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ABSTRACT  

The work presented in this thesis is divided 

into two distinct parts. 

The first part deals with the theory of non-linear 

Lagrangians. Techniques are presented for cowouting 

S-matrix elements for non-polynomial scalar field 

Lagrangians with derivative interactions. To second 

order in the interaction Lagrangian it is shown that 

all the dependence arising from the derivative part is 

completely separated out as operators acting on integrals 

identical to those obtained in a non-derivative 

theory. The Fourier transforms of self-energy graphs 

for a class of non-local interaction Lagrangians are 

taken in the massless case. 	The on-mass-shell 

contributions are determined by the analytic continuation 

of the coefficients appearing in the series expansion of 

the Lagrangian. As special examples two Lagrangians 

which are iso-scalar analogues of chiral SU(2) x SU(2) 

Lagrangians are treated. The possible equivalence of 

on-mass-shell matrix elements for Lagrangians related 

by non-linear field transformations is discussed. The 

extension of these techniques for Lagrangiens with iso-

spin and hence for the chiral SU(2) x SU(2) Lagrangians 

is also presented. 

The second part is phenomenological. 	The absorption 

model is applied to photoproduction processes at inter- 

mediate energies assuming vector dominance. 	U(6,6) 

symmetry is used to uniquely determine the couplings of 

the exchanged pseudo-scalar and vector mesons. 
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An approximate extension of this model using 

phenomenological form factors to describe three 

particle final state reactions is given in the three 

papers included. 	The reactions considered are VC-1?-4.V41,-triz, 

Ntit  If*  ‘-‘ and NC"? 	NCIV" bar The first 

two of these papers were essentially :resented by 

Dr.J.L.Schonfelder in his thesis. 



PART I 

NON-LINEAR FIELD THEORY 

"It often happens that objectively the masses need a certain 

change." 

Chairman Ha° Tse-Tung 

"The United Front in Cultural Work" 

October 30th, 1944. 



TO CAROL 
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CHAPTER 1  

In this chapter a general review of non-linear 

field theory and of the formulation of chiral Lagrangians 

is given 

1) Introduction  

Lagrangians of interacting quantised fields were 

originally classified (1) into those of the first and 

those of the second kind. The first kind are renormalisable 

and the second kind unrenormalisable. A non-linear 

Lagrangian expressible as an infinite power series in 

the field variable 

L(c0 = 	( ve) 

60 

rto 

was therefore considered to be a mixture of the two 

kinds. 	The terms 	with r 164. are renormalisable 

whereas the terms with T>4. are not. 	As early as 1954 

in a much neglected paper Okubo (2)  showed, for the 

example of cr(c4) being an ex-Ionential of co 

that a non-linear Lagrangian could be renormalisable. 

The major step forward was not to treat the infinite 

series by normal perturbation methods. 	In 1962 the 
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problem of dealing with non-linear Lagrangians was 

revived by Efimov (3) and by Fradkin (4). 	Although 

it was stressed that finite results could be obtained 
. _ 
the work was considered of academic rather than of 

direct physical interest until only a few years ago. 

One of the recent advances of particle physics 

has been the formulation of chirally invariant Lagrangians(5)  

using non-linear realisations of the chiral group. These 

non-linear Lagrangians can be given a direct physical 

meaning. 	There has already been reasonable auccess 

in using the chiral Lagrangians by expanding them as 

a power series in clp and then evaluating the lowest 

order contributions (tree diagrams) (6) to the appropriate 

amplitudes. Clearly this can only be considered as 

a first step and one is next interested in evaluating 

the closed loop contributions and higher. 

In the following section a review is given of the 

formulation of some chiral SU(2) x SU(2) Lagrangians. 

These Lagrangians possess the algebraic complexities of 

containing derivatives of the field and, naturally, of 

involving iso-spin. 	The above-mentioned authors have 

restricted themselves to Lagrangians of the form given 

in (1.1). 	One of the main objectives of this work is 

to develop methods for dealing with the physical non- 

linear chiral Lagrangians. 	':hese techniques can then 

be used to evaluate the contributions to self-energies 



and scattering amplitudes. This will be dealt with in 

the thesis of Q.Shafi with whom I have collaborated for 

much of the work. Self-consistency relations will be 

given there which give rise to a finite prediction for 

the pion mass. 

For simplicity we first look at the situation for a 

non-polynomial Lagrangian given by equation (1.1) i.e. we 

neglect the derivative part and the iso-soin. 	This 	is  

sufficient to see the general features. 	We see that 

two coupling constants appear in equation (1.1). 	The 

coupling g is termed the major coupling constant and 

determines the order of any contribution. 	To each order 

in g there are an infinite number of terms to all orders 

in f. 	Thus the second order vacuum contributions can 

be represented diagramatically as the infinite sum. 

> 	- - - - - ctiAcc• 	Ct4Ccr2 	ci4k1tg?" 	c(A1C 132 	citOgt1 	(t) kl1  

i.e. the r'th diagram corresponds to there being a 

Lagrangian 	c(c) r tiz)l- 	at each vertex. 	The number 

of r'th order diagrams is rl and hence we must expect the 

expansion to be a divergent series. 	Also from conventional 

held theory we know that each diagram for l',>14 is 

unrenormalisable in the usual sense of the word. 	The 

ultraviolet divergences therefore get progressively worse 

in the perturbation expansion. 
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The crucial point is that although each term in 

the series is divergent a summation can be performed 

which either eliminates or at least greatly reduces 

the number of ultraviolet infinities. Summation 

methods for divergent series always give rise to the 

problem of uniqueness, however it has been shown that 

the self-energy diagrams obtained this way do satisfy 

the requirements of analyticity and Landau-Cutkosky 

Unitarity (3). 

Once the summation has been performed we represent 

the diagramatic divergent series above by just one 

superpropagator, i.e. by 

crwfb 	gekviz) 

The obvious next step would be to perform the summation 

in the major coupling constant g• 
	So far as the author 

is aware this is still a very open problem. 

The techniques for dealing with non-polynomial 

Lagrangians yield matrix elements in x-space. A review 

of the methods introduced by Efimov and Fradkin is given 

in the following chapter. 	These techniques are then 

extended fcr the case of Lagrangians containing derivatives 

of the scalar field. 	Although p-space is of more physical 

interest, x-space is useful for studying the overall ultra- 

violet divergences which may occur. 	This is also looked 

at in chapter 2. 
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- The Fourier transforms of the second order self-

energy diagrams are taken in chapter 3 assuming zero 

mass fields. A comparison of the on-mass-shell self-

energy contributions is then made for two particular 

Lagrangians. 

The final chapter deals with extending the techniques 

to include iso-spin and thus allowing the chiral Lagrangians 

to be treated. 

A need for extending the techniques for dealing 

with non-linear Lagrangians also arises from weak and 

gravitational interaction theories. 	Einstein's 

gravitational Lagrangian is 

(1.2) 

with the Christoffel symbol 

= 	(Ix' ( $N. 	+ %vs 	%),N) 

\4, is the gravitational constant and Cr acitqt.v. . 
The covariant components 9wv  can be given as a ratio of 

two polynomials in the contravariant coaconents 

thus giving rise to non-linearity in the field variable. 

Of more interest is the coupling of the gravitational 

field to other physical fields where it seems likely that 

the gravitational constant K has the effect of being a 

cut-off parameter and thus suplresses infiniTAes quite 

naturally (7). 	For example, the electromagnetic interaction 

(1.3) 
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Lagrangian for the electron could be taken as 

1= elOxtv 	 (1'.4) 

The second order self-energy for the electron is then 

diagramatically given by 

where 	01-Z,7,11- 2q.- 	is the graviton superpropagator. 

The author is at present working on the evaluation of 

diagrams including gravitons. 	The electron's self-mass 

arising from the above diagram is 

(1.5) 

where a.= 	==, wtr VW4 and 	Ve.tv% ••• %CS-1%. The terms of 0(1) 

are indeed negligible and hence 

SuN 
cc% - 6 

Thus the inclusion of the gravitons as above yields a  

finite self-mass for the electron without the necessity  

of puttinT in a cut-off paremetcr.  

An example of :on-linearity arising in a weak 

Lagrangian is to consider an intermediate neutral vector 

meson W, interacting with quarks Q. 	In StUckelberg's 

representation (3)  04- Qv 	et%) 	the interaction 

Lagrangian can be written in the form. 

(1.6) 
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= 	 GIN, 	(es"V"t 	 (1.7) 

which is clearly non-linear in B. 

2) Chiral Lagrangians 

We shall review here the simpledt case of non-linear-

chiral SU(2) x SU(2) Lagrangians with derivative couplings (5). 

Mesons of the (i,i) representation can be described by the 

field matrix 

(1.8) 

where A(4.4) is, at least for the time being, to be regarded 

as an arbitrary isoscalar function of the q  fields. Imposing 

the unitary constraint 

(1.9) 

we obtain the non-linear relation 

(1.10) 

Thus the C$ field may be eliminated and the field matrix 

becomes 

= 	%-cg 1(9-M-11/1  t -a  AIS) -(4) 
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The total Lagrangian for the op fields is now taken as 

= 	a,.1 19 

It has in fact been shown (9) that this prescription for 

a chiral SU(2) x SU(2) invariant Lagrangian containing only 

two derivatives is unique. 	Using equation (1.11) we 

explicitly obtain 

al.<4 .atzt 	 
= 	 63) 

(ss.atso)(4:)-492)  
2,e(e))(k-Ax  _(!)-(1') 

(1.12) 

(1.13) 

The interaction Lagrangian may now be obtained by subtracting 

off the free part, i.e. 

Pk. 	= '•-"TosItcil 	ay.% • ovc.12 	 (1.14) 

Before considering various choices for the function 

A(ep.%) wp shall look at the ultra-violet 1,ehaviour of the 

Lagrangian. 	Assuming that large 

1\1%•c0 ck511••• V11‘  then 

9 - " at% • 1.42-  and 

q.*-A 4  ,s,,,k3Nk-1 
(1.15) 

I We note that both parts 	v1 22"4 Since at% is col#ed 

isototically differently in both parts this leading order 

could not be cancelled. out. 	Thus we must have 
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PA.70V4A 
AD Iv\ 	 (1.16) 

Since tarci.atcp M`ir we see that the ultra-violet 

behaviour of the interaction Lagrangian is given by 

Ao o 

(1.17) „, cel* 	‘1 
Assuming the usual Dyson power counting method for 

estimating divergences 
(10)  holds for non-linear as well 

as for the conventional polynomial type LRgrangians we can 

divide the chiral Lagrangians into three classes. A 

polynomial Lagrangian with the behaviour 

can be renormalised for It! 	with a finite number of 

renormalisation constants. For non-polynomial Lagrangians 

such theories are called normal since it is hoped they can 

be renormalised in a similar way. 	A renormalisation 

procedure has been given (11) for model non-linear 

Lagrangians with n = 2 and 3 however it is now questionable 

as to the renormalisability of a non-linear
4 

theory. 	For 

t4.2. there should be no overall infinities arising at all 

and these theories are classified as supernormal. 	The term 

abnormal is given to theories with t0)‘} since here 

difficulties arise in polynomial Lagrangians and one 

therefore expects similar, if not worse, difficulties to 

arise in no.1-linear theories. 	In fact the Dyson power 

counting method has to be slightly a:ended as we shall see 
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in chapter 2 but the above classification is still useful. 

Consequently, using this classification we see that the 

non-linear realisations of chiral groups for the meson 

field ato yield only normal and abnormal interaction 

Lagrangians. 	If we restrict ourselves to normal 

theories some divergences still arise. 	In certain cases 

these can be avoided by using, in a self-consistent 

manner, the total Lagrangian (12) which is supernormal 

for %%4-1 and normal for k = 0 or -1. 

If we assume the basic equivalence theorem to be 

correct then the question of the significance of the 

abnormal parametrisations arises. 	The equivalence 

theorem states that if a local point transformation of 

fields is made such that the physical spectrum associated 

with these fields is unaltered and consequently the Hilbert 

spaces of in- and out- states also remain the same then the 

on-mass-shell S-matrix elements are identical for the 

original and the transformed Lagrangians. 	This theorem(13) 

was first stated by Chisholm, Hamefuchi, O'Raifeartaigh 

and Salam who, together with Borchers, have all proved it 

to varying degrees of restrictiveness on the field 

transformations and rigour. 	It has also been extended by 

Coleman, .Tess and Zumino (9) who claim that the result 

applies to diagrams with equal numbers of closed loops. 

The abnormal parametrisations of the chiral Lagrangians 

can be obtained from normal ones by a (non-linear; point 

transformation from the one set of co-ordinates ap to the 

other co' . 	The difficulty in applying the theorem 
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lies in a lack of criteria for determining what 

transformations leave unchanged the in- and out- states 

of the interpolating fields. 

Three important parametrisations are now given. 

In each case X is to be taken as a constant but different 

in each case. 

a) Gasiorowicz - Geffen Co-ordinates 

A() = X 

Levait  = NT -se! * a 	-ck) 

„, ce\`‘. 	 (1.18) 

b) Schwinger Co-ordinates 

IVT AR) - 	 -cs• 

_1.  ark 	_ 1  )1 (4I 	(ck..Nqt.) 
- 	 tvoz%•%>' 

tti!.  

c) Stereographic Co-ordinates 

IV%-c0 	 
(14.)'§-%) 

_ 
— 

(1.19) 

(1.20) 
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CHAPTER 2  

Techniques for calculating the x-space contributions 

for general second order graphs are given. The discussion 

includes Lagrangians with derivative couplings but iso-spin 

is not included. 	Overall ultra-violet behaviour is discussed. 

1) Non-Derivative Lagrangians. 

In this section we briefly review the techniques for 

dealing with non-derivative Lagrangians without iso-spin 

as were first given by Efimov (3) and Fradkin (4). 	The 

Lagrangian is assumed to have an infinite series expansion 

in the field variable i.e. we consider the Lagrangian 

a(%) = (1Z c(v) 4v cpc 
	

(2.1) 
t=p 

The normal ordering of W(14 can now be defined by normally 

ordering each term in the expansion (2.1). 	The second order 

term in the S-matrix expansion 

(2.2) 
ftrAs 

is given by 

S(t) = C
~~
JCP1, 	T 	u-cfapui\ 

	
(2.3) 

The Feynman propagator A, is defined in the usual way, 
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(2.4) 

then expanding S
(2) into normal ordered products by 

Hori's lemma (14)  one obtains 

    

(2.5) eyq 	- re0, 	ul 
grets'e% 

where 

q?c-titk -z,gtuk  

(2.6) 

with 

cc), cize 1) 	cc,  t.) 

Using the Efimov-Fradkin lemma (3)(4)  we now give 

an integral representation of Hori's exponential operator: 

NT 
	Ct* UV*  U1Selt% 	st 

x) cat)„'ZI?.) 

	

= ,-3  au 411,4  QXI'(— U11:1) V ( 	6ak, cb:*  kilt) 

(2.7) 
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The integrations are taken over the whole of the complex 

u-plane. 	Thus on substituting (2.7) into equation (2.6) 

and using equation (2.1), 

Atult14* e-Lie \  a vftv 11 
amAA 13zo (Abu) u(LO) 

sO 
*VI 

	

= 	Q—Utk  LC(VA"4 (1.*Th‘. (S411 (%4/‘• (4tAV  (4t111)IS  r-lAt%  
S. TA=0 

Ott 

	

= 	C(V NVI‘) e (V AcN) k V ."ri)1(t .%‘‘)1.  ( 6.42.1 r4" 

(2.8) 

The last step requires the assumption that integration and 

summation may be interchanged and then use is made of tie 

orthogonality identity 

24r lkUb. I% *A 
U 	tftt% " • (2.9) 

An alternative approach to derive a form for 1.1%,r(h) 

is to use the Laplace transform ZIA%) of tr( 4:4> 

 

u-cco = 
pe3

al e-cl? Zi.) 
0 

 

(2.10) 

defined by analytic continuation where necessary. 	Noting 

that 

*) 
a(%) = A e 	(A) u-k) 

	
(2.11) 

equation (2.6) may be immediately written as 

c. 
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fft,1%  ( et) 	 Q'%"* or (-IS zr(11) 	(2.12) 
0 o 

Once the Laplace transform of all ) is known this 

method will yield, on performing the %, and %%, integrations, 

a closed form for lw.,IN(tk") equivalent to having performed 

the summation,by Sorel technique, in-the last, line of 

equation (2.8). 	The series form can be obtained from 

equation (2.12) by using 

c(v) ct.t 	e  „.. (2.13) 

which implies 

aY s C(V) sr 	(t) 
r- 

a 

This equation may be substituted into equation (2.12), 

the integrations can then be trivially performed by partial 

integration and the last line of equation (2.8) is obtained. 

This method of using Laplace transforms is more 

suitable for extending to Lagrangians with derivative 

couplings whether iso-spin is included or not. 	It is also 

more suitable for extending to higher orders. 	Reference 

15 gives the rules for a General n'th order (in the major 

coupling constant) graph. 	It can be seen that the n
1 
 th 

order extension ofequation (2.3) contains n(n-1) 

integration variables (two for each superpropogator) 

(2.14) 
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whereas the extension of equation (2.12) contains only 

n integration variables (one for each vertex). 

2) Derivative Lagrangians  

Delbourgo, Salam and Strathdee (15)  have outlined a 

method for treating non-polynomial Lagrangians containing 

derivative interactions by extending.the techniques of 

Efimov (3)  and Fradkin (4)  given in the previous section. 

this section the techniques required for calculating 

the S-matrix elements for these Lagrangians are given. 

