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ABSTRACT 

This thesis is presented in two distinct parts. 

In part one, a recurrence relation and a generating function 

for the Feynman amplitude for the scattering of four massive spin.. 

less particles, due to the exchange of a massive spin s particle, 

described by an (s,0) particle-field of Weinberg, are obtained. 

These are then used, together with the Van Hove model, to calculate 

the corresponding Reggeized scattering amplitude. The main contri-

butions to this amplitude are: a Regge pole, a fixed branch point, 

and the background integral. The fixed branch point is found to 

play an important role with regard to the singularity structure of 

the amplitude at t=O, when at least one pair of the masses of the 

incoming and outgoing particles in the t-channel is equal. This 

work is based on an article in Il Nuovo Ciriento 61A, 721 (1969). 

In part two, the U(6) to 	(b0(3) symmetry scheme is used, 
through the vector dominance model, to calculate pole graphs for 

pseudoscalar meson photoproductio on nucleon-octet particles. The 

results of this calculation, together with the Van Hove model, are 

then used to calculate Regge pole contributions to the s-channel 

helicity amplitudes. Finally, Regge cut contributions are introd-

uced by applying absorption corrections to the s-channel helicity 

amplitudes. 

The results of a refit to the experimental data for the 

reaction lrp--PTren, in which evasive Tr,f, and A2  Regge pole 

exchanges, together with absorptive Regge cuts, were considered, 

are presented. The results obtained demonstrate the important role 

of the Regge cut contributions at t=0; and the agreement with ex-

periment is good. 
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PART ONE 

INTRODUCTION 

In reference (1) Durand calculated the Foynman amplitude for 

the scattering of four unequal mass, spinless particles with,  a 

spin-s particle exchanged. In that calculation, the spin-s particle 

was.described by a particle-field which transforms under the 

(4s,4s) representation, of the auxiliary Lorentz group. It: was 

shown that such an exchange contributes to the first s+1 partial-

waves in the direct channel, In other words, such an exchange 

effectively involves the spins 0,1,...,8, rather than just pure 

spin s. 

On-shell the lower-spin contributions vardehi, and the 

exchange is pure spin s as expected. However, the role of the 

lower-spin contributions becomes evident at the off-shell point 

t=0. At this point any pure spin exchange is singular in Durand's 

model, and the singularities in the spin'0,1,....,s-1 contributions 

combine to cancel the singularity in the spins contribution, thus 

giving a finite overall contribution at t=0. 

On Reggeizing the above Feynman amplitude by way of the Van 

Hove model (2) Durand showed that the pure spins contribution 

gives rise to the usual Regge pole term, whilst the lower-spin 

contributions give rise to fixed "daughter" Regge pole terms. 

Before proceeding, it must be remarked that in a more detailed 

model which takes into account self-energy insertions in the 

exchanged-particle propagator, the above fixed "daughter" Regge 

poles are converted intb the usual moving "daughter" Regge poles 

of Freedman and Wang (3'4).  Again,the role of either the fixed or 

moving "daughter" Regge pole terms is to combine and cancel the 

singularity in the parent-  Regge pole term. Now it may be noted 

that the (2s,--s) particle-field used in references (1) and (3) 



has many redundant oomponents, whose dependence is given by the 

equations of motion of the field. These redundant components have 

no effect on-shell, but off-shell it is precisely they which carry 

the lower-spin contributions mentioned above. 

Thus by using the model Feynman amplitude of reference (1) 

within the context of the Van Hove model, a connection between 

the existence of redundant components in the propagated particle-

field and the existence of the moving "daughter" Regge poles of 

Freedman and Wang (4)  has been traced. 

Bearing in mind the remarks of the previous paragraph, part 

one of this thesis contains an investigation of the results of 

carrying out the above programme of Durand (1)  using, instead of 

his propagated particle-field, one which has no redundant compon-

ents. To this end, a spin s particle is here described by an (s,0) 

particle-field of Weinberg (5) ; since such a field has no redund-

ant components in a spinor basis. 

In chapter 1 a resume of the Feynman rules for high-spin 

particles, due to Weinberg (5), is given. This is followed in 

chapter 2 by an explicit construction of the (s1 0) particle-field 

of Weinberg and its propagator, firstly in a spinor basis, and 

secondly, for s integral, in a tensor basis. The tensor (s,0) 

particle-field (s integral) is then used, in preference to the 

spinor (s,0) particle-field throughout the remainder of.part one. 

This is because a discusbion.of the non000variant terms, which,-

appear in the (s,0) particle-field propagator (6), is much simpler 

in terms of the manifestly covariant tensor particle-field. Chapter 

2 closes with a discussion of these contact terms. 

In chapter 3 the formalism of chapters 1 and 2 is used to 

construct the interaction Hamiltonian density recuired for the 

calculation of the above Feynman amplitude, and the amplitude is 

calculated. Chapter 4 contains a discussion of the Feynman ampl- 



itude calculated in chapter 3; and this is followed by the Rogge-

ization of that amplitude by means of the Van Hove model. The 

Reggeized amplitude is then discussed with special reference to 

the point t=0, and the ohapter is closed with a summary and the 

conclusions of the work of part one. 

There are two appendices. Appendix A deals with some propert-

ies of covariant matrices which are required in chapters 1, 2, 3; 

whilst appendix B contains a demonstration of the equivalence of 

using either a tensor (910), or a spinor (15,0), particle-field in 

the calculation of chapter 3. 

The following list of notations will be adhered to throughout 

part one: 

C-;,14 (Etas  =1) is the totally antisymmetric rotation group tensor 

of rank three. 

E 	(6.osa3 =1) is the totally antisymmetric Lorentz group tensor 

of rank four. 

p,,p9, p denote respectively the vector p, a unit vector in its 

direction, and its magnitude. 

at is the Hermitian conjugate of the operator a. 

a* is the complex conjugate of the complex number a. 

The summation convention is used for all repeated indices, be they 

spinor, vector or tensor indices. 

Equations are numbered from (1) within each chapter. Reference to 

them is made by their numbers within their chapters of origin, and 



by their numbers, prefixed by the numbers of their chapters of 

origin, without them. 
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CHAPTER 1  

The purpose of this chapter is to present explicit Feynman 

rules for a perturbation-theoretic calculation of the elements of 

the relativistic S-matrix in a formalism which differs as:, little 

as possibla from- owe spin to dnather. 

Section 1 is concerned with the main assumptions on which the 

formalism is to be based, whilst sections 2-5 describe the evol-

ution of the formalism from these assumptions. Finally section 6 
contains an explicit statement of the Feynman rules in the desired 

form. 

Section 1. The assumptions of Weinberg's formalism:  

The presentation 

of the above-mentioned Feynman rules is achieved on the basis of 

the following three main assumptions: 

(i) The S.-matrix is assumed to be given by Dyson's formula 

(-0" \. • • • .11 "---RHI() 	 (t")) Clt:1  
• J_.ock f .5.1 

where the Hamiltonian, H, has been written as the sum of a free-

particle part, Ho, and an interaction part, HT, and Hz(t) is def-

ined to be the interaction Hamiltonian in the interaction repres-

entation. That is 

 

Na t 
e

_i 121„e, 

  

(ii) The S-matrix is assumed to be invariant under the transfor-

mations of the Poincare'group. A sufficient condition for this 

invariance is 
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where: 

(a),74,i(x) is a Poincare scalar. That is , to each Poincare trans-

formation x---Ax+a, there corresponds a unitary operator Lk(A,a) 
such that 

U(A,cx) 3ci1(x)UAA ,a)=. icii (Ax+c1). 
(b)- For (x-y) spacelike 

{:04 L( X) 2 /A -r. y)] 4•••••• 

In terms'of the newly defined interaction Hamiltonian density, 

Arx(x), the S-matrix now becomes 
too 	oo 

(1) 
 S Jrzt 	001d )Cr.j KIL  

War 	1,1 	co 	
S. I ' 	" 

By a consideration of the form of the S-matrix giiren by (1) it is 
easily seen that the conditions (a) and (b) are together suffic-
ient for the Poincareeinvariance of the S-matrix. For the expres-

sion (1) is evidently a Poincareeinvariant provided.that the step 

functions implicit in the definitiOn of the time-ordered product 

are Poincare scalars. Now a step-function is a Poincare scalar 

if and only if its argument is timelike or lightlike, and condit-

ion (b) guarantees that no step-function with spacelike argument 

appears. Hence the S-matrix, as given by (1), is a Poincarrinv-

ariant. 

(iii) The interaction Hamiltonian density is to be constructed 

from the creation and annihilation operators of the free-particles 

described by Ho  . In order to be certain that Icim(x) , so con-

structed, will satisfy properties (a) and (b) it is formed as a 

function of one or more fields, Y14L(x), which are linear combiz3.-

ations of the creation and annihilation operators, and which have 

the following properties. 
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(c) If U(JN,a) is the unitary operator defined above then 

kg. 	1/441:, 	U\--‘ (/\ , 	Dc,:a(Al Yip (./\ X jr(A) 
/0 + t where D„, ( N

4
) is some representation offs+. 

(d) For (x-y) spacelike 

['Pa (x) yb(I)3±. 0  
where + refer to anticommutator or commutator respectively. these 

fields must then be coupled in an invariant manner, and such that 

any product of fields appearing contains an even number of fields 

which anticommute for spacelike separations. 

Thus the first step in the construction of a Poincar(invar-

iant S-matrix involves the construction of particle-fields which 

satisfy properties (c) and (d). Since the construction of these 

fields rests heavily on the properties of the Poincare group, it 

will be necessary to give a review of some of its properties. 

This is the subject of the next section. 

Section 2. The Poincarg'group: 

Take any two elements x114 , x 2

(/1=0, 1, 2, 3) of a four dimensional real vector space, and 

consider the group of real, inhomogeneous linear transformations 

of the vector space into itself which leave invariant the quad- 

ratic form 

(2) 	314,„ (x' -xifr4),(xtv 
where the metric tensor g 4.0=g? = 

and the summation convention is used. Such a transformation will 

have the general form 
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xfr` --> 	x' 	ar 
where hr, and a/A  are independent of x . Invariance of (2) requ-
ires that 

(3) 3tAv 	>, As y 
	

••••• 9 >%! • 
If further to the above it is required that 

det (i\tA ,)) = 1 
and. 

then the resulting subgroup is called the Poincar(group. 

Poincare'transformations for which AI%) is the unit matrix 

evidently form the group of translations of the vector space, 

whereas Poincare transformations for which e =0 form the group 

of proper orthochronous Lorentz transformations, henceforth call-

ed simply the Lorentz group. 

The general infinitesimal Poincar‘ transformation is given 

by 

(4) x,Drk  r- X tA 	tAv  X v 	61A  

where the parameters e and 6t4  are infinitesimal, and from (3) 

6vr 
On any representation space for the Poincare'group the operator 

corresponding to (4) is defined as 

(5) 1 4- Z  E.'" 	?", 
where 	and Pp are the infinitesimal generators of the group 
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in that particular representation. The operator corresponding to 

a finite Poincarg transformation is obtained by exponentiation, 

and is given by 

e (6) 	eXPC -1-  E.P"  T -I-- 	PLA " 
By a consideration of a representation space of Poincare: 

scalar point functions, for example, explicit representations for 

(Tpl, and Pe, are obtained, and the following commutation relat-

ions deduced. 

(7)[i, )Pv] 0 

=-1(3Px7r,i 1- 9117"  

	

— 51.4xv! 	511 LitA 

(9) 
.._.... 	 - J iv

3 	1(3xvV., 	gA,AP,) . 
The above comprises all the properties of the Poincard'group 

needed for the present, and the remainder of this section is 

devoted to a discussion of the properties of the Lorentz subgroup. 

From the expressions (4) and (5) it is seen that this sub.. 
group of the Poincaref group is generated by the Jrv. However, 

when dealing with the Lorentz group it is often more convenient 

to introduce new infinitesimal generators J. K;  (i=1,2,3), 

defined in terms of the Jpof by 

(10) 

-3-7 z 	14c 
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WhencethecommutationrelationsofJ.K. are 

(12) [ 	jil 	e;j1< Jk 

(13) V.. K.  , 
(1" V..\‹ Y  ) T ) = i euk. kk  
Notethat(12)demonstratesexplicitlythatthe,Lare the 

infinitesimal generators of the rotation subgroup, whereas the 

operator • 

where EE is defined by 

	

cos\i 	=. (I — 
V.Z) 2 ANN. 

	

.5111‘el 	)f  

ft 
corresponds to the Lorentz transformation given by the matrix 

	

N A 	- O  If ; 	+ 
	 1) Ls; Ns-j) 

This is just the matrix of the Lorentz transformation from one 

inertial frame to another which is moving with velocity -v with 

respect to the former, the frames being such that their space axes 

are identically oriented and (0 0 0 0) gives the same event in 

both frames. 

Finally an alternative set of generators, which gives a 
decomposition of the Lorentz group of use in later chapters, is 

introduced. Define L and M by 
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M 
The commutation relations of L., M. are then given by 

) L:13 1 	L,, 
• 

_1\1 z 11'  ) 	3., —  k 69K Mk 

[LY••  M33 	. 
Note that the:comppnents of L and M both satisfy the algebra of 

SU(2), the group of 2x2 unitary matrices with unit determinant, 

and that L and M commute. Thus the SU(2) 	SU(2) decomposition 

of the Lorentz groupis exhibited. 

For integral valves of 2j1  and 24.  the (2j1  +1)(2j2. 4.1)-

dimensional irreducible representation (j, 94_ ) is defined in 

terms of this decomposition as follows 

(16) 
<tnt m2,L. \mit Yrt2> 

 

%in rh'9% 	vtii fyq 

 

4..111% YA 2.} M },MI YIA 2/.. 	= °Y,A0`11 	k 	 4  r 
r 

- vAsin  7  
C:3) where I vrow is just the usual (2j+1)- dimensional unitary irr- 

educible representation of the rotation group generators; (7)  
N  (4:1) , 	' rl- g 

• .......02_  

rn ch + t 
(17) 

(-31 (t-j)  .1 TN\  prti = rvi SY'h In" 

The representations (j, ,jt  ), for all integral values of 2j, 

and • 2j2., exhaust all the finite-dimensional irreducible rep- 

resentation& of the Lorentz group. And in each such representation 
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the infinitesimal generators may be written in terms of the unit-

ary representations of the rotation group generators through 

equations (16). 

The apparatus required for the construction of one-particle 

physical states, in terms of which creation and annihilation op-

erators are defined, has now been set up, and so these topics form 

the subject of the next section. 

Section 3. One-particle states 
A system is said to be elementary if 

the space of all its possible physical states forms a representat-

ion space for a unitary irreducible representation of the Poincar‘ 

group. Amongst such systems are those which consist of just one 

particle which is considerud to be elementary, or which it is con-

venient to treat as being such. 

Since the only assumption to be made about one-particle states 

is the above, namely that they transform under unitary irreducible 

representations of the Poincare group, then such a state will be 

wholly specified by the eigenvalues of a complete commuting subset 

of the group generators in the corresponding representation. 

It follows from the commutation relations of the Poincare 

group that the Casimir operator 

together with the generators P14  may be taken as forming Part of 

the complete commuting set. For the purpose of completing the set 

the Pauli-Lubanski spin operator, W A4  , is introduced. (8)  It is 

defined by 

(13) 
2. 

v xj) o  
6 	 xj,  • 

From the antisymmetry of c.'4"°-and the fact that the P commute  
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it follows that 

Pm  ICJ '  = 0 
Thus 014  has only three independent components. It also satisfies 

the following commutation relations 

(19) DAP4  A
/v w

1j)I px  

(2o) bA " p :1 

( 21 ) DiVIA  ) TX!  = 	frt \X 	S fry, \Ai ) 

From these commutation relations it is seen that the Casimir op-

ator 

w r wr s \`i 2  
together with an arbitary component of U, Wi for example, will 

complete the commuting set required. Thus the possible physical 

states of a one-particle system are specified by the eigenvalues 

of the operators P
m 
,P/4  ,WL  ,W 	in the representation corres-

ponding to the system. These eigenvalues will be denoted by mZ  , 

,w2" ,w3 	respectively, and the one-particle states written 

X12 VsilA L 	3> 
The quantities m and p, are to be interpreted as the mass 

and momentum of the particle respectively. The following will 

only be concerned with the case m>o, and this restriction is to 

be understood henceforth. 

Before dealing with w and w3  , note that the subspace of 

one-Particle states defined by keeping mm ,pAA oa
I fixed is in-

variant under transformations generated by lip . Also the algebra 

of the Wp , when restricted to this subspace, is closed. Thus the 
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transformations of this subspace into itself, which are generated 

by the VI/A.  , form a group. This group is called the little group 

of the momentum NA  
It turns out to be most convenient to specify w and w3  

in the rest-frame of the particle, for then the little group takes 

on a well-known form, and w 

interpretation. In this frame 

and w3  lend themselves to easy 

_- 	(m 0 0 o) 
and so 194  is effectively given by 

wiA = (0 
when acting on the states FI'mi4  w% w "... . Thus the little group 

of TI/A is the rotation group, and the operators W2' and W3  

reduce to m2 t/ 2 and mJ3  respectively. The corresponding val-

ues of wz and w3  are given by 

W 2 = reN-2-  CS 4-  I) 
and 

t 0 3= Vrt 5 s  

where s is to be interpreted as the spin of the ?article, and 

s3  the spin-projection along the 3-axis. And so the final form of 
the labelling of one-particle states is 

yvkl 	s G3> , 
although this will often be abbreviated to 

pr  s3,. 
The one-particle states are assumed to be normalized as follows 
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(22) 2 -Tr e ea) 	vy‘z) < (pp̀ S 3 Ft S3, 
(2,--rr)44  cS` )C 	)4) 4s3 

The next consideration is to explore the transformation pro-

perties of the one-particle states under the Poincare- group. Since 

the one-particle states were chosen to be eigenstates of the mom-

entum operator they transform simply under translations. Thus for 

a translation with parameter 

(23) e ilePiA ftfr„ s3> 	sz 
Preparatory to a discussion of the more complicated trans-

formation properties of the one-particle states under the Lorentz 

group, the notion of a boost is introduced. A boost, B(p),‘  ), is 

defined as being the Lorentz transformation from the rest-frame 

of the particle to a frame in which the particle has momentum pt,v. 
This allows the possibility of defining one-particle states, of 

arbitrary momentum p
/4 
 in terms of the corresponding rest-frame 

states as follows 

(24) 
t VP S3> ZCV),.) VA". 	=--NC191.,-)BCvo\rASs 7  

where N(p)A  ) is a normalization factor, and the new rest-frame 

states 111183;7  are normalized as follows 

(25) 4./....r\S 3 NVN 53) 	o S 
13  s3  

Since one-particle states transform under unitary irreducible 

representations of the Poincare group, B(p, ) is here to be 

understood as a unitary irreducible representation of the corres-

ponding.boost: The boost convention used here is 

e. 



with e  given by 

e 

( 26) siv,I,‘ e  

e  OM/ 

Now, with the concept of a boost, an explicit discussion of the 

Lorentz transformation properties of the one-particle states may 

be given. 

Let rsk, bee-a Lorentz transformation which takes the particle 

momentum from ?),A  to ?)44, , and let U(N) be the unitary 

operator representing /\ in the space of one-particle states 

4°10.54> Then the transformed state is UWIT7k0a›. In order 

to obtain an explicit form for this transformation boosts are 

introduced as follows 

u(/\) t'104 S.37 N r/A) t  ttit.) B-1( P'tk)U (A) 
( 

oo 

=1731. N(17r)6(Pit) 194\ 53> 
\ 

5 3 	U (A) g.(. ?tA) Irv\ 53) 0 ( 1,0) S (12; - mt)(1,,r41)3 
on the introduction of a complete set of one-particle states. At 

this stage note that the operator B
...I 

 (1)1,)UOVB(Fott) corresp-

onds to a sequence of Lorentz transformations which transform the 

momentum as follows 

-20- 

rn 
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Thus this sequence of transformations leaves m" invariant, and 

is hence a transformation of the little group of mit  , i.e. a 

rotation. Such a rotation is called a aligner rotation. As a con-

sequence of this remark the above now reduces to 

LI(M tiA 53) 	Nqt)6(ygp) II#NtAs3)( mit s 61 
S3 

' ( y id Lk (f‹) 2)( pr) km 5; 
( 27  ) 	181(?1,4)1\14  (6) 114A 5'3> Zs'is) 	Pr}  U (A) 1?)( Pp)) 

St5  
Where, on account of (25) and the fact that B-% (6, )U( /.)B( ?") 
is a unitary operator, JD is just the usual rotation matrix. (9) 

t 
From now on the normalization factor N(F/A) 1\41,4) in (27) will 
be assumed to have been absorbed into the rotation matrix. 

