB ¢
1XMINB*SIGZZ(N=-2) s PAB yNUME (N—=1) ¢ XMAXC ¢ XMINC+SIGZZ(N-1)sPAC»
2NUME (N s XMAXD ¢ XMIND s SIGZZ (N) +PAD —

Ka4=K4+NWRITE

CONTINUE

FORMAT(2(14+313+6F7«112F640))

FORMAT(4(1544F7e1))

IF (SUM=TOLER) 4404+440,+430
IF (NCYCM=NCYCLE) 440+4404243

CONT INVE



00

O0nN

701_
702

470

695

103

100

696

700

2

3
11
12
13
14
15
16
17
18
20
21
22
23
24
25
26

a7
28

CONT INUE

151,
PRINT OF ERRORS IN INPUT DATA

WRITE(6+28)

WRITE(6+29)
IF(ETXeEQe0es0) GO TO 695
DU 470 1=1+NUMEL

STXR(I)=SIGXX(1I)

STYR(I)=SIGYY(])

STXYR{T)=SIGXY (1)

STZR(1)=51GZZ (1) .
CONTINUE

IF(JOsNENOW(JO))Y GO TO 695

ETX=0.0

ETZ= Orn 0

GO TO 62

CONTINUE

CALL START(2)

READ(54+103) (HEADX(I)el=116)

FORMAT (6A6)

READ(54+103) (HEADY(1)aI=1.6)

READ(S4+103) (TITLE(I)«I=146) :

READ(S+100) (XLIM(I)sI=142)¢(YLIM(I)oaI=142)
FORMAT (4F 1042)

CALL CPLOT (XLIMsYLIMs2+0+HEADX+HEADYsTITLE129215) .
NPTS=3

DO 696 1=1.3

I1=NPIC(I)

JJI=NPJ( 1)

KK=NPK (1)

XGEN=( XORD( 11)+XORD ( JJ) +XORD (KK} ) /34
YCEN=(YORD( 11)+YORD( JJ)+YORD(KK)) /3.,

RCEN( [ ) =SQRT (XCEN#%24+ (34 12-YCEN) %%2)

TAE(I)=TAEL (1) -
CALL CPLOT (RCENsTAEsNPTS+1 +HEADX+HEADY +TITLE+2+2+2)
CALL ENPLOT

FORMAT STATEMENTS

FORMAT(1215)
FORMAT(IS+2F 158415+ 2F158)

FORMAT (29HONUMBER OF EILLEMENTS =s14/)

FORMAT (29H NUMBER OF NODAL POINTS =e14/)

FORMAT (29H NUMBER OF BOUNDARY POINTS =+14/)

FORMAT (29H CYCLE PRINT INTERVAL =el4/)

FORMAT (29H OUTPUT INTERVAL OF RESULTS =+14/)

FORMAT(29H CYCLE LIMIT =e14/)

FORMAT (29H TOLERANCE LIMIT ; =3E12e¢4/)

FORMAT (29H OVER RELAXATION FACTOR =1F6e3) ——
FORMAT (20H BOUNDARY CONDITIONS)

FORMAT ( 34HO CYCLE FORCE UNBALANCE)

FORMAT(11142E20.6)

FORMAT (42HONODAL POINT X-~-DISPLACEMENT Y-DISPLACEMENT)

FORMAT(3(111+2515.8))

FORMAT(15F9.2)

FORMAT(120H1 ELEMENT X=STRESS Y-STRESS
XY-S5TRESS MAX-STRESS *© MIN-STRESS DIRECTION)

FORMAT(1110+6F20,8)

FORMAT (32HOZERO OR NEGATIVE AREAs ElL e NOe=114)

Lo e



29
31

32
33

50

51

52

FORMAT (33HOOVER 8 NePe ADJACENT TO N.Ps NO.114)
FORMAT(4E 16.9)

FORMAT(110+3F10.2)

FORMAT(2F 15.8) . )
STOR

NG

SUBROUT INE MESHR

DOUBLE PRECISION ALSTEP

DIMENSION RI(20)+X(300+2) NOD(50043)

COMMON NPI(S00) «NPJ(S500) +NPK(S00) « XORD(300) « YORD(S00)« TIEL(500)
1+ TAEL(B00) s EWX(500)yEWZ(S500) + JOYQC +QG yNUMEL 'NUNMNP 1 TOS+ DOSE'NUSIZE
2+ NURAE s NUSEC +NUELE

IF(NUSIZE+GTel) GO TO S0

INPUT DATA LARGE MESH S1ZE (108 EL15+76 NODES—-HALF TUBE)
DATA(RI(I)tI:l14)/202202-52'2082!3012/

NUSEC=10

NURAS=1

NURAE=4

NUJUMP =36

NUNEXT=6

NELEM=108

NPOIN=76

GO TO 52

CONTINUE

INPUT DATA SMALL MESH SIZE (432 EL=SS+259 NODES-HALF TUBE)
DO 51 1=2+7
RICII=RI(I-1)14015
CONT INUE
NUSEC=19 -
NURAS=1 .

NURAE=7

NUJUMP=126

NUNEXT=12

NELEM=432

NPOIN=259

CONT INUE

CALCULATION

ADITIONAL INPUT DATA

NUSEGM=2% (NUSEC-1)

TOSEGM=FLOAT (NUSEGM)

NUELE=NURAE -1

CALCULATION OF COORDINATES X AND Y FOR ONE QARTER
ANGLE STEP

ALSTEP=31415926.53589793/ (TOSEGM* 1 0¥**7) .
ALPHE=0.0 —
DO 54 1B=NURAS NURAE

K=18

DO 53 1A=1+NUSEC

X(K11)=RI(IB)*¥SIN(ALPHE)
N(Ke2)=3412~RI1(IB)IXCOS(ALPHE)

K=K+NURAE ’

ALPHE=ALPHE+ALSTEP

53 CONTINUE

ALPHE=0,0

54 CONTINUE

1



55

56

60
61

72

74

153.