We consider a one component scalar field Lagrangian 

given by 

("lattO = 	arcq arcs 	cv.1 	(0?lavcV) (2.15) 

where the interaction Lagrangian is of the form 

ti4(cii."(0) = 	u.(4:0 	w. arsz aYc) tr(c0 

For the time being t1,00 and u{ are taken to be arbitrary 

functions of the field IT which have a Taylor series 

expansion about cvmc), g and h are the major coupling 

constants. 	The normal ordering in equation (2.16) is again 

defined by expanding ulq) and tr(q) and then normally 

ordering each term. 

We first derive the general second order matrix 

elements for the derivative part of (2.16) 

(2.16) 
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gtx(st,a0?) = 	Nszt arct a010) 
	 (2.17) 

The contributions from the product of t..304),&tcli) 

with the non-derivative part 

\'‘ t„.•,(0z0 = \-‘ u(ct) 	 (2.18) 

can then be simply deduced by the same methods, and 

are given towards the end of this section. 

For notational convenience the concept of a " 5-vector" 

is introduced defined as 

( 	RrL4 	 (2.19) 

The S-matrix expansion is still given by equation (2.2) but 

the second order term must be amended to 

= 	vA tztoNA» lx(ttutal 

where the modified time ordering operator T* is introduced 

which is defined such that the order of time ordering aid 

differentiation is inverted in taking vacuum expectation 

values of the following kind (16)  

(2.20) 



(2.21) 

.<7*Nvtx) (..x7)14) = 

26 

where itS,(fX,--tX7) 	is the Feynman pro.;:agator defined 

in equation (2.4). 

Expanding S(2) into normal ordered products equation 

(2.5) is extended to 

sska‘db%).., 	(611 ))* 	 3̀?4% 	 ite4.{,t 	 • 

trtievz0 

ScA4A„r3,0ti-0CD~~:%() 	 cizAW 
AN. • 

5•Sftiu,v,p .1u (a%":1Q : 41.L;)%stt) QPN4:4 	• 
• t‘. 

4-5. SuvirtIvi.Iwtx.,y USLIA-4 	(cly14.) 	9$11'  (NCI') (1Z) 

(b,1 %-1-)..q?‘&11.)13;4 v(l.) .C6$1‘(1) %•Alq?d(I') C3? .. etv.31,NAVv:41.0,d 

(2.22) 



- 27 - 

The coefficient functions in this normal product expansion 

can be written, as for equation (2.5), in the form 

tftlt!) 	
/s) 

 

o,. )(1. ( )L1 ‘1) 
tAv4agh.,*4 &cia T acts. , 

 

1N*?o 

(2.23PW=c1  where Avvi*  is the 5 x 5 matrix 

MN 
am. 

At, (2.24) 

The indices m, n refer to the number of external lines 

(including derived scalar lines) at the vertices "1" and 

"2" and K, L are the "5-vector" labels. 

We may now proceed by either extending the 

Efimov-Fradkin lemma or by using Laplace transforms. 

The generalisation for derivative interactions of the 

second method is the more straightforward but we shall 

give both methods here. 

Introducing the "5-vector" integration variables 

* UN  and its complex conjugate lA tA  the exponential 

operator in equation (2.23) can be represented by, in 

analogy to equation (2.7), 

RxV4 (a-Qct„Plq" 4") 

-=-1-ITs  asuot,dsti*t.,„ ibr.(-LitArt.,-k. a A 	*kr a 'MU 104 	fa 

h AN 	a341% 

(2.25) 
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Making the usual argument shifts in the Lagrangians 

all second order contributions in the S-matrix are given 

by 

T (SIN+ 	iii‘Uoy i  ON% 1110,V# 4,0,14 

. 0 F-m%-%%*kt; gazuv-k 

where 

	

ciN= 	cru" 

	

= 	•NNI 	* 4, 	e 
-v‘s 

Taking Ix to be as given in equation (2.17) we have)  

for the case of no external derived scalar lines, 

(2.27) 

to 	IA% 4  VkON tilP • teelj bk) = 	 \u‘ t:c 
• a(txui-ixv.uv) eytik, ts(u) 	(2.28) 

In order to perform the eight vector intergrations we 

expand the integrand in a Taylor series about li‘k 	and 

= 
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retain only the second order term. 	The remaining 

terms in the series vanish with the use of identities 

like 

64% c3t etk`er 
Tcr 	

tit,‘  ut, u*:, ub  

WA). ttkv ) (3vti( a%- CO Lk  eu04, 	 \ 
-tive 	 1  0 	(2.29) 

The integral (2.28) then reduces to 

(6) = 	dudv e7"" X(.0 - tr(4 
	

(2.30) 

where MU) is the contribution from the second order 

term of the Taylor series and is given by 

= 	 rtr( h„ 
au, au., 	t4 	kuvt 	aut4.1 	_vxtikv. 

= 	Al„.914„ 4- 4.4%  IS1w4%  Ut 61  A-Alm ht„UtP Ea. 1. 
9. 	 au.N. 	()ivy ativ  

au4 

‘1%- 	4 N1.4  
ti(Nu. A ti) 
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where the operator U  is defined by 

b.t.hluv-.L4 &I" hlk.b-khohW 

(2.32) 

Substituting back into equation (2.30) we have 

datti) 	cireh t7(hU) tAtk44) 

(2.33) 

The second order contribution has now been expressed as 

an operator acting on the integral Im is(11) already 

obtained in equation (2.8) as the second order contribution 

for a non-derivative Lagrangian. 

This same result can also be obtained by using the 

Laplace transform method. Substituting the 5-dimensional 

Laplace transform tr. (Ay) of t../(A51,,))  where 

(2.34) 

into equation (2.23 and noting that 

aqm 
	 (-Art) L CU) 

	
(2.35) 
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we obtain 

cqbel‘Pril 	-.1`1S(As,;-I • 
0 ft 

(2.36) 

which is the obvious extension of equation (2.12). 

Again taking Li to be given by equation (2.17) gives 

Ls  4) — 161-  CS) 	6 	cS4C11 cAt  •%. (2.37) 

where is X) is the Laplace transform of l7(00 . 

Substituting into equation (2.36) we then obtain for 

the case of no external derived scalar lines 

e) nct 

‘MIN (h) = 	 641‘CV&U 8"1‘40A"S.Ityl ('-‘SSs‘  VSS 
0 0 

(4,4 al 	 • a's„, ats„y 

• elcv 	 * ‘tt hiuvAlv) 

(2.38) 

The vector integrations are performed by partial 

integration to give 
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(&)11%%%, It*  
(Vs, at  (.21)"%(1 t1-()Zy•q,) elo"I . 

0 0 

ISN1 /4(%11.1 
ob (A. Va12.(-M--vt? Zit's) 	et‘&11 

(2.39) 

i.e. the same result as obtained by the previous method 

and given by equation (2.33). 

It is easy to see how equation (2.38) may be 

generalised for higher order S-matrix elements. 	PerforMing 

the required partial integrations, however, becomes far 

more complex algebraically and hence the generalisation 

of the operator 0 to n'th order is by no means trivial. 

All other graphs may be derived in a similar manner 

but they are more immediately obtained by partial 

differentiation of 	ft.,ItttS) with respect to the 6‘„,L\-v, 
and 	A twy‘  prcpagators. 	Kote here that it becomes 

important that we have distinguished between 4, and 
I 	• 	For the partial differentiation they must be 

regarded as independent variables and only after this has 

been performed may one use 

42. 	 (2.40) 
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From the general formula (2.23) it follows that 

S‘tvolv.vv*, (ti) = 	cs,( ItS) 
ChNlt, 

S%silk 	 (h) 
a4•11-4 3  

 

S".-vx,v,s')I‘VIINICI (6) = 
atiV0% 	‘‘.%1IN  (6)  

In addition there is the symmetry relation 

= 

These propagator differentiations act only on the 0 

operator and so may be easily perfored to give the 

following formulae for all second order contributions. 

US) = 

S"NoValt1 ( = a•%.,t S'IONVa te%-ltj.66) 

Stt.Ax v."(&)= (E‘,0,-c 

(2.41) 

(2.42) 
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11+4‘11q*,tvoiv bk) 	%y42 &-vt  

1""43-.11 '11‘*tv a (Li) \.c%I %%Id luvliN  (1S) 	(2.43) 

In practice it is also very useful to note the identity 

SewelV)It 	(1-)1 	z 

which again follows from the general formula (2.23). 

We now make the observation that all the second 

order graphs are written in the form of an operator 

acting on 144v,INM  integrals. These integrals are 

identical to those which one obtains for second order 

graphs with m external lines at one vertex and n at the 

other using a non-derivative Lagrangian egO. Thus 

all the dependence coming from the derivative part of the 

Lagrangian has been completely separated out. Use of 

the identity (2.44) means in practice that we need only 

evaluate at,,v2SA) and from this we may calculate all 

possible second order graphs corresponding to a Lagrangian 

given by equation (2.17). 

To take into account the contributions from the 

product of the two Lagrangians Lz(Pp:) and 17.(qh.lcVs.,y) 

defined in equations (2.18) and (2.17) respectively, we 

again expand the modified time ordering operator into a 

	

series of normal ordered products. 	The corresponding 

(2 .44 ) 
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coefficient functions in the expansion are 

ij and 	1;wk.t. Iv a (64 where m4,  

A 

S oft.lft (t) V)1.4.007 

A 

"?t4%(& h2ck‘,ALti (L Sgreu (h) 

• LC%) 	( 0;1 	cItt.z.0  

nozi rNeb 
h4NUA h'1,4 	AVA`4(2SS À%(AS tats) 	el‘al 

A 

= 	(b) 

Z.0.%) being the Laplace transform of u4.%:),1  

(2.45) 

A 

S eCvt% ')A-'s111/ 	a Eke/D. 	'‘‘ 

a E,‘, 
A 	

(2.46) 

and 

A 
itt\ h) = a0A„In 	Astvl‘skt--1/ (2.47) 

There are also similar contributions with V...:,(Ct,) and 

t,...i.(st.a,a?m) interchanged. 
	The IgyvIcl  integrals are 

again identical to those which occur in second order for 

a non-derivative Lagrangian but correspond to a Lagrangian 

u(c) at one vertex and (s&) at the other. For the 

remainder of this work we only consider the contributions 

from the derivative interaction Lagrangian. 
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3) Ultra-violet Behaviour  

 

So far no restrictions have been placed on the 

form of tag) , the non-derivative part of the Lagrangian, 

other than the condition that it can be expanded as an 

infinite power series in qp • To be able to make 

definite statements concerning ultra-violet behaviour 

and about the Fourier transforms we must impose certain 

restrictions on the coefficients appearing in the series 

expansion of est+) • We shall restrict the discussion 

to the class of Lagrangians 9...-10#,ay,q) defined in 

equation (2.17) where u(4) 	is defined as a linear 

combination of expressionth of the form 

 

 

ur (QM = (rat)*  
0— V'Qt)9' 

(2.48) 

with a and 	being integers. From chapter 1 we 
see that the iso-scalar analogues of the chiral Lagrangians 

fall into this class. The restriction 100,0 is also 

made since with this condition we shall see that we meet 

no difficulties with overall ultra-violet divergences. 

Any expression of the form (2.48) but with 	can 

always be written as a sum of terms satisfying the 

condition Rid>/ 	together with a polynomial in ie. 

This polynomial in cc,. can then be treated separately. 

Expanding temp-) binomially we have 

txy(ctn= 	 • • %(c....d4 

	

(2.49) 	• 
C=D 
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Since cr(g) is some linear combination of the tiTUOIS 

we deduce that 

co 

C(s) (r^ (44Y 
t=o 

(2.50) 

where C(C) is a polynomial in r. 

We shall now look in detail at the second order 

self-energy contributions Sro Smvo  %ma •)viv %tAit, St,yoos 

and 
	Sti.v;o 	which are given by equations (2.39) 

and (2.43). 	Explicitly we have 

S,, o) = () -lel, (b) 

S 	t)= 	A• /It% 111P2  5E1) Ie. (6) 

sv,e 	th.) 

(t)  = ON-  L11 %  hvx  4, hoo,h,v% m 	c6.) 

St4kvlo (11) = 	hitt Al% 	(h) 
	

(2.51) 

where, from equation (2.8), 

co 

I 	(6) = 13%;115 
rze 

($si%‘)), (2.52) 
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Pk DU% 
with A ="c%11 and for later convenience we have 

distinguished between the couplings at each vertex by 

the sub-indices "1" and "2". 

To give meaning to the divergent series (2.52, and 

to study their overall ultra-violet behaviours, Borel's 

method of summation is app--lied. 	Since the coefficients, 

C 	, are polynomials in r the summation (2.52) can be 

written as a linear combination of series of the form 

415 

luvvalti) 

Borel's method of summation is now to write the factorial 

coefficients in (2.53) as integrals, 

cb 
clk‘ 	,iss.tuAzt  r m- 

e 

and invert the order of integration and summation to 

give, on performing the summation, 

eluM =c4'N‘  c-s  1 144  

(2.53) 

(2.54) 

(2.55) 

The asymptotic behaviour (6‘-. 00) of this integral is 

(6) = MiN-kk‘ -ea) (kha) 	( (ITNk)) 

Thus, a priori, we may expect 74uvb(6) to also have 

this asymptotic behaviour. 	However, it can be shown 

that the linear combination cf %initAth) integrals is 

(2.56) 
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such that the behaviour (4qa vanishes if CA: 4) 

is zero. From equation (2.49) we see that C.(0 

vanishes for 

(2.57) 

and thus the asymptotic behaviour t-•-do.) of (2.52) is 

given by T= -(i1-40 and hence 

-1.„;,(e) A  (rAnc" 

(ttin" (2.58) 

An easier way to derive this result is to write the 

summation (2.52) as a Sommerfeld-Watson contour integral 

let ( e)= 	(1,Ac‘c(%  c‘cak.c14 

where the contour C is about the positive half of the 

real axis in the complex z-plane. 	In the following 

chapter this Sommerfeld-Watson method will again be 

employed for taking the Fourier transform and there 

the uniqueness of the analytic continuation of the 

coefficients C() is important. 	Here it is only 

necessary that their continuation agrees at the integer 

points. 	It can be shown (17)  that the contour can be 

opened up and then collapsed about the negative real axis. 

The poles on the negative real axis can then be picked up 

(2.59) 



to yield an infinite series in inverse powers of ti 

and hence the overall ultra-violet behaviour is given 

by the leading pole. Due to the vanishing of c(-0 

for gde.it-41. we see that the first possible pole is 

at 	ci") 	Although, for n = 1 say, the 

coefficient c(l.kv) vanishes at this point the gamma 

function in (2.59) may give rise to a simple pole. 

Hence we again have the asymptotic behaviour given in 

equation (2.58). 

We note that applying the Dyson power counting 

method to the Lagrangian (2.48) we have 

(2.60) 

The integral Itsv.05(ti) represents a graph with 2n 

external lines at one vertex and none at the other and 

hence a naive Dyson power count would indicate a 

behaviour (11114" at one vertex and (tvo,e-ft 	at 

the other and hence an overall behaviour of tAnU-n 

which we see is not correct. The Dyson rule for non- 

linear Lagrangians is therefore to take the worst 

behaviour occurring at either vertex and square the 

result to give a behaviour in agreement with equation (2.58). 

This method naturally only yields the worst behaviour 

but cancellations of the leading divergences may take 

place. 	We see now from equation (2.51) that we expect 

the following overall behaviours for the second order 

self-energy contributions 



m 

telSitia-Nkit 

I:10(&) 	VIt."4-4. 

Su..v.t,e(h) 11-1.  

S 	( 61  teN"  )%ev-It 

Thus-145(1) yields the worst behaviour and with 

the restriction VV>a is, at worst, M4. Taking 

the Fourier transform this would give rise to an overall 

ultra-violet log divergence. 	However, we shall see 

that this leading order is in fact cancelled out and 

consequently with Lagrangians whose non-derivative 

parts are given by equation (2.49) (with 

we shall meet no difficulties with overall ultra-violet 

divergences for the second order self-energies. 

4) Conclusions  

The techniques required to calculate second order 

diagrams for non-linear scalar Lagrangians with derivative 

couplings have been explicitly given. 	It has been shown 

how the dependence arising from the derivative part can 

(2.61) 
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be factored out as operators acting on integrals 

identical to those arising in a non-derivative theory. 

The worst ultra-violet behaviour expected can be estimated 

---by hodifying Dyson's power counting method. 	It is noted 

that if the vacuum diagram %,..05  gives rise to an 

overall ultra-violet divergence then, in general, the 

tadpole-like diagrams 

will have the same behaviour. 
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CHAPTER 3  

Fourier transforms of the self-energy contributions 

derived in the previous chapter are taken for the case 

of zero mass fields. 	Iso-scalar analogues of the 

chiral Lagrangians, discussed in chapter 1, are treated 

as special examples. 

1) Fourier Transforms  

The method of taking Fourier transforms for theories 

with massive fields will be discussed in the thesis 

of Q.Shafi. Here we shall consider the zero mass case 

for which an elegant technique for taking Fourier 

transforms exists. The case of non-derivative Lagrangians 

has been discussed in great detail by Efimov (3), by 

Volkov (17),  and by Salam and Strathdee (18).  The 

Fourier transform is first taken in the Symanzik region 

in p-space ti",(e) and the results obtained are then 

analytically continued to time-like values of p2. 	For 

cp.03 one continues the )1..opagators b(x) into Euclidean 

x-space. 	Hence in the zero mass case one obtains 

(3.1) 

where te 	From this equation it follows that 

Ark)  

* This reference shows that the method is equivalent to a 

regularisation of the massless propagator. 