.Now, as the next step in the construction of particle-fields, 

creation and annihilation operators are introduced. They are def-

ined in terms of the one-particle states and an invariant, non-

degenerate vacuum state, 1d) , by the following relations 

at(v/453)10> = 1 ?),, 53, 
(28) 2-rr e(?0) g(e--Y4-) a (VP,s3) tVir S'3> 

Cir)LI" 	(4)(_1)/u  ip) 	, s 3  o> 5 

The creation and annihilation operators are required to satisfy 

either commutation or anticommutation relations, which, for cons-

istency with (22) and (28), must have the form 

2'r 	qe.) SC e- yA"2-) 	( 	s3) , 	( 	s'3)3 
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(29) :-- (2104 g c"-)(.1>pl-?e) 8.5.3s3 

Cat(Pk%ss) 40%t ;" 	CD  • The Poincard.transformation properties of 

immediately from equations (23), (27) and 

at (?s3  ) follow 
(28). They are 

(30) t,4 .44 c C Ffr, s3)  e_;ept  

(31) e*-141at (. pµ 53) e' 11.i 

5353   
Since all the representations involved in (30) and (31) are unit-

ary, the Poincarnransformation properties of a(?ts1;) follow 

very simply by just taking the Hermitian conjugate of these equa-

tions. They are 

(32) 2";" 	a ( ft,  ss) e 	e 	S3) —r 
(33) e- 14•1s, a.  p  s3)  -„t. 	

Z_ a 1pt s '3  ) 
S3  

s\ (3) 
S3S3 	 e.‘4..1s• 

Now that the transformation properties of the creation and 

annihilation operators are known onlyone more concept is needed 

for the final construction of the particle-fields which satisfy 

Properties (c) and (d) of section 1. This concept is the subject 

of the next section. 

Section 4.  Auxiliary groups and operators: 
The transformation prop- 

erties of the creation and annihilation operators under translations 

suggest that some sort of Fourier transform of then will lead 

s  
EL 

= e 	P a  +, ss) 

= 	a 	s. s 13) 
53 
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to particle-fields satisfying (c). However the usual Fourier tran-

sform will not do, as the momentum dependence of the Lorentz tran-

sformation properties of the creation and annihilation operators 

precludes the desired transformation properties of the fields. In 

order to overcome this difficulty it is necessary to decouple this 

momentum dependence. This is achieved by taking explicit represen-

tations of the operators in the product corresponding to the 

Wigner rotation. Since this involves taking explicit representat-

ions of the operators J and K, representations of a group which 

has these amongst its generators are required. Such a group is 

called an auxiliary group. The simplest example of an auxiliary 

group is that which has J and K as its generators, i.e. the 

Lorentz group. This is the only auxiliary group which will be used 

in the following. 

Let the vectors la> , where ck is a collective label, form 
an orthonormal basis for a representation space of the auxiliary 

Lorentz group. Then formally 

(34) Cq \ b> = 

(35) \ a) <9\ = 1. • 

The insertion of complete sets of the vectors la> into (33)  

leads to 

(36) Q' •• at?, s3) e., K = 	<msalc-A> 

e:"+.1 1c->(c-1 
	ci> 

< a \ YA s  2>  A c Q1^ s3) 
In this expression the overlap functions <Ilisa Va) must be cal-

culated separately for each representation. For example if la> 



corresponds to a finite-dimensional representation labelled in the 

SU(2) 10 SU(2) decomposition by 

1 Ck> = kJ, Si;j2. S2.) 

then 

< rY\ S3  1a> = <YINS.3  1j %  s i  
is just a Clebsch- Gordan coefficient. (9) Note also that the 

appearance of the-overlap functions means that in order to be able 

to construct non-trivial fields only representations, which, when 

restricted to the rotation subgroup contain the spin s amongst 

their components, may be used. 

Returning to (36), note that it may be rearranged in the 

following manner 

(37) e -1  4 •‘6  ( 	(40, 	4; b 	s 3  a ( ft% 
3 

si3  
c.--7<c• IN\ s/3> cA  ?if%  s3) 

Thus the operator 

A 	( 	s3  uc. (?/- s33 	s 
where 

(38) 11 w ?ph 	= <c.,\ \ 

has the following momentum-independent Lorentz transformation 

property 

(39) A ck (?),4) 

	

=(e.11 1.)a§ 	kb  (PIA' 
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The operator A 4(1F/A ) is called an auxiliary operator, and 

(1)/A s 3 ) is the corresponding particle-spinor. 
The transformation property of Am  (tDI) under translations: 

follows immediately from (32), and it is 

(40)  e. 1̀Pe  ?i• A ex  (  
A related auxiliary operator, 	the onerator dual to 

A4k(r/4), is defined as follows 

(41) A 	pp) S3
U 	\Di% S-3) (;01?/ s3) 

M 3i b>< bi s, 
The sninor 11°4  (yps3  ) is said to be the particle-spinor dual to 

A 
110  ( c  s 3 ). The transformation properties of A (D4) are as 

follows . 

C v7,) 	Ab Cp141 )(E-i 4--9: 
(43)

PI 	q 
e ' 4 ritt A 	1-VA  =" 	1-14FIA 	C(1))%) 

Finally auxiliary operators, which will later be seen to cor-

respond to antiparticles, are introduced. They are constructed on 

the basis of the following observation. If J is any representation 

of the rotation group generators, then there exists a matrix C 

such that (9)  

(42)  

(44) —` V C 

and -J also satisfies the commutation relations of the rotation 

group generators. Thus 	defines another representation of the 

rotation group which is equivalent to the first. With the aid of 

this matrix C new auxiliary operators are defined as follows 
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(45) 
g ( 	•":" M 	? S3) bt(raS3)  

S3 

<a e- 	1b7<61'"` 	es3s3  61Z ?Pt •3), g S3 
and its dual 

(46) 
4 

 ( Fr) 	if 4(  Ff" S  b CPr s3) 

53s3 
c-1 sis; <104 s,3  10)( 	k \ 0,) 	s3) 

where the antiparticle creation and annihilation operators, 

bt (pos1) and b(pess), are assumed to satisfy anticommutation or 

commutation relations analogous to (29), and the quantities 

va(prs3) and va.(pess) are said to be the antiparticle-spinor 

and its dual antiparticle-spinor, respectively. The transformation 

properties of these auxiliary operators are 

(47) go,( r.) e ."" 
	

1) 	1'(1;) 

(48) e  ittr9. 	 OM. 

and 
'gt •  (49) aLF).).ei . -t--14- 

P 1%.°  (50) e. 1 
 

••••• (e.1.;'s)b c̀  
R.? rPr ,%1  

Now particle-fields may be constructed by taking appropriate 

linear combinations of these auxiliary operators. This is done, 

and the properties of the fields explored, in the next section. 

Section 5.  Particle-fields: 

The first step in the construction of 

the fields is to find the appropriate combinations of the auxil- 
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iary operators which satisfy the transformation property (c).. 

For the lower index case an inspection of equations (39), (40), 

(47) and (48) reveals that the field must be of the form 

( 5 1 ) 	(04  ) 	r.. 
(s A a Tr•) 	t.' 	L.C??,)Q,,?') 

czirVe (v,  EC pk- Ty‘z) 	p • 
Whilst for the upper index case a similar inspection of equations 

(42), (43), (49) and (50) gives 

4400=S ( 	rt,) e  .?*" vi Wk( IA) ") 

	

(270-3  0 C.? 	vv"t.  (14-1)  
In both of these expressions 5 and v7 are invariant functions 

of pik which will be determined by enforcing property (d) on 

the fields. For the lower index case consider 

Substitution of the explicit form (51) , and use of the commuta-

tion or anticommutation relations of the particle and antiparticle 

creation and annihilation operators leads to 
tro 

uck( s.0 u 	 soc_ 
sx 	 LVitiA3) tg\ 

.'1'•(—))(2.7c)--3  (•=3 0,0)6 	vv.2) dp . 

At this stage it should be noted that 

3 
has the following property, which may be deduced from Koller's 

(10) • explicit form for the spinors, 

(52) 
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(53) 110A, 	??,) ..., 6:- di' flab ?),.) . 

So now the above becomes 
0.0 

11060V L 	e:-;  r(x—Y) 	02-s 

11°-  fL ?*()c 	0(P0)(71-)-3 	)v."2-) 00'1. 

Now it is well known that such an integral vanishes outside the 

light cone if and only if 

‘2. 	(.1 

An immediate consequence is 

1')2. 
	

011.1••• 1, • 

Thus if s is integral the plus sign, hence commutator/  must be.  

taken; whilst if s is half-integral the minus sign, hence anti-

commutator, must be taken. And so this formalism leads to the 

usual connection between spin and statistics. A second consequence 

is 

15‘4-111. 
Thus every particle has an antiparticle which enters into inter-

actions with equal coupling strength. A redefinition of the phases 

of the creation and annihilation operators allows the choice 

The field now has its final form 

(54) yct (x) 	(uck(?),SB) oCvy.s3) 

„Irk  ( ?Ix 	6,t c v),.. so  ejr)(2.icy-3B(to) 6 q7....,i,o)S1-1::,• 
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And its commutator or anticommutator is given by 

(55) Did. (X) j ki)bt( 44. -= i7I b C sa) L C.)< — Y) 
where 

(56) ,A (x) 

Only one more quantity is now needed in order that an explicit 

exposition of the Feynman rules may be given; it is the propagator 

of-the field kko.(x), and is defined as 

<01 E kka (c) 4/1.1-c y),} 0> • 
A substitution of the explicit form (51) quickly leads to 

1:  00  00 70.6 ( Pr) (e(xca --ya) e-'17.(x-Y) + (-02s  eeyo-V,,) 

	

;P-CY-Y))(27r)-3 	pc,) aC 	cri-p 
Use of (53) now gives 

r 00 

0, ),)1 	e(%,(ci-yo) 	 e(yo-x.) 

e,iy -  CY  — Y))(27f)-3  e(ic.$) (CW-11" )  
+ non-covariant contact terms. 

The non-covariant contact terms arise as a consequence of comm-

uting the derivatives past the e-functions. Now there is a theo-

rem of Matthomm(6) which states that it is possible to cancel these 

non-covariant terms by the addition of appropriate non-covariant 

contact interactions to %..k&), and that these contact interact-

ions may be neglected in an exposition of the Feynman rules, 

except in that they cancel the undesirable non-covariant contact 

terms. So, neglecting these terms, the above becomes(12) 

e' 17 '9e(p) SC p2-- nlz) ()Lit . 
(2.)3  
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7 	00 _ r.oc —y) 	j?  

ce 	 6 WI 

Do 
I (_ty.) 	Cs • Lie 	 ) 44.1_41, 

Thus the propagator.in momentum space is 

(57) 	1'iob C. 13  y) 

- 
A procedure completely analogous to the above few paragraphs may 

also be carried out for the upper index field. The details are 

omitted. 

The'complete framework required for an exposition of the 

Feynman rules has now been set up, and their explicit statement 

is given in the next section. 

Section 6.  The Feynman rules 
The Feynman rules will, by way of 

illustration, be given for the particular example of a three part-

icle vortex which is described by an interaction Hamiltonian den-

sity of the form 

+ Hermitian conjugate. 

In this expression g is the coupling constant at the vertex, and 

eac' is some function of invariant quantities which may, or may 

not, contain derivatives. The S-matrix is now calculated from 

(1), using Wick's theorem as usual to derive the Feynman rules. 

(i) For each vertex include a factor 
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• t 5  
where for every 	which appears in A

a by- is substituted the 

momentum of the particle on whose field the derivative acts. Con-

tributions from non-covariant contact interactions are to be 

ignored. 

(ii) For each internal line include the covariant part of the 

propagator 

<01-qLVc‘c)(-)4JI.:‘-(\i))107. 
(iii) For external lines include the following quantities: 

" °•( PA PC) a--  ' 
	

- particle destroyed 

( 	e_ 	- particle created 

Ire‘*(i„, 	- antiparticle destroyed 

kj-c‘ 1' 	q'• X 	- 	antiparticle created. 

(iv) Integrate over all vertex positions, and sum over all rep-

eated dummy indices. 

(v) Supply a minus sign for each closed fermion loop. 

With the above statement of the Feynman rules all the basic 

material required for the ensuing calculation is now at hand. 
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CHAPTER 2 

The primary aim of this chapter is the explicit construction 

of particle-fields which describe a particle of spin s, and which 
transform under either the (8,0) or (0,$) representations of 

the auxiliary Lorentz group. The spinors corresponding to these 

fields will be constructed from the basic (4,0) or (0,i) 

particle-spinors respectively. Consequently section 1 is concerned 

with a detailed account of the (4,0) and (0,4) representations 

of the auxiliary Lorentz group. 

Section 1. (4,0) and (0,4) representations 

In the unitary 

irreducible representation of the rotation group with weight 

the infinitesimal generators are given by the three Pauli spin- 

matrices 

CSI  

= 2-01 Crlz c3), where 

a-
° L 0 C5-2 	 C) 	‘,) 

0 
I a) 

Thus equations 1(16) lead the lower (4,0) representation of 

the Lorentz group to be defined by 

(--S 	\5-)01 /4  •••••••• 

Consequently in this representation 

(1) 	(7)0.6  j_t y\ 
A

v̀• 
Z I -c?-)0. 	2 a 

As noted in 1 ( LELF ) , 	-r) b  eN 	rives a representation of the 

rotation group generators which is equivalent to that given by 

cr 
	

Consequently a representation of the Lorentz group 
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equivalent to the lower (1,0) representation is defined as fol-

lows 

	

2▪ (7. 	 )-r 

— \<- 	0 

This representation is called the upper (-a-, ) representation, 

and in it the infinitesimal generators are given by 

	

v-, 	 10 	ic 
(2) (-7) )s. 	= --1. (6-r)‘)' 	(\) 0, =- L (0-T) 2... -- 	sk .> 	 0‘. •••••.., 	0, 	

2..  -- 

The equivalence of the upper and lower (2,0) representations is 

expressed by 1(44) for the Pauli matrices, namely 

ig: c cca 	--(g 
where the form of the Pauli matrices readily gives 

(3) C c,,to = (-",)12 — °1/4  SA  
and 

	

c:r 
	

C 
Thus it is seen that the matrices C 	and C respectively 

raise and lower (i3 O) representation indices. In the followin 

such indices, be they upper or lower, will be refer rod to as undat—

ted indices, and the corresponaing representations as undotted 

representations. 

In a similar fashion the lower (0,-1) representation is 
defined by 

-k(zf +o<) 

AKA ex  

12> 

12> 
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whence 

( 5  ) 0")" 
s 	

(C_E-11 	and  05-'-)c.A
s 	

-r  )0. 	• — 

The equivalent upper (0,4) representation is accordingly defined 

by 

0<)"' .51 /4  

a  

= 0 

Ccir) O. 

and 	( K) & 	(C.r)11  
whence 

b  a (6) 	(,If ) 

In this case the raising and lowering matrices are numerically 

the same as in the undotted case, though they are said now to raise 

and lower dotted indices. The (0,4) representations are accord-

ingly called dotted representations. 

If Dm 	Dok and Di' are four quantities which trans-

form as their indices suggest, then their transforms under , the 

Lorentz transformation A are given explicitly by (1), (2), (5) 

and (6) as follows 

(7) Dia  

(8) t'‘ =.. 

(9) Dc,'• 

(10) D 

(ci 4cry=3 

b 

Section 2. (4,0) s;inors and fields. 

From (7) it is seen that in 
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the (1,0) representation the boost B(Pr) is given by 

Since also, as stated in section 4 of chapter 1, the overlap func-

tion 4atms3› in this representation is just the Clebsch- Gordan 

coefficient 

<ja ck o of z S37= 
the particle-spinor is given by 

(1 1 ) Via c 	S3D 	Cc -47  .'1) 
to 	sa 

c) Lo 

t 	5.6.3 

The next few paragraphs will be concerned with showing that 

once the expression (11) for the particle-spinor is known, then all 

the other relevant (1,0) spinors may be constructed from (11) 

together with the aid of the raising and lowering matrices. 

From 1(45) the (1,0) antiparticle-spinor is given by 

(12) 110, (?)^.S20 23  LIL04  ( N?fi' C;10 C 5353   
where the summation convention has now been extended to include 

spin indices. This practice will be pursued throughout the rest of 

part one. Now the matrix C, although it acts in a different space 

from the raising and lowering matrices, is seen from 1(44) to be 

numerically the same as the lowering matrix for undotted indices. 

In fact it is the lowering matrix for the spin-projection labels, 

and C-I  is accordingly the raising matrix for such labels. Thus 

with what is essentially the lowering matrix for undotted indices 

the lower (1,0) antiparticle-spinor may be constructed from (11). 

In order to construct the dual particle-spinor consider 
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G  coc 176 	
s3) 

c-t Isice 	.(2) 	c • 
b 	S3 53 

	

= 	 by 1(44) S3  

Cel . ) 
S3 

(13) i.e. 	g"' kA 	1.k S3) 1.= 	-1  

Finally the dual antiparticle-spinor is constructed by a con- 

sideration of 
C-1 col.A0 U, ( j& 3)  C_1 000 e 	53 

(el €.11--TI C 53 S3  by 1(44) 3 
s_s_•)6,  °t  

by (4) 

l5-°‘  

(14) i.e. 
	

ck ( VIA s3) z — C-1  `AA° 	s • 
Thus it is seen that with the aid of the raising and lowering 

matrices the particle-spinor can be used to construct the corres-

ponding antiparticle-spinor, and the spinors dual to both. So from 

now on only particle spinors will be studied in any detail. 

A result that will be of use later is that if u. (pr, s3  ) is 
a (i3O) particle-spinor then wc:(p ksa) transforms under the 

lower (0,4) representation, and 

(15) ( 	s 3) 	 ?th s3) 

The proof is as follows: 

The transform of u *(p s ) ca 3 is 



-37- 

U10(1D)A53)i 

S3 3  
since, as may be seen from their explicit form, the Pauli matrices 

satisfy 0-* = fj , 

But from (9) this is seen to be just the manner in which a lower 

(0,4) quantity transforms. This completes the first part of the 

assertion, and the second follows from an inspection of the expl-

icit forms of uo!(pe3) and 1.$7,1(pe3). 

In a similar fashion it may be shown that 

(16) 1I"c1/4 	??, s 	
WIN U a, ( \co th S 3) • 

Now that the lower ( 10) spinors have been effectively con-

structed in equations (11) and (12), 1(54) may be used to write 

the corresponding field as 

(17) WM (X) 	:o (Lk c1/4 C )`k S,3} (,l, 4/As3) e 

11;, t}o%  S \PI  qr S3) 1') NS(viz—rnz.) - 1̀:46i 
The propagator corresponding to this field is given in momentum 

space by 1(57) as follows 

1 	LA 0. (  tA S 	U 10*  c 	S 

The quantity U ck(plAss)ug(p)03) will be denoted by 70;(pfr1/4 ), 
where the dotted index is a consequence of the transformation 

property of uti: (p#33) proved above. It is given explicitly by 

• 
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Tro.6(1)r) (cis9)0, se 
(e..-A Sib 

.06 
(Costa 	E . (5.  sinh 61,,; 

as a consequence of the commutation and anticommutation relations 

of the Pauli matrices which are given in appendix A, 

;frAC? )̀  

0.).; 

where the covariant matrix (419,,)00,:p is defined and discussed in 

appendix A. 

An analysis similar to the above may be carried through for 

(0,i) spinors and fields. In this case the particle-field with an 

upper dotted index is given by 
• 

tAc% Fr 	te 	p•x 
) 	1?1,k 	t 

(j' s  b( Py• s CF"x) eq0)( 2.-:-D,7)(2d47 

and the propagator for this field is given by 

ik6( 

-m z -}.  1 

The explicit form of V a 12 (pr) is given by 

i"  (1 1));) == Lk 	1)1.1/ 4  s 	u 	k)k S; 

(18) 
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&SE) " 

= (cosIl e 	g. crs\AIn 

=. 	( c' 	• (X) 1/4 ‘2  

r\ 
. where again the covariant matrix (0;A )0b  is defined and discussed 

in appendix A. 