X AND Y COORDINATES IN SECOND QARTER
DO 56 ID=NURAS sNURAE
K= 1D+NUJUMP
DO 55 IC=1.NUSEC
X(Ks1)=R1(ID)*COS ( ALPHE)
X(K+2)=3:124R1 (ID)*SIN(ALPHE)
K=K+NURAE

ALPHE=ALPHE+AL STEP
COMNTINUE

ALPHE=04,0 .
CONTINUE

CALCULATION OF NODE NO'S FOR ONE HALF OF TUBE
K=0
DO 61 IE=14+NUSEGM
NEW] =NUNEXT*(IE~1)
NEW2=NEW] +NUELE
DO 60 I1G=14+NUELE
NOD( IG+NEW1 ¢ 1 ) = 1G4+K
NOD( IG+NEW1 +2) = I G+K+NURAS
NOD( IG+NEW1 ¢ 3) = | G+K+ NURAE
NOD( 1G+NEW2+ 1 ) = I G+K+NURAE
NOD( IG+NEW24+2) = 1 G+K+NURAS
NOD( 1G+NEW2+ 3) = ] G+K+NURAS+NURAE
K=K+NURAE
WRITING AND PUNCHING OF RESULTS
FORMAT(3(18+315))
FORMAT(IS5+2F 15484 15¢2F 158)
CONT INUE
DO 72 1=1NUMNP

XORD(1)=X(14s1)
YORD(I)=X(14+2)
DO 74 J=1+NUMEL
NPI(J)=NOD(Js1)

NPK ( J)=NOD(J+2)

NPJ(J)=NOD(J+3)

RE TURN

END

SUBROUTINE TEMPR

DIMENSION CDD(50)+QCC(50)+QGG(S0)+XB(20)+TCB(20)+TCD(20)«TCE(20) s
1TCF(20)DEB(20) +DEC{(20)+DED(20) sDSQA(20)+DSAB(20) +DCUAI20)
2DA(50)+DD(S0) sDCISC) e TCA(20) s TCI19) s XA(19)sR(20)sTA(20)+T1(20)
3+TINOD(150) « TANOD(1SC) s TINODE (3) s TANODE (3)

COMMON NPI(S500) +NPJ(S500) «NPK(S00) « XORD(300) +YORD(S00 )« TIEL(S00)
12 TAEL (S500)+EWX(S00) +EWZ(500) ¢ JO+QC +QG s NUMEL «NUMNP ¢« TOS+ DOSEYNUSIZE
2+ NURAE + NUSE.C « NUELE

COMMON C113C12¢C134C14+C153C169C17sCl18sC19¢C209C214C224C23+C244C25
14C26+C27+C284C294C304C311C324C334C349C354C364C37+C38:1C39:¢C401C41
23Ca424CA434CA4+yCUB4CUECLTICA4BICE94C501CE511CH52+1C524CHEC551C56+C57

DATA (RUI)eI=197)/2e224203792e¢5242e6712e¢82+2e97¢3e12/

J=J0O

TI(7)=TOS

IF(JeGTel) GO TO 161
DO 160 K=1+6

I=7-K

XACI)=(TI(I4+1)4+43,)71000s

TCUI)=(CI3*XA(1)+C12)y#XA(1)+C1]



160
161

211
214

216 TCA(II=TCF(I)+(TCE(1)-TCF (1) )*CDD(J)

15k,

TI(I)=TII+1)+0,159155% (QC+QGH (R T)#¥*¥2-R(1)*¥¥2)%*3,14159)

PTHALOGIR(I4+1)1/R I ) /TC I 404 25%QGH (RUT+1)#%2-R{1)*%2
L 2=2 e HRUT)XH2FALOGIR I+1Y/RUTNNIN/TC(I)

CONTINUE
CONTINUE

CDOD(J)=1e—=(DOSE-100004)720000.
QCC () =0C—-0.5%QC*DOSE/40000.
0GG( J)=0G-0.5*QG*¥DOSE/40000.

TA(7)=TOS
DO 250 K=146
1=7-K

IF(TOS+LT«820s) GO TO 211
XB(I)=(TA(I+1)+34)71000.
GO TO 214

XBlI)=(TAC(I+1)+4,4)71000,

TCBUI)=(CI13#¥XB( ) +C12)¥XB(I1)+C11
TCO(I)=(C19#XB(1)+C18)¥XB(I1)+C17
TCELI)=(C22¥XB(1)+C21)*¥XB(1)+C20
TCF(I11=(C25%XB( 1) +C24)#XB(1)+C23

DEBLI)=TCD(I)-TCB(1)
DEC(IY=TCE(1)=TCDI(I)

DED(I)=TCF(I1)}-TCE(I)
DSQA( 1)=DEC(I1)Y-DEB( 1)
DSQBI1)Y=DED(1)=DEC(1)

DCUA(1)=DSQB(1)-DSQAI(1)

IF(DOSE«GT«5000s) GO TO 215

DA(J)=DOSE/5000.
DD(JI=DA(J)H¥(DA(I)~1c)/ 2

DC(II=DALII®(DA(I)=1 ) ¥(DA(J)—2)/6%

TCA(I)=TCBI1)+DA( Y ¥DEB( 1)+DD(J)¥DSQA( 1)+DC(J)¥DCUA(])

GO TO 217

IF(DOSE«GT«10000e) GO TO 216

DA(J)=(DOSE~S5000,)75000.
DD(JU)Y=DA(IN X (DA(JII~1e) /20

DCCIN=DA(N #(DA(II+]1 )X (DALI)—1e) /66

TCAC1)=TCD(1)+DA(J) ¥DEC( 1) +DD(J)#DSQA( 1) +DC(J)*¥DCUALT)

GO TO 217

217 TA(I)I=TA([+1)404159155%¥(QCCLII+QGGIN ¥ (R ) *¥2-R( 1) #¥#2)%¥3414159)
1#¥ALOGIR(UI+1N/RITI))I/ZTCALTI40.25%QGG LN # (RIT+1)¥#2~-R(])#¥2

22 #¥RIT)#%¥2¥ALOGIRIT+1)/R(I)))I/TCACL)

250 CONTINUE

260

261

262

=0

DO 260 1=1s+NURAE
TINOD(I)=TI(I+L)
TANOD(I)=TAC(I+L)
IF(NUSIZE«GTel) GO TO 260
L=bL+1 :
CONTINUE

NUSEGM=2% (NUSEC-1)
K=NURAE

DO 262 J=1sNUSEGM

DO 261 I=1+NURAE
TINOD(I4+K)=TINOD( )
TANOD(1+K)=TANODI( 1)
K=K+NURAE

CONTINUE

DO 265 N=1«NUMEL
JJ=NPI (N)

~r—



265

155,

KK=NPK({N)

LL=NPJ(N)