(3.2) 
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Hence the c) 	operator defined in equation (2.32) 

takes on the following form 

= ov-xi? 	* usla 	I 

= ovi-Sv 8P(c3.4 AM(5.-t &a) 
	

(3.3) 

Thus 

=e 
	

C(CI (%). .c4V AtC-1 

Vac 

_ 	c 	cce 5.1 roa-. (Q-1‘xtr)1&*1  

	

C 	 (3.4) 

where we have written the sum as a Sommerfeld-Watson 

integral with the contour C taken counter clockwise 

around the poles on the positive z-axis including the 

point z = 0. 	Details of such a procedure may he found 

in references 17 and 	Volkov has discussed the 

restrictions imposed on the coefficients 

The invalidity of Carlson's Theorem for the formal 
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power series (3.4) implies that the analytic continuation 

of the coefficients C(r k  from the positive integers 

to complex values z is not, in general, unique.. For 

example additional terms of the form 

clic) 	L;‘ 

with undetermined coefficients aw) - may be added. 

Following Volkov it is, however, possible in certain 

cases to obtain a unique continuation of C(c)!. For 

instance the requirement 

	

ia; ((AO a 03")1 c(1-) 	C1 
	

(3.5) 

with 0 ..E.A1-0, 	and PC>0 	determines CW 	uniquely 

and sets al.I.)7-.0 . 	The condition (3.5) determines 

a class of non-local interactions 
(17)  and with our 

restriction that c(t) is a polynomial in r the Lagrangians, 

and in particular the chiral Lagrangians, that we are 

considering fall into this class. 	In the case of 

more general coefficients the presence of the terms da)91UNNAcg 

would lead, after taking the Fourier transforms, to an 

undetermined entire function in the energy for the 

self-enersy graphs. 	These coefficients ato 	3robably 

play the role of an infinite set of renoralisation 

constants. 	It is of extreme importance that these are 

identically zero for non-local interactions satisfying 

condition (3.5), in particular for chiral Lagrangians 

not written in exponential co-ordinates. 



-46- 

The integral (3.4) has a cut in V*  from 0 to 4-co 

The Fourier transform will first be taken for negative 

values of -' and the result then analytically continued 

to positive physical values of 	with an averaging 

procedure determined by unitarity. For the massless 

case the Fourier transform of 	is given by the 

Gel'fand-Shilov formula (18)  

 

   

 

- (\v,6-1 

   

(3.6) 

     

which is valid initially in the strip 0-4.14114.1k and 

outside it by analytic continuation. 	In order to take 

the Fourier transform of %;,(h.,-Vs;)  the Sommerfeld- 

Watson contour is deformed to lie in the strip ‘4A4A1Ii,)4.1).. 

along the imaginary axis. 	This can be done without 

picking up additional pole contributions since no 

overall ultra-violet divergences are present. The 

validity of this deformation also depends on being 

able to write the gamma function coefficients as 

integrals as was outlined in the previous chapter. 

This is discussed in references 17 and 10. 	One obtains 

for $,:-.‘11.ko 	and in the IkeRn`,>o half of the (44)-

plane 

Vcs,-r) 	S,;,(Mx>1-4°) 
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c.(e 	ra 
i.x.cktt r (s.‘ aa) 	16-Tet (3.7), 

where —14 co a. 4 	We next collapse the contour 

back around the positive real axis and pick up the residues 

of the first and second order poles to obtain 

F Cs, - re) 
ca 

- 	(e)) S 	8-0Z(-1 t's-c(-̀190  V"..2  s  %v- 
t %c-)). 	We.) 

rr.43 

 

3-\%c-(11 	- V5s-i-c).) 
A al =c 

(3.8) 

Here we point out that the original x-space sum 

(3.4) contains only odd powers of LS while the 

evaluation of the Sommerfeld-Watson contour integral, 

after taking the Fourier transform, also yields terms 

arising from initially non-existent even powers of LS 

The mathematical reason for this is that the Fourier transform 

(3.7) of 46:1(..) has itself simple poles at the integers 

z = 2,3,4,.... and therefore changes - as a renormalisation 

the original simple poles under the Sommerfeld-Watson 

integral (3.4) into a series of double poles while 

introducing simple poles for the even powers of &. 

_analytic continuation of i7 	to positive 

values of the coupling constant Ark from below and above 
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the cut in the r —plane determines the physical 
amplitude to be 

VCs, V'',\,) = a V (s, --re) -,.. cs V (s,-.RV \") 	(3.9) 

where 

and 	RQW.--‘3) = Z 	 (3.10) 

The second eouation in (3.10) follows from unitarity. 

Thus 

di,...-_ -k. (‘...A) and 	IV.• -k(VbrA)) 	(3.11) 

where b is an arbitrary real constant. 	Therefore the 

Fourier transform of the self-energy diagram Sv21((,) 
is given by 

V (s,Vb•A 

= _ ckz)ts  # ‘,, %I? c(-Yl - b 5tai 
34‘ WI(cAt.V. 	\ WI 

— s";  Mt) C(C" 
 (ix 

c1ST \ (\T -%) 4,1 A Vir. c(11 
--A Mr-to:)1 Vz- 	41% 	—e. 	..1---i  ---.. 

1 r: c 

1 — ki,(Ttc4.5..) # .;
c 
	(3.12) 

where r = + ( -c);RI/1„ 



The amplitude N:(151-c4N) 	may be written in 

the form 

N M1Nt) 7-*  v1 (%,,Rek) 	V",,( Sr) 
	

(3.13) 

where NV.a,-R4) 	is an entire function of s. In 

the limit 8-10.0, i.e. on mass-Shell, one obtains 

bVu(s1R4) = ‘o• 	c(-1,0 
	

at S=Cs 	(3.14) 

while 

Vt(s)Rn = o 	at 	(3.15) 

The p-space contributions from 9. %.,r  ;a (6) and 

Sht a .‘INP (6) may be evaluated in a similar manner. 	We 

note that the p-space contribution from a shroo is 

F(S)r) _ 	a shva, 

= 	Q 
	5, a 	1,1,11  

(3.16) 
For the massless propagator 

eA() 	cs4c2,-, 	 (3.17) 
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and hence on performing the 'alt  differentiation 

-‘v.zt,(=) a,,a-vicb;„(m6)-1 

(3.18) 
From equation (2.58) 

A' (MC"  

for small x (3.19) 

Hence 

av 	cil;e  ( 

avavie.,zus) cx'A'",a-t 

and since W>..(1.-NA both must vanish at x = 0. 

Consequently equation (3.18) reduces to 

V(c11-cl = --wkatvzc. 	S,.),(ils) 

= 

(3.20) 

(3.21) 

The p-space contribution from Sw)%,•,,(E) is 

c"(%)-vn = 	. Zd`i e‘k)z 	&(.6X') 

(3.22) 
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which, in an identical manner, reduces to 

F'`  (%)r) = V (s1RI1/2,) 	 (3.23) 

Thus the contributions from 5.%wl%(11) 	and A.11,,Avi,,(ifS) 

cancel. 	We stress that without our restrictions on 

the coefficients c(i) the relations (3.21) and (3.23) 

are not necessarily valid since the a-- function 

integrations will not in general vanish. 

The self-energy contribution %1.10(6) is a 

independent constant. 	From equation (2.51) 

2 
D 

e(r-vi) c(r) mc.410. rc QZc 

= VIA-7%1T c(v-4,c.(v)(s.cAt)mc...v lac it 
C=c 

This is the contribution that in theprevious chapter 

appeared to have the worst overall ultra-violet behaviour, 

i.e. log divergent if SI= 01+% . 	However, the 

asymptotic behaviour for large 6. is given by the 

coefficient at r = -1 which in fact vanishes due to 

the factor (2r + 2) which has arisen by application of 

the e 	operator. Hence the asymptotic behaviour is 

lower than 	and so no overall divergences occur. 

Performing as before the Fourier transform by Sommerfeld-

Watson technique, only the energy independent term has 

to be taken into account. 	We immediately obtain the 

expression 

(3.24) 
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(--r) 
•403 

ao 	a Rs- 	da  c(.1-4) cc.%) u%A.D.)  S  (-s 
• S=O 

\ to-c%-V c(o) c(-)r 	 (3.25) 

Hence 

Qcvn = 	cces) 

is the Fourier transform of S2_10(6). We note that 

here no ambiguity parameter arises. 

The contribution from %Sh) always vanishes 

trivially in x-space since it is of the form 

054(.4S„kle(th)) 

where 

= 

with 4(4 some function of e and the integral 

(3.27) then vanishes identically by symmetry. 

Finally we have from equation (2.51) 

%Aim 	= %rir NIL 	C(T'-ki) C(C) MCA rt  
c=a 

(3.26) 

(3.27) .  

(3.28) 
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cb 

%I? 	Qtv) (Av.tUV. 44‘v ff--\3 
V=0 

which as shown in the previous chapter exhibits no 

	

overall ultra-violet divergences. 	For the p-space 

contribution we have the expression 

t  . kt al C(.%* C(.) 	-R-b4  

	

"(-- 14.)  --: — il  . "I  ‘ 7...ftliI 	 'kR1V0,14j1 
%kilt° 

— ‘Tc c(W)c(-`h.) 
•V 

(3.29) 

(.._•s 74%1 
VsTe. 

(3.30) 

and analytically continuing in 	using equation (3.9) 

1A(44! 	c.(\h)c(-`04 ) 	 (3.31) 

which clearly vanishes on the mass-shell. 

0% 2. 
All final results are to be evaluated with 1-07.-t 

0
l. 

Then with the definition -r= *RnZ.12  it follows that 

-1 	.R-fac 	z >4.43 (3.32) 

and our results hold for positive and negative values 

of the coupling 

Thus the self-energies from all second order diagrams 

for Lagrangians falling into the class that we have 

considered may be simply determined by substituting 



into equations (3.12), (3.26) and (3.31) the coefficients 

c c) appearing in the expansion of tr(t) , the non- 

derivative part of the Lagrangian. 	We remark., especially 

with reference to equations (3.26) and (3.31), that the 

use of the Sommerfeld-Watson method in taking Fourier 

transforms of divergent series has a formal character. 

However, the results given here can also be obtained using 

other methods (19)  

The Lagrangian we are considering can be shown to be 

equivalent to a free field Lagrangian. If we therefore 

wish to require that the sum of all second order self-

energy graphs vanishes on mass-shell for zero mass 

particles then this implies 

V,. CR (%) e% (W4) 
	o 	-- 	 (3.33) 

and allows the ambiguity parameter b to be uniquely 

determined as 

= 	e 	R2 	 (3.34) 

It is seen that zero self-energy (to second order) on 

mass-shell implies, in general, NA45. 	An extremely 

interesting point to note is the coefficient c:(-;) 

appears in the numerator of the expression for b. 

From equation (2.49) we know that this coefficient 

vanishes if S-5.:44..›,,0 	i.e. for a theory where the 

scalar part of the Lagrangian 	(or better) 

applying the usual power counting method of Dyson. 
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When the self-energy. graphs contain additional 

 

ultra-violet divergences then it is not possible to 

deduce from equation (3.33) a unique value for b. This 

the case for the chiral Lagrangians. 

2) Special Examples  

 

We now apply the results to the scalar (no iso-spin) 

analogues of the chiral Lagrangians described'in chapter 1. 

These are of the form 

 

 

L(ct?,etcv = -k %(co arm arm (3.35) 

where cS(.0p.) is a metric on the circle 	We 

consider two different co-ordinate systems of St 
Co-ordinate system I is obtained by restricting the 

co-ordinates of the plane iplek to a circle of radius 

giving 

(3.36) 

which is the scalar analogue of Gasiorowicz co-ordinates. 

For co-ordinate system II we take the stereographic 

co-ordinate system on S 	to obtain 

sAll(0  (‘-:tcyzin% 

which is the scalar analogue of both Weinberg and 

Schwinser co-ordinates. 

(3.37) 
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In the massless case these scalar Lagrangians 

can be reduced to the usual free massless scalar field 

Lagrangian 

(3.38) 

by the transformation 

= icy) 	 (3.39) 

where 

(3.40) 

The Lagrangians Lx 
1

and Imo' may be generated from 

the free Lagrangian Lk) of equation (3.38) by 

the respective transformations 

(3.41) 

and 

Lk,  = 	Vac' (4) 	 (3.42) 

These transformationsfrom a free field theory ara, 

of course, not possile for the chiral SU(2) x SU(2) 

e theory. The two Lagrangians  are also related 

by a co-ordinate transformation of the field since 

Lagrangian 1....11(%) can be obtained from the Lagrangian 

PL (CO by the transformation 
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IT —se 	k-ci?‘ 
	 (3.43) 

Subtracting from the total Lagrangian the free 

part one obtains the following two interaction Lagrangians 

116k  0?-,430 = 	atizi?  &vizi?  	(3.44) 

and 

1;4  (N al = 	arT &rc'zi(v:‘,1,0%. \cti 
	(3.45) 

where 

(3.46) 

Note that the two interaction Lagrangians are also 

related by differentiation with respect to the coupling 

constant. 	We have 

(3.47) 

This relation would enable one to deduce, in perturbation 

theory, all the Green's functions of 	to any 

order in the major coupling constant from the corresponding 

Green's functions of ‘4. and is hence another reason for 

having distinguished between the couplings arising at each 

vertex. 
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We see that in both co-ordinate systems the total 

Lagrangians can be dealt with as special cases of the 

previous chapter. 	Simply by noting that (its0A.Ir(2- 

and CsUfsi) 	we can immediately tell that the 

1164 independent contribution to the on-mass-shell self- 

energy, i.e. that of 	Ty51  will be zero for co-ordinate 

system II but non zero for co-ordinate system I. 

Explicitly the respective coefficients and couplings are 

 

( 3 . 48 ) 

and from equations (3.14) and (3.26) the second order 

contributions for the total Lagrangians are 

gAi 	(s.0 , 	V-). 	‘A--%1 

Sf%'a SV  
s Ne-) 

	

TOr0. 	>F 

Note that, since 'XI= \-N.V.1  the %.,‘ on-mass-shell 

contributions are equal in both co-ordinate systems. 

To consider the interaction Lagrangians (3.44) 

and (3.45) we need only evaluate the additional 

contributions resulting from the subtraction of the free 

part from the total Lagrangian. Explicitly the integrals 

for the non-derivative part of the interaction Lagrangian 

reduce to 

(3.49) 
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cb 
gx' 

C3 

u.;6 1t) 	 C(V4rZ)  •(T) 	\ 	till 	kl‘‘ 

rte 
(3.50) 

where the additional contributions from the free part 

are just the single terms subtracted off from the infinite 

sums. 	These sums simply yield the results already given 

in equation (3.49). 	Applying the appropriate operators 

as defined in equation (2.51) to obtain expressions for 

the x-space second order contributions we see that 

the additional ternis only contribute to 	‘1%).-)u-v(Ii.))  %-)0(6) 

and 	u.,1.,•,1e,(11:). 	The respective expressions for 

these additional terms are 

S 	(16) = A 	 (3.51) 

= 	6CZ (tvttl• c is, 	(3.52) 

and 

1.,AXN,`142. 	= 
	 e_C) Ls,Aq, 

comma 
011. 11  5ir• kg; o\--xCc w (3.53) 

It is here that we notice the ainearance of overall 

ultra-violet divergences. 	In equation (3.52) there 



6o IN& 

is a quartic divergence and in equation (3.53) a 

quadratic divergence. A renormalisation procedure 

for certain non-:olynomial scalar Lagrangians without 

derivative couplings 

divergences has been 

renormalisation will not 

removing the divergences 

finite parts will remain 

respectively. Thus the  

be attempted here but in 

in equations (3.52) and (3.53), 

which we denote by c4  and C2  

Fourier transforms of the 

yielding overall log and quadratic 

discussed in reference 11. 	A 

expressions (3.51), (3.52) and (5.53) together yield 

the following additional contribution to the self-energy 

s* 	 C 

	

(3.54) 

Thus on mass-shell we are left with the undetermined 

constant C4 arising from the removal of the quartic 

divergence. 	Clearly this constant is not necessarily 

the same in both co-ordinate systems. 	Hence equations 

(3.49) must be amended to 

   

ti• 

   

••••TE 

(s:-Rokt=i-v\ix)= 	+ cw 	 (5.55)- 

and are the final second order on-mass-shell self-

energy contributions for the two special interaction 

Lagrangians considered. 
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3) Conclusions  

The Fourier transforms of the second order self- 

energy graphs, evaluated in chapter 2, have been taken 

assuming massless fields. The on-mass-shell contributions 

to the self-energy are then determined by the analytically 

continued expansion coefficients CU) to the critical 

points 1-1-..4)-yu,p and yield, for a theory with no overall 

ultra-violet divergences, the generafself-mass contribution 

6‘," = 	%1N1   c(10 + \-15-N1 c(43) 
-̀3 	RZRZI% 	 (3.56) 

where b is a real parameter. Restricting ourselves to 

the class of non-local interactions defined by equation 

(2.49) it is clear that the second order self-mass 

will be an invariant for those field transformations 

   

cle = Qtc(6 

   

     

(3.57) 

which leave unchanged 

   

 

C. (7Y91. 	and 	(0) C.( - ‘) 

 

        

  

In general, however, there are additional ultra-violet 

divergences which introduce extra renormalisation 

parameters and then this statement becomes more complicated. 