Now that the (1,0) and (0,1) fields and their propagators 

have been constructed lthe basic apparatus for the construction of 

the corresponding (s,0) and (0,$) quantities is available. This 

construction is the subject of the next section. 

Section 3.  (s,0) spinors and fields: 
As seen in section 2 for the 

(1,0) case, once the particle-spinor has been constructed all the 

other relevant spinors may be constructed from it with the aid of 

the raising and lowering matrices. Since the (610) particle-spinor 

is to be constructed as a multispinor from 2s (,0) particle-

spinors, then the indices may be raised or lowered one at a time to 

obtain all the other spinors which may be required. So, as in sec-

tion 2, attention is restricted to the particle spinor. 

Henceforth, for notational convenience, the basic (1,0) 

particle-spinor Uth(p41,03) will be written as U 40.(w). 

Note that the quantity 

Up(c,,,)q./A ;) •• •• • U KcA2..$)( ?fr4 S2s) pertntAtax;orts 
P(2.) 



is totally symmetric in the 2s undotted spinor indices al...a2.15; 

and thus it transforms under the irreducible representation of the 

auxiliary Lorentz group labelldd by (8,0).(7) In order to connect 

this quantity with the required (6,0) particle-spinor it is only 

necessary to introduce the correct coupling of the spin-projection 

indices st... 5 2s . The coupling coefficient is given by 
(19) <SI... s2.s  s 	 (S+ Ils)tlY2S  

(2, S) 	 Xs A . 

The proof, by induction, is as follows: 

For s=1 (19) is just the 

Clebsch-Gordan coefficient 

< 	5,  4.... sz IN- 	— 	(1 	‘ 112-cr 
2 ! 	

so-s2 

Now note that 2s spin 4 states couple only to a spin s state if 

and only if the coupling is totally symmetric in the spin . states 

(7). Hence 

<%...6 1S A> -1=  2s .1.-- (‹s r1 <S 	. • • 
s2-s 1 s A> 

where 4(1s,...slit., sr+, ...sx31 is totally symmetric in its 

(2s-1) labels, and hence only couples to spin 6-4. Thus 
1 2S fSi  . • • s ,s  SAS/— 	. • • sc-, sc*". • 82.s  Is AS 

u>(2 sr S-13. \S A>3 
where the Clebsch-Gordan coefficient < sr  s-i-UlsA>is given 
explicitly by(9) 

(9) 

A. 



t( 	LA)!  (S- 1A-11)1S:l.s; tok  
virr 

7s s • r-i
c  r+ • • S2sls- 2 

(2s— 

Ki Sr s.i. ‘x\sA>,-
(s--tA)

s-
(s

A
-+

(5
u

-I-
)1

A
(
)
2s

!
)! 

Cis  - %. 	1.1/2. 

(-5 11- s t.w.i sr)! 	143' u)..4-sc, A 

and the inductive hypothesis gives 

Substitution of these two explicit forms into the above gives 

<S% 	SAS \ 	2.1; 	-A)1. CS 4--A) 111/2-c 
° S;; rzt 	(Zs) 1 

Cs-A)1 (S4 P611112-  I 
(.2S) 	 i-s; 44\ . 

Q.E.D. 

So using the expression (19) for the spin-coupling coefficient 

the normalized lower (s,0) particle-spinor is given by 

(72-1S.)! Plat)  tiq10,0( 	• up(ckis)( \7tAS<St•••S2s\ SA> 

=tt ck‘ 	Uckz.sCkir2s)<SI••• S 2.S\ S 

since the spin coupling coefficient is totally symmetric in the 

. Thus 

(20) 	0.2.s  ( Fp A) = likaMphS;) uk4̀ 1s ?P` 
<5% 	5Ls S P\ 

is the required particle-spinor in a basis of the (s,0) repres-

entation space labelled by the a; . 



Since the only non-trivial SU(2) representation involved in 

the (8,0) representation is that with weight s, the spin-coupling 

coefficient (19) is also the coupling coefficient for 2s (-10) 

labels to a single (8,0) label. This may be easily verified by 

the following consideration of the transformation properties of 

. Look at 

(e- 7-1s), 4.5 0 al...a2s> 

= (e-  14) l'<sb 
A 	• - •a 2S> 

since J = iK in the (8,0) representation. Now note that (J) b  A 
is a representation of the rotation group generators, and that 

<sbias...a2s 	is just the transformation matrix from a basis 

for the corresponding representation space labelled by ial...a2i> 

to one labelled by Isb>. Hence the above becomes 

4%, Az 

•• • (e"..z.) t2. 	 _2.% 	• 6 
After a rearrangment this equality may be written as 

(.2 	)0, <5 b !bi- • 	Ce.4-• -7-) 6, . . • 

(el---1)b2s 2's 	< S tat • a,.s7  
which demonstrates explicitly that ‹salat...a2s7 is an inva-

riant quantity transforming as shown below 

<sa at  • • • cx2.5) 7"1  • 
04% 

' - 4XtS 

Thus in this new basis the (s,0) particle-spinor is written as 

u. 	pr, 	(s i•• • 
	

• 	
„ .0.2.s(fipP). 

By exactly similar arguments it may be shown that 

KS a I a l• • - x7_5) 	Es  _L 	• • 

	

2. 	2. 
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is an invariant quantity which transforms as its indices suggest. 

Finally 

" 	• • • 	=' Cs j 	z. 	a ti 	Ck2..s 

I a NN 

C 	°'17;  Ca lb 	C zsb2s Cs 	• • • b  " bas 7.- 	 . jic, 
• 
	 t . 	(— 	`)1 /4  (s ; 	• 

	
-4% Z .111..11P 

S 	• 	• IL) 	
CA.- 	a 2S 

11' • •
O. 

2,.)cx 	
• • a 2S CS ;  

where the last two equalities followed from the explicit form (19). 

So now the lower (s,0) particle-field may be written as 

(21) 1-ic, ( • 	• 
Q• • ' 	W 

Ck 	• • • Ck 2_ .5 (K) 

a." c°  e(Pf) g(V7-Yn2") a.  (7, 	S_co 

 

("°1--a2sCpitA A) a(pek) 
a4  1;3) 

with analogous expressions for all the other relevant (s$0) and 

(0,$) particle fields. Henceforth all (s,0) and (0,$) quantit-

ies will be written in bases labelled by 2s undotted and dotted 

indices respectively. With this notation the propagator corresp-

onding to (21) is given by 1(5?) as 

LA o 	• 0.2 C A) 	‘t, - • ‘D s k3)-1/4  j 

• • • 	- azs 
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This may be written in terms of the corresponding quantity in the 

(i3O) case by a consideration of the quantity -i times the num-

erator. This is given explicitly as 

u 0,1  (vpsi) • t-Ack2s(PiAs2.$) U:I(Vlab•-• u6:vs(trt2s) 
(s— -ti)1. Cs -k-i.-t,)k. c,s. 

I 	I 	t i 
To effect a further reduction the following lemma is required. 

lemma: 

Z._
t '01 cSIi ssti 	 2 tit 

‘1"---Derrn.ack.4i0,,s 	abt)(?Y` S‘)' ' " UPODzs)( S2-• 
P(vx.) 

This identity is verified by comparing both sides for the case 

when an arbitrary number r(04gr42s) of the indices s. take on 

the value 4. In this case .Y,s. = 3(2s-r) -ir =s-r , whence the 

left hand side is given by 

(2s- r)I u Zo(py.-1.)—  Uker(?tk-04:+-1(i)jAl2)-'11b2 Tr:)) 

where the summation is over all possible combinations of r of the 

indices bi which correspond to factors of the form uk);  *(pe. 

That the right hand side is also equal to this is seen by noting 

that corresponding to each combination of r of the bi there are r! 

permutations of these bi amongst themselves, and (2s-01 perm-

utations of the remaining bi amongst themselves, and that each 

such pair of permutations gives rise to an identical term. Thus by 

firstly breaking down the sum over all permutations into one over 

combinations as described above the right hand side is also seen 

to lead to the above expression. 	 Q.E.D. 

(2s) 



Returning now to the propagator numerator it is seen that this 

lemma gives 

Ucki Ckas (1)y- A) LA bi  102_s  ( Pi- A) 

= 	U a  t VE. St) • • • U ass (ppt zs.) 

p 63,E C 	- • • .A.PC. b.$)*( 	sa-J) 

2- 	it cL,Pcbc) IN) • • • 7„s„)(TrA.) (25)1 c,cy,) 

from the definition of the propagator numerator for the lower 

(4,0) particle-field given in section 2. Thus the propagator of 

the lower (s,0) particle-field is 

' 	l(22) 
2- 	

. (as)i 	a DcbI)w) • • 1k a2.5P(22.r)(?/). 1 	 Kb;)  

In the above discussion s could take on either integral or 

half-integral values, whereas in chapter 3 the restriction to in-

tegral values of s will be made. In the case of integral s it will 

be found simpler to perform calculations, and to overcome some 

difficulties involving non-covariant contact terms, if a manif-

estly covariant tensor labelling of the (s,0) particle-fields is 

used. The transition from a spinor labelling to a tensor labelling 
for the case of integral s, is the subject of the next section. 2 

Section 4.  Tensor fields for integral s. 
In order to effect the 

change of description of integral spin particles from that by spi-

nor fields to that by tensor fields, the transformation matrix 

from a spinor (s,0) to a tensor (s,0) representation is 
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required. The general case is conetructod frow tho -caner s=1 , 

which is now studied in detail. 

For the purpose of constructing this transformation matrix 

for the case s=1 the covariant matrix 

is introduced. It is just twice the generators of the Lorentz 

group in the (110) representation, and its explicit form and 

properties are discussed in appendix A. By means of the raising 

matrix the above is used to construct the covariant matrix 

	

\ 	r  -I ac 
(23) 	v) . 

This is just the required transformation matrix from a lower (1,0) 

o:dnor represontatiqn to a (1,0) tensor representation. Thc. proof 

is as follows: 

By a direct use of equations A(16), A(17), A(18), and its de- 

(Sin )" fining equation (23) it is easily shown that 	has the 

following four properties: 

(i) It is symmetric in a and b. 

(ii) (s6),,)" Cc  -Li 	 7*  
t‘ 

(c -10.c. c- 610 
2 

rx3vs 3k.r 



(vii) It satisfies 

(vi) S Cs) 
" 

.... 	
as 

A 	- 	Is (s7c,$)  
'AI 	 vs 	

N 
01. t • • • 0 2. s  

Is%  .•• Xss,s  ) 

complicated orthogonality relations analogous 

)As Vs) 
bzg (€.11.49-_) 

‘0, " .(elq427)  ckls 

• 

0) Property (ii) verifies that (S.ply )01 	actually does transform 

with two upper undotted indices, and is hence at most a mixture of 

(1,0) and (0,0) representations. Property (i) guarantees that 

only the (1,0) representation appears.(7) The orthogonality re-

lations (iii) and (iv) complete the properties required in order 

that (Stiky )...12 be the desired transformation matrix. 

Another property of (S4 )4°2  , which follows immediately 

from A(15) and (23), is that it is self-dual. That is 

(24) e1e,v T (sN  )" 	S V 413 
" 	• 

The generalization to the transformation matrix for any pos- 

itive integer s is achieved by coupling s of the quantities 

)442  in a totally symmetric fashion as follows. Define 

(25) (.5 CS) 	v  A l".  a25 	i  (sv6)i  \P(cattQ 
pi Yi • • 4 s  5 	 (2 S) . -pcia ‘•• ith  

(.1) 	? 26 	KC:Ik 
z$) 

• • . 	,),45  v 5  

)Q' 	ass  (s(q 	) 	has the following properties which 

are immediate consequences of its definition and properties (i) - 

(iv) of 0CO V f°2. ,m. 

(v) It is totally symmetric in the a; 

• 

to (iii) and (iv). 
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Property (vi) verifies that it transforms with 2s upper undotted 

indices, whilst the symmetry property (v) ensures that only the 

(s,0) representation appears.(7) The orthogonality relations com-

plete the properties required in order that it be the desired tra-

nsformation matrix from a spinor (6,0) representation to a tensor 

(6,0) representation. 

Some further properties which may be noted are that 

(g)s • ., 	 42" )41LC — 	is symmetric under the interchange of s- llo6 
any two pairs of indices (pill,;), self-dual in each pair of indices 

94;Vi) separately, and gives zero when contracted with the oper-
ator 

(3)A 	-3 frilv1.5 li1p2 4-' 6,1Aiv 	. 

These three properties are simple consequences of the definition 

of 	(Sgy"..";y5  )421 
•• . 

2S and the properties of (Si,,OD v)GAP  

Now that these transformation matrices have been constructed, 

the transition to the tensor equivalent of the (s10) particle.. 

spinor is immediate. It is 
t . • • azs  •••tA.vs C\ ;01„A) = (SiAcss )v 	sys ) 

U 0,1 ... 0, as  (t: PO 

CS; „s726'1 °42.t   UtA‘...0,„ g'IA A)) 

since u004...aas  (pip. A) is totally symmetric in its indices. 

Using the explicit form (23) this further becomes 

(26) upbti," s s i•A v 4ir 	--1 (2+r2.? 
_ 0,1Q/‘ (0) V+) 

CX2s 	
p A). re' — I rAIS—icts-i (, 	, 	A,.. • ot is 	IA Cr•/).Aslesials-t ••• 

LA I/ 
' 

( Q0) valaz  
1%.,71A V % 	• - • 
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Also, the corresponding particle-field is just 

) (27) tvr,,,,•..fr, sys(x) (C CS i y i•  • 1sys•\71.  • • 42S (1)04;...  azs CX) • 

Before the propagator of this field may be calculated it is 

necessary to look in more detail at 
Ai& 

Uf NI-  S ( Py• 	C -= c tct Ict11*(C5-t v) 
* - 	2S-4 aels -1 14  ((6)) a 

)4z 	slain -t Um I • • • G1/4  is( Ppt A). 

The right hand side may be written more explicitly by noting, as 

shown in section 2, that the complex conjugate of a quantity with 

undotted indices transforms as if each undotted index were repla-

ced by the corresponding dotted index. This observation, together 

with the following identities 

(2 --% o.b 

A (27) (CriA v \ Jo, 

gives 

4=1•1 
•••••• 

Acr ( 28 ) lad  V • • Vt4 	%.• 
r b;\ 

t.% r—+Y 0-11"AI (CYPIV)61; 2. 2 
&ZS 	*(p ‘ 

...c 	64s-A 	 1)& •  

(29) (-1)35  C-1 (x l (x` (C5- iv i)a,42.  2_ 	 C-t 042s-102s-I 

ok2.s 	-11:,1 b; 
(Crtxsys) 0,  2.s -1 

Using equations (22), (26) and (28) the propagator for the tensor 

(s,0) field may be written as 
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C -11;2s-1 	(Yx  „ 	625  s 	b  2 s-i 	(2.$): :12=- m2"+ ie. 

Zi),0;311-ck‘P(V)i)( t)1A) • • • 11 a2s  P b 	(1)')  ' 
Now that this propagator is given, all the apparatus necessary 

for the calculation of the scattering amplitude for the scattering 

of four massive spinless particles with a massive spin s particle 

exchanged has been ammassed. Before embarking upon this calculation 

I  however, it is necessary to make some remarks concerning non-

covariant contact terms which must be borne in mind throughout the 

calculation. These remarks are the subject of the final section of 

this chapter. 

Section 5.  Non-covariant contact terms. 
Since the propagator for . 

the (s,0) field will not be calculated explicitly in chapter 3, 
but just this quantity when fully contracted with momenta, it is 

necessary to make some remarks concerning its explicit calculation 

beforehand. 

By definition, the propagator for the tensor (8,0) field is 

given by 

<otT( ‘vi )Sys(x)  
(-Co 

.1.--. .001.-11 /4)4 v • • "As  vs  ( 17  A) U a,g, • - 	(N)  1) A 

(e( x0 -yo) e- 	-y)  e(10-Y0)e"(x-Y)) 
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e(pa) 6 Cr- nlz) (21)—  cALI- 

-1-CiAN/S 	cir3 	 rcx-y) 

e ( 1).(x 	e(H cStPz-rv‘2)  Pr)3  
+ non-covariant contact terms, 

where the abbreviation 

p  Npv 	 pkdk)kissr-xsgs  CP. ) 
t 

lr 

and the discussion of propagators in section 5 of chapter 1 have 
been used. 

As also stated in section 5 of chapter 1 the non-covariant 
contact terms, and only they, may, as a consequence of Matthews' 

theorem, be discarded. The important consequence of this observ-

ation is that Tkv)tjp (i.60/.,) must contain no VI  terms; for if 

such terms appeared, covariant terms, together with the non-cov-

ariant contact terms, would be discarded in obtaining the propag-

ator (29). The proof is as follows: 

Consider s: Ce (.x.-yo) e-'1).cx- Y)+ec.1.-yo)e x-Y) 

ecpc)) 	riNz) (210-3 c, 

(ecx. -Y0) 	y)-1- 

m7- 9 q)c,) cS("vv1-2.) L27r)-34411,  4-2 i & Cx0- yo) 

ro  (CI  P (x-Y).44, 'cx-"Y))\70 9q)0)S'Cr2.-017) 
0003 
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. 

+510(0-y4 
00 

 (e"?•cx-Y)—e?.(x-Y))e(NcRe2vq2)(c43 
Coo 

r 
=3 00 (G(xo-Ye. ircK-Y)+ C yo -xo) P.Cx  y)) 

in#2" 9  (Po) (Cc rAz) 4.L.1)3 

S c*  Ce 'F(‘t—/)—  e--itecx—Y))9(P`C(?.2.—m) (* 
OCP 	

CZW) 

The last term in this sum vanishes because the integrand is anti-

symmetric. Thus the result of commuting terms involving az  past 

the 8-functions is to produce, in addition to the non-covariant 

contact terms, covariant terms involving gek(x-y) . These latter 

terms may not be discarded. So whenever a term involving p2  app-

ears in the numerator of (29) p2 must be replaced by m51. 
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CHAPTER 3  

In this chapter the Feynman graph for the scattering of four 

massive spinless particles with a massive spin s particle ex-

changed is calculated. The tensor (s,0) field 2(27) is here 

used to describe the spin s particle, the equivalent procedure 

in terms of spinor fields being exhibited in appendix B. 

The first step in the calculation of this Feynman graph is to 

look in detail at possible forms of the interaction Hamiltonian 

density for a spin zero-spin zero-spin s three particle vertex. 

This is done in section 1. 

Section 1. Interactions 

The interaction Hamiltonian density for 

the above-mentioned three particle vertex is constructed using the 

tensor field 2(27) for the spin s particle, and scalar fields 

for both the spinless particles. Thus the interaction Hamiltonian 

density is to be constructed by coupling the three fields 

dP4(x) 	(X)) 	r.,\ 
"sgs. LAI 

in an invariant manner. The only way of doing this non-trivially 

is by the introduction of derivatives, and the interaction Ham-

iltonian density chosen is 

( 1 ) 	64) = e 	(x) av: . . Y".5 	LX) 

,/ f X) "1.)t • - 	s 	+ Hermitian conjugate. 

Note that any rearrangment of the way in which the deriv-

atives apst on the scalar fields gives q density which.either 

differs at most by a sign from (1) , or is identically zero. This 

follows from the symmetry prolieities of (S (s) - 	)4''" C zs /u1 wo ••• 
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expounded in section 4 of chapter 2. On the other hand if any of 
the derivatives were to act on the tensor field they would destroy 

its property of transforming under the (s,0) representation. 

Since this is the only representation of interest here the poss-

ibility of derivatives acting in this manner is omitted. Finally, 

as shown below 

fe.vt 
yAs  Vs  (X) = 9 2  ,v 	/.v2 • • ..ps vs (x) 

,,v. 
, 	• v...,s1).. (x) 

..••••••• 
	

0, 
and sd the extraction of any trace terms from the quantity 

(2) 
	

*6)-ts4)(x) 	6vs 
does not alter the interaction Hamiltonian density. 

That the first term in the seqiience of equalities is zero is 

an immediate consequence of the antisymmetry of (5..04m 	which 

gives 

• 
•••=.11. 

If the second term can be shown to be zero, then the third is aut-

omatically zero because of the same antisymmetry mentioned above. 