TIELI(N)=(TINOD(JJ)+TINOD(KK)+TINOD(LL) )/ /3
TAELI(N)=(TANOD(JJ)+TANOD (KK )Y+TANODI(LL) ) /3e

CONTINUE

RETURN

END

SUBROUTINE WIGN
COMMON NP1 (S500)sNPJ(500) 1NPK(500) + XORD(300) + YORD(S00) s TIEL (500)

1 TAEL(S00) s EWX(S00) +EWZ(500) + JO+QC QG *NUMEL sNUMNP + TOS+ DOSE+NUSI ZE
2+ NURAE « NUSEC «NUEL E ,

COMMON C114C1l24C133C14+ClSaCl63C1ITsCI1B1C19+C201C21+C220C23+C244C25
11C264C27+C284C29+4C304C311C324C33+C34+C35¢C361C3T+C384C39¢C404C4 1Y
21C42+sCA3+C441Ca54CA464CATIC4B1CH49¢CS01C51+C521C531C544C55+1C56+C57

MULE=0

XE=DOSE/10000.

EWRA=( (C29*¥XE+C2B)*XE+C27 ) *¥XE+C26

EWRD=( (C33#XE+C32)*XE+C31)*XE+C30

EWRB=EWRA+ ({EWRD~EWRA)%*100+,/300

EWRC=EWRA+(EWRD-EWRA)%200.,/300.

EWRE=( (C37#*#XE+C36) ¥ XE+C35)#XE+C34

EWRF={ (C41#XE+C40)*XE+CIQ)I#XE+C38

EWZA= ( (C4S%HXE+C44) ¥ XE+CA43)#XE+CA2

EWZD=((C49%¥XE+CA8)*XE+CATI*XE+C46

EWZB=EWZA+(EWZD~EWZA)#100,4/300.

EWZC=EWZA+(EWZD~EWZA)*2004+/300.

EWZE=( (CS3%*¥XE+CS2 ) ¥ XE+CS1 ) *¥XE+CS0

EWZF=(({CS7*¥XE+C56 ) #XE+CSS) ¥ XE+CS4

DIFFERENCE TABLE

OOTR=EWRB-EWRA

ONER=00TR

TWOR=00TR N

THRR=EWRE-EWRD

FOUR=EWRF-EWRE

OOTZ=EWRB-EWZA

" ONEZ=00TZ

TWOZ=00TZ ’ \

THRZ=EWZE~EWZD

FOUZ=EWZF~EWZE

SQNOTR=0,

SQONER=0,

SQTWOR=THRR-TWOR

SQTHRR=FOUR-THRR

SQNOTZ=04 _
SQONEZ=04 . —
SQTWOZ=THRZ-TWOZ
SQTHRZ=FOUZ~-THRZ

CUNOTR=0.

CUONER=SQTWOR
CUTWOR=SQTHRR~SQTWOR
CUNOTZ=0,

CUONEZ=SQTWOZ
CUTWOZ=SQTHRZ~-SQTWOZ

DO 350 I=1 +NUMEL
IF(TAEL(1)eGT«600,.) GO TO 310



310

312

313

314

319

350

156.
EWX(1)=EWRA
EWZ(1)=EWZA
GO TO 319

IF(MULE+GTe1) GO TO 312

LINEAR INTERPOLATION
EWX(1)=EWRA+(EWRD~EWRA# (TAEL(1)-600.)/300,
EWZ( 1 Y=EWZA+(EWZD-EWZA)#*(TAEL(1)~600.)7300.
GO TO 319

INTERPOLATION WITH NEWTCN FORWARD DIFFERENCES
IF{TAEL(1)eGT«900.) GO TO 313
SA=(TAEL(1)-800e)/100+

SB=SA¥(SA—-1e¢)/2,

SC=SA*#(SA—1e)¥#(SA=2¢)/6e

EWX( I )=EWRC+SA*TWOR+SB*SQTWOR+SC*CUTWOR
EWZ(1)=EWZC+SA*#TWOZ+SB#SQTWOZ+SC*CUTWOZ
GO TO 319

INTERPOLATION WITH NEWTON BACKWARD DIFFERENCES
IF(TAEL(1)eGT«1000s) GO TO 314
SA=(TAEL(1)-1000,)7100.
SB=SA*¥(SA+1e)/2e¢
SC=SA%*¥{SA+]1e)¥{SA+2e) /60
EWX({1)=EWRE+SA#THRR+SB*SQTWOR+SC#CUONER
EWZ{ 1 )=EWZE+SA*THRZ4+SB*SQTWOZ+SC#CUONEZ
GO To 2319
SA=(TAEL(1)~1100,3)7100.
SB=SAX{(SA+1e)72
SC=SA*¥(SA+1+)#(SA+2e)/60
EWX(])=EWRF+SA*¥FOUR+SB*SQTHRR+SC*CUTWOR
EWZ(1)=EWZF+SA*XFOUZ+SB*SQTHRZ+SC*CcUTWOZ
CONTINUE

TEWX(I)=EWX(1)/100,

EWZ(I)=EWZ(1)/100,
CONTINUE

RETURN

END
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MEMO404+J12+CM40000.TS00) ' JEZERNIK ¢ STAG o« DIRECT
11000 ] 1554) : .

PROGRAM STAG (INPUTQUTPUTs TAPES=INPUTs TARPEG6=0UTPUT s TAPE2+ TAPE4 )
DIMENSION STX(S00)1STY(S05)+STZ(S00) +STAY(S00)11ST1(S500) «ST2(500) »
1ST3(500) +ECX(S00)+ECY(S500)+ECZ(500) +ECXY(500) 1COC(S00) s XE(3+2)
2+STXR(500)+STYR(S00)«STZR(500) +STXYR(500)
3+ECXP(S00)+ECYR(500) sECZP(500) sECXYRP(500)
41PAA(S00) +NOW(50)

COMMON C(606)9DBA(3-6)!DB‘?!&)'A(6'6)0B(3'6)-NSTART(BO)!NEND(30)+
INFIRST(30) +NLAST(30) +NF(90)+NB(OO+2)+BV(90+2)+X(300+2) +NOD(S00+3) s
25T (40480)+sU(600+1 ) UF(E00+1)s TIEL(500) s TAEL(SC0)+EWX(500) +EWZ(500)
31J0+QCYQGYNELEM TOS yDOSE s NUS I ZE + NURAE + NUSEC +1NUELE

