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ABSTRACT 

Two approaches to the mathematical foundations 

of quantum field theory are considered in detail, the 

recent constructive attack whose van is represented 

by J.Glimm and A.Jaffe, and the abstractly axio-

matic formulation of I.E.Segal. In the spirit of 

the work of Glimm and Jaffe, the ,X4)2n  ; field theory 

in two dimensional space-time is shown to exist 

without cutoffs in the sense that the renormalized 

Hamiltonian is self adjoint and has a vacuum, which 

is locally Fock. The structure of I.E.Segal is then 

developed and it is shown that a natural extension 

of the definition of renormalized powers of fields 

of Glimm and Jaffe is the unique one guaranteed by 

Segal's theory. 
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INTRODUCTION 

I have been fascinated since my introduction to the 

theory of elementary particles by the specious statement 

that these are but mathematical figments. This is assuredly 

not the case though often suggested in popular accounts. 

In fact the quantum theory of fields, which in quantum 

electrodynamics has been so quantitatively predictive, 

and in nuclear force theory qualitatively highly successful, 

leaves much to be desired mathematically. Manipulations 

that are without the pale of rigorous mathematics have led 

to these excellent theories. This should be paradoxical 

and is at least discomfiting. 

The study of the mathematical underpinnings of field 

theory was started many years ago by von Neumann, Friedrichs, 

Haag, Segal, Wightman, van Hove and others, but progress 

had, a few years ago, seemed at an end. Recently, however, 

successes have been attained, notably by J.Glimm, A.Jaffe
3  

and I.E.Segal.
4 
 The first two are following lines set out 

by A.S.Wightman
5
and are preparing explicit models. Perforce 

only in two dimensional space-time do they have fairly full 

.results as yet. Their method is that of approximation of 

an interacting theory which by the well known theorem of 

Haag, cannot be realized in Fock space, by butchered theories 

and of taking care of the separate problem of ultra- 
5 

violet divergences by use of explicit sequences of dressing 
6 

transformations suggested by perturbation theory. The 
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vacuum is treated by local algebraic field theory's 

methods.7  They show that their limits converge to give 

meaningful operators on a definite new Hilbert space 

and verify as many of the desirable properties of field 

theory, as set down in the Wightman
8
and Haag-Kastlem 9  

axiom systems, as they can. For (44)2  they have the 
10 

fullest results, a well defined Hamiltonian, a vacuum 
11 

state known to be locally Fock, and correct covariance 

of the physical and local fields with respect to space 

and time translations.12  

Segal has recently announced achievement of similar 

results of existence of a local field theory for 44)2 
13 

and GT402  to those of Glimm and Jaffe. His theorems 
14 

are based on an extended building up of a general theory, 

which besides not being so explicitly dimension dependent 

as the ingenious estimations of Glimm and Jaffe, subsumes 

much theoretical development of stochastic process theory 
15 

and of Lie group representation theory. His methods are 

in addition based on an idiosyncratic development of 
16 

methOds in functional analysis. This makes his work both 

lengthy and somewhat obscure. Glimm and Jaffe and associates 

have in the last three years also produced a voluminous 
17 

amount of material. In spite of this it seemed very much 

worthwhile to try to understand something of the work of 
18 

both parties to what is a fairly heated controversy. 

In the first part then, I follow Glimm and Jaffe and 



19 
show that their (1)4)

2 
results may be extended to (1)2n)2 

by the use of.a stronger theorem of theirs on singular 

perturbations than they used in (c1)4)2; in addition a short 
20 

Local Fockness proof is given. In part II an unfortunately 

sketchy exposition of Segal's foundational theories is 

given and the relation of it to the treatment of Part I 

explored. A general theorem of Segal on normal ordering21  

is reproved, both to avoid an error in a published proof 

and to demonstrate the possibility of handling both Bose 

and Fermi commutation relations simultaneously.22  

Unfortunately the need for a fuller treatment than 

it has been possible to give herein of both theories and 

their relations one with another and each with diverse 

realms of mathematics and physics remains. 

8 



PART I 

THE CONSTRUCTIVE APPROACH OF J.GLIMM AND A.JAFFE 

A Model for 

9 

Field Theory in Two Dimensional Space-Time. 
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a 	FOCK SPACE AND THE FREE EVOLUTION 

We again define Fock space 

F = 0 {Fii   : ninth} 

as a Hilbert sum ®.of its n-particle constituents: 

.= SL2(Rn) • 

The vectors of F will be written f and their components 

fn; thus 

f = (forfat f2r--.) . 

A function fn in F represents a state with exactly n 

particles, and lfn1 2  is to be interpreted as the 

' distribution function for their momenta. For vectors 

of Rn  we shall use roman capitals so that for instance 

K = (k1,..., kn) 	where 	kn  are 

each in R. A permutation Ti on n ciphers, element of 

the groUp Pn  of suCh)will act on such a K in Rn  as 

follows 

= (kffi r ..., k ) ffn • 

We adopt the following notion of, and notation for, 

the_Aymmetrizing operation 

Symn  : L2 (Rn)SL2(Rn) 

• fn  (K) 	(n!) 1  X{fn(K ) : Tr in Pn} •  

We use the notation Sym for the extension by summing 

Sym = 0..{Sym : n in H } 

so that 

Sym : 0..{L2  (Rn) : n in H} 	F , 

and we note that both Symn  and Sym are contractions i.e. 



Ilsymnfn ll < Ilfn l 

and 
	

Ilsvmfll < 11f11 • 

We proceed now to defining the free motion of 

particles in terms of the above wave functions; we 

assume the non-interacting particles should have their 

configuration evolution defined by the positive energy 

part 
	iat — /(—A+m2) 

of the Klein-Gordon operator giving the motion of each 

-1 I  + t 	A-A -F.111 2 n (ia 	/(-1+M2 ) 

The momentum space evolution is then governed by 

Bt 	= 	+ m2)f1(0,k) 

SO 

fa (t,k).= e-ii(k2+1112)f (0,k) 

for one variable k in R and where we have denoted 

the time dependent function with the same letter fl. 

We note that i(k2+m2) is the symbol of the pseudo-

differential operator /(..A.11n2).23  

Note: A partial analysis of quantization and its 

relation to pseudo-differential operators and 

their symbols is given in A.Grossmann, G.Loupias, 

& E.Stein: An algebra of pseudo-differential 

operators and quantum mechanics in phase space. 

Ann.Inst.Fourier (Grenoble) 43, (1969), 343-368 

For the general case of n non-interacting particles, 

we write the free evolution as follows: 

f (t,x)  = eitHof (O,K) 

where 	H 0  fn  (t 	= p (K) fn  (K) 

where 	= 	(k .
3 	

1 < j < n and K= (k1 	,kn) } 



where 	. p(k) = i(k2+m2) 

for k in R, with k2  being the square of the norm of 

k. Noting that for 7 in Pn  

P(K7) = P(K) 

we see that Ho  is an operator on F. Ho is called the 

.free Hamiltonian operator. Its domain is certainly 

dense for it includes 

= 0{Fn  : n in N} =---  

the vector space direct sum of the n particle spaces. 

F' is then the vector subspace of F consisting in 

those state vectors f with only a finite number of 

particles, or 

F -=ff in F : there exists N in N such that 

n>N implies fn=01 . 

A putative total Hamiltonian operator H, describing 

the time evolution of the interacting system in a manner 

similar to the free evolution should have the form 

Ho= Hp+H, 

where HI gives the energy of interaction. We wish to 

concern ourselves with polynomial self interactions of 

the boson particles and particularly with those usually 

'written 'A : 40(x):' or a little more generally 

'A : erilx):' with p>2 an integer. What is meant is 

of course that the translation invariant interaction 

HI is given by the above Hamiltonian densities 

H1 = R  : eP(x) : dx . 

where : c2P(x): 	is the Wick ordered operator. This 

matter is by now a commonplace. But it is not manifestly 

• 
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well defined. In fact, attempts at formulation with 

observance of the mathematical proprieties show that 

in general, the so-called operators above are not such 

at all and that even observing the convention of 

smearing powers of the field are bilinear forms at best 

if the dimension of space R is more than 1. 

We shall therefore continue the pedantic way and 

set up with care the formalism. First, we give some 

comments on the Fourier transform. R, the space of 

our space time, which is thus R x  El, will in the 

following be taken to be Es  for some dimension s, or 

= possibly 	S KS./S . Rs  is isomorphic to its 

group dual and 	this isomorphism is taken to be  

2nix. ; 	e 	= e(x.) 

where 	e(x.1 ; s 
	: k 	eCx.k) e27rix.k 

where x,k is the natural scalar product in Rs. The 

character associated to x is taken to be e(x.) in 

order that restriction to the subgroup Ss  provides the 

correct duality with /s. In addition one avoids many 

of the irritating powers of the square root of 2n in 

many formulas.
24 
 We shall adopt the usual convention of 

associating the variable x with configuration space, 

and k with its dual momentum space. Thus also shall 

we associate multivectors X with Rn  and K with its 

dual, again Rn; we have the scalar product 

X.K = I{xj.kj: 1<j<n & 	K=(ki,...,kn)} 

given by Rs 
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The Fourier transform in L2(Rn) and thus in SL2(Rn)  

is then explicitly given by 

L2(Rn) i L2 (Rn): fn  4- fn  

where 	fn (K) = fe (X. K) fn (X) dX 

= fR
n e2wi (X . K) fn (X) dX 

where of course 

dX. = dxidx2 	• • -dxn 
	is the product 

measure on Rn. The inverse transform is then 'simply 

fn(X). = fe(-X.K)fn(K)dK 

The Fourier transform, as above given, clearly is an 

isomorphism of F and extends to an isomorphism of F 

(with a slight abuse of the notation f). 

§2 	'EXISTENTIAL OPERATORS AND BIOUANTIZATION 

We adopt a natural domain of 'good' vectors in 

F r  a subspace of Fl and in fact the domain of Cth  -vectors 

for the free Hamiltonian as will later be shown. We call 

this domain Do  (following Glinuu-Jaffe slavishly) and 

define it by 

Do 	in F' : for every n fn  is in S(Rn)} 

where S(0) is the Schwartz space of rapidly decreasing 

Cth  functions on Rn. Continuing the interpretation of 

F in terms of momenta Do  is the space of states with a 

finite number of particles whose momenta tend not to 

be very high. Since the Fourier transform maps S into 

itself (and in fact S may be characterized as such a 

25 
space), we know that the Fourier -transform maps Do 
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into itself and so there is a similar configuration space 

interpretation. 

On this 'natural domain' we shall define the 

standard annihilation operator a(k) Fn 4 F 

More precisely perhaps 

a(k) :D o n F 4+ 2), 0  n F 

where +4 is used to point out that a well defined map 

is being ,displayed where the source is the domain, and 

we do not just have an operator which being in general 

unbounded may well have as domain a proper subset of the 

target. For an element f of Do  

(a(k)f)n-1(K) 	n1/2fn(kiK)  

where of course K =kn-1)  and so on. 

When emphasizing pedantic clarity the following 

notations will be used for operators (understood 

to be maps from a domain in the source set to a 

range in the target set) and maps:-26 

f ; A 4  B means f is an operator from A to B 

so that with the abbreviation Domf and Rgef for 

the domain and range of f 

f t Domf : Domf H  B 

meaning f (restricted to Domf) is a map from Domf to 

B, in fact 	f r Domf : Dom f 	Rcre f 

meaning f (restricted to Domf) is a map from Dom.f 

onto 110e,f. We may further use 

f : A 4-4- B 

to mean f is one-to-one from part of A to part of 

B, and combine this with the previous notation to 

get the following map notations 

f : A -44:B 	f maps A to B 

f: A ++ B f maps A into B (injection) 

f : A 41' B 	f maps A onto B (surjection) 
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f: A 4-1- B 	f maps A into & onto B (bijection) 

It should be noted that these are just set theoretic 

niceties, and as such will only be brought up in 

delicate situations. The simple arrow will 

normally suffice and will in any case almost 

always be used for the display transformation of 

a generic element as in 

f :A 4-13:a-)- f(a) 

An alternative is a:= f(a) (read a becomes f(a)), 

a notation borrowed from the computer language 

Algol. 

On their common domain Do, any a(k) and a(k') clearly 

commute i.e. 

Fqk),a(kq = 0 

So any product a(ki)...a(kd is well defined on Do and 

will be denoted 
aCK) for K = Cki,...,ka). 

The adjoint a*(k) of a(k) has domain {O}, but the 

expression usually written for it makes it plain that it 

is a densely defined bilinear form on E2; in fact its 

domain is Do x Do. 'The usual expression referred to is 

(a*(k)f) 	(K) = (n+1) 	X{3(k-k.)f n+1 	3 

1<j<n+11 

where if 

(ki  , . . . Ikn) 

then 

K"—ki  = (ki r...lkir e.. t  kn) 

with " as deletion operation. The expression which includes 

a delta function multiplication is obviously no nontrivial 

operator and is to be interpreted as defining the bilinear 

form on Do x Do given by 

a* (k) Cgrf1 l- n-1/2  VII  'f6.(k-k.)g 	(X-k.) 3=1 	n-1  

 

• x fn  1K) dK 
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n= Tr in Pn gn_1(10 fn ((k,K)OdK 

so that a*(k) is an S(R) valued bilinear form. We check 

that it is in fact the adjoint .of a(k) :- 

a(k)(f,g) = 	n1/2  fgn_1(K) fn(k,K) dK 

- Y°113.0  n-1/2  4 in n gn-1(K)fn((k'K))dK 

Thus 

a*(k) (g,f) = a(k) (f,g) 

as should be. 

Despite the essential incorrectness of this practice, 

we shall nonetheless call a*(k) the creation operator. We 

are led thus to define the monomial' 

a* (K) = a*(ki)...a*(k.) 

for K in R and generally the bilinear form for K in R , 

J in Re  

a* (K) a (J) : Do x Do 4. S (Rm+e) 

(f,g) 	<fl a*(K)a(J)g > 

We may now define for a kernel 

c
cci3 

(K,J) in S' (R
« 
4") 

the true (a-valued) bilinear form on Dg 

mi3 = fcccf3(K,J) a*(K)a(J)dKdJ 

using the standard integral notation for a distribution. 

If cco(K,J) is the kernel of a bounded operator 

from S(RS) to L2(Ra) 

so that for every f6  in S(Re) 

fif caOK,J) f0J) dJI2  dK < 

then 	 27 
Ca 	thethe biquantization of caf3, determines an operator 

CO 
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on F whose domain includes Do. This is built up in the 

following steps: 

c 	0 Iyy  :S(R/3) 0 S(R)Y  4- L2(Ra") 

is a bounded operator, and extends to a bounded operator 

from S(Rf3+y  ) to L2(Ra+y). Then 

fyli +y  (cad  0 Iyy) is still a bounded operator 

from SS(Rf3-1-Y) to SL2(Ra+y  ), and so defines an operator 

(unbounded) from F(3+y  to  Fa+y*  To finish, sum over all = 

y in N these operators to an operator defined on Do, for in 

4.1.1  it is defined on am° Y)/IFi3„.y. Thus 

caa  = qi-oar_qa_Fy-1. EY11  0 Y c03 0 IYY 

It follows from the construction that Ca0 is closable in F 

if ca0  were closable as an operator from L2(Re)to L2(Ra) 

Further good properties hold if casts bpunded, but in order 

to display them we first define the number operator. N by 

(Nf)n  = nfn  

on the domain {f :X Hnfnl 2<00} which certainly includes 

Do . We have then 

PROPOSITION28 

Let ca8 be a bounded operator from L2(RS) to 

L2(R) with normjca811 . Then its biquantization 

Ca0 has a closure with domain containing 

Dom (Nk(a+a)  ) and satisfies the estimate 

11(N+I) -a/2 	(N+I)-13/21 Caa 	1 	< I cao I I 

PROOF 

1(fa+Y FC0 3 	- g 	< 11c 	11{(a+Y):/Y:}1/2 1Ifa+y  II 

x {(0+Y)=/Y=}1/2 11g 	11 0+y 
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IICa3II(a+Y) 
	

2 Ilfa+y II (0+Y)°12iIgi3+Y  II 

by a simple application of the Schwarz inequality and a 

generous estimate for 

f(a+Y)!/Y0 
	

and . {(64-y):/y!} . 

It is interesting to note that the configuration space 
annihilation operator A(x), destroying a particle at 

point x, may be defined by the biquantization of 

Col (k) = (2w)-1/2 	e-ik.x  

so 	A(x) = (2w) 1/2  fe-ik.x  a(k)dk 

or 	A(x) = fe(-k.x) a(k)dk 

with the change of variables 

x,k 	:= (2w) kx, (2w)- 
 1/2  

(read x and k become respectively etc.). 

Thus we have a simple Fourier transform, and in the 

configuration space Fock representation the operator 

(h(x)f)n-1  (X) = nkfn(x,X) for f in Do 

with our previous multivariable notations. Again similarly 

to the above construction, one has A*(x) and biquantizations 

of 	C130  in S'(R
a+0) to .- 

Caf3 = fc (X Y) A*(X)A(Y)dXdY 

a bilinear form on Do  x Do. The properties of these CaO 

are entirely similar to those of the previous ones as is 

obvious by the construction. 

29 
When Friedrichs' diagrammatic representation is 

used for these forms, as is necessary for more complicated 

interactions such as (Y)2, (04)3 etc. the operator 
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structure of creation and annihilation is given by 

a diagram 

consisting in a vertex, and a legs to the left denoting 

creations and 13 legs to the right denoting annihilations. 

The distribution part Cao(X,Y) is termed the numerical 

kernel of Car  These diagrams (especially their gener-

alization to include for instance fermion lines) resemble 

Feynman's diagrams but distinguish creators and annihilators 

and are so not 'relativistically covariant'. 