To show that the second term is zero it is sufficient to show that 

is antisymmetric under the interchange of any two, or any two pairs, 

of the indices abed; for then the second term is zero as a con-

sequence of the total symmetry of the (s,0) spinor field 

Yo, . 	00 • t 	' • - - e 
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By use of the explicit form of 0 )" given by 2(23) and 
A(11) , together with A(17) , it may be shown by inspection that 

(S kt  ) CXID  S Wfrk  0  ) " = (C -sr (C141)4-(C1"(03) 
(s)4010  )0,13 s  ovi  

j:31 	)eL\°  (0 k- )"  

( so) y-6( c  to)A )cck 
?‘/ 	0 

Evidently the first of these quantities is antisymmetric:under the 

interchanges ao-ic .in - the first term and • a4441, in the second 
term, whilst the last three quantities are all alatisrmnetric under 

the interchange (ab).1-4K-cd) . 

Thus the above equalities are proved, and it is verified that 

the extraction of trace terms from .(3) does not alter the inter- 

action Hamiltqnian density. This result has the important 	

Y4,.
Hs ep  

con- 

sequence that in (1) 	' 	0 	(x) is effectively the same as 

[am.•• atha jck(x) , where the curly brackets indicate that all 
the traces have been subtracted out in a symmetric manner, which 

is just an (1E4) tensor field describing a spin zero particle. 

That this field transforms under the ( 2  1  9...) representation is a 22.  
consequence of its being, symmetric and traceless in its s tensor 

indices. (5)  This remark will have an important bearing on app-

endix B . 

Thus it has been shown in the above that the simplest and 

most logical:interaction Hamiltonian density for the description 

of the above-mentioned three particle vertex is given by (1). 
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Section 2. The calculation of the amplitude 

The contribution to the 
scattering amplitude for the scattering of four massive spinless 

particles of the following Feynman graph is to be calculated. 

2 

t 

 

Pr 	3 
On the basis of the discussion of section 1 the following inter-

action Hamiltonian density is postulated. 

) 11i  
A 	

ft; (x) 
(3) 	id, cx) 	3)41 

• 

tX0i (‘4) 	1-/ 4.x) + Hermitian conjugate, 

where (411 ,T/142,962. are respectively tue scalar fields corres-

ponding to the particles 1,2,3 and 4 . Also g i  and g 1  are 

the coupling constants at the 1-2-4spin s and 3-4-*spin s 

vertices respectively. 

With the above convention the effective wave-functions for 

the external particles are respectively given by 

i)S Mt vt /AS 

(."-- 	( 	 • 

)S v ip% • • ? attAs 

(i)s  (ct— 	
(ct_. v •  is 



CI.- 17)
fs 
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Also the propagator for the (s,0) tensor field is given by the 

expressions 2(29) . Thus by using these expressions together with 

the Feyninan rules of chapter 1 section 6 the contribution of the 
above graph is seen to be 

-.-1)35  at 92  C— 	)41 * • p''4_ (ct—pg 
	• ' • 0.—  PI) tis  

z 1 	k (C.:71"atirr 	 /7--t\42s-1 2.5-1 a' 
(2s)‘ ` 	

t —7  00.: 	• •• • v., 

(.1714  S VOt),‘zs  12 4  fTrri) 7-4 /i3  ;) cliP) 	1 61/42sRit/S)hr) • • 

U15- X t t) bib 

&';` S -145  ..$1*" )%1 
	

vit  • • 
As a consequence of the antisymmetry of the quantities 

• - 
and (&)„ty)4.,a  under the interchange ff.-7V, and 	use of the 

abbreviated notation 

the above, simplifies to 

(4) ' (31 97
*  
- i \SS -tycAtc4 

} (25)1 k"" 	Cr t I a: 

 

1-2" — 	g 

-11azg -1 0%, (.2.s- 



-58- 

• —11' 
	 10' 

 (%,) (C 	bt  j3\arci.)  
. 

--1) i%)2S--1 102,5 	
V 

-1 

	

	 UP2s 
‘°: 1741,  Gzs-i 

131 82_ 

9, -ms 
say. 

Now it must be remembered from the discussion of chapter 2 

section 5. that whenever q
2.  appears in the propagator numerator 

of the (s,0) tensor field it must be replaced by ms  . Thus 

whenever a product of the form 

appears in the calculation of (4) it must, as a consequence of 

A(23) , be written as 	and not illmIL E 4  However if a con-
traction occurs between a qp, originating from the propagator and 

a qiu from an external wave-function. , then the result is ql  

and not m 

The next step is to simplify the form of A(s) , always 

bearing the remarks of tho above paragraph carefully in mind. For 

this purpose the following identities, which are proved in appen-

dix A , are required. 

A(22) 
WINO 
.11MIN 

A(21) (C 	Ca7v) b e  C 	— (a--:06% a  
As a consequence of these two identities it follows that 

(5)  A (s) = 	'(saej airct,TDriAts-r) 
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with 

(6) A (0) = I ) 
and where 

(7) Co-?'1 	apraL -if • • .) r 
means that the trace is taken over a product of r of the terms 

one of which is shown in the bracket. 

Equation (5) may be seen by firstly noting that the sum 

over the permutations of the indices Bi leads to a sum of terms 

involving the product of 

(8) tr CC -I cret 	af-pt T •• .)1" 

with a sum over the permutations of the indices b1 remaining 

after this trace has been taken. Because of the separate complete 

symmetry of (4) in the terms (C-107p/c0" and (C-1 2.5'10004" 

the latter part of the above-mentioned product is merely A(s-r). 

Since such terms as the above will appear for all values of r in 

the range 14;r4s , it only remains to find the number of times 
each such term occurs. In order to be certain of avoiding double-

counting it suffices to take the first factor in 

as (C-10-eqOcti°1- say. Then there are P~ 

factors (c' er'19.)" , and once this is done 
(C-I a#-ft)" or 
ways of choosing 

14. 	ir (C-'1>ped k . Similarly, since the first factor 
- is fixed, there are .2 	S ' .f_A ways of choosing the remaining 

such factors. The proof of (5) is now completed by noting that 

A(21) and A(22) cause the expression (8) to reduce to (7). 

Writing 

possibility of choosing either 

Thus in all there are 
	

Sliger 

wa 

the 

(8) to be fixed 

ys of choosing the 

re is still the 

C 	elf `L )4"‘ 	. 
the factors 

(CI crei)4'a2 



(9) 2.-2' A (s) =re) (() 
(s92  

equation (5) simplifies further to 

(10) s  3(s) 	
17.0 
	

-B(s—r) 

So now the calculation of the original amplitude rests on the 

calculation of the trace T. This latter calculation is the 

subject of the next section. 

Section.5. The calculation of Tr  
It must be remembered throughout 

the calculation of the trace 

ti 

that whenever a product of the form -Trir 	or 11  ir 	occurs 

it must be replaced by the appropriate Krouecker delta. This 

follows from the remarks of chapter 2 section 5 and page 58, tog-

ether with equations A(.23) and A(24),. 

For the first part of this calculation the following ident-

ities, which are pioved in appendix A, will be required. 

p qct'!: cre) 

S 	 I:(t4L Cle2.  aer)  

A(30) (Tel, ( 	 crt,) 	cie. 	— ktz 	Cj-ris.  

A(31) &,7 	. Lek — 	(t, •& - 	13-•..) CS' 

A 	(A.  1-Crt CCZ:(3. 

	

0 (il-  1- 	- 9:4 6.10 .9.121:7.P9- (5.? 41- - 
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Rather than deal with Tr  directly, it is simpler to first con-

sider the matrix product Cyr defined by Ti.=tr(Cy.) . Using A(28) 

above it may be rewritten as 

,(‘). 19_ P•1_

+ 	C ct,°1-1-7.'13)D') 
where 

Dr -r Cr- 
 

fht H 	 t) 
Co  is defined to be 1 , and A(30) has been used. Now look at Di-. 

D r 
••••• 
••=.11 

"&f-rcv 	0:5-12 cLT a -rr  „it , .) 

(a7cut-- "c5;r•c,,— -f4(171.1.ti 
	

et,7-6:F irilaljr..) 
2. 

••••• P 	r 	r-i 	 1. 
where A(29) and A(31) have been used respectively. Now Dy• is 
obtained in terms of C.- and 	C1r1  by multiplying (11) by 

(1311,2e.1.—cC4') , and noting that as a consequence of A(24) and 
A(26) 

( t 	2?FOC • trq, GC.  

12-1) + 	-- ctT" 	ar9,,crp' # 6',r' crct) 

= 	CC-  j3  2- • 

Similarly define 

C 	mil••• 

••// 
11•111. 
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and 

e( 7". CLZ  Pi  — 	• t P 	• 
When the above process has been carried out (11) becomes 

Dr 
2.ict!j2, 

Substitution of this expression into (12) gives the following. 

2r4it Taz 	 (3-f I) CC-r (15YA,(5v9, 	-' 
- 	vy\ s 

(5-  c 	2-  P, ct. r 	)(. C r 4. — 

6Cr rct •—• Cf ctIcc'irP) 
t'v\ 5 

(sr 
This expression may be greatly simplified by multiplication thr-

oughout by (f159,-9.2Cre) , followed by a double application of 

A(30) to the first term of the right hand sidetand an application 

of A(32) to the second term of the right hand side. The resulting 

equation is 

(13) Cr  — 2' 2c' — 6f ict..  C5 fl_C 

+. 	I 	f it c7r1. Cr-2 ="=". 	C 
On writing 

Ct 
	

(C) = t -Sr-D) 



y- >t,>/2) 
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(13) becomes 

( 	(? (14) E t(r) 2 Co s v‘x E t 
r".) 	) 

=• 0 
with 

Cosh x 	2 9:2- 
a MI I • 

Yh z  s  
and, as a consequence of (13) and the definition of 

E. 'I-)  :=4. 	. 

Thus the solution of (14) solves (13). The solution of (14) 

is easily obtained(13)  and it is 

(15) c (r)
t 
 - A et x 4. rbe 

where A and B are determined by 

E. 0  kr) 	
crist cr?ct, • - r 

and 

E. 	= 	c5.fq.. • - .3 r- ar‘ct. I  
Now as as the next step in calculating Tr, tr(q.1) 

-r 

explicitly from (15). For this purpose define 

( 1 6 ) 	 r Ec()-1") 	
• 

Then 

7. 
is found 

	

E t 	 tr. tcreci. ary • 3y- a-eor 
	ti 

 

= — tr( to-pict_creci..' 	t rct- a-rt. ) 
.0--tioL 0--f. • -- 	it  ( 	- '501) 

	

rYt s 	 r  
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by A(28). 

(s. ms  
cC` 

after use of A(23) and the definition (16). Thus looking at (15) 

for the values t=0 and t=1 leads to 

ti (A) 	kr (b) = U•1" 

and 

tr (A) 	e 	Ce)) =-• UN(  c_o 	. 

These simultaneous equations may be solved to give 

trcA) 	-12=u,r. 
And so finally the following sequence of equalities is valid. 

x 

It only remains to calculate U.- in order that T.y. may be det—

ermined explicitly. By use of equation A(13) 

ur 	-Tr (Cp9_ 

± 2 a fir' 

Ur-2. + 2ot Ur -1 
by A(32). 

Thus on putting 

cosk y 
it follows that Uy. satisfies the reccurrence relation given 

below. 

2 r2 Cc  StA 	r-- 	S r-2 ° 	>/2-). 
(18) Ur 

u, 
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The solution of (18) is readily obtained in the same manner as 

that of (14), and it is 

(19) Ur = fl a  (A e /  +- Be-r?) 
where this time A and B are determined by 

and 

t 	tr Cat3i 	(79,) 	20( 
The first of these equalities follows from the explicit forms of 

U 1  and U2, together with (18). The second follows from A(13). 
Thus looking at (19) for r=0 and r=1 leads to 

= 2. 
and 

-4- ,5CY  = 2.cos1,Ny. 
These stuultaneous equations may be solved to give 

B 	k. 

Thus 

(20) Ur y  21/2  coskry, 

and so the final form of T y  is given by (17) and (20) as 

(21) 

with 

and 

Nir 1-- 2gr71 Coda 	COS\ 

C 0S1 	2:52: 
rns  

Cosh y 	S3-1/2-  • 
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Section 4.  The amplitude (continued). 
Collecting together the 

results (4), (9), (10), and (21), the Feynman amplitude for the 
graph of section 2 is given as: 

(22) 	  
r- S 	 -F(S) 

	

t- VA S 	(2-5)! 
where F(s) satisfies 

(23) sF (s) I cosle‘ x e.os\A y F 
with 

(24) CO) = 	, 
(25) Cos': x == Zt 

rnt 
and 

--V2.
y   (26) t= COS 

where e is the centre of momentum frame scattering angle. 

Before the amplitude (22) and its Reggeization are discussed 

in detail in chapter 4, a generating function for F(s) , which 
will facilitate these discussions, is derived. 

Multiplying both sides of (23) by ZS, and then summing 
over all positive integral s gives

(14) 

oca 	s  co 

	

Rs) z 	35-  Cosh r x e-c=s" 'c/ P -‘4-)  = t 	 s t rz t 
= 	cosh coSk•C Zr)Z._ FCs) Z 0 

On defining .0 
(27) C  Cz) = L FCs) z. 

S 



abos 
41••••  

„,,. 11- 
-1- 

z e " 	t-zex-Y 
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and co 
( z ) 2... 	s 	x c os 

this becomes 

(28) 	z.) = 	cz_) #cz) 
with 

00 

z3— CASE x cosy C. I 	2:2) fi (2.CosijX•ZL'o0rtzi_ ')z 
Zi+  —4-cosh 	Z 3)4-2 (2.c..51,Nzx +2 cos‘n-zy - Z2  I 

Now taking this expression for 41( Z) together with (24) allows 
(28) to be integrated immediately giving 

(29) CZ) = 	 cos14 cosh C 
2. (2-00 Sle12-,( 	L. sq %,/ 	0— 14.  

And 1(Z-) is just the required generating function for F(s). 
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CHAPTER 4  

A discussion of some of the properties of the Feynman ampli-

tude 3(22) is given in section 1. This is followed in section 2 by 

the Reggeization of that amplitude; whilst in section 3 the Reg-
geized scattering amplitude is discussed, and the chapter closed 

with a discussion and the conclusions of part one. 

Section 1. Properties of the Feynman amplitude: 

From its explicit 

form 3(22), together with 3(23) and 3(26), it is evident that the 

Feynman amplitude is a polynomial in cos e, even or odd according 

as is s. Thus it may be written as a linear sum of Legendre poly-

nomials in the following manner: 

(1) 	Cs) ( 4.. \ Ct y4 	'1/4„ 
= 

(cos a) 

where ay )(t) is independent of cose, and ur3 denotes that 

the integral part of is is to be taken. Thus in addition to pure 

spin s, the lower spins s-2, s-4, 	all contribute to 

the Feynman amplitude. Now it should be noted that the tensor 

(s,0) particle-field satisfies is(s-1) independent tracelessness 

conditions. And so it has 2s(s-1) redundant components. Also, 

the number of independent field components required to describe one 

each of particles with spins s-2, s-4, 	s-2riE;1 is is(s-1). 
Thus the number of lower-spin contributions to the Feynman ampli-

tude 3(22) is consistent with there being a direct relationship 

between the existence of redundant components in the propagated 

tensor particle-field, and the existence of such lower-spin cont-

ributions. 

As expected, the lower-spin contributions vanish on-shell, 
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and the exchange becomes pure spin s. This may be seen by an in-

spection of the generating function 3(29), which reduces to the 

generating function for the Legendre polynomials on-shell. 

However, neither the leading contribution, nor any of the 

lower-spin contributions to the Feynman amplitude 3(22), is sing-

ular at the off-shell point t=0. This may be seen by noting firs-

tly that all the quantities, other than F (.0, which appear in 

3(22) are evidently finite at t=0; and secondly that, because of 

the linear independence of the Legendre polynomials, and the fact 

that the generating function 3(29) reduces to the generating func-

tion for these polynomials at t=0, the lower-spin contributions 

to 3(22) separately vanish at that point. 

Thus although lower spins still contribute to the Feynman 

amplitude in the model presented here, they have no role with re-

gard to singularity structure, as in the case of Durand"); nor do 

they have any other obvious special role. They seem to be merely 

a reflection of the existence of redundant components in the prop-

agated tensor particle-field. 

Section 2. Reggeization of the Feynman amplitude: 

The Van Hove 

model(2)is here used to Reggeize the Feynman amplitude 3(22). In 

this model the mesons are assumed to occur in families of Regge 

recurrences. Within each such family, a mass-spin relation m=m (s) 

is satisfied for either all even or all odd non-negative integers 

s. Further, the members of each such family are assumed to lie on 

a single corresponding Regge trajectory s=0L(t), which satis-

fies 

(2) 	0( (rA2cs)) ^ s cxyla 	rvi:2-(0(c-t)) = t . 
In order to calculate a Regge pole contribution to the 
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scattering amplitude, the first step is to sum the Feynman ampli-

tudes 3(22) for all the members of the corresponding exchanged 

family of Regge recurrences, Next the resulting sum is rewritten 

as a partial-wave series, this being necessary since Regge contri-

butions are assumed to stem from the s-plane singularity structure 

of the partial-wave amplitudes. Finally a Sommerfeld-Watson trans-, 

form of the partial-wave series is performed, and the resulting 

contour integral is written as a sum of Regge contributions and a 

background integral along the line Re s =-4. 

The first step is immediate, and the result is 
op 

(3) Z.  .1 (as 	31(s) 32-( s.) 	r 
't-- 	(s) 

-(s) Sr: CZ, 	INN2  (s) 

where F(s) is given by 3(23) or 3(29), and where a factor 

ri(2s+2)(2S r(s+1)2)--1  has been extracted from gi ks)g:(0. It 

should be noted that the effects of signature have been neglected 

in Cp. This. is merely for -the'sake of. notational convenience, and 

may he remedied by adding to (3) the sate expression with cos e 
replaced by -cose, and dividing the sum by two. In the following 

signature effects will continue to be neglected, on the under-

standing that this neglect may be remedied by the above prescrip-

tion. 

The next step is more difficult, and it is achieved by ex-

panding F(s) in partial-wave series. Note that the generating 

function 3(29) may be rewritten as 

q(Z)CI 2-e 1C42511)k-Z 	-72-) -1/ 4 

c\ 
and that the generating function for the Gegenbauer polynomials of 

(15) order Vy,is given by 

(4)  
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00 

(5) E.  cvq., x-, 
) r 	z. v" = Ct - 2X2 +zzy- YsIL 

Hence on the substitution of (5) into (4) 
co 

d?(z) (7..C11• 14°S/")er("  it1  CV*  (COSIA )C) €:"ZU)  
r.f:2 	 .J.10 

which gives the explicit form of F(s) as 
S

• 

pl  Rs) 	C •rir(cosIA x) C. 	(co stA e(  ,r,, 	s. 
s i 

.c.
st- 

cos ,‘ )ds_le(coshx) Cos (S r)e 
st v..0 

by 3(26). 

With the expression (6) for F(s), the second step is reduced 
to expanding cos ne in partial-wave series. This is done by 
noting that the coefficient of Prn(c.cs 	in that series is given 

by 

a (n ,rtI) 	(IA 2..) f  Cos n Frr‘  (cos e) Ocase 
t 

— 
— ( r1\  i"..) fir( 5 (n4-i)0 - SIrAvN-N))T,..A(CoSe)c10 

• (tv't 
_ 	n— tv. 	Cn m 4- C) 

(n -WOO\ ..-reN + 	( Vt 	Nvk 	2:) 
(VI-- %TN - tXt1 —set\ + t) ••• I 

for n.), m and n+m even, and is zero otherwise. 
(16)  Thus 

finally 

( 6 ) 
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(7) Gten t yy) 	carn  rie=1.2)f-11( 
r(r-k2vii-2)F7( 	t2j- 24-3) 

for n),m and n+m even, and is zero otherwise. 

Inserting the result (7) into (6), and interchanging tha 
order of summation gives the partial wave expansion of F(s) as 

la 1_, 
(8) F(s) 	t-'.5-2,-(cos0)._ (s-zu,s -zy-) yoo uao 

4 C. 0 S ( 	V1 uk 	X) C Isht t4  ( Co sly NO 4- 7- 	- Y.  (C°S  
Ite 0, 

14 	Vd. 
2_ a s -2.0 ) s -2-r) C (co Sk'N X4 C._ u  (Co Ski  \ . 

Although a more explicit form for tho whole of this partial-wave 

expansion has not been found, an inspection of (8) reveals the 
exact form of the first two terms. Thus 

F(s) s+ 	2 p( COS w+ <s)) s   
t( 	-- 	r 	-r 

(s) 	(s) / 2  Ft 	5+ 	; --h-Nses_2  (CoS 

Since the t=0 behaviour of the first lower-spin contribution 

to 3(22) characterises the behaviour of all the lower-spin con-

tributions, in the sense that they all vanish at that point, it is 

to be expected that the contribution of this lower-spin to the 

Reggeized scattering amplitude will characterise the corresponding 

contribution of any other of the lower spins. Thus the expression 

(9) will be sufficient for the discussions of the ensuing para- 

graphs. 

