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ABSTRACT

Two approaches to the mathematical foundations
of quantum field theory aré.considered in'detail; the
recent constructive attack whose'van is répresented
by J.Glimm and A.Jaffe, and'the abstractly axio-
ﬁatic formulation of I.E.Segal. In the spirit‘of

Zn} field theory

‘the work of Glimm and Jaffe, the A¢
in two dimensional space—timé is shown to exist
without cutoffs”inbthe sense that the renormalized
Hamiltonian is self adjoint and has a vacuum, which
is locally Fock. The strﬁcture of I.E.SeQal is then‘
developed and it is shown that a natural extension
of the definition of renormalized powers of fields

of Glimm and Jaffe is the unique one guaranteed by

Segal's theory.
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INTRODUCTION

I have been.fascinated sinée my introduction to the
theory of elementary particles‘by the specious statement
that these are but mathematical figments. This is‘assuredly
not the case though often suggested in popular accounts.

In fact the qﬁantum theory of fields, which in quantum
“electrodynamics has been so quantitatively predictive,

and in nuclear force theory qualitatively highly successful,
1eavés much to be desired mathematically. Manipulations
that are without the pale of rigorous mathematics have led
to these excellent theories. This should be-paradoxical

and is at least discomfiting.

The study of the mathematical underpinnings of field
theor& was started many years ago by von Neumahn, Friedrichs,
Haag) Segal, Wightman, van Hove and others, but progress
had,'a few years ago,»seemed'at an end? Recently, however,
successes have been attained, notably by J.Glimm, A.&affe
and I.E.Segal? The firét two are following lines set out
.by/A,S.Wightmansand are preparing explicit models. Perforce
only in two dimensional space-time do they have fairly full
‘results as yet. Their method is that of approximation of |
an inte?acting theory which by the well known theorem of
Haag, cannot be realized in Fock spéce, by butchered theoriesv

and of taking care of the separate problem of ultra-
violet divergences by usé of explicit sequences of dressing

6
transformations suggested by perturbation theory. The



vacuum is treated by local algébraic field theory'é
methods? They show that their limits converge to give
meaninéful operators on a definite new Hilbert space
and verify as many of the desirable properties of field
theory, as set down in the Wightmaneand Haag—Kastler9
axiom systems, as they can. For'(>_\¢‘*)2 they have the

’ 10
fullest results, a well defined Hamiltonian, a vacuum

11
state known to be locally Fock, and correct covariance

of the physical and local fields with respect to space

and time translations.12

Segal hés recently announced achieveme#t of similar
results!of existence of a.local field thebry for (¢u)2
and ($m¢)2 to those of Glimm and Jaffe]:3 His theorems
are based on an exﬁen@gd’building up of a general theory'];4
which besides ﬁotbbéing sO explicitly_dimension dependent
as the ingenious estimations of Glimm and Jaffe, subsumes
much theoretical dévelopment of stochastic process theory
and of Lie group repfésentation theoryl.5 His methods are
in addition based on an idiosyncratic development of
methods in functional analysisl.6 This makes his work béth
lengthy and somewhat obscure. Glimm and Jaffe and associates
have in thé last three years also produced é voluminous
améﬁht of.materia£%7 In spite of this it seemed very much
worthwhile to try to understand something of the work of

18
both parties to what is a fairly heated controversy.

In the first part then, I follow Glimm and Jaffe and
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2

by the use of a stronger theorem of theirs on singular

show that their (¢"). results may be extended to (¢2n)
2

perturbations than they used in (6"*) in addition a short

ot
local Fockness proof is given?o In part ITI an unfortunately
sketchy‘exposition of Segal's foundational»thé&?ies is
‘given and the relation of it to the treatment of Part I
explored. A general’thebrem of Segal on normal ordering21
is reprovéd, both to avoid an error in a publiéhed proof
‘and to aemonstrate the possibility of handling both Bose

and Fermi commutation relations simultaneously.z2

Upfortunatelyvthe need for a fuller tréatment than
" it has been possible to give herein of both theories and
their relations one with another and each with diverse

realms of mathematics and physics remains.



PART I

' THE CONSTRUCTIVE APPROACH OF J.GLIMM AND A.JAFFE

A Model for
.»X¢2n

Field Theory in Two Dimensional Space-Time.



§1 o FOCK SPACE AND THE FREE EVOLUTION

We again define Fock space
F=8{f :nin ¥} |
as a Hilbert sum & of its n-—particle constituents:

. n
F = SL2(R)

The vectors of E will be written f and their components

‘fn; thus |

£f= (£o,%1, f?"") .
A function fn in gn represents a state with exactly n
particles, and Ifnl2 is to be intérpreted as the
~distribution function for their momenta. For vedths
of R we shalltuse roman capitals so that for instance

K= (Kiseoey kn) where Kki,...; kn are
- each in R. A permutation 7 on n ciphers, element of
the group Pn of such ,will act on such a X in R® as

follows .

K_"_‘ = (kﬂi“"' k‘n_n) .
We adopt the following notion of, and notation for,
the/symmetriéing_operation

sym : L2(R") > SLz (R")

| —.1 . 3 ’ .
. fn(K) - (n!) Z{fn(Kﬂ) : T in Pn}
We use the notation Sym for the extension by summing
Sym =6 {Sym_ : n in ¥ }
so that

Sym

@ {L,(R") : nin H} > F ,

and we note that both Symﬁ and Sym are contractions i.e.

10
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Hsm £ 11 < 1121
and el | < 1€l

We proceed now to defining the free motion of
particles in terms of the above wave functions; We
assume the non—interadting particles should have their
configuration‘ejolution defined by the positive energy
part i3, - {(—A+m2) | |
of the Klein—Gordcn operator giving the motion.of each
| f1:1'+,m2f= (13, - /(—Afmz))(18£7{_/(~A+m2)).
The momentum space evolﬁtion is‘then_govefned by”' '

. 3, Falt,k) = -i/(~(ik)? + m®) £, (0,k)
s0 | '
£1(t,k) = et/ GFI) ey
for one Variable‘k in R and where we havé denoted
the ﬁime dependent function with the same letter fj.

We note that /(k24m?) is the symbol of the pseudo-

differential operator Y (~A4m?) .23

Note: A partial anaiysis of quantization and its
relation to pseudo-differential operators and

__~ their symbols is given in A.Grossmann, G.Loupias,
‘& E.Stein: An algebra of pseudo-differential
operators and qguantum mechanics in phasé space.
Ann,Inst.Fourier (Grenoble) 43, (1969), 343-368

For the general case of n non-interacting particles,
we write the free evolution as follows:
: itH
fn(t,K) = e °fn(O,K)

where . ﬁofn(t,K):= ﬁtK) fn(K)

where ° n(K) = ZIﬁ(kj) : 123 <nand K=(kas.oa,k )}

11



where (k) = /(k%4m?) | |
for k in R, with k? being the square of the norm of
k. Noting that for 7 in P

WK = u(E)
we see that Hy, is an operator on F. H, is called the
free Hamiltonian operator. Its domain is certainly
dense for it includes |

E'=o{F :nin N}
the vector space direct sum of the n particle spacesl’
F' is then the vector subspace of F consisting in
those state vectors £ with only a finite number of
particles, or

.g}f:f{f.in F : there exists N in N such that

n>N implies £ =0} .

A putative'total Hamiltonian operator H, describing
the time evolution of the interacting system in a manner
similar to the free evolution should have the form

HAo‘-: H, '}'HI

I
concern ourselves with polynomial self interactions of

where H_ gives the energy of interactioﬁ. We wish to
the boson particles and particularly with those usually
‘written '} $*(x):' or a little more generally

"2 ¢ ¢2P&):' with p>2 ‘an integer. What is meant is

of course that the translation invariant interaction

HI is given by the above Hamiltonian densities

‘ - . 42P .

Hy' = Afg ¢ 925 (x) : dx .

where ¢zp(x): is the Wick ordered opeiator. This

matter is by now a commonplace. But it is not manifestly

12
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well defined. In fact, attempts at formulation with
observance of the mathematical proprieties‘shbw that

in general, the so-called operators above.are not such
Aat all and that even observing the conventién of
smearing powers of the field afe,bilinear forms at best

if the'dimension of space R is more than 1.

We‘shﬁll therefore continue the‘pedantié way and
set up with‘caré'thé'formalism. First, we gi&e some
comments on the Fourier trénsform. R, the space'of
our space time, which is thus R % R', will in the

following be taken to be B° for some dimension s, pf

possibly ;T$= R?/ES . B° is isomorphic to its
~group dual and ' this'isomorphism is taken to be
‘given by gS ., S ; x » &2™F 2 o(x.)

where ex.) : ms'+gf : k> ex.k)= ezm'x‘k .

where x.k is the'natural scalar product in RS. The -
character associatéd to x is taken to be g(x.) in
order tﬁat‘restriction té the subgroup g° provides the
co;;ect‘duality with ?S. In addition one avoids many
of the irritating powers of the square root of 2T in
many formulasz.4 We'shall adopt the usual convention of
associating the variable x with'configuratioh spéce,
and k with its dual momentum space. Thus also shall

we associate multivectors X with Rn and X with its

dual, again Rn; we have the scalar product

X.K = Z{Xj?kf 'lf_jf_n.& X=(x17.0.,% ) & ”I<=(k1,...,kn)}

13
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The Fou;ier transform in Lz(Rn) and thus in SLZ(Rn) ~

is then explicitly given by

Lo (R™) » L, (R™) £ > £

where

En(K)' Jex.x)£ (X)X

where of course

ax = dxz:dxz ..._dxn is the product
measure on R°. The inverse transform is then simply
£ X)) = fe(-X.K)f_(K)dK
The Fourier transform, as above given, clearly is an
- isomorphism of F, and extends to an isomorphism of F

(With'a slight abuse of the nptation f).

§2  EXISTENTIAL OPERATORS AND BIQUANTIZATION

We adop£ a natural dqmaih of 'good' vectors in
gj a subspace of F' and in fact the domain of c® —vectors
for the free Hamiltonian as will later be shown. We call
this domain Dy (following Glimm-Jaffe slavishly) and

define it by

L~
—

Do = {f in F' : for every n £ is in s(rRM)}
) where'g(Rn) is the Schwartz space of rapidly decreasing
c” functions on R™, Continuing Lhe intefpretation of
F in terms of monmenta 20 is the'spacé of states with a
finiﬁé nunmber of particles whose momenta tend not to

be very high. Since the Fourier transform maps S into
itself (and in fact S may be characterized as such a

2
space),swe know that the Fourier ‘transform maps Do



"into itself and so there is a similar configuration space

interpretation.

On this 'natural domain' we shall'define the .

_standard annihilation operator a(k) : F > F .
» _ =n =n-1

More precisely perhaps _ B .

ak) : Don E ¥ Don E _,

where ++> is usgd to point out that a well defined map
is being displayed where the source ié the,doﬁain, and
we‘do not just have an operator which beingvin_general
unbounded may well have as domain a propér subset of the
target. For an element £ of Dy

(@G)E) _; (K) = n*f_(k,K)

where of course K = (kyreeerky q) and so on.

When emphasizing pedantic clarity the following.
notations will be used for operators (understood
to be maps from a domain in the Source‘set(to a
- range in the target set) and maps&26 }
f : A>B means f is an operator from A to B
so that with the abbreviation Domf and Rgef for
the domain and range of £
£ | Domf : Domf © B |
~—" meaning £ (restricted to Domf) is a map from Domf to
"B, in fact f [ pom £ : Dom £ H& Rge f
meaning f (restricted to Dom.f) is a map from Dom.f
onto Rge f. We may further use
‘ £ : A <« B
to mean f is one-to-one from part of A to part of
B, and combine this with the previous notation to
~get the following map notations

f:A 4 B f maps A to B
f : A« B f maps A into B (injection)
£f:A B f maps A onto B (surjection)

15



" f:A4 B . f maps A into & onto B (bijection)
It should be noted that these are just set theoretic
niceties, and as such will only be brought up in
delicate situations. The simple arrow - will
normélly suffice and will in any case almost
always be used for the display transformation of
a generic element as in

f:A +>B: a- f(a)
An alternative is a:= f(a) (read a becomes f(a)),
a notation borrowed from the computer language
Algol. | | '

On their common domain Do, any a(k) and a(k') clearly

". ‘conmute i.e.

o) ,akt) =0
So any product a(k1)...a(k3) is well defined on Do and .

will be denoted
a(kRK) for K = (k1,...,k8).

The adjoint a*(k) of a(k) has domain {0}, but the
expression usually written for it makes it plain that it
.is a densely defined bilinear form on F3% in fact its
 domain is Do * Do. 'The usual expression referred to is
: : -%
* = - - .
}a xf) ., & (n+1) * J{3(x k) £y (k) s
1<j<n+1}
/’/ .
where if
K.= (k]'-.-’kn)
then
K—kj= (k]_’---’kj’o-o' kn)
with ” as deletion operation. The expression which includes
a delta function multiplication is obviously no nontrivial
operator and is to be interpreted as defining the bilinear

form on Do ¥ Do given by

a* (k) (g,f1 = ¥

=>4

- '_% n : - ﬁ -
n2o D zj=l {8(k kyda, o (B kj{

CUX fn(K) dK "



_%z

=1 on ™ in B_ f9,., (K) E_((,K),)dK

so that a*(k) is an gKR) valued bilinear form. We check
that it is in fact the adjoint of a(k) :-

a (k) (£,9)

Z:zo n* Jo,1® fn(k,g) dx

w -

zn=o n_% zﬂ in P ] gn-l(K)fn((k’K)'lr)dK .
n .

Thus
a* (k) (g,£f) = a(k) (£,9)

as should be.

Despite the essential incorrectness of this practice,

we shall nonetheless call a* (k) the'creation operator. We

are led thus to define the‘monomial'
-a*(K) = a*(ki1)...a*(k_)

for X in R and generally the bilinear form for K in Rm,

J in R8

a*(K)a(J) : Do X Do » 8 (R°FF)
: (£,9) » <fla*(R)a(J)g >

We may now define for a kernel

Ceg (K,J) in g (R“E)

the true (C~valued) bilinear form on Dj

L
—

Cup = [oup (K,3) a*(K)a(3)dKAT

-using the standard integral notation for a'distribution.

If caB(K'J) is the kernel of a bounded operator

from é(RB) to Lz(Ra)

so that for every f6 in é(RB)

I'! CG,B(K'J) fB(J) dle dK <

then

C the biquantizatidr% 7of c determines an operator

aB aB



on F whose domain includes Do. This is built up in the
following steps: | _ : |
Cop © Ly SR 8 8(®Y + 12 &™)
is a bounded operator, and extends to a bounded operator
from s®REHY) to Lo (R*'Y).  Then
Symg.. Sym, .. (c,g ® L) is still a bounded operator
from Sg(RB+Y) to SLz(Ra+Y), and so defines an operator

- (unbounded) from £B+ to F To finish, sum over all

v 5 Zoryt
Y in N these operators to an operator defined on Dy, for in

Fg,y it is defined on s®R¥*Y)n Egyye Thus |

Cop = LyzoS¥my,y E¥mg,. Cqq © Iy
It follows from the construction that Cyg is closable in F
if caB wére closable as an operator £rom Lz(RB)‘td L2 (R%)
‘Further good properties hold if c,g ts bpunded, Eut in order
to displéy them we first define the numbef operator N by

(Nf)n = nfn

on the domain {f :) “nfn“2<®} which certainly includes

Do . We have then

PROPOSITION28
—~ Let ¢ be a bounded operator from Lz(RB) to
af
Lz(Ra) with norm,llcasll . Then its biquantization .

C,pg has a closure with domain containing

%(a+8))

Dom (N and satisfies the estimate

a/2

oD ™2 cp arn ™8/21] < [ oyl

PROOF

| (EgpyrCap Tpay) ] < Ilcasl|{(a+Y)!/Y!}%|lfa+Y||

L8+ /7 g, ||



-2 | 19

a/2

< leggl a2 || (By) B/

a+Y|| ||gB+Y|I
by a simple application of the Schwargz - inequality and é
generoué eétimate for _

'{(u+y)!/Y!}% and '{(B+Y)!/Y!}%.
It is interestingvto note that the configuration space
-annihilation operator A(x), destroying a particle at |

point x, may be defined by the biquantization of

Cox(k) = (2“)—% éfik.x '

S0 - A(x) (2ﬂ)-% fe-lk.x a(k)dk
or A(x) = fe(-k°x) a(k)dk
with the change of variables

X,k = (2ﬂ)-%x, (2n)"%k,

(read x and k become respectively etc.).

Thus we have a simple Fourier transform, and in the
configuration space Fock representation the operator
. . o _ % .
| (A(x)£) _,(X) = n*f (x,X) for £ in Do
with our previous multivariable notations. Again similarly

to the above construction, one has A*(x) and biquantizations

of C

" inig'(Ra+B) to

. Cup = Jogg(Xi¥) A* (X)A(Y)AxXdy

a bilinear form on Do X Do. The properties of these Cas
are entirely similar to those of the previous'ones as is

obvious by the construction.

29
When Friedrichs' diagrammatic representation is

used for these forms, as is necessary for more complicated

interactions such as (Y)z,'(¢“)3 etc. the operator
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structure of creation and annihilation is given by

a diagram

consisting in a vertex, and o legs to the left denotiﬁg
creations and B legs to the right dehoting annihilations.
The distribution part CaB(X’Y) is termed the numerical
kernel of CaB' These diagrams (éspecialiy their gener-
alization to include for instance fermiop lines) resemble

' Feynman's diagraﬁs but distinguish creators énd annihilators

‘and are so not 'relativistically covariant'.