We shall as previously hinted, at times consider 

the case when R is a rectangular box B 

That is to say we shall be considering 

observables within a bounded region of 

a fairly natural thing to do and it is 

does not have a very pathological form  

in some Ms, 

the fields and 

space B; this is 

clear that a box 

of boundary. By 

making the boX.  rectangular we allow ourselves to put on 

simple periodic boundary conditions and B may then be 

thought of as a torus of the appropriate dimension s. 

In one dimension we have of course only intervals to 

consider and no possible ambiguity; in more than one 

dimension, say three for argument's sake, the boundary 

conditions One might impose on the (4) non-rectangular 

Platonic regular solids would produce weird topologies 
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for these compact approximations?
O
lt is clear that one 

may embed F(B) in F(R) for one has an obvious embedding 

in first degree of L2(B) in L2(R). Further properties 

are apparent. If B1 c  B (as subsets of R) then 

F(B1 ) (7.-  F(B) in the obvious manner. Further if 

B = Bl V132 and Bin B2 =0 

then 

F(B) = F(B1) 0 F(B2) 

where 0 is the Hilbert space completion of the symmetric 

tensor product. 

-When we go from the configuration space representation 

of F(B) discussed in the last paragraph, the importance 

of the possible compactification of B to a torus becomes 

manifest. The torus associated with the box B, is 

bos/Bs)  

where we have taken the identification of R with Rs  so 

that the box B has one vertex at the origin and lies in 

the wholly positive '2+s-tant' and b is the vector defining 

B. In other words b is the vector defining the lattice 

of 'Which B is the fundamental unit cell. Multiplication 

of b by the coefficients in 7s  is component-wise. Then 

B the dual of B, or its momentum space, is 

r = byes, 

the reciprocal lattice of bEs  (as in crystallography) 

and b' is the vector of Ks  whose components are the 

reciprocals of those of b. The momentum representation of 
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Fock space is then F(Fn) formed from a space of functions 

over a lattice. This may also be embedded in 

F(11'1") = F(R) 

in a natural way. We consider the extensions of the 

functions, from definition at the points of the lattice 

rB' to functions defined on all of R as having the 

appropriate constant value in a box of size "1/B" 

symmetrically placed about the lattice point. For example 

in 1 dimension the following diagram suggests what is 

to happen. 

-2b -b 0 b 2b 3b 

Analytically we write this prescription assigning an f 

in E(R) to an fr  in E(rB), in each degree as 

fn(K)  = fr,n (1K1)  

where {K} is the point in the lattice FB closest to K 

in R. This is a definition only up to the boundaries of 

the boxes about each lattice point, but since the union 

of the boundaries is a set of measure zero and we are 

interested only in defining L2 'functions' fn, this is 

of no consequence. 

The momentum space existential 'operators' are given 
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by 	a(*)  (k) = v1/4f b'  (k -t) a(*)(2-)d 

for k in rB, where x b' is the characteristic function 

of the reciprocal unit cell recentred about the origin 

Xb' (k) = s 1 for -kb' < k <kb' 
1  0 otherwise 

(using the simple convention of writing a set of 

inequalities on components of vector as inequalities on 

the vectors). Further V is the volume of the box B so 

we have divided by the square root of the volume of the 

reciprocal lattice unit cell which is V 1; this is done 

so that the boxed free Hamiltonian does not have to 

have an explicit factor of V 1  in front of it. Here 

a(*) stands for a, or a* as the case may be for this 

typewriter does not have the conventional 	So 

these boxed existential operators are again obtained by 

quantizing a distribution, namely convolution with a 

characteristic function. 

We note that the momentum space representation for 

the free Hamiltonian HOB  for the system in the box 

B is 

0,V 	1k in r p(k) a*B (k) aB(k) 	. 



1-3 	 24 

§ 3 	• The Formal Interacting Hamiltonian 

Hf; H(g); H(g)v; & H(g)v,k  

Its Form Factor, Volume and Ultra- 

Violet Cut-off Avatars. 

We shall now introduce the interaction we wish to 

study, X WI): for p > 2, in its formal form. Now we 

must restrict to one space dimension, R = El s° that 

we have even in the simple approximation we shall take 

well defined operators. This is not in itself sufficient 

for boson-fermion interactions, and the dressing 

procedures of Glimm (after Friedrichs) are required then 

even for (Y)2  = (117W 2.
31 
 Such complications we cannot 

handle and so we continue mimicing after a fashion the 

Glimm-Jaffe papers. 

The interaction in full formal form we wish to 

study is taking A = 1 to lose a further factor to be 

carried:- 

HI,f = f: (1)(x) 213  : dx 

We take as example for formal calculations 2p = 4. 

HI,f  = f:(1)(x)4  : dx 

where the Wick ordering is done in the usual prescription 

(creators to the left of annihilators). The field is, 

formally at least, 

(1)(x) = 2-1/2(-A+m2)-1/4  {..*(x) + a(x)} 
1/2  = 2- CA*(x)+A(x)} 

Raising it to the power 2p and using the formal commut- 

ation relation (it is between bilinear forms) 

EA*(x), A(y)] = 6(x-y) 
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one computes 

	

wx)4 : 	-1/2  /1=0  (1) A*(x)4-i  Ai(x). 

One may do a similar calculation with the expression 

of the field as a Fourier transform 
(x)  = f  e2ffikx fa7'  . (.J) + a(-k)11.1(k) -idk. 

Then we have the following general form for HIff  in 

momentum space which we shall adopt as its definition. 

It should be noted we have dropped (or absorbed) the 

overall 2P. 
2p  

H 	= 	(2p) V. I,f 	j=0 	3' 
where 

V. = f SiiK I - WI)  v(K',K")-1/2  

x 	a*(K')  a(K") d(K',K") 

an expression in which we continue the use of our form 

of Schwartz' multi-index notation. Thus K" is in Rj  

and K' in R2p-j and d(KI,K") = dK'dK" etc. The 

numerical kernel of V. 

V.(K',K") = 

So the action of V. as 
J 

is thus to be 

- 1K"I) v(K',K")-1/2  

a bilinear form on say pg will be 

y
n=0

(n+2p-j:n) (n+j!n) 
co 

6(11V I-  IK' 

hn+j(K",K) 

where (K',K",K) is in R2P-jx0xR and 

1/2 	 (K,K') n+2p-j 

'I 	v(K',K")-1/2  

d(K1 ,K",K) 
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(n+2p-j!n)1/2 = ((n+2p-j):/n!)1/2  

is the characteristic numerical factor coming from the 

(2p-j) creation operations in a*(K') and In+j!nl1/2  is 

the similar factor from the annihilations. These 

factors are both in the numerator, i.e. greater than 

one, because the symmetrizations are implicit in the 

useoffandhinDo.V.is thus the part of the 

interaction that annihilates j particles and creates 

(2p-j) and so would have the Friedrichs diagram: 

For 	
:(1) 4: then HI,f  = VO4.4V1+6V2+4V3+V4 

or diagrammatically 

Now we have the problem noted above that V, will 

in general (if j<2p and it has creators in fact) only 

define a bilinear form. We are thus led, in order to.  

calculate with operators on the Fock space we know 

without transgressing Haag's theorem, to introduce a 

cut-off in the interaction range. 
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We take a form factor g(x), a real positive 

smooth (C°°) function of compact support in M; or g is 

in e,+  (R). We .shall assume it.  an even function with c 

support [-2,+2] and to be equal to 1 on (-1,+1 

We further assume g monotonic on (2,-1) and (1,2'). 

So g has a 'bump' function appearance. 

-1 	0 	1 	2 	3 

These exacting specifications beyond smoothness and 

compact connected support of g and (1-g) for g are not 

really necessary, but they are convenient, do not cause 

a loss of generality, and fix a basic bump function in 

terms of which we may define other similar functions. 

We define then the form factor cut-off interaction 

H (g) by 

HT  (g) = fg(x) :(1)(x)213:dx 

We take then a sequence of such cut-offs of increasing 

range given by 

gn (x) = g(x/n) (then g=g1) 

so that 

= Hi(gd = Jg(x/n):(1) (x)2p:dx 

These restricted Hamiltonians of interaction HI,n  

provide the desired interaction on the spatial region 

lx1<n. Asuming, as one would physically expect, that 
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disturbance propagates at the speed of light, that is 

as if free over a small region this restriction should 

not affect the field. Explicitly, as was pointed out 

by Guenin
32  
(a proof was then given by Segal)

3 
 in the 

region 

{(x,t) in Me: 1x1+1f1  <n} 

the time evolution of the field would be correctly given 

by Hn  as 

4,(x,t) = ei Fin (1)(X/0) eitHn 

where 

Hn = Ho HI,n 

One may then hope to piece together these locally correct 

dynamics.
32 

We shall discuss this point, and prove Segal's 
34 	

. 
- 	

. 
result when we are sure that the total restricted range 

Hamiltonian is self-adjoint, as will be shown in section 

6. First we have to.show HI(g) self-adjoint which 

will be done in the next section. Further we would 

wish H(g) to be bounded below and to have a lowest 

efgenvalue. We shall show the semiboundedness of H(g) 

i first following Glimm n using a technique invented 
36 

by Nelson. We do this because by carrying out a more 

general estimation procedure, involving functional 
7 

integration or path space methods,
3 
 we obtain the theorem 

on singular perturbations that will allow us to show 

H(g) self-adjoint. We here have to avail ourselves of 

a stronger form of theorem than is required for :q: 
38 

interactions. 
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To prepare the way of this route we shall set 

out in the remainder of this section the two further 

increasingly restricted forms of Hamiltonian and 

their increasingly simple properties. Then we shall 

be in a position to take these restriction off again 

as expected. 

We commence with H(g)v  the deranged (?!) 

Hamiltonian in a box with periodic boundary conditions. 

Boxes are familiar from section 1 and experience 

therein would suggest the simplification is greatest 

in the momentum representation. We exhibit H
I(g) 

there first: 

HI(g)  = X213(2  j=0 j Vj  (g) 

where the numerical kernels are 

V3  .(g)(K',K") = 
	I- 	) v(K',K") -1/2  

for 

6(IK'I- K"I) = fe(x.IK'I-x.IK"I)dx 

SO 

6(g(x)) = g(I K'1-IK"I). 

The"-full action on f in Dom H (g), which certainly is 

dense for it includes Do, is 

HI  (g)f = j
p2
0 (j2p)n+j=0(n+2p-j,n+j!n,n) 

1/2
=  

Sym f4(110 1 -1V1) v(Ki ,K") 1/2fj+n  (K",K)dk" 

where we avail ourselves of a sort of multinomial 

factorial notation (a:13) 

= 

= 
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for a in Nm  and (3, in Nn, So the operator is 

repo f p. 	-_-_i 	III H (g) = 	 k3  ) fg(11(1 !".1)v(Ki,K")-1/2  

X a*(KT)a(K")dK'dK" 

X2P0 j  (2P) 14(1(10.1<91)v(V-K")-1/2  
X 

j= 
a*(-K')a(K")d(K',K). 

Recalling the definition of the lattice 

r' B = ry (for 1 dimension of space) and of the Fock space 

upon it we may write the free field thereon 

cPv(x) = (2v)-1/2 k in r 2Jkx)p(k) 	av(k)+a*4"k)). 

Then 

H ''' 
t,) = v2P A t2P- 2n 4v(

)
K'1-11‹" I )  Iv :2

p 	
(2p)  )(2v)-P y 

(1C,K")in r 

v(K',K") ka*(V)a(K") 

with 	a restriction of the Fourier transform 

417.00,  = 	
e 

f+v/2v/2 2ffikx g(x)dx -  

If the box be so large that it properly contains the 

support of g then 

4v  (k) = 4(k) - 

We shall assume from now on that 

supp g 	(- v/2, + v/2)  

and we drop the subscript 'v' on g. 

We continue and define 

H(g)v = Ho,v 	HI,v(g)  

the free part plus its interaction. (Note we commuted 

the subscript 'v' with '(g)', but will from habit 

unfortunately use both notations 11,07(g) = Hi(g)v. ) 

Continuing toward simplicity, we cut off the sum 
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over the momentum lattice at some positive K, the 

resulting finite lattice is denoted 

v,K = {k in 17B:Ikl < K} 

The physical content of this resection, is a finite 

number of modes for the field; but then we are back in 

the familiar territory of the representations of the 

canonical commutation relations of a finite number of 

degrees of freedom. We effect a transformation that 

expresses the system as a set of coupled SchrOdinger 

oscillators and diagonalizes the interaction H 	(g) - I,V K 

In fact we move from the exponential basis to the basis 

of trigonometric functions 39 For the fields this reads 

V,K 
(x) = (2v)-11{ 

	

	(voskx + qisinkx)+
e

2q0 
ft in TvK  

and 

where 

v,K(x) = (2v)-4( X 
Oft in Pv,K  

p coskx+p;sinkx)+2pol 

1/2  qk  = 1/21.1(k) - {a*v(-k) + av(k)  + at7(k) + av(-k)1 

cik's  = i1/211(k)-1/2{a*v(k) 	av(-k) 
	- av(-k)1 

Pk  = 1/21-1(k)k{al,(-k) - av(k) - al*7(k) + av(-k)1 

pk = i1/211(k)1/2{a*v(-k) - av(k) + a*v(k) -av(-k)1 

and 

qo = km 	{a*v(0) + av(0)1 

130  = i1/2mk  {a*v(0) - av(0)1 
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and 

so 

cos kx = cos 2rrkx and sin kx = sin 2irkx 

    

e (kx) = cos (kx) + i sin kx 

All the operators are defined on the restriction of 

Do  to rv,ic  which is certainly still dense. On the 

appropriate domains follow the commutation relations 

for k and k' in r 
V,K 

Rk'Pk J = 1-6kki 

[4]; ,* J = i(skk ,  
with the general Kronecker delta symbol on the right. 

Rewriting the operators of interest we apply a further 

convention to avoid double counting due to both 

{q,p} and {cr,p^} being canonical variable sets- we 

set 

q(k) = 	for k > 0 

 

qk 

{ Pi 

for k < 0 

for k > 0 

for k < 0 

p (k) 

Then we have 

= k 	 fp(k)2+11(k) 2q(k)2-p(k)} . o,v,K 	0OVIc in r 
• V,K 

This follows from the elementary computations 

u(k)2q(k)2  
{ p(k)2  } 

= ±1/4111k)(a*(-k)2+a(k)2+a*(k)2+a(-k)2  

{4-}2{a*(-k)a(k)+a*(k)a(7k)+a*(-k)a*(k) 

x +a(k)a(-k)} 

a* 
x 	+a(k)a*(-k)11 
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where {4} gives the only sign difference between p(k)2  

and p(k)2q(k)2  and the upper or lower sign of ± is to 

be taken in each case according as k > 0 or k < 0. 

Then using the commutation [a(k),a*(k)] 	1 it is 

readily verified that H 	has the alleged form. o,v,K 

Taking a further look at our new variables we see 

that 

q(k)+ig(-k) for k > 0 
p(k)- 	a (k)+a*(-k)} = 2q 	for k = 0 

q(-k)-ig(k) for k < 0. 

If we denote the left hand side by 0(k), then the 

field has the form 

(2V)1/2  0(x)= 	in r 	2(cx) 0(k) 
V,K 

and the 0(k) may be viewed as independent Gaussian 

isotropic complex random variables of mean 0 and 

variance u(k)-1 (except for 0(0) which is real). We 

have as required 

(1)(-k) = (TITC) 	. 

The 0(k) are random variables as maps from L2(r 	) 
V,K 

40 to a Hilbert space. 

We continue by diagonalizing H_,v,K  . We use the 

formal identity4ihat characterizes Wick products 
2o 02p K (x) = XyL..0  (2p:2p-2j j)(CK 	• 

/20-0
V,K 

(x)2P-2j: 

where 	
C
K 
 = v-1 Ik in r p(k)-1  

K 

This is to be taken as a bit of combinatorial algebra 
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and not as an operator identity; it is the standard 
42 	 2p.  contraction formula. By reexpressing :itv,K(g) . in 

terms of (1)17,K(g)2pj for j > 0 from the above identity 

it may be seen that it certainly is a polynomial in the 

above variables q(k). In fact this holds for any 

interaction term formally 

P(4)) = 	ycl)(g)P': 

for the above formula holds generally in the form 

K OP 	(x) = j=0 (p43-2j,j)(CK/20: VIK (x)P-21: V I   

where r is the greatest integer less than or equal to p• 

We have then canonical variables q(k),p(k) and a 

full Hamiltonian expressed as a,,polynomial in terms of 

them. Obviously therefore we should set up the 

SchrOdinger representation of them in terms of differen-

tiation and multiplication operators. Further, this 

representation is essentially unique by the theorem of 

Stone & von Neumann for the number of variables k in 

F 	is finite. We will use the trivially renormalized 

SchrOdinger representation on a space with a Gaussian 

measure, which is dimension independent (the ground state 

energy is absorbed) and relates to the random variable 

viewpoint. Let M be the number of modes, the cardinality 

of rvK K. We shall realize the system on L2(M ), with 

q(k) being equivalent to multiplication by a coordinate 

qk  and p(k)n  equivalent to 	). We set it up as a 



1-3 	 35 

(direct) tensor product of one mode spaces 

L-13;.  = L2(E1,(11(k)/7)1/2.exp(-p(k)cidqk). 