Now that the partial-wave expansion of F(s), and hence 3(22), 

tia. T-0  

(9) 
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has been effectively found, the next step in the calculation of 

Regge contributions to the scattering amplitude is to effect a 

Sommerfeld-Watson transformation of the sum over the Feynman ampli-

tudes 3(22) for the corresponding exchanged family of Regge rec-

urrences. The result is(3)  

(10) 	S(2s+ Sc cose) 	
t.. 	

ce/1.)S 
,—Yr‘ a  Cs) 

1F1 S S4-.0. 3 • (2. S + 6)8 t(S+2.)1z(S4-2) ...2,(s) 

Q t/2 s'.2  
InS a_y 	F 	 •ckS)  
1 -1-2) A 	2- 	) 	) 	rAl(S4-2.) 

where the contour C is as shown below. 

In the following gi(s)g2!(s) and ma(s) are assumed to 

have no singularities to the right of Res = - (3)  and the 	7 beh- 

aviour at infinity of gi(s)ge(s) is assumed to be such that the 

contribution of the semicircle at infinity, centre s = 	and to 

the right of Res = 2f  to the scattering amplitude vanishes. This 

being so, the expression (10) may be rewritten as the sum of a 

background integral along Res = 	, and the contributions from 

any singularities of the integrand encountered in the deformation 

of the contour to Res = -3. These singularities are discussed in 

the next paragraph. 



From (2), and the form of the integrand of (10), it follows 

that only one pole may be encountered in the above deformation of 

the countour C. This is the Regge pole at s =04 (t), and it only 

appears in the first term of the integrand. On the other hand, each 

of the first two terms of the integrand possesses a branch point 

due to the singularity structure of the hypergeometric function. 

The branch point in the first term is at s =0( (0), whilst that in 

the second is at s =C4(0)-2. As is customary in the theory of the 

hypergeometric function, a branch cut extending from the branch 

point to infinity, along some path in the left half s-plane, is 

associated with each of the above branch points (17) These re-

marks lead to the following expression for the Reggeized scattering 

amplitude: 

(11 ) i7t (2 0( (t) +.03ICow) 	(t)) (1 Or c0  aci,c 
\ 4.4 	at siwr<t) 

(t)( 
O 

C°S 	
(W

(2S + 1)3 (s) :cs) (1-pvg)s  41- 
2  "Ps(--cose) 4;sc  aF, 	

14- 
; 	) as 

b-m 	sin irs 	 inz(S) 

(2s+-1)(zs4-5)5 (s+2)5 A<Cs+2) (21/2-) 
14" 

: 	

7 (-case) . d %sc. 	(-S S+5° I • 	t )as -„ 2 4- 	tfriL(54•2.) r1171042) SWI-TS 

. • • 	+ background integral. 

In this expression disc. denotes the discontinuity across the 

branch cut of the hypergeometric function, and the lower limits of 

the first and second integrals are respectively the points where 
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the corresponding cuts meet Re s= -1. 

It should be noted that for physical processes ReCk(0) 4;1 
(18), and that consequently secondary branch point effects would 
be contained in the background integral. Thus in order to give a 

strict discussion of these secondary branch point contributions, 

the Mandelstam form of the Sommerfeld-Watson transform(19) should 

be used. Even so, the expression (11) is sufficient for the fol-

lowing qualitative discussions. 

Section 3.  The Reggeized scattering amplitude: 

Two classes of 

contributions to the Reggeized scattering amplitude (11) are con-

sidered separately below; firstly with special reference to the 

point t=0. These contributions are: 

(i) The secondary cut contribution due to the branch point at 

8=04.(0)-2, together with the corresponding part of the background 

integral. These contributions are those arising from (3) when only 

the second term in the expression (%) for F(s) is considered. 

(ii) The contributions of the Regge pole at s=t4(t) , the leading 

branch point at s= a(0) , and the corresponding part of the back-
ground integral. These contributions are those arising from (3) 

when only the first term in the expression (9) for F(s) is con-

sidered. 

In case (i), the contribution to (3) is given by 

(12) 	(ZS 
s Z 

2_ Fi 	.5+-2 5 -I- • 	* 2 M2-(S)) 	(COS 61) 7  

where it should be noted that(17) 

0C2s -3) 5, is) 3:Cs) ( RY2.) 6  t t 
t 	yn 7- Cs ) ) ril2t.5) \YINCgi 
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s+1 ;2_ 1- 	0 Ct: 
2 	44_ 	,m2-Cs)/t > 0 

Thus each term in the series (12) vanishes at t=0, and hence the 

corresponding contribution to the Reggeized scattering amplitude 

also vanishes at that point. This means that the contribution of 

the secondary branch point at s=0((0) -2 gives, together with 

the corresponding part of the background integral, vanishing con-

tribution to the Reggeized scattering amplitude at t=0. So it is 

seen that the apparent lack of a crucial role for the lower-spin 

contributions to the Feynman amplitude 3(22) remains, when their 

contributions to the Reggeized scattering amplitude are considered. 

This will be discussed further in the next section. 

Case (ii) is more interesting, and the corresponding contri-

butiogoto (3) is 

(13) 	i S  4- 0  3 (.!). -  (S.)  61_14147 
53.0 	t3 	yr12. (s) -r- 

(cos e). 
The contributions of (13) to the Reggeized scattering amplitude 

are quite different according as either both pairs of masses of 

the incoming and outgoing particles in the t-channel, are unequal, 

or at least one pair is equal. These two cases are discussed sep-

arately below. 

In the former case, cosE)=1 for t=0, and thus the contri-

bution of (13) to the Reggeized scattering amplitude is finite and 

independent of'the crossed channel centre of momentum energy var-

iable at that point. It should be noted that the three Regge con-

tributions in case (ii) are, here, also separately finite at t=0. 

Thus the leading branch point plays no crucial role with regard to 

the singularity structure of the amplitude at t=0, for unequal 

reC4) 



masses. 

However, when at least one of the pairs of masses is equal, 

t=0 singularities appear in the leading branch point and back- 

ground integral contributions; and, if ReCt(0)<0 	in the Rogge 

pole term as well. To see how these singularities arise,it should 

firstly be noted that the small t behaviour of 	is, for one 

or both pairs of masses equal, given respectively by 0(01') or 

0(t). On taking this remark into account, and noting the explicit 
J appearances of r&  in (11), it is evident that the Regge pole, 

leading branch point, and background integral contributions are 

singular as stated above. 

Now it follows from the small t behaviour of S for at 

least one pair of masses equal, that the only term in (13) to sur-

vive at t=0 is the term with s=0. Thus again the t=0 behaviour 

of the Reggeized scattering amplitude is finite and independent of 

the crossed channel centre of momentum energy variable. This being 

so, the singularities in the Regge pole, leading branch point, and 

background integral contributions must cancel amongst themselves 

to ensure the finiteness of the Reggeized scattering amplitude at 

t =0. 

Now in the model of Sugar and Sullivan(3), it was shown that 

the fixed poles, which there cancelled t=0 singularities in the 

Regge pole term, could only reasonably be discussed at that point. 

In order to discuss them elsewhere, self-energy corrections to the 

exchanged-particle propagator, which convert them to t-dependent 

poles, must be considered. By analogy with thar model, it is to 

be expected that a true description of the above fixed branch 

point contributions, at points other than t=0, may only be given 

after the insertion of such self-energy corrections into the ex-

changed-particle propagator. 

To illustrate the qualitative effects, on the fixed branch 
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points, of the introduction of self-energy corrections, the case 

of the scattering of four equal mass particles, in the approxim-

ation that the scattering amplitude satisfies two-particle unitar-

ity, is considered. The argument is that of Blankenbecler and 

Sugar(20). This particular case is chosen merely for its simplicity 

; and similar considerations for other mass configurations, and 

with exact self-energy corrections, would be expected to lead to 

the same qualitative results as presented here. 

Using the effective interaction 3(1), and the Born term, 

B(s;p",p) say, given by 3(22) and (9), the integral equation for 
the above modified scattering amplitude, 

by(20): 

T(s;p1,p) say, is given 

(14) -T(s ; p', Cs; 	— 

(s; 	K) "TCs 
k)- Thz]t(11,- 

   

     

     

     

where the kinematics of chapter 3 are used, and m is the common 

mass of the particles involved. Defining f(s) by 

CS; i)i) '?" CS) 	fr PsLcos e) 	+ terms 

involving lower order Legendre polynomials, 	• 
f(s) is easily calculated from (3), (9), and (14), with the 
result that 

( 15) t Cs; 	.1 ; 	s 	(321. s) 2.E(--si5+1;4 ;1-0-,ii.) 
eve(s)- t 4-iy(()I (s; a  Vs  (-sls+ 11  I 
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u 	rs(cose) + • • • 7 
At' 

where 

(16) I-  ($ ; = 	s4.1)F4'  002  kt 	k • cley 
- coLatetk)-=  r^ 10-1 -10t  Intl (21rY 

Strictly speaking, cut-off functions should be introduced into the 

integral (16) in order to make it convergent(3120). However, the 

only property of the amplitude (15) which is required here, is in-

dependent of the cut-off functions. That is the property, evident 

from the form of (15), that the leading branch point in the mod-

ified partial-wave amplitude is again at s=0(0) 

Thus the leading branch point is truly a fixed branch point 

(i.e. its position is independent of t), only the discontinuity 

across the corresponding branch cut being affected by the insertion 

of self-energy corrections. As stated above, the same conclusion 

is expected for a general mass configuration, and for all the sec-

ondary branch points. 

Hence the final picture of the Reggeized scattering amplitude 

is one of contributions fvon: 

(i) A moving Regge pole, a fixed leading branch point, and the 

corresponding part of the background integral. 

(ii) Infinitely many fixed secondary branch points, spaced at in-

tervals of two units in s, and the corresponding parts of the 

background integral. 

Section 4. Discussion and conclusions: 

Firstly a recursion relation, 

3(23), and a generating function, 3(29), were obtained for the 

Feynman amplitude for the scattering of four massive spinless par-

ticles, with a spin s particle exchanged, the spin s particle 



being described by an (s,0) field of Weinberg. Then an explicit 

form, (6), for the amplitude, and another for the leading two terms 
of its partial-wave expansion, given by (9), were calculated. 

In the above calculation, in order to cope with some problems 

concerning the discarding of non-covariant contact terms, which 

appear in the exchanged-particle propagator, it was found most 

convenient to write the (s10) particle-field with respect to a 

manifestly covariant tensor basis. It was then shown in chapter 2 

that such a tensor (8,0) particle-field satisfies certain trace-

lessness conditions for 8)40,2. Thus unlike the spinor (s,0)_ par-

ticle-field, the tensor (s,0) particle-field has redundant com-

ponents for s)>2. 

These redundant components, as in the case of Durand(1), man-

ifest themselves by giving rise to lower-spin contributions to the 

Feynman amplitude 3(22), Nor can these lower-spin contributions be 

removed by repeating the calculation of chapter 3 using spinor-

particle-fields to describe all the particles involved, and con-

structing the simplest three point interaction involving the 

spinor fields. For, as shown in appendix B, the simplest such in-

teraction leads to the same results as those obtained in chapter 3. 
In order to interpret the remarks 'of the previous paragraph, 

it should firstly be noted that a (1s,48) spin s particle-field 

has S
2 redundant components in a spinor basis, whilst in a tensor 

basis it has w(s+1)(8+2)-(2s+1) redundant components. Both 

these numbers of redundant components are consistent with there 

being a direct relationship between the content of the lower-spin 

contributions to the corresponding Feynman amplitude
(1) 

and the 

existence of these redundant components. However, the relationship 

is different according as a spinor, or a tensor (islis) particle 

-field is used. 

Thus the remarks of the previous two paragraphs lend evidence 
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to the assertion that, provided only the simplest_three-point in-

teractions are considered, there is a direct relationship between 

the content of the lower-spin contributions to the Feynman ampli-

tude. for the scattering of four massive spinless particles, due 

to the exchange of a spin s particle, and the number of redundant 

components in the tensor particle-field of the exchanged particle. 

And that, excepting accidents, such a relationship does not exist 

for the corresponding spinor particle-field. 

In contrast to the work of Durand(1) the lower-spin contri-

butions found here play no role with regard to the singularity 

structure of the Feynman amplitudes 3(22) at t=0. In fact each 

such contribution separately vanishes at that point. 

In the present chapter, the Van Hove model(2) was employed to 

Reggeize the Feynman amplitude 3(22). This led to a scattering 

amplitude with contributions from a moving Regge pole, a leading 

fixed branch point at 8=000) 	an infinite sequence of secondary 

fixed branch points at s=1:00) -2,0((0) 	, and a background 

integral. 

The fixed branch point at s=010) -2, which is assumed to be 

characteristic of all the other secondary branch points, gives, 

together with the corresponding part of the background integral 

(see section 3), vanishing contribution to the scattering amplit-

ude (11) at t=0. Also, the secondary branch point contributions 

are strongly suppressed, relative to the leading branch point 

contribution, at large values of the crossed channel energy var-

iable; the domain where the Regge model is most important. Thus 

the secondary branch points, which arise from the redundant com-

ponents in the exchanged tensor (s,0) particle-field, via the 

lower-spin contributions to the Feynman amplitude 3(22), play no 

significant role in the scattering amplitude (11). This,coupled 
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with the lack of any significant role for the lower-spin contribu-

tions to 3(22), is suggestive of the possibility that in a more 

sophisticated model, probably involving more complicated inter-

actions than those of chapter 3 and appendix B, such contributions 

could be eliminated. 

On the other hand, the leading branch point plays an import-

ant role with regard to the singularity structure of the scatter-

ing amplitude (11) at t=0. Two cases arise according as the 

masses of the incoming and outgoing particles in the t-channel 

are unequal, or at least one pair of them is equal. In the former 

case, the Regge pole, leading branch point, and background integral 

contributions, are separately finite at t=0. In the latter case, 

however, two further cases arise. If Recol,(0)P0 , then the Regge 

pole term is finite at t=0, whilst the leading branch point con-

tribution cancels a singularity in the background integral to give 

a finite scattering amplitude at t=0. On the other hand, if 

Rec4(0)4;0 , all three of the above contributions are singular at 

t=0, whilst having a finite sum at that point. 

Thus, in the model presented here, the Reggeized scattering 

amplitude may be looked upon as effectively comprising of a moving 

Regge pole, and background integral terms, together with a kine-

matic fixed branch point contribution. The branch point contrib-

ution plays no role with regard to the singularity structure of 

the scattering amplitude at t=0 in unequal mass scattering; 

whilst in equal mass scattering it serves to cancel t=0 singul-

arities in either the background integral, or both the background 

integral and Regge pole terms. 

This picture contrasts with the case of Durand(1), in which 

there is no singularity problem in equal mass scattering; whilst 

in the unequal mass case a t=0 singularity in the Regge pole 

term is cancelled by the joint effort of an infinite family of 
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"daughter" Regge pole terms, which are often assumed to be of 

dynamic origin. 

One further point of contrast is that, although both models 

lead to a scattering amplitude which is finite at t=0, in the 

model presented here that amplitude is independent of the crossed 

channel energy there, whilst in Durand's model it exhibits the 

characteristic Regge behaviour at that point. In order to see that 

the loss of Regge behaviour at t=0, in the model presented here, 

is not an inadequacy of the same, three points should be noted. 

Firstly, the only moving Regge singularity which contributes 

to the amplitude (11) is the Regge pole. Secondly, the loss of 

Regge behaviour at t=0 is due to the appearance of a factor t in 

I
, which renders the residue, at this Regge pole, trivially eva-

sive(21). Finally there is a growing evidence that the high-energy 

behaviour of scattering amplitudes, in the neighbourhood of t=0, 

is often best explained in terms of moving Regge branch points, 

together with evasive Regge poles, the branch point effects dom-

inating near t=0(22) 

Thus it is argued that the Regge model presented here must be 

complemented by the inclusion of moving Regge branch point effects, 

in order that a fuller description of the scattering amplitude may 

be given for all t-values. 

This composite picture has the intuitive appeal that any 

singularities, appearing in the Regge pole and background integral 

terms at t=0, are cancelled in a simple kinematic way by a fixed 

s-plane branch point contribution; and that the moving Regge branch 

point contributions, needed to complement the above Regge model, 

are generated in the Van Hove model by higher order Feynman 

diagrams(2). 
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APPENDIX A. 

Section 1. Covariant matrices and their properties: 

In section 1 of 

chapter 2 the Pauli spin-matrices, 

a-, (o I} 	a; .(p - 
I al 

( 	) s 0 

CY; lk 	C5-• 

ECS1  , crdir  IN,  2. gij 

C5-3 	0) 
following properties were introduced. From their definition the 

are readily verified. 

[0; 7  C7:3] 

C-1 	; C 	6 •
-r 

where the matrix C is given by 

C ammolo 
vOmi. 

0) 

 

Evidently 

(6) CT 
own, 
./1 

.4=11101. C. 
The Pauli matrices may be combined with the unit 2x2 matrix 

to form the following covariant matrices 

(7) 	(c7)„, ).)E. = 	- 
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(8) (C5- )" 
	

( 
	cr) 

By a consideration of the explicit forms of these two matrices, . 

together with the properties (3) and (4) of the Pauli matrices, 

it is seen that they transform as follows. 

(C44-5) 6  a Cc5-/4)b. (e-201 -A v 

(10)  Leo4.19'` vi  Of- )'c' (eiq-5)c =rAv(erCY` )0 
That is they transform as their indices suggest. 

It is well known that these two covariant matrices give res-

pectively the transformations from a (11-1) spinor representation 

with two upper labels and a (M) spinor representation with two 

lower labels to (ifi)  tensor representations. (7)  

In chapter 2 the covariant matrix which effects the trans-

formation from an (8,0) opinor representation to an (s,0) 

tensor representation was constructed for s >1 from the case 

s=1 , which in turn was constructed from the covariant matrix 

(9)  

(11) (0- 	b 
71°  / 43‘ 

o 	— i cri 
lc; 	al() 0,. 

b 

Where i(Crimv)tx  b is just the (1,0) representation of the Lor-

entz group generators. The property of being a representation of 

the Lorentz group generators immediately leads to the commutation 

relations 1(8) , i.e. 

(12) Err 
(35\S I a  

ip 
.111111 

11••• i (3 )A ay.?  -A.- '5 vs CriAX 
b — 	rs (5-v x — vx 03-itsA 

The following identities are also satisfied. 
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(13)  P"' crxs3 + 

+ I epk  g)  6.13• 
(14) AY (CY;A 	(03A-100. Q‘ 	. 

	

v •Xst (..C:5-)..) 0. 1°  = (C53A 1j) 1ck. 	• 

(e: '51.  CatAii)%, - 9-)c. =Avs(a-Nika e 	as (0).„,1)a, %:3 c  .1 cc/ (cy 	f  a c  
_ 	 c—i alb 	c act C-1 cab) • 

(18)  (C3-14  'I) k 6  (6Af) 	Z(`I /A\ ( v.r -9ri 	E)Avxs) 
Equation (13) is proved by inspection of the explicit form 

(11) and use of the anticommutation relations of the Pauli mat-

rices given by (3). 

Equation (14) is an immediate consequence of the explicit 

form (11) and the traceless property of the Pauli matrices 

given by (1) 

Equation (15) is an immediate consequence of inspection of 

the explicit form (11). A quantity which satisfies this property 

is said to be self-dual, and is automatically antisymmetric under 

the interchange /A V. 

Equation (16) gives the transformation property of (Grpv)ai  

which is seen to be just as the indices suggest. The proof is a 

consequence of the properties (3), (4) and (5) of the Pauli 

matrices. 