In the case of the scalar analogues of the chiral 

Lagrangians considered the finite self-energy graph ..jvil(b) 

gives the same result on mass-shell for both co-ordinate 
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systems; the invariance of 	(.*W.V% 	is 

quite remarkable. However the %.*20W  graphs are 

infinite. 	Hence in this model, using the Efimov-

Fradkin method of partial summation of perturbation 

theories, the theorem of Coleman, Jess and Zumino (9)  

that co-ordinate transformations leave invariant the 

on-pass-shell results of S-matrix elements with a 

fixed number of loops, cannot be chebked directly 

because. the S-matrix elements are infinite to each order 

in LIft‘.(CIZL•OAO 	This theorem must be implemented 

by the requirement of a co-ordinate independent choice 

of the parameter b and the renormalisation parameters. 

Co-ordinate independence to second order can be guaranteed 

by a suitable choice of the renormalisation parameters 

C4  and C4. 
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CHAPTER 4  

Techniques for calculating contributions from 

vchiral SU(2) x SU(2) Lagrangians are presented. 

1) x-space Methods for the Chiral Lagrangians  

We shall now look at extending the techniques 

already presented so as to take into account.iso-spin aid 

thus treat correctly the chiral Lagrangians described 

in chapter 1. 	The chiral SU(2) x SU(2) meson Lagrangians 

may always be written in the form 

sz 	r 	 ‘,13t Ng?, 0-to 	 (4.1) 

where 

t-Ttdon = Sue is  (3.-%) 	rs'hoh uks\st-c) 	(4.2) 

Latin letters are used for the iso-spin labels and Greek 

letters for the Lorentz labels. 	Defining the Feynman 

propagator 

<7 Ni(4 eQiex•t)1) 

and derivatives thereof by the modified time ordering 

operator T* 

co;  (.x01 = 

= a &- • 
anc„, 

(4.3) 
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<1143?z,,,Q) 	= 64  

E- - la a .44  (4.4) 

either technique described in chapter 2 can be extended 

to obtain, for the case of m external non-derived scalar 

lines with iso-spin labels 	at one vertex 

and n lines with iso-spin labels 	at the 

other, 

S 	= 
(40) 

where 

5." ANI.AvIlkb.••• 

ItAqt„r1? 
allvt 

A'tt.v.ce 	Ali 0,00 	 (4,6) 
atiefAl 441XqIi 

and 



a 

(0 
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i :74•••$- • 1„4."‘kt'\411, (A) 

(ft 

'.1 	1 .. _ _ - 	1. 	's t, 	1..., 4,  4% kYvA, el) LNis )  
O 

cl*VI L.Nd  VIA 

va . u 	u e 4. -%.tok a  
- - -cc 	 a(46,1,.%„kkei.) 

• (51,4,4(6.cA,VA) t5•1,4Skin 	( 7) 

As before all other second order graphs can be simply 

obtained by the appropriate pror.agator differentiations. 

Thus in analogy to equation (2.L,3) we obtain 

Sass- •• $Zima-islo.h4 	' vst‘ 
(6) 

I 

i" 	Z14"1940 	• 1414t.V) "1)  

= tk L 	A.  I\ 	 (0 . 	. 	. t„14.)\‘‘.,,, 	LctN,vap cvw 
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S - - - - 	- - - 
	(ti) 

s  (E) Lob-2.1•Cit9ca4%)- - • 	iwst Lk') 

. 
fight!) • , 	ts) 

• - -• 141%-‘-• 	• 

-41.•-t • 1-14.-A (Aoki IV% %In 	 cv) 11-• 	 " • • \k • (0 

S Ztt --- • 4..4.1 (0 	- - - 6.4(43),,siiktv) ‘". 6')  

z (&) = 	%tt C&ViS 1  Ls— ' 14•1•00a..)itt 	 411 

(4.8) 

where the suffix Lim(y) denotes an external derived 

scalar line with iso-spin itirt 	• 	In analogy to 

equation (2.44) we also have 

• (A)S 	" t.3.414y. 	• "t4ttt 

    

a 	. • 
*mA)14 

• • 1112.,,y4 

(4.9) 
Thus we again conclude that all second order graphs 

are written in the form of an operator acting on integrals 

which are identical to those arising for second order graphs 

using a non-derivative "La,r1-angian" Crtm.  (AO — • 	We are 

now left with the difficulty of solving the integral 



#141- - 	 'Ai .-,"stAk•k itS")  * 	'AO olNitAtt 

AB 	 ea 	(b.) 
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i'%%11‘% 	%.3,1110%, (ti 	which must, in general, 

be operated on by an arbitrary number of 

differentiations. 	Once these differentiations have 

---beeh-performed we can use the fact that A;.4  is 

diagonal in its iso-spin labels, i.e. 

	

6;•„i(1%.-W1)='-' 	 (4.10) 

and similarly for the derived propagators. 

Taking the non-derivative part of the Lagrangian to 

be given by equation (4.2) and assuming the expansions 

Sto  k3-"‘1(%.%) 	ciST) VA.  (S -@)c  c; 
C=0 

au 
tt.41, 	

— 	L(V.k % %Oh U.  k%-(0 — 111,  u* s
r, cia, 

Cli't.ct9  01-'311 	(4.11) 

cmo 

then the integral (4.7) splits up into 4 parts: 

-r  fk96 
1(b.) Iin-- 1.‘2,;,e6 VA,•,k1,1t., (6) 17.' 	- • 1.‘z.V5 A.A.'sktitt•i_C6 	4.--  • •.%•, scs *-Nt  

(4.12) 

The result of onerating on these with 

(4.13) 



S 

64,4.43%1%1 

Id‘u•A' 4  -st .4* 

4-- -  du!-- 2A449 S= 

.% 
ttZQs 
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is as follows 

a 

&; 	 " tag% .)e, 111111,111 '0101. 
U.) 

(co 
• u-  (&.‘,uAlls,ctc‘it) (5"%I(uta.) 

• 0, (4k 	..• - 
ISA% 

t-s 
41%-t.geo \?.. 	 

1.1- 	---- (gg.0 

two/a 

6Nta, 
icS;44. - -- • '4.. 	-- • 	-" - sia, 

 %.s. - - - - - - • ct,..tm 12.11 A %) 
CAA%  • • 4444,4 tc.4 

   

   

AIu alk; e -.%.‘14- Cep 
	t-s .4 	a 	5."-01-% 
m.4) A a 

113 	
aigtx.th  t5 9̀,(©%u) (?) (LI:a) 
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ceb 

ct(vil;) Q(i) (.%• 	-11.) - - 	•• U.% `).4 	*t.) OSA i)1 . 

64,-- Lit* IS 41%4% 	LS•irt 	 '‘1%.4t 

data:,- -. Ai.4U-04 
	• S - - - • • (9,c‘4 	-,-'t %) 

(4.14) 

The last two lines are shown in detail in the appendix. 

The notation used is 1.1%.*N3 for the integral part of 

	

c%41/1k, a"  	are some permutation of the 

	

numbers 11 	 .stom#4 and & is the 

symmetric combination of all kronecker c S e.g. 

	

T, ••• 	•S•„•„ 	 1.i.oz;:z14  4:3 (4.15) 

11 a  (ti,_• 	• 
:CI' 14  itaa 	 tt4 0 II•2A-kt AA, %AA 4•4..)‘114.1% (6) 

‘4.0* 
%Mk IN 

•
Vit) 	 * 	ViS) 

l2sbaftif146  jUtttl )Nz. Uka 	( hozkab boat 	) (1%.0-ttil (3.  kg•tA 



%e% v•I‘VAA. h(s. Natc - 

tr. 
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r csakysiu,-* 
-x-c 

 

 

6 	. • 

   

s= 	stvukt--- 44:11,s9.wit.vt. 

ttvA-s 
As.A.-2stft.N 	01  u,, 	. ateu.) 

. tyoceu.0) L.kkl„3- tv61 (utt.1) 

6 v,--- Zan  
u 

Tg  

S c p 	d. t... ikve-Crt.TtAft tS 

• u 	-- • (3,1_‘ 	 Li• 	U 
4 it  

dome.% 	"io.volls. ••-•"" 	Jum v t 

rtS -te**1 CANA AS 
• (41%-Ms- M•laR -5) - - - • (5.% -421R-t-t AUAa) (R1-L0 	( U4- CO 

TANfttlek;1 

ORM 

  

do 

 

  

8 
AV tat OS -01-i 

\AV AU.1/4 ) NaV A \) 	. 

1.1*- 0 	await - • • fan SUA 
	 cr. 43 

. (5.1-i9AN')(1c  ...cat\ -5) — 	 (Iv 	(u 

3. S. — -•- its‘45.Q 	A•S) 

	

Nk•ttlea.taf% - - - Llwat .6.1Nee. 	* 

•••' (5.1N 	41.% A %.) 	ktAl 	- - - .4rotaft4-ifflitiot 

(4.16) 
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where -- • • 	is as defined before except that the term 

gisAigis•tuAvoc  must not occur e.g. 

4%, 
;.• . • 	 s. • 	s• • 

tlit2.t SAM itlft%  4,4%, 	% ‘A.4.0 4 	%WA 	% 	Vk a ; 

S • •• • 	= 	• 

10 I ch  %Ibc 	.‘Ntk (4.17) 

./.(k% 	
AA  

tp (:2.a.% )--1 	 •Ap..„vi( 
 

— 	&4.4  ccRadi  
41,441 " 	2.1Vot 

t- I.:LA a a  
Ch te,„‘Q 

• kr( &ct,k1N,t,e,ei+1 	ksmwt at) 

St: o 	*404:- cint.,AA 

i• 	u• -At" 4.1vti% 'Ista 

KIA-5.v.A4 	1.1"1-% 
ottexu.-0 U1.-agito " 

. (61%.tx) e'(kkM 
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tivVa 

SS  
= 	Vt.k, 

    

   

IMNe -1"4 11  4 • • „,..43„ 	Q 	l.11 k.1.1.. • 

       

       

s=o 
	

444.4. -- • a„os,At 

 

easitt - - 1.11, 	LIZ 	- 
%Aim% 	• U4itylekA 

 

.v4C•00.- 
GSVA%-% NO•(C • 

    

t-vsafs 
g %̀-°"" at acv*) 	- - - kc 	*5a-k') Le. %.,x-u) 	(ti*u."`Y 

Cr 0 

(S* 	
vl% 

- - - 	-N% 

AAA% -- • Auf--UNt 

(c-%%‘-‘ \z,lcA:) .4(4̀  

. (5.c  -%,,ct1)(2.c-4tc‘) - 	Mc-41i\ —5.114 1%-,i‘k-.) 	($s-..%) . 
3.5. - - - -• •("AcN 

. 	(5%"") 'It'‘‘‘.‘41Lr.t% - - - • 42.4At .441‘vt• -  - - 41**441  

-. (Uk 64).Q - 4)-% •kt  (3‘1,.‘‘ Is -.4,,„ - - - 14w., 4.t.i., T  - - 44%„„ 

(4.18) 

and finally 

Ti ct  
t„._ • t5,....,vb (6) 



6 --- eau 
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• . 	SIth day ccu-uj& U.; 	• .1%Ltt 	• a A 

. 
s--aluw.g..al, ~nalts 	 Na e)(bick\l‘itibac kt1it) kU,41..U.4) 

- • 14%54.U-A vt 

.• 

• va." 
u • 	u, • - 

 

 

• .s 	VA), •*. Jo:\ 
ta-u.q) CT 

tskettil.k 

    

   

ti 

oiA~-- •‘dss 

    

      

      

S=0 	- a.1,t-2svotAx 

- - 
4V% 4k"4 \ACii\-1%) • 

V=15 

esat`l-lt ($..v N3') N. (9.c 	as\ --(S) . - - _ . 	- 	'Is 442) . 

• *" • Ilit..4.k•A .VIAA% " • .&!.1"t 
3 	- - - - - M.-vat -`1.% -‘3.) 

(4.19) 
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2) Conclusions  

It has been shown that, although the principles 

for dealing with Lagrangians containing iso-spin are 
, - , 
the same as for the iso-scalar Lagrangians, the notation 

and algebra is sor.2ewhat more complicated. 	Use of the 

formulae given does save considerable time and energy 

in, for example, calculating second order corrections 

to irix 	scattering amplitudes using Weinberg's 

co-ordinates. 

The general form for the on-mass-shell self-

energies in the massless case could be found in an 

identical manner to that used in chapter 3. 	However, 

since the SU(2) x SU(2) chiral Lagrangians are not 

equivalent to a free field theory such a calculation 

is only of academic interest so we shall not go into 

the details: Assuming no overall ultra-violet 

divergences to be present, the self-energy contributions 

for an interaction Lagrangian given by equation (4.1) 

can be shown to be of the same general form as given 

in equation (3.56) for the ca.:e of no iso-soin. 

Similar techniques to those presented may also be 

used for gravitational and weak interaction theories. 

A full mastery of non-linear methods could well lead to 

the disappearance of the infinities which are normally 

so Prevalent in Field theories. 
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APPENDIX  

 

This appendix contains the details for computing 

--integrals arising in chapter 4. They are computed by 

termwise integration as in the case of no iso-spin. 

We shall make use of the orthogonality condition 

 

 

t 	(kb, to U WI\ tiba 
WUV " • (A.1)  

and the double sum identities 

S 
S‘.('kc-M•ts->‘. 	 (Vtt.AR\ 

(s-v4%*)‘. 
rftto vv.° 

Ts1('ac-°144s-MV 	(5-k 	WILV. M-1̀\0. 

     

 

(A.2)  
("AA' A 'D.-)k 

and 

c 

Ur 5A) (Vt t-VV. MO. (9t3 - - 
twa Nt=c5 

- 	• 

 

 

(A.3)  
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These identities are derived with the use of the addition 

theorem for binomial coefficients (see Edmonds
(20), appendix I). 

Consider the integration 

Slud -4A.OZ wo(0.4 WO(Aetyk.vc*f 	(A.4) 
'et et 

Expanding binomially we have 

tti 

c=a V-15  h=e 	e-AL ‘11,- 

‘‘. 
611.1 alq4 at  '—‘14U % a 

trtme 

ms) 	 \ 	 txt  c-\ it I 0\1 ;I\  \ 	"IS-MA%-uN tA-UNt 

t)k  

%AI 	 U. fk.xt-5.14t? tA 	ak 13-V CN 
• tk%   

(A.5) 

Using the orthogonality condition (A.1) gives 

\A= 	L 24 Li kv)%(T)Ctii('tMec,) 
r--e, qte, hzel Triv3 11.7.6 

• Mr -5.tt 4% 	(k -4).kA‘s‘ 	aNti%)\ 

(A.6)  

Summing over m and n using the identity (A.2) gives 

‘2k 	 Vgi)WM (litA%0)\-  (aC-`1V.M-WW,W. 

R=e) 
(A.7)  

and finally summing over t and k using the identity (A.3) 

results in 



=EIN6-)wv) mc-a"%.v. (5.%•*‘. 	(A.8) 

In equations (4.14) and (4.19) we are interested in an 

integral of the form 

iso 	as 

alltl.  

11

t 	-, (..d.(.4:unT 
s-,,,,_... , I aiN =   

cL. 

• tit, 	lk;u, 	(A.9) 

Clearly -S1., • -1*%kts must be symmetric in the iso-spin labels 

and hence 

,;•• " ' 	
= 	(S ‘,... 	 (A.10) 

Multiplying equation (A.10) by 51,;a  cS:t . 	- Sqa...413%  and 

using equation (A.8) one obtains 

C . MN* )(‘)A-A- - - 

tau aluji  T*) %1A (q-01'wtkack),.4% 

   

   

e 

 

(A.11) 

and consequently 



(A.15) = 	- ‘9tvet 
- - - • (t 	T)  
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- - • 	
• 	. . • • - 	  

3.5. - 	 Mr A 4 ‘1•A U.")‘. 

(A.12) 

Equations (4.16) and (4.18) involve an integral of the 

form 

\•< 	• 	• • = 	•;1:4 ‘1 .St%14  
%-• ‘wes.•)%qt. 	743% 

 

'i\kv)RAO (%-d 	4% V- • 

   

ttlb '137-0 

• \ 

Again looking at the iso-spin symmetry of the integral we see 

that 	 -%V - -AWL 	is of the form 

• . = 	• - • 4v,,.... 	 • • - • 1 vivez (A.14) 

Multiplying equation (A.14) by 4i1  and using equation (A.12) 

gives 

  

tMv)%tc) (.‘k 	(%11̀ -‘71' t..k; . kx; -1.1wk 

     

coo 

Multiplying equation (A.14) instead by av,6-4.,•%x,i1  and 
using equation (A.12) gives 



-ua 
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.t.'5.tv‘s)-P* 	cs1,_ 

•••••• 
••••• W,v)%it.c.,‘‘) (ts-N5A0k) Mc. ktsva (c.acvt 

(A.16) 

Equations (A.15) and (A.16) can now be used to find D and E, 

hence we have 

IMMO 

et, 

poo  ‘1(v..'%) (t.c.  art.c‘ 4,`1') 	Ni3A-v% 

41-%. - - 	(c\A•s) 

. 	(CACIU•biS) 	 mit) csatA;,... iuwal (A.17) 



PART II  

U(6,6) AND THE ABSORPTION MODEL 

FOR PHOTOPRODUCTION PROCESSES 

"Let there be light: and there was light." 

Genesis chapter I verse 3. 



TO MY PARENTS 
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CHAPTER 1 - 

1) Introduction  

Calculations are presented for two-body and 

quasi-two-body photoproduction processes using the 

absorption model(1) and incorporating the U(6,6) 

symmetry scheme (2) (3) to determine.the coupling strengths. 

For any two-body production process one can start by 

writing down all possible one particle exchange t-channel 

graphs assuming only 0 and 1-  meson exchanges. These 

Born graphs are hopefully a good approximation at the 

higher energies where s-channel resonances can be 

neglected and in the near forward direction where the 

u-channel exchanges, dominant in the backward direction, 

may also be neglected. 	In fact the Born amplitudes 

alone do not yield good results and Sophovich (1)  

proposed that scattering of the incoming particles 

could take place before the meson is exchanged and 

similarly afterwards for the outgoing particles. 