We shall, as previously hinted, at times consider
the case when R is a rectangular box B in some B,
That is to say we shall be éoﬁsidetihg the fields and
observables within a bounded region of space B; this is
a fairly natural thing to do and it is clear that a box
does not have a very pathological form of boundary; By
making the box rectangular we allow ourselves to put on

e .

s{ﬁple periodic boundary conditions and B may then be
thought of as a.torus of the appropriate dimension s.
In one dimension we have of course only intervals to
consider and no possible émbiguity; in more thah onhe
dimension, say three for'argument's sake, the boundary

conditions one might impose on the (4) non-rectangular

Platonic regular solids would produce weird topologies



for these compact‘approximations?C)It ié clear that one
may eﬁbed E(B) in E(R) for one has an obvious embedding
in first degree of Ly (B) in Lz (R). Further.properties
are apparent. If B; € B (as subset§ of R) then
g(Bl)c: E(B) in the obvious manner. Further if-
B'=B; UB, and BN By = ¢

then

| F(B) = E(B1) © E(B2)
-where © is the Hilbert space completion of the éjmmetric

tensor product.

“When we go from the gonfiguration space represenfation
of F(B) diséussed.in_the last paragraph, the importance
of the possible c0mpactifi6ation of B to a torus becomes
manifest. The torus associated with the box B, is

b(ms/zs)

‘where we have taken the identification of R with R° so
that;the box B has oﬂé vertex at the origin and lies in
the Wholly positiVe '2+S-tént' and b is the vecfor éefining
B. ‘In other words b»is the vectbr defining the lattice
of Which B is the fundamental unit cell. Multiplication
oﬁ b by the coefficients in TS is component-wise. Then
Bm the dual of B, or its momentum Space; is
| Iy = b's>,
the reciprocal lattice of bg° (as in crystallography)

and b' is the vector of E° whose components are the

reciprocals of those of b. The momentum representation of
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Fock space is then g(PB) formed from.a space of.functions_
over a lattice. This may also be'embedded in

F(R") = E(R) |
in a natural way. We consider the extensions of the
functibns, from definition at the points of the lattice
FB,‘to functioﬁs definéd on all df R as having the
appropriate constant value in a'box of size "1/B"
='symmetrically pléced about the lattice point. For examplé‘
in 1 dimension the following diagram suggests what is |

to happen.

Analytically we write this prescription éssigning an £
in E(R) to an f in E(PB), in each degree as
fn(K) = fI‘,n ({K‘})

where {K} is the point in the lattice I'"
i ' ’ .

B
in R, This is a definition only up to the boundaries of

closest to K

o

the boxes about each lattice point, but since the union
of the boundaries is a set of measure zero and we are
interested only in defining L, 'functions' fn’ this is

of no consequence.

The momentum space existential 'operators' are given
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. * L * }
by ) = viy k) al™@yas
for k in PB' where xb.‘is the characteristic function

_'of the reciprdcél unit cell recentred about the origin

Xpr(2) = ¢ 1 for —kb' < p <kb
0 otherwise

(using the simple convention of writing a set of
inequalities on components of vector as inequalities on
"the vectors). Further V is the volume of the box B so

we have divided by the square root of the volume of the

reciprocal lattice unit cell which is V_l; this 1s done

so that the boxed free Hamiltonian does not have to

have an explicit factor of V'-l in front of it. Here

%Y. -
a( ) stands for a, or a* as the case may be for this

typewrifer does not have the conventional ##. So
these boxed existential operators are again obtained by
guantizing a distribution, namely convolution with a

characteristic function.

We note that the momentum space representation for |

the free Hamiltonian H for the system in the box

0,B

B is
// ) . . * ’
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§ 3 . The Formal Interacting Hamiltonian

Hei H(g): H(g),: & H(@),

Tts Form Factor, Volume and Ultra-

Violet Cut-off Avatars.

We shall now introduce the interaction we wish to
study, A :¢2P; fof p > 2, in its formal form. Now we
must restrict to one space dimension, R = E]‘sq that
.we have even in thé simple approximaiion we shall take
well defined operators. This is not in itself sufficient
for boson—fermion'interactions, and the dressing
procedures of Glimm (after Friedrichs) are required then
even for (¥)2'= (W¢¢)2?l Snch-complicationg we cannot
handle and so we continue mimicing after a fashion the

Glimm-Jaffe papers.

The interaction in full formal form we wish to
study is taking A = 1 to lose a further factor to be
carried:~

Hy ¢ = [t 6(0)%P dx

We take as example for formal calculations 2p = 4.

e
o

HI,f.= j:¢(x)“ : dx

- where the Wick ordering is done in the usual prescription
(creators to the left of annihilators). The field is,

formally at least,

b(x) = 27 % (-atm?) TF {a*(x) + a(x)}

it

275 (A% (x) 42 (x) }
Raising it to the power 2p and using the formal commut-~
ation relation (it is between bilinear forms)

(a* ), A(y)J = §(x-y)



one computes

0 (x) s = 2 - I () ar) T 3 a3 ().

‘One may do a similar calculation with the expression
of the field as a Fourier transform

o(x) = [ 2™XE fox(k) + a(-k)Iu(k) "L

dk.
Then we have the following'general form for HI £ in
i ’

momentum space which we shall adopt as its definition.

It should be noted we have dropped (or absorbed) the

overall 277,

where »
v5'= It 6(IK'| - |R"|) v(k',k")"%
x “a*(K') a(K") d(X',K")
an expression in which we continue_the use of our form
.of Schwartz' multi-index notation. Thus K" is in BRI
and K' in R2P7J and d(K',K") = gK'dgR" -etc. The

numerical kernel of Vj is thus to be

Vj(K',K") = G(IKII - |K"|) V(KI'KII)_%
So the action of V. as a bilinear‘form on say D} will be
- J ;
<f|>v.h =
J .
Yoo (n+2p=3tn) * (n+3in) ¥ (K,K")
&n=0 n+2p j
< SR [- |x"] v(x' K"

x hn+j(K“,K) a(x',K",K)

>

where (K',K",K) is in B2P"Ixpixg® and



(n+2p-3'n) % = ((n+2p-3)!/n!)*
is thé characterisﬁic numerical factor coming ffdm the
(Zp—j).creation operaﬁions in a*(K') and‘{n+j!h}% is
tﬁé similar faétor'ffom the annihilations. These )
factors are both in the numerator, i.e. gréater thanA
one, because the symmetrizations are implicit in the
use of £ and h in QQ. Vj is thus the bart of the

interacfion that annihilates j particles and creates

(Zp—j) and so would have the Friedrichs diagram:

For - Y
:9"': then Hy
4

£

= Vo+4V1 +6V> +4V3+Vu

or diagrammatidélly
. § S+ 9.:_‘+><+——6+' é

. Now we have the problem‘noted above that Vj will
iﬁ/ééneral (if j<2p and it has creators in fact) only
- define a bilinear form. We are thus led, in order to
calculate with operators on the Fock space we know

without transgressing Haag's theorem, to introduce a

cut-off in the interaction range.

26
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We take a form factor g(x), a real positiva
smooth (C®) function of compact support in R; or g is
Cin c:'+(m). We ‘shall assume it an even function with
support [—2,42] and to be equal to 1 &n [—l,+l‘J;
We further assume g monotonic on (;2,-1] énd (@,2].

So g has a 'bump' function appearance.

N
J

These exacting specifications beyond smoothness and
compact connected support of g and (l1-g) for g are not
realiy necesséry, buﬁlthey are conyenienﬁ, ao not caﬁse
a loss of generality, and f£ix a basic bump function in

terms of which we may define other similar functions.

We define then the form factor cut-off interaction
Hy(g), by
Hi(g) = Jg(x) :¢(x)2p:dx

-~
Wé/take then a sequence of such cut-offs of increasing

range given by
gn(x)'= g(x/n) (then 9=g,)
so that ‘

) = jg(x/m +6 (%) 2P ax .

H = Hy(gy

I,n

These restricted Hamiltonians of interaction Hy o
1 4

provide the desired interaction on the spatial region

|x|<n. Assuming, as one would physically expect, that



distufbance propagates at the spéed of light),fhat is
'as-if free over a small region this restriction should
not affect the field. Explicitly, as was pointed out
by Guenin3%a pfoof was then given by Segal%3in fhe
‘region | '

{(x,t) in B%: |x|+]t]| <n}
the time evolution 6f the field would be correctly given
by Hn as B o -
d(x,t) = e'tn ¢(x,0) e71tHn |
where | - |

o+ .
H, = Hy *+ Hp o

One may then hope to piece together these locally correct

dynamics.

We shall discuss this point, and proVe Segal's
resulgﬁﬁmwlwe éfe sure that £he total reétricted ranéeA
Hamiltonian is self-adjoint, as will be shown in section
6. First we havé to show HI(g) self-adjoint which
will be done in the hext section. Further we would
wish H(g) to be bounded below and to have a lowest
» ei&gnvalue. We shall show the semiboundedness of H(g)
first following Glhmgsin using a techhique invented
by Nelson.?’6 We do this because by carrying.out a more
general estimation procedure, involving functional
integration or path space methods?zwe obtain the theorem
on singular perturbations that will allow us to show
H(g) self-adjoint. iWe here have to avail ourselves of
a stfoﬁger form of theorem than is required for ;¢“:

) . 38
interactions.
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To prepare tﬁe way of this routerwe shall set
out iﬁ the remaindér of this section the two furthef
increasingly restriéted forms of Hamiltonian and
their 1ncrea51ngly simple propertles. Then we shall
be in a position to take these restrlctlon off again

as expected.

We commence with H(g), the deranged (?
Hamiltonian in avbox Qith periodic boundary conditions.
Boxes are familiar from section 1 and experience |
vtheréin,would'suggest the simplification is greatest
in the momentum represehtation.» We-exhibit HI(g)
there first:

Hi(g) = Xz_o Py vy (o)

where the numerical kernels are

I

V5 (g) (R*,K") = FUR |=[x"]) v(x',xm) 7

for

SUK' |-]K"]) = fe(x.|K'|-x. |k"])dx

so

Slg(x)) = (|x'|-|x"]).
The” full action on f in Dom H_(g), which certainly is
dense for it includes Dy, is

_ 2p o
H (g)f = X —O(J ) zn+j=o

(n+2p—j,n+j!n,n)%
~ ¥ n -% .
Sym Ig(|K'|-1K'|) VIR',RY)F £y, (K, K)AK"
where we avail ourselves of a sort of multinomial
factorial notation (a!B)

= (all-'-lamlslj"~lsn)

= allazl.;.am!/Bllsgl...Bn!



for a in ¥ and B in-Nn, So the operator is

= zp zp f_~ v en T n _;i
HI(g) = }5 _o(J Jg(|K |=[x"])v(R',K")

X a*(K')a(K")dK'dK"

= 122028 [gl xdhv < x 7
4
X a¥*(-K')a(K")d(K',K).
Recalling the definition of the lattice

ITB = Pv (for 1 dimension of space) and of the Fock space
upon it we may write the free field thereon
| = -3 -5 # (=
| ¢v(x} = (2v) Zk in T e(kx)u(k) {a, (k) +a*( k) }.
Then

H_(9) = 229 (2P (29)"P )

P §_ (| |—IK"I)
03 (k' ,x")in T

2p v

x K ,K") Hax (k') a (k")

with §V(k) a restriction of'the Fourier transfofm
) = J+v/2 2mikx

—v/2 © g(x)dx .
If the box be so 1arge that it properly contains the
support of g then
§, k) = §(k) .

We shall assume from now on that

g | supp g & [— v/2, + V/2)

and we drop the subscript 'v' on g.

We~continue and define
H(g)v - Ho,v + HI,v(g)
the free part plus its interaction. (Note we commuted
the subscript 'v' with '(g)', but will from habit

unfortunately use both notations H (g) = H_(g)_..)
| | I,v 19y

Continuing toward simplicity, we cut off the sum



over the momentum lattice at some positive k,- the
resulting finite lattice is denoted

Iy = Ik in Tp:|k| <k} o

The. physical eontent of this resection, is a finite
number of modes for the field; but then we are back in
the familiar territory of the representations ofrthe
canonical commutation relations of a finite number of
degrees of freedom. We effect a transformation that
expresses the system as a Set_of coﬁpled:SchrBdinger
oecillators and diagonalizes.the interaction HI,V(g)K'
In fact we move from the exponential basis to the basis

of trigonometric‘functionsfw’For the fields this reads

—% A s
¢ (x) = (2v) *{ - (g, coskx + gpsinkx)+2q,}
toux P i S

K

and ‘
(ZV)—%{ ) ' (pkcoskx+p£sinkx)+2po}
' O#k in Pv .

=
)
1

K

b k) THak (k) + a (k) + ak(k) + ag(-k)}

Q
w~
1t

— qp = i%u(k)—%{a*v(k) + a,(-k) - at(-k) - a_(-k)}

b (k) *lak (-k) - a (k) - ak(k) + a_(-k)}

o)
w
i

pp = iku(k) Ha*_ (k) - a (k) + a* (k) -a_(-k)}

Q
=
il

%m‘%'{a*v(o) + a,(0)}
%

i%m

Lol
(=
!

'{a*v(o) - aV(O)}



~and

It

cos kx = cos 27kx and sin kx = sin 27kx

SO

Il

e (kx) cos (kx) + i sin kx .

All the operators are defined on the restriction of
Do to Pv ¢ which is certainly still dense. On the
14

appropriate domains follow the commutation relations

for k and k' in T
‘ v, K

RGN R S
o [egepge 1= ds g
with the generai Kronecker delta symbol on the right, 
Rewriting the operators of interest we apply a further
- convention to avoid double counting due to both

‘{q,p} and {g”,p"} being canonical variable sets- we

set
q (k) =":qk for k > O
_‘qE. for k < 0O
p(k) = Py for k > 0
" lpp for k < O .
| Px o

Then we have

=% 7 {p (k) 24 (k) 2q (k) 2-u (k) } .

HO v
VK O#k in T .
7

This follows from the elementary computations

'{.“ ‘];)(;‘)52(]‘)2 p = sk (a* (-k) 2+a (k) 2+a* (k) 2+a (<k) 2
{T121a* (k) a (k) +a* (k) a (k) +a* (k) a* (k)
 x saka(-K)}
£{a* (~k) a (-k) +a* (k) a (k) +a (-k) a* (k-)

x  +a(k)a*(-k)}]



where {*} gives the only sign difference‘betweén p (k)2
and u(k)2q(k)? and the upper or lower.sign‘of + is to
be taken in each case according as k > 0 or k < O.
Then using the commutation [a(k),a*(k)] = 1 it is

readily verified that H has the alleged form.

0,V,K
Taking a further look at our new variables we see

that . o .
: g(k)+ig(~k) for k > 0O
W) T {a (k) +ak (-k)} =| 2 for k = 0
- lg(-k)-ig(k) for k < O.
AIf we denote the left hand side by ¢ (k), then the

field has the form -

(0% 46 =1y 4 el 60
' V,K

and the ¢ (k) may be viewed as independent Gaussian
isotropic complex random variables of mean O and
variance u(k)“l (except for ¢(0) which is real). We

have as required

¢ (-k) = ¢ (k) .
The ¢ (k) are random variables as maps from Lz(l‘v )
'
to a Hilbert space‘%O
e

We continue by diagonalizing H We use the

I,v,x"
formal identity4¥hat characterizes Wick products

¢3?K(X) = 2§£O (2p!2p—2j,j)(cK/z)j:¢v'K(x)2p—2j: :

where -1 ~1
Ce =V zkinrv Hik) = .

4

This is to be taken as a bit of combinatorial algebra

33



- and not as an operator identity; it is the standaxd
o : 42 -
contraction formula. By reexpressing :¢v K(g)zP: in
. ’ . e I .
‘terms of ¢ K(g)ZP-J for 3 > O from the above identity
, A
it may be seen that it certainly is a polynomial in the
above variables g(k). In fact this holds for any
interaction term formally '
= ya . L,

for the above formula holds generally in the form

p = ¥ 194 4 3. p-23,

5, (¥ = I3 pip-23,3) (€ /2) P20 ()P

where y is'the«greatest integer less than or egual to p.

We have then canonical variables q(k),p(k) and a
full Hamilfonian expressed as ai.polynomial in terms of
themn. Ob?iously therefore we should set ﬁp‘the
Schrédinger representation of them in teims of differen-
tiation and multiplication operators. Fufﬁher, this
represéntation is essentially unique by the theorem of
Stone & von Neuﬁaﬁn for the number of variables k in

PV,K is finite.. We will use the trivially renormalized
Schrodinger representation on a séace with a Gaussian
measure, which is dimension independent (the ground state
energy is absoxrbed) aﬁd relates to the random vafiable

) viewPoint.. Let M be the number of modes, the cardinality
of PV'K. We shall realize the system on LZ(RM), with

- g(k) being eguivalent to multiplication by a coordinate

'q and p(k)_ equivalent to -i(a— ). We set it up as a
k n qu



'(direct) tensor product of one mode spaces

B = Tz (B, (w06 /m) % exp (1) dday)
Let |
gv,k =,®k in T
this is then

Eki
K

4

Lz(RM: p.. dgq) with o

K

The representation in LZ(QV'K)

q(k):f(q) > q flg)

plk) :£(g) » -ip)? <§§k>cpkgf(q))

is then irreducible. We shall want to let M » » later

and this arrangement is designed to ease the transition..43

In one dimension a harmonic oscillator Hamiltonian
may be répresented on L2(R,p(g)dg) (dropping the

subscript k for a particular mode) as

2 ;
L & d

H=~(% ‘a’é‘z‘ Uqa‘(‘z‘).

This representatioh holds good for each k and on'__Igv K
. - !

our interaction will be

H, (@) =] in T = (53% ~u(k)apd,) + Vi)

V,K v, K
- 9 . . .
Wﬁsﬁe ak = aqk and V(g) is the pplynomlal in the 9% 's
that HI,V,K becomes.