Let 

H 	= 	 • 
=V,K 

2k in rVK
H  -k ' 

this is then 

L2(Rm PVK dq) with 	p V,K  dq = 11k in r 	Pk(q )dqk • v,K 

The representation in L2(H ) 
V,K 

qkf(q)  

-iPTc1/2  (-4k)(Pk2f(q)) 

is then irreducible. We shall want to let M 00 later 

and this arrangement is designed to ease the transition.43  

In one dimension a harmonic oscillator Hamiltonian 

may he represented on L2(R,p(q)dq) (dropping the 

subscript k for a particular mode) as 
2 

d H 	IL dg  2 dadca  
d 

i • 

This representation holds good for each k and on H 
=V,K 

our interaction will be 

H 	(q) = V,K 	k in r 	
—(11; -11(k)q

kk
) 	V(q) 

V,K 

and V(q) is the polynomial in the qk  's 

We discontinue work on this representation now 

until section 5 where semi-boundedness of the limit H(g) 

as K 4  co 	and v 00 is shown. 

q(k):f(q) 

p(k):f(q) 

where 9 k 

that H 
V,K 

3 

aqk 

becomes. 
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§4 	SEMIBOUNDEDNESS OF HI(g) 

and 

AN ESTIMATION OF IT WITH RESPECT N 

• from 

MARKOV PROCESS METHODS  

We under take the estimation of HI(g) in terms of 

FT ' an operator interpolation between Ho and N. 

Formally 

FT  -= fp(k)T  a*(k)a(k)dk 

Thus 

Fl = Ho and Fo = N the number operator. 

Using the notation 

T 
 (K) = /114 p(k1.) 

so that if K is not in M pT(K) must be distinguished 

from 11(K)Tithe action on ; in Dom Ho is 

(FTE)fl  (K) = PT  (K) En  

At the end of section 3 we had built up a formalism 

for description of H 	(g). We shall prove the required 

estimates hold in a suitably uniform manner with respect 

to v and K and then take the limits V,K + CO . The 

representation is in 

H = =v,K 	k in r 	-k V,K 
where 
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and 

pk(qk).= (p(k)/Tr)1/2  exp(-p(k)qk2). 

For one mode we had the free Hamiltonian as 

Ho,k  = -(1/2 D32c. 	p(k)q0k), 

and the interaction as a polynomial perturbation. This 

representation is well suited to the Markov process 

point of view and the associated semigroup and path 

integral methods. 

44 
A Markov process on a phase space S is an assignment 

to every quadruple consisting in, a--starting time t in 

IR, an initial point x in S, a finishing time s in R, and 

a set E of S of a probability P(t,x;s,E) that the 

system which was in state x at time t will be at time 

a state of the set E; this probability should be 

such that the future of the system at time t is entirely 

independent of its past and this is expressed by the 

Chapman-Kolmogorov equation 

P(t,x;s,E) = JS P(u,y;s,E)P(t,x;u,dy) 

for t< u <s , that is the probability that from x 

at t the system evolves to be in E at s is the integral 

over y in S of the probabilities that at some intermediate 

u it be at y and then evolve to be in E at s, for every 

intermediate time u. We have a temporally homogeneous 

Markov process where P(t,x;s,E) depends only on the 

time interval s - t and not independently on t and s, 
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and further S is a measure space with an invariant measure 

m. Making this explicit we have a map.  

P:Sx111)<MblS 	31.+  

such that 

i) P(t,x,E) > 0; P(t,x,S) = 1 

ii) P(t,x,$) is countably additive on Mbl S 

iii) P(t,•,E) is measurable with respect to m 

iv) P(t+s,x,E) = SP(t,x,E)m(dx) 	(or dmx), 

where Mbl S are the sets of S measurable with resepct to 

m. 

Conditions i) & ii) say that for fixed initial conditions 

we have a probability measure on S; iii) says that the 

values of this measure vary measurably with space; iv) is 

the Chapman-Kolmogorov equation saying that the probability 

of x getting into E in time (t+s) is the integral of the 

probability of its getting to some intermediate point y in 

time s times the probability of its getting therefrom to 

E in time t; v) says that the measure m(E) is the 

integral over S with weight m of the probabilities of x 

getting to E in time t, for any specified t. In a suitable space 

X of functions over S the process gives rise to a linear 

transformation of elements IP of X by 

(Tt1)x = ffly) P(t,x,dy) 

and by iv) this forms a semigroup i.e. 

Tt+S = TtTs 
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We have exactly the above situation here; 

exp (-tHo,k) is a semigroup of transformations on 

L2(R,Pk(gk)dqk  

and in fact on 

1,p (11,pk (qk )dqk ) 

for 

1 < p < co; 

it has a well known kernel 	
P  (clk'cik') 45 

such that 

(exp(- tH0,Qp)q = fpt(c1,14 1 )1p(cil)p q')dq' 

where 

pt (q,(1, )  = (1 	—21-1(k)t)-1/2  

  

11(k)(ql-e-11(k)tcl ) 
+ 11(k)ci'21 exp 

 

 

1 - e-2p(k)t 

  

= leP(k)t/2/(e1-1(k)t_e-p(k)t)1  

exp{ _p(k)(cleil(k)t_cite-P(k)t)2 

(ep(k)t 	e - -p(k)t )1 

Thus the probability measure is 

P(t,q,dqq= {p(k)/71-(1 -e-2p(k)t)1 

x exp{ -p(k)(q' _e-11(k)tc1)2: (1  _ e-211(k)todq1  

One may check that the kernel pt(q,q') has the desired 

effect by working with it on the orthonormal basis (Iii) 

for L2(R,pk(q)dq) consisting in the Hermite functions of 

variable 

- -1/2 p(k)q2 x = p(k)kq divided by Tr 44  e 
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i•e• 	yx) = 2-j/2  (j!)-1/2  h.(x) 

where 

xh.( ) = (-10 3 
x2  ,d j  -x2  e 

46 
• 

By carrying through for F a calculation similar to 

that for Fo we find 

F
T,V,K = /k in r 

V,K 

or in differential operator form 
utirI T-la 2 	11/1,1 ,a ) FT,k = -( 1 /2"-' 	- 

with associated integral kernel then 
pt (q,q , )  = (i_e-2p(k)t) -k 

X eXp{-11(k)T(Clell(19t-Clie-p(k)t)2/(ep(k)t_e-p(k)t)1 

(11(k) T-ip(k) 2  + p(k)T4-1q(k)2-11(k)T) 



1-4 
	 41 

We pass now to the path space point of view, to 

make explicit the motive for the introduction of the 
47 

Feynman-Kac integral (that is motive other than that it 

provides recognized useful technique). Going back to an 

abstract semigroup of contractions on each L2 space of 

a mode, we consider the space C of all continuous paths 

q=q(s) where s ranges over rv,(K) and q(s) takes its 

value in 

L2(Rs, s(qs)dqs). 

Had we a different and more common scheme of interpretation 

s might be a time parameter. On this space C of paths 

there is a (Wiener type) measure associated with the 

semigroup Pt, for in each mode Pt  causes evolution of 

the coordinate q(s) and thus acts on C. We have already 

for each mode a measure 

P(t,q,dq1 ) = pt(q,q1 )p(q')dq' 

the probability that if q(0) = q then q(t) will lie in 

(V,q1  + dq1) 

We take the a field of measurable sets generated by those 

defined by finite families of Borel sets E1,...,E3  • 

and consisting in 

E (El  . 	Ej) = {q in C such that q(si) is in E. 

X 	for 1 < i < j). 

and 

0 = ga< g2 	<s3.. We then define a measure 

= _ 	P(si-si_l,q(si_1),dq(si))p(q(0) )dq(0) f
Eix...xEj 



s2 	s3 
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and this is the probability that a path which is 

associated with evolution according to the law Pt  will 

pass through 'specified gates' at several finite times 

if the starting points are Gaussian distributed. 

The paths q (1) and q(2) represent elements of 

and the gaps the Borel set 'gates' Ei  . This definition 

is in a sense forced by the Markov character of the process. 

We remark that the integral may be extended over further 

sets El each equal to all of IR from the Chapman-Kolmogorov 

equation so the sets E are cylinder or tame sets, that is 

sets defined only by a finite number of conditions on a 

space of infinite dimension. This measure T permits then 

the integration of functions on 

= 
=V/ K 	k in v,K 

and in fact on F . Further F is in fact an inductive 
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48 
limit of the spaces F 	and we have a corresponding 

49 
limit for the path spaces. Doing an integral of 

product of j functions 

V. in L. (1,Ak.(qk.)dqk.) 1 	3 

where 

P = H k in r 	Pk(qk) 
V,K 

we get 

J
H1=1  Vi(q(si))dT 

= fdq(0)P(q(0))V1(q(0)) 

{exp(aill0,VIK)111=2exp(a.Ho,v,K )V.1(q(0)) 

where 

. 	S.1  - S -1 i 

so that 

exp(a.H 	) 1 o,v,K 

is a contraction from 

L. .CR,p(q(si))dq(si))  

to 

L. CR,p(q(s 	))dq(s 	)) i-1 	i-1 

Thus. this devolves to an integral over q(0) and we 

get by an elementary Holder inequality 

IfilVi(q(si) )dT1 

The contractive nature of exp(-tH 	is a 0,V,K 

consequence of the following theorem which we quote 

THEOREM 

If 1 < r < 	exp(-tH 	) is a contraction 0,V,K 

1 1 1 
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operator on Lr  of one mode. For 

T < t, 1 <..p and r < co it is a contraction for 
of 

some T independentt v,K. If p is bounded away 

from 1 and r from co then T is independent of p.  

and r. 

PROOF: (SKETCH)5°  

The proof proceeds by showing 

Pt = exp(-tH 07,K 

a contraction on L. by direct estimate and on 

L2 since Ho is positive. One uses the Riesz 

Thorin Convexity theorem to show it a contraction 

on Lr for 

2 < r < 00. 

One notes then that the kernel 

p (q,(1') 

is symmetric, so Pt  is symmetric in L2, thus by 

duality one has contraction on Lr  for 

< r < 2 

and so on Li  in the limit. One builds the 

contractiveness from L to Lr from that of the 

map L2  4 L4  (verified by estimation) and on 

L, by another application of Riesz-Thorin convexity.51  

We have then a promising integral on C and by following 

Feynman, a use for it. We have in fact the Feynman-Kac 
52 

formula for the full Hamiltonian semigroup 



45 

< 	exp(-tHv, K)T> 

s 1,1)(q(0)) exP ( ft HT,VIK  (cr(s ))d ) 

X 	'i'(q(s)) dT 

where 4), and T are in H
VII( 	 = 

or equivalently in FVrK  ; =  

this is straightforwardly a statement of a transition 

probability in terms of the integral over all admissible 

developments connecting the states with weight according 

to their probability of evolution. We shall wish to 

estimate this or its replacement 

< 	exp(-tFv,K)1P > 

iftinere 

Now 

F AT) 
 
=F 	+H V,K 	TrV,K 	I,V,K 

I <44exp(—tF
(T)  )T > I 
V,K 

5_ 1141.(q(0))T(q(t)) I I illexP(ft HI,V,K (q(s))ds11 

where 

(l/p') + (l/p) = 1, for p > 2 and large t. The 

formulation with F changes the kernel to 

pT(q,(11) 

and so modifies the measure to a dTT  ; otherwise all is 

the same as for Ho. We require then estimates on these 

parts and use those of Glimm and Rosen. We look first 

at the integral. The estimates for 

IK = 	Vv,Kg(s)dr 

are such-that both the limits V,K c° are uniform and 

provide both a uniform lower bound for H(g) and resolvent 
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53 
convergence for HV,K (g) to H(g). There are required 

for the existence of a cutoff vacuum S2 the ground state 
54 

of H(g). Our interaction is as previously reckoned a 

polynomial V. By examination of the Riemann sums approx-

imating the integral it may be shown that 

i) for all p < 00 fo  V(q(s)ds is in L (c,dT) 

and 

ii) for j an even positive integer 

ilft  V(q(s))dsli, < tliVlij  

We have for the other part in the bound in the 

inner product the following property:- 

There is a T'independent of v and K such that for 

-t > T and 1 < r < 2, and hand 71 in L2(pdq), 

:(q(0))T1(q(t)) in Lr(c,dT) 

and, 

(ii') II E(q(0))n(q(t))Ilr 	H0121111'12 

(iii') for r bounded away from 2, T is independent 

of r. 

Thus we have a right hand bound 

1<flexp(-tF(T))T>I v,K 

< 	1 11T112 

So we may infer that 

Ilexp(-tVv,K)11 < Ilexp(-1t)Vv,K(q(s)).dslI p  

and then 

-t-lknllexp(-I yllF(T)  p < - V,K 

exp(-f(t)  vv,K (q(s))ds)IIp 
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It should be noted that the only change in using 

F(T  for T < 1 i.e. not Hv,K  is in the measure dTT  v,K  

and this still gives (i')-(iii'). Using again this 

further estimate from Glimm, with C > 0 

- C(AIKI)13  < 111117,K II 

SO 

- C t(killOP  < X 

we estimate IK  in terms of Ix. The above estimate 

derives from the fact that V is a polynomial, so V 
VIK 

is a cut off convolution and one has a form of cut off 

Hausdorff Young theorem and Young's inequality1915°  

We shall estimate in terms of our probability measure 

pr defined by dT 

prfIr  < —ctizai(IAl)P-11 

< PrOTK—Ix,  > 11  

- vv, 1+2i  

	

VV, K- 	 t '2j 

by the previous property (ii). Fortunately estimation 

of the last norm. reveals 
4 „ 	2p-1 112j 	(2pimc /X)J (xn(A)) 

	

Ilvv,K- Vv,A112i _ 	• 	1 

where j is an integer, and C1  is independent of both 

K and A. This can be obtained by explicit calculation 

in Fock space. Application of Stirling's formula for 

large j gives 

pr{IK  < - Ct(nIXI)P-1} 

< (22j)2Pje-213(7+1)C3X i(2411X1) 2p-1 
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where the Ci are always to be taken as constants evolving 

with the estimates. If one chooses j so that 

j  < (2p)-1 c3-1/2p x1/2p 	j 4. 1  

then 

e-2P(j+1) < exp( - c3-1/2P A2P(knI X()-1/2P(kpx)-1/2P 

is a bound for the probability. Taking • 

X cc kniAl + knRridAl 

this rends 
r v/P 

pr 	< -X-11 < exp(-C4e-5-  

Finally then we have 

fie-IK  IP  dT =fe PIK dT 
/J/P < e-2p + n>1exp(p(n+2) - C4eC5  

which is a bound that depends on neither v or K 

which on being applied to 

H
V/K — 

> -t-lam(Ilexp(-IK)11p) 

yields a minorant for Hv,K  independent of both v add K. 

This is in fact sufficient to show H(g) bounded below. 
• 

Another reckoning, due to Rosen, this time for 

the differences as the volume varies is 

- Vw,K111 	(2pj):(C6/A)2j IIV v,K 

of the same form as above, yields better convergence 

of the approximations, and in fact on 

Dom (NP) f Dom Ho 

HV K 	H strongly as v,K ÷-w. 

One also obtains resolvent convergence, the result crucial 
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to proving the existence of a vacuum for the renormalized 

theory and continuing as'far as has been done for (4)4)2. 

SinceHislowersemiboundedwetake-+E_to be 

its greatest lower bound, which will be the•infimum 

of the spectrum of the self adjoint H(g). We shall 

often use the simply renormalized form of Hamiltonian 
A 

H(g) = H(g) - E g 
which is then non-negative. It is H(g) that has a 

Vacuum Q if E is a simple eigenvalue. 
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§5 	Self Adjointness of HI(g) 

That HI(g) in our case is self adjoint is a 

consequence of Segal's elaborate theory of quantum 

-fields and as is remarked by Rosen, is implicit in 

the proof of selfadjointness for W(g): by Glimm and 

Jaffe, for there is nothing in the proof apparently 

peculiar to the degree 4. However, we shall go through 

some of the details of their approach in the following, 

for there is an annoying habit in the literature of 

moving to the closure of an essentially self adjoint 

- operator without saying so.5 

We shall show that 

THEOREM 

If g is a real function in S(E) then if 

P(4) is a polynomial in 

HI(g) = f P(cb.) g(x) dx 

is essentially self adjoint on Do- . 

COROLLARY  

(g) on its natural domain is self adjoint. 

PROOF  

We shall use the fact that for real f, (1)(f) is 

essentially self adjoint; again 4(f) on its natural 

domain will be self adjoint. We take then the maximal 

abelian W*-algebra generated by the fields and show 

HI(g) commutes with it on a large domain and so is 
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essentially self adjoint. Proceeding to details; we 

let Di be the domain generated by the applications of 

polynomials in the time zero fields to the Fock 

vacuum Po , i.e. 

f.i = E[P(f) : f in am] Q0 

DI is clearly dense in E; further every f in Di is an 

analytic vector for, if 4(f) has f 	in S(R) 

then 

C=0 (ms)-111(1)(f)N1 m  

is an entire function for 	(1)(f) < N. Thus 4)(f) has 

a dense set of analytic vectors and so by Nelson's 
55 

theorem is essentially self adjoint; it is symmetric on 

its natural (maximal) domain if f is real so (PM is a 

symmetric extension of 

self adjoint. 

4 (f) 	and thus is 

Next let 

M = W*-alg -(4)(f) : f in B.00} ; 

then M is maximal abelian i.e. M = M' (its commutant). 

Consider 

HI(g) 14  Do ; this restriction of HI(g) 

commutes on Do with M, for Hi(g) is a bounded function 

of 4'(f). Thus as an operator with dense domain commuting 

with a maximal abelien algebra it is essentially self 

adjoint. This follows from the strong form of the 

spectral theorem which says any maximal abelien W*-algebra 
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may be represented as the multiplication algebra of 

L00 functions on L2 on some measure space M. 

It now follows that HI(g) if formally self adjoint, 

as it is qua polynomial in 4)  smeared with a real function 

(this is obvious in momentum space), as a symmetric ex-

tension of its essentially self adjoint restriction to 

Do  is self adjoint on its natural domain. 

Having established the selfadjointness of Hi(g), we 

are led to wonder about its localization when the 

function g, that is the smearing, is compactly supported 

as in the form factor cutoff. We find that the induced 

operator semigroup 

exp (iHi(g)t) 

is within the local algebra of the support of g. 