These absorption corrections are approximated by assuming 

elastic scattering to be the dominant mechanism. 	They 

have the effect of greatly reducing the large contribution 

arising from the low partial waves of the Born terms. 

Both 0 and 1 exchange amplitudes are therefore improved 

however the bad enelzy dependence of the vector exchanges 

still remains. 	Consequently the model is useful for 

reactions dominated by -,)seudoscalar exchange but. since 

most such reactions do permit the exchange of one or more 
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vector particles, we should only expect the model to 

work in the intermediate energy region, ideally 4-8 
GeV incident momentum, owing to the poor asymptotic 

behaviour of the vector exchange graphs. 

The couplings at the vertices of the Born diagrams 

can sometimes be obtained by experimentally measuring 

appropriate decay widths. 	However they are frequently 

inaccessible so we calculate them assuming 11(6,6) 

symmetry. U(6,6) allows all the meson-baryon-baryon 

(NBB) and meson-meson-meson (i'IMM) couplings for 0 and 1

mesons and for 4.4.  and r baryons to be related to just 

two coupling constants. Thus once these couplings are 

fixed we are left with a parameter free theory for all 

the production processes involving 0-0-X and 1, 

particles. 	In particular the couplings for strange 

particles will be determined from non-strange effects. 

This model has been previously applied with considerable 

success to strong interaction processes (4)  

The photoproduction reactions fall into four categories, 

namely 

a) ZS 3 0-  ±* 

b) X IA 0-  r 

c) ty 	r -k+ 

d) ZSN r 
where N denotes the target proton or neutron. 	such of 

the photoproduction experimental data is for processes a) 

and this category will be treated in full in the thesis of 

D.G.Fincham. 	There has recently been an increase of data 
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for processes b) and c) and no doubt data on processes 

d) will be forthcoming soon. Here we shall be dealing 

with these last three categories. 
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CHAPTER 2  

A general description of the U(6,6) absorption 

model applied to photoproduction processes is presented. 

The unmodified helicity amplitudes are given in section 2. 

1) U(6,6) and Vector Dominance  

We assume the vector dominance-model (5); the u-spin 

scalar transformation property of the photon gives, 

for the amplitude for any meson-baryon final state, 

-1(1sx te‘z) = X 	Ivy%) 	\W% „33 
IA 

(2.1) 

thus relating the photoproduction amplitude to purely 

strong amplitudes for the scattering of transversely 

polaiAsed vector mesons off a nucleon target. 	Taking 

the SU(6) prediction for Caa-a? mixing, i.e. 

\ 	= 	 (2.2) 

we obtain 

Itves) = X iTC 	tevz;) xil,"T(usl‘ vv-a tnz) 

4 X4:7 (cPIttA—  V"  lb) 

(2.3) 
where 

(2.4) 



where 
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The .f• -photon coupling X9  is given by 

= Xs) CURT (2.5) 

and 

 

%SNtiv 	\ • le, (2.6) 

(2.7) 

      

  

4.-vc 	Vai 

 

Alternatively Xp may be evaluated using the decay 00-40S"vr. 

In. either case we obtain 

(2.8) 

We need now only consider the Born 

purely strong reactions \1;% 

involve the exchange of 35 mesons which 

couple uniquely to 	x 56 or 35 x 35. 

three particle vertices are written as 

graphs for the 

These graphs 

through U(6,6) 

Thus the 

ABC L 	L.)„,m"` 

\--voMM 	\s, Vi\ v" 	 (2.9) 
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where A, B, C and D are the u(6,6) labels. 	Just 

retaining those parts of the currents in which we shall 

be interested we have, for the "oseudoscalar current, 

=%(e) -uc't,)*jsm jsm 	 (2.10) 

where 

i(e)= 4*.v.5A -\=.1  
tk-Tu 

CiAlsoA)b,1,_s  

CCS,xa) 

.5(T) =c \NC),(Zi5 cl?)>F 

V\O = 	1), 	\Ay.. CV,C, 	•.43Z)14  Cp.v) 
	

(2.11) 

and, for the vector current, 

,t Co) A Ii (b) t jkxy) t jvl\r) 	(2.12) 

where 

(0) =-F \ 
SW.% 	%INV / 

   

 

W1S 	Vs 	4 TN 

AI% 
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= \A-t-k%  VAN (k/ (3Z))  — 	4ZYVV`C-C.Th•C3  

.k.%C‘N, C§y Cti5 
	

(2.13) 

The following notation has been used 

p = momentum of incoming particle 

131 = momentum of outgoing particle 

q = p - p' 

P P PI  

= 
Ix = meson mass 
Cn = baryon mass 

F, D and S are the familiar anti-symmetric, symmetric 

and singlet SU(3) couplings respectively. 	We have alsth 

introduced exPlicitly a G coupling for the meson-octet-

decuplet vertex defined as 

(2.14) 

where L, N and D are the usual meson and baryon fields (3). 
The a arises in equation (2.14) as we have normalised 

ft to 	. 

The two couplini7 constants which appear in the 

currents given in equations (2.11) and (2.13) are calculated 

from Chew-Low II VA scattering, giving 
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‘..41,4‘411 = 1vt-•°l = (5.N\  
v. 	a (2.15) 

  

and from the Novisibirsk (6)  experiment for the ?-=1P$LIM 

decay width, giving 

S rct'vt  = 	• Sa. = 
‘i-TC 	 %VW 

(2.16) 

Thus by using U(6,6) the coupling of the decuplet 

is completely specified. 	For the mesons the D:F ratios 

and the ratio of the charge to moment couplings are 

also completely determined. 	The only arbitrariness 

in the model now lies in the choice of the U6,6) masses 

and m. 	We adopt the following prescription: m = mean 

mass of 1.4.  octet in Is(e) and ut
(00 ; m = mean mass of 

4-+  octet and 2 
	decuplet in skt) and ,rttii) 	= mean 

mass of 0 octet in s(16) and ,‘s (t) ; 	= mean mass of 

1 nonet in ivAg31 1.(t.f);4s(y)41,(4) and '0.V). 

We denote these masses by m, m', tr. and IJO 	resnectively. 

In the propagators the experimental masses of the 

particles are taken. 

2) The Unmodified Helicity Amplitudes  

It is now a simple matter to write down the Born 

amplitudes, in terms of these currents, for the processes 

in which we are interested. 	Denoting the pseudoscalar 

and vector exchange auplitudes by 	 and Tv respectively 

and the exchanged pseudoscalar and vector masses by we  

and (1 resnectively, we have, for 0 i production, 
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= S(<5 	 
‘.%•Zi 

(2.17) 

(2.18) 

for isr production, 

-N-r4= s(b) 	 (2.19) 

(2.20) 

for rif*  production, 

(2.21) 

	 j-t('t) 
- \z-v 

(2.22) 

and, for VA,  production, 

Tc  	VNI) 	 (2.23) 

	

ckv(Vi 	‘ 1 01) 	(2.24) 
\z„ 
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The metric is taken as %iv= (+11-1)-1)-1). 

The 0i+  production processes will be dealt with by 

D.G.Fincham in his thesis so we shall restrict ourselves 

here to the remaining reactions. Using equations (2.11) 

and (2.13) we obtain the following expressions for the 

aml-Aitudes 

-Tv.`t').= a, Vt),11).(P u(P) N'3?t(Fw4) (2.25) 

where 

(2.26) 

-(v  r= 	zr,o, e5.,‘=•.:(71,4) 0,(e) zyrrt 
(2.27) 

where 

(2.28) 

r: CITA %.3) 	 V%Nt',-4--cf;)Nits?‘)(CA-A.) 	(2.29) 

where 
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"i-v(°  =tt(R.z) C1 ,-k4 - C.a(_‘‘N-c‘A)  (@,t1,%0 
v 

-vCs̀61, - 	(‘-‘\%--Ac\->  (R.‘t.--%v)(1txt) - 
V"v 

- .(ii.wvot4V1-1.7,ANcreA-)Ntqz'N"-) 

F2-Awh(-F1/4> -c3.64(-VF'•‘-xchq),-)1 
(2.31) 

where 

c\\NX 	 y.v..\-%s) 
1  V- q„ 

-T )= 	‘..134k)z) (O ZNo.‘,,,Q,k,,11 /4%),-(Y-FiA)ct., 
(2.33) 

where 

       

rb‘  = 

     

(2.34) 
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Zrm),  V‘rt—tix tq44CPtkt*)112c1:-C—VA4 

"V%-ek;Ale. ViNaCt'akSZ 	(V.A -1/4'0 kii2IN7:54(R4) N•%tiktia%) 

*147k,*(0 CIZ'cl.t.t.S11 (2.35) 

where 

- t'XR  (Vt 
%-ce 	V 	\- -V, 

(2.36) 

We have distinguished between the incoming nucleon and 

photon and the outgoing baryon and meson by the labels 

respectively.m.and. PI  then denote 

the mass and 4-momentum of particle "i". F'and Dare 

the SU(3) couplings at the Mifl4 vertex; F,D,S and G are 

the couplings at the MBE vertex. 

To include absorption corrections the matrix elements 

T are diagonalised in the helicity representation of 

Jacob and Wick (7). We define, for the general two 

body reaction 1 + 2-1-3 + 4, 

cps  = 	 (2.37) 

where T = T + Tv and the index i specifies the helicity 

dependence. 	The restriction imposed by parity reduces 

"1","2","3" and "4" 
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the number of independent helicity amplitudes to half 

which are then evaluated in the centre of mass frame. 

Explicit expressions for these amplitudes are long so 

only those corresponding to present available data 

are given viz. err production and \-V' (pseudoscalar 

exchange only) production. 

The helicity dependence of the amplitudes for 

Cfr production is shown in Table 1; We obtain the 

following expressions for the helicity amplitudes 

--L 	(?)\ %.utn em/l/u 	 crft% 

	

ct):'="- 1#1- 	Mczt -- .2,\<vz*S0c-etAia 
trz-E • tc‘2. 

4- \VA( 1r6C191 4tiX1%-1 

4..t 3%-
1t

.ii6;c‘4312, 4%\1_ fig' li  

--- N<Q4z,%%) 
a4q3c 

v\WI;r& cs:z4/;.-\%;A 

faAA- %101_ zyzAWA %svyr3ix‘Val 

QIIP% 	e • 	(1A-44/0 	%2%Nk  `141:MCV . et. -1— 	`1+ 

scc'sz: ‘i.k(iK%iza 	— %,% 	 alp 
a7E 
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cii)%  = r_.%AVA- n-t(z.,Q0.- - .zNKCJZOL(6) c?tilAS. 
U'ae 	Cctl 

— v_Xcika szcANA1 ctixa 

cl()%-t 	 (z,ct)- 3\<zr,31.%) zsz:scah 

‘134-W4ZA c?i11‘QP;191Z30?) 

cIZINU -S IZZaWq 

Gela 	%‘11- 	RcZa eXA.8/2  %;%1N 1•1- cc  ik 

(2.38) 

where E. is the energy of particle "i", K and Q are the 
magnitudes of the incoming and outgoing 3-momentum in 

the centre of mass frame and 0 is the centre of mass 

scattering angle. Also 

C = ( VCN M•er 

fit =  C 

_ac 
"EAV.C1 	C1*.Z151) "te \< a(,--4;74,c1z5240_c_eiLci6 

-kciNtZciAlbl 

Zia3%)-10 *C-Qt.%) 

Q11--NK %Z14 %A 
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(2.39) 

Table 2 shows the helicity dependence for v.4.0-

production and we obtain the following expressions for 

the psoudoscalar exchange part of the helicity amplitudes 

- C, (W(• 	\<) exlsAA 

Gh 	= 	 x(§ — 	ctimcV2Q3 11% 

(34 	- cpcx, = -S e;1-\_ me, Tam% zizeeik 

azsz = 	- 	c% \A*  vc‘e,\‹ Tixzfah_ czs.% 

0?c, 	 (zkAlize.3Aft  

(2.40) 

where 

‘i-Vk r-c 	 --k• 	(‘JeCt\;)] 
— 

The helicity amplitudes for T
(c), T(D).and T(D) 
v 	p 

are embarassingly long and so are not given here. 

They are evaluated using standard techniques and patience. 

(2.41) 
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3) Absorption Effects  

As vector dominance relates electromagnetic 

interactions to strong interactions, the two incoming 

particles can be considered to be a nucleon and a zero 

charged vector meson. This model allows strong 

elastic scattering to take place in the initial as 

well as in the final state as for the usual strong 

interaction absorption model originally proposed by 

Sopkovich (1). 	This model has been widely discussed (1) 

so we restrict ourselves here to just a brief summary. 

The production partial wave amplitude from 

channel J. to channel i3 is related to the Born 

amplitude 74 by 

=1- . 	C/'‘/A 4t11\ ktAtz3< fez.\ -T4 4.ck-t) 

4 	1.-\ 7%14.a‘ cr. ck't < 	\ Sgia, \ 41/4 	(2.42 ) 
A:fiV1  

where 14:1,1, 	and 	are the helicities of the 

particles. S.1  dd an C1d :1 :3/4  are the S-matrix elements for 

elastic scattering in the initial and final states 

respectively. 	This elastic scattering is assumed to 

be pure non-spin flip. 	Its form is parametrised in 

terms of a real Gaussian model of radius R(s) and 

opacity C(s), thus giving 
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<ck,a0 	= 1 — Cck(%) Qxj--ielA/ cta.t%) Nk'l 	(2.43) 

where Q=4.---k 	and K is the magnitude of the 3-momentum 

in the centre of mass frame. The parameters R(s) and 

C(s) describing the elastic scattering are, in general, 

not known. 	In the initial state we take R(s) from lip 

elastic scattering and C(s) = 1. 	If the final state 

contains no strange particles we use the same values 

for 11(s) and C(s). For strange particle production we 
take R(s) from VA1  elastic scattering and again C(s) = 1. 

Elastic scattering data gives Nk(s14  = • 2.6 CAN-' for 

and Vel? and Visi`= -.at. tor' for Wt'"' iil at the 

intermediate energies that we consider 

The partial wave projections of the Born helicity 

amplitudes were obtained by numerical integration 

• 4% 	• 
(S) 	CV; aaMa(b) acem%) (2.44) 

modified according to equation (2.42), and the new 

partial wave series re-summed 

(Teo 	d;,In (2.45) 

to give the modified amplitudes. 	The differential 

cross-section according to the absorption model was 

then obtained by 

 

    

(2.46) ciN• 6' Vls 
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where the summation is over the independent helicity 

amplitudes. K is the magnitude of the centre of 

mass 3-momentum of the particles in the initial state. 

For completeness the usual method of obtaining 

the spin density matrix elements for the decay of 

outgoing resonances is outlined (8) 
	

In the centre 

of mass system they are given by 

= 

and similarly for ?),14,3,4.  where 

(2.47) 

(2.48) 

These distributions are then transformed to the 

rest frame of the decaying resonance. 	In.this frame 

the z-axis is taken parallel to the incident momentum 

and the y-axis perpendicular to the production plane. 

With respect to these new axes the density matrix 

elements are given by 

Va1/3 
	S3  

):
a
(._ kV3) ?)a)3 

r.N ),11-4)3) 
	

(2.49) 
cA\ X 

where uva  is the angle between the directions of the 

incident particle and particle "4" as seen in the rest 

frame of particle "3". 	The expression for ?1,44.is 

obtained in an analogous manner. 

Thus given the helicity amplitudes evaluated in 
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the previous section we are now able to compute the 

relevant differential cross-sections and spin density 

matrix elements. However, we shall see in the following 

chapter that these amplitudes may need to be amended 

due to the requirements of gauge invariance. 
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CHAPTER 3 

  

 

A dicussion of the theoretical predictions of the 

 

model is given. 

    

1) Gauge Invariance and 2SM-4.0-1+  

  

Continuity of the electric current implies that the 

matrix element for a photoproduction-- process must obey 

the condition 

 

 

‘1<t% Jr= 

   

(3.1) 

where Wy is the 4-momentum of the photon. Each  

photoproduction amplitude is written in the form cpt,4 

where citp is the polarisation vector of the photon. 

Thus replacing 43(11  by ‘(14, one must obtain zero for a 

gauge invariant theory. 	We immediately see that for 

the processes in which we are interested T(B), T(c) 

and T(D)  are gauge invariant due to the presence of 

the term Ev0010„).,,a11)4,  in VI) and .y.tY-) defined 

in equations (2.11) and (2.13). 

A gauge invariant extension to T(B) can be obtained 

by including parts of three other graphs (9)(10)  viz. 

       

       

      

      

      

  

N 	o- 
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The gauge invariant amplitude then contains contributions 

from the t-channel, s-channel, u-channel and contact 

graphs. The relative contributions from these three 

additional graphs depend on what basic assumptions are 

taken. 

Our t-channel matrix element is: such that the 

photon interacts with the "orbital current" of a 

moving charged particle, the total iSo-spin is equal 

to 1 and only the vector part of the photon couples. 

In both reference 9 and 10 a gauge invariant extension 

is defined such that the first property is maintained. 

Thus only the "orbital parts" of the s-channel and 

u-channel graphs are retained giving,for 

Q?).(W) R'`), 	"W`) 
tNNI, 

	

=  
 Tir() VAy (14`) 

tc12t. 

7:12' — 	(Va) (3? (R,3) r (3.2) 

7-7R 
where and % , 	are the t-channel, s-channel, 

u-channel and contact graph contributions respectively. 