We discontinue work on this representation now
until section 5 where semi-boundedness of the limit H(g)

as Kk > and v » @ is shown.



§4 . SEMIBOUNDEDNESS OF H.(g)

and

AN ESTIMATION OF IT WITH RESPECT N
from '

MARKOV PROCESS METHODS

We uhder take the estimation of HI(g) in terms of

F. , an operator interpolatiop between Hy and N.
Fdrmally
F_ = Ju(k)T a*(k)a(k)ak .
Thus | ‘

F1 = Ho and Fo = N the number operator.
Using the notation

R = Yhg wkpT |
- so that if K is not in R ' (K) must be distinguished

from u(K)T:the action on € in Dom Hgy is

_ . T
(FLE)_-(R) = W (K)E_ .

At the end of section 3 we had built up a formalism

for description of H, (g). We shall prove the required

K

d ’
"estimates hold in a suitably uniform manner with respect
to v and ¥ and then take the limits v,k > «© ., The
representation is in |

H =0 . - H
=v,K k in PV’K
where

36
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and

P lqy) = ‘(ju(k)'/ﬂ)‘;5 exP(4u(k)qk2).

Por one mode we had the free Hamiltonian as

1

. — 2 _
and the interaction as a polynomial pertuibétibn. This
representation is well suited to the Markov process

- point of view and the associated semigroup and path

‘integral methods.

. 44 : -
A Markov process on a phase space S is an assignment

~

to every quadruple consisting in, asrstarting time t inj
'R, an initial poinf x in 8, a finishing‘time s in R, and
a set E of 8 of.a probability P(t,x;s,E) that the
system which was in state x at time t will be at tiﬁe
s.in a state of the set E; this probability should be
such that the future of the system at time t is entirely
independent of its past and this is expressed by thev‘i
'Chapman—Kolmogoiov equation

P(t,x;s,E) = JS P(u,y:;s,E)P(t,x;u,dy)

~for t< u <s , that is the probability that from x

//

at t the system evolves to be in E at s is the integral
over y in S of the probabilities that at some intermediate
ﬁ it be at y and then evolve to be in E at s, for eVery
intermediate time u. We have a temporally homogeneous
Markov process Qhere P(t,x;s,E) depends only on the

time interval s - t and not independently on t and s,
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and further S is a measure space with an invariant measure
m. Making this explicit we have a map.

P: S X B X Mbls E+

such that
. i) P(t,x,E) > 0; P(t,x,S) =1

ii) P(t,x,*) is countably additive on Mbl S

iii) P(t,°,E) is measurable with respect to m

iv) P(t+s,x,E) = [SP(t,x,E)m(dx) (or dmx),
where Mbl S are the sets of S measurable with resepct to
m. |
Conditions i) & ii) say that for fixed initial conditions
-we have a probability measure on S; iii) éays that the
valuesvof this measure vary'measurably»with space; iv) is
the Chapman—Kolmogorov equa%ion saying that tﬁe probability
of x.getting into E in time (t+s) is the integral of the
probability of its getting to some intermediaﬁe point y‘in
time s times the probability of its geéting therefrom to
E inltime t; v) says that the measure m(E) is the
integral over S Qith weight m of the probabilities of x
,gq;ting to E in time t, for any specified t. In a suitable space
X of functions over S the process gives rise to a linear
transformation of elements ¥ of X by

(rei)x = [40x) P(e,x,ay)

and by iv) this forms a semigroup i.e.

Tt+S = Tth .



I-4 _ ‘ 39

We have exactly the above situation here;
eXp(--tHO k) is a semigroup of transformations on
14 N .
Lz (R, py (9, ) dgy
and in fact on
L, (Broy (qp ) day )
for |

1P < e

it has a well known kernel pt(qk,qk') 45
such that
(exp(~ tH, 3W)q = fpt<q.q')w(q')pk(q')aq-
where :
' - -1
-y t o
u(k) (q'-e q) ' 2
X exp [— — + u(k)g ]
1l ~-e ZU(k)t )

: =f{eU(k?t/Z/(eU(k)t_e—u(k)F)}
. expl-u (k) (ge" B tgreH (K1) 2

o (eMRIE L mmulEy,
Thus the probability measure is

P(t,q,dq')= {u(k)/m (1 ~e 2R (K Ey 3%

SHUIEH2 () 2t

x exp{ -pu(k)(gq' - 1 )ldg'.

A/V
o
One may check that the kernel pt(Q:Q') has the desired
effect by working with it on the orthonormal basis (wj)
for Lz(E,pk(q)dq) consisting in the Hermite functions of

variable

| . 2
x = (k) ¥q divided by 7 % 3H(K)g



I-4 ‘ N '_'v 40

ie. bylx) = 2732 (317 hy ()

2 46

1l

. . 2 L -
hj(X) (-1)d &* (%;)J e *

By carrying through for FT a calculation similar to

that for Fy; we find

T+l

Fr,§,n =IxinT w0 T 02 + n) Tlam 2ou ) )

V,K
or in differential operator form

P = —E0 T2 - wm Teey)

with aésociated integral kernel then
-Zp(k)t)-%

ptT(q;q')‘F (1~e |
u(k)t_q.e-u(k)t)z/(eu(k)t_e-u(k)t)}

% exp{-u(k)T(qe
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We passlnow to the path space point of view, to
make explicit the motive for the introduction of the
Feynman—Kac integraifﬁthat is motive other than that it
provides recognized useful technique). Going back to an
abstract semigroup of contractions on each L2 spacé 6f
a mode, we considef the space g of all continuoﬁs paths
q;q(s) where s ranges over Ty, (,) and q(s) takgs-its
value in
| L, (R, _(a.)dq)-
" Had we a different and more comm&n scheme.of interpretation
s miéht be a time parameter. On thisAspace g of paths
there is a (Wiener tjpe) measure associated with the
semigroﬁé Pt; for in each mode Pt causes evolution of
the coordinate qks) and thus acts on C. We have already
for each mode a measure |
P(t,q,dq") = p (q,q") plaNda’
the probability that if g(0) = g then g(t) will lie in
(q',q' + dq') . -
We take the ¢ field of measurable sets generéted by those
def}ped by finite families of Borel sets E; ..., E,
and consisting‘in
IE(EJ,..., Ej) ='{d in C such that q(si) is in E;
| x  for 1 <1i<i3y

and

0 =85;¢8, < ---<sj.- We then define a measure

T(E(Ey,..%sEy))

LElx...XE.P(si—si_l:q(si_l),dq(si))p(q(O))dq(o)
J .



and this is the probability that a path which is
associated with evolution according to the law Pt'will
pass through 'specified gates' at several finite times

' if the starting points are Gaussian distributed.

q (1)

a(2)

The paths g (1) and q(2) represent elemehts of

E, and theAgaps the;Borel set 'gates' Ei ;. This definition
is in a sense forced by the Markov character of the process.
We remark that thé integral may be extended over further
sets Ei each equal to all of R from the Chapman-Kolmogorov
equatidn SO fhe sets E are chinder or tame sets, that is
set§/aefined only by a finite number of conditions on a
space of infinite dimension. This measure T permits then
thé integration ¢f functions on

F =& . -
=v,K ~k in FV’K‘

and in fact on F,- Further F is in fact an inductive



limit of the spaces E,  and we have a corresponding
F .
49

limit for the path spaces. Doing an integral of a
- product of j functions ‘

where

p =1 . p(q') '
_ k in PV'K k 3k

we get
3
J Hi=l Vi(q(si))dT

= |aq(0)p (g(0)) V1 (a(0))

. 5 .
X {exP(olHo,v,K)Hi=zexP(CiHo,v,K)Vi}(q(o))
where
0J. = Si—l_ Sl
so that
eXp(GiHo,ﬁ,K)

is a contraction from
Lj(R,P(q(si))dq(si))
to
Lj(m’p(q(si_l))dq(si_l))
Thus.- this devolves to an integral over g(0) and we
get by an elementary HOlder inequality

j
[JHvi(q(si))dTl < Mgty .

The contractive nature of exp(-tH ) is a
0,V,K

consequence of the following theorem which we quote

THEOREM

If 1 <r <o exp(-tHo o) is a contraction
. 7

v
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operator on Lr of one mode. For
T<t,l<pandr <« it is a cohtraction for
some T inde?endenéi%yK. If p is bdunded away
from 1 and r from « then T is independent of p’

and r.

PROOF: (SKETCH)”©
| The proof préceeds by showiné

.Pt - e.}q;)("thlo,v,|<)v‘
a contraction on L by direct estimate and oh
L, since H_  is positive. One uses the Riesz
Thorin Convexity theorem to show it a contraction
én Lr for |

2 <r < o,
One notes then that the kernel

Pt (a,q9")
ié symmetiic,lso Pt

is symmetric in Lz, thus by
| duality one has contraction on Lr for ‘
1l <r<a2 |
and so on Lqy in the limit. One builds the

P contractiveness from Lp to Lr from that of thé

—

' map L2 -+ L4 (verified by estimation) and on

L by another application of Riesz~Thorin convexity.5l

We have then a ﬁromising integral on C and by following

Feynman, a use for it. We have in fact the Feynman-Kac
52
formula for the full Hamiltonian semigroup
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;.

K

< o exp(FtHv )¥> .
= J@(q(o)) exp ( —Ig HI,V'K(q(s))ds)

x  Y¥(q(s)) 4T
where ¢, and ¥ are in H or equivalently in F H
. =V K —V'K
this is straightforwardly a statement of a transition
probability in terms of the integral 6ver'a11 admissible
developments connecting the states with weight according
to their probability of evolution. We shall wish to
estimate this or its replacement
i , | )
~tF
< &f expl( t V'K)W >
V4K - . TrVyK I,v,k
Now '

(1)
| <®'exP(fth,K )Y > | -

< ||§ﬂq(o))_w(q(t))llp,||exp(fg H

IIVVIK(q(S))dSI ‘p

.where
(1/p') + (1/p) = 1, for p > 2 and large t. The
formulation with FT changes the kernel to
_ . '
PT (g,q")
and so modifies the measure to a dTT ; otherwise all is
//A
the same as for Ho.‘ We require then estimates on these
parts and use those of Glimm and Rosen. We look first
at the integral. The estimates for
= |t '
IK = Jo VV’Kq(s)dr

are sucn~that both the limits v,k > « are uniform and

provide both a uniform lower bound for H(g) and resolvent



convergence for HV,K(g).to H(g)s.:3 Thefe apeirequired
for the existence of a cutoff vacuum Qg_the ground state
" of H(g)FA:Our interaction is as previously reckoned a
polynomial V; By examination of the Riemann sums approx-
imating the integral it may be shown that |

| i).for all p < « IE V(qfs)ds is in Lp(g,dT)
and . o

-ii) for ﬁ an éven positive inteéer

t
H[E viatsnastly < ellvlly

>

We have for the other part in the bound‘invthe
inner product the following pioperty:— o |
There is a T'independént of v and k such that for
t > Tand 1 < xr <2, and £and n in Lz(pdq);
(1') :E(q(0))n(g(t)) in L_(g,aT)
and_ o | ‘ R

(i) || e(@ntaen . < [ell21Inl].

(iii') for r bounded away from 2, T is independent
of r.

- Thus we have a right hand bound

. v'K

t

< Hellell¥ll: e[S v, (atsnas)|l,

So we may infer that

lNexp-ev, 211 < lexo(-[v, (atsnras]]

and then

| ;t_llnllexp(—IK)]|p < Féfl .
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It should be notéd that the only change in'using

g ()

r T<1i.e. not H
v, K fo i v

< is in the measure dTT
4 . N

and this still gives (i')-(iii'). Using again this
further estimate from Glimm, with C >.O

- (yP
c(in|k[)P < IIVV'K

SO .
-ctn)P <14
we estimate I, in terms of IX’ The above'estimate‘
defives from the facﬁ that V is a polynomial, so VV,K
‘is a cut off convolution and one has a form of cut off
‘Hausdorff Young theorem and Young's inequality49'507
We shall estimaté'in terms of our probability measufe
pr aefined‘by aT |

priz < -ctin([A] yP-1}

< pr{lik—lll > 1}

JIIK—IllzjaQ
i:tzjllvv,K— vlll?gg

by the'previous property (ii).; Fortunately estimation
of the last norm reveals ]

vy = v 18 < i ie I a0
where j is an integer, and Cl is independent of both
'k and . This can be obtained by explicit calculation
in Fock space. Application of Stirling's formula for
~large j‘gives. |
priz, < - ct(n|r[)P-1}
< (zpj)ZPje"ZP (j+l)c3}\‘j (*n [ M )213"1

—
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where the-Ci are always to be taken as constants evolving
with the estimates. If one chooses j so that

5 < e C3—l/2p A28 gy

then ) ' N :
- . - 1 ; —ip -
22U < (- ¢, TL/2P A5P (Un[ ATy ke

is a bound for the probability. Taking .
X = Rnlll + fnfalAr|
thlS rends

o 1/p -
pr {1, < -x-1} < exp(—-c4ec5X o .

Finally then we have
[l 1P ar = [ePTe ar

< —2P + 2n>lexp(p(n+2) - C4e

—

which is a bound that depends on neither v or K
which on being applied to

By e 2t lexp -1 1)

yields a minorant for H independent of both v ahd k.

v, K
ThlS is in fact sufflcient to show H(g) bounded below.
Another reckoning, due to Rosen, this time for’
- '
the differences as the volume varies is

v, « - v, KH < (2pj)!(c6/k)2

of the same form as above, vields better COnvergenée
o0f the approximations, and in fact on
pom (NF) A Dom Ho

H_ > H strongly as V,K >,
v,K , :

One also obtains resolvent convergence, the result crucial



to proving the existence of a vacuum for the renormalized

theory and continuing as far as has been done for (¢”)2.

Since H is lower semibounded we také +Eg to be
its greatest lower bound, which will be the infimum
of the spectrum of the self adjoint H(g). We shall
often use the simply renormalized form of Hamiltonian

H = H - B N
(g) = H(g) g

which is then non-negative. It is H(g) that has a

vacuum Qg if‘Eg is a simple eigenvalue.
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§5 : Self Adjointness of HI(g)

That HI(g) in our case is self adjoint is a
consequence of Segal's elaborate theory of guantum '
-fiélds and as is remarked by Rosen, is implicit in
the proof of selfadjointness for {¢“(g):vby Glimm and
Jaffe, for there is nothing in the proof apparently
peculia; to the degree 4, However, we shail go'through
some of the details of their approach in the following,
Afor there is an annoying habit in the 1iterature”of
moving to the closure of an essentially self adjoint
'opérator without saying so? |

We shall show that
THEOREM |

If g is a real functionlin Q(R) ﬁhen if
P(¢) is a polynomial in

Hp(g) = I P(¢) glx) dax
is essentially self adjoint on Qo;
COROLLARY

HI(g) on its natural domain is self adjoint.
PROOF

We shall use the fact that for feal £, ¢(£f) is
esséntially self adjoint; again ¢ (f) on its natural
domain will be self adjoint. We take then the maximal
abelian W*-algebra generated by the fields and show

HI(g) commutes with it on a large domain and so is
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essentially self adjoint. Proceeding'to detailé; we
let D: be the domain generated by the applications of.
polynomials in the time zero fields to the Fock
vacuum Qg , i.e.

D = (E[d)(f) : £ in g(m)} Qo
D1 is clearly dense in E; furthéf every £ in D) is an
aﬁalytic vector for, if ¢ (f) ha§ £ in S(R)
'then o /

I o mH M ee) ]|

is an entire functibn for é(f) < N. Thus ¢(f) has
a dense‘set of analytic vectbrs and so by Neléon's
theorem is‘esséntially self adjoint?sit is symmetric on
its natural (maximal) domain if £ is real so ¢(f) is a
symmetric extension of ¢ (£) ) Q; and thus is
sélfvadjoint.>"

Next let »
| M= W*;alg {¢(f) : £ in é(E)} ;
then M is maximal abelian i.e. M = M' (its commutént),

Consider ‘

— H, (9) MDo ; this restriction of ﬁI(g)
commutes on Do with-M, for HI(g) is‘a bounded function

of ¢(£). Thus as an operator with dense domain commuting
with a maximal abelian algebra it is essentially self

adjoint. This follows from the strong form of the

spectral theorem which says any maximal abelien W*-algebra
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may be represented as the multiplication algebra of

L_ functions on L, on some measure space M.

I£ now follows that HI(g)’if erméliy self adjoint,
as it is qua polynomial in ¢ smeared with a real function
(this is obvious in momentum spacg), as a symmetric ex-
tension of its essentially self adjoint restriction to

Do is self adjoint on its natural domain.

Having established the selfadjointness of HI(g), we
are led to ﬁonder about.its'loéalization when the
function g, that is the smearing, is compactly suppo?ted,
as in the form factor cutoff. We find that the.induced '
' operator semigroué ‘ ) ’ ' Lo
_ exp (iH,(g9)t)
is within the local algebra of the support of g.
Recapitulating tﬁe definition §f local algebra of an
open region O of space R
A(0) = W*-aig (6 (£),m(f) : the support of £ is within 0);
- again this means the Weak * closed self adjoint algebra
of operators generated by the spectral projections of
the fields and canonical conjugates based in the region

0. We show:-

THEQOREM

If g(x) is a real function of ‘Cg(O), then for
our interaction and in fact for any polynomial interaction

U(g,t) = 'eXp(i Hy(g) t) is in z___x(ol) A M
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o | 56
We shall make us of the result of Araki that the
commutant of a local algebra is the algebra of the
complement of the closure 6f‘the region or

A(O)' = A(0') where O' =R - O.

First remark that HI(g) as shown in the proof preVious
cbmmutes with the maximal abelian M aﬁd thus is in M.
Now, if £ is restricted to have support in O', then
U(g,t) commutes with any bounded function of ¢(f) and
w(f), or U(g,t) is a unitary operator commuting with

A(O') or in A(0')'. Thus U(g,t) is in both A(0) and .