Recapitulating the definition of local algebra of an 

open region 0 of space R 

A(0) = W*-alg (4)(f),Tr(f) : the support of f is within 0); 

again this means the weak * closed self adjoint algebra 

of operators generated by the spectral projections of 

thd fields and canonical conjugates based in the region 

O. We show:- 

THEOREM 

If g(x) is a real function of C/(0), then for 

our interaction and in fact for any polynomial interaction 

U(g,t) = exp(i HI  (g)t) is in A(0) n m 
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PROOF:• - 

56 
We shall make us of the result of Araki that the 

commutant of a local algebra is the algebra of the 

complement of the closure of the region or 

A(0)' = A(0') where 0' = R - O. 

First remark that HI(g) as shown in the proof previous 

commutes with the maximal abelian M and thus is in M. 

Now, if f is restricted to have support in 0', then 

U(g,t) commutes with any bounded function of (PM and 

w(f), or U(g,t) is a unitary operator commuting with 

A(0') or in A(0')'. Thus U(g,t) is in both A(0) and. 

M. 

Thus we have that our interaction is local in the 

sense of physics; we shall find that together with the 

free H0  it provides a correct local dynamics but first 

we shall have to show H(g) self adjoint and thus a 

suitable generator for the one parameter group of time 

translations. 
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§6 
	SELF ADJOINTNESS OF H(g) 

We prove self adjointness for the 42p)2  

Hamiltonian 

total 

H(g) = Ho 4. HI  (g)

on its domain Dom Ho  n Dom HI(g) a furtherance of the 

result of Rosen that it is essentially self adjoint on 

this domain; it amounts to showing H(g) closed. Since 

directly showing an operator closed is notoriously difficult, 

we have been forced to detour via the strongest known 

result in the singular perturbation theory of positive 

self-adjoint. We quote from the Glimm-Jaffe paper on 

this theory57 

Suppose on a Hilbert space H we have a self adjoint 

operator N > I; we define then the scale of Hilbert 

spaces H with scalar products 

<On x 	<NA/2 1 NA/2n> 

We have the standard identifications for non-negative 

H 	c:.11 X 	 -X 

where Ho .= H and H_x  may be taken as the dual of 

HA  which is a set Dom NA/2. If T is a densely defined 

bounded operator from Ha  to H , let IITI1ato  denote 

its norm. We set 

IITI1 = IIT[fo,o 

and compute in general 

IITIIa,a= 110/2T N-a/2  II 

Suppose now that we have a further operator 

• 

N 
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A > N that commutes With N. Let 

D = n {Dom An  : n in N.} 

which is the set of C
00 
 (smooth) vectors for A sometimes 

denoted C A . We assume D is a core for a second 

self adjoint operator B. We assume B to be a bounded 

operator from H to H and from H to H for some v 	" —.. 	a 	 13 v 
a,13, and v with B > O. We assume the following inequal-

ities on bilinear forms on D x D 

a) 0 < aN + B + cst. with 0 < a < 

b) 0 < c A2  + cst. B + (AdA1/2)2B + cst. 

with 2a +.e < 1. If v > 2 we assume additionally 

that for some p > v - 2 

c) 0 < c N11+2  + (Ad N "1)/2)2B + cst 

then we may assert:- 

THEOREM 

Under the above two paragraphs of hypotheses 

A + B is self adjoint. 

We wish to apply this to the case of N being the 

number operator, A = Ho  and B = Hi(g) on rock space 

F_with D = Do , for indeed Do  = C
00 
 Ho. 

We list the properties that must be verified:- 

(i) Do  is a core for H (g) 

(ii) there is a g > 0 and an a such that 

110/2  HI(g)N
-a/2  II < 00 

(iii) there is a v such that 

IIN-v/211,(g)N-v/211 < m 

(iv) there is an a, 0 < a < 	such that 

0 < aN + HI + cst. 
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(v) there is an c , with 2a + E < 1 such 

that 
0 < 2 EH° + cst.H1  + (AdH6)2H + cst. 

and maybe if we have to take v > 2 

(vi) there is a p > v - 2 such that 

0 < EN11+2 + (AdN (p+1)/2)2H,  + cst. 

Condition (i) was shown in proving Hi(g) self 

adjoint. Condition (iv) with restriction a > 0 came 

as a by product of the proof that H(g) was semibounded 

by using FT  with 0 < T < 1. 

.We must next seek a,f3 and v for (ii) and (iii), 

so we remind ourselves of the form of HI(g) for E and n 

in suitable domains 

<IHI(g)n> = Xec)  21)1  L rc* 	1/2 

	

( ) 	{n+2p-j,n+j!n,n1 j 	n+j=0 

iZn+2p-j(K'Kt)4(1Kti - IKul)v(K1 K")1/2  

n n+j  (K",K)dKdK'dK" 

Looking at the following inequality for Wick monomials 

W of degree m in G- J I (2.11)58-  

	

For every j such that 	Iii < m 

< cst.111111 2 (I (N + I) j/2W(N + I)- (m -j)/211 

Each monomial part of our interaction is of degree 2p so 

that if we take v = +p we have 

(N + I) 13/2W(N + I) 13/211 < cst.11W11L2 < 

for 	
§(IKI - IK"I)v(KT,K")-1/2  is in L2. Further 

if we take $ =.1 = -j in the above we get 

II(N + I)1/214(N + I) F-1/211 <`° 
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so with $ = 1 > 0, a = (2p - 1) and v = p one has 

two estimates equivalent to (ii) and (iii), for the 

addition of I to N only serves to make the operators 

(N + I). invertible and the estimate easier to prove. 

These are true for each monomial component of H1(g) 

so (ii) and (iii) may be seen to hold for the whole. 

We must now tackle the commutator estimates and 

start with (v) where the presence of the term cst. B 

turns the trick. We examine matrix.elements between 

elements of Do. We do the commutator combinatorics 

first:- 

(Ad R) (ST) = (Ad R)(S)T + S(AdR)T 

so by induction we will have 

(AdR)(51...S ) = X2P Si...S 	(AdR) (S ) 2p 	k=1 	2.-11 	1. S2p 
(AaR)2(si...s2p) = (AdR)((AdR)(Si...S2p)) 

= X22,4 Si...St  (AdR)2(Sk)S241...S2p  

+ 2 X 	(AdR) (Sm) 	(AdR) (Se) ...S2p 

We next adopt the notations 
• 

K = 	(k k 	,k n) Z 	e+1" n 
and 

KJ' = (ki,k2,...,ki) 

for shortened rows derived from F = (ki,...,kn) . 

With this set up we note basic relations of commutation:- 
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((AdHt) (a(k.))0)n(K) 

= {p(k,K) - 11(K)11/2(a(k)e)n(K) 

= Al(k,K)(a(k)6)n(K) by definition of X1. 

= (ai(k)e)n(K) 

Repeating this 

((Adia) 2 (a(k))e) n (K) 

= A l  (it',,K)((AdH0k  )(a(k))e)n(K) 

= Al(k,K)2(a(k)e)n(K) = (a2(k)e)n(K) 

Taking adjoints (note this is perfectly good algebra and 

no analytic claims are made) 

(AdHok  )(a*(k)) = -a (k) 

(AdHo1/2 2  ) (a*k) = a (k) 
2 

Applying all this to an expectation with respect to 

c of Do 

<0(AdO 2 HI.(g)g> 

x 

x 

= XF....0( 13)Y:i.j=0{n+2p-j,n+j!n,n}1/2 .-  

fri.0.2pj(K,K').4(1K'I-IKHI)v(K T ,K")-k n+j(K",K) 

(K,KI 	.) qj=1 k13j+1 A2( K",K) + Y2 	X2 	k-3 k =  

+ 2(g>k=1A1(mK",K)A1( K",K) 

K",K) 

+ Y1.1.N2„,j4.111(K,K'm_i)T1(K,K't_j))1 

	

x 	dK'dK"dK 

where 

1/2 1/2  
. xi (mKu,K) = p(mK",K) - p(m-1K",K) 

	

T1(K,K
111"-' 3

)= p(K,K
ITI
' 
 •-•3 
.0 	m-p(K,K1-j-1  ) 

• 



(1 

(1 

+ 	x) 1/2  

+ 	x)1/2  

- 1 < x2  < kx 

- 	1 < 	kx < x1/2  

for x-< 

for x > 

4 

4 , 
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A2(2,1(",K) = Al(tK",K)X1( 1K",K) 

12(K,K;_j) =  

Now we have for the functions Al  and A2 inequalities 

IX1(k,101 < 1/211(k)P(K)-1/2  < 1/211(k)(2p)-1/2(n)-1/2  

and 
1X2(k,101 < p(k) 

or 

IX2(k,101 < cst. p2(k)(n+1)-1/2  

which follow from the elementary identity for x 

positive 

or 

Now we shall examine 

<0(cHO + 	+ c)> 

C=0(cfP(K) 2Tn(K)il(K)dK 

+ cf(K)ii(K)dK) 

4'.b/j21D IDHP) :14j.0({n+2p-j,n+j!n,n}1/2  

n+2p-j(K,10)(11V171Kni)v(V,K")-11 

x (K",K)dVdK"d1<l) En+j 
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It is clear from the expression for 

< E I (Ad 1.1(2)) 211,(g) 	> 

that it bears a great resemblance to HI. We shall 

show that 

X + C2 > 

where 

X = (AdH01/2 2  ) HI  (g), 

we have dropped the (g) and the constants cl and c2 

are suitable. To do this we analyse the part of the 

kernel of 

< x > 

in parentheses; we shall add the first and second sums 

each to half of the fourth and remark that these 

groupings and the remaining term are positive for 

sufficiently large K. Further the functions are bounded 

above. We infer that up to a constant, for the low K, 

we have domination of a multiple of HI. Now to these 

rearrangements:- 

(0",10 + Xk1.„),J.1.1X2(K,Kr it _i) 

+ 2(a>t=1A1(mK",K)X1(0",K) 

Y1=1 4L112j4.1 1(K,K 1 m_i)A1(zK",K) 

/121gt=j4.171(K,Mm_i)X1(K,K19,_j)) 
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v2 	7- 
= It=1A1(kKurK)(X1( 	

K" K) • 	- 	Lm=
p 

 j4.1A2(Kr i m_j)) 

/2,1!j+1X1(1‹,Vt_j)(TI(K,Vi_j_ -Em=1  Xi(m  K",K)) 

+ 2(1!>x=1X1(mK",K)A1(56K",K) 

+ X12.1.gt=j31(K,K"m_i)X1(K,K"k_j) 

The A are certainly positive so the last term "2(...)" 

is. We examine the subtractions in the first sum:- 

C!,j4.1TI(K,V m_i) < 1/21-1 (k i ra_j) / P(K)1/2  

a fairly generous estimate achieved by iteration, but 

showing that for large K (in length or modulus) this 

is small. The second term may be similarly treated. 

Overall then for large K this expression is positive. 
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We write then estimates for constants cl  and c2, 

of bilinear forms 

X + cl  > c2  H I •  

So then we have 

-X < - c2H + cl 

-X - b HI  < -(b 	c2)11, + ci 

Now we know that for all (S > 0 there is a constant 

c3  such that 

611
o + HI + c3 > 0 

thus 

-X - bHI  < + c4  (611o + c3) 

< EH2 	C5 - 0 

Finally then, we achieve 

0 < el12o  + X + bHI 	cs —  

where dl jr• • • 1 Cs were suitable constants, and the restriction 

C < 1 7 2a 

is certainly verifiable for both a and C may be made 

small. 

Since we are treating the general case p > 2 and 

we have taken in condition (iii) v = p we are obliged 

to check (vi). We take p = p - 1 > v- 2 and must 

verify 

0 < e 0+1  + (AdNP/2)2 HI.  + cst. 

Considering (hd0/2)2(V) where V is a Wick monomial 

part of the interaction of which there aie .2p, we 
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see 

(AdNP/2)V = NP  

We wish then that 

O < NP (EN+H -2N P12H 

The estimate (iv) 

O < aN+H + C1  

p 2 + VN 

p/2 +NPH NP) + cst. 

held true for any. a > 0 and suitable constant C in 

particular 

EN + H + C1  > 0. 

We shall add three inequalities to obtain the desired 

result; from this last follow by pre- and post-multiplication 

by NP & 1, NP/2  & NP/2, and 1. & NP, respectively 

O < c' NP+1  + NPHI  + CiNP  = A 

O < aNp 1 + Np/2H Np/2 + C Np 

O < bNp+1 
 

H NP 
	

= C 

Estimating A - 2B + C by using the extreme case of 

O 0+1  + NPH + C1  - 2aNP+1- 2C2NP  

O bNp+1 + bH NP  + C N 

= NP+1(c' - 2a + b) + NPHI  + bH NP + (C1-2C2+C3)NP  

If one arranges 

2 
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• (e' - 2a +b) = c 

as one may and then notes NPHI  and HIND  are both bounded 

(as adjoints from 

IIN-
j/2 	-(2p-j)/2 cstlIwIlL  (with j = -4p) 2 	; 

and then arranges C1,02,03  which as large enough to be 

positive, one has with the addition of a constant to 

dominate HINP + NPHI 

Np+1 + (adNp/2 2 H1 + cst > 0 

as required. 

Thus we have verified conditions (i) to (vi) 

of the theorem on singular perturbations and may infer 

its conclusion 

Ho + HI  (g)is self adjoint on Dom Ho n Dom HI(g) 

We have, therefore, a good local Hamiltonian as in the 

40 in two dimensions theory. 
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§7 	THE SEQUEL OF THE PROGRAMME  

With a Hamiltonian H(g) self adjoint on its natural 

domain and uniform convergence of the resolvents of 

H(g)V,K to that of H(g) as the box and ultraviolet 

cutoffs are removed as has been shown, there are no 

further obstructions to following the programme of 

Glimm and Jaffe to its published end through their last 

two preprints. We shall only sketch the path hereP 

First, from the semiboundedness of H(g) one may 

renormalize it to 

H(g) := H(g) - E 
g 

where Eg  is the lowest bound on the spectrum of H(g). 

The existence of a vacuum vector follows from the 

compactness of the resolvents of the approximations 

H(g)v,K , which thus each have discrete spectra °  Uniform 

convergence provides a unique vacuum 0 up to a phase 

that may be specified. Uniqueness uses the properties 

of positive operators, a technique that should be 

useful in the continuation. 

Still in the Fock representation one constructs 

approximate Heisenberg fields 

(1)(x,t) 	eiH(g)t (1)(x,0) e-iH(g)t  

and H(g) by the theorem of Segal, proposed by Guenin 
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• 

provides a correct local dynamics within the causal 

shadow of the 1-support of g (closure of the set where 
61 

g takes the value 1). Sufficient (and necessary) for . 

the application of this theorem is self adjointness of 

H0 , H1(g) and H(g) which_ we have. For these Heisenberg 

fields the properties of locality follow directly from 

the hyperbolicity of the homogeneous form of the equation 

of motion for all ultraviolet divergences have been 

disposed of. Furthermore space time covariance may be 

set up; if a = (a,t) 

aa(1)(x,$) = (x + a,s + t) 

and a is as seen above, unitarily implemented in 

bounded regions (by taking the 1 support of g large 

enough ).The space translation is also unitarily 

implemented 

acjiqx,t) = U(a)(P(x,0) U(a)-1  

We may then set up a set of local algebras, if 

0 is a bounded open region of space-time we have the 

C*-arid Wk-algebras associated with it generated by the 

fields smeared with functions of support within 0 

A(0) = C*alg{(p(f), Tr (f) : supp f is in 0} 

R(0) = W*alg{gf), w(f) : supp f is in O} 

= A(0)" 

So we have an algebra with quasi-local structure 

A = C*alg {R(0).  : 0 is a relatively compact open 

set of E.2} 

for it seems that R(0) is the most natural algebra to 
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60 	 61 
associate with a region; we are thus back with Araki. 

The Haag-Kastler axioms with the exception of Lorentz 

covariance are verified. 

To obtain finally the physical Hamiltonian and 

vacuum is a physical Hilbert space one has recourse 

to this abstract approach from the C*algebra A above. 

Every approximate vacuum 0 define a state of A (i.e. 

a positive linear functional of norm 1 on A, the set 

of which will be called E) its vacuum expectation 

w 	: 	A 	(S2 ,AQ 
g
) : A 

g  

The set of wg  is contained in E a set which is compact 

in the natural W* topology on functionals on A, of 
62 

pointwise convergence on A. Thus the set of w has a 

convergent subsequence w and its limit w is a candidate 
gm  

for the vacuum state. 	Unfortunately it is not 

invariant under space translation, though obviously 

temporally invariant by construction. One therefore 

takes a sequence of states 

wn(A) = g 	
(A)0 

g
) h(a/n)da 

where h is a bump function so that wn  spreads to become 

more and more translation invariant. A limit then of a 

subsequence of these wn  will be a translationally invariant 

w. With then an invariant state w on a C*-algebra A one 

may construct by the method of Gel'fand and Segal a 

Hilbert space H, a representation 7 of A in H, a vector 
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Q in H cyclic for Tr(A) and a unitary representation of 

the space time group that leaves 0 invariant:- 

Hilb.Sp. Wker 

: A 4- BOpr H : A 	w(A)(.) = (A. 

11011 = 1; Tr(A)0 is dense in H 

w(R) 	(0,w(A)Q) 

U : 	UOpr H : cc 	U(a) 

U(a)n = 0. 

Two of the desirable properties of field theories 

blatantly missing above are covariance of the fields and 

any form of Lorentz representations. But the wg  are  

vector states and so the w
n are normal states on every 

A(0) (equivalently density matrix states or completely 

additive states). Glimm and Jaffe by showing that the 

number .and energy densities are both bounded and that the 

vacuum energy Eg  is extrinsic in the volume (or support 

area of g) are finally able to conclude that the physical 

vacuum w is locally Fock; this takes them about 100 pages 

of paper III on Xe. 