Equation (17) follows by inspection of the explicit form 

of both sides of the equality. 
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Equation (18) is a consequence of the commutation relations 

(12) and (13) together with the tracelessness condition (14). 

the quantity (C-I )
*Jo 
 (0:0.1,)4„ is symmetric under the interchange 

One further property of 47/Av.* b is required. It is that 

a**c. The assertion is an immediate consequence of the explicit 

form (11) and the following result 

sr..) cl%) 
voi•• 
.wee 

-47  -r 	
b 

(g: c:`-fr‘" 

by (5) 

by (6) 

mono ••••• c:r 
In a manner exactly similar to the above the (0,i) repre-

sentation of the Lorentz group generators is introduced. It has 

the explicit form 

(19) (cr ••-f ‘i a 
z. 	) 

.01 
••• 

cri 
0--K 	6 

Properties akin to the above for (CriA  v)G., b  follow in an exactly 

similar manner, but since they are not needed here their explicit 

form and proofs are omitted. 

Section 2. Simple identities involving covariant matrices. 

a/0.• 
••••••• 

••••• 

(20) C-1  °61'D 0;0‘.10:) p ci. ccic  

(21) c---16;(6-dpv) .a L-dc 
(22) C c‘10  cri,) bd 	--‘ a c. 

ca-)"-r 	C 

apt .-r)6' 	• — 	r  
(23) (att.)°, I. 	3r,v 	(0-;„),„ 
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(24) (.8=;) °41° (2:3-v) b , = cJ frk).1 SQ  6 	( 	t11- 	. 
C. 

(25) (̀C947)4"  (61i)'' . 	CCr  Y)a-6 251/-) = 29/A0  8.'7. 
(26) (84p) ‘1:1(.(5-14) b # cretv);24- 6  ( (37) b a 	3AvO a  
(27) Ca/A  )ci.  (ctim.v) 	10  • 

Eqations (20) and (21) follow immediately from the fact 
that the components of (Cr, v 10 and (Cry ► are all prop-
ortional to some component of Cr and the components of cc satisfy 
(5). 

Equation (22) follows by inspection of the explicit forms 

of all the matrices involved. 

Equations (23) and (24) follow from the explicit forms of 

(Seit y)ok band (611A.ne' 6, given by (11) and (19) respectively, 
the explicit forms of (cr/A)c,V, and (5,4)45'1', given respectively 

by (7) and (8) , and finally the commutation relations (3) and 
(4) of the Pauli matrices. 

Equation (25) follows from equation (23) by effecting the 

interchange pApy in this equation, and adding the result to the 
original equation. Equation (26) follows from equation (24) 

in an exactly similar manner. 

Equation (27) is an immediate consequence of the explicit 
-r 

forms of (0;4,y)eik  le and (9";%A  )" 	, together with the property 
(2) of the Pauli matrices. 

Section 3. Identities involving contracted covariant matrices: 

The results of this section will only be needed in chapter 3, 

and the notation used here is the same as that which was intro-

duced in section 2 of that chapter. It must also be remembered 
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that whenever a product of the form -Tr it 	or 11'  TV 
appears it must be replaced by the appropriate Kronecker delta 

(see page 51 ). 

(28) Tf EvrfTt, 	—art, + 	c.$) 	— 9/2. C:7i") fi\.  • 

(29) CriP14117. 	at1;1; I.  81-41.• 	("1" ? ') 
(30) ocre 41( corct. 	crf) = CP1.1 	cre) 
(31) (31-1.1,( 	 c7-1,— 9,2 adr) 

(32)  Cr- 	CPC 	481..°F ) = 41" (Yr elPi • 

Proof of (28). 

By (24) 

Av-r 	
( 	 5-F 	7 

which, after the application of equations (25) and (26) , resp-

ectively, becomes 0‘,/ e1/4/ 

crri, 	?" 9- crct-  qt.2' cr  f) 	by (23). 

Q.E.D. 

Proof of (29). 

By (23) 

0-talt7 	ct, 	Crel  8—d9, IR.  2 

which, after the application of equations (25) and (26) 	resp-

ectively, becomes 
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1-1, 	 /601T it÷71 

by (24). 
Q.E.D. 

Proof of (30). 
By (23) 

c7f 	 (S.  I'D Tr.- (r11. crp 	r • 9, 

C5-1- 

after use of (26). Next (25) gives 

? 	crcL 1;2-  C5  p i) C 	&̀i-Crp) 
crct. 	p 	ErolliTt, 	by (24). 

C71,  9,2  cfr ) aLf7)- • 
	

Q.E.D. 

Proof of (31). 

By (24) 

od-A. 	9, or3-11, — 	&dr) 	— i 	• ct, — E4cri.) 

(1,1.  cteA5-1.-1,  6110 
&'.pct,?) 
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after use of (25) . Next (26) gives 

app) 

CP 1-8.'1' 	crci-F1 
	

by (23). 

Q.E.D. 

Proof of (32). 

By (25) 

= 	`1Y ar CSP  - et! 	 aee' 
1,2  121- 	* 	• 121 	rr1) 

c1, 2  r 	1.1+ 1(56) 
after use of (23). 

= 124- 	— 	r'- ct, 	0-?1,i 
.4- I  t, F' ct- 	— C1,2 	°-F 41, • 

By use of (12) and (13) this then becomes 

jet?.  Ec5.171- c5.F11.3 + 	[P-F 	el] 
cri- Cr  PI ct- • 

Q.E.D. 
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APPENDIX B. 

In chapter 3 the Feynman graph for the scattering of four 

massive spinless particles with a spin s particle exchanged was 

calculated. In this calculation a tensor (s,0) field was used to 

describe the spin s particle. This appendix will be concerned 

with showing the equivalence between an approach using a spinor 

(s,0) field to describe the spin s particle, and the above 

approach. The first step is to construct the interaction Hamilt-

onian density, involving spinor fields, which is parallel to 3(1). 

Section 1. Interactions. 

In order to construct the spin zero-spin 

zero-spin s three particle vertex it is necessary to find some 

way of contracting all the spinor indices on the (s,0) particle-

field 
TAs—Ckzg 

 t (x) in a non-trivial manner. The simplest way 

of doing this is based on the remarks of page 54, and involves 

using fields which transform under the ll  Ag ei/  SN representation to 

describe all the spinless particles. 

The particle-spinor for an Z  representation field which 
describes a spin zero particle is given by 

(1 ) kste, I  ( Fit% g) • • • 	Cts(?/A S  S.) U 	t • • • LA  V)s( )P4 tS) 

(S I SS q: LA)Kti • • • ts 11 V> <I U V 0 67. 

Since the first two spin couplings are totally symmetric in the 

s- and t. respectively, the above is totally symmetric in the 

a- and 15; separately. Thus it transforms under the (i,E) 2 
representation (7). (7)• The spin coupling is evidently correct for a 

zero spin particle. This expression may be greatly simplified by 

noting two things. Firstly the Clebsch-Gordan coefficient 
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<1:tA-V100> is given explicitly by 

C2s+.612- C-iJ C5u -V 

C Lk V , 

Secondly, since <sl...ssitUt> and (t I...tI S IL  s 	Nie,› are the 

transformation matrices from a basis of the rotation group rep-

resentation with weight S. and labelled by U or V, to a basis of 
2. 

the same space labelled by si or t. respectively, the following 

is true. 

<sr  • ss  u) C. LIN/ < t t$  

-•=. Cs, s; • • • csss <s/, • "s 	(Iv 	• " t 

which, by equation 2(19) and the lemma of chapter 2 section 3, 
becomes 

Cs,Pc.t0 " • Css  i)(t.,,$) • s. p(tA) 
considering the explicit form of the 1 ;(?)0,16) and 

using the results of the above paragraph the expression (1) reduces 

to the following. 

(2) 	 . 
c2s.4.0%,z 	pciao  alKb (V )r) Tcksp( 	13j.t) 5 

where 1 is, just as before, proportional to the lower (4,0) 
spin 4 particle-field propagator numerator. The field corres-

ponding to the particle-spinor (2) will be denoted by 

masa 
•••••• 

By 
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d?c1 /4 %•••cksbi . 	00  • 

Now that the fields corresponding to the spinless particles 

have been constructed it only remains to couple the three fields 

434Nir"011ikSkif'*bs(X)Org'641".ChS101"1:;*S(14)(1)0.%••*(12A0, 
in an invariant manner to obtain the interaction Hamiltonian 

density for the desired three particle vertex. The density chosen 

is the following. 

11;41+1. • ( 3 ) 	( 	"r= 	 E; (?0 t  • • a 

ti) 	( N‘  

	

by .. zs  ,x_, 	4vie  fY1 600(1 cov13usarite 

where the spin zero particle fields appearing are not dual fields 

of the original fields, but have just had indices raised by means 

of the raising matrix. This density was chosen because it is the 

simplest involving the above three fields, and as will be seen 

later turns out to be exactly parallel with the density 3(1). 

Section 2. Equivalence to the tensor approach. 

On the basis of the 

remarks of section 1, the following interaction Hamiltonian den-

sity is postulated.  

(4) J4 z 	47T 	 I . 	Q's I's • • • 	ev 	 s*A.-li ()) 	 256) 

br . 	2.st  (x) 	es 	i an Covntkylke. 
Using this expression for the interaction Hamiltonian density, 

together with (2) for the external particle wave-functions and 

2(22) for the propagator of the lower (s10) particle-field, the 

Feynman rules give the following as the contribution from the 
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above-mentioned graph. 

VI; 4- l  E (25"") 
 c -1 at 	-Ictscq*c-% 61V*  

C-1 bas Was I" Tic, C pp) Tot; 1;: (6.) 
11a kW5+‘ Cc,P P1/0.  ** 70514.: (cie 	C2S) ; pce_ i) 

11-101?&-i) c1,14) -11-b2,5 P(e.zs) (
V) C dve% 

• • • 

c-iasa c 	a,.. .  C2S 
C 	S  Ai A

.  

CpiAiTck, E4-1 (1? -TA -7K-astls1/4). 
This expression may be greatly simplified by use of the fol-

lowing identities. 

(5) 	C-1 ekCe•i 71  To,' 6, 

••••• 

	 ja  
MOM 

• 

The first part of this equality follows from A(22), whilst the 

second part is a consequence of A(2) together with the remarks of 

page 	. In a similar manner it follows that 

(6) c: -.1 bb' 	1-0.v), * 	
C-1  ‘&°' 

Taking the complex conjugate of equation (5) gives the following 

equation. 

(7) C-t CIC'• — 
Finally, the following two ecuations are immediate consequences of 
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A(23) and A(24) respectively. 

(8) (9/P 	 (Fie) 	 (-Cc r)17  

WO 8 ; b+ .1  `1451) 

(9) ird /41 )))IrckE ($111/4  -p)A) 	 Pi) jel,te 

r
-(9,- 8c 	. 

Making use of the identities (5), (6), (7), (8) and (9), 
together with the fact that the propagator for the (s,0) field 

is totally symmetric in its indices reduces the above expression 

for the amplitude to the following. 

(10) -- 'VII 	(-Os 	 --1 log r 	‘, 
I 	-s 62" 1°2-" (-17' r 9,. It) 	• • • 

cit —rns 1€ (25) 

(CreC11)14 b2S 	 lib 	)(Cid).  • •11-b2Se&'2 (Cid ag-i 	S)! ? (.6;) 
./ 	e2. 	 • 

C-1 GIG% 	\ 	 C 	C2.s eE.  s 

'Pglie 	• • 	 LifC1/)E,17.3..% 

But this is just proportional to the expression 3(4) for the cor-

responding amplitude calculated using a tensor formulation. In 

fact on writing 

keN 
	2 sk-1 0,L  

z  3 S/2 	 ) 

the two amplitudes are seen to be identically equal. 

Thus the equivalence between the tensor and spinor formul- 

ations is verified. 
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PART TWO 

LaDODUCTION 

The work presented in part two of this thesis is the result 

of a collaboration with the authors named in reference (0), and 

is based on the work exhibited there. My role in the work was that 

of setting up the required formalism and doing all tho theoretical 

calculations. 

In charge-exchange pion photoproduction reactions, there is a 

characteristic peaking of the differential cross-section in the 

forward direction.(1) This peaking, although suggestive of Regg-

eized pion exchange, cannot be explained on the basis of that 

mechanism alone. For in order that angular momentum conservation 

in the forward direction be satisfied, either some of the pion 

resdues must vanish there, or there must exist a pion conspirator 

Regge pole; and the former case leads to a differential cross-

section which vanishes in the forward direction.(2) 

On the other hand, although the pion together with its con-

spirator can produce the required forward peaking, the existence of 

the conspirator leads to discrepancies between the predicted and 

experimental results in some other reactions.(3)  

One possible way out of this rather unsatisfactory situation 

is to take heed of Mandelstam's demonstration that Regge branch 

points, as well as Regge poles, should contribute to scattering 

amplitudes
(4). In this way the forward peaking in charge-exchange 

pion photoproduction reactions will be produced on the basis of 

Reggeized pion exchange together with a pion-Pomeron Regge cut. 

In the following the Reggeized U(6) e U(6) 	0(3) symmetry 

scheme of Delbourgo and Salam(5) is used to calculate Regge pole 

contributions to charge-exchange pseudoscalar meson photoproduction 

amplitudes, via the Vector dominance model(6); thus providing 
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significant constraints amongst the Regge residues. Regge cut 

contributions are then introduced by applying absorption correc-

tions to the Regge pole amplitudes. Results of the consequent fit 

to the experimental data for the reaction 5.13---)Plert are presented. 

In chapter 1 a resume' of the formalism of Reggeized 

U(6)0 U(6) ® 0(3) is given(5), and is extended through the 

vector dominance model to include photoproduction reactions. Chap-

ter 2 is concerned with a utilization of this formalism to calcu-

late the Regge pole contributions firstly to the invariant ampli-

tudes, and finally to the s-channel helicity amplitudes, for 

pseudoscalar meson photoproduction, which are required in order 

that absorption corrections may be applied. Finally chapter 3 con-

tains a discussion of absorption correction Regge cuts, the Regge 

pole description of the reaction 6p-b).-n- rt , and the results and 
conclusions of the fitting of the amplitudes, given by this model, 

to the experimental data. 

Except where otherwise stated, the notation set out in the 

introduction to part one of this thesis will also be used in this 

second part. 
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CHAPTER 1 

Since the photon is not directly incorporated into the 

U(6)40 u(6) ® 0(3) symmetry scheme, the first problem in the 

utilization of this scheme for a description of photoproduction 

processes is to relate these processes to other processes involving 

only hadrons. These hadronic processes will then be calculated by 

a direct use of the U(6) ® U(6) es.> 0(3) symmetry. The required 
relation between photoproduction processes and the corresponding 

hadronic processes is here assumed to be given through the vector 

dominance model.(6) 

In the vector dominance model the SU(3) U-spin scalar 

transformation property of the photon(7)  jives the covariant T-

matrix for the photoproduction of mesons on baryons as follows: 

(1) -rbi 	m s9 e)63 TTB— m si) +A-76.08  7 Mi0) 
where they-photon coupling %.1.. is given by 

	

- 	ar  Tr 
with 

Oon 	3$ 11"- I • g z.".• 13/ 

	

47r 	 44.7r 
and where We represents the mixture of the W and 110 mesons 

which transforms as the SU(2) singlet part of the 1-  octet. 

Now that the relation (1) between the photoproduction of 

mesons on baryons and meson-baryon scattering has been given, the 

remainder of this chapter will be concerned with a resumd'of the 

formalism of Delbourgo and Salam for Reggeization in a 

U(6) St U(6) al 0(3) symmetry scheme. This formalism will then 

be used in chapter 2 to calculate the high energy contribution to 

the meson-baryon scattering processes appropriate to the ensuing 
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fit to the experimental data. 

The U(6)0) U(6) 01) 0(3) symmetry scheme is an orbital ex-

citation model in which the U(6) el U(6) intrinsic spin-unitary 

spin part of the symmetry treats quark and antiquark spins as dis-

tinct and independent, whilst the 0(3) orbital part of the 

symmetry corresponds to the orbital angular momentum of the quark-

antiquark system given by U(6) e) U(6) part of the symmetry. 

All hadrons are assumed to be classified according to rep-

resentations of the rest symmetry U(6) 1,0 U(6) ®0(3) . A sig-

nificant empirical feature of the spectroscopy is that only some 

rather simple representations of this group are realized in nature. 

They are representations which are characterized by just one 

quantum number L, where L(L+1) is an eigenvaluo of the Casimir 

operator of the 0(3) subgroup given by L2  , apart from baryon 

number. 

The generalized helicity subgroup of this rest symmetry is 

U w(6) 40 0(2). If the symmetry is exact for three particle ver-
tices then W-spin is conserved. 

The covariant embedding group, which is essential for the 

construction of relativistically invariant interactions, is in 

this case U(6,6) ® 0(3,1). 

Section 1. The M-function formalism. 

The calculation of scattering 

amplitudes is effected by means of an M-function approach in a 

multispinor formalism. This has the merits of making the constr-

uction 

 

of relativistically invariant interactions straightforward, 

and of automatically incorporating all mass-dependent kinematic 

factors into the scattering amplitudes. The latter property of 

this formalism easily lends itself to an incorporation of symmetry 

-breaking effects by means of the insertion of physical rather 
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than multiplet masses in the above-mentioned kinematic factors. 

In order to construct the multispinor formalism it is neces-

sary to first find the particle-spinors representing all the mul-

tiplets involved. These particle-spinors will transform under 

representations of the covariant embedding group U(616)0 0(3,1). 

Note that the covariant embedding group is just aft auxiliary group 

in:the:sense of part one of this thesis (8)  
The intrinsic spin-unitary spin U(6,6) part of the particle 

-spinor is chosen to be represented by the multispinors of Delb-

ourgo, Salam and Strathdee(9) given by: 

IA ( 1,) 
	

A,B = 1, ... , 12, 

for the mesons (6,6 ) of the rest symmetry U(6) 4;:3 U(6) , and 

!(ABC)( ') 	 A,B,C, = 1, ... , 12, 

which is totally symmetric in A,B,C, for the baryons (56,1) of 

the same rest symmetry group. These multispinors are also assumed 

to satisfy the following Bargmann-Nigner equations. 

and 

(3) (. Ts- YYN z), 	LP( Bpcb) ( 	= 0 ) 
where m 1  and m a are respectively the masses associated with the 

above meson and baryon multiplets. 

The orbital 0(3,1) part of the particle-spinor, since the 

orbital angular momentum L of the quark-antiquark system is al-

ways integral, is chosen to be a traceless symmetric tensor of 

rank L 
(10)•  This multispinor must also satisfy the following 

subsidiary conditions. 
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(4) A‘ 	 L( 
and 

(5) (P2 rnlz) 'Opt pu,( 	0  • 

The direct product of the above 0(3,1) and U(616). multi-

spinors'is now. taken to..give the .following multispinors which.  
transform under representations of the covariant eMbedding group 

U(6,6)0 0(3,1). 

(6 ) 
	

(611;0...) 

(7) %sk 	)(Ai • - •)-4  ( 
	

C6e7  13 

These particle-spinors both satisfy the subsidiary conditions (4) 

and (5), and they respectively satisfy the Bargmann-Wigner equat-

ions (2) and (3). After reduction with respect to 

U(3) 0) U(2,2) Q51 0(3,1) the following forms for the particle-
spinors (6) and (7) are obtained. 

(8) 6 

(X5 + it 	 P /4 1 . IA L 	CV‘i 	L)-1

as  

/IA ( 	AT 	k6 4—"e1)1C/A 	`11("094' 

and 

 

  

  

+. 	146.+111)YsC13 ect loci N1C 
al 	

+ cyclic 

permutations of the indices). 

In these expressions (8) and (9) the notation of reference (5) is 
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used; and the (L) excitations of the basic spin multiplet part-

icle-spinors, namely the pseudoscalar meson nonet +., the vector 

meson nonet 40),k , the 	t baryon octet and the 2.4" baryon deo- 
z- 

uplet, are exhibited explicitly. 

Now that the multispinors (6) and (7) have been constructed, 
the M-function for a vertex which couples three multiplets of 

17(6) 6§ U(6) e 0(3) may also be constructed. This is done by 
first noting, as was stated before, that the three-multiplet vertex 

must be Uvi(6) OP 0(2) invariant; and that the multiplet momenta 

involved are scalars under the transformations of 144(6) (53) 0(2). 

Thus the three-multiplet M-function is constructed by a complete 

saturation of the indices of the particle-spinors involved amongst 

themselves, and with momenta. The number of independent ways of 

doing this gives all the independent couplings that may be con-

structed. 

As an example of such a construction the following effective 

lagrangians required in the calculations of meson-baryon scattering 

, are quoted. 