=

Thus we have that our interaction is local in the
sense of physics; we shéll find that together with the
free H0 it provides a correct local dynamics but firét
we shall have to show H(g) self adjoint and thus a
suitable generator for the one ?arameter group of time

translations.
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§6 SELF ADJOININESS OF H(g)

| We prove seif adjointness for the'(¢2pa tota1 

Hamiltoﬁian | » L
H(g) = Ho + Hy(g)

on its domain Dom H, f) Dom H . (g) , a furtherance'of«the
result of Rosen that it is essentially self adjoint on |
this domain; it amounts to shbwing H(g) ciosed; Since
directly showing an operator closed is notoriously difficuit,
we have been forced to detour via the strongest known
reéult in the singulaf perturbation theoxry of éositive
self-adjoint. We qﬁote from the Glimm-Jaffe paper on

this theory.s7

Suppose on a Hilbert space H we have a self adjoint

“operator N > I; we define then the scale of Hilbert

spaces H with scalar products
<¢|n>, = aM2g) WMo
We have the standard identifications for non-negative N

HcH < H,

A A

whéte Hy =H and H , may be taken as the dual of

A

B, which is a set Dom N2, If T is a densely defined

bounded operator from H, to H; ., let IlTIIa 8 denote
' ! - s

B

its norm. We set

T[] = IIT[[o,o
and cdmpute in general

Tl = [IN¥2z w072 ||

Suppose now that we have a further operator



A > N that commutes with N. ILet

,25 n—{_]_)_clnAn:ninN.}'.
which is the set of C~ (smooth) Vectors for A sometimes
denoted C A . We assume D is a core for a second

self adjoint operator B. We assume B to be a bounded

and from H, to EB for some

operator from H to H_

0,8, and v with B > 0. We assume the following inequal-
ities on bilinear forms on D X D '
a) O < aN + B + cst. with 0 < a < %

—

b) O < & A%? + cst. B +'(AdA%)ZB + cst.

with Za + g < 1. If v > 2 we assume additionally
that for some p > v - 2

) o< e N4 (ag NHH/2y2p 4 oot
thén we may aséert:-

THEOREM

Under the above two paragraphs of hypotheses

A + B ig self adjoint.

We wish to apply this to the case of N being the
number operator, A = H, and B = Hy (g) on Fock space

F with D = D,, for indeed D, = C H,.

We list the properties that must be verified:-
(i) D, is a core for Hy(9)
(ii) there is a B8 > 0 and an o such that

| |wB/? HI(g)i\i"“/2

Il <

(iii) there is a v such that
IIN—v/2HI(g)N—v/21|.< -

(iv) there is aﬁ a, 0 < a < % such that

0 < aN + H_ + cst.

I
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(v) there is an e , with 2a + ¢ < 1 such

that ' L v
O < eHf + cst.H; + (RAdHG)*H; + ost.
and maybe if we have to take v > 2 .

(vi) there is au > v - 2 such that

0 < eNMt2 4 (AdN(Pfl)/z)zHI + cst. .

Condition (i) was shown in proving HI(g) self
~adjoint. Condition (iv) with restriction a > O came
- as a by product of the proof that H(g) was semibounded

by using F_ with O < t < 1.

.We must next seek «,8 and v for (ii) and (iii),
so we remind ourselVes of the form of HI(g)'for £ and n

in suitable domains

<t|Hp(gm> = [3B, (EP) ]

<o .

o aarn oy
n+j=0{n+2p j,n+3!n,n}

I€h+2p—j(K'Kl)§(lel - IK'I)v(KfK")%

x n+j(K“,K)deK'dK“ .

Looking at the following inequality for Wick monomials
W of'degrée minG - J I (2.11)5§—
For every j such that |j| < m

//

Lo+ 173 %0 + I)"(m—j)/zll < osto|[W] [ 2

Each monomial part of our interactioﬁ ié of degree 2p so
that if we take v = +p we have

| ] (N + 1) P 2 + I)"p/2|| <ost | [W[[2 <@
for : ‘
g(|x| - |K“|)v(K',K")-% is in L?. Further
if we take g =1 = ;j in the above wé get

[ ] (N + I)%W(N + 1)'P‘%||‘5 o

56



so with' 8 =1>0, a = (2p - l)_ana v o= p one has
two eétimates equivalent to (ii) and (iii), for the
addition of I to N onlf serves to make the operators
(N + I). invertible and the estiﬁate easier to prove.
Thése are true for each monomial component of HI(g)

so (ii) and (iii) may be seen to hold for the whole.

We must now £ackle the commutator estimates and
start with (v) where the.presence of the term cét. B
turns the trick. We examine matrix.elements between
elements of Do. We do the commutatoxr combinatorics
first:~‘

(A R) (ST) = (Ad R) (S)T + S(AQR)T
so by induétion wé will have

(AdR) (S1...5, ) = [2P. s1...8, . (adR) (s

2p
(AdR) % (81...8

- 2p
= ZZ=1

2P) = (AdR) ((AdR) (S1.. 'Szp”

o, |
S;...SZ (AdR) (SR)S eeeS

+1 2p

+2 2B, S1...(AdR)(S_)...(AdR) (S,)...S

m<2=2"": 2p

We next adopt the notations
Q,K = (kz,kz_l_]:’ooo,kn)

and

Kj= (kl'kZ,o-.'kj)

for shortened rows derived from K = (kl'...,kn) .

With this set up we note basic relations of commutation:-

57

2,) ‘,SZ+1...SZP.
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(raHd) (a(x))0)_(X) |
= {u0e,x) - u(K)}%(a(k)G) (K)
= Al(k,K)(a(k)G) (X) by definition of Al
| = (a1(x)0)  (K) |
Repeating this
((AdH$) 2 (a(k))6) _(X)
= A1 (K, K)((AdH%)ca(k))e) (K)

= M OGK @00 (K) = (a2 (00)_ (K

Taking aajoints (noté this is perfectly good algebra and
no analytic claims are made) | '
(AdH?) (a* (k) = -a (k)
(adHs) ? (a%k) = a} (k)
. Applying all this to an exPectatlon with respect to
£ of Do

<E|(AdH%)i(HI(g))£> = {n+2p-j,n+j!n n}%.‘

2p
Z —0 j )Zn+j—0

f35+2p 5 (KRG (R |- Ixv v (e &) ¥, 5 (K" /K)

AZ(K,K'

g3

(I he (0 4 13

+ 2 (Xm>g’=l>\1 (mK vK) Al (2K" ,K)

| j 2 by n ’
~ ‘ T zj_-:l 2 zj_,_l}‘l (K'K'm-j)ll( K" ,K)
+ 2m>2_3+lﬁn(x.x'm_j)xl<K.K'£_j))}
X ax'dR"dK
where
M CRNK) = w( KR - u( KK
R4S »m ’ m r m-1 r

Ta (KK g) = W (KR ) P (kK 1)



lz(zK“,K) = ll(fo,K)ll(z_lK“,K)
by ' = X T by ¥
AZ(K,Km_j) Al(K,Km_j_l)A(K,Km_j)
Now we have for the functions \; and X, inequalities

T GGK) ] < 300 RK) E < Buik) (2p) " (n) %

and

IA

llz(k:K)l U (k)
or
Tra (B | < est. wZ(k) (1) TE
which follow from the elementary identity for X
positive o
| (1 +ﬁx)%';vl < x* < Ly . for xpi 4
or _ |
(1 + x)?5 - 1< ix < % for x 3 4.
Now we shall examine
<¢| (eH} + bH, + c)&>
‘='2:=o(eju(x)zéﬁtx)§5K)dx
+ cJEﬁ(K)%ﬁK)dK)

‘fbfﬁgc{(?p)zz+j=o[{n+2p-j,n+j!n,n}%

I Eﬁ+2p-j(K'K')§(|K'IflK"l)v(K',K")‘%

x En+j(K“,K)dK'dK"dK}}



It is clear from the expression for

<€ | (aaEh 2H(g) £ >

that it bears a great resemblance to HI' We shall
shpw that
>
X+ ¢ 2 clHI

where

C pah? m @)
X = (adaH’)® Hi (9)

we have dropped the (g) and the constants c; and c»
are suitable. To do this we analyse thé part of the
kernel of

| <g ] x g'>
in parentheses; we shall add the first and second sums
each to half of the fourth and remark that these
groupings and the remaining term are pésitive for
sufficiently large K. Further the functions are bouﬁded
vabéve. ‘We infer that up to a constant, for the 1§w K;

we have domination of a mﬁltiple of H Now to these

I'
rearrangements:-

o3 L 52
S G+ 12

poje1rz (KiK'

g-5)
+ 2 (zgpg':lAl (mK" fK) Ay (R.K" +K)

- j 2P T u
Li1 zm=j+1l1(K,K'm_j)l1(2K /K)

+ v2p -, _



j : ' 2~ ey
= Ip=101 XK (a (g KR) — RS X (KR! )

+

2p 5 : T o j 1
‘22=j+1>\1 (K’K.‘Q/"j) (>\1 (K’Ki.ﬂl—j—l Em‘=l>\1 (mK. 1K) )
+ 2(23“»\:1)\1 (K" K) Ay (K", K) .

2 T 1 by !
T O R )

The ) are certainly positive so the last term "2 (... )"

ié. We examine the subtractions in the first sum: -
2p by 1 1 ;i
Ipmgertt BRI ) < w0 (k! 5) /7 w(K)

a fairly generous estimate achieved by iteration, but

showing that for large X (in length or modulus) this

is small. The second term may be similarly treated.

Overall then for large K this expression is positive.



We write then estimates for constants ¢ and ¢, .,
of bilinear forms
>
X+ c1 > ¢ HI .
So then we have
-X <= Cp_HI + ¢ .
X - b H £ f(b +»cZ)HI + C) R
Now we know that for all 6§ > O there is a constant
¢s3 such that
' >
5H0+HI+03 0]
thus
-X - bHI <+ Cq(ﬁHo + C3) |
’ 2 . -
| f_EHo+Cs . ) -
Finally then, we achieve
_ ) \
o —\?Ho + X + bH, + Cs
where ¢1,..., Cs were suitable donstants, and the restrictipn
€ <1l = 2a
is certainly verifiable for both a and € may be made

small.

///,Since we are treating the general case p > 2 and

we have taken in condition (iii) v = p we are obliged
to check (vi). We take u =p -1 > 9— 2 aﬁd must
verify

0 < e P4 (aaP/?)2 Hp + cst. .
Considering (Ade/z)z(V) where V is a Wick monomial

part of the interaction of which there arélzp, we



see
(aanP’2)v = ¥Pv - ZNP/ZVNP/Z + Ve .
'We w1sh then that |
o <P (eN+H; -2N P/ZHINP/2 +N PH )+ cst. .
The estlmate (iv)

O < aN+H  + C;

held true for any a > O and suitable constant Cl' in
particular |

eN + Hy + C; > O.

"We shall add three inequalities td obtain the desired
result; from this last follow by pre- and post-multlpllcatlon

by N ‘1, Np/2 & Np/z, and l & Np, respectively

o< et NP 4 wH, + NP = A
o < anP*l 4 NP/2HINP/2 + NP = B
o< b m NPy P = ¢ .

Estimating A - 2B + C by using the extreme case of

B
Cev WP 4 ¥PH. + ¢ - 2anPto 2c NP
. NHy 1”4 2
+ pPHL o4 bHINP + C3NP
= Pty _ p p _ p
= NPT (e 2a + b) + NPr + bH,NP + (C;-2C,+Cy)N

1f one arranges



(e¢' - 2a +b) = ¢

as one may and then notes NPHI

“and HINp are both bounded
(as adjoints from '

|INn372 g (20=3)/2 ) < cstllwlly, (witn 3 = -2p)

and then arranges Cl,Cz,C3 which as large enough to be
positive, one has with the addition of a constant to

dominate HINp + NPHI

enP* 4 (aan?/?)2 B_ + cst > 0
as required.
Thus we have -verified conditions (i) to (vi)
of the theorem on'singular perturbations and may infer
its conclusion

" Ho + HI(g) is self adjoint on Dom Hy (\ Dom HI(g) .

We have, therefore, a good local Hamiltonian as in the

¢* in two dimensions theory.
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§7 THE SEQUEL OF THE PROGRAMME

With a Hamiltoniah H(g) self adjoint on its natural
domain and uniform convergence of the resolvents of
H(g)v'l< to that of H(gf as the box and u;traviolet
cutoffs are removed as has been shown} there are no

further obstructions to following the programme of

Glimm and Jaffe to its published endAthrough their last

two preprints. We shall only sketch the path here2?

First, from the semiboundedness of H(g) one may

renormalize it to

H(g)A := H(g) - Eg

where Eg is thekiowest bound on the spectrum of H(g).
The existence of a vacuum vector follows from the

' compactness of thevresolvents of the approximations
H(g)V'K, which thus each have disqrete spectra?o Unifq:m
convergenCe'provides a unique vacuum Qg up to a phase
théE/may be specified. Uniqueness uses the properties

of positive operators, a technique that should be

useful in the continuation.

Still in the Fock representation one constructs
approximate Heisenberg fields

6 (x,t) = oTH(IT 4y o) oTiHIg)E

and_H(g) by the theorem of Segal, proposed by Guenin
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provides 'a correct local dynamics'within the causal
shadow of the l—suppdrt of g (closure df»the set where
g takes the value l)?l Sufficient (and necessary) for .
thevapplication of this theorem’is self adjointnéss’of
Ho, HI(g) and H(g) which we have. For these Heisenbefg
fields the properties of locality follow directly from
the hyperbolicity. of the homogehéous form of the equation
of mbtion for all ultraviolet divergences have been
disposed of. Furthermore space time covériance may be
set up; if a = (a,t) | \
. ca¢(x,s) = ¢(x + a,s + t)
and ot.is as seen above, unitarily imp1emented in
bounded regions (by taking the 1 support of g large
enough ). The space translation is also unitarily
implemenﬁed h ' 7
0,602, t) = U(a)¢(x,0) Ula) ™t
'We may thenbset up a set of local algebras, if
'g is a bounded open region of space-time we have the
C* &nd W* algebras associated with it generated by the
fields smeared with functions of support within O

2 (0)

C*alg{¢(£), w(£) : supp £ is in O}

R(0) = W*alg{¢(£), w(£) : supp £ is in O}
= A(0)" |
So we have an algebra with quasi-local structure
A = c*alg'{g(g)i: O is a relatively compact open
set of R?}

for it seems that R(Q) is the most natural algebra to

66
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- associate with a region; we are thus back with Araki.
The Haag—-Kastler axioms with the exception of Lorentz

covariance are verified.

To obtain'finally the physical Hamiltonian and'
vacuum-is a physical Hilbert space one has recourse
to this abstract approach from the C*algebra A above.
Every approximate vacuum Qg define a state of A (i.e.
a positive linear funqtional of norm 1 on A, the set‘
of whicﬂ will be called E) its wvacuum expectation

w_: A= (R ,AQ ) : A>T .
g (Rgrafg) = 2

The set of wg is contained in E a set wﬁich is compact

in the nétufal W* topology on functionals 6n-é, of
pointwise convergence on ész Thus the set of wg has a
convergent subsequence wgm and its limit w is a candidate“
for the vacuum state. Unfortunately it is not

_ invariant under space translation, though obviously
témporally‘invariént by construction. One therefore

‘takes a sequence of states

wn(A) = fn’l(gé,oa(A)Qg) h(d/n)dd

///

where h is a bump function so that W, spreads to become
mmore and more translation invariant. A limit then of a
subsequence of these wn will be a translationally invariant
w. With then an invariant state ® on a C*-algebra A one
may construct by the method of Gel'fand and Segal a

Hilbert space H, a representation T of A in H, a vector



I-7

f in H cyclic for w(A) and a unitary representation of
the space time group that leaves Q invariant:-

H = Hilb.Sp. {A/ker w}

LI A > BOpr H : A > w(A)(*) = (&)
IIQII =1l; w(A)Q is dense in g
w(R) = (Q,7(Aa)Q)

U:m2+uo]9 H:«>Ula)

U(a)ﬂ‘ =

Two of the desirable properties of field theories
blatantly missing above are coveriance of the fields and
'yany form of Lorentz representations. But the wg are
.vector states and so the w, are normal states on every
A(0) (equivalently density matrix states or completely
additive states) Glimm and Jaffe by showing that the
number and energy densities are both bounded and that the
vacuum energy-Eg is extrinsic in the volume (or support
area of g) are flnelly able to conclude that the phy51cal
vacuum w is locally Fock; thlS takes them about 100 pages

of paper III on Xi¢"*.