COMMON C114+C1l24C13+C149C15+C16+C1l79C181C191C20+C211C22+C23¢C241+C25
19C264C271C281C29+C30e¢C313C32+1C331C341C35+4C36+C37+C38+1C39+C40+C4a1
2vCA429CA43+Ca44sCA4SyCA461CA4T+C4BsCa49¢CE5CICS1¢CE21CS3¢CH43C55+C56+CS57
READ(5+31) ARAYAZA+ARBYARC
QG=2'0 i
NUSIZEe1
NWRITE=2
FORMAT(2(14+31316F7e¢142F640))

FORMAT(4( 1S544F 741 )

FORMAT(715)

FORMAT (8F844)

FORMAT(314:2E1648)

FORMAT(2F 1564 )

FORMAT(4E16e9)

FORMAT(IOF138)

FORMAT (2015)

FORMAT(11043F1042)

FORMAT(S(14+2F1044))

FORMAT(2(1442F11.3+2E16¢8))

FORMAT(14+13F10.7)

FORMAT(41449F1142) ¢

FORMAT (15F92) .

DO 750 LA=1+1

READ(S+10) NPART «NPOINsNELEMsNBOUN s NCOLN s NFREE s NCONC
WRITE(6+10) NPART «NPOINsNELEMsNBOUN +NCOLN s NFREE s NCONC

" DO 42 1=1NBOUN

42

44

46

47

READ(5+12) NF(I)ONB(I'I)vNB(I'Z)’ V{iIse1)eBVI(Is2)
WRITE(G6+12)NFII)«NB(Is1)YsNB(I142)sBV(I41)eBVIIs2)
NPART1=NPART+1

DO 44 l=1+NPART!

READ(Se 10 INSTART(I)+NENDCI) +NFIRST(I)sNLAST(1)
WRITE(6+110) NSTART(I)+NEND(I)«NFIRST(I)sNLAST(1])
READ(5413) E«PR

WRITE(6+13) EWPR .
READ(5+¢36) CU .
READ(S!14)C111C120C130C149C159C16'C17!C18'Cl91C20!CZl9C22vC231C24!
1C25

READ‘5!14)C260C87'C28'C29'C30!C31!C329C33'C341C3J'C36!C37!C38'
1C391C400C41QCdeCQB'CQQ0C459C469C471C48i€49!CbO¢C51vC521C530
2CH4+CH51C56+C57

DO 46 JO=1+50 .
NOW(JO)=0.0 . ’ T
DO 47 JO=54304+5 R
NOW(J0)=JO .
CALL MESHR . DA



306

310
312

313

317

320
322

324

326

325

IDEM=0 -
DO 700 MOVE=1.8

READ(S+17) INC«POS+QC+TOS

DO 700 JO=1+40 .

ETX-“-I.

MA=INC*(JO~1)

DOSE=FLOAT(MA)

STEP=FLOAT(INC}

CALL TEMPR

IF{JO«LEe«1) GO TO 306

CALL WIGN

GO TO 312

CONTINUE

DO 310 I=1+NELEM

EWX(1)=0,0

EWZ(I1)=0.0

ECX(1)=0.0

ECY(1)=040

ECZ(1)=0,0

ECXY(I')=0.0

CONTINUE

CONTINUE

NPOIN2=NPOIN*2

DO 313 1=1«NPOIN2

U(ls1)=0,0

IF(JO=1) 322+:322:317

IF(ETXeEQeOe0)Y GO TO 322

DO 320 I=1+NELEM
CU=CV=FUNCTO(TAEL (1) +DOSE)

CW=4 ¢ #CU+2e XCV ,
EéX(I):FUNCT[(CUqCV‘STXR(I)vSTYR(I)oSTZR(I)oSTEP’l)
ECY(I)=FUNCT1(CUCVISTXR(I)I+sSTYR(1)+sSTZR(1)+STEP+2)
ECZ{I)=FUNCT1(CVsCcVeSTXR(I)+STYR(I)+STZR(1)+STEP+3)
ECXY(I)=FUNCTI{CW40 4 +sSTXYR(1)4D 4106 +5TEP14)
CONTINUE’

CONT INUE .
SURF=0.0

DO .330 N=1.NELEM

IF(ETXeEQeOs0) GO TO 326

TADA=TAEL (N)-500,

ARTO=ARA+ARB*TADA

TADB=TAEL (N)~20+

ETX=ARTO*TADB

CONTINUE

K=NOD(N«1)

L=NOD(N+2)

M=NOD (N.3)

DO 325 1=1+3

JJI=NOD (N 1)

XE(I«1)=X(JJs1)

XE(I«2)=XJJr12)

CONTINUE

Al=XE(3+1)-XE(2+1)

AJ=XE(2+1)-XE(1+1)

AK=XE(3+1)=XE(1+1})

BI=XE(2+2)-XE(3+2)

BJU=XE(2:2)=-XE(1+2)

BK=XE(3¢2)=-XE(1+2)

SUR= (AJ¥BK-BJ*AK ) /2

.
.i.s‘ J e

r.'q_



XLOAD( 1) =FUNCT2(ETXsETY +EWXIN) sEWY (N) sECXINY 1ECYIN) «SCXY(N) »
1 XORD(I}sYORD(I)+XORD{J) s YORD(J) «XCRDIKIyYORDIK)YEvPR1)
YLOAD (I ) =FUNCTI(ETXsETY+EWAIN) sEWY (M) +ECX (NI yECYIN) sECXY (N) o
1 XORD(I)sYORDU(1)«XORD(J) ¢sYORD(J) s XORD(K) + YORD(K) +EsPRs 1)
XLOAD(J) =FUNCT2(ETXIETY +EVUX(NY +EWY IN) s ECXIN) vECY(N) +ECXY (N)»
1 XORD(I)sYORD(1)906v0eeXOED(K) s YORDIK)vE+PR2Z2)
YLOAD (J) =FUNCT3(ETXsETY s CWXIN) +EWY (N) sECXIN) +ECYIN) «ECXY (N)»
1 XORD(I)+YORD(I)1041041XORDIK) 1 YORDIK)sEsPRs2)
XLOAD () =FUNCT2(ETX 'ETYsEWXIN) s EWYI(N) +ECXIN)sECYI(N) sECXY (N) s
1 XORD(I)sYORD(1)+XORD(J) +YORD(J)10649041E+PR+3)
YLOAD(K)=FUNCT3(ETX'ETY+EWX(N) +EWY (N) +ECX NI +ECYIN) sECXY IN) ¢
1 XORD(1)+YORD(1)+XORD(J) +YORD(UJ)40a4204+E+PR«3)
SURF =SURF +SUR
330 CONTINUE
WRITE(6+125) (U(l+1)+I=1+NPOIN2)
REWIND 4 . :
. IF(IDEMeGTel) GO TO 502
INTER = O
DO 405 1=1.40
DO 4085, U=1,40
405 ST(l+J)=0.
DC 500 I1=1+NPART
NST=NSTART(11)
NEN=NEND(11)
K=NFIRST(11)
L=NLASTI(I1)
MINUS=K~-1
DO 445 LK=NST«NEN
MM = LK = INTER
DO 410 1=1+3
JJ= NOD(LK1)
XE(Is1l) = X{JJe1)
410 XE(192)=X(JJUs2)
CALL FEM(XE+E+PReMMsLK)
DO 445 LL=1+3 .
DO 445 KK=1.3 .
IF (NOD (LK +KK) =K) 445¢432+432
432 1F (NOD(LKKK)=L) 4344+4344+445
434 M=NFREE¥ (NOD (LK KK)=-K)