Comparing Tx  with equation (2.24) and remembering to introduce 

the p -photon counling )L.p we see that 



-106- 

e = - 4_04 (‘-‘....1 

In reference 9 only those parts of 	and -1: " 

are retained that correspond to the iso-spin I = 1 

amplitude in the t-channel and to the iso-vector part 

of the photon. 	It is pointed out in reference 10 

that, for example, in the case of W')PleAlle: the 

u-channel graph does not vanish as it should corresponding 

to the electromagnetic orbital current of the neutrally 

charged 	We therefore follow reference 10 and 

consider the full iso-scalar and iso-vector contributions. 

Consequently the gauge invariant extensions for the 

four err.  production processes in which we shall be 
mainly interested are given by 

ev •-.z. 	711  * 	"1"-.  ‘:17133' 

where (0.1\4)=(-11-2:),(11t3"),(0.)-) and 	for 

ISt•-"tr-a --)PUVRIISIN 	-AA" and h4IN-It>iiiA.467 

respectively. 

In the centre of mass frame 7111=C5. The helioity 

amplitudes for ,rala and  TEL  are easily evaluated so 

that the T. given in equation (2.37) are amended to 

%Fa 	 ma  

41 % 	 ta Z1:26%. 
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3 = izt)%z _01.(n_4(ck%14.4)cIA•zrkAh 

-oz%-sni.iix.%1;kiN% 

its: = cg)it - `%,n-v 1?tx3 vt 

415% 1--- u4• * %, trsimetvzoit% 

etst = 04.  --gal.(1_ceol.-5.vv.Wmt%)coN% 

_v:"%v\i.,iskx,e cgx‘ei% 

t-T.  = 'cit 4r -1--%‘01**Vrixl% - v1-Rle-e06.) VANcah 
ANNa 

-V \• %Iv\-- TAN(?) er*.Va. 

(3.5) 

where 

ra, = _c343,\oci  (vc ..%12)V %._x_ 
i-v 	kx 	ZR 

%-+ = - %\\X3  ( \ A- 43kl-NN
/ 
 V -1- 	% 	. I 44: (.-‘,i-N%;) 

t'C 	\ 	V' 	R cu.-rat) 3% 
(3.6) 
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where Ma is the mass of the exchanged decuplet in the 

u-channel and all other notation is as in chapter 2. 

Gauge invariant extensions to the helicity amplitudes 

for lkt i ket,e° and ISA\-+N(1.47 are identical to those 

for 4-10341? and tc\--,;. -eb: with Nt and 

replacing IT and Li respectively. 

The six channels already mentioned, X11---),I146,X%-÷NV;87; 

li?-i.Ne4r and xi1--).Nek-4r are the only crr 

photoproduction processes which allow pseudoscalar 

exchange. The other charge states of MA-PIVii 

dO not allow pion exchange by charge conjugation and 

the F coupling for )rk exchange at the MMM vertex 

is zero for the other charge states of ISIA-3.Neir. 

The couplings of the pseudoscalar and vector exchanges 

for the six channels are shown in table 3. 

The terms added to the helicity amplitudes to 

ensure guage invariance are seen to be approximately 

S-wave. Since we are applying absorption to the 

initial and final states the contributions from these 

additional amplitudes are very small particularly near 

the forward direction. 

The theoretical results for the differential cross-

section at energies from 3 to 16 GeV are shown in figures 

1, 2, 3(a) and 4(a). 	The data shows the very interesting 

feature, pointed out by Richter (11),  that in the near 

forward direction the differential cross-sections appear 

%XV 
to fall as Q . 	This slope 'rapidly decreases at 
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around t = -0.2 and then becomes similar to that for XV-,brI01. 

The contribution from 	exchange alone is also shown 

and we see that Lhe steep slope in the forward direction 

is not accounted for. 	However, the inclusion of 

exchange improves this particularly at the higher 

energies. 	The larger IVI 	behaviour is quite pleasing 

although the change in the slope is not sharp enough at 

t = - 0.2 and, in fact, becomes almost negligible at 

16 GeV, the slope in the larger WI region then being 

too steep. 	The energy dependence is good with the 

normalisation consistently a little too low. 	The 

correct turn-over in the forward direction is obtained. 

At present there is only preliminary data available 

at 16 GeV for the remaining three charge states of ISIAITti. 

The theoretical nredictions at 11 GeV are shown in 

figures 3(b), (c) and (d) and comparison is made with 

experiment at 16 GeV in figures 4 (b), (c) and (d). 

From table 3 for the couplings we see that the 1T 

exchange contributions to tit--1 1m-ti" and in - -rett:' 

are equal and three times those for 2Sil7114ve and 

1“\---yrr- 	However, the equality (up to this 

factor of 3) of all four reactions is slightly broken 

by the gauge invariant extensions being different in 

each case, and also broken by a difference in the 

relative sign between the T exchange and 	exchange 

amplitudes. 	The constructive interference in the 

wider angle region for x@----cere and Xv\--- tenet 

gives too large a differential cross-section whereas the 
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destructive interference in this region for 4,--N,WEI" 

and Xvv-bione gives too small a prediction. This 

is not surprising since the predicted ? 	exchange 

contribution is probably too large at 16 GeV. 	We 

have stressed that the energy dependence for vector 

exchange amplitudes is known to be wrong and is why 

we should only expect the model to work at intermediate 

energies. 	It can, however, be seen'that the relative 

sign between the ? and IT exchange amplitudes does 

appear to be correct. Perhaps more may be said when 

data at lower energies becomes available. 

The spin density matrix elements for the decay of 

the t resonance for Isc).--,,-Tra#4  at 3 and 4.65 GeV, 
are shown in figure 5. 	Being sensitive to the p 

exchange contribution more experimental data here would 

prove extreraely useful. 

So far there is no experimental data available 

on the differential cross-sections for 141--- tir 

and IST%-1. 	In figure 6 we show the predicted 

angular distribution at 4.65 GeV. 	The cross-section 

for 	Nti‘ir out to lk-k= 0.6 	is calculated as 

0.16 µb . 	This value is compatible with the 

(12) 
experimental value of (1,5•UAts\C5 !*S 	 for the total 

cross-section for this reaction. 

2) Elastic Scattering and 61:)--v .V6? (..V5= p°,  

C parity excludes vector exchanges in the reactions 

S‘A%)'et.k thus leaving only Teb  and vl  exchanges. 



pseudo- 
These/scalar exchange amplitudes are already gauge 

invariant. There is only experimental data for the 

reaction when the nucleon is a proton and hence we 

--shall restrict ourselves to this case although all the 

discussion will also go through for the case of a 

target neutron. 

From equation (2.3) vector dominance allows us to 

write 

(ksp \PO 

	

=x27 k --NAN) A- X 	ltup--).Arp.) -k )(,‘,1* tiakc.--, \PO 

(3.7) 

Consequently for each production process two parts of 

the amplitude allow, in general, 	and v‘ exchanges 

and one part is elastic scattering of VseN.:1--riil multiplied 

by the appropriate factor. 	To include this part of the 

total amplitude we take values of the total cross-sections 

for 9?-1  WP 	and qn, from the Quark ;,:odel predictions 

since these are so far in agreement with experiment. 

These predictions are (13)  

= 	(wpb = 	l-ct've) c:I, (-TiA 

c3-jcp =(')  dT 	 -i- 	 (3.8 ) 
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giving 

d'VCR)0 = "sS C‘‘‘' 
	(3.9) 

From the Optical Theorem we obtain the differential 

cross-sections in the forward direction to be 

XIS) 4-A (R'N $30\ 	\S% 0:1  ( %4z-NI/Q)2  d.k• 

v-4.s voct ext\fic)_s. 

V= o 

tg?  dd  (c. 	= sasz‘ ya,\ 
V=4:3 

(3.10) 

For this diffractive part of the differential cross-

sections we use the form 

 

  

Qxc,, czvAQ 1/4A) (3.11) 

  

In all three processes we take B = 9 and C = 2.5 which 

are obtained from "MI elastic scattering, A is, of 

course, determined from equation (3.10). 	So our 

diffractive differential cross-sections are 
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da  (tVi-bi. 	= ‘55t. Qxv.(%.*.-ist&) 	(evitNY1  

aa 	 (zkv i..svt) 	mzvr. 

da  (tc‘,... cp0 = 	(ck\- .-St-t-) 	y.`z, (e.4zNr 

(3.12) 

Since the diffractive amplitude is purely imaginary 

and the exchange amplitude is purely real there is no 

interference between the two mechanisms. 	We thus,  

evaluate the differential cross-sections arising from 

the pseudoscalar exchange amplitudes given in equation 

(2.39) using the absorption corrections and then add 

the diffractive contribution. 

The SU(3) couplings for INee  and v\ exchanges 

are shown in table 4. 	The final results for the 

differential cross-sections for XVe----.)So gizo 	at 4 GeV, 

tilil , Uaktb 	at 2.15 GeV and 4.15 GeV and 

at 4.15 GeV are shcwn as continuous curves in figures 

7, 8(a), 8(b) and 9 respectively. 	Without the inclusion 

of the diffractive part the results are given as dotted 

lines in these figures. 

The good fit for xs?=)sr„ 	at 4 GeV tell us 

nothing more than that we have chosen the correct 

parameters for the diffractive part since in this pr.:cess 
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the meson exchange contribution is negligible in comparison. 

We could have started from here and then obtained the 

diffractive differential cross-sections for UV? and gni 
production. 

Both diffractive and exchange contributions are 

seen to be important for 14,---'›UIV, at 2.15 and 4.15 GeV. 

These combine to give extremely good results at both 

energies. 

The reaction XN-2* a* at 4.15 GeV does not 

allow INS  exchange and the u‘ 	exchange contribution 

is small. 	The evaluated differential cross-section 

appears to be slightly too large in the forward direction, 

and then falls off too rapidly with increasing YkA 

It is hardly surprising that we do not obtain good 

agreement here since our assumption that the %I? elastic 

scattering differential cross-section is similar to the -1-rvi) 

is probably unreasonable. 

In figure 10 we show the spin density matrix 

elements for the decay of the P meson in Xii:1 _so 341'? 

at 3 and 4.65 GeV. 	The inclusion of an exchange 

contribution for this reaction has more effect here 
• 

than in the differential cross-section. 	However, 

the difference is not large enough to ascertain whether 

an improvement has been obtained. 

	

Figure 11 shows the decay matrix elements for 	LI* 

at 1.95 and 4.15 GeV. 	The results are an improvement 
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on those for diffraction only and are in good agreement 

with experiment. 

No data appears to be available for the decay 

matrix elements for 1Ci,  --a a?Q.  

3) Remaining Processes  

Restricting ourselves again to the target baryon 

being a proton, the photoproduction of 241\ , wevA 

V**2,6  , V*GZ*  , ?-e+  , teg 	, w e , 	, 
WI' 45  4r and WI*  V5  all allow 0 exchanges. Except for 

the reactions Xi) 	Xv.---)N er and Xlit-bP Ne'" 4;6' 
1 exchanges are also allowed. The vector amplitudes 

are not gauge invariant but since no experimental data 

is available for the differential cross-sections and 

since we expect the pseudoscalar exchanges to dominate 

we shall not consider this problem here. 	The couplings 

for 	production are given in table 5 and for 1P.  

production in tables 6 and 7. 

Figure 12 shows the predictions for the angular 

distributions of 151?-b, FA"  and /41-4.2*C at 4.65 GeV. 
The cross-section for XP-4616." in the region -04,M44-13 

iscalculated to be -6311. 	This is in good agreement 

with the experimental value cf .()*.IN  04  (14) for 

this Dart of the cross-section. 

At 5 GeV the predictions for 241\ production are 

shown in figure 13, for wkilwirE7 and \e"E4  
in figure 14, for see 03  A+ and cp A.* 

 
in figure 15 
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and for 
k  Co 

and Vklic5 4: je  in figure 16. 	No 

data is so far available on the cross-sections for these 

processes. 

4) Conclusions  

For processes dominated by pion exchange the model 

reproduces well the overall characteristics of the data, 

though detailed agreement is not always good. 	However, 

it must be remembered that the model is parameter free. 

It is an interesting point to investigate whether the 

general success of the absorption model for pion exchange 

can be extended to reactions proceeding by kaon exchange. 

Calculations for the reactions 	_box* stet.2.1' (15) 

have been found to be not very encouraging in contrast 

to the excellent fits obtained for cili kezi (4) 

Unfortunately there is no experimental data yet avaMable 

for the strangeness exchange processes we have considered 

here to allow investigation of this point. 	It would 

also be very useful to have better data on the decay 

density matrix elements in such reactions as )M=t.IN& 

allowing a more accurate test of the U(6,6) predictions 

for the vector exchange contributions. 

An extension of the model is to apl?ly the absorption 

corrections to Reggeised amplitudes. 	Some extremely 

good fits have been obtained (16)  using this model for 

strong interactions but for photoproduction difficulties 

present with our model are not always eliminated. 	The 

answer to this may lie in a wrong assumption about vector 

dominance. 
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FIGURE CAPTIONS  

Figure 1. Differential cross-section for Xv--vICer*  
at 3 and 4.65 GeV. 	The data is from DESY (17). 

Figure 2. Differential cross-section for IS.4?-11-6." 

at 5 and 8 GeV. 	The data is from SLAG (18) 

Figure 3. Differential cross-section for )5it--:bAN 

ISVb--111..gl Itv‘—liA'A,.. 	and Xiv---)Al-W 

at 11 GeV. 	The data is from SLAG (18)  

Figure 4. Differential cross-section for 154i1=3, NN-6"  

14,-.1111150SON--Nic 	and ISAN,--%)Ire 

at 16 GeV. The data is from SLAG (18) (19)  

Figure 5. Spin density matrix elements for the decay 

of the 66 in Icktill-ti at 3 and 4.65 GeV. 

The data is from =SY(17). 

Figure 6. Differential cross-section for thii).-:*)KA"-ete'. 

and tc,%\---1p1eY -  at 4.65 GeV. 

Figure 7. Differential cross-section for 4---> Sie'‘N 

at 4 GeV. 	The data is from DESY (  17)  

Figure 8. Differential cross-section for Xlszk-=->Lia? 

at a) 2.15 GeV 
b) 4.15 GeV 

(17) The data is from DESY 
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Figure 9. 	Differential cross-section for ti)---N.ccoit• 

at 4.15 GeV. 	The data is from DESY (17) • 

Figure 10. Spin density matrix elements for the decay 

of the 	in ISt-kbel) at 3 and 4.65 GeV. 

The data is from DESY (17)  

Figure 11. Spin density matrix elements for the decay 

of the Lb in Xci,--act  at 1.95 and 4.15 GeV. 

The data is from DESY (17)  

Figure 12. Differential cross-section for IS -s? r IV*  

and ISVIs/S7 at 4.65 GeV. 

Figure 13. Differential cross-section for 15.i)—'->5)}  C1 

at 5GeV. 

Figure 14. Differential cross-section for S4c1---N,`41-*A.)  
XV‘--).Vbir and ISV#A-t,4°Z*  at 5 GeV. 

Figure 15. Differential cross-section for 15?--sPet 
w gr.  and 4--,›Qpil*  at 5 GeV. 

Figure 16. Differential cross-section for ISist-4‘44°41:*  

and Ist-I,Ne*iir at 5 GeV. 
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Abstract  

Detailed calculations for the reaction Nt-p-'oNc11- 66;" 

at 10 GeV/C, using the double peripheral and virtual 

diffraction models, are presented. The couplings are 

determined by using U(6,6) symmetry. 	"Off shell" and 

"absorption" effects are included in an approximate 

way by the use of Phenomenological form factors. 

Good agreement with experiment is found for all the 

relevant one dimensional distributions. 



Introduction 

In previous papers we presented detailed calculations 

using the "Deck" virtual diffraction model fOr the 

reaction U:-.Q""P‘4611-i) (1)  and the double peripheral 

on calculations for Witib-",Nrilretat 

contributions from both mechanisms. 

This paper reports 

10 GeV/C including 

As in the previous 

model (DPM) for 

work we have taken account of 

effects in an approximate way 

form factors. 	The number of  

"off shell" and "absorption" 

by use of phenomenological 

free parameters in the 

model is significantly reduced by imposing u(6,6), 

symmetry (3)  to relate the couplings involved. 

The data for this reaction is notable for its 

apparent lack of any easily resolved quasi-two particle 

contributions. This is not wholly surprising as any 

resonances in the Vre4and Ni-ti systems would be 

weakly coupled higher baryon resonances. 	It is also 

noted that almost all events have the La scattered 

backwards in the overalj_ centre of mass frame and the 

events are fairly evenly divided between the V. 

scattered forward ( IN isotrozic) and the IN scattered 

forward ( K isotrotic;. 	These features are strongly 

suggestive of double peripheral mechanisms with strange 

and non-strange meson exchanges. 

In section 2 we present the matrix elements used 

and our choice of parameters. 	Our results and conclusions 

are discussed in section 3. 



2 

2. Model: 

The DPZ processes are represented diagramatically 

in figures la and lb, the exchanges (-3.,in are kt15,7C.V.tbrs) 

in la and 0,146,10,(ctike>,r) in lb. 	In addition there 

is the possibility of the virtual diffraction diagrams 

represented in figures 2a and 2b. Since the data shows 

few events with the A scattered away from the backward 

direction no attempt has been made to include contributions 

involving baryon exchange to either the DPI-: or stii.tUal_ 

diffraction processes. 