~
There is however a simpler way of obtaining the

result of w being a locally Fock state, due essentially
63
to Guenln. The states wn above are normal states on

64~ 65
every A(Q); by a theorem of Dell‘Antonlo and Sakai the
limit in the W* topology of a sequence of normal states
is also normal. Thus the limiting state w is normal on

every A(O) and as such carries this von'Neumann algebra

68



into an image'von Neumann algebra§6 But Araki has shown

| the A(0) to be type III factor8’and a result of Griffi'n68
then implies that the isomorphism afforded by
™ [ A(0) -
since élg) is simple, is unitarily implemented. Thus
we have for each local algebra in the physical represen—

_tation a unitary intertwining U. with the local algebra

0

—

of the same region in the Fock represntation:—

U, in UOpr (E,H)

and for every |
. Ay = -1
A in A(Q) m(a) = U,AU,

Further there is a lécal vacuum for O namely Ué*ﬂ but
there is a phase ambiguity. In connection with the
question of Hepp as to why every one should have to
Smear with translations to make the appréximate vacua,
the result that any normal state on a W¥-algebra, whose.
commutant is infinite (e.q. a Type III algebra) is a
vector state is of interest in suggesting it should not
70 '

be necessary.” One may note that H is separable as a

unitary image of F.
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§8 * CONCLUDING REMARKS ON PROBLEMS
'AND

OUTLOOKS

The most ob§ious deficiency of the above constructioﬁ
is that even though restricted to two dimensional space- \
time, wherein the Lorentz group is one dimensional and
so commutative (since locally compact), Lorentz
covariance has not been incorporated. Jaffe and Cannon
have stated that they have nearly attained proof of the
existence of a self adjoint generator for the Lorentz
group and COVariance.G9 They are trying to piece togetﬁer
locally.correct boosts | |

M = eHy + Hy(go) + Hp(g)
where the form factor must give the reqﬁired function
X over some interval for formally |

M= IxH(x)dx e
Then they apparently use similar methods to the ¢*
methods. They would then have Lorentz scalar two point

functions.

e
—

However even With Lorentz covariance one still has
.no scattering theory of a rigorous sort. lTo be able to
establish Haag-Ruelle scattering theory one rgquires
three properties of the.spectrum of space-time translaﬁions?l

(i) the vacuum Q is unique

(ii) there is a mass gap, that is O is an isolated

point of the spectrum

(iii) there is a one particle structure, so that



the renormalized mass hypérboloid should support

an irreducible representation of the Poincaré groﬁp
with the-reﬁormalized mass m .

" Toward an anéwer to the problem (i) one may try to
invoke the Alaoglu-Birkhoff theorem?zif the Lorentz

group is represented, or if not (i.e. for the abelian

unitary group of translation) the Dunford theorem?zthat

A

Kprovides a unique invariant vector by conﬁergeﬁce of a
sequence of means. In examination of (ii) the only method.
of attack seems to be the use of compact resolvents which
are positive and of the eigenvalue spreading of such |

’ operators?3 Jaffe aséerts on general compactness grounds
that there should be at most a finite number of diécrete‘
eigeﬁvalues and no continuum for H(g) between O and the
bare mass My but does not seem to be able to keep the

limit of such away from O.

There is one further piece of hope for scattering ;
thebry available already. This derives from Ruelle's
recent work on inteéial representations of C*—algébra
st;tes?4 A theorem here applicable states tha£ if a
C*falgebra have a qUési—local structure defined by a
commutable family of sub-C*-algebras then if for each
region the algebra there has a separable closed bilateral
ideal such that the restriction of the state p under

consideration has norm 1 there then p has a decomposition



into states with trivial algebra at infinity; the
algebra at infinity A is |

BT ACOIE
given by the Gel'fand-Segal construction. However a
further theorem states that a stéte with trivial algebra
at infinity has a clustef decdmposition property in that
' for every positive ¢ and A in-é'there is an O such that
if A' is invé(g') then J

loaay) - pme@n)| < ellall .

Fox 6£her theories in two dimensions, less hag been
achieved for the presence of non—-trivial ultraviole£
. divergences (thoée not removed by Wick ordering) neces-
sitates the very complex machinery of dressing transform-
ations and a much more drastic form of changing Hilbert_
space. . Glimm éha Jaffe have just announced for the
Yukawa theory J¥¢ after renormalization, a proof of.
self—adjointness 6f_H(g) and of resolvent and graph -
convergence o@put off wversions, and locality of them;’
but as yet they have no vacuum or renormalized H?g However
in-Paper III they surmise that the energy estimates they
maké for ¢" ensuring local Fockness, will remain good for. :
($¢¢)2 and (P($) + Q(¢)PY) ; where P and Q are polynomials
in the boson fields. 1In the 1i§ht of the use of the

theorem on normality of weak * limits of sequendes of

normal states, this seems plausible. The extrinsicness



of the local energy density is violated for (4" s.
Hepp has shown (P(¢) + Q(¢)$w)2(g) is stmetric and
densely defined, where the polynomial P(9) is positive'

and dominates the polynomial Q(¢).

It is hoped by the devotees that there will exist

a full non-trivial theory within a few years.
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§1 QUANTUM FIELDS, FOCK SPACES, & CANONICAL COMMUTATION’

Since the abstract approach is here being taken in
order to make piain the mathematiéal completeness of the
treatment of but a singlg examp;e, we shall begin by

| definitions following those of IEE. Segal.

The usual start would be to define Fock Space (or ‘“
_oCcupation number Space; ox the épace for the particle
representation of the canonical relations) exélicitly
as follows. |

'Choosing a standard Hilbert space LZ(RS) to
. Which of éourse any separable Hilbert space is noncanoniéallyi
isomorphic, one interprets it as the collection of wave
‘functions of single noninteracting particles in space of
dimension s (sometimes space-time of éimension s). For
the representation of the CCR one constructs from the single
particie space, thé Hilbert space on which the CCR will be
represented as the symmetric, or antisymmetric tensor algebra
over Lz(ms), with the existential (a néutral adjective to
stand for either creation or annihilation) operators,
ag;ing as iinearvmaps of degrees *1, on the gréded vector
space.

. (cf.e.g. for this terminology Chevalley, The Construction
And Study of Certain Important Algebras, Publ.Math.Soc.
Japan; or H.Nickerson,N.E.Steenrod,D.C.Spencer, Advanced
Calculus, Van Nostrand Co.)

Explicitly for the symmetric case as illustration, Fock
space F is the Hilbert space completion of F = © F' = or? (r%)
(@ is a standard notation for symmetric tensor algebra or

product, cf. Sternberg, Lectures on Differential Geometry,
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Prentice Hall, 1964) and the homogeneous cbmpdnents

£(n) (o)

are given by F'°° = € (in general the ground

field), and for n 2 l»
£(n)- (n-1)
pn-1).

L2 (8®) ©F
{f O YW FE

& £uL1?(@®%)}

where by definition © is the result of a symmetrizihg
operation, i.e. an average over the action of the
'permutation_group on the appropriate number.dflciphérs .
Pm' .the group of permutatlons on m 01phers, acts naturally
on V . the n'th tensor power of a vector space V, by

linear extension from its action on decomposable tensors,

" which is

where xfnv, and ﬁhPm is taken to be (ﬂl;:::'ﬂm) The
obﬁious averagef is then v
%0000 0%y = (m! y~1 E'maPm T(Xy@ oo /05 )
In this case' then
(2% 12 (@)™
= {E(kyenn k) in T2(ED™)| ¥rip_
7 E(kyaeee k) = £k )Y
Simply said for the symmetric case, Fock space g‘is the
Hilbert sum of the hom9geneous components g(n) of the
. graded symmetric algebra over g(l) = LZ(RS). The exist-
ential operators are then: | ‘
creation a¥* : LZ(RS) - Opr+1£ : fwy a*(f)
a*(f){ g(n)‘» g(n+l):¢ - (n+l)%f0¢
annihilation "a: L2(RS)— Opr_; F: f—al(f)

a(f) 2™ g1y, % v

wﬁere'Oprr'for'ran denotes the linear oberators of
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degree r on a graded space and £ Y denotes the left
inﬁerioi;product'of differential geometry, or just
contraction. Of course in this case as functions
which is the extension of the natural

f.J(g,G,...,ng) = (flgn)glG,...;ng_l
where in. the degree I'component 2(1)’
£lg = <Elg> = <g|>
a symmetric product associated with the Hilbert inner
product. Under these conditions a*(f) and a(F) are
"?adjoints satisfying the standard commutation relations:
a(f)at(g) - a*(g)a(f) = <F|g>
The domain of a* (f) clearly varies with £ for it is
Dom, a*(f)n='{¢m£ || foy||2<e}
A core for a¥* i.é. a domain on.which‘the above CCR

will hold for all £ is

b= fy= anﬂng :'whwnf“i(n)

‘&N n>N =>\pr’l' =0 _
; . : c dn .

& ¥n suppy cpct&E T}

Théﬂgpérator’¢(f) =2—% Ig(f) + a*(f[I is self adjoint
and generates a one parameter group

W(E) = ei<I>(f)

for which the following (Weyl) relations hold by virtue
of the CCR

oi/2Im<t|g>

W(£)W(g) = W(£+qg)

.Then s
W: L?(R”°) — Un Opr F

is a Weyl system, the so called

17
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Fock representation of the CCR. Since Lz(Rd)iis infinite .
dimensional there are ﬁahy other inequivalent (i.e.thére
exist no unitary intertwinings) Weyl systems>based on iﬁ.
 Lately the exponential representations have been studied by

J.Fabrey, Exponential Representations of the Canonical

Commutation Relations, MIT preprint; and K. Hepp,

Renormalized Hamiltonian Dynamics and Representations

..of the Canonical (Anti) Commutation Relations, Collogue

surs les systémes'é un nombre infini de degrés de
‘liberté-CNRS, Paris, 7 Mai 1969. -

These are those whose creation operator is--given by

tensoring with a function w in g(m) for m>1

o (@) n)

)+ EM = p O oy o Trnimy /T vey

The Weyl system aésociated is obtained by a 'renormalizing®
redefinition of scalar product in a way which will come

up later.

Thué we had Lé(ks) playing the rdle of both parameter
space for the degrees of freedom and as generator for the
Hilbert space on which the Weyl System wés represented.

It is further usual to look at the R° in question as
posi;ion'(x) space in connection with the first réle and as
momentum (k)'space in connection with the second, thus

the. common formula
o (x) =/%ﬁ [%Ié—2ﬂ1xk a(®) + o27ixk a* (k] Tdk
which ‘'expresses the Fourier transform'.
77
I.E. Segal has for some time inveighed against the

practice of adopting specifics before nécessary in this

regard, and one might, and is certainly tempted to, look
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at the algebraic nature of the graded algebra with

‘%adder' operators (in fact the anticommutation relation
may be taken as stating that the elliptic complex associ-
ated with the Fermi existential operators is acyclic, cf.
Spanier)’].8 We shall follow Segal in not just taking

62 for some HIlbert space (©@ to denote completion-of @)
bﬁt.by setting out his definitiohs of the basic kinematics.
The different forms of statistics shall not be ignored.

The treatment follows Segal .
‘ ' (Quantization & Dispersion
for NonLinear Relativistic Equations, Local Non

it Linear Functions of Quantum Fields, Non Linear

Functions of Weak Processes I,II.) 79

his definitions will be givén, the main theorems sketched,‘

and the familiar examples mentioned.

To start, one defines a quantum process which
all gquantum fields or similar constructs will have
to be. The stoéhastic processes, intriguing though
they are in relation to their possible provision of a
. nexus with Nelson's mechanistic 'brownian' quantum

— 80
mechanics, will be passed by.

One defines’the strong algebraic operationglon
the set of closed densely defined linear operators on
a Hilbert space H (abbréviated ClDsOprH or sometimes
Opr H). They are the closures of the usual operationé

and are defined when they can be
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"{(A,B) wOpxr H? : J(A+B) i DsOprH} —-OprH

o

(a,B) -’rA-l-B * (A+B)

{(A%B) in OprH? : 3 (AB) in DsOprH} — OprH
:(A,B) — A'B = (aB)~
This being so ¥A'mOprH O*A =0

Definitibn

An_operational process with probe space L
is a iinear map ¢ from L to OprH for some Hilbért~space
H.. If 1, is a space of functions on a set M ¢vmay be
said to be an operational process in M. (abbrev. : ¢1n0pf
Proé L, ﬁ or ¢ wLin.L,0prH ). Equivalence for opefationél

processes is given as follows

if,¢i¥n0pr Proc 1, H, i=1,2
the ¢; < ¢»
<= 3 vwvopr (11 ,Hs)
¥ xil

U ¢1(x) U-l = ¢z (x)

A guantum process will be a speéial kind of operational

process, with a distinguished vector.

— 7
Definition

" A guantum process with probe space L, is an

.oéerational process ¢inR Lin. (L, QEEH),>together with a
distinguished unit vector viw H. It is called cyclic
if v is cyclic for the von Neumann algébra generated
by the image O6f ¢, (this will be denoted W* alg. (¢ (L))

‘the von Neumann algebra W# alQ{é} generated by a
family of in general unbounded operators. A is
defined as the double commutant, (or weak closure
under usually set, verifieé conditibns, satisfied
if there is a cyclic vector for the famlly or 1f

the famlly contains a constant ) of the bounded

-
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operators determined by A; i.e. the partial isometries
" and projections of the spectral decompositions
of the self adjoint parts of the polar decom-
positions of elements of A.

Equivalence of quantum processes is the Simple restriction
of equivalence of the operational processes invoived, by
requiring that the diétinguished vector be caffied over

H vwntry (H;,Hz) ,

¥ xul U, (X’ U 1= ¢ (x)
U vy = V2

The linear functional on W¥ alg{¢ (L)} given by taking
_the expecta@ion with respect to the vector v
W*alg{¢(L)}'f4 C: T — <vlTv>

is called the vacuum state or more shortly, vacuum of é.

At this stagelthere is a manifest lack of structure.
The standard Fock space example has L = LZ(Rd)
$(£) = (a*f+a(f))/2 and v the Fock vacuum whose only
component is in degree zZero e.g.'(l,o,o.....). What
is now‘required is the building in of the fundamental
commutation relations of_mechanics, and taking as a
pdggibility both Bose & Fermi statistics one is léd to

the further assumptive definition:

Definition

An operational process is called canonical if
(i) -¢(L)c SAOpr H
ii [l =7,
(11):3La,Ls vsp L L La® Ls
‘& 3AwNonDegen A Sym.Bil.Form L,
&3S wNonDegen Sym.Bil. .Form L

such that



N JL093) _10(y) _ iA(x,y) 16 (y) 16 (x)

a : . :

¥ X, ¥l ¢(X)¢(Y)+¢(Y)¢(X)=ZS(X:Y)I
& X La&Y\v\Ls )
C=> 9 (x) 43¢ (v)

where € denotes strong commutation i.e. in terms of all
spectral projections commuting. Verbally an operational
process is canonical if it assigné to elements of L self
adjoint operators, such that_on onevsubspaée La of a
direct sum decompésition of I. they obey Bose cdmmutation‘
relations; on the other LS they dbey Fermi commutation

" relations, and Bose & Fermi parfs do not interfere i.e. they
cgmmutelr A qUantum process will be called canonical if

‘it is such qua operational proceés. Clearly canonical
quantum brocesses are what was desired. The canonical

non quantum process has no vacuum vector and this has
oftén been suggested to be the case for parficulaﬁ models.
A very conveniént'property of canonical processes is that =
they are in a sense unique if given in that no other de-
composition into symmetric and antisymmetric parts is
possiblé,vunder the extra assumption that LS is not of

finite odd dimension (Scholium 2 in NFWP I § 1).

It ié now cogent to set out the theorems on uniqueness
of the Bose and Fermi parts of the'canonical'process, 50
we define and expiore the respective Weyl and Clifford
algebras and systems. The attempt will be made to treat
the. two simultaneously. We proceed to the topologico-
algebraic definifion;

Definition

Let L be a vector space over B
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Let F ke a nondegen. bilinear form on L
Let L be the ffee noncammutative associative algebfa
_generated by L and the adjoined neutral element:e,

' Let L be endowed with the topology which.is the
inductive limit of the topology of convergence up
to finite degrees over finiﬁe dimensional subspéces
of L. f

Note that this is in fact a double inductive
limit, firstly in each degree over the finite
dimensibnal_subspaces,of L and.secohdly over
finite sets of degrees of the polynomials.

ThebF algebra over'L is defined to be £he guotient
ofﬁ;:modulo'the closed ideal generated by the
Areiatioﬁ ¥x, vl xyF(y,x)+ny(k,y)¥F(x,y)F(y,X)e
If F is éntisymmetric this F algebra over L is
called thé »:ﬂ§¥l algebra over (L,F).
If F is symmetric this F algebra over L is called
the'Clifford/algebra over (I, F).
We then remark the following specified properties:
Scholium
If F is éymmetric (resp. antisymmetric), the:
ideal above is algebraically generated by the relations
xy +tyx = F(x,y)e
(resp. xy - yx = F(x,y)e )
It should be noted ﬁhét the definition of Clifford
82

algebra is the same as that given by Chevalley in terms

of the associated guadratic form 4F(x,x ).
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For M<vspL we shall denote.by F-Weyl Alg(M)
and F-Cliff Alg (M) the Weyl and Clifford algebras
genefated by M (with e of courée adjoined). Almost always
the prefix F specifying the form will be dropped for what

form it is w1ll be obV1ous from the context..

It'is well known that the commutation relations
defining a Weyl algebra imply that any faithful representation
of it as say self adjoint, operators in a Hilbert space
(e going onto the unit operator)means that at least some
of the operators be unbounded and so not everywherev
defined. The trick of Weyl was to unitarize the édmmutatibn
: relations.to bounded:. operétors_and so we shall define a
Weyl system (a special'fOrm of antisymmetric canonical
- process with continuity)ﬁj ’ |

Definition

Let L be a topological vector.space
Let A be a néndegenerate antisymmetric bilinear fofm
on L.
" A Weyl system over (L,A) is a mapping W to uﬁitary
" operators in a Hilbert épage H such that
(i) x - W(x) : L—> U Opr H N
is continuous on every finite dimensional subspace
of L with.respect to the weak topology on OprH.
(ii) ¥x,y€L |
Wx)W(y) = ei/2 Alx,y) W(x+y)
Two Weyl systems will be said to be unitarily equi-
valent if there is aiunitary operator intertwihing

them in the sense - UeUlprx (H; ,Hp)



II-1 o 85

such that UW; = W,U

In the case that L, is finite dimeﬁsionél,'the theorem
of Stone and von Neumann says that any Weyl system is
- unitarily equivalent to the direct sum of copies of a
standard Weyl system, thatvgiven most frequently in the

Schrodinger representation.