There is however a simpler way of obtaining the 

result of w being a locally Fock state, due essentially 
• 63 

to Guenin. The states w
n above are normal states on 

64- 	65 
every A(0); by a theorem of Dell'Antonio and Sakai the 

limit in the W* topology of a sequence of normal states 

is also normal. Thus the limiting state w is normal on 

every A(0) and as such carries this von Neumann algebra 
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into an image von Neumann algebra66. But Araki has shown 

the A(0) to be type III factor 7and a result of Griffin68 

then implies that the isomorphism afforded by 

it r A(0) 

since A(0) is simple, is unitarily implemented. Thus 

we have for each local algebra in the physical represen- 

tation a unitary intertwining U0  with the local algebra 

of the same region in the Fock represntation:- 

U0  in UOpr (F,H) 

and for every 

A in A(0) 
	

it(A) = U0  AU  

Further there is a local vacuum for 0 namely UB*0 but 

there is a phase ambiguity. In connection with the 

question of Hepp as to why every one should have to 

smear with translations to make the approximate vacua, 

the result that any normal state on a W*-algebra, whose 

commutant is infinite (e.g . a Type III algebra) is a 

vector state is of interest in suggesting it should not 

be necessary70. One may note that H is separable as a 

unitary image of F. 
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§8 	CONCLUDING REMARKS ON PROBLEMS  

AND 

OUTLOOKS  

The most obvious deficiency of the above construction 

is that even though restricted to two dimensional space-

time, wherein the Lorentz group is one dimensional and 

so commutative (since locally compact), Lorentz 

covariance has not been incorporated. Jaffe and Cannon 

have stated that they have nearly attained proof of the 

existence of a self adjoint generator for the Lorentz 

group and covarianceP They are trying to piece together 

locally correct boosts 

M = cHo  + Ho  (go) + Hi(g) 

where the form factor must give the required function 

x over some interval for formally 

M = fxH(x)dx 

Then they apparently use similar methods to the e 

methods. They would then have Lorentz scalar two point 

functions. 

However even with Lorentz covariance one still has 

.no scattering theory of a rigorous sort. To be able to 

establish Haag-Ruelle scattering theory one requires 

three properties of the spectrum of space-time translations?1 

(i) the vacuum Q is unique 

(ii) there is a mass gap, that is 0 is an isolated 

point of the spectrum 

(iii) there is a one particle structure, so that 
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the renormalized mass hyperboloid should support 

an irreducible representation of the Poincare group 

with the renormalized mass m1. 

Toward an answer to the problem (i) one may try to 
72 

invoke the Alaoglu-Birkhoff theorem, if the Lorentz 

group is represented, or if not (i.e. for the abelian 

unitary group of translation) the Dunford theorem72  that 

provides a unique invariant vector by convergence of a 

sequence of means. In examination of (ii) the only method 

of attack seems to be the use of compact resolvents which 

are positive and of the eigenvalue spreading of such 

operators.73  Jaffe asserts on general compactness grounds 

that there should be at most a finite number of discrete 

eigenvalues and no continuum for H(g) between 0 and the 

bare mass m0  , but does not seem to be able to keep the 

limit of such away from 0. 

There is one further piece of hope for scattering 

theory available already. This derives from Ruelle's 

recent work.on integral representations of C*-algebra 

states.74  A theorem here applicable states that if a 

C*-algebra have a quasi-local structure defined by a 

commutable family of sub-C*-algebras then if for each 

region the algebra there has a separable closed bilateral 

ideal such that the restriction of the state p under 

consideration has norm 1 there then p has a decomposition 
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into states with trivial algebra at infinity; the 

algebra at infinity A is 

0  7TP (A. (21  ) ) " 

given by the Gel'fand-Segal construction. However a 

further theorem states that a state with trivial algebra 

at infinity has a cluster decomposition property in that 

for every positive c and A in A there is an 0 such that 

if A' is in A(0') then 

Ip(AA') - p(A)p(A1 )1 < 	II 

For other theories in two dimensions, less has been 

achieved for the presence of non-trivial ultraviolet 

divergences (those not removed by Wick ordering) neces-

sitates the very complex machinery of dressing transform-

ations and a much more drastic form of changing Hilbert 

space. Glimm and Jaffe have just announced for the 

Yukawa theory TO after renormalization a proof of 

self-adjointness of H(g) and of resolvent and graph 

convergence ofoput off versions, and locality of them; 
7.5 

but as yet they have no vacuum or renormalized H. However 

in-paper III they surmise that the energy estimates they 

make for 4' ensuring local Fockness, will remain good for 

(144))2  and (P (4) 	QMITIP) , where P and Q are polynomials 

in the boson fields. In the light of the use of the 

theorem on normality of weak * limits of sequences of 

normal states, this seems plausible. The extrinsicness 

• 



1-8 	 73 

of the local energy density is violated for 04)3. 

Hepp has shown (P0) + Q(4)174)2(g) is symmetric and 

densely defined, where the polynomial P(4) is positive 
76 

and dominates the polynomial Q0). 

It is hoped by the devotees that there will exist 

a full non-trivial theory within a few years. 



PART II 

THE ABSTRACT DEVELOPMENT OF I.E.SEGAL 

and 

THE RELATION OF PART I TO IT. 

74 
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§1 QUANTUM FIELDS, FOCK SPACES, & CANONICAL COMMUTATION 

           

Since the abstract approach is here being taken in 

order to make plain the mathematical completeness of the 

treatment of but a single example, we shall begin by 

definitions following those of I.E. Segal. 

The usual start would be to define Fock Space (or 

occupation number space, or the space for the particle 

representation of the canonical relations) explicitly 

as follows. 

Choosing a standard Hilbert space L2(Rs) to 

which of course any separable Hilbert space is noncanonically 

isomorphic, one interprets it as the collection of wave 

functions of single noninteracting particles in space of 

dimension s (sometimes space-time of dimension s). For 

the representation of the CCR one constructs from the single 

particle space, the Hilbert space on which the CCR will be 

represented as the symmetric, or antisymmetric tensor algebra 

over L2(Rs), with the existential (a neutral adjective to 

stand for either creation or annihilation) operators, 

acting as linear maps of degrees ±1, on the graded vector 

space. 

(cf.e.g. for this terminology Chevalley, The Construction 

And Study of Certain Important Algebras, Publ.Math.Soc. 

 

Japan; or 

Calculus, 

H.Nickerson,N.E.Steenrod,D.C.Spencer, Advanced 

Van Nostrand Co.) 

Explicitly for 

space E is the 
the symmetric case as illustration, Fock 

Hilbert space completion of F = 0 Fn  = OL2(id) 

(0 is a standard notation for symmetric tensor algebra or 

product, cf. Sternberg, Lectures on Differential Geometry, 
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Prentice Hall, 1964) and the homogeneous compOnents 

F(n) 	( ) are given by F. - 	= C (in general 'the ground 

field), and for n 1 1 

F(n) = L2  (Rs) O F 
(n-1) 

ff 04) :11) z,,F  (n-1) & fin L2  (11s) } 

where by definition 0 is the result of a symmetrizing 

operation, i.e. an average over the action of the 

permutation group on the appropriate number of ciphers 

Pm, the group of permutations on m ciphers, acts naturally 

on V2n, the n'th tensor power of a vector space V, by 

linear extension from its action on decomposable tensors, 

which is 

(x, 0  xm) = xn10 	Ox 
um 

where xInV, and 7t Pm is taken to be (n1  1,:.... !nm  m). The 

obvious averager is then 

x10,...,0xm  = (m!) -1 r 	n(xi' 0 ...,0x ) w 

In this case then 

L2S) On_FL' Li2ls m ((Ks)n) 

= If(kl'" .,kn) in L2 (
Rs)n)i 	p n  

f(kl'"'' k  n  ) = f(knl' . 	k)1 

Simply said for the symmetric case, Fock space F is the 

Hilbert sum of the homogeneous components F(n) of the 

graded symmetric algebra over F(1) = 1,2(Ms  ). The exist-

ential operators are then: 

creation a* : L2  (1e) 	Opr.oF : 	a*(f) 

a*(f)i F(n) F(n+I) :1 	(n+1)-2f04)  

annihilation "a: L2  (Ms) 	Opr_1  F: f--÷a(f) 

a(f):F(n)_, F(n-1)  1.1f 

where Oprr  for rlikZ denotes the linear operators of 

ti) 



II-1 	 77 

degree r on a graded space and fi IP denotes the left 

interiok_product of differential geometry, or just 

contraction. Of course in this case as functions 

= ff(kn)flkii...,kn)dkn 

which is the extension of the natural 

f J (g,0,...,Ogn) = (fign)g10,...,0gn-1 

where in. the degree 1' component F(1)  , 

fJ g = <11g> = <41f> 

a symmetric product associated with the Hilbert inner 

product. Under these conditions a*(f) and a(Y) are 

adjoints satisfying the standard commutation relations: 

a(f)a*(g) - a*(g)a(f) = <TIg> 

The domain of a*(f) clearly varies with f for it is 

Dom. a*(f) = {4AAF :11 fe1P11 2<-} 
A core for a* i.e. a domain on which the above CCR 

will hold for all f is 

D 	= { 	1*n  in F : whin  to en)  

&7:]INT n>N 	=0 

& din supplpn  cpct•-ltdn  1 

The" operator(D(f) =2-1/2 	+ a*(f{I is self adjoint 

and generates a one parameter group 

W(f) = eil)(f) 

for which the following .(Weyl) relations hold by virtue 

of the CCR 

W(f)W(g) = e
i/2Im<flg> 

W(f+g) 

Then 
W: L2(Rs) -÷ Un Opr F 

is a Weyl system, the so called 
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Pock representation of the CCR. Since L2(Ed) is infinite. 

dimensional there are many other inequivalent (i.e.there 

exist no unitary intertwinings) Weyl systems based on it. 

Lately the exponential representations have been studied by 

• ... , ••••••• 
J.Fabrey, Exponential Representations of the Canonical  

Commutation Relations, MIT preprint; and K. Hepp, 

Renormalized Hamiltonian Dynamics and Representations  

of the Canonical (Anti) Commutation Relations, Colloque 

surs les systemes a un nombre infini de degres de 
liberte-CNRS, Paris, 7 Mai 1969. 

These are those whose creation operator is-given by 

tensoring with a function w in F
(m) 
 for m>.1 

a (m) * (w) : F(n) 	F(n+m):ip 	Iln+m):/na2  w0q) 

The Weyl system associated is obtained by a 'renormalizing' 

redefinition of scalar product in a way which will come 

up later. 

Thus we had L2(Rs) Playing the role of both parameter 

space for the degrees of freedom and as generator for the 

Hilbert space on which the Weyl System was represented. 

It is further usual to look at the Rs  in question as 

position (x) space in connection with the first role and as 

momentum (k)'space in connection with the second, thus 

the common formula 

(x) =1/ Tr  fIi 
1 	

1/2 
 -2ffixk a() 	e2ffixk a* (kadk 

which 'expresses the Fourier transform'. 

77 
I.E. Segal has for some time inveighed against the 

practice of adopting specifics before necessary in this 

regard, and one might, and is certainly tempted to, look 
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at the algebraic nature of the graded algebra with . 

'ladder' operators (in fact the anticommutation relation 

may be taken as stating that the elliptic complex associ-

ated with the Fermi existential operators is acyclic, cf. 
78 

Spanier). We shall follow Segal in not just taking 

OH for some Hulbert space (6 to denote completion of 0) 

but by setting out his definitions of the basic kinematics. 

The different forms of statistics shall not be ignored. 

The treatment follows Segal 

(Quantization & Dispersion 

for NonLinear Relativistic Equations, Local Non 

1J4 	Linear Functions of Quantum Fields, Non Linear  

Functions of Weak Processes I,II.) 79 

his definitions will be given, the main theorems sketched, 

and the familiar examples mentioned. 

To start, one defines a quantum process which 

all quantum fields or similar constructs will have 

to be. The stochastic processes, intriguing though 

they are in relation to their possible provision of a 

.nexus with Nelson's mechanistic 'brownian' quantum 

80 mechanics, will be passed by. 

One defines the strong algebraic operationPlon 

the set of closed densely defined linear operators on 

a Hilbert space H (abbreviated ClDsOprH or sometimes 

Opr H). They are the closures of the usual operations 

and are defined when they can be 
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: { (A ,B ) in Opr H2  : 9 (A+B) 	DsOprH} --}OprH 

: (A,B) 	A+B =' (A+B) 

• : 	(Akis) is OprH2  : 3 (AB) -1A. DsOprill 	OprH 

:(A,B) 	A.B = (AB) 

This being so VA.m0prH 	0.A = 0 

Definition  

An operational process with probe space L 

is a linear map 4)  from L to OprH for some Hilbert space 

H. If L is a space of functions on a set M 4) may be 

said to be an operational process in M. (abbrev. : OnOpr 

Proc L, H or 4)14Lin.L,OprH ). Equivalence for operational 

processes is given as follows 

if cpilitx0pr Proc L, Hi 	i=1,2 

the 4)1 4)2 

<=› -.3 UlAU0pr (H1,H2) 

V 

U 4)1(x
) 

u
-1 

= 4)2(x) 

A quantum process will be a special kind of operational 

process, with a distinguished vector. 

Definition 

A quantum process with probe space L, is an 

operational process OM Lin.(L, OprH), together with a 

distinguished unit vector vIAH. It is called cyclic 

if v is cyclic for the von Neumann algebra generated 

by the image of 4), (this will be denoted W* alg.(4)(L)) 

Ahe von Neumann algebra W* alg{A)1 generated by a 

family of in general unbounded operators. A is 

defined as the double commutant, (or weak closure 

under usually set, verified conditions, satisfied 

if there is a: cyclic vector for the 'family or if 

the family contains a constant,) of the bounded 



operators determined by A; i.e. the partial isometries 

and projections of the spectral decompositions 

of the self adjoint parts of the polar decom-

positions of elements of A. 

Equivalence of quantum processes is the simple restriction 

of equivalence of the operational processes involved, by 

requiring that the distinguished vector be carried over 

th,Untry (Hi ,H2) 

V xinL 	U41 (x) U-  = 4)2(x) 

U V/ = V2 

The linear functional on W* alg{4(L)}  given by taking 

the expectation with respect to the vector v 

W*alg{4)(L)} -4 C : T -4 <viTv> 

is called the vacuum state or more shortly, vacuum of 

At this stage there is a manifest lack of structure. 

The standard Fock space example has L = L2 (Rd  ) 

4)(f) = (a*f+a(Y))/2 and v the Fock vacuum whose only 

component is in degree zero e.g. (1,0,0 	) 	What 

is now required is the building in of the fundamental 

commutation relations of mechanics, and taking as a 

possibility both Bose & Fermi statistics one is led to 

the further assumptive definition: 

Definition 

An operational process is called canonical if 

(i) -0L)cISA0pr H 

(ii)3LeLsc--vsp L 	L=La0 Ls 

&:110ANonDegen A Sym.Bil.Form La  

&-1-1SiANonDegen Sym.Bil.-Form Ls  

such that 
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x,y1nLa 	eicHx)eig)(y) .eiA(x,y)eich(y)ei(P(x) V  

	

V x,y.,n1is 	4(x)4)(y)0(y)cb(x)=2S(x,y)I 

& x La&y.v.Iis 
=> (i)(x) 44(1)(Y) 

where 44 denotes strong commutation i.e. in terms of all 

spectral projections commuting. Verbally an operational 

process is canonical if it assigns to elements of L self 

adjoint operators, such that on one subspace La  of a 

direct sum decomposition of L they obey Bose commutation 

relations; on the other L they obey Fermi commutation 

relations, and Bose & Fermi parts do not interfere i.e. they 

commute;. A quantum process will be called canonical if 

it is such qua operational process. Clearly canonical 

quantum processes are what was desired. The canonical 

non quantum process has no vacuum vector and this has 

often been suggested to be the case for particular models. 

A very convenient property of canonical processes is that 

they are in a sense unique if given in that no other de-

composition into symmetric and antisymmetric parts is 

possible, under the extra assumption that Ls  is not of 

finite odd dimension (Scholium 2 in NFWP I § 1). 

It is now cogent to set out the theorems on uniqueness 

of the Bose and Fermi parts of the canonical process, so 

we define and explore the respective Weyl and Clifford 

algebras and systems. The attempt will be made to treat 

the. two simultaneously. We proceed to the topologico-

algebraic definition'. 

Definition  

Let L be a vector space over R 
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Let F he a nondegen. bilinear form on L 

Let L be the free noncommutative associative algebra 

generated by L and the adjoined neutral element e. 

Let L be endowed with the topology which is the 

inductive limit of the topology of convergence up 

to finite degrees over finite dimensional subspaces 

of L. 

Note that this is in fact a double inductive 

limit, firstly in each degree over the finite 

dimensional subspaces of L and secondly over 

finite sets of degrees of the polynomials. 

The F algebra over L is defined to be the quotient 

of Ii modulo the closed ideal generated by the 

relation Vx,ylilL 	xyF(y,x)+yxF(x,y)=F(x,y)F(y,x)e 

If F is antisymmetric this F algebra over L is 

called the Weyl algebra over (L,F). 

If F is symmetric this F algebra over L is'called 

the Clifford algebra over (L,F). 

We then remark the following specified properties: 

Scholium 

If F is symmetric (resp. antisymmetric), the: 

ideal above is algebraically generated by the relations 

xy +yx = F(x,y)e 

(resp. xy - yx = F(x,y)e ) 

It should be noted that the definition of Clifford 
82 

algebra is the same as that given by Chevalley in terms 

of the associated qudratic form kF(x,x ). 



For McvspL we shall denote by F-Weyl Alg(M) 

and F-Cliff Alg (M) the Weyl and Clifford algebras 

generated by M (with e of course adjoined). Almost always 

the prefix F specifying the form will be dropped for what 

form it is will be obvious from the context. 