Using U(6,6) symmetry the H-functions are written 

down in an identical manner to that used in references 

1 and 2. 	For the DPI.: we have, for (PC),(u31)and (.‘7014;101.V11.34::) 

exchanges respectively. 

y, ota \,„‘„,(s(\ ._sn 

	

the 1 cv‘ 	 vik,o 

\.‘,„.„,%( \A. 
• ‘Av /Tul 	U- oar cs\ ,61  (Nwar vc‘ia) 

• - 	iRsv  

*.q‘et)tet,%)- .‘k,frk.e.3Noz1e2A4 

A.V.(v,e(etv.3)- (e‘ec.)q.xe)-A eN,yA 



3- 

= 	\\%kc's\-0--t-A)i 
	egt4  

	

tkv cc\ 	uz‘(&)(ANttrmli) 

• ‘-itNA-%.‘z2 - 61-(e‘ii).1) - 
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The indices a, b, 1, 2 and 3 refer to the target proton, 

incoming kaon, outgoing kaon, outgoing pion and outgoing 

respectively. 

previously used 

coupling hk  for 

mesons, its 

from the 

are, in GeV, 

111' 

NM 

lug 
The Deck effect  

The U(6,6) couplings g and h are as 

(2) 
and we have also introduced the 

an 	vertex containing two strange 

mass of 	and it baryons) 

mass of 0 o• ctet) 

mass of 0 o• ctet and 1 nonet) 

mass of 1 n• onet) 

E-functions are, for ‘.ti virtual diffraction 

value is 1.17 times that of h being fixed 

W*(  890 decay. 	The U(6,6) masses which appear 

= 1.18 (mean 

= .417 (mean 

= .655 (mean 

= .850 (mean 

and )4? virtual diffraction res-cectively 
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where 

2- --ant% atx 	— 	 %-k-x 

 

(2.3) 

 

and we have taken the differential cross-section for ‘A.11 

and V.V, elastic scattering as 50 exp (7.5t) (GeV/C)-4. 

Phenomenological form factors of the form 

(2.4) 

are now included for each of the particle exchanges and 

the values talzen for the Parameters 	le) and )% are 

as used in references 1 and 2. 	Introducing these form 

factors into equations (2.1) and (2.2) to modify the 

matrix elements, the T matrix for the reaction is now 

taken as 

111  

(2.5) 

where 13Y4 (VI) \I) 	is the 	spin wave function and U.(.4iNct•AA) 

the spin 	wave functicn with helicities ).,h and )1.1% 

resnectively. 



5. 

The relevant distributions can now be calculated from 

 

\v)1' (2.6) 

where A is evaluated in the usual way. 

Results and Discussion 

The Data was taken from the Aachen - Berlin - CERN - 

London (I.C.) - Vienna collaboration's %C V:,  exposure at 

10 GeV/C. 	The restriction V.NcNir>a.ektVic was applied to 

the data and to the theoretical calculations since we 

have assumed a virtual diffraction parametrisation 

in the .t-rt subsystem. 	This parametrisation can only 

be expected to be valid at high energies (c.f. reference 1). 

Our overall normalisation was fixed by the data, the 

relative normalisations of the various contributing 

processes having been fixed by the model. 

Our results for the mass-squared distributions S(NtNis)T:--(.111/) 

and $(NtitZ) are shown in figures 3%a), (b) and (c) 

respectively. 	In all these plots we find good agreement 

between theory and experiment. 	The peaks in these 

distributions at high and low masses are the kinematic 

reflections of the forward/backward peaked angular 

distributions which are a feature of multiperipheral 

models. 	In particular the sharp peaking at low mass 

in the -At& subsystem which is given correctly by the 

model results mainly from the strongly peaked virtual 

diffraction processes. 



6. 

The momentum transfer squared distributions k(feb.),‘•Lwa.) 

and %(w) are shown in figures 4(a), (b) and (c) 

respectively. 	Comparatively Door agreement is found 

for the \-Wi..) distribution; however this would undoubtedly 

be improved by allowing for the finite decay width of 

the A 	The t(KK) distribution is in good agreement 

showing strong forward peaking typical of virtual 

diffraction. 	The third plot, for VA.V.NO is interesting 

in that it shows quite strikingly the presence of both 

the strange and non-strange exchanges. 	In this 

distribution the forward peak is due entirely to strange 

meson exchange and the large momentum transfer scattering 

which peaks at about 2(GeV/C)2  is due to the non-strange 

exchange and virtual diffraction processes. 	The 

ability of our model to obtain agreement for this plot 

demonstrates that we are able to predict correctly the 

relative ccntributions from these types of processes. 



7. 

ACKNOWLEDGEMENTS  

The authois are indebted to the Aachen-4erlin-CERN-

London (Imperial College)-Vienna collaboration for 

allowing use cf the data prior to publication and to 

Dr.Y..Lcsty for producing the relevant plots from this 

data. 

REFERENCES  

1. J.L.Schonfelder, Nuovo Cimento 61A (1969) 114. 

J.L.Schonfelder and A.P.Hunt, Nuovo Cimento 62,(1969) 820. 

2. A.P.Hunt and J.L.Schonfelder, Nuclear Fhysica 312 (1969) 15. 

3. A.Salam, R.Delhourgo and J.Strathdee, Proc.Roy.Soc., 
A284 (1965) 146; 

I.A.Beg and A.Pais, :::hys.Rev.Letters 14 (1965) 267; 

B.Sal,:ita and X.C.Wali, 1=hys.Rev.Letters 14 (1965) 404; 

Phys.Rev.139 (1965) 31355. 



FIGURE CAPTIONS  

Figure 1. Double peripheral diagrams for 

(a) non-strange exchange only, and 

(b) strange and non-strange exchange. 

Figure 2. Virtual diffraction diagrams for 

(a) \( 	diffraction, and 

(b) V.1? diffraction. 

Figure 3. Mass-squared distributions. 

Figure 4. Momentum transfer-squared distributions. 
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(ricevuto it 10 Marzo 1969) 

Summary. — Detailed calculations of the « Deck » virtual diffraction 
background plus possible coherent diffractively produced resonances 
and the incoherent 	resonance are presented at 6 and 10 GeV/c for the 
reaction liCp-÷ TC"rz-p. s Off-shell » and e absorption » effects have been 
allowed for by the inclusion of phenomenological form factors. A simple 
parametrization for the diffractive production of the resonances in the Ii57-c 
enhancement is employed and these amplitudes, which include the sub-
sequent decay, interfere with the s Deck » background. A reasonable 
fit to experiment is obtained. 

1. — Introduction. 

In a previous paper under this title (1), hereafter referred to as I, we presented 
calculations with the simple « Deck virtual diffraction model as suggested 
by FRASER and ROBERTS and also Ross and YAM (2). We demonstrated in I 

(') The research reported in this document has been sponsored in part by the 
Air Force Office  of Scientific Research OAR through the European Office of Aerospace 
Research, United States Air Force. 

(") Present address: Department of Mathematical Physics, University of Bir-
mingham, Birmingham. 

(***) Beit Scientific Research Fellow. 
(1) J. L. SCHONFELDER: Nuovo Cimento 61 A, 114 (1969). 
(2) G. FRASER and R. G. ROBERTS: Nuovo Cimento, 47, 292 (1967); M. Ross and 

Y. Y. YAM: Phys. Rev. Lett., 19, 546 (1967). 
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that this model was, at best, a model for background and we pointed out that, 
as the most likely resonances responsible for the K*7C enhancement would 
interfere strongly with this background, it would be desirable to include such 
resonances explicitly in the calculation. We also concluded in I that neglecting 
4 off-shell » and « absorption » effects was not strictly warranted and that some 
attempt to include these was also desirable. 

Consideration of the relevant experimental data and the summarized par-
ticle properties (3 ) suggests that at least three resonances must be present in 
the K*17 enhancement; the K:(1230), K:(1320) and K:(1420). All of these 
resonances have /-spin z  , and JP  = 1+, 1+ and 2+ are the most likely spin-
parity assignments. The 1+ mesons allow vacuum exchange in the t-channel 
and so are most likely to be produced by that process, i.e. diffractively. The 
2+ meson does not allow vacuum exchange but pion exchange is possible and 
we assume that this is the dominant production mechanism. 

The inclusion of « off-shell » and « absorption » effects is by no means a 
trivial problem to do « correctly ». The inclusion of absorption effects by some 
technique like that suggested by SCHONFELDER ( 4) would involve considerable 
labour which the crudeness of the present model does not warrant. Conse-
quently it was decided that, following the work of JOSEPH and PILKUHN and 
also GISLEN (5 ), these effects could be taken account of in an approximate 
way by the use of phenomenological form factors. This is a far from satisfac-
tory method of tackling the problem but as this is a somewhat exploratory 
calculation it was hoped that such a simple-minded approach would be 
sufficient. 

In Sect. 2 of the paper we shall outline the way in which we have para-
metrized the backgound and resonance amplitudes. The results of our cal-
culation are presented in Sect. 3. 

2. - The model. 

For the background amplitude we use the same forms as in I except for 
the inclusion of a form factor for the two t-channel exchanges. The processes 
are represented diagrammatically in Fig. 1. The M-functions for these processes 

(3) A. H. ROSENFELD, N. BARASII-SCIIMIDT, A. BARBARO-GALTIERI, L. R. PRICE, 
M. Roos, P. SODING, W. J. WILLis and C. G. Wom.: Particle properties tables (January, 
1968), UCRL-8030. 

(4) J. L. SCHONFELDER: Nuovo Cimento, 58 A, 221 (1968). 
(5) J. JOSEPH and H. PILKums.T : Nuovo Cimento, 33, 1407 (1964); L. GISLEN: 

Nuovo Cimento, 54 A, 919 (1968). 
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(t21-  ml) y AV 1- 	2  
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where A = pb — p2 . As in ref. (5 ) we have assumed 
that the form factors factorize into the product of 
two functions, each dependent on one t-variable and 
we have taken the form as given in that reference, viz. 

(2) 	 F(t) = F(0) e" . 

C 
2 

a 	 3 

Fig. 1. - Deck effect for 
--- n ; 

• — 

No form factor is introduced explicitly for the vac- 	K*0(890); 	 p; 
uum exchanges since the vacuum exchange ampli- 	0 virtual diffraction. 
Ludes e A s are calculated from experimental results 
and hence any form factors etc. are implicitly included. The treatment of 
process B we shall postpone until we have dealt with the resonance processes 
as we have treated all s-channel poles in a similar manner. 

We now turn to the resonance amplitudes Dl, D2 and E say, which are 
represented diagrammatically in Fig. 2. For the 

31 or D2 

	

	 _- decay vertices we shall again use the covariants 
and couplings of SCADRON (6 ). In the case of 
Dl and D2 where there are two possible coup- 

	 3 	lings we shall assume lowest-order e angular- 
momentum barrier coupling (7 ), i.e. we take 
only the coupling whose appropriate covariant 
contains the lowest number of momentum fac-
tors. The propagators for these unstable reso- 

	 3 	nances we shall take as the numerators as given 
Fig. 2. - Resonance production in ref. (6 ) and the denominators will be given a 

	 P,    K*(1230) or 
K*(1320); =1=1= K*(1420); 
0 inelastic virtual diffraction 

for K-p-,-K*017-p. 	n; 

or vacuum exchange. 

—•—•— K*0
(890); complex mass. The production process for E, 

taken as single-pion exchange, can be written 

fractive production amplitude is not so well 
down by quite standard techniques. The dif-

defined. In order that we end up with an in- 

(g) M. D. ScAnaoN: Phys. Rev., 165, 1640 (1968). 
(7 ) T. J. WEARE : Nuovo °intent°, 56 A, 64 (1968). 
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variant T-matrix, we must have a vector index on the diffractive produc-
tion amplitude which will contract out with the corresponding index on the 
spin-1 propagator for the resonance. The simplest assumption that one can 
make is that the K-  and the K: are coupled to the vacuum exchange as if 
the vacuum exchange were a 0+  object. The remaining scalar part of the am-
plitude can then be parametrized as for elastic scattering. Thus we obtain 
the following M-functions for resonance production and decay: 

M Dlp= g}47.K*Tr • (812 —  141) 

	  NADI , 

similarly for D2, 

(3) MB„ giepe 8/43ea Pie KAPia • 
(812 ME) T iTEME .  

Fn(t3a)  
' KIKT,P 	b, • ( .6 14)  Y5 GXJY'rc 

where .91(K) and <92(K) are the spin-1 and spin-2 propagator numerators and 
K = Pi + P2. We have again introduced form factors for the t-channel ex-
changes, explicitly for the pion exchange process E and implicitly in the dif-
fractive production amplitudes. 

We now consider the energy dependence of the s-channel exchanges. The 
amplitude for two spinless particles scattering via a spin,/ resonance in the 
direct channel can be written, in the centre-of-mass frame, as 

(4)  M  = g6g9iani ),(cos 0 )  

s—ml+ irR m j, • 

It is well known from low-energy phenomenology that a reasonable energy 
dependence for such an amplitude can be obtained if the couplings and mo-
mentum factors in eq. (4) are replaced by the appropriate constant partial 
widths. This is essentially equivalent to evaluating these factors at the pole 
which is the method we have adopted. 

The full T-matrix for the reaction is now taken as 

(5) T = 8p( 21 Pi) a(23, POPIA + M ± Ma 1- 3/D1 + M1 + 111EL14( 2.,  Pa) 

and the unpolarized cross-sections are calculated from 

PAAF2A II   PDBF 28 	COF 20  I Tia=- g,*,„{ 	 
.21.. 	(t„— m2)2 	( 812 —m2)2 	(tab — m1)2  

	

2PABF AFB 	 2.P.A0  F A  Fa 

	

+ 
(s12 74)(41, — 	( 812 —  mg)(t2b — 	(t36 —  m22)(t2b — 	+ 

.91.a (K) 

(6)  
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PDD2 FL 
_ _ 

(812 — MI1)2 	.14...D1 	( 812 —  MD2)2 112M112 

2Pnin2FD1PD2[(812 M2D1)(812 M2D2) T 1  D1MD1rD2 MD21  -L  

s12 	M2D1)2  -172D1M11] [(s12 — M2D2)2  IT)2M2  [ D2] 

2g elm D1(912 111',291) IP AMP 	P BD11  1B
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PCD1P0  

+ (812 — M2D1 )2  + Finn& (tib m22) 
+ 

(812 — mb) (t2b — mi) 
• 2givbirr, F D2( 812 — 1942) IP AD2F A 	P BD2P B 	PCD2Fc 	 PERPE + 	2 + 	 2 + 	 

(s„ — M,D2)2  -112MD2 (tlb M22) (812 — Mb) (t2b —ml)} (812 —7E)2  + rInd 7  

where .P etc. are the factors resulting from the spin sums and FA  etc. are as 
in I except that they now include form factors where appropriate. (Detailed 
expressions for these quantities are recorded in the Appendix.) 

These expressions were readily programmed and the required distributions 
generated using the programs for phase-space evaluation reported in I. 

3. — Results and discussion. 

Figures 3 and 4 show the results at 10 GeV/c, Fig. 5 and 6 the results at 
6 GeV/c. The data are identical to those used in I. We have again restricted 
the kinematics and have only considered theoretical and experimental contri-
butions for which AS'„> 3, S13  > 5 and It„I < 1. In our choice of form factors 
we have followed GISLEN (5) and have taken the parameters as 

F, (t) = 0.95 exp [2.5t] , 

11  ,* (t) = 0.8 exp [2t] . 

With these factors and normalization taken from experimental elastic scat-
tering we find that the absolute magnitude of the background as well as the 
shape is quite good. This can be seen in Fig. 3a) where in the region away 
from the resonances the cross-section is entirely due to background terms. 

Initially we took the normalization for all resonance amplitudes from 
experiment. The contributions from the diffractively produced resonances 
were too large. This was to be expected since an inelastic diffraction is unlikely 
to be as strong as elastic diffraction. The It*irresonance contribution came 
out to be too small. Again this was as expected since, for simplicity, we 
neglected 7], p°, o and 9 exchange production. 

At 10 GeV/0 we reduced both K, amplitudes by a factor of 2 and increased 
the K*„ amplitude by a factor of 3. At 6 GeV/c these factors were 2.8 and 1.5 
respectively. We used no other parameters apart from the form factors given 
in eq. (7). 

(7 ) 
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The masses and widths used to calculate the coupling strengths for these 
resonances were taken from ref. (3). These values are tentative especially 
for the Km's and consequently the effective coupling strengths used are within 
experimental-error bounds. 

Unlike in I we now obtain fairly good agreement for all the mass-squared 
plots as can be seen in Fig. 3 and 5. The momentum-transfer distributions 
shown in Fig. 4 and 6 also show reasonable agreement although the t KK*  distri-
bution at 10 GeV/c, Fig. 4b), appears to peak at a slightly too small value of ItI. 
It is hardly surprising that some disagreement should occur in this distribu-
tion since it is the t„ dependence of the matrix element that is most strongly 
related to the exact nature of the resonance production mechanism. 

In conclusion then it would seem fair to say that these results demonstrate 
that the virtual diffraction model for background with coherent diffractively 
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produced resonances plus the incoherent 4(1420) can reasonably account for 
most of the cross-section in the reaction li-p —>- K"7-cp at high energies with-
out drastic changes to calculated normalizations. 