In the casé'of_infinite dimensionale ﬁhé'situation
is completeiy differentfxgln fact a Weyl system need not
exist for élthough most of the.following‘construction'
can in genera; be carried out, the extra assumption is
put in specifically‘to be sufficient to ensure continuity.
It is'pfobably not necessary. -We have then the following
existence theorem :

THEOREM
Let L be a Hilbert space with inner product
<x|y>. Let A(x,y) = Im<xJy>. Then there‘
exists'a Weyl system over L,A.
giggﬁ (Sketch)
- Every vector xilL lies in a finite dimensional
subspace of L on which A is nondegenerate. On such

a subspace by the Stone von Neumann theories there

may be built an essentially (i.e. up to equivalence

for the category) unique irreducible Weyl systeﬁ.

With this Weyl system associated with the subspace there

is associated the C* algebra it generates. The set

of finite'dimeﬁsional subspaces of L is directed

with respect to inclusion, i.e. given any two such
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subspéces there is a tﬂird which includes them
(N4+N2:>N1,N2). The inclusioh 6f'sgbspaces induces
inclusive injections of the C* algebras 6ver them.
The inclusions of C* algebras satisfy the usual
cocycle forms of compatibility condition and so
'oneAmay»form the inductive limit of this directed
- system of C* algebras and maps satisfying the Wéyl

relations. 'The result. . is a C* algebra 2 ‘with a

map W from L into it satisfying the Weyl relationms.

However, it is by no means clear that
X W(x) : L—~ A
is~continuou§ with respect to the wéék operator
topology of one of £he Hilbert spaces on whichv

g, may be faithfully represented.

In finiShing this section it might be useful to stéte
that there are mény known realizations of these canonical
relations. In the case of those associated to a 'lack of
interaction' in addition to the Fock or particle number

representation, we have the Real wave or renormalized
L

—

Schrodinger representation which was used in Part I to diag-
onalize the interaction, and the lesser known complex waﬁe
represencation that diagonalizes the field operators. All
these have their uses. For fermi systems there is also a
similar exiétence theorem for clifford algebras, but not much

is known of special representations.
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§2 - ' A PROBLEM OF INTERACTIONS

We have beeh considering the canoniéal commutation
relations that we would wish our fields to have; that ié
we haVe been looking at the quantum basis for a field
theory. However as yet there has not been any mention
of dynamics or a fiéid equation. We restrict ourseives
now to boson (Weyl) systems for this section although

the 'abstract Wick ordering' theorem of the next will

be demonstrated for both extremes of statistics at onece.

Suppose then that we have é field equation for a
relativistic self-interacting boson system of the
simplest type _ o

(CI+ m®)e = 2P .

As a classical equation this nonlinear partial
differential equation has only recently been satisfactorily
treated§4showing the existence of a global weak solution
of the Cauchy problem, for fairly general initial daéa,
wit@/p an odd integer for positivity of the energy, (and
‘A;;,> 0) . Letting p become 2p - 1 with p a positive
.integer, we have our problem of Part I, if only it were
clear what was the meaning of ¢p. It should be the
power of a field ¢, which if not an operator valued

distribution is trivial, and it is well known that

multiplication of distributions is not admissible.
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J

We have then to ascribe a meaning to a power of a Weyl

system in such a way that the above equation is satisfied.

The ﬁsual Wick ordering p;ovides a'meaning for
powers of free fields and is expressed in Fock space
terms; by Haag's theorem use of this representation
implies that any translatioh inVarian£ interaction
Hamiltonian leaves the vacuum invariant so the:intér—
action is trivial. However, if the field equation is
- to be understood as holding for fields with non-trivial
interaction (such as (p + l)"lI¢ P+ lix)ax) then we
‘must have a meaning for such éowers independent of the
form of the representation of the Weyl relations. It is
“to produce such that the abstract Wick ordering followiﬂg
is developed. Given a functional on the abstract Weyl
algebra (perhaﬁé'defining a represéntation) a method.is
given, (or at least its existence shown) for changing
this functional_td’one with more desirable properties.
These properties are abstractions of those of the change
in vacuum expectation values (which are onlyvthe moments
of-d functional) associated with normal ordering such as
_ vanishing of the'expectation values of powers. The free
field functional has moments only up to order two (n-point
functions vanish for n > 2) but the general theorem permits
the definitionAof a normal order relative to any functional

(e.g. a non-free one). It may be seen then that such an
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abstract formulation (if not necessary fo% any given
proﬁlem-might be solvable by soPhisticatedbapéroximation
by perturbations of free field sjstems) is véry satisfying
- to have, and required if a general theory of guantized

fields is to include interactions.

The power of the field which is attained has the
desirable properties ;

(i) the binqmial expansion should be appiicable to

(6 + £)™ and should be the translate by £ of o™
'.(ii) as a normalization vaéuum expeétation should vanish

and is constructed expressly to be so. The interaction
formed from this is what is called by Segal a quantizedA
.differéﬁtial forgs(this in fact is just a transcription |
of Q-differential form as opposed to C-differential fqrms
in the conventional terminology of Dirac). It is ’

determined by and determines the time evolution given by

the commutation form of the Heisenberg eguation of motidn,
-1 & b(x,t) = |H,¢(x t)l'
at ! ! [ .(

where

L
—

H=Ho +’HI

This is in differential form, a condition on the time
evolution automorphism; as a differential, a generator
of an automorphism group, ad H is a derivation of the

global field algebra.86

Segal has continued his systematics far and given



much moré indication of his general methods; but it is
1engthy‘and incomplete and we shall not go further here
#han to present an alfernative proofvof the éeneralized
Wiqk renormalization theorem, which is given in Hhis
article in Topology with minor error;_sepaiately for
Weyl and Clifford systems. .After that we shall show the
‘relation of Part I's definition to that in Segal's

theory.
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§3 THE GENERAL NORMAL ORDERING 'I‘HEOREI-/l8 5

" This approach to field: theory involves vacuﬁm
expectation values and other linear functionals on
certain F~algébrés E over a vector space L. The F-

. algebras E are graded and have defined on them a degreé
in which the element O has conventionally the degree
~ ©, and a general element has the deg;ée of the
homogeneous compohent of highest degree. There are
fhen the propertiés . |
(i) deg (u + v) < max(deg u, deg v)
(ii) deg (u v) < deg u + 'deg v
(iii) deg u = 0 if and only if there is a A

in C* such that " u = e

The first problem of renormalization is in a sense
that there are nétura; linear functionals ® defined on
parts of E but not extendable to all of it. Further
‘may giVe undesirablé answers which are finite; it
should be noted that the statement above about extend—
abi;ity is only another way of saying that the values
on some elements would be infinite coﬁtrary to the
definition of a functional. It is often desirable
to prodﬁce a linear functional w, such that

Cwole) =1 .
This is the problem of Wick ordering to get rid of

-trivial vacuum divergences.

We shall deal in the following theorem with the

possibility of taking one functional into another by a
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so called renormalization map, for the two simple
cases of a Weyl and a Clifford (skew-symmetric and
symmetric) algebra. First, in order to carry both °

types at once, we make the appropriate definitions.

DEFINITION:

If u in E is homogeneoué of a given
degree,then the paritfzof u, ,denoteci (-l)u, will be
*]1 according as the involution |

z > -z on L induces. u * *u.
We defined then a bracket operafion for'élements u
of a definite parity by
'{u,é} = uz - (-1)%u
and exténding by linearity to an operétion on all
of E

U {e,z)}

>

[
It

In general one defines

{u,v} = uv 4 (-1)(deg u)‘deg V) u

.In order to combinencalculation for W(L) and
Cc(L) we consider the Weyl algebra as concentrated in
evéﬁ degrees only, i.e.

Ho(L) = €Mi(L) =0, W;(L) =1L, Ha(L) = L O L

and ColL) =€, Ci1(L) =L, Co(L) =L . L

Then we have

PROPOSITION

deg {u,z} < deg u

92



PROOF
Considering, without loss of generality, a decom—’
posable element u

u = ZyeooZ
n

{u,z} = z,...znz_.}.(-l)uzz,...zn
A-ulinduction process would settle the result by
repeated commutation if one could shew |

deg{zl,g}~< deg z,

- But
'{zl,Z} = F(z,,2)e
so the result is obvious.
We seek now a maﬁ carrying o to ®wg which is a linear
map R : E Q
such that}
. (i)'{RQ}z}_= R{u,z} for every u in E and for
every z in L

(i) ©(Rw) = wg (u)  for every u in E

We shall now sth that if L; the phése spacé, is
Iinfinite dimensional then such a map renormalizing a
state to a nice vacuum state, that is removing trivial
vacuum-vacuum divergences, is defined by only the above
properties:-

(ii) that it provides a carrying oﬁer of the first
state such that

(i) it commutes with the rightAadjoint action

"{+,2z} of L. We have the following
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THEOREM

Let i be infinite dimensional and Q either a
Weyl or a Clifford algebra, W(L) or C(L), over L. With
' the above conventions on their constructions and on the
definition of the bracket {,}, given a state w, on E
- such that | |

wle) # O
and a state wy, on E such that
| wole) = 1

then there exists a unique map renormalizing w to W

so that
(i) for ali u in Q'and for every z in L
"{Ru,z} = R{u,z}
& {ii) for all u in E . of even degree
wo (u) = w(Ru)
PROOF

To pro?e thié’we shall show firsﬁly that if such
a map does exist then it is unique, and then set about
constructing one. The construction, since the algebra
E is7in general infinite dimensional, piéced together
from finite dimensional parts as an inductive limit, wiil
~ involve restriction to finite dimensional subspaces
and the associated notion of tame function. But first
the uniqueness result as a simple algebraic lemma.
LEMIA

If such a renormalization map as in the



theorem exists, then it is uniqﬁé;. N
Proof |

The obvious prqof ;s by showing the
difference b'of two maps R and R' of the kind to
vanish. So, letting b'= R-R' suppose u to be-an
- element of minimal degree such that Du-# 0. . Thenﬁ
for every 2 in L V

"{Du,z} = {(R-R")u,z}

= D{ulz}..
-But . .
- deg{u,z} < deg u , so D{v,z} = C.
Then o ' '
'{Du,z} = 0 for every 2 in L

But - (Duz,) '
' .{Durzflzz} = {Du,z;}z, + (-1) 1Pz {Du,z,}

Where the expansion of the brackets holds since
| dég zizzj= deg z, + deg z, |
by the following sublemma:-
SUBLEMMA |
Let u,v,w'in E such thaf
deg vw = deg Vv + deg w
then
{u,vwd = {u,vd w4 (-1 (G0 W @eg Vg,
Proos |

uvw - (_1)(deg vw) (deg u)un

- {u,vw}
(_1fdeg u) (deg v)

uvy -
+ (_l)(deg u)(deg‘v)v

vaw

- (_lfdeg v + deg w)deg u

vwu

)(deg u) (deg v)

="{u,viwv + (-1 vi{iu,w}



So we have
{pu,v} =0 for all ving .
‘Thus Du = \e

w(le) = Aw(e)

1l

So o (Du)
= w(R-R")u

= wRu - wR'u

i

Wol — Wou
=0,
Hence we have A = O, but this shoWs as required that
D vanishes always, i.e.

~ R = R',

Continuing the prOOf of the theorem; we must now construct
a map R, rénormalizing w.to wo We introduce the notion of
a tame function on L which is a function that depends only
on a finite number of variables or in otherwords is equal
to its restriction ﬁo a finite dimensional subspace; the
smallest such subspaces is called its support and is

. essentially given. The definition amouﬁts to this but

is technically more diﬁectly useful. This notion Of
tameness is much used in the theory of integration bver

infinite dimensional spaces.87

DEFINITION
A function ¢ on I, which has a fundamental
nondegenerate form F, will be called tame if there exists
a finite dimensibnal subspace N of L such that
- for every‘w in N F(z,w) + F(z',w) |

=> ¢(z) = ¢(z') .
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The N of minimal dimension such that this is so is

called the support of ¢.

LEMMA
- Let K be a tame map from L to E. Then there
ezisté u in L such that ’
K(z)5='{u,z} if and only if
for every z,z' in L {K(z),z'} + {K(z'),z} =0,
Proof |
' We shall first tackle the easy part:- necessity.
That the identity holds is an immediate consequence
of the (generalizea) Jacobi identity
Ma,z}l,2') + {{z,2'},u) + Hz',ud,2) = 0
for'{é(z‘} is a scalar and {u,el = O‘aiways.
That the»ma?ping be tamevféllows from the expansion
identity for brackets of monomials. For letting
u be in E(G) where G is a finite diﬁensional subspace
of L, to be é monoﬁial WiW2.eoo W with Wy in G.
Aﬁplying'the expansion formula we have

"{u,z} ='{W1...wr, z}

it

'{WJ,Z}W2...wr + (-l)r"lW1{Wz...wr,2}

n

r (r-1) (x-2).:. (r-k) :
k=l(—l) ) A\ ...Wk_l{wkpz}

X Wk+l...wr .

But then
Aw,z} = {w,z'}

for all w in G implies
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{u,z} ={u,z'}
“However the condition

ez} = lw,z')
is equivalent to

F(w,z) = F(w,z')
Therefore

fu,) = K

is tame.

To préve sufficiency we mﬁst’use some of the identities
of the generai commutator bracket caiculus, and a
property of nondegenerate bilinear forms on finite
dimensional subépaceé. First, however, wé must be
sure that any finite dimensional subspace Mof L (in
particular‘the supporting subspace for K) is extendable
to a finite diﬁénsional subspace M' on which F is
nondegenerate. A demonstration given by Segal in the

" skew case does hot hold. Therefore we include a full

elementary proof.
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Lemma on Bilinear Forms

Definition: A bilinear form F on a vector space V

is termed left nondegenerate if
F(o,y) ¢ V — B: x — F(x,y)

is the zero Amap on V iff y = 0, i.e. ¥x€V F(x,y) =
O .=>. y = 0 and similafly is termed right nondegenerate
if
F(y,*) = 0 => y = O. |
F is called (bilaterally) nondegenerate if it is both

right and leftbnondegenerate.

We remark that if V is finite dimensional, right

 and left nondegeneracy are equivalent, and further, that

symmetry or skewness of F also implies this equivalence.
We now prove avsimple but important extension lemmé for

nondegenerate forms.

Lemma.
Let F be a bilinear form on a.realrvector space
L, which is bilaterally nondegenerate, theh any finite
dimgnsional subspace N may be imbedded in a finite
dzﬁensional SubsPace N' on which F is nondegenerate.
. Proof i) If L is finite dimensional thewlemma is a
friviality.
| ii) Suppose then L to be of infinite diﬁension.
We proceed by induction on the dimension of N.
"a) Rdim. N =1 :- then N = Bn for some n€N
al) Suppose F(n,n) # O; then FIN is already
nondegeneréte.
a2) Suppose F(n,n) = 0; by the following

Sublemma there exists a'vegy such that both F(v,n)#0,

and F(n,v) # O. Let N' = Rn + Rv; now 'Ffl_\l_' is non-
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degeneréte for A,u¢R and ¥xEeN' F(Antuv,x) =0
" (whence)==> F(An+uv,n) =0 '
= AF(n,n) + UF(v,n)

(Whence)==> u=0 ‘ ;
.So VX&E' F(An,x)=0 follows, which implies

- P(An,v)=0, whence A=0. -
We insert here the required Sublemma.
Sublemma

 :Under the éonditions of thé lemma, it is
possible for any ngL to find a v€L such that both
F(n,v) # O. and F(V,n)'# 0
PROOF  We shall use 'reductio ad absurdum‘;_supéose
then thaﬁ there is a n for which‘it is not possible
~to fina such a v. By the right nondegénéracy of F,
‘there certainly exists a v such that F(n,v)#0; we v
are assuming then that for every such v, F(v,n)#0.
But also by thé}léft nondegeneracy of F, there exists a
w such that F(w,n)#o; we are again assuming that always/
for such w F(n,w)=0, otherwise we should have the
required element both left and right non-F-orthogonal
to_nT But now consider v+tw;
| F(n,v+w)

= F(n,‘v) + F(n,w)

%0
and F(v+w,n)

=F(v,n) + F(w,n)

# 0.
Thus (v+w) has ﬁhe réquired property in any case, in

contradiction to our hypothesis thatvthere was none such.

W7 sublemma
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Cbntinuing with the proof of the full Lemma, we
go bn to the induction step.

b)We make the hypothesis for induction, that any
subspace M of L of dimension less than h may be extended
to avfinite'dimensional M', a subspace of L on which F
is ndndegenerate.

'So let N be of dimension ﬁ;.then N is a one dimen—
sional extension of soﬁe (ﬁ-l) dimensignal subspéce M
of it; that is | N = mvSp{g,n}.
where n ¢ M and dim. M=ﬁ—l. By the induction hypothesis
thére is a finite dimensional M' contéining M such that :
ng' is nondegenerate (moral?). K

We continue by examining the two casés for location
of n. |

bl) ngM' :-If this be so M' is the sought extension
of N for N = Vsp {M‘,n}c_bg' 7

" b2) n Q'g' :=Then we may, without loss of generality,
take F(n,M")=0, by assuming the F projection of n onto
M' to have been already subtracted. We subdivide the
case b2) further:
b2') F(n,n) # O :-Let N' = M' 6 REn. .Note
that this is certainly an F orthogonal direct sum.
Then we have Frg' certaihly nondegenerate, by directness
of the sum and nondegeneracy on the summands.
b2") F(n,n) = 0:-By the sublemma, there is a

v in L such thatvboth F(n,v);# 0 # F(v,n). Again, without
loss of genérality, we may take F(V,g') = 0 for if this
‘were not so we could subtract the projection (left-F-

projection) of v on M'; this may not be all v for n is



right—F—orthogonal to M'.
- F is then not degenerate on N' = M' + En+Rv, for if
A/;UER and mEM' and for eirery XEN' |
' F(m+An4u§,x) =O '
then in parficular for every m'€ M'
| F(m+tAin+uv,m') = O
= F(m,m') +AF(n,m') +uF(v,m')
=F (m,m") |
and since FTM' is nondegenerate m'=0. Again we take the
particular case
F(An+uv,n)=0
’=AF(n,n) +uF (v,n)
=UF(v,n) |
whence ﬁQO; and proceeding similarly we find
FFKAn,v)=O
=AF (n,v)
whénce.A=O.
.Thus F is right nondegenerate on N' and since N' is
fiq}te dimensional by construction, F is (bilaterally)
n;;degenerate on N' an’extension of g.v
Thus having achieved the induction step b) and proved
én initial case a). we have shewn case ii) of the lemma

and the proof is ended.