It is well known that the commutation relations 

defining a Weyl algebra imply that any faithful representation 

of it as say self adjoint, operators in a Hilbert space 

(e going onto the unit operator)means that at least some 

of the operators be unbounded and so not everywhere 

defined. The trick of Weyl was to unitarize the commutation 

relations to bounded operators and so we shall define a 

Weyl system (a special form of antisymmetric canonical 

process with continuity). 

Definition  

Let L be a topological vector space 

Let A be a nondegenerate antisymmetric bilinear form 

on L. 

A Weyi system over (L,A) is a mapping W to unitary 

operators in a Hilbert space H such that 

(i) x 	Wlx) : 	U Opr H 

is continuous on every finite dimensional subspace 

of L with respect to the weak topology on OprH. 

(ii) Vx,y(:L 

W(x)W(y) = ei/2 A(x,y) W(x+y) 

Two Weyl systems will be said to be unitarily equi-

valent if there is a unitary operator intertwining 

them in the sense UELUDp(Hi,H2) 

84 
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such-that UW1  W2U 

In the case that L is finite dimensional, the theorem 

of Stone and von Neumann says that any Weyl system is 

unitarily equivalent to the direct sum of copies of a 

standard Weyl system, that given most frequently in the 

Schrodinger representation. 

In the case of infinite dimensional L the situation 
83 

is completely different. In fact a Weyl system need not 

exist for although most of the following construction 

can in general be carried out, the extra assumption is 

put in specifically to be sufficient to ensure continuity. 

It is probably not necessary. We have then the following 

existence theorem.: 

THEOREM 

Let L be a Hilbert space with inner product 

<xly>. Let A(x,y) = Im<xly>. Then there 

exists'a Weyl system over L,A. 

Proof (Sketch) 

Every vector xiAL lies in a finite dimensional 

subspace of L on which A is nondegenerate. On such 

a subspace by the Stone von Neumann theories there 

may be built an essentially (i.e. up to equivalence 

for the category) unique irreducible Weyl system. 

With this Weyl system associated with the subspace there 

is associated the C* algebra it generates. The set 

of finite dimensional subspaces of L is directed 

with respect to inclusion, i.e. given any two such 
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subspaces there is a third which includes them 

(N1+N2DNI,N2). The inclusion of subspaces induces 

inclusive injections of the C* algebras over them. 

The inclusions of C* algebras satisfy the usual 

cocycle forms of compatibility condition and so 

one may form the inductive limit of this directed 

system of C* algebras and maps satisfying the Weyl 

relations. The result, 	is a C* algebra A with a 

map W from L into it satisfying the Weyl relations. 

However, it is by no means clear that.  

x— W(x) : L-* A 

is continuous with respect to the weak operator 

topology of one of the Hilbert spaces on which 

A. may be faithfully represented. 

In finishing this section it might be useful to state 

that there are many known realizations of these canonical 

relations. In the case of those associated to a 'lack of 

interaction' in addition to the Fock or particle number 

representation, we have the Real wave or renormalized 
.--- 

Schrodinger representation which was used in Part I to diag-

onalize the interaction, and the lesser known complex wave 

representation that diagonalizes the field operators. All 

these have their uses. For fermi systems there is also a 

similar existence theorem for Clifford algebras, but not much 

is known of special representations. 
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§2 	' A PROBLEM'OF INTERACTIONS  

We have been considering the canonical commutation 

relations that we would wish our fields to have; that is 

we have been looking at the quantum basis for a field 

theory. However as yet there has not been any mention 

of dynamics or a field equation. We restrict ourselves 

now to boson (Weyl) systems for this section although 

the 'abstract Wick ordering' theorem of the next will 

be demonstrated for both extremes of statistics at onece. 

Suppose then that we have a field equation for a 

relativistic self-interacting boson system'of the 

simplest type 

Aci)P  

As a classical equation this nonlinear partial 

differential equation has only recently been satisfactorily 

treated84  showing the existence of a global weak solution 

of the Cauchy problem, for fairly general initial data, 

with p an odd integer for positivity of the energy, (and 

A,m > 0). Letting p become 2p - 1 with p a positive 

.integer, we have our problem of Part I, if only it were 

clear what was the meaning of 4)13. It should be the 

power of a field (I), which if not an operator valued 

distribution is trivial, and it is well known that 

multiplication of distributions is not admissible. 



11-2 	 88 

We have then to ascribe a meaning to a power of a Weyl 

system in such a way that the above equation is satisfied. 

The usual Wick ordering provides a meaning for 

powers of free fields and is expressed in Fock space 

terms; by Haag's theorem use of this representation 

implies that any translation invariant interaction 

Hamiltonian leaves the vacuum invariant so the inter-

action is trivial. However, if the field equation is 

to be understood as holding for fields with non-trivial 

interaction (such as (p + 

 

1)-114) interaction 	+ 1(x)dx) then we 

must have a meaning for such powers independent of the 

form of the representation of the Weyl relations. It is 

to produce such that the abstract Wick ordering following 

is developed. Given a functional on the abstract Weyl 

algebra (perhaps defining a representation) a method is 

given, (or at least its existence shown) for changing 

this functional to one with more desirable properties. 

These properties are abstractions of those of the change 

in vacuum expectation values (which are only the moments 

of-afunctional) associated with normal ordering such as 

vanishing of the expectation values of powers. The free 

field functional has moments only up to order two (n-point 

functions vanish for n > 2) but the general theorem permits 

the definition of a normal order relative to any functional 

(e.g. a non-free one). It may be seen then that such an 
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abstract formulation (if not necessary for any given 

problem might be solvable by sophisticated approximation 

by perturbations of free field systems) is very satisfying 

to have, and required if a general theory of quantized 

fields is to include interactions. 

The power of the field which is attained has the 

desirable properties 

(i) the binomial expansion should be applicable to 

+ f)m  and should be the translate by f of (1)111  

(ii) as a normalization vacuum expectation should vanish 

and is constructed expressly to be so. The interaction 

formed from this is what is called by Segal a quantized 
85 

differential form (this in fact is just a transcription 

of Q-differential form as opposed to C-differential forms 

in the conventional terminology of Dirac). It is 

determined by and determines the time evolution given by 

the commutation form of the Heisenberg equation of motion, 

-i a (1)(x' 
	

11-1,4)(x,t)1 

where 

H = Ho + H 

This is in differential form, a condition on the time 

evolution automorphism; as a differential, a generator 

of an automorphism group, ad H is a derivation of the 

global field algebra." 

Segal has continued his systematics far and given 
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much more indication of his general methods; but it is 

lengthy and incomplete and we shall not go further here 

than to present an alternative proof of the generalized 

Wick renormalization theorem, which is given in his 

article in Topology with minor error; separately for 

Weyl and Clifford systems. After that we shall show the 

relation of Part I's definition to that in Segal's 

theory. 
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This approach to field theory involves vacuum 

expectation values and other linear functionals on 

certain F-algebras E over a vector space L. The F-

algebras E are graded and have defined on them a degree 

in which the element 0 has conventionally the degree 

and a general element has the degree of the 

homogeneous component of highest degree. There are 

then the properties 

(i) deg (u + v) < max (deg u, deg v) 

(ii) deg (u v) < deg u +'deg v 

(iii) deg u = 0 if and only if there is a A 

in CC* such that' u = Xe 

The first problem of renormalization is in a sense 

that there are natural linear functionals w defined on 

parts of E but not extendable to all of it. Further w 

may give undesirable answers which are finite; it 

should be noted that the statement above about extend-

ability is only another way of saying that the values 

on some elements would be infinite contrary to the 

definition of a functional. It is often desirable 

to produce a linear functional wo such that 

wo(e) = 1 . 

This is the problem of Wick ordering to get rid of 

:trivial vacuum divergences. 

We shall deal in the following theorem with the 

possibility of taking one functional into another by a 

91 
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so called renormalization map, for the two simple 

cases of a Weyl and a Clifford (skew-symmetric and 

symmetric) algebra. First, in order to carry both 

types at once, we make the appropriate definitions. 

DEFINITION: 

If u in E is homogeneous of a given 

degree,then the parity82of u, denoted (-1)11, will be 

±1 according as the involution 

z 	-z on L induces u -4-  ±u. 

We defined then a bracket operation for elements u 

of a definite parity by 

{u,z} = uz - (-1)uzu 

and extending by linearity to an operation on all 

of E 

: E 	E 

In general one defines 

{u,v} = uv 	(-1)  (deg u) (deg v)vu 	
• 

In order to combine calculation for W(L) and 

C(L) we consider the Weyl algebra as concentrated in 

even degrees only, i.e. 

Wo (L) = C,W1  (L) = O, w2 (L) = L, W (L) = L 0 L 

and 	Co (L) = cC, C1 (L) = L, C2(L) = L 	L 

Then we have 

PROPOSITION  

deg {u,z} < deg u 
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PROOF  

• Considering, without loss of. generality, a decom- 

posable element u 

u= zi...zn  

fu,z1 = zf...znz +.(-1)uzzi...zn  

A:uAnduction process would settle the result by 

repeated commutation if one could shew 

degfz1,z1 < deg z1  

But 

{zz} = F(zz)e 

so the result is obvious. 

We seek now a map carrying w to wo which is a linear 

map R : E E 

such that 

	

IRw,z1 = R{u,z} 	for every u in E and for 

every z in L 

	

(ii) w(Ru) = wG (u) 	for every u in E 

We shall now show that if L, the phase space, is 

infinite dimensional then such a map renormalizing a 

state to a nice vacuum state, that is removing trivial 

vacuum-vacuum divergences, is defined by only the above 

properties:- 

(ii) that it provides a carrying over of the first 

state such that 

(i) it commutes with the right adjoint action 

{-,z} of L. We have the following 
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THEOREM 

Let L be infinite dimensional and E either a 

Weyl or a Clifford algebra, W(L) or C(L), over L. With 

the above conventions on their constructions and on the 

definition of the bracket {,}, given a state w, on E 

such that 

w(e) # 0 

and a state wo on E such that 

wo (e) = 1 

then there exists a unique map renormalizing w to wo 

so that 

(i) for all u in E and for every z in L 

{Ru z} = R{u,z} 

(ii) for all u in E 	of even degree 

wo (u) = w (Ru) 

PROOF 

To prove this we shall show firstly that if such 

a map does exist then it is unique, and then set about 

constructing one. The construction, since the algebra 

E is in general infinite dimensional, pieced together 

from finite dimensional parts as an inductive limit, will 

involve restriction to finite dimensional subspaces 

and the associated notion of tame function. But first 

the uniqueness result as a simple algebraic lemma. 

LEMMA 

If such a renormalization map as in the 
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theorem exists, then it is unique. 

Proof  

The obvious proof is by 

difference D of two maps R and 

vanish. So, letting D = R-R' 

element of minimal degree such 

for every 2 in L 

showing the 

R' of the kind to 

suppose u to be an 

that Du 0. Then, 

{Du,z} {(R-W)u,z} 

= D{u,z} 

But 
deg{u,z} < deg u , so 	D{u.,z = O. 

Then 
ifDu,z1 = 0 	for every 2 in L 

But 
ADu,z1z21 ={Du,z1}z2  + (-1) 

Where the expansion of the brackets 

deg ziz2  = deg zi  + deg z2  

by the following sublemma:-

SUBLEMMA 

Let u,v,w in ELsuch that 

deg vw = deg v + deg w 

then 

(Duzi) z/{Du,z2} 

holds since 

{u,vw}. fu,v1 w 	(...1)(deg u)(deg 

Proof  

  

  

{u,vw} = uvw - (-1)  (deg vw) (deg u) vwu 

= 	- (_1)(deg u) (deg v)vuw  uvw  

(deg u) (deg v) (-1)(deg v + deg w)deg u 

	

+ (-1) 	vuw - 

vwu 
{u,v}w  + (-1)  (deg u) (deg v)v{u,w} 
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So we have 

{Du,v} = 0 	for all v in E 

Thus Du = Xe 

So 	w(Du) = w(Ae) = Aw(e) 

=.w(R-R')u 

= wRu — wR'u 

= WoU 	WoU 

= 0 . 

Hence we have X = 0, but this shows as required that 

D vanishes always, i.e. 

R E R'. 

Continuing the proof of the theorem, we must now construct 

a map R, renormalizing w to Wo We introduce the notion of 

a tame function on L which is a function that depends only 

on a finite number of variables or in otherwords is equal 

to its restriction to a finite dimensional subspace; the 

smallest such subspaces is called its support and is 

essentially given. The definition amounts to this but 

is technically more directly useful. This notion of 

tameness is much used in the theory of integration over 

infinite dimensional spaces.87  

DEPINITION 

A function (I) on L, which has a fundamental 

nondegenerate form F, will be called tame if there exists 

a finite dimensional subspace N of L such that 

for every w in N 	F(z,w) + F(z',w) 

=> cp(z) = cp(z') . 
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The N of minimal dimension such that this is so is 

called the support of (P. 

LEMMA  

Let K be a tame map from L to E. Then there 

exists u in L such that 

K(z) 	{u,z} 	if and only if 

for every z,z' in L 	{K(z),z } + {K(z'),z} = O. 

Proof  

We shall first tackle the easy part:- necessity. 

That the identity holds is an immediate consequence 

of the (generalized) Jacobi identity 
{{u,z},z'} 

+ ffz,z11,11.1 + ffzi,u1,z1 = 0 

for {z,z } is a scalar and {u,e} = 0 always. 

That the mapping be tame follows from the expansion 

identity for brackets of monomials. For letting 

u be in 4(G) where G is a finite dimensional subspace 

of L, to be a monomial W1W2 	wr with w. 1 in G. 

Applying the expansion formula we have 

{u,z} = {wl...wr, z} 

= fwi,z1w2. 

/r  (-1)(  k=1 

But then 

r ..wr + (-1)
r-1  wilw2 

r-1) (r-2).;.(r-k)w  

wk+1 wr 

...wr,Z) 

...wk-1k'z} 

fw,z1 = fw,z'l 

for all w in G implies 
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{u,z} = {u,z'} 

However the condition 

{w,z} = {w,z'} 

is equivalent to 

F(w,z) = F(w,z') 

Therefore 

= K(•) 

is tame. 

To prove sufficiency we must use some of the identities 

of the general commutator bracket calculus, and a 

property of nondegenerate bilinear forms on finite 

dimensional subspaces. First, however, we must be 

sure that any finite dimensional subspace M of L (in 

particular the supporting subspace for K) is extendable 

to a finite dimensional subspace M' on which F is 

nondegenerate. A demonstration given by Segal in the 

skew case does not hold. Therefore we include a full 

elementary proof. 
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Lemma on Bilinear Forms  

Definition: A bilinear form F on a vector space V 

is termed left nondegenerate if 

F(.,y) : 	.: x -÷ F(x,y) 

is the zero map on V iff y = 0, i.e. Vxeli F(x,y) = 

0 .=>. y = 0 and similarly is termed right nondegenerate 

if 

F(y,•) = 0 => y = 0. 

F is called (bilaterally) nondegenerate if it is both 

right and left nondegenerate. 

We remark that if V is finite dimensional, right 

and left nondegeneracy are equivalent, and further, that 

symmetry or skewness of F also implies this equivalence. 

We now prove a simple but important extension lemma for 

nondegenerate forms. 

Lemma.  

Let F be a bilinear form on a real vector space 

L, which is bilaterally nondegenerate, then any finite 

dimensional subspace N may be imbedded in a finite 

dimensional subspace N' on which F is nondegenerate. 

Proof i) If L is finite dimensional the lemma is a 

triviality. 

ii) Suppose then L to be of infinite dimension. 

We proceed by induction on the dimension of N. 

a) M dim. N = 1 :- then N = Mn for some nEN 

al) Suppose F(n,n) 	0; then FPN is already 

nondegenerate. 

a2). Suppose F(n,n) = 0; by the following 

Sublemma there exists a veL, such that both F(v,n)O, 

and F(n,v) 	0. Let N' = 	+ Mv; now .F r N' is non- 
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degenerate for A,p6111 and Vxel\l' F(An+pv,x) = 0 

(whence)==> F(An+pv,n) =0 

= AF(n,n) + pF(v,n) 

(Whence)==> p=0 

.So 	F(Xn,x)=0 follows, which implies 

F(An,v)=0, whence A=0. 

We insert here the required Sublemma. 

Sublemma  

Under the conditions of the lemma, it is 

possible for any n41, to find a vttL such that both 

F(n,v) 0 and F(v,n) 0 

PROOF We shall use 'reductio ad absurdum'; suppose 

then that there is a n for which it is not possible 

to find such a v. By the right nondegeneracy of F, 

there certainly exists a v such that F(n,v)00; we 

are assuming then that for every such v, F(v,n)00. 

But also by the left nondegeneracy of F, there exists a 

w such that F(w,n)00; we are again assuming that always 

for such w F(n,w)=0, otherwise we should have the 

required element both left and right non-F-orthogonal 

to_n: But now consider v+w; 

F (n,v+w) 

= F(n,v) + F(n,w) 

0 

and F(v+w,n) 

=F(v,n) + F(w,n) 

0 O. 

Thus (v+w) has the required property in any case, in 

contradiction to our hypothesis that there was none such. 

V,2 A Sublemma 



Continuing with the proof of the full Lemma, we 

go on to the induction step. 

b)We make the hypothesis for induction, that any 

subspace M of L of dimension less than n may be extended 

to a finite dimensional M', a subspace of L on which F 

is nondegenerate. 

So let N be of dimension n; then N is a one dimen- 

sional extension of some (5-1) dimensional subspace M 

of it that is N = MVsp{M,n} 

where n e M and dim. M=n-1. By the induction hypothesis 

there is a finite dimensional M' containing M such that 

FrMI is nondegenerate (moral?). 

We continue by examining the two cases for location 

of n. 

bl) n(M' :-If this be so M' is the sought extension 

of N for N = Vsp {M,n}C:M1  

b2) n M' :-Then we may, without loss of generality, 

take F(n,M')=0, by assuming the F projection of n onto 

MI  to have been already subtracted. We subdivide the 

case b2) further: 

b2') F(n,n) 	0 :-Let N' = M' 	En. Note 

that this is certainly an F orthogonal direct sum. 