N = NFREE®*(NOD(LKsLL) - K)
1 = NFREE*(KK - 1)
J = NFREE#(LL = 1) ?

IF(N) 44544364436

436 DO 440 NJ=1«NFREE

" DO 440 M1=1NFREE
MMI = M 4+ MI

NNJ = N + NJ
IMI = 1 + MI _
JNU = J + NJ -

440 ST(MMI «NNJ) =ST(MM] «NNJ)Y +C(IMI «INJ)
445 CONTINUE '
DO 460 I=1+NBOUN
M=NF(1) - K
MM = NF(T) ~ 1
IF(M) 46044474447 )
447 MI=NF(]1)-L . ’ *
v 1IF(M1) 4491449.460
449 DO 455 J=1NFREE
IF(NB(1+J)) 455¢451 1455 ..
! : .



451

455
460

462

464

466

468

MNMI=NFREE*M+J ’ .
STINMI+NMI)=STINM] +NMI )k e 1E+22

JNJ = NFREE¥MM + U

UCINJTY=STINMT «nMIY#BV T 2 J)

CONTINUE

CONT INUE

INTER = NEN

M=NFREE* ( INFIRST(II+1)~1)1—-(NFIRST(II)=1))
WRITE(A4IMs (ST (s J)sJ=1vM)eI=1eM)
IF(NPART=11) 462,500+462

MM=M<+1

NN=NFREE# ( (NFIRST(I1+2)-1)=(NFIRST(I1)-1))
N=NN~MM-+1

WRITE(AIMaNW ((ST(I+J)sIJ=MM«NN) s I=1eM)
LR=NFREE#(L=(NFIRST(II)=1))

LRMM={_ R~MM+ 1

LRMM | ={ RMM+1

JXR=MM

JIR=1

JXC=MM

JIC=1

ST(IIRJIICI=ST(IXR 1+ IXC)

JXC=JIXC+1

JIC=JIC+1

IF(JUXC—LR) 466+4664+468

JXR=JIXR+1

CJIR=JIR+]

472

475

480
500

s02

IF(JXR~LR)} 464+464+472
CONTINUE

DO 475 I=1+LRMM
DO. 475 J=LRMM1 440
ST(I+J)=040

DO 480 I=LRMM1 .40
DO 480 J=1+40.
ST(l1+J)=0.0
CONTINUE

I1DEM=2

CONTINUE

REWIND 2

. REWIND 4

607

610

CALL SOLVE(NPART « NCOLN«NFREE +« NBOUN)
DO 615 N=1sNELEM

IF(ETX+EQeO0a0)Y GO TO 607
TADA=TAEL(N)=500,
ARTO=ARA+ARB*TADA

TADB=TAEL (N)-20.

ETX=ARTO*TADB

CONTINUE

K=NOD (N«1) : N
L=NOD(N+2)

M=NOD (N« 3)

DO 610 1=1+3

JJI=NOD (N I

XEC(I«1)=X(JJs1)

XE(1+2)=X(JJe2)

CONTINUE

Al=XE(3+41)-XE(Z2+1)
AJ=XE(2+1)~-XE(]1+1)
AK=XE(3¢1)=XE(]+1)

ey



.623

625

628

630

631
63z

633
634

635

161,

BI=XE(2+2)~XE(3+2)
BJ=XE(2:2)~XE(]+2)
BK=XE(3+2)=-XE(}]+2)

SUR=z= (AJXBK=-BJH#AK) /2«
COCI{N)=(SUR*NELEM) /SURF
EPX=FUNCT4(YORD(1)*YORD(J) 1 YORD(K) +DSX( ) +DSX(J)1DSX(K) 1)
EPY=FUNCT4 (XORD( 1)+ XORD(J)+XORD(K)+DSY([)+DSY{J)*DSY(K)+2)
GAM=FUNCTS{(XORD (1) + XORD(.J) *XORD(K) s YORD( 1)+ YORD(J) +YORD(K) sDSX( )
1 DSX(1)Yy+DSY(I)sDSX(J)+DSY(J)sDSXI{K)DSY(K))
Xa2FUNCTOERPXSsEPYsETX+ETY+sEWX (NI +EWY (NI SsECX (NI sECY(N) sECXY(N) +E+PRs
1 YXORD(1)+XORD{J)e¢XORD(K) +YORD(I)s+YORD(J) yYORD(K) 1)

Y= FUNCTé(EPX'EPYﬂFTX'ETY'EWX(N)9EWY(N)sECX(N)'FCY(N)OECXY(N)oE PR
1 XORD(1)+XORD(J) +XORD(K) +YORD(I)sYORD(J)«YORD(K) s 2)

XY= FUNCT7(GAM’ECXY(N)’E'PR'XORD(I)'XORD(J)OXORD(K)QYORD(I)vYORD(J)
leORD(K))

STHX(I)=X

STY(1)=Y

STXY(1)=XY

CONTINUE

CZ:ISBOOOO.

P=0.0 °~

DO 625 I=1+NELEM

IF(ETXel.Toa04,00001) GO TO 623

TADA=TAEL(1)~500,

AZTO=AZA+ARC*TADA

TADB=TAEL (1)~-20.