(10) (5‘7, I; 	
) 	0)4z- + cis 	; 

eise.e.t.we 
•••••, vn  -L-1 "(Ac 	

-rc BcD) 

C-4.1-clf) [30 CCA + "151 

and 

(11)  

0C. e ssec,t;ve 	 B(+ p4-q•+) 



2-  P1 

contracted propagator numerator 

S 	r A 	1(') 
o) 	4- VI 0 01,0 t" 	 0.% 	C 	let ( IT% C 

?•1, 6:" 

A 

VG 	L. 

In both these expressions the quantity -§t..(p,q ) is the fully 

contracted (6,6;L) meson particle-spinor, which is given by 

(12) 	= CilAg  VI _ VAL IsA 	/Au  ( 

The superscripts (+) of the couplings h for the meson-meson-

meson vertex (11) refer to even and odd values of L respectively. 

Bose statistics gives that h(+)=0 when L is odd, and that 

h(-)=0 when L is even. 

With the construction of the effective Lagrangians (10) and 

(11), the only further apparatus needed, in order that the Feynman 

graph for the scattering of a (6,6;i) multiplet by a (56,1;0) 
multiplet, with a (6,6;L) multiplet exchanged in the crossed 

channel, may be calculated, is the propagator for the (6,6;L) 

multiplet. This,when fully contracted in the manner of(12), is 

given by 

( 1 3  ) 	L (ct,  9.1  ; z'  (COL'  

where P6  (q,q';p ) is the fully 

corresponding to the 0(3,1) part of the particle-spinor. It is 

discussed in detail by Scadron in reference (10). Asymptotically 

the expression (13) for the (6,6;L) meson multiplet propagator 

becomes 
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( 4 ) 	 4. 1 
et, c; 	e‘i 	 (: i)*$ • 	o 

1\1 - -1/  

Finally, in order to deal with the effective Lagrangians (10) 

and (11) some derivatives of (13) are required. They are given a-

symptotically as follows. 

) 	AL ( 	 t .1)1,1?//L--fes")] 0 	 8  :2. 

r cf, / 
PZ~ tv11-2. 	M 

and 

(16) 	  

C /A8 41/1C1) 
LL( 00111;0 	2 (m-L-1- 

	 f._ Mt_mt, 
All the apparatus needed for the calculation of the Feynman 

graph for the scattering of a (6,6;0) multiplet by a (56,1;0) 

multiplet, with a (6,6;L) multiplet exchanged in the cross 

channel, has been amassed above. It only remains to give the pro-

cedure for the Reggeization of such an amplitude. 

Section 2. Reggeization. 

In the usual procedure for the Reggeization 

of scattering amplitudes it is the total angular momentum of the 

two-particle states in the crossed channel which is allowed to take 

on complex values. However, here it is not the above quantum 

number which is complexified, but the quantum number L , which is 

the excitation number rather than the spin of the exchanged part-

icle. 

( 1 5 ) A 
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The Reggeization procedure is carried_ through. by means of a 
generalization of the Van Hove model.(11) In this model a sum over 

the relevant Feynman graphs with the exchange of a multiplet of 

excitation number L is written, for L taking the values 

L=0,1,2,... . Then this sum is written as an integral, and a 

Sommerfeld-Watson transform is effected. The contributions of Regge 

trajectories come from the zeros of the function 

M 
	

t — Mz(L) 	say. 

Thus for t-channel Regge poles the trajectory functions are given 

by 

L = 	 say. 

In effect the above procedure for Reggeization is equivalent 

to making the following replacements. 

(1) I_ 7  oc (r) 
and 

(ii) 	 — 1.4 2c 	5 	'Tr (pc(t) — . 

It is well known that the replacement (ii) leads to poles at non-

sense values of L. This difficulty is overcome by the introduction 

of the Gell-Mann ghost killing mechanism, which involves multi-

plying the Regge amplitude by -7r(1140)-1. Or, as is equivalent 

changing the replacement (ii) to (ii)a below. 

(ii)a t 	r ot() 

Finally, the above simple picture of the procedure of Regg-

eization does not take signature into account. So signature is 

dealt with empirically by the extraction of signature factors 
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4 • (t_ iir(cf.(E)- 

from the couplings II( . It must be remembered that here, unlike 

the usual case where signature corresponds to even or odd spin, 

signature corresponds to even or odd excitation number of the ex-

changed multiplet. 

This completes the apparatus required for the calculation of 

Regge pole contributions to scattering amplitudes, in the context 

of a u(6) (E) U(6) 0 0(3) rest symmetry scheme. The next chapter 

will be concerned with the application of this formalism to the 

calculation of the Reggeized scattering amplitudes for the reactions 

0— 	4- 
, 

and hence, through the vector meson dominance model)together with 

time-reversal, the calculation of the scattering amplitudes for 

the reactions 

Yi4r 	
A- 

Z 	0 
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CHAPTER 2 

This chapter, together with the remainder of part two, will 

only be concerned with charge-exchange processes. 

With a view to the calculation of the charge-exchange proc-

esses 

Y 2.. 	 4-  
Q 2 

the 11(6) OBI u(6) 0 0(3) symmetry scheme is used in section 1 

to calculate the Reggeized M-function for the charge-exchange pro- 

cesses 

This M-function is then used inection 2 to calculate the Regge 

pole contribution to the corresponding s-channel helicity amplitud-

es. Finally,in section 3,the link between these helicity ampli-

tudes and those for the corresponding photoproduction processes is 

effected by means of time-reversal and the vector dominance model. 

Section 1. The Reggeized M-function. 

The effective Lagrangians 

1(10) and 1(11) are to be used for the calculation of the Feynman 

graph for the charge-exchange processes 

0-  4+  )1 4-+ 

with a multiplet of excitation number L exchanged. Since the 

couplings 110 	h0 	and go  , appearing in 1(10) and 1(11), 

do not contribute to charge-exchange scattering, the couplings 

h t(t) 	and g, are the only ones to be considered. 

So, using the effective Lagrangians 1(10) and 1(11) , the 

particle-spinors 1(6) and 1(7) , and the expression 1(14) for the 

fully contracted propagator of the exchanged multiplet, the 



(56,1;0) 

1,,  
(-1\Y--$)pv\(4•)(ssic./ 

4$ gifIg 
4  

A' 
(-) r. 

.4-)  
120 
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scattering amplitude for the graph 

is given by the following. 

14.
--F(ACD)(4124-1) 8COH- P f cif)1A1.3(1 07419 

• (-) 

A 	
P:21-f/ci  e) 	Ak  L(Viii'  • 

This readily simplifies to 

(I+) 

+51Nr\[1(i..t.4-cA 

61,16.A 

where the plus suffix on the square bracket denotes the anticom-

mutator. A direct application of 1(16), where from now on the L-

dependence of M I_ is left understood, simplifies this expression 

further still to give 

P' 	q:q. (Ac.v) 
2. 	 (-W.Cit )  sin" 	Fo  2.. 112 I ( 1 ) 



? • elf  ow. 
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`r( BCD)(—  + 	r 	t". V)  2 clia.r—c01+ 

47)1-41_ 	C-Ip+v),"§(1t, — cle')][2 	6  )A  
where 

Two properties of rz which will be used in the following, and 

which follow immediately from the definition (a), are 

(3) its fit =-- 	m Gt. 

and 

(4) 1  cl 
4- 0 • 

Now that the expression (1) for the contribution of the above 

graph has been obtained, the next step is to reduce out the con-

tribution to the corresponding graph for 

O—  (56,130) 	(56) 1 ;0) . 
In order to do this, and the remaining calculations of this sec-

tion, extensive use of the multiplication and trace properties of 

the 1=matrices will be made.(12) The notation used is that of 

reference (9). 

Before proceeding, the following relations must be noted. 

These follow immediately from the mass-shell relations of the 
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multiplet momenta. 

Now, with the aid of 1(8) and 1(9), the above reducing out is 

achieved by a consideration of the following two quantities. 

(8) 

4'4(it- 1.7 (ii-A6  4-eivAA 	- 9C+)-0'44 
ms 

and 

( 9) 
	

Tti 	41;) 1(4: 1 *1,1)r = (4)42)-1  ct't  (. - 

4'1(47-Vt 	 I 

where only the relevant 0-  and 1 parts of the meson multiplet 

contribution have been exhibited. 

On making use of the anticommutation relations of the v-mat-

rices, (8) becomes 

Z) 	+5 (i 1,1) (1) r  P --CV) ( 	 A-1)  

.Y/A 	 7  

since 

1(4) (4. ? -1,f ) ckft ( 	_9))=  o, 

rz.  (4-t)-s ct's 	) 41j  (-12-. r - cc) 1+C m4-1 

[Y/A 01;1 	--4: /5/1  141_  6g (4.  m +fr)z  b1 015-) 

by (3). 

.7: 	M -%14) +5  (it 41) rei "V) f+A[Irit Al 155 -2,a/jA-)12 
44-7 



(12) — VAG% (  	 t— 
F2-1\12" 	  Hz 

tYifi 

i(scp)(1:‘,  ct) 	SiXr_7(‘A4-1 )t.4)5(Iil F  4; 

f-4641)+ -l- r+16[2r3dCgtfi.64:1D4-k{ctAP11)) *, 2/A 	 A 

0 
+ t/2.1)A)LT (AC 1)6 +1)  

-111F- 

by (7) and since 

by (4). Thus the right hand side of (8) is finally given by 

(10) it, (IR+ co 	ce) 	41.1/2".) (1),15C-ict  

By making the replacement A' 4 -4' in (8), the final form of 
the right hand side of (9) is given through (10) as 

(ii) 4'4(2rcmv-ir+c00±14)c-(fIA'5 Y/A41-1-Vc.:. 
Collecting the results (10) and (11) together, and tempor-

arily leaving the momentum dependence of the mesons particle-

spinors understood, the expression (1) becomes 

where D and F represent the usual symmetric and antisymmetric 

SU(3) couplings respectively.(9)  

Expression (12) may be simplified further by a consideration 

of the expressions 

(13) 	?4- 9,) A- )A 5 - r LI-)( 
CO 

and 
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(1/0 T(1-p-t-cor,_ lc,br)A,901-7- 	ct,) 
By extensive use of the anticommutation relations of the '-matrices 

, the Bargmann-Wigner equations, and the relations (3), (4) and 
(5), the expressions (13) and (14) respectively reduce to 

(15) 	( 	r -v. at) -6's (-121 ci,) 
211..4 	01 

end 

( 16 ) 	t clf) 	ce,[541, 7/015j —i 	-2_11; 609 	r  to.  Losl  
The results (15) and (16), together with (12), give the final form 

of the asymptotic contribution to the above graph for the processes 
0-  (56,1;0)41-  (56,1;0) as 

(17) 'VAS% ( rt- .9! M 	Cies)  I  0 +-11) kVikC  
Ds 

KA 2 	 (ZP÷11 

*oac ( ircv) f:4h (I -1--W)(1,S+ [51)&i,'1, 

[ ?5cV4] D) +(e,,--/Sti7Lcit,'))'taq - 	criyA 

[d?54)4] 	[Ck 	 • 
WiA 

Now that the contribution of the above graph to the processes 

0.-  (56,1 ;0)-->1 (56,1;0) has been reduced out, the next step in 

the calculation is to reduce out from (17) the contribution to the 

processes 0-  -12+  - —) 1-  1+  . It may be shown that the 	baryon 

octet contribution to the quantity: 

D
9) 	

9/) TP)CD C-117 }if) 
is given by 



(18) C24 wiz)' ((-1 4f+ 4, -1- vvi)"b's C C-1  Xs- ( f5  1+*))/(  
CICA-11, 	N 	-t-ci,)).33r5F  -I-- (12 mz)-1  (:T Y(4.1-1- /) 

wie(%(-kt+4-i-1/49q0j3a)304.,F  
whore NI is usual Dirac spinor, and D,F are the symmetric and 

antisymmetric SU(3) baryon couplings respectively. 

Thus on using the expression (18) it is seen that the foll-

owing six quantities must be calculated in order that the contri-

bution to the processes 0 i+ -4.1 - i+  may be reduced out of (17). 

(19) tr -1  4' ("Ii Pikt rel) ek 	 ,-"106C)4\ 

(20) )6- 	f5 	vy0 	Cot vi41 zrs] ; 

21_47-: bdt 	 Z5 57t+-YVI) 5 C ) 

(21) (-12:?5 	''06 8*  

A-k\› -N-01,) N& (-4 +-c0 
(22) (ii-mi,t)-1  Cc --'/6- (-121 	ct+vvi)[0,01!-,YAYs] 

11.4-n-IY85-cYr  i\rk4:rec) 1\is 

(23) _29; 11-2  (C-  Is 	91,1-  '4.1)1Cs ekk6i-f"4) 
cc' — 

5  c) 	N 	6'0 Ng(-1,1.-V-c0 



(24)(C -'.71.5-(-1,1f+Irrm)a-viA )16.(-s 	Tv1)W6 

c)si 	Ns(-11)+1,) 
Of these expressions (19)-(24), only (20) and (21) will be calcul-

ated in detail, the remaining results being merely quoted. 

In order to calculate (20) firstly note, as may be easily 

verified, that the trace of a product involving less than four 

If 	•and 'lc vanishes. Secondly note that 

(25) tr(:6),A 	zr,) 	- 	. 
Now rewriting (20) as 

tr 	is- t-rA)(4.-r#4,-1-y,)(_[,[c/C1 /]15a 

0-vt ?/6- 

  

M4y. 
and bearing in mind the above remarks gives 

t-r (I pt. [S4 141 Ce (511/4 115 
	[i DC 16141 Zri-j) 

(26) - -- 4 (i 
/kk 	 M 	xfr v p~ci/ j) 

by(25). In an exactly similar fashion it may be shown that (19) 

vanishes. Now (26) is not the most convenient form of the result 

of calculating (20). By means of the Bargmann-Wigner equations 

together with properties of the 1-matrices)(26) may be cast into 

the following form more convenient for later usage. 

(27) (,+ 	r'^~ — 	9 ?V] Cs• e/ 9: 1) NI 	 /4 Tot 	( 	 4  
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)1.6  1- 2 rn ?Cs.  (9,r 	9.' 	i'dt)) • 
Making use of the property of the Y-matrices that 

c-' ?5,AC - 
the expression (21) may be written as 

(.1(bknI  r( 11  4-9 zfb:r(ivi +if Licr)cfr Carl) 

= 	(. pi-co (;5, -1-9ti,-1-vvix_k 	gym) '1 5 	t+1,) 
= N C a 1:5 41,)(-111: M2+m2   

= N (-kpi-c0(2 (m 	142-) )Ss. N 	?-91-9,) 
by the Bargmann-Wigner equations. 

MZ
•••••••••• 

,?•4-5)1CNI 	9.) 41-yri2y 	 45 

since 

Ta-L- F#1) 00s5- 	ct,) _ o . 

The simplification of the expressions (22), (23), and (24) is 

exactly analogous to the above, and the final forms of these ex-

pressions are given respectively by 

(29)  —2=— 1\1 (4. ?# cf) ((i4-mz4- Mz)(c, 	CV 	4Iik) 
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_14_,v?_112,4?5,5.4.2m6nz tnbeaDt„i 	NE-kV' 41)) 
(30)  

M7/.A 
e+ 	1•42) ("IA 	c0 156 NI L— 	(1) ) 

(31) 2,K" 	cif) ((ri\z-l-k.Mz.)15 Up, qin —21; ci,1  

4-'005-0/),A Alf ct; 	N -k‘-scl,) 
On collecting all these results together, the expression (17) may 

be rewritten as 

(32) F":1- 	ovies 
; "-1j)&-ii+-2t7) Vez— M 	 VYVA 

.){ —245 	— Ziy:2)Ar ?C6 KA) 90 4-  

where 

(33)  

(310 

("4:_, (0 	B}k _ 	At) 9 DIF  2c4ivia  

71--1--r, 	 F)A/A 65. (9/P ct — et; cC.zsik) 

c0 

WA ( 	47#6.(4.‘D cV)it.ik(4i.p 

t4 	\13r)F.  ")) 44 G1i 	 (0 -"A 

and the cou-i:7.ing constants now appearing are equal to the corres- 
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ponding coupling constant, which appeared previously, multiplied 

by the value of the new suffix at the vertex in question. 

The last task of this section is the Reggeization of the 

scattering amplitude (32) for 0 -1-+—V1--1-÷  processes. It is 

effected by a straightforward application of the procedure given 

in section 2 of chapter 1, and involves the following replacements: 

\:02- M7-  —> r (k — 04 t(t)) 

and 

where a factor of h, the universal U(6,6) 	0(3,1) coupling 

constant for the relevant three meson multiplet vertex, has been 

extracted from the residues Si:. These residues have been intro-

duced in order that symmetry breaking may be incorporated into 

the scheme at a later point. 

Now an inspection of (32) after these replacements have been 

made reveals that the Reggeized scattering amplitude has square 

root branch points at t=0. In order to eliminate these unwanted 

kinematic singularities, Gribov doubling is introduced.
(13) 

This 

involves adding to (32) the corresponding quantity with 4-=›-JR. 
The resulting Reggeized scattering amplitude for 0T--27.134.  

is then 

(35) -i Ni(-1p-I-9,)(ab-Drp,91!.]  4 	i'POS  5 # 

C 45-  (cldk 1- 	6P))N 	 -.1`) 
where 
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(36) a v.= 

417-401)(0 -&)b- ni 	3 	pt irTz 
(38) C = 	

...... 04- 	F) A , 23,4 • LiArt1 

and 

(39) A 	
_ e 11To(inT)c-1(‘_. 	__ v444-1 

vievA 

vvvA 
(40 ) 	Qlz 	e  ;Trec)‘,1   VI - Qt +.) (:- 	 t44.'  

VIYIA  

The writing of A and B in the above form enables symmetry 

breaking to be introduced into the 'rajectory functions 0(1:0  in 

addition to the residues. Now that the expressions (35)-(440) for 

the Reggeized scattering amplitude for the processes 6i+---41..14.4-

have been obtained it only remains to calculate the corresponding 

s-channel helicity amplitudes in terms of this Reggeized contrib-

ution. This is dealt with in the next section. 

Section 2 The s-channel helicity amplitudes: 

In connecting the 

above Reggeized scattering amplitude with the s-channel helicity 

amplitudes, symmetry breaking is introduced by assuming that the 

particle-spinors corresponding to the external particles are dep-

endent upon the physical masses of those particles, and not on 

(37) b 
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multiplet masses. This symmetry breaking is necessary to avoid 

some undesirable kinematic effects. 

Since the photon can only have helicity 4.1 , the following 

vector-meson production helicity amplitudes are those considered. 

Table 1 

3 	‘ 

ix` 12.-  I 	- I -1 

° i 911 Ya 4)4 — kP2_ 

0 
I 

- 12", 1 Lidz 	I LP4. -- Y3 y i  
where i11,X2,)13,X4. are the helicities corresponding to the 

0 , incoming 	, 1 , and outgoing 4.+ multiplets respectively. 

The phase convention is that of Jacob and Wick, and parity 

conservation has been used to reduce the number of independent 

amplitudes. 

The space axes in the centre of momentum frame are oriented 

as shown in the diagram below, with the scattering taking place in 

the x-z plane. 

0- 	A Z 

1V1;  
rnn  
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On labelling the energies of the four particles by EI  Ez , E ls , 
El+, their masses by m i  ,m2.,m3  ,m,y , and the magnitudes of the 

3-momenta of the incoming and outgoing particles by K and Q 
respectively, the following explicit expressions ensue. 

i(E1 4-E3 , osylet 0 K+ acos 

(E zi- E - asiv‘b, 	K Ccose), 

= (E% -e3 QSir9, C) 7  K — QCPS (9) 

The outgoing meson polarization vector is given by 

t7 /4 t  (44)  <. 1  42- 	3 	n 

(.0 cos e,  - s.“ne) 
and the boost convention of Jacob and Wick(14) is such that 

(45) GO Tr- 	rn2 

 

(-114'±t )C  
Ez+ WIZ 

  

and 

(46) 4- CO -a. 4E0-411 Li-  +1(1 	# +- in 4. 

with 

-2. 
(47) °1) 

clp  t 	-ko,-cos),e) 	= @osie, 

The expressions (41)-(47) are all that is needed to calculate 
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the Reggeized contribution to the s-channel helicity amplitudes 

for the processes 0-24--40.1-4-4.. As an example, the contribution 

to the helicity amplitudes of the term 

(48) ( it) I- CO 	N 	17' 	t:,  • er 
will be calculated in detail. The remaining contributions are cal-

culated in an exactly analogous fashion, and are merely quoted 

here. 