]%z[ Lemma

102
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We now proceed with the main theme of the proofs,
and take K fo.be fame and such that for all z,z' in
L. o

{R(z),z'} + (-1)%{R(z'),z} =0

Then we may take the support of K without loss of
generality (i.e. we may trivially extend if required
by thé above) to be a finite dimensional subspace of
L, on which F is hot degenerate. Since this spacelis
- finite dimensional we may choose two bases of it

'(ei) and (fj) such that

F(fi,ej) = dij'

'{(fj)'is the FAcbntragredient basis to'(ei)uand is
given by |

g

£, =1

1] !Ie'
J . 1°1] 1

where gij is the transpose of the inverse of the matrix

of F in the basisl(ei).}

Having chosen these bases, suppose K(ei) = ki‘
Then we may take

= (-1)%i "
H, = (1% k£,

- I
and then
'{nj,ei} ='{kifiei} |
= (-1)%F (ke ey + (1), (£, 0]
= kyd, ’
for.from

{R(z),2') + (-1)%{k(z'),2} = O
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follows
'{K(ei),ej}‘+ (—l)e{K(ej);ei} = 0
= _q1\©&
= fki,ej}.+ (-1) {kj,ei}
and

. e Ty
{kj,ei} + (—l) {kj,ei} =0

" S0 we have

:’.ﬂ’{i,ej}" = O.‘
Thus '
| w = Jug |
| has the property that on a basis for the support qf
K, | S
K(-) ;'{u,-} = 0.
Therefoie
K(*) = {u,*}
by tameness.”

Having set ﬁp a commutator map on finite
dimensional subSééces we now continue to construct
the required additive renormalization N connecting
the states'w, and wo where g o(e) = 1, whigh has the
chdracteristic propérties

(1) '{N(u);z}'= N{u,z}

(i) o (N(W)) =wo(u)
for

-1)% = 41

i.e. for u of even degree.
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On the scalars Re we let

N(le) = —-————"‘j%é‘;)e ;

We'recdileét that .Q(éf # 0 by assumptiﬁn. -Then for
ﬁhese elements ofvdeéree;zero (i) and (ii) are'clearlj
satisfied. We proceed by iterative inddction. Assuming -
that an N has been defined for all u of degreeISmaller
than k, so that (i) and (ii) hold, we define a.function
- K. For w, an element of degree k, let
K(x) = N{W,Z} .
This is well defined for
deg{w,z}= deg. w-1<k.
But then K is tame for it depends on the commutator
with aﬁ element of bounded degree and further by (i)
’it satisfieé )

'{K(z),z'}ﬁ+ (-1)%{x(z"),z}

It

{N{w,z},2'} + (-1)Z8{{w,z'},z}

N({{w,z},2'} + (-1)%0{w,z'},2})

I

N (0)
=0
'so_that there is an element v such that
K(+) = (v,*) .
We méy normalize v by requiring
w (V) =g (w)
so that it is then uniquely given from w. We now
define |
N(w) =v .

A _ _ 8
The required properties (i) and (ii) may easily be verified.
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§4 - A SUCCESSION OF EXISTENCE THEOREMS

For the sake of necessary brevity; we shall adopt
the course of laying out only the definitions and
theorems of Segal's approach?gcommenting on theirl
resemblances to others' practices. (This might be

termed the 'Satz ohne Beweis' policy.)

We have eneountered thus far in §IT-1 operational
proéesses (OProc) and canonical operational précesses
(COProc), and quantum processes (QProc) and their
canonical counter parts (CQProc). We shall proceed to
restrict all canonical precesses coﬁsidered to be skew
systems, that is, Qe are considering only Weyl systems,
;and’ we shall continﬁe however to abbreviate skew quahtum

process to sQproc.

The most obvious lack in the structure at present
is any geometry of the uﬁderlying space. This is intro-
duced in the form of a covarianceegroup is a unitary
representation, that provides an automorphism group of
vthe/ﬁrocess by conjugetions. So we define a G-Covariant

Skew (Quantum) Process (GSQProc) as a quadruple ( ¥X,v.[T)

106

where (%X,v) is a skew quantum process over a topological

vector space L which carries a non-degenerate skew bilinear

form A, and V is a continuous linear representation of G

on L leaving A invariant and . I' is a continuous unitary
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répresentation of G in K such that
(i) fpr every a in G F(a)v’=kv.
(ii) for every a in G and for every x in L
F(a)¥ ()T (2)"L = ¥(v(a)x)
We see then that there are six constituents (aboﬁe fhe
common underlying algebra and topblOgy)'to this structufe
Q,A,G,g,v and their relations (connecting morphisms)
Vg~ Aut L (cont. hom.), (
¥ : L > SAOpr K (cont.lin.)
and T : G + UOpr K (cont. hom.); satisfying specific
relations. L will be the space of test functions for both
the field and itsvconjugate. In fact the natural form
that tﬁié will always occur in is with
L =M6 M
where M is a locally convex topological vector space,
M* its dual, and U is a continuous représentatign of G on
.ﬁ and we fdrm A and V byv | ,H o “ 2
Alx © £, x' © £') = £'x - fx' | |
v(a) = U(a) ® U(a)*™ L
For/é G-covariant skew quéntum process the usual relations
on (¥,K,v,I') are satisfied. One will say (Y¥,K,v,I') is
built on (M,G,U). VY splits into two ?arts;w M M and
¥ f M* which will be referred to as the Basic and the
Conjugate process respectively. One may view ¥ } M as a
field ¢, and the conjugate process as its conjugafe I;

covariance is then built in.
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Such a system as (Y,K,v) is in part characterized by

the aséociated Generating Functional on K |
- x + <exp(i¥(x))v]|v> o

ihdeed if the process is cyclic

( K = Hilbsp {(¥(1L))"v}) )
that is the algebra generated by the fields (and conjugates)
when applied to the vacuum produces a dense set of K,
then a genefating functional defines a unitary equivalence
class of érocesses. The generating functional has a.‘ h
sequence of moﬁehts of which the second is the covariance
form C of the process

Clx,y) = <¥(x)v|¥(y)>
which is defined only on

{(x,Y) in X* : v is in Dom ¥(x) and Dom ¥(y)} .
A process is called Normal of Gaussian if there is a
'symmetric form Q on L such that

<exp(iW(x{)v|v> - exp(-0(x,x)/4)
'if a process is normal then V
C(x,y) = Q(x,y)

so that Q is a positive semi-definite. In physical
légéuage a normal process is a free system and is deter-
nined by C the two point function; actualiy as noted
aBOVe Y comprehends both the field and its conjugate.
The uniqueness of free field systems is here expressed
as "if there is a nprmal cyclic process over (L,A) with

covariance Q then it is unique."
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We have an important special-case; the Isbnormal
procesé, which is a cyclic process over a prehilbert
(unitary) Spacelg such that

Alx,y) = Im<x|y> and Q(x,y) = Re <ﬁ|y> .

The property peculiar to this type of process is that
there is a unique continuation of the representatidn
I of G to a representation of all automorphisms of L
;n K, which still stabilizes the vacuum andv'cévaries'
v ] o

We continue now to the case of G as a measure
preserving transformation group on a regﬁlar locally
compact measure space (§,m). If we‘have a positive
self-adjoint operator C in RL2 (M) we may definé

M = EHilbsp {Dom C}

with inner product

<x|y> = <Cx|Cy?z, .

M

“Then the regular'répresentation U, of G on RL2(S) is

0
given by

Uglg) & £(*) — £(g71) ¢ EL:(S) + BL2(S)
and -if it intertwines C

i.e. ’UOC = CU0

there is an unique continuous representation U of G as
orthogonal transformations on M such that U = Uy
where they are both defined. The state of affairs

above just described is an abstraction of that where
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§ is a Euclidean space, G the group ofAEuclideaﬁ motions, -
and C is a G—invariaﬁt'function_such as energy in mqmentum
spaée; There is.a unigue normal process (W,E,V,P) over
M,G, (iC) with a given covariance operator c? by a result
in the last paragraph. If one sets E to be the vacuum

expectation functional <.v|v>, ® = ¥[M and ¢ = ¥|M* then

2E(2(x) o (y)) = <Cx|cy>
& 2B(b () (y)) = <c x| Lys .
& 2E(®(x)d(y)) = i<x|y>

since the interchange @,i s= é,@ and.C:=C--1 induces
E(2(x)8(y)) 3= ~E(0(x)¥(y))

~ for since we have a Weyl\Syétem | |
o (x)d(y) - d(y)o(x) « i<x|y> .

This case may also be slightly reformulated as an

_ isonormal process with the enhanced covariance that

implies. First 1e£

¥Yi(e) = o(CThx) and ¥ (x) = d(cx)
this transformatibﬁ in the case that C-is

1 -1 .
4 or (-A 4m?) *

(k2 +m?)”
iggthe non-local one that transforms classical local-
ization into quantum localization, or as far as poSition
. is concerned the inverse of the Foldy-Wouthuysen
transformation‘taking Newton-Wigner localization to
classical. We now make.

H=M@u

into a complex space by the introduction of the map of
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order 4

2 2

j:xef » cCfeoc’x .

so that the inner product is .
<x0f [x'@f'> = <cXICx'>+<c"lx,c’1x'>+j(fx'-f'x) .
Thus.the real and imaginary parts'are of the form for.
' ~an isonorﬁal pfocess, and the ébéve Standard Normal
Précesé over M,G,C is the Isonormal Pfocess over H.
Any'free neutral écalar quaﬁtum field may be répresented
at a fixed time by a standard normal,p£0¢eSS built on a
Euclidean spaée, the Euclidean Qroup thefeonvwiﬁh
C=(cI-M)* withec>o0 .

We‘continue'by making a small modification of
const;ﬁétion in the previous paragraph, ﬁo take into
account equations of evolution with more general energy
operators B. We start with a Hilbert space H and a
positive self adjoint linear operator B on H with kernel
{0}, and a domain Q contained in which is invariant for 
E in the sense that

" (1) D <Dom BY
e (ii) 'B’g <D
(iii) (cos t B) D D
(iv) B Y(sin £ B) D D .
D is a domain on which the Duhamel form?é& solution of
the equation of motion belgw is defined :-
32 ¢ +B% =0 .
Thg normal process associated with the above equation
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relative to D is the isonormal prodess (Y,K,v,T') over

H with respect to C = B* where H - is the completion of

D X D with inner product (for u = (x,y))
S(u,u‘) = <B% xIB% x'> + <B;%y|B—%y'> p
and H is this space viewed as a cdmplex Hilbert space
With complex invoiution
| J i (x,y) > (-B'ly,Bx)
~and complex inner product
‘ | <u|uf> = S(u,u') + is(ju,u")
Then the time e&olution is
U : B> UQpr H : t > U(t)
where ’

. [x cos(t B)x + B “sin(t B)y
U(t) = [y] M [ ~Bsin(t B)x + cos(t B)y ] .

Y is then a Weyl system over H on K ; for the vacuum
" v in K, normalized 'so that ||v|| = 1 we have a cyclic

vector since

W*-alg {¥(x) : x in H} v is dense in K .
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Being an isonormal process (Y¥,K,v,T') one has the extension
e

of its T to a continuous homomorphism of thé unitary
operators of H to those of K, with
L(U) Y (x)T (U) "% = ¥ (ux)
& I'(U) v=yv

It is a remarkable fact that this whole structure is

determined to within equivalence by the condition that
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for all self adjoint A on H
dar(a) > o
where dI' (A) is the infinitesimal generatér of
I'(exp(i t &) ,
so dr is the differential of the representation I'. So
this spéctrum condition_provides-a sort of unigueness,
given a cyclic v and a one parameter group with a self
adjoint generatof which is non—negative. ﬁowe&er for
infinite dimensional g'none of
(1) irreducibility of W -algl® (x,t),®(y,t):x in D}
() Poincaré invariance
(iii) there is a'stationary v, cyclic for
- '{exp(i W(x,t)) : X inZQ}
suffice for a unigueness result.
'The connection of the above fbrmaliém.with the Fock
repreéentation is provided by recovery of creators as ﬁ
C(x) = 2 % (¥(x) - i ¥(Tx))
or rather the closure of_it'and the fact that if Px is
thé projection on mx then
— dP(Px) = C(x)C(x)*
and,v |
[c(x) ,C(y)] & <x|y> .
This is reasonably reminiscent of the usual formula for
the number operator given as a sum over a basis (xi) for
the test function space (or perhaps a completion of it in
energy norm) H :- |

N'=-Zi a*(x,)a(x,) .
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There is no claim here. that such an operator exists for
any basis at all or is basis independent if it doés; in
general it does not and we have only a sort of particular

state count. Really N = dI(I).

We proceed now to the current high point of Segal's

programme. We take as basis for our skéew quantum process,

i.e. as our classical system for instance a field, a €
Hilberﬁ space H and a positive self adjoint operator .
A > eI, with € > 0, in H. Then in the‘isohofmal process
(¥,K,v,T) ovér H we take ' o ~
ar(a) = H and dIr(r) = n .
We have then a ffee systemrwith classical driving term
A and H the Hamiltonian and N the nﬁmber operator. We;
have as.before for any vector x, |
ar(x) = clxIc*
and .
| I + dr (px)' = C* (x)C(x) .
-It is designed to consider the fields and powers on their
natural domains and so we define

-

- D (a) = (| {pom A"

ninH}cCH

gm(H)'= A {pom B" : n in N} <K .
We also require the ﬁotion of differentiability for a
map F between two topological vector spaces V and W;
F is said tq be continuously differentiable, or in
C (V,W), if for every x in V there is a linear map

F, in Lin (V,W) such’ that
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for all y in V 1lim ehl{F(x+ey) - F(x)}
e-+0

il
&
o]

and
FI(Y) X FXY

is continuous. Higher derivatives of c® of F are of
coufse given by iteration of the condition of being C?!
on the map '

DF : x » Fx : V > Lin (V,W)
and _ ' . :

DU ox - DR (x) : V + Sym Lin (VP 23

The:first result of interest is -

(x,u) » Y&y p_(a)xp_n "Dy, (H)
is a C map; this is a fairly delicate result in this
exactffdrmulatioﬁ. The final climax is the following

theorem that applies to the situation of Glimm and Jaffe.

THEOREM93

'*'Suppose'G‘is a:locally compact abelian group
and Baa<sélf adjeint operator on RL:(G) which is

translation invariant. Lét b be the spectral function

of B on G* (the Fourier transform of B). Suppose

b1 is in LP(G*) for all p (including «) greater
’//’than some p'. Let ((¢,$),K,V,T) be the normal
symmetric oﬁ (L,(G),G,B) and H = 4dr(n).
then

for every n in N and for every £ in'Ll(G), there is a
continuous sesquilinear form ¢(n)(f) on D_H, which
is D _H endowed with its inductive limit topology

as M-ind.lim. Dom (H?) where Dom (H®) has the
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festriction topology as a subset of K, such thaf
(i) ¢(n)(°)l: £ > ¢(n) is linear and
(£:%,¥) > ¢7 (£) (%,¥) 111 (G) XD, (H) XD, (H) + €
- is continuous. |
& for all f in I, (G) and x & y in D H
(11) 619 (5) x,y) = ([f)<xly>
gt ~ and ¢(n)(f)(v,v)’= o

N

(iii) for all g in D, (B)
'._‘E(n) (£) (1?9 5,2 (D gy = 6 ) (£) (x,y)

and

) () (1 (9)y 10 (a)

=10 o e (g™) (x,y) .

Further the'¢(n)(f) are uniquely determined by the

above conditions.

) This theorem asserts the éxisteﬁce of well defined
objects.¢(n) which "are 'distributions' on LJ(G) with
values sesquilinear forms on the c vectors of the
Hamiltonianithat behave algebraically like powers of the’
free field. There is no restriction on dimension of G and
it might have compact parts (e.g. be avtorus) or even,
bé/éisérete. The condition is on the Fourier transform of
the energy operaﬁor. Further there is a corollary asserting
tﬁe existence of powers ¢(n>(a) at a point a of G such
that

p (@) 4> 6™ (ay: ¢ » Sq Lin Eggg D _H
is continuous. This sort of theorem will go over to the

interacting case of a non-normal process though point powers
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¢(n)

will not.exist and will not be defined on Lji (G)

but.on Li(GXR). It might be said in criticism that the
existence of Wick powers for free fields has been known

to physicists for some £ime, but the value of the theorem
is that it is patently mathematically strong and'may be
widely applied and, further, that it should generalize

to the interacting results. As previously noted the
physical fields (cértainly not in Fock space therefore)

are supposed to satisfy say,

and so a meaning for powers in general is required, though

this does not provide it.

Thére are further interesting corollaries to this
theorem which indicate when the above form ¢(n)(f) is
defined by an operator which is not of trivial domain.

If I is a sesquilinear form on D _H, there is associated

D,

to F an operator TF

from D (H) to its anti—dual*gw(H),
defined by

<z % |y> = F(x,y) .