ETZ=AZTO*TADB

CONTINUE

P=P+(ETZ+EWZ( [ Y+ECZ (1)) %CZ*¥COC(1I)

CONTINUE

DO, 630 1=1+NELEM

IF(ETXel.Te0,00001) GO TO 628

TADA=TAEL (1)~500,

AZTO=AZA+ARC*TADA

TADB=TAEL (1)—-20.

ETZ=AZTOX*TADB

CONTINUE

STZ(I)—P#COC(I)/NELEM—(ETZ+EWZ(I)+ECZ(I)1*CZ‘COC(I)
1+PR¥ (STX(1)Y+STY(1))

ST3(1)=5STZ(1)

CONTINUE ) .

DO 635 I=1+NELEM \

FIR=(STX(IY+STY(1))/2e
SEC=SQRT(((STY([)-=STX(1))/20)#%#24+STXY ([ j¥#2)

XMAX=F IR+SEC

XMIN=FIR~SEC

PA=0,5%¥57 295 78%ATAN (24 ¥STXY( 1)/ (STY(1)=STX(1)))

IF(STX(1)Y-FIR) 63141634+634

IF(PA) 632+634+633

PA=PA+90,0

GO TO 634

PA=PA-90,

PAA(CTI)Y=PA

STI1(I)Y=XMAX

STZ2(1)Y=XMIN

CONT INUE . .
IF(ETXLT+0s00001) GO TO 647 . '
DO 645 ]1=1+NELEM .
ECXP(I)=ECX(1)

———



ECYP{I1)=ECY (1)
ECZP(1)¥=ECZ({T1)

ECXYP(I)=ECXY(1)

STXR(1)=STX(])

STYR(1)=STY(1)

STZR(1)=5TZ{1)

STXYRII)I=STXY(I)

645 CONTINUE
IF(TOS«GT+530.) GO TO 672
POS:0.0 .
672 IF{(JO«GT.1) GO TO 676 : T,
- WRITE(6+673)P0S )
673 FORMAT(1HOs18H CHANNEL POSITION sFSe1¢3H CM)
676 WRITE(6+1679) JODOSE :
679 FORMAT(17HO [INTERVAL NUMBERI13+18H EQUIVALENT DOSEsFB8.1)
NCASE=NWRITE/2
GO TO (68B0+682+684) NCASE
680 WRITE(64681) .
681 FORMATI(2(67H ELEM NODE NO TEMP X—1+ Y-+ MAX—s MIN=s Z-s AND XY-s S
1 TRESSES ANGLE)) '
GO TO 685
682 WRITE(64+683)
683 FORMAT(4(33H ELEM PRINCIPAL STRESSES 14233+« 1))
: GO TO 685 '
684 CONTINUE
685 CONTINUE

NW=NELEM+NWRITE

DO 690 N=1+NWNWR]TE

GO TO (686+687:688+689) NCASE

686 1=N+1i -

WRITE(G6s4) Ne (NOD{NsJ) +J=113) 2 TAEL (N) » STXR(N) !STYR(N) 1ST1 (N) o
1ST2(N) ¢+ STZRIN) +STXYRIN) sPAAIN) ¢ T o (NOD(T9J) e J=133)TAEL (1) s
25TXROIIsSTYRII)sST1(1)+ST2(1)+STZRI1) +STXYRII)sPAA(T)

GO TO 690

687 1=N+1

J=N+2 .

K=N+3

WRITE(G695) NeSTIIN)'ST2(N)+STZRIN) sPAAIN) v [ 9ST1(1)sST2(])+STZR( 1)
1PAALTY e UsST1(U)+ST2( ) +STZRIU) ¢PAA(I) 1K ISTI(K) +ST2(K) + STZRIK) «
3PAA(K) ,

GO TO 690

688 CONTINUE
689 CONTINUE
690 CONTINUE

IF(JONENOW(JO)) GO TO 647

ETX=0.0

ETZ=0.,0

GO TO 312

647 CONTINUE
700 CONTINUE
750 CONTINUE

STOP

END

SUBROUT INE. MESHR

™



163,
SUBROUTINE TEMPR

SUBROUTINE WIGN

$IBFTC 5UB1

SUBROUTINE FEMIXE «E+PR«MMJLK)

DIMENSION D(3¢3)+BTOBA(Gs6) )+ XE(3e2) 2 ZX(3)42ZY(3)

COMMON C(6+6)+DBA(3+6)+DB(396)1A(B16) 1B(316)+NSTART(30) +NEND(30) »
INFIRSTI30)sNLAST(30)+NF (90 s NB(G0+2)98VIQ0«2)+X(300¢2) +NODISO00+3)
25T(40¢80)vu(600c1)9UF(6OO¢1)sTIEL[%OO)vTAEL(SOO)sEWY(JOO)OFWZ(SOO)
3+¢JO0sQC+QGNELEMIsTOS1DOSE +NUS T ZE s NURAE «NUSEC +NUELE )

COMMON C119Cl29C139C143C151C16+C173C18eC129C20+C213C22:C23+C244+C25
1+C26+C27+C284C29+C304C319C32+C339C349C351C36+C379C38B+C39+.CaeCal
21CA2+4CA3+Caa84CaASCa46+C4TvCAB1CA94CE501C51+CS21C531CHU4+CEH5:CS56CH7

DO 20 J=1 .6

DO 21 I=1+3

Bll«J)=0,

DB(l+J)=0s.

21 DBA(1+4J)Y=0e

DO 20 t=1]+6

A(lsJ)=0.