Then we have FtN' certainly nondegenerate, by directness 

of the sum and nondegeneracy on the summands. 

b2") F(n,n) = 0:-By the sublemma, there is a 

v in L such that both F(n,v)71 0 F(v,n). Again, without 

loss of generality, we may take F(7,141 ) = 0 for if this 

were not so we could subtract the projection (left-F- 

projection) of v on M'; this may not be all v for n is 
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right-F-orthogonal to M'. 

F is then not degenerate on N'= M' + En+Mv, for if 

X ,p f X and m E M' and for every x C 

F(m+An+iiv,x) =0 

then in particular for every We, Mt 

F(m+Xn+pv,m1 ) = 0 

= F(m,m1 ) +XF(n,m') +pF(v,r0) 

=F(m,mt) 

and since FtM' is nondegenerate m'=0. Again we take the 

particular case 

F(An+pv,n)=0 

=AF(n,n) +pF(v,n) 

=pF(v,n) 

whence p=0; and proceeding similarly we find 

F(An,v)=0 

=AF(n,v) 

whence X=0. 

Thus F is right nondegenerate on N' and since N` is 

finite dimensional by construction, F is (bilaterally) 

nondegenerate on N' anextension of N. 

Thus having achieved the induction step b) and proved 

an initial case a).we have shewn case ii) of the lemma 

and the proof is ended. 

 

'V A 

 

Lemma 
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We now proceed with the main theme of the proofs, 

and take K to be tame and such that for all z,z' in 

L. 

{K(z),z'} + (-1)z1K(z1 ),z1 = 0 

Then we may take the support of K without loss of 

generality (i.e. we may trivially extend if required 

by the above) to be a finite dimensional subspace of 

L on which F is not degenerate. Since this space is 

finite dimensional we may choose two bases of it 

(ei) and. (f.
3
) such that 

F(fi,ej) = dij. 

f(f,
3
) is the F contragredient basis to e. and is 

given by 

f.
3 	113 X.g..e. 

where g..13 
 is the transpose of the inverse of the matrix 

of F in the basis (ei).}  

Having chosen these bases, suppose K(ei  

Then we may take 

HI = (-1
) el  i i 

and then 

{nj,ei} = {kifiei} 

=k1.. 

e  = 	+ (-1)2ek.{f.,e.1 3 

= k.d.. 1 13 

for from 

{.K(z),z') + (-1)z{K(z'),z} = 0 
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follows 

ei),ej1 + (-1)eiK(ej),eil = 0 

= 	
1  

fk.,e.31 + (-1)efk.3  ei 
 1 

and 

So we have 

Thus 

ik.
3
,e.
1
1 + (-1)e  fk.

3
,e.
1
1 = 0 

= 0. 

u= 1 

has the property that on a basis for the support of 

K, 

K(•) - 111,- 	= 0. 

Therefore 

K(•) = {u,•} 

by tameness.- 

Having set up a commutator map on finite 

dimensional subspaces we now continue to construct 

the required additive renormalization N connecting 

the states'w , and co whereto o(e) = 1, which has the 

characteristic properties 

(i) {N(u) z} = Nfu,z1 

(ii) w (N (u) ) = w o (u) 

for 

(-1)u  = +1 
i.e. for u of even degree. 
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On the scalars le we let 

N(Xe) 	X00(e)e  
W(e) 

We recollect thatt(4)   # 0 by assumption. Then for 

these elements of degree zero (i) and (ii) are clearly 

satisfied. We proceed by iterative induction. Assuming 

that an N has been defined for all u of degree smaller 

than k, so that (i) and (ii) hold, we define a function 

K. For w, an element of degree k, let 

K(x) = N{w,z} 

This is well defined for 

degfw,z1= deg. w-1<k. 

But then K'is tame for it depends on the commutator 

with an element of bounded degree and further by (i) 

it satisfies 

{K(z),z'} + (-1)2{K(z1 ),z} 

= {N{w,z},z'} + (-1)2N{{w,z1},z} 

= N({{w,z},z1 } + (-1)211w,z1 1,z1) 

= N(0) 

= 0 

so,that there is an element v such that 

K(*) = (v,') 

We may normalize v by requiring 

w (v) = (1) o (a) 

so that it is then uniquely given from w. We now 

define 

N(w) = v 	. 
88 

The required properties (i) and (ii) may easily be verified. 
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§4 	A SUCCESSION OF EXISTENCE THEOREMS  

For the sake of necessary brevity, we shall adopt 

the course of laying out only the definitions and 

theorems of Segal's approach89  commenting on their 

resemblances to others' practices. (This might be 

termed the 'Satz ohne Beweis' policy.) 

We have encountered thus far in §II-1 operational 

processes (OProc) and canonical operational prOcesses 

(COProc), and quantum processes (QProc) and their 

canonical counter parts (CQProc). We shall proceed to 

restrict all canonical processes considered to be skew 

systems, that is, we are considering only Weyl systems, 

and'we shall continue however to abbreviate skew quantum 

process to SQProc. 

The most obvious lack in the structure at present 

is any geometry of the underlying space. This is intro-

duced in the form of a covariance group is a unitary 

representation, that provides an automorphism group of 

the process by conjugations. So we define a G-Covariant 

Skew (Quantum) Process (GSQProc) as a quadruple (T,K,v,r ) 

where (.Y,Kv) is a skew quantum process over a topological 

vector space L which carries a non-degenerate skew bilinear 

form A, and V is a continuous linear representation of G 

on L leaving A invariant and r is a continuous unitary 

• 
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representation of G in K such that 

(i) for every a in G 	r(a)v .  = v 

(ii) for every a in G and for every x in L 

r(a)T(x)r(a)-1  = T(V(a)x) 

We see then that there are six constituents (above the 

common underlying algebra and topology) to this structure 

L,A,G,K,v and their relations (connecting morphisms) 

V : G Aut L (cont. hom.), 

T : L 	SAOpr K (cont.lin.) 

and r : G UOpr K (cont. hom.), satisfying specific 

relations. L will be the space of test functions for both 

the field and its conjugate. In fact the natural form 

that this will always occur in is with 

L = M 0 M* 

where M is a locally convex topological vector space, 

M* its dual, and U is a continuous representation of G on 

M and we form A and V by 

A(x 0 f, x' 0 f') = f'x - fx' 

V(a) = U(a) 	U(a)*-1  

For a G-covariant skew quantum process the usual relations 

on (T,K,v,r) are satisfied. One will say (T,K,v,r) is 

built on (M,G,U). T splits into two parts,'' (' M and 

T r M* which will be referred to as the Basic and the 

Conjugate process respectively. One may view 'P r M as a 

field (I), and the conjugate process as its conjugate II; 

covariance is then built in. 
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Such' a system as (T,K,v) is in part characterized by 

the associated Generating Functional on K 

x 	<exp(iT(x))v1v> 

indeed if the process is cyclic 

( 	= HilbSp {(T(L))"v1) 

that is the algebra generated by the fields (and conjugates) 

when applied to the vacuum produces a dense set of K, 

then a generating functional defines a unitary equivalence 

class of processes. The generating functional has a 

sequence of moments of which the second is the covariance 

form C of the process 

c(x,y) = <T(x)vIT(Y)› 

which is defined only on 

{(x,Y) in le : v is in Dom 'Y (x) and Dom T(y)} 

A process is called Normal or Gaussian if there is a 

symmetric form Q on L such that 

<exp(iT(x))v1v> = exp(-Q(x,x)/4) 

if a process is normal then 

C(x y) = Q(x,y) 

so that Q is a positive semi-definite. In physical 

language a normal process is a free system and is deter- 

mined by C the two point function; actually as noted 

above T comprehends both the field and its conjugate. 

The uniqueness of free field systems is here expressed 

as "if there is a normal cyclic process over (L,A) with 

covariance Q then it is unique." 90 
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We have an important special case, the Isonormal 

process, which is a cyclic process over a prehilbert 

(unitary) space L such that 

A(x,y) = Im<xly> and Q(x,y) = Re <xly> 

The property peculiar to this type of process is that 

there is a unique continuation of the representation 

r of G to a representation of all automorphisms of L 

on Z, which still stabilizes the vacuum and 'covaries' 

v. 

We continue now to the case of G as a measure 

preserving transformation group on a regular locally 

compact measure space (S,m). If we have a positive 

self-adjoint operator C in ML2(M) we may define 

M = EllilbSp{Dom 

with inner product 

<xly>m  = <Cx1Cy>2.  

Then the regular representation U0  of G on FT,2(S) is 

given by 

g) 	: f ( • ) 	f (g
-1 

 • Uo( 

and if it intertwines C 

i.e.U C = CU 0 	0 

: 21,2(s) 	EL2(S) 

there is an unique continuous representation U of G as 

orthogonal transformations on M such that U = U0  

where they are both defined. The state of affairs 

above just described is an abstraction of.that where 
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S is a Euclidean space, G the group of Euclidean motions, 

and C is a G-invariant function such as energy in momentum 

space. There is a unique normal process (T,K,v,r) over 

M,G,(iC) with a given covariance operator C2  by a result 

in the last paragraph. If one sets E to be the vacuum 

expectation functional <.v1v>, 	= TIM and 4) = TIM* then 

2E(4)(x)4)(y)) = <CxICy> 

& 2E($(x)(1)(Y)) = <C-1x1C-iy> 

& 2E(4)(x)$(y)) = i<xly> 

since the interchange 4),$ := $,4) and C:=C-1  induces 

E(4)(x)$(y)) := -E(4)(x)$(y)) 

for since we have a Weyl system 

4)(x)$(y) - $(Y)0(x) 4: i<xIy> 

This case may also be slightly reformulated as an 

isonormal process with the enhanced covariance that 

implies. First let 

(x).  = (C-1x) and `Y2  (x) = $(Cx) 	; 

this transformation in the case that C is 

(k2  m2) 4  or 	i_m2)  4 

is_the non-local one that transforms classical local-

ization into quantum localization, or as far as position 

is concerned the inverse of the Foldy-Wouthuysen 

transformation taking Newton-Wigner localization to 

classical. We now make 

H = MOM* 

into a complex space by the introduction of the map of 
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j : x e f 	-C-2f e C2x 

so that the inner product is 

<x0fixe@fi> = <CxrCxl >+<C-1x,C-1xf>+j(fxt-f'x) 

Thus the real and imaginary parts are of the form for 

an isonormal process, and the above Standard Normal 

Process over M,G,C is the Isonormal Process over H. 

Any free neutral scalar quantum field may be represented 

at a fixed time by a standard normal process built on a 

Euclidean space, the Euclidean group thereon with 

C = (CI -A)4  with c > 0 

We continue by making a small modification of 

construction in the previous paragraph, to take into 

account equations of evolution with more general energy 

operators B. We start with a Hilbert space H and a 

positive self adjoint linear operator B on H with kernel 

{0}, and a domain D contained in which is invariant for 

B in the sense that 

(i) D c7Dom 

(ii) B2D D 

(iii) (cos t B) D c. D 

(iv) B-1 (sin t B) Dc. D 
2 

D is a domain on which the Duhamel form of solution of 

the equation of motion below is defined :- 

a2 4) + B24 = 0 . 

The normal process associated with the above equation 



relative to D is the isonormal process (T,K,v,r) over 

H with respect to C = Bk  where H .is the completion of 

D x D with inner product (for u = (x,y)) 

S(u,u1 ) = <B2  x1B2  x'> + <B-kyIB-ky'> 

and H is this space viewed as a complex Hilbert space 

with complex involution 

J (x,y) (-B-ly,Bx) 

and complex inner product 

<ulu'> = S(u,u') + iS(ju,u') 

Then the time evolution is 

U : E U0pr H : t U(t) 

where 

U (t) : (;) cos (t B)x + B lsin(t B)y I 
( -Bsin(t B)x + cos (t B)y 

T is then a Weyl system over H on K ; for the vacuum 

v in K,* normalized so that Ilvil = 1 we have a cyclic 

vector since 

W*-alg {T(x) : x in 11} v is dense in K . 

Being an isonormal process (T,K,v,r) one has the extension 

of its r to a continuous homomorphism of the unitary 

operators of H to those of K, with 

r(u)T(x)r(U)-1  = T(Ux) 

& r(u) v=v 

It is a remarkable fact that this whole structure is 

determined to within equivalence by the condition that 



for all self adjoint A on H 

dr(A) > 0 

where dr(A) is the infinitesimal generator of 

r(exp(i t A)) , 

so dr is the differential of the representation r. So 

this spectrum condition provides a sort of uniqueness, 

given a cyclic v and a one parameter group with a self 

adjoint generator which is non-negative. However for 

infinite dimensional H none of 

(i) irreducibility of W*-algf4)(x,t),(D(y,t):x in D} 

(ii) Poincare invariance 

(iii) there is a stationary v, cyclic for 

fexp(i T(x,t)) : x in D1 

suffice for a uniqueness result. 

The connection of the above formalism with the Fock 

representation is provided by recovery of creators as 

C (x) = 2 (F (x) - i T(Jx)) 

Or rather the closure of it and the fact that if Px is 

the projection on Mx  then 

dr(Px) = C(x)C(x)* 

and 

[C(x),C(1/ C: <xly> 

This is reasonably reminiscent of the usual formula for 

the number operator given as a sum over a basis (xi) for 

the test function space (or perhaps a completion of it in 

energy norm) H :- 

N = i  a* (xi)  



There is no claim here that such an operator exists for 

any basis at all or is basis independent if it does; in 

general it does not and we have only a sort of particular 

state count. Really N = arm. 

We proceed now to the current high point of Segal's 

programme. We take as basis for our skew quantum process, 

i.e. as our classical system for instance a field, a C 

Hilbert space H and a positive self adjoint operator.  

A > el, with e > 0, in H. Then in the isonormal process 

(T,K,v,r) over H we take.  

dr(A) = H and dr(I) = N 

We have then a free system with classical driving term 

A and H the Hamiltonian and N the number operator. We 

have as before for any vector x, 

dr(x) = C(x)C(x)* 

and 

I + dr(Px) = C*(x)C(x) 

It is designed to consider the fields and powers on their 

natural domains and so we define 

D. (A) = n {Dom An  : n in N}  CH 
D (H) = n (Dom Hn  : n in N} c:K 

We also require the notion of differentiability for a 

map F between two topological vector spaces V and W; 

F is said to be continuously differentiable, or in 

C (V,W), if for every x in V there is a linear map 

Fx in Lin (V,W) such that 
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for all y in V lim e-1  {F(x+ey) - F(x)} = Fxy 

and 
F,(y) 	x 4 Fxy 

is continuous. Higher derivatives of Cn  of F are of 

course given by iteration of the condition of being C1  

on the map 

DF : x 4 Fx : V 4 Lin (V,W) 

and 

D 	 23 F : x 4 DnF(x) : V 4 Sym Lin (Vn,W) . 

The first result of interest is 

(x,u) 4 ei*(x)u : D (A)xD H 413.(H) 
00 

is a C map; this is a fairly delicate result in this 

exact formulation. The final climax is the following 

theorem that applies to the situation of Glimm and Jaffe. 

THEOREM93 

Suppose G is a locally compact abelian group 

and fia-self adjoint operator on ML2(G) which is 

translation invariant. Let b be the spectral function 

of B on G* (the Fourier transform of B). Suppose 

-1 b 	is in L (G*) for all p (including co) greater 

than some p'. Let (4,$),K,v,r) be the normal 

symmetric on (L2(G),G,B) and H = dr(B). 

then 

for every n in N and for every f in Ll(G), there is a 

continuous sesquilinear form (1)(n)(f) on D H, which 

is D03  H endowed with its inductive limit topology 

as N-ind.lim. Dom (Hn) where Dom (H n) has the 

64.0 



restriction topology as a subset of K, such that 

(i) 0(n)(*) : f (n) is linear and 

(f;x,y) 	011(f)(x,y):LI(G)xn (H)x_D (H) -+ 

is continuous. 

for all f in Li(G) and x & y in D H 

(ii) 0(0)(f) (x,y) = (ff)<xly> 

and 0(n) (f) (v,v) = 0 

(iii) for all g in D 3  (B) 

cp(n)(f) (eiCb(g)x,ei°(g)y) 
	(n)

(f)(x,y) 

and 0
(n)(f)(e14(g)x,ei$(g)Y) 

= 4:=0 
(n)  (n-r) (fgr) (x ,y)  

k Further the Y(n)  (f) are uniquely determined by the 

above conditions. 

This theorem asserts the existence of well defined 

objects 4)(n)  which are 'distributions' on Li(G) with 

values sesquilinear forms on the C
co 
 vectors of the 

Hamiltonian that behave algebraically like powers of the 

free field. There is no restriction on dimension of G and 

it might have compact parts (e.g. be a torus) or even, 

be discrete. The condition is on the Fourier transform of 

the energy operator. Further there is a corollary asserting 
• 

the existence of powers 4)(n)  (a) at a point a of G such 

that 

(n) 	.(n) : a 	Y 	(a): G 4  Ea Lin Form H 

is continuous. This sort of theorem will - go over to the 

interacting case of a non-normal process though point powers 
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will not exist and (f)(n) will not be iefined on Li(G) 

but on LI(GxR). It might be said in criticism that the 

existence of Wick powers for free fields has been known 

to physicists for some time, but the value of the theorem 

is that it is patently mathematically strong and may be 

widely applied and, further, that it should generalize 

to the interacting results. As previously noted the 

physical fields (certainly not in Fock space therefore) 

are supposed to satisfy say, 

2 	2p-1 qh + B2(1) = A(1) 

and so a meaning for powers in general is required, though 

this does not provide it. 

There are further interesting corollaries to this 

theorem which indicate when the above form 4)(n)(f) is 

defined by an operator which is not of trivial domain. 