P F
We note we have a Gel'fand trinity

D, (H) € K c *p_ (H)

and define Tﬁ to be

1 = 3 c s . . .
T'g TFF'{X in D (H) : Ty x is in K}

and call T‘F the operator associated to F in K. There

are then the following results

a) if T'_ is densely defined and invariant with

F
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b)

c)

a)

e)

£)
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respect to all el¢(g) it is essentially normal

T', is densely defined it 19 (9)

with v in its domain

invariant and

¢n(f) exists (as an operator) if b_'l is in LP(G)

"for all p > 1 and for all y in b H

16 ™ (£) x,0) | < est |]yl]
for the conditions of c¢) ¢(n)(f) for real £ is

i¢(g)

essentially self adjoint on any dense e

invariant subspace

the conclusion of d) holds for G = El and
b(k) = (k? + m?)” |

Dom T = {0} for 6 = E® and n > 1 and

¢(,n).
bk) = (k]2 + n®)¥
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§5 RELATION WITH PART I
and

CONCLUSION

What has been the relation of part II and particﬁlafly
of the theorem at the end of II-4 to the work of Glimm
and Jaffe? Briefly it is that the final theorem assures -
one of the existence of proper sesquilinear form operators
such as ¢*(f) or ¢ZP(£) on a giVen domain and corollary
e)‘éhOWS‘them essentially self adjoint on D (H) for real
(f). Corollary f£f) agrees that for tﬁeories out of two

dimensional space-time there is no hope of operators

representing field powers.

We shall end by showing that by this last theorem
/ .
in their special case Glimm and Jaffe, after a slight

.'hatural.extension of definition, agree with Segal over J
definition of ¢o.
Glimm and Jaffe are in the case G = R',
-~ .
~ b(k) = (k2 + m?)%,
and K = E = OF_ where E = SLz(m?).
H should by rights be L (R!) and then T which by the
isonormality of the process extends to
U = UOpr L. (R')
94

is the sum of tensor products of U representing itselfs

r= o {u ®™ : n in W}
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The vacuum v = (1,0,0,.....) and H = dT'(B) is the
infinitesimal generator of exp(i t T'(-A + mz)%). But
the action of-this group is exactly that of the well .
beloved Ho¢ for E is being interpretéd as

gf{SLn(G*n) : n in N} .

D, (H) is then the Do of part I for this is the known
domain of C vectors of‘Ho.and they expressly put the
inductive limit topology on it. The only obviéus differ-
ence ié that the'sesquilinear fofms ¢n(f), and operators
associated by coroilary e), are defined by Segal for

Li (R) and by Glimm and Jaffe only for S(R*), but they
smeér the fields ¢ with g(mz). However, they agree that-
their results hold in the case of space diﬁension 1 for
émearing only with S(R) and use é(m?) on general grounds
with a.vieW to hi§her.dimensions and the practice of
Wightman. However, the fact that fheirAWeyl system is
continuous and S is dense in L' suffices to extend theif
fields. All of properties i) ~ iii) are then standard
verifications and we may.conclude that ¢n in fwo space-

time dimensions has a meaning agreed upon by both parties.

As to fhe localization result, Segal has this too in
stronger form. With R(0) the W*~élgebra of an open set
as before he can show (in Glimm Jaffe terminology) that
if £ is in In /) L. and supp f‘=vg is measurable then for
any neighbourhood N of O

b)) e R ®+m T
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Ségal has an elaborate but general theory; Glimm
and Jaffe have a few specific models derived by great
ingenuity. It ié interesting that there is so muqh
similar in their work when interpretive translation
has been carried out. I am of the opinion that both
paths must be made to convérge for there is powerful
"~ ¢ technique and mathemétical perspicacity underlying
Segal's work and directing physical intuition and gréat

ingenuity behind that of Glimm and Jaffe.
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APPENDIX

A NATVE POTTED EISTORY 
of
SOME OF THE RI?OR
in

QUANTUM FIELD THEORY
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The submitted title of this essay, "The Mathematical
Foundations of Quantum Field Theory" is much too.grand"
to be other than a subject classification and is in fact

born of academic needs. The' subject matter here treated

a
4
2

is part of the recent attempts.to secure, on a rigorous
basis in mathematically well defined practice, the

paradigms of the quantum field theory of physics, a study

et seemingly past its acme, quantum electrodynamics. It

is the successes_of quantum electrodynamics in producing,
theoretical numbers in very good agreement’with experi-
mental values, on the basis of most 1ngenious ad hoc
prescriptions of little or no definite mathematical
validity, that have formed the background of lore and hope,'
that has sustained the use of the language of field theory
in the phySics of high energies and elementary particles.

It should be added that the techniques of Q.F.T. (mquantum
field theory) mostly.those referred to under the heading

of Second Quantization (which it is not) have'been.imported,
with” great success, into Many-Body Theory and Statistical
Mechanics.. |

cf. for instance L. Van Hove, N.M. Hugenholtz,
L.P.Howland, Quantum Theory of Many Particle
Systems, Benjamin Inc. New York, 1961 (a
lecture note and reprint volume) pp.249; and

much recent work especially Russian, e.gq. that
of Abrikosov, and Gorkov; and that of D. Ruelle,
Rigorous Results in Statistical Mechanics,
Benjamin, New York, 1969-; A. Wightman, -
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Lectures on Statlstlcal Mechanlcs I,,mlmeographed

notes’ by G. Svetllchny, & A.Z. Caprl, ‘Princeton
1966- ;Lectures on Statistical Mechanics II,

" notes by J.E. Marden, Princeton 1967.

These successes, which do not seem to have successors,
are remarkable for the ioosenéss of definition of the
methods used. It is coﬁmonplace.to"wonder at the handling
with such skill of the arithmetic of infinite quantities by
the'early and productive workers; it is often'ignored that
there were many other questlonable manoevers resorted to
in attemptlng to 'renormallze the perturbatlon series’
it is also even true that some modern approaches that
eschew the pitfalls of pérturbation theory also ignore
the décaﬁcies of mathematics.

cf. objections to Regge polology in: Hung Cheng &
Tai Tsiﬁ Wu, A symptotic Form of the S Matrix for
large Angular Momentum in the left Half Plane, Phys.
Rev. 144 1966, 1232-36. . |
Hung Cheng, Representation of the S Matrix by Regge
parameters,Phys. Rev. 144, 1966, 1237-34.

Hung Cheng & Tai Tsin Wu, High Energy Collision

Processes in Quantum Electrodynamics I, Harvard
__.~ Physics Preprint, pp. 61.

High Energy Elastic Scattering in Q.E.D., Phys. Rev.

Lett. 22, 1969 666-669.

For some time now there has been mathematical interest
in securing the foundations of both guantum mechanics and
quantum field theory, the latter with or without relativity.

J. von Neumann's book

In English translation: Mathematical Foundations of

Quantum Mechanics, Investigations in Physics, Study 2
Princeton U.P., 1955 pp.445.
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is generally (unfortuﬁately, probably erroneously)
considered to have made clear the'position 6f quahfum
mechanics, and later work concentrated on the quantum theory
of fields, especially on the aspects associated with

the physically interesting relativistic‘quantum field

théory (R.Q.F.T.-i.e. incorporating Einsteinian special
relativity). Some of the earliest considerations were

those of K.0. Friedrichs,

(collected in the book Mathematical Aspects of

Quantum Theory 9£ Fields, Interscience New York
1953; being papers published in Compr.PAM IV 1951
161-224;Vv 1952, 1-56, 349-41;VI 1953 1-72.

I.E. Segal and his student J.M. Cook, L. van .Hove and
among concerned physicists those of R. Haag, and AiS.
Wightman. Segal, who has worked on these matters for
many years, and remains in the forefront, startedkin
1947 with Postulates for general quantum mechanics (Ann.
of Math. (2) 48, 1947, 930-948) and published on the
subject in 1956 (2), 1957, 1958, 1959(2) and with
increasing fiequency latér. Expositions of his general
vié&é are contained in his 1960 lectures to an American
.Mathematical Society Summer Semiﬁar on Applied Mathematics
(published as Mathematical Problems of Relativistic
Physics, pp.ll2AMS, Lect in Ppp 1 Math II, Providence,
1963) and his lecture at the conference in honour of
" Marshall H. Star, Chicago, May 1968 (MIT math preprint
pp-43). His student J.M.-Cook (in The Mathematics of
Second Quantization, Trans. Amer.Math.Soc. 74 1953,

222-245) put on a sound basis that standard tool, Fock
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space introduced in 1932 by V. Fock

(Ronfigurationsraum und zweite Quanteilung, Z%.Physik
715 622-647, 76 952) .
Van Hove started on the mathematical probiems brought up

by physics in o
Representations irreductibles d'un groupe de lie
“infini '

and continued with the seminal papers

Les difficulte de divergence pour un modele
particulier de champ quantifie PhYsien 18 145-159

and
Energy Corrections and Persistent Perturbation
Effects in Continuous Spectra I Physien 21 1955 901-23
IT Physien 22 1956 343-54

R. Haag set out in his monograph

-

Qn'Quantum Field Theories, pp.37 _ ‘
Mat.-Fys Medd. Danske Vid Selsk 24 1953 number 12

a careful approach to foundational questions and

emphasized the phenomenon that now goes by the naﬁe of
Haag's theorem, though it appears in Friédrich's book
(p-139 ££f). He has since become very active as a proponent
of gpe approach to RQFT through aigebras (C* or W*) of
,laggl observables; it is generally ignored that this
approach had been previously suggested by Segal. Wightman,
who early in his incursion into mathematicai physics
effectively discovered Mackey's Imprimitivity Theorem,

set up an approach based on an axiom system he adopted,
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beginning in _

Quantum Field Theory in terms of vacuum expectation

values Phys Rev (2) 91 1953 1551-1660 .
-This became a whole field of investigation, called
Axiomatic Field Theory of which the first full development
- was published in . _
R.F.Streater & A.S.Wightman, PCT,Spin, Statistics
and All That, pp.18l, Benjamin, New York, 1964.

A good treétment‘of this is also to be found in
R.Jost, General Theory of Quantized Fields, pp 157
Lectures in Applied'Math. vol., IV, AMS Providence 1965,

notes from lectures given at the same time as Segal's.
Wightman's and Jost's students who ha?e been very aetive.
in recent developments include H.Araki, D.Ruelle, K.ﬁepp,
A.Jaffe, D.Lanford, J.Cannon, K.Osterwalder. Prominent .
'‘outsiders' are R.F.Streater, H.Epstein,V.Glaeeer, and

A.Martin.

Recently, Axiomatic Field Theory has suffered a
dedline'dﬁe to tﬁe persistent lack of any example
verifying the axioms of Wightman (or even slightly
weakened forms) which could bergiven a physical inter-
préfetion as describing any system with'sensible interaction.
The constructive approach--take a heuristic field theory
.and'try to make a simile of it work——, which was long ago
the view of Segal, was then given new life by Wightman
and others of his school and has led to considerable hope
of setting up a rigorous non-trivial field theory.

Leaders in this recent onrush have beeh the mathematicians
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James Glimm and A.Jaffe, a former student of Wightman.
Recent independent work of Segal is-fairly close in results,
though neither iﬁ spirit nor in fofm and has led to

' continued controversy over who is adequately rigorous.
There are lectures of Wightman (Cargese.1964) at the

start of this resurgence that point the way plain.

Recent referencesuénd réviews that should have shaped

this presentatioh are the théses of A.Jaffe, O;E.ﬁanford,
"& J. Cannon, notes of K.Osterwalder on a summer 1968 
course of A.Jaffe @ E.T.H.,Zurich, a course of A;Jaffe

at Harvard 1968/69, a course of K.Hepp at LfEcolé
Polytechnique 1968/69, a review of O.E.Lanford at
Strasbourg 1968 and the lectures at the 1968 Varenna -
Summer School on‘local Quantunm Theory by J.Glimm, A.Jaffe,

K.Symanzik and M.Guenin.
The Bibliography as a whole should be considered as

the reference for this appendix. . ‘ -
] ) \
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NOTES.:

Reférénces to the bibliogfaphy will be of the form

' Author (s) followed by the last two digits of the pnnlic4
| ation year and.possibly a small roman letter distinguishing
works of the saﬁe year (this is unambiguous for no listed
item predates 1870); underlining of the author will

" signify a book and a final + that the work iS‘listed in

the addendumn.

1. Horace, Ars Poetica 139; Nelsgn'65a
2. - Appendix; rapporteur's talk of Hepp ét Vienna 1967,
Wightman 65,68 | o |
3. ‘Jaffe 67,69a,68+, Glimm 67,67a,68,68a,68b,69,6%a -
Glimm & Jaffe 68+,68a+,69a+,69b+,69c+,69,69a
Jaffe & Powers 68, Jaffe,Lanford'& Wightman 68
'Rosen 69, Simon 69
Prosser 63 seems spurious.
4.  Weinless 69
Segal 67a,68,68a,§8b,680,69,69a
5. Wightman 65+

6. Glimm67,68; Hepp 69,6%a+,69b+; Friedrichs 65
7.  Guenin 67+,66,69 |

8. Streater & Wightman 64

9. Haag & Kastler 64; Haag & Swieca 65
10.. Glimm'& Jaffe 68a+,»Jaffe 68+

11, Glimm & Jaffe 69¢c c¢f. Guenin §7+‘
12, Glimm & Jaffe 69b

- 13. Segal 67a



14,
15.
16.
17.

18.

19.

20.

21.

22.

23.

24,
-

25.

26.

27.
28,
29.
30.
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Segal all entries with ‘physical' titles

Segal 69,69a,69b |

Segal all entries esp. 65b,68,68c

ﬁnder Glimm, Jaffe,Hepp,Simon,Eckmann,Lahford,
Hdegh-Krohn

Private communications from both protagonists;

~Segal 69a final remarks

Rosen 69 had started this

I thank R.F. Streater and I.F. Wildq&or attracting

my attention to the possible use of the theoreﬁs of
sakai 57+& Dell-Antonion 67+, after the fashion of

Guenin 67+, which they céme acréss in the course of

their work on perturbations by local densities, cf.

. Guenin 67+ & forthcoming papers of theirs.

Segal 68

It would seem from some of Segal's work, such as

56 and 56a,; that the analysis in both casés should

"be unified, not just the algebra.

. Palais 65, Maurin 67

In this regard see the’approach of a number theorist
in Weil 64. |

Schwart,L. 57, Simon 69a

pedantic clarity is almost immediately dispensed with
a coining of Friedricks, I believe
Glimm & Jaffe 69%a+

Friedricks 65 or Glimm 67

consider the production of a Klein bottle in two

dimensions and other identification quotients.
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31. Glimm 67,68
32. Guenin 66,67+
33. Segal 67a _
34. unfortunately we do not eventually have time to
35. . Glimm 68b
36, Nelson 65a,65b

-37. Kac 54;Wax 64; Gross 66,67;Feldman 62

38. . Glimm & Jaffe 69a

39. as in probability theory;Nelson 65a;Kahane 68+
40. Kahane 68+, Nelson 67 |

41. Glimm 68b |

42. Bogoliubov and Shirkov 59

43. Segal 63; Rosen 69 & ref. to Bargmann therein &
44, " Yosida 65, Nelson 67 |
45.  Doob

46. Simon 6%a

47. Kac 59; Nelson 66

48. Bourbaki 58,60

49, Rosen 69

50. Glimm 69b, Rosen 69 | .
51. Methods froﬁ functionai anaiysis herein may be found
~ in Nelson 65 or Yosida 65 |

52. note 47; Martin & Segal 64

53. 'in fact.uniform:—Rosen 69 & Glimm 68b govern wha£
foliows

54. Glimm & Jaffe 69b+

55. Nelson 59, Maurin 67, Jaffe 68+

56. Araki 64a

57. -Glimm & Jaffe 69%a
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58. Glimm & Jaffe 6%a+ whose estimates will continually
be used in the sequel
59, for the details are long cf. the preprints and notes.

60. Jaffe 65+,Maurin 67, Kreyn 67, Riesz-Nagy 65

61. Guenin 66 67+;Glimm & Jaffe 69b+, Jaffe 69,69a

62. Bourbakl—Alaoglu theorem e. g. Guenin 68+

'63. Guenin 67+

| 64. Sakai 57, Guenin 68+

65. Dell'Antonio 67+ |

66: Dixmier 69,Guenin 68+,67+, Schwartz J.T. 67

67. Araki 64b after 64a,64,63

68. Griffin 55 from 54

69. Jaffe 69a | | 2
~70. Guenin 67+ |

71. ~Jost- The General Theory of Quantized Fields A.M.S.1965

72.  Riesz-Nagy 65, number 146 or ref. 74

73. Kreyn 67, chap V

74. Ruelle 69+

75. Glimm & Jaffe 69c; I am indebted to Dr. I.Halliday
for calling my attention to this during the recent
time when I have not been keeping up with journals.
?6; Hepp 69, 69%a+ ,

77. Segal passim but especially 68a,68b,69%a 4

78. Spanier 66+, de Rham 60

79. Segal 69, 6%a

80. Nelson 67, Nelson 66; Kakutani 68, Wiener 64, Kahane 68+



8l.
82,

83.

84.

85.

86.

87.
88.

89.
90.
ol.

92.

93.
94.
95.

96‘
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éegal 53

Chevalley 55,56
Segal.and'Ruellg in Lurcat 67
Segal 63a |

Segal 68

Segal 68c

~ Segal 63b,58,53,5la; Tarski 67

cf. N. Bowditch's remark on 'the C'est aisé & voir'

of Laplace-R.E.Moritz, Memorabilia Mathematica,no.985

Segal 59,59a,61,62,64,67a,68,69,69a

Segal 62v ’

Segal & Goodman 65

Segal 63,65,65a | o , o
Ségal‘69, Theorem 4.1 |

Mackey 63

'@ signifies affiliation, that commutation with all

unitaries in the commutant

Horace, Ars Poetica, 25
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