BTDBA(1+J)=0e

20 C(14J)=0.

DO 22 J=11+3

DO 22 1I=1.3

22 D(1+4JY=0e

ORX = (XE(1s+1) + XE(2+1) + XE(3+1))%e333333

ORY = (XE(1e¢2) + XE(292) + XE(342))#«333333

DO 5 1 = 143

XE}I.I) XE(I«1) = ORX

S XE(l«2) XE(l+2)y - ORY

ZX(1) = XE(242) = XE(3+2)

ZX(2)y = XE(3s2) -~ XEt1s2)

ZX(3) = XE(1+2) - XE(2+2)
ZY(1) = XE(3+1) ~ XE(24+1) “
ZY(2) = XE(1l+1) = XE(3+1)
ZY(3) = XE(2+1) = XE(1+1)

ZK = XE(2¢1 )% XE(342) ~ XE(Z3+41)1#XE(2+2)
Z=3e%2K
TA(le1)=2K/Z

Al2e1)=2ZX(1)/2
A(3e1)=2Y(1)/Z
Alde2)=A(1s1)
Al(Se2)=A(241)
A(6s2)=A(341)

) A(1+3)=2ZK/2Z
A(2¢3)=2ZX(2)Y/2
A(3e¢3)=2ZY(2)/2 .
A(d4e4)=A(14+3) . —
A(Se4)=A(243)

A(64¢4)=A(3+3)
A(1+5)=2ZK/2Z
Al(2:5)=2ZX(3)/Z
A(3+8)=2Y(3)/72
Al(44H5)Y=A(145) .
AlS.6)1=A(2+5) - e

' AlBE+6)=A(3+5) &
Blle2)=14 .
B(3+43)=1. , e



72

30

40

127
126

50

}.-J
(92
o

B(3+5)=1.
Bl(2+6)=1.
DEN=EH#(1+=PRY/( (] +4+PR) N (1 e=2«%XPR))
D(1.1)=DEN
D(2+2)=DENM
D(2+1)=DEN#PR/ (1 4-PR)
D(1.2)=D(24+1)
D(3+3)=DEN¥(1e—~24%PRYI/{(2e%(1e—~PR))
DO 30 J=1+6

DO 30 1=1+3
DO 30 K=1+3 -
DB(I1+J)=DB(I+J) + DIIKI*BIKJ)
DO 40 J=1.6 -
DO 40 1=1+3
DO 40 K=1+6

DBA(T+J)=DBA(IsJ) + DBII'KIFA(KJ)
IF (MM) 12641264127 ’
CONT INUE

CONT INUE ’

VOL=Ce5%+Z

DO 50 J=14+6

DO S50 I=1+6

DO 50 K=1+3 .

BTOBA(1+J)=BTDBA(I+J) + B(KsI)*¥DBA(KsJ)*VOL

" DO 60 J=1+6

60

SIBFT

DO 60 I=1.6

DO 60 K=1s6 -
ClIsN=ClIsJ) + A(KsI)#BTDBA(K«J)

RETURN

END

C sus2

SUBROUTINE SOL.VE (NPART s NCOLN 1 NFREE s NBOUN')

DIMENSION AM(40+80)+BM(40140)+YM(40440) 1 TF140+1)9RS(4041)
IDIS(4041)+F(4041)

COMMON C(616)+DBA(316) +DB(316)3A(616)+B(3+6) yNSTART(30) +NEND(30) »

CINFIRST(30) sNLAST(30) +1NF(90) sNB(90+2)+BV(90+2) +X(300+2) +NOD(500+3)

140

25T (40480) yU(E00+1 )1 UF(H0001 )¢ TIELIS00) « TAEL (500) +EWX(S00) +»EWZ(500)
3+J0«QC+QG+NELEMs TOS *DOSE «NUS T ZE + NURAE s NUSEC +MUELE

COMMON C114C124C13+4C14eC15S+C1H6+C17eC181C19+¢C20+C214C22+1C234C24+C25
14C261C2T71C284C294C30+¢C3219C32:C339C341C359C361C37+C3B+C39+C401C41
2eCa421CA31CL49C454CA464CHT1CH4BICL49+¢CH509C511C521C531C54+C55+C56+C57
EQUIVALENMCE (AM(1+13sST(1a1))e(BM{1s1)sAM(14]1))

DO 140 1=1+40

TF(1+41)=0.0 ; ..

RS(I+1)=00 . R

DO 140 J=14+40

YM(IsJ)=0e0

DO144ll.=1 +NPART

READ(4AIMa (L IAM( T oY ed=1 eM)eI=1eM)

LS=NFREE+(NFIRST(LL))—1

DO 424 I=14M

FlIe1)3=ULSs1)=TF(1+1)

DIS(Is1)=F(1s1)

LS=LS+1

DO 424 J=1..M
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424 AM(1¢J)=AM(IvJ)~YM( 1)
CALL SPNIST(AMaM.40+1S1G)
IF (NPART~LL) 666.,6664555
555 READ(4)IMsNs ((BM(JeJ)sJd=1sN)eI=1sM)
667 WRITE(2) MiNa((AM(TsJ)sl=1+M) v U= 1aM) e CEBMETI) s I=T M) e d=1aN) »
1CIF(TI o) I=14M)vJ=1+NCOLN)
GO TO 878
666 WRITE(2)M9((AM(I.J)-[=1.M)nJ—1~M)s((F(I-J)-]‘lvN)‘J 1+ NCOLN)
878 DO 200 L=1«NCOLN
DO 200 I=1+M
DIS(I14+L)=0e0
DO 200 K=1«M
200 DIS(I+L)=DIS(IL)4+AMIT +KIFF(KaL)
IF (NPART-LL) 437.437+303
303 DO 300J=1 +NCOLN
DO 300 t=1sN
TF(LeJ)=0e0
DO 300 I=1+M
300 TE(Le NI =TF(Ly)+BM(I+LIXDIS(T+J)
DO 110 J=14N
DO 110 f=1+M
YM(I1J)=0e0
DO 110 K=1sM
110 YM(IsJ)-YM(IoJ)+AM(I-K)*BM(K.J)
DO 111 J=1sN
DO 111 I=1sN
AM(T+J)=0e0
DO111 K=1+M
111 AMUIsU)=AMCT o J)+BMIK s [)¥YM(K s J)
DO 112 1=1sN
DO 112 J=1sN
112 YM(1sJ)=AM(T4J)
144 CONTINUE
437 REWIND 4
JJI=NPART
LS=NFREE* (NFIRST(JJ))—1
DO 438 I=1+M .
UF(LS+1)=DIS(I+1)
LS=LS+1
438 CONTINUE
IF (NPART~1) 600+6004+601
601 NA=NPART~1
DO441 LL=1«NA
=L+
JJI=NPART+1-11
LS=NFREE* (NFIRST(JJ))—1
BACKSRPACE 2
BACKSPACE 2
READ(2IYMaNs {LIAM( T o) eI=TsM) o=l oM ((BMITsU)al=1eM)oU=ToN)
LOCF{ToeJ)eI=1eM)eJ=1+NCOLN)
DO 462 L=1+NCCLN
DO 462 1=1+M
TF(I+L)=040
DO462 J=14N
462 TEF(IL)I=TF(I+LI+BMIT+ ) EDIS(UL)
DO 444 J=1«NCOLN
' DO 444 1=1M
484 FUIsJISF(IeN=TF(1+J)
DO 465 L=1+NCOLN