If F is a sesquilinear form on D H, there is associated 

to F an operator TF  from p (H) to its anti-dual*D (H), 

defined by 

<TF  x  ly> = F(x,Y) • 

We note we have a Gel'fand trinity 

11,00(H)c- K G *D (H) 

and define T, to be 

TF 
= TF  rfx in D (H) : T x is in K}  

and call T'F the operator associated to F in K. There 

are then the following results 

a) if T'F  is densely defined and invariant with 
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respect to all ei"g)  it is essentially normal 

b) T'F is densely defined if ei"g)  invariant and 

with v in its domain 

so c) el(f) exists (as an operator) if b-  is in L (G) 

for all p > 1 and for all y in DOH 

14)(n)(f)(x,y)I < cst 11Y11 

d) for the conditions of c) On)(f) for real f is 

essentially self adjoint on any dense ei"g)  

invariant subspace 

e) the conclusion of d) holds for G = El  and 

b(k) = (k2 	m2)1/2  

f) Dom T 	= (n) 	101 for G = Mn  and n > 1 and 

b(k) = (Ik1 2 	m2)1/2 
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§5 	 RELATION WITH  PART I 

and 

CONCLUSION  

What has been the relation of part II and particularly 

of the theorem at the end of 11-4 to the work of Glimm 

and Jaffe? Briefly it is that the final theorem assures -

one of the existence of proper sesquilinear form operators 

such as 4 	or (P2p(f) on a given domain and corollary 

e) shows them essentially self adjoint on D -(H) for real 

(f). Corollary f) agrees that for theories out of two 

dimensional space-time there is no hope of operators 

representing field powers. 

We shall end by showing that by this last theorem 

in their special case Glimm and Jaffe, after a slight 

natural.extension of definition, agree with Segal over 

definition of el  

Glimm and Jaffe are in the case G = M', 

b(k) = (k2  + m2)11, 

and 	K = F = 6F where F = SL2(R2). 

H should by rights be L2(R1) and then r which by the 

isonormality of the process extends to 

U = U0pr  L2(e) 

is the sum of tensor products of U representing itself 994 

I'=® fu 211  : n in N} 
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The vacuum v = (1,0,0, 	) and H = dr(B) is the 

infinitesimal generator of exp(i t r(-A + m2)1/2). But 

the action of this group is exactly that of the well 

beloved Ho for F is being interpreted as 

9 {SLn(G*n) : n in N} 

D.(H) is then the Do of part I for this is the known 
co 

domain of C vectors of Ho and they expressly put the 

inductive limit topology on it. The only obvious differ-

ence is that the sesquilinear forms (VM, and operators 

associated by corollary e), are defined by Segal for 

L1 (1k) and by Glimm and Jaffe only for S(R*), but they 

smear the fields (I) with a(3R2). However, they agree that 

their results hold in the case of space dimension 1 for 

smearing only with a(R) and us.e S(R2) on general grounds 

with a view to higher dimensions and the practice of 

Wightman. However, the fact that their Weyl system is 

continuous and S is dense in L1  suffices to extend their 

fields. All of properties i) 	iii) are then standard 

verifications and we may conclude that (P. n in two space-

time dimensions has a meaning agreed upon by both parties. 

As to the localization result, Segal has this too in 

stronger form. With R(0) the W*-algebra of an open set 

as before he can show (in Glimm Jaffe terminology) that 

if f is in Li n L2 and supp f = K is measurable then for 

any neighbourhood N of 0 
Is 

4(f) @ E (K + N) 	. 
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Segal has an elaborate but general theory; Glimm 

and Jaffe have a few specific models derived by great 

ingenuity. It is interesting that there is so much 

similar in their work when interpretive translation 

has been carried out. I am of the opinion that both 

paths must be made to converge for there is powerful 

technique and mathematical perspicacity underlying 

Segal's work and directing physical intuition and great 

ingenuity behind that of Glimm and Jaffe. 
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Brevis essp laboro, 

96 
Obscurus fio. 
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APPENDIX 

A NAIVE POTTED HISTORY 

of 

SOME OF THE RIGOR 

in 

123 

QUANTUM FIELD THEORY 



The submitted title of this. essay, "The Mathematical 

Foundations of Quantum Field Theory" is much too grand 

to be other than a subject classification and is in fact 

born of academic needs. 	The subject matter here treated 

is part of the recent attempts to secure, on a rigorous 

basis in mathematically well defined practice, the 

paradigms of the quantum field theory of physics, a study 

seemingly past its acme, quantum electrodynamids. It 

is the successes of quantum electrodynamics in producing, 

theoretical numbers in very good agreement with experi-

mental values, on the basis of most ingenious ad hoc 

prescriptions of little or no definite mathematical 

validity, that have formed the background of lore and hope, 

that has sustained the use of the language of field theory 

in the physics of high energies and elementary particles. 

It should be added that the techniques of Q.F.T. (.quantum 

field theory) mostly those referred to under the heading 

of Second Quantization (which it is not) have been imported, 

with-great success, into Many-Body Theory and Statistical 

Mechanics. 

cf. for instance L. Van Hove, N.M. Hugenholtz, 

L.P.Howland, Quantum Theory of Many Particle  

Systems, Benjamin Inc. New York, 1961 (a 

lecture note and reprint volume) pp.249; and 

much recent work especially Russian, e.g. that 

of Abrikosov, and Gorkov; and that of D. Ruelle, 

Rigorous Results in Statistical Mechanics, 

Benjamin, New York, 1969-; A. Wightman, 

124 
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Lectures on Statistical Mechanics I, mimeographed 

notes by G. Svetlichny, & A.Z. Capri,- Princeton 

1966- ;Lectures on Statistical Mechanics II, 

notes by J.E. Marden, Princeton 1967. 

These successes, which do not seem to have successors, 

are remarkable for the looseness of definition of the 

methods used. It is commonplace to wonder at the handling 

with such skill of the arithmetic of infinite quantities by 

the early and productive workers; it is often ignored that 

there were many other questionable manoevers resorted to 

in attempting to 'renormalize the perturbation series', 

it is also even true that some modern approaches that 

eschew the pitfalls of perturbation theory also ignore 

the decencies of mathematics. 

cf. objections to Regge polology in: Hung Cheng & 

Tai Tsin Wu, A symptotic Form of the S Matrix for 

large Angular Momentum in the left Half Plane, Phys. 

Rev. 144 1966, 1232-36. 

Hung Cheng, Representation of the S Matrix by Regge 

parameters,Phys. Rev. 144, 1966, 1237-34. 

Hung Cheng & Tai Tsin Wu, High Energy Collision 

Processes in Quantum Electrodynamics I, Harvard 

Physics Preprint, pp. 61. 

High Energy Elastic Scattering in Q.E.D., Phys. Rev. 

Lett. 22, 1969 666-669. 

For some time now there has been mathematical interest 

in securing the foundations of both quantum mechanics and 

quantum field theory, the latter with or without relativity. 

J. von Neumann's book 

In English translation: Mathematical Foundations of 

Quantum Mechanics, Investigations in Physics, Study 2 

Princeton U.P., 1955 pp.445. 
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is generally (unfortunately, probably erroneously) 

considered to have made clear the position of quantum 

mechanics, and later work concentrated on the quantum theory 

of fields, especially on the aspects associated with 

the physically interesting relativistic quantum field 

theory (R.Q.F.T.-i.e. incorporating Einsteinian special 

relativity). Some of the earliest considerations were 

those of K.O. Friedrichs, 

(collected in the book Mathematical Aspects of 

Quantum Theory of Fields, Interscience New York 

1953; being papers published in Compr.PAM IV 1951 

161-224;V 1952, 1-56, 349-41;VI 1953 1-72. 

I.E. Segal and his. student J.M. Cook, L. van Hove and 

among concerned physicists those of R. Haag, and MS. 

Wightman. Segal, who has worked on these matters for 

many years, and remains in the forefront, started in 

1947 with Postulates for general quantum mechanics (Ann. 

of Math. (2) 48, 1947, 930-948) and published on the 

subject in 1956 (2), 1957, 1958, 1959(2) and with 

increasing frequency later. Expositions of his general 

views are contained in his 1960 lectures to an American 

Mathematical Society Summer Seminar on Applied Mathematics 

(published as Mathematical Problems of Relativistic 

Physics, pp.112AMS, Lect in Ppp 1 Math. II, Providence, 

1963) and his lecture at the conference in honour of 

Marshall H. Star, Chicago, May 1968 (MIT math preprint 

pp.43). His student J.M. Cook (in The Mathematics of 

Second Quantization, Trans. Amer.Math.Soc. 74 1953, 

222-245) put on a sound basis that standard tool, Fock 
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space introduced in 1932 by V. Fock 

(Konfigurationsraum and zweite Quanteilung, Z.Physik 

75 622-647, 76 952) . 

Van Hove started on the mathematical problems brought up 

by physics in 

. Representations irreductibles d'un groupede lie 

infini 

and continued with the seminal papers 

Les difficulte de divergence pour un modele 

particulier de champ quantifie Physien 18 145-159 

and 

Energy Corrections and Persistent Perturbation 

Effects in Continuous Spectra I Physien 21 1955 901-23 

II Physien 22 1956 343-54 

R. Haag set out in his monograph 

On Quantum Field Theories, pp.37 

Mat.-Fys Medd. Danske Vid Selsk 24 1953 number 12 

a careful approach to foundational questions and 

emphasized the phenomenon that now goes by the name of 

Haag's theorem, though it appears in Friedrich's book 

(p.139 ff). He has since become very active as a proponent 

of the approach to RQFT through algebras (C* or W*) of 

local observables; it is generally ignored that this 

approach had been previously suggested by Segal. Wightman, 

who early in his incursion into mathematical physics 

effectively discovered Mackey's Imprimitivity Theorem, 

set up an approach based on an axiom system he adopted, 
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beginning in 

Quantum Field Theory in terms of vacuum expectation 

values Phys Rev (2) 91 1953 1551-1660 . 

This became a whole field of investigation, called 

Axiomatic Field Theory of which the first full development 

was published in 

R.F.Streater & A.S.Wightman, PCT,Spin, Statistics 

and All That, pp.181, Benjamin, New York, 1964. 

A good treatment of this is also to be found in 

R.Jost, General Theory of Quantized Fields, pp 157 

Lectures in Applied Math. vol. IV, AMS Providence 1965, 

notes from lectures given at the same time as Segal's. 

Wightman's and Jost's students who have been very active 

in recent developments include H.Araki, D.Ruelle, K.Hepp, 

A.Jaffe, D.Lanford, J.Cannon, K.Osterwalder. Prominent 

'outsiders' are R.F.Streater, H.Epstein,V.Glaeser, and 

A.Martin. 

Recently, Axiomatic Field Theory has suffered a 

decline due to the persistent lack of any example 

verifying the axioms of Wightman (or even slightly 

weakened forms) which could be given a physical inter- 

pretation as describing any system with sensible interaction. 

The constructive approach--take a heuristic field theory 

and try to make a simile of it work--, which was long ago 

the view of Segal, was then given new life by Wightman 

and others of his school and has led to considerable hope 

of setting up a rigorous non-trivial field theory. 

Leaders in this recent onrush have been the mathematicians 
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James Glimm and A.Jaffe, a former student of Wightman. 

Recent independent work of Segal is fairly close in results, 

though neither in spirit nor in form and has led to 

continued controversy over who is adequately rigorous. 

There are lectures of Wightman (Cargese 1964) at the 

start of this resurgence that point the way plain. 

Recent references and reviews that should have shaped 

this presentation are the theses of A.Jaffe, O.E.Lanford, 

.8( J. Cannon, notes of K.Osterwalder on a summer 1968 

course of A.Jaffe @ E.T.H.,Zurich, a course of A.Jaffe 

at Harvard 1968/69, a course of K.Hepp at L'Ecole 

Polytechnique 1968/69, a review of O.E.Lanford at 

Strasbourg 1968 and the lectures at the 1968 Varenna 

Summer School on local Quantum Theory by J.Glimm, A.Jaffe, 

K.Symanzik and M.Guenin. 

The Bibliography as a whole should be considered as 

the reference for this appendix. 
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NOTES:Z. 

References to the bibliography will be of the form 

Author (s) followed by the last two digits of the public-,  

ation year and possibly a small roman letter distinguishing 

works of the same year (this is unambiguous fdr no listed 

item predates 1870); underlining of the author will 

signify a book and a final + that the work is- listed in 

the addendum. 

1. Horace, Ars Poetica 139; Nelson 65a 

2. Appendix; rapporteur's talk of Hepp at Vienna 1967, 

Wightman 65,68 

3. Jaffe 67,69a,68+, Glimm 67,67a,68,68a,68b,69,69a 

Glimm & Jaffe 68+,68a+,69a+,69b+,69c+,69,69a 

Jaffe & Powers 68, Jaffe,Lanford & Wightman 68 

'Rosen 69, Simon 69 

Prosser 63 seems spurious. 

4. Weinless 69 

Segal 67a,68,68a,68b,68c,69,69a 

5. Wightman 65+ 

6. Glimm67,68; Hepp 69,69a+,69b+; Friedrichs 65 

7. Guenin 67+,66,69 

8. Streater & Wightman 64 

9. Haag & Kastler 64; Haag & Swieca 65 

10.. Glimm & Jaffe 68a+, Jaffe 68+ 

11. Glimm & Jaffe 69c cf. Guenin 67+ • 

12. Glimm & Jaffe 69b 

13. Segal 67a 
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14. Segal all entries with 'physical' titles 

15. Segal 69,69a,69b 

16. Segal all entries esp. 65b,68,68c 

17. Under Glimm, Jaffe,Hepp,Simon,Eckmann,Lanford, 

HOegh-Krohn 

18. Private communications from both protagonists; 

Segal 69h final remarks 

19. Rosen 69 had started this 

20. I thank R.F. Streater and I.F. Wild or attracting 

my attention to the possible use of the theorems of 

Sakai 57+& Dell-Antonion 67+, after the fashion of 

Guenin 67+, which they came across in the course of 

their work on perturbations by local densities, cf. 

Guenin 67+ & forthcoming papers of theirs. 

21. Segal 68 

22. It would seem from some of Segal's work, such as 

56 and 56a, that the analysis in both cases should 

be unified, not just the algebra. 

23. Palais 65, Maurin 67 

24. In this regard see the approach of a number theorist 

in Weil 64. 

25. Schwart L. 57, Simon 69a 

26. pedantic clarity is almost immediately dispensed with 

27. a coining of Friedricks, I believe 

28. Glimm & Jaffe 69a+ 

29. Friedricks 65 or Glimm 67 

30. consider the production of a Klein bottle in two 

dimensions and other identification quotients. 

• 
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31. Glimm 67,68 

32. Guenin 66,67+. 

33. Segal 67a 

34. unfortunately we do not eventually have time to 

35. Glimm 68b 

36. Nelson 65a,65b 

37. Kac 54;Wax 64; Gross 66,67;Feldman 62 

38. Glimm & Jaffe 69a 

39. as in probability theory;Nelson 65a;Kahane 68+ 

40. Kahane 68+, Nelson 67 

41. Glimm 68b 

42. Bogoliubov and Shirkov 59 

43. Segal 63; Rosen 69 & ref. to Bargmann therein 

44. Yosida 65, Nelson 67 

45. Doob 

46. Simon 69a 

47. Kac 59; Nelson 66 

48. Bourbaki 58,60 

49. Rosen 69 - 

50. Glimm 69b, Rosen 69 

51. Methods from functional analysis herein may be found 

in Nelson 65 or Yosida 65 

52. note 47; Martin & Segal 64 

53. 'in fact uniform:-Rosen 69 & Glimm 68b govern what 

follows 

54. Glimm & Jaffe 69b+ 

55. Nelson 59, Maurin 67, Jaffe 68+ 

56. Araki 64a 

57. Glimm & Jaffe 69a 
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58. Glimm & Jaffe 69a+ whose estimates will continually 

be used in the sequel 

59. for the details are long cf. the preprints and notes. 

60. Jaffe 65+,Maurin 67, Kreyn 67, Riesz-Nagy 65 

61. Guenin 66,67+;Glimm & Jaffe 69b+, Jaffe 69,69a 

62. Bourbaki-Alaoglu theorem e.g. Guenin 68+ 

63. Guenin 67+ 

64. Sakai 57, Guenin 68+ 

65. Dell'Antonio 67+ 

66. Dixmier 69,Guenin 68+,.67+, Schwartz J.T. 67 

67. Araki 64b after 64a,64,63 

68. Griffin 55 from 54 

69. Jaffe 69a 

70. Guenin 67+ 

71. Jost- The General Theory of Quantized Fields A.M.S.1965 

72. Riesz-Nagy 65, number 146 or ref. 74 

73, Kreyn 67, chap V 

74. Ruelle 69+ 

75. G1imm & Jaffe 69c; I am indebted to Dr. I.Halliday 

for calling my attention to this during the recent 

time when I have not been keeping up with journals. 

76. Hepp 69, 69a+ 

77. Segal passim but especially 68a,68b,69a 

78. Snanier 66+,. de Rham 60 

79. Segal 69, 69a 

80. Nelson 67, Nelson 66; Kakutani .68,'Wiener 64, Kahane 68+ 
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81. Segal 53 

82. Chevalley 55,56 

83. Segal and Ruelle in LurFat 67 

84. Segal 63a 

85. Segal 68 

86. Segal 68c 

87. Segal 63b,58,53,51a; Tarski 67 

88. cf. N. Bowditch's remark on 'the C'est aise a voir' 

of Laplace-R.E.Moritz, Memorabilia Mathematica,no.985 

89. Segal 59,59a,61,62,64,67a,68,69,69a 

90. Segal 62 

91. Segal & Goodman 65 

92. Segal 63,65,65a 

93. Segal 69, Theorem 4.1 

94. Mackey 63 

95. @ signifies affiliation, that commutation with all 

unitaries in the commutant 

96. Horace, Ars Poetica, 25 
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