On substitution of the expressions (45) and (46) for the 
nucleon octet spinors, (48) becomes 

KX  ci:)A 	
E 

 11'4 CSIALI-) 	4- 2 ilf6. 	N 	b 	) 
-I- 	 Ez+111 2 

where 

(49) C = E + 	E 	 • 

The following abbreviations, of use later, are also made 

(50) Di — c ± co 
(51) t  = K(E1.4_4. IN(1 	-32 Q (E.LA-m2) 

Note that the third and fourth components of the spinors (47), 

left understood there, vanish, and that from its form 	is 

easily seen to connect only upper and lower pairs of spinor com-

ponents. Thus (48) reduces further still to 

xif hz 	t"eirC14 ( 
E4. +-M g- 	;r71  2) 

The contribution of (48) to the s-channel helicity amplitudes 
may be read off directly from this expression. It is as follows 
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L4-1 : — i (204°-  K svi\ecoslie, 

(52) 
2: 	

(2c) 2  K H scylesvrii6,  

*3: i 

101- sine cos-to. 
The contributions to the remaining amplitudes follow from parity 

conservation as shown in table 1. 

In an exactly analogous fashion the contribution of 

#c\e) zcb-tip 11:-1 N 	E-114  
to the s-channel helicity amplitudes is shown to be 

: I (•!il 	/f2  (((31— K)H_(CI  E3) 1)2) sin le -1- 

i (2C)- I/2- 	... Sivi, c_o s  

i aC)-14((a-k-k)H+ +Cal+E3)D4.)c)0%2e  

(53) Y3: 	(2.c)-1/2.  k Vcs•ve\esi•A .1...e 
(zc-/-71  K114, s;u4".e siv,  9  3 

K Vt_ s; 8 co Si_e • -- 
the contribution of 

i- i(1,:43, 4-1,)6'64C 1\1  (-1.1'4- cu) 	el*  
is given by 

- i(32,C)-Y2.  (cEi -F•E 	+(G) 	Sine C.oSle) 



1(32,c)--YlEii-E)14_-4-(K-G1)D...)Ksible sin 42.8)  
(54)  

(32C)-1/2' 014- E3)1•1_#(-Q)D)Ksiine 

T_ : l (32,c) '6-(( E 4- E 3)14 4, -1- (Gt 	.A.) S iY1 etosli9 

and finally the contribution of 

14 044-0 ?r6 e:14  N 	? aret/i 9/C(,' 
is given by 

411 	C) V V 5112g  

42.CY 1i2  cit. 	D_ cos i e 7-- ) 
(55)  

Two points must be mentioned before the expressions (52)-(55) 

are used to write down the s-channel helicity amplitudes. Firstly, 

in the definition of two-particle states given by Jacob and Wick 
(14), a factor (-1) 	isintroduced for each of the particles 

two md four. In the above the nucleon octet members were chosen as 

particles two and four, and the corresponding phase factors must 

be introduced into the helicity amplitudes. 

Secondly the expressions (35)-(40), when taken together with 

(52)-(55), give a set of helicity amplitudes which do not obey 

angular momentum conservation in the forward direction. The off-

ending quantity is the expression (37), and the residues corres-

ponding to any Regge trajectory which contributes to this expres-

sion with a non-vanishing value of $:6-10_2 must be made evasive 
3 



(because of the assumed symmetry there is only one effective res-

idue for each trajectory, and so all the related residues must be 

evasive if one is). Since b+liF  does not vanish for any of the 

processes of interest, all the residues appearing are assumed to 

be made evasive by the extraction of a factor %my. 

Bearing these two remarks in mind, and collecting together 

the results (35)-(40) and (52)-(55), the final form of the s- 
channel helicity amplitudes for the processes 0 ,12-+-41 	are 

given as 

(56) 4), (scY'(okt (2 sin Ze(((3Z -K) ( E.) 4-  E.3)b_)+- 

k 	Sin e cos 	ckz  it._ Sin cosie 0,3(2.D 

Sin ie(2sit -2 011'-zA 	VI++ (G. +k).1)4.)1<% f‘ 9 acs 

(57) = (8011@i(1(1-k 4,6;r1 et s;n-ko —2 co s 

-1- Cs ri-E3)D+) — C z  1(114.3ivNe stv‘%e + 	caste 

(2.sk t -2 m4-2./.1/42) - (CE -vE.3) _ 	 s.ril 

sin ..0)) 

(58) (8'G)-V2 ((cit —az) 	ek 3 ((a-10 

+ 3) _)) <sivle) sinie 

(59) 4)14. = (7c)-1/2" ((az - 	_ 	cA 3 (.( E., i-E3) 1.1 -i- 

(Gz 	D+)) K s .v41E3 cos 
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where 

(60) ot% = 	 ct 
%rivA 

)a (61) _ — 14-pm 	 rn 	 2.mik 

A)%iF --.1-L(We_i\)(s—‘v`—)A-4-.4-t-)V, 
IJ%J 	2-YN'y's 

(62) Q3  —? -k-- 	)4 D4-_F 	) " F rrlii1/4 	4-14"1 	s 
with 

(63) A =. 	ci7"%i)V17„. cl()04;) 	 

Y_ 	e rrfei—) 	\--I 0 / 	 s 	 
act  

(64) B=  

Zrn 

2  E. 	iitc4+)‘ r 	- ok+) 	kti4-4-1 

The expressions (56)-(64) form the complete basis for the discus-

sion of Reggeized contributions to the scattering amplitudes for 

1+  	+ 0 	'"'1* 1 2 -I- 	processes, and hence, through the vector dominance 

model and time reversal, to the corresponding scattering amplitudes 

for 15 	i+  processes. The connection with photoproduction 

processes will be made in the next section; whilst a discussion of 

particular processes, and particular Regge pole contributions, is 

n  
.--;;Az) OF 
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left till chapter 3. 

Section 3.  s-channel helicity amplitudes for photoproduction. 
The 

s-channel helicity amplitudes for the processes 	4-4.-301+  are 
labelled as follows 

Table 2 

where 	1 , N3  , 4. are the helicities of the photon, and the 
incoming i÷  , , outgoing 3+  multiplets respectively. 

Now for any helicity amplitude Mx 6)1 /42x.sx 4.1  time-reversal in- 
variance gives(14) 

 

(65) M)%1X4.)%t>\2 = 

where 1759 ik LIA N2, is a helicity amplitude for the time-reversed 
process. By an application of the relation (65), the table of hel- 
icity amplitudes for the processes 1 	 is seen to be as 
in table 3 below, where 'Ai  s'h 2A 3, t4- are the helicities of the 
1 	incoming -1+1 0 1  and outgoing -I+  multiplets respectively; 
and the 4.1; are given by the expressions (56)-(59) with the 
roles of K and Q interchanged. 
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Table 3. 

a3 	Z ... 
Z. 

1 

— Y1  —4)4_ — ̀ i,.. 
O  4) 4), 

Finally an application of the relation 1(1), expressing the 

vector dominance model, gives the following expressions for the s-

channel helicity amplitudes dk. . 
(66) •AD, 	txi.r (.'fri4) 	tS 	CLA)a)) 

s( 4)„.(r) 	4i,((08)) 

45 	( (f) 	( 8)) 

1-rt.4 
(69) 

	

	
Eqj  ° 4--  It Y41-(cas))) A-, 

where the suporsoripts yo, w indicate that the contribution from 

the vector-meson production helicity amplitudes to the particular 

processes 

f° h* 7 a zt  - 

WS' 	0 2- 

is the only one considered; and where the 9)-s  are given by the 
expressions (56)-(59) with K,Q interpreted respectively as the 
magnitudes of the outgoing and incoming 3-momenta in the centre of 
momentum frame. 

(67)  

(68)  
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In order to complete the transition from vector-meson produc-

tion to photoproduction it is necessary to make some remarks about 

g uge invariance. Gauge invariance in this case requires that 

(70) c.k r - ct,t)/A 
	

) 

where 114,4  is defined by rewriting (35) as 

miA clpf4(1-p-ct"). 
Now it may be verified by direct computation, using (35) - (38), 

that the only part of 194 which gives non-vanishing contribution to 

the left hand side of (70) is the pseudoscalar coupling. However 

this contribution may be rendered gauge invariant by the inclusion 

of an s-channel contribution proportional to (4p (4.0", , which 

from its very form will give vanishing contribution to the helicity 

amplitudes in the Coulomb gauge in the centre of momentum frame. 

Thus the procedure given above for the calculation of the Reggeized 

s-channel helicity amplitudes for 	0-1g+  gives an effectively 

gauge invariant result 
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CHAPTER 3 

Section 1. Absorption Model. 

  

    

The experimental data on ?SP ---1-1'n 
exhibits a sharp forward peak of width in t of the order of the 

pion 	(1) mass squared. 	Previous work on this photoproduction re- 

action, using a peripheral model with absorption corrections, has 

shown that this forward peak can be explained in terms of pion 

exchange.(7) In this work it can be seen that the elementary pion 

gives vanishing contribution to the differential cross-section at 

t=0. However, with the application of absorption corrections a 

forward peak of the correct width is obtained. In particular con-

sider the s-channel helicity amplitude 422.  (see table 2). Since 
this helicity amplitude does not involve any net helicity flip, 

it need not vanish at t=0. However the contribution of an elem-

entary pion to this amplitude has the form 

(1) 4.12.(11)e-a t 	 for small t 
t -rn lr 

t relit 
Now the first term on the right hand side is s-wave, which violates 

unitarity at high energy. This contribution is mostly removed by 

the absorption corrections, so that the final result is 

(2) 47)(abso1r bed) c rr\  
which gives the required forward peak. Thus it is seen that as a 

'2.. 
consequence of the small value of Mr. , the behaviour of the 

differential cross-section is dominated by the pion pole for 

small t. t. However, in describing the reaction 2§?-7.PIT 	it is 

necessary to consider the exchange of particles with non-zero spin 
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in addition to the pion. As may be seen in references (7,15), the 

energy and momentum-transfer dependence of the absorption model 

predictions for the exchange of non-zero spin elementary particles 

are in disagreement with experiment. 

It is in order to overcome this latter disagreement with ex-

periment that in this work a Regge pole model replaces the simple 

peripheral model of the above work. It remains, however, to discuss 

the predictions of the Regge pole model near t=0, where the absor-

ptive peripheral model gives such good results. As stated in sect-

ion 2 of chapter 2, the residues of the pion Regge pole are assumed 

to be evasive in order that angular momentum be conserved in the 

forward direction. An inspection of the evasive Reggeized pion 

contribution to the helicity amplitudes reveals that it is zero in 

the forward direction, exactly as in the peripheral model case. 

Also, since the pion Regge trajectory must pass through the pion 

pole, and since hie is very small the Reggeized pion contribution 

to 010.2.  will be of exactly the same form as (1) for small t. Thus 
if absorption corrections were applied to the Reggeized pion con-

tribution then the result would be of the form (2). All this means 

that the replacement of the absorptive peripheral model by an ab-

sorptive Regge pole model reproduces all the good features of 

absorptive peripheral 1r-exchange near t=0, whilst overcoming the 

difficulties involved with the exchange of non-zero spin particles 

in the former model. 

The apilication of absorption corrections to the Reggeized 

pion contribution is interpreted as taking into account pion-

pomeron Regge cut contributions in addition to those of the pion 

Rogge pole
(16). Thus it is the pion-pomeron Regge cut which dom-

inates the behaviour of the differential cross-section for small t, 

and gives the forward peak in v?--->IT+rt . 
In order to introduce the absorption corrections, the 61p. are 



first expanded in partial wave series 
NO, then modified accor-

ding to the Watson formula
(17) 

ekl( e 	C St:At•It 	•-)5; %-x 	i 2 
where S.!-1  and 	S" gal  are the scattering amplitudes for 

elastic scattering of the initial and final states respectively. 

The elastic scattering is assumed to be non-spin flip, and given 

by the Gaussian form 

(4)534 3 - 	d .Q ADC- -50.4 0/92-r-) 

with p the magnitude of the three-momentum in the centre of mom-

entum frame, and V the elastic radius of interaction. Finally, 

the partial wave series is resumed after the replacement 4)7---7m, 
41.4.. In terms of the resulting modified helicity amplitudes 	1  

the differential cross-section is given by 

(5) 
K 2  

2- 
I 	lig Tr S 

Section 2. Regge_pole description of n"--77r rt. 
Since the vector 

dominance model is here being used to describe the process 15? 

the scattering amplitudes for this process are given thro-

ugh 1(1) by the scattering amplitudes for the processes 

so , 7  -cc +n 

and 

For the former, the possible t-channel exchanges are the 1T and 

Az mesons, whilst for the latter the possible t-channel exchanges 

(3) 
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are the S and B mesons. 

Little is known of the B meson, though it is generally bel-

ieved that its Regge trajectory is low-lying. Thus in this work 

only the 7r,y, and A2,  trajectories will be considered. The rel-

evant SU(3) couplings are given in table 4 below. 

Table 4. 

Re 
ckcl.. 

bi  
n 

acerijon verto: Meson 	ve-rtzx 

TN J_ 3.7 
r J+3 r  

F F 

0 
i) 	

-1. 
--VW 11 f 

b 	.... 
— 4 L 
3 - - - 

us8 1,- 	I 6,113  
Z 

St - 

It now remains to give a discussion of the role of the 7V, 

jo, and Az  Regge trajectories within the context of the Reggeized 

U(6)® U(6) GD 0(3) symmetry scheme of chapter 2, and their 

contributions to the quantities A and B defined by 2(63) and 2(64) 

respectively. In order to do this it must first be noted that the 7C 

andj, mesons belong to the (6,6;0) representation of U(6)0 U(6) 

00(3), whilst the Al  meson belongs to the (6,3:0) representation. 

Thus the 11 and have even N-signature, whilst the A2  has odd N-sig-

nature. Thus the replacement N-1M-1, made in the fleggeization 

of U(6) 0 u(6) 6D 0(3) , allows the identification of at in 2(63) 
and 2(64) with the usual Regge trajectory functions for the! and 



Az mesons respectively. On the other hand the usual pion Regge 

trajectory function contributes through the replacement 044----* 

ar+1 . These remarks, together with the SU(3) couplings at the 

meson vertex (table 4), give the following as the contribution of 
the Tr ,s, and Az  trajectories to the quantities A and B. 

(6) p\ 	 e- 	ds)1 S -yr-/Ax+ktyiv-i  

and 

(7)  B= e: in  (41) 11( 
/s 	% 0( 

1) 

2-r t 

• 

Note that symmetry breaking has been introduced by allowing ind-

ependent trajectory and residue functions for the Tf and f mesons, 
even though they belong to the same U(6) 0 U(6) et 0(3) mul-

tiplet. 

The residues were taken to be constants, and the trajectory 

functions were parametrized by 

consistently with reference (18). This parametization of the 

trajectory function gives the conventional linear trajectory in 

the p9ripheral region: 

ok 	04 	01 t 	011 0(2  t 
Thejo and Az  trajectory parameters were taken from reference 

(18), whilst the number of free parameters in the pion trajectory 

function was reduced to two by constraining the trajectory (when 

„1-0(A' 4-±fA 2.0-+ e'c(Aro-'N2)v1Frr4.z•-' 4 2_1"rvA 
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extrapolated linearly) to pass through the pion pole. In reference 

(18) the residues corresponding to the r and A2 mesons were not 

evasive, whereas here they are; thus it cannot be hoped that the 

residues of reference (18) could be carried over to this work, and 

,hk. thus provide three more free parameters. 
The differential cross-section for the process VF1 -27'Ir./.n 

was then calculated by substituting the values (6) and (7) for A 
and B into the expressions 2(66)-2(69) for the 49;  , expanding 
the result in a partial-wave series, applying absorption correc-

tions to all the input Regge poles through (3) and (4), resumming 
the partial wave series, and finally substituting the resulting 

modified helicity amplitudes into (5). Then the above five free 

parameters were determined by a le fit of the differential cross 
-section to the experimential data using MINUITS (CERN program 

library no.D506). The results of this minimization procedure are 

exhibited in table 5, and the absorption coefficients are exhibited 

in table 6. 

Section 3. Discussion and results. 

Using the pion trajectory para- 

meters determined from the constraint of passing through the pion 

pole and from the fit to the experimential data, and the 	and 

A2 trajectory parameters of reference (18), a Chew-Frantschi plot 

of the Tr 	, and A2 trajectories is made in figure 1. Note 

that the W trajectory has a slope of .35 for positive t, in 

contrast with the S  and Az trajectory slopes of .90 and .86 
respectively. 

The effect of absorption corrections on elementary and Reg-

geized pion exchange is shown in figure 2. Unabsorbed elementary 

and Reggeized pion exchange are taken from reference (7), which 

used u(6,6) symmetry to relate vertex couplings. Note the 
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similarity between the two cases for small t which was suggested 

in section 1. The application of absorption corrections to the 

elementary and Reggeized pion exchanges results in curves 3 and 4 
respectively. Again note the similarity between the two cases for 

small t as they both give a sharp forward peak of width in t of 

the order of %lc's,. Thus figure 2 demonstrates that the absorptive 

Reggeized pion exchange does actually reproduce all the good res-

ults of absorptive elementary pion exchange at small t. Beyond 

the region in which the pion to dominate, namely itt >Me , a 

"dip-bump" structure, not exhibited by the data, is present. 

As is seen in figure 3, the inclusion of S and AIL  Regge 

poles, together with s-pomeron and Alrpomeron Regge cuts, smooths 

out the above mentioned "dip-bump" structure, and gives a very 

good fit to the data for 5.0 g5L.400 4, 18.0 GeV/c and 

045 libl41 (GeV/OIL . Data exists for higher momentum transfers, 

but this was not included in the analysis since it is beyond the 

peripheral region. 

The reaction tf17--41 has been treated in a Rogge pole 

plus Regge cut approach by Froyland and Gordon(19), Henyey et al 
(20), and Blackmon et al(21). The model of reference (19) contained 

evasive -7r and j,  exchanges, together with Regge cut contributions 
of adjustable strength. At the expense of 18 free parameters a 

good representation of the differential cross-section was obtained. 

However it must be noted that in that model the differential cross 

-section has, in contrast to the model presented here, a dip at 

tAern7r2", the depth of which increases with increasing energy. 

Reference (20) used Tr ,j), and Ay exchanges, together with ad-
justable cut contributions, at the expense of 12 free parameters. 

A dip similar to that appearing in the work of Froyland and Gordon 

is present, and the agreement with the data is somewhat unsatis-

factory for large Itl. The model of Blackmon et al(21)used an 
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elementary pion exchange together with Reggeized evasive Az  exch-

ange. At the expense of five free parameters a reasonable fit to 

the experimental data was given. 

The model presented here, which employs evasive Reggeized -Tr,  

j", and A2.  exchanges together with absorptive correction Regge 

cuts, is able to reproduce the features of the experimental data 

very well at the expense of only 5 free parameters. This may be 

interpreted as further evidence of the role of Regge cuts in the 

description of strong interactions at high energy. 
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TABLES 

Table 5: Absorption coefficients. 

Plab 

(GeV/c) 

initial / initi al 

(GeV/c) 1 
 

C 	. final )1 final 

(GeV/c) ,  

5.0 1 .295 .81 .26 

8.0 1 .295 .76 .26 

11.0 1 .295 .73 .26 

16.o 1 .295 .71 .26 

18.0 1 .295 .71 .26 

Table 6: Regge parameters. 

trajectory l 77 ... A 2. 
04 -0.520 -0.871 

(not varied) 
-0.936 

(not varied) 

04 1  0.513 
1.415 

(not varied) 
1.420 

(not varied) 

C4 2. o.674 0.632 
(not varied 

0.607 
(not  varied) 

J2 21.637 -33.318 35.040 

The number of data points used was 99, with a resulting % of 255. 
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FIGURE CAPTIONS  

(1) Plot of c4(t) against t for 	and Az  trajectories. Pa- 

rameters frog- table 6. 

(2) Predictions for elementary pion, Reggeized pion, absorbed 

elementary pion, and absorbed Reggeized pion exchanges (in-

dicated by curves 1,2,3, and 4 respectively) at 8 GeV /0. 

(3) Differential cross-section for zs)--yrrvt. Data from Boyarski 
et al (reference (1) ). 
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