464

465
441

656

657

242
. 243
345

230
290

1004

1001

1002
1003

1000

659
658

512

662

520

DO 465 I=1+M
DIS(I+L)=0.0

DO 464J=1 M
DISCI+L}=DISCILY+AM(T s J)AF(JaL)
UF(LS+«1)=DIS(1sL)
5=L.5+1
CONTINUE
CONT INUE
DO 500 Li=1+NPART
[I1=(NPART+1)~LL
1Z=NPART-LL.
READ(4IMs((ST(I+J)eJd=1 M) eI=14M)
M2=M+1
IF(NPART—-LL) 656+:657+656

NN=NFREE#( (NFIRST(LL42)-1)-(NFIRST(LL)-1))

READ(Q)MoN!((ST(IqJ) v J=M2 +NN) 11=1+M)
CONTINUE
DO 290 1=1+NBOUN
K=NFIRST (L)
L=NLAST(LL)
MS=NF(]1)-K
MM = NF(I) — 1
IF(MS) 29042424242
Ml=NF (1)~
IF(M1) 243+4243+290
DO 230 J = 1+NFREE
IF (NB(I+J)Y) 230+345,+230
NMI =NFREE*MS+J
STI(NMIaNMII=ST(NMI+NMI)¥*e1E-20
CONT INUE
CONTINUE
1F (NPART=-LL) 10040100191004
DO 1001 I=1+M
DO 1001J=M24NN
K=J-M,
YM(1oKI=ST(1+J)
DO 1002 I=1sM
DO 1002JU=1N
BM(1e¢J)=YM(IesJ)
CONTINUE
DO 1000 I=1eM
DO 100QU=1M
AMITI«J)=ST(I+J)
IF (NPART—~LL) 659:65841659
CONTINUE
DO 510 JU=1+NCOLN
DO 510 1=1.M
LS=NFREE®* (NFIRST(11))—-1
LLZ=NFREEX (NFIRST(]1Z))-1
FIaJ)=RS(T )
DO 512 K=1+M
FCILaNN=F (1 oJ)+AMT oK) HUF (LS J)
LS=LS+1
CONTINUE
IF(NPART-LL) 662+.510,662
DO 520 L=1N
FCIaD)=F(TaJ)+BM( T L )HUF(LZ0J)
LZ=l.Z+1
CONT INUE

166,

e et
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510 CONTINUE )

IF(NPART-LL) 66345004663
663 DO 700 I=1eN

LS=NFREE®*(NFIRST(11))-1

RS(l+1)=0.0

DO 700 K=1+M

RS(T141)=RS{I+1)4BMIK 1) *¥UF(LSe1)

LS=LS+1
700 CONTINUE
S00 CONTINUE .
600 CONTINUE

RETURN

END’

SIBFTC INVIST DECK

SUBROUTINE SPNIST(A«MIKKISIG),
DIMENSION A(1)

ISIG = O

N = M

NN = KK

N2 = N + N

DO 10 JU=1.N

NJCOL. = (N + J - 1) ¥ NN
DO 10 I=1.4N

KINJ = NJCOL + 1
IF(I=J)44644

4 A(KINJ) = O
GO To 10
6 A(KINJ) = 1.

10 CONTINUE
DETERMINE MAXIMUM ABS OF VARIABLE BEING ELIMINATED. THIS BECOMES PV
OTAL ROW
L = 0
12 L =L + 1
LCOL = NN#L-NN
_KLL = LCOL + L
IF(L - N)1343041000
FIND THE LARGEST ELEMENT IN THE LTH COLUMN.
13 J1 = L
C=ABS(A(KLL))
L1 =L + 1
DO 20 I = L1sN .
KIL = LCOL + 1
X=ABS(A(KIL))
IF(C - X) 14420420
RECORD THE NUMBER OF THE ROW HAVING THE GREATER ELEMENT & ~
14 J1 = 1
C BECOMES THE GREATER.
cC = X
20 CONTINUE :
INTERCHANGE ROW JI WITH ROW Le J1 1S THE ROW WITH THE LARGEST ELEMENT
TEST TO SEE IF INMTERCHANMGING 1S NECESSARY.
IF(J1 = L)22+30422
22 DO 24 J = L«N2
JCOL = NN#*J-NN
KJ1J = JCOL + J1

*pe
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HOLD = A(KJI1J)
KLJ = JCOL + L
A(KJIY) = A(KLJ)
A(KLJ) = HOLD
24 CONTINUE
1F THE LARGEST ABSQOLUTE ELEMENT IN A COLUMN IS ZERO WE HAVE A SINGUL
AR MATR1IX .
30 IF (ABS(A(KLL)) -~ 00000001)33+33+32

33 WRITE(64100)
I1SIG = 4

GO TO 1000
ZERO ALL THE ELEMENTS IN THE LTH COLUMN BUT THE PIVOTAL ELEMENT.
32 L1 = 1 .
L2 =L - 1 .
IF(L2)3211321+32
321 IF(L-N)322:46+322
322 L1 =L + 1
L2 = N
323 DO 324 1 = L1402
KIL = LCOL + 1
Z = =A(KIL)ZA(KLL)
DO 324 J = L«N2
JCOL = NN¥*J — NN
KIJ = JCOL + 1
KLJ = JCOL + L
324 A(KIJ) = A(KIJ) + Z¥A(KLJI)
IFIN — L2)12+124321
DIVIDE BY DIAGONAL ELEMENTSe.
46 DO 48 1 = 14N
KKK = NN%¥I1 - NN + 1
ZZ = A(KKK)
DO 48 J = 14N2 ‘
KKI = NN%J — NN + I
48 A(KKI) = A(KK!)/ZZ
RETURN AFTER PUTTING A INVERSE INTO B
49 DO 50 J = 1N
JCOL = NM#J — NN
NJCOL = NN % N + JCOL
DO S50 1 = 14N
- KlJ = JCoL + 1
KINJ = NJCOL + 1 i
50 . A(KIJ) = A(KIND)
100 FORMAT(//20Xs42H MATRIX 1S SINGULARs NO INVERSE OBTAINABLE///)
1000 RETURN
END
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