* * * 
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APPENDIX 

We present here the detailed expressions used in eq. (6) to calculate to 
unpolarized cross-sections. First we give the spin sum terms 

P Ad 	(P 1P b) 2 	Mb 

P BB = (E(173 	MI) nit,  I M21 

P00 = (Pb 4 )2  (P14 ) 2  linal — P2b(P b 4 ) 2  + 2  (Pb )(PIA )(PiPo)]imi 
r(PiPo) t 2 (Pb 4 ) 21/mi —  mg / 

P AB = 04E?)  ± (P1Pb)MbE(18)  IM 21 

PBo = mbEr — (PiPb)mbri )  I — (Pb A)(-K3)  — 	)mbl m21 (Pb 4 )(PiPb) mbEr 

P Ao = (P1Pb)(P14 )(Po 21 )114— U1)002  (Pu 	 mr2, 7 

P Dm= 	+ Pr'  Ann'  cos2  Im22 7 

P AD' = (PiPb)PiEl)  Pb) cos  0  1mi —  Pr )  P 3)  

(B)
Pim=  mbEr Pr )  Pb cos 0/M1 7 

P001 = p(bD1 )1A3 ) — ( 4Pb)[231D' Aa)  + Pb )  PT'  COS O]/M11 

Apl)  Pi cos 0 [(Pb 11 )(Pizi)Iml — (PiPb)iimi 

similarly forPPPP — D.D2 — AD21 — BD21 — oD27 

PDD12=  gm)  Pr )  + Pr Pr )  Pr) pi cos 0 , 

PEE = neEpl'' 	sin2 0 cos 2 6 . 

The notation we have used here is as in the Appendix of ref. ( 4) except that 
all the momentum and energy quantities which have process labels as super-
scripts are factors to be evaluated, in the (12) centre-of-mass frame, at the 
pole for the process designated by the label. 0 is the angle between the three-
vectors p(3.3)  and 14,3)  in the (12) centre-of-mass frame. These quantities can 
be evaluated in terms of the invariants s and t 

(23 xx) = (9721 + 	tib )/2 
(P14) = (m1 + tib — t3.)/2  7 
(Pb Z1) = (/4 	—m2)/2 , 

ET' 	= (812+ mi—m22)/21V3 

PT)  = [(812 m22)2  — 41111812] 12 W 3 7 

Er = (812 + 74, tga) / 2W 
Pb) = [(812 t32) 2 	4M: 812]i/2 73 7 

cos 0  = PIA Vt2i — Trt: + 2E? -E1112PT )143)  • 
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The quantities Er, 	etc., can be evaluated by taking 312 =-14, nip 
ni% or ml and lt)3 = Mb, MEI, 111E2  or ME in the above expressions. The fac-
tors FA, etc. are defined to include the common spin-j- trace factor 

• 647Ls23pr a„„ exp [b„„taa]•[-F.(tib)] a  

▪ 647sab  gam, exp [b,„„taa ] , 

= 64grsiaPe )2  aap exp  Chicpt3.1-{17.4.(izW23 

647rs«b P2aam exp [bDits.] 3 

similarly for .F% 

aE • 'FTC( t3a) 

where the momentum factors occurring can be calculated by analogous expres-
sions to the above and the parameters am, am  and az  are used to fix the nor-
malizations of the resonances. 

RIASSUNTO (*) 

Si presentano calcoli dettagliati del fondo di diffrazione virtuale di « Deck » piil 
risonanze prodotte difirattivamente, coerenti, possibili e la risonanza KI` incoerente a 6 
e 10 GeV/6 per la reazione K-p->-1-Z*077-p. Si 6 tenuto conto degli effetti di s assorbi-
mento » e « fuori strato » con Pinclusione di fattori di forma fenomenologici. Si usa una 
semplice parametrizzazione per la produzione diffrattiva delle risonanze nell'accresci-
mento K*7-c e queste ampiezze, the includono it decadimento susseguente, interferiscono 
col fondo di « Deck s. Si ottiene una ragionevole approssimazione agli esperimenti. 

(*) Traduzione a cura della Redazione. 

Bigyrya.ibilast giulximaKuusi x peatattni K-p 11*(47-p. - II. 

Pemome (*). — ATISI peazusm K-p 	mil 6 14 10 c3B/c npegnaratoTcm flogpo- 
6.libie 	Burryanbuoro AinfOpaimuoinioro (bona .(< geica » Hnioc BO3MO)KHITX 
Korepennibix ,gyulxlipainufornio poKaetnibtx pe3onaucou H HexorepesiTnoro pe3oHauca K1. 
flocpegersom mcniouelinu cliell0MCHOJTOTYPIeCKIIX dexTopoe 6hum rirenbi 34li1)eiam « BHC 
o6onogicx » H <<nornowermg ». Plpumengeresi npocrau napamerpn3aum gnu giulnlipaic-
informoro pox/lei-1nm pe3onaucon B K*77 yekvielinn, II 3TH amanyrrygm, xoTopme BICJI10-
maim' nocnegytoutuil pacnag, turrep4tepHpyloT C (1)OHOM «,E1(exa ». Ilonygaercsi pa3ymlloe 
COOTBeTCTBHe C mccneplimeuTom. 

(*) Ilepeeedeno pedammeti. 



J. L. SCHONFELDER, et al. 
21 Agosto 1969 
// 1Vuovo Cimento 
Rorie X, Vol. 62 A, pag. 820-828 



8.A.8 Nuclear Physics 1312 (1969) 15-25. North-Holland Publ. Comp., Amsterdam 

THE DOUBLE PERIPHERAL MODEL AND THE 
REACTION ICI) — K* yr -En AT 6 AND 10 GeV/ c 

A. P. HUNT $ 
Physics Department, Imperial College, 

London SW7 

and 

J. L. SCHONFELDER 
Department of Mathematical Physics, 

University of Birmingham, Birmingham 

Received 31 March 1969 

Abstract: Detailed calculations for the reaction Kp --,K*-ir+n at 6 and 10 GeV/c are 
presented. The non-resonant background, which accounts for most of the cross 
section, is assumed to be due to double peripheral exchange mechanisms. The 
relative strengths of the couplings for the various exchanges involved are fixed by 
using U(6, 6) symmetry. "Off-shell" and "absorption" effects are included in an 
approximate way by the use of phenomenological form factors. A contribution 
from the K*(1420) resonance is included explicitly and the production and decay 
amplitude for this process is allowed to interfere with the background. Encourag-
ing agreement with experiment is found for all the relevant one dimensional dis-
tributions. 

1. INTRODUCTION 

In this paper we present the results of a double peripheral model [1] 
(DPM) analysis of the reaction K-p K*-7T+n at 6 and 10 GeV/c. This re-
action is notable for an apparent lack of strong quasi-two-particle inter- 
mediate state contributions.i 	The only clearly resolved resonance is a 
K N(1420) in the K 7( sub-system and this appears to be responsible for less 
than 20% of the total cross-section. Almost all the observed events have the 
baryon scattered backwards in the overall centre of mass frame and except 
for a few events, which mainly appear in the K*(1420) band, the K*(890) is 
scattered forward. The pion is mainly produced isotropically. These fea-
tures are suggestive of a DPM with non-strange meson exchange. 
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Our approach is similar to that of Gislen [2] differing in that we use the 
U(6, 6) symmetry scheme [3] to calculate the relative strengths of the cou-
plings involved in the DPM processes. This method has had considerable 
success for the single particle exchange absorption model [4]. Also we in-
clude an amplitude for the peripheral production of the K (1420) and its sub-
sequent decay into a K*(890) and a v. This is done in the same way as in our 
previous work for the K*0  IT p final state [5]. 

It is essential in such calculations to take account of "off-shell" and "ab-
sorption" effects. The most desirable approach would be to correct for ab-
sorption using a method like that suggested by Schonfelder [6]. However such 
a calculation is by no means a trivial one. As a first approximation we make 
use of the same phenomenological form factors as used in refs. [2, 5]. Even 
though this is a somewhat unsatisfactory procedure we do have significantly 
fewer parameters than would be present in a double-Regge model [7]. We 
show in the remainder of the paper that the model does account fairly well 
for the data and we therefore hope to begin a more thorough treatment using 
the suggestion of ref. [6] for the calculation of absorption effects. 

In sect. 2 we outline the matrix elements used and give our choice of pa-
rameters. The results are presented and discussed in sect. 3. 

2. MATRIX ELEMENTS 

Strange meson exchanges would have to be doubly charged so we are re-
stricted to considering DPM processes as represented in fig. la. The ex-
changed particles (I, II) are assumed to be members of the U(6, 6) supermul-
tiplet 35 for mesons. Application of the various conservation laws at each 
vertex restricts the possible number of exchanges to four, viz. (p°, 7r+), 
(vO,p+), (co, p+) and (0, p+ ). SU(3) predicts zero for the cb-p-ff coupling so 
the last of these is removed. We refer to the remaining three processes as 
A, B and C respectively. 

We write down our matrix elements using U(6, 6) couplings [3] in the 
same manner as Migneron et al. [4]. The resulting M-functions for the three 
processes are 

MAI/  = A E il (Pi,P2,Pb)Y5, 

MBA  -= Bpbti p2  v[G (pa  + p3)1, + Ilyv] , 

C E p.v(p1,Pb) EvA.(p3 -Pa,P2)[G (Pa +P3)x HYx] 
	

(1) 

where 
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Fig. 1. (a) The double peripheral model and (b) the resonance production 
diagrams for K p -. K*-ir n. 
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The masses which appear have the following values, measured in GeV, 
mN  = 0.938, 

	

lip  = 0.417 	(mean mass of 0 octet), 

	

!i v  = 0.850 	(mean mass of 1 nonet), 

mp  = 0.765, 
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= 0.138, 

m u, = 0.783, 

g and h are the U(6, 6) couplings for BBM and MMM vertices respectively 
and we use the values of ref. [4]. 

We now introduce the form factors. Following Joseph and Pilkuhn [1] we 
assume that the form factors factorise into two functions each depending on 
just one momentum transfer variable i.e. if F(tlb,t3a)  is the required form 
factor then 

	

F t lb , t 3a  ) 	 t 	F(t 3a  ) 

	

(2) 

where we take 

F(t) = F(0) eXt 	
(3) 

These form factors are included in the matrix elements (1) by multiplying 
the quantities A, B and C by the factors appropriate to the exchanges in-
volved. For it exchange we use X = 2.5 (GeV/c)-2  and 177(0) is evaluated by 
extrapolation to the pole giving a value of 0.95. For the vector exchanges we 
take X(,)  = Ap = 2 (GeV/c)-2  and 1 0(0) = Fp(0) = 0.8 since extrapolation to the 
pole is not likely to be valid over the larger distances now involved. This 
parameter is essentially free but the value of 0.8 is as we used for K ex-
change in ref. [5]. 

The matrix element for the production and decay of the K*(1420) reso-
nance, responsible for the observed peaking at 2 (GeV)2  in the serr  distri-
bution, is assumed to be dominated by single-pion exchange as in ref. [5]. 
This is undoubtedly a more correct assumption as we are now dealing with 
charge exchange thus removing the possibility of n, w and 0 exchanges. The 
entire production and decay process is represented in fig. lb. The normali-
zation is fixed by calculating the couplings at the vertices A and B from the 
experimentally determined width and branching ratios [8] for the K (1420). 
The pion form factor is again included for the production exchange process 
and as in ref. [5], we evaluated the momentum factors for the resonant part 
of the amplitude "at the pole" (see appendix). The M-function for this pro-
cess is now written as 

9a13, y6
(K) 
 

MDp. = gAAAaci3A(KAA) gBAByAB6 
(s12 - 4)  + irDmD 

2  1  
g(1+x 	

2m 
N\\1 	 y5  , 	(4) 

	

(t2a -74) 	iiP 	4mN  

where 172D  and rD  are the mass and total width for the K*(1420) and 92(K) 
is the spin-2 propagator as defined by Scadron [9]. The various covariants 
used are defined as 

A = 1,(p -p ) A 2  1 2 , AB  = (pb  -pa  +p3) , K = pl +p2 	(5) 
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The full T-matrix for the reaction is now 

T = E 11 (\1,Pi)a(X3,P3)[MA+ MB + Mc+ MD ]ii.u(la ,pa ). 	(6) 

To calculate the required mass and momentum transfer distributions we 
have to evaluate nspi„ T I 2. Noticing that the only non -zero interference 
term is between A and D, we obtain 

n 	17,1 2 =A2TAA+ 2AD TAD(s12  - 4) 	D2 TDD  
spins 	 (s12 - 4)2  + r1234 (s12 - 4)2+r)234 

a_ rp,2 ,,, 	2 
T A-I [.. BG G  + TBGHGH+ TB/1H2] + C2[TGGG2 + TGGB  GH+ TeBH2] , 	(7) 

where the factors T are defined in the appendix. This expression is easily 
coded for use with the phase space programmes reported in ref. [3]. 

3. RESULTS AND DISCUSSION 

The results for this calculation at 6 GeV/c are shown in figs. 2 and 3; 
at 10 GeV/c in figs. 4 and 5. The experimental data was supplied by the 
H.E.N.P. group at Imperial College and was taken from the Birmingham-
Glasgow-London (I.C.)-Munich-Oxford collaborations K p exposure at 
6 GeV/c and the Aachen-Berlin-CERN-London (I.C.)-Vienna collaborations 
K p exposure at 10 GeV/c. 

Unfortunately we were unable to obtain an absolute normalisation for the 
experimental results and so we have normalised the theoretical curves to a 
cross section 90% of that for the data. This figure is chosen to allow ap-
proximately for processes not taken into account in the model. Looking at 
the t-distributions (figs. 3 and 5) we see that the results decrease too rapid-
ly outside the forward peak. This is probably due to the presence of some 
non-peripheral processes and, possibly, an over drastic t behaviour of the 
form factors. The over rapid fall off is reflected kinematically into the 
mass-squared plots where it produces cross sections which are too small 
at large sK*7  and srn and at small sK*n• This is a feature that may well be 
improved by the "correct" inclusion of absorption effects. Also, looking at 
the mass-squared plots for the nn sub-system, it appears that there is 
probably a contribution from the 0(1236) resonance producing a peak at 
sin  = 1.5 GeV2  and possibly a small contribution from a higher mass reso-
nance, perhaps the Nt(1470). In the mass-squared plots for the K*7 subsys-
tem there is a suggestion of a contribution from the eA(1320), even though 
we are dealing with a charge exchange reaction so that diffractive production 
cannot occur. There is, however, no trace of the K*A(1230), the other Q 
peak resonance. 

One unsatisfactory feature of this model lies in the total energy depen-
dence. At 10 GeV/c the relative magnitudes of the background and resonant 
contributions are given correctly by the model but at 6 GeV/c the background 
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Fig. 2. Mass-squared distributions at 6 GeV/c. 
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is significantly too small relative to the resonance. To obtain the curves in 
figs. 2 and 3 the background amplitude was increased by a factor of 2 rela-
tive to the resonance. This is not wholly surprising since the resonance am-
plitude is assumed due to single pion exchange, which is known to give rise 
to a reasonable energy dependence, but the DPM terms all have vector ex-
changes which are known to predict an incorrect energy dependence. This 
poor energy dependence does not show up in the mass-squared distributions 
as these are dominated by the kinematic effect of the restricted momentum-
transfer distributions, but causes the total energy dependence to be incor-
rect. 

4. CONCLUSION 

In conclusion we may say that these results suggest that the DPM gives 
a mechanism which can account well for most of the direct three particle 
cross section in high energy inelastic processes and that it would be desir-
able to perform a more thorough analysis taking account of "off-shell" and 
"absorption" effects in a more satisfactory manner. The major difficulty 

4 
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Fig. 3. Momentum transfer distributions at 6 GeV/c. 

with this model, in common with the normal two particle peripheral model, 
is still the incorrect energy dependence of vector exchange amplitudes. 
Presumably this problem will find a similar solution in both the single and 
double peripheral models. 

The authors wish to express their gratitude to Professor P. T. Matthews 
for his help and encouragement and to Drs. M. Losty and M. Mermikides of 
the HENP group, who supplied the experimental data. One of us (J.L.S.) 
would like to acknowledge the financial assistance of a scholarship from the 
Royal Commission for the Exhibition of 1851. 

APPENDIX 

The explicit forms for the quantities not given fully in the text are as 
follows, where notation is as in refs. [5, 6], 

g
i) \ Fr (0 ) e t3a (D) 

D = 3 gAgBgc1 	 N/\1 4n2) t2) 	 P1  Pb cos 81b) 
p 	N 	( 3a  _ n27,  

, 
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T AA = - t3a[43)pb(3) sin 01(3b)]2  312 , 

TAD = - t3a p1
(3)p 

l
(D) p b(3) p

b(D) sin2(01
(3
b)) mD  W3  

(D) (D) 	(3) 2 2 T
DD = - t3a[p1 Pb  sin 19 1 lb , mD ' 

TBG = [{p1  pb 	1 )2/m2} - mbil t
3a  m2 

2
+ 4 2a23'')1 

54, h 	21 	2--(4, 41 	tr. 1, Ni 2  
TBGH 4 marirl 	mbliw2 I'ai w2 P3I-1  ' 

2 	 2 2 2 	 2 
TBH = [4ma t3a ][{(P1Pb) /1"11 mb][(P2 Pa) (P2 P3)1  ' 
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Fig. 5. Momentum transfer distributions at 10 GeV/c. 

TCG = [P l  Pb  ) t3a  + 2(Pl  Pa  )(1,b  P3  ) 2(Pa  Pb  )(P1  P3  )] 
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[Dl (pl  p2) + Dl  (p2  pb  )+D2  (p1  A) - D3(pb A)] 

- [m12  t3a  + 4 (pi  pa)(pi  p3 )][Di  (p2 pb) + D2  (pb  A)] 

- 2Di  (pb  0)[(pi p2 ) t3a  + 2 (pi  pa)(p2 p3)  + 2 (p2  pa) (pi  p3 )] 

+ 2Di  (pi  A)[(p2 pb) t3a  + 2 (p2  pa) (p3  pb) + 2 (pa  pb ) (p2  p3)] 

- [mb2  t3a  + 4 (PaPOP3PO[Di  (pi p2 ) - 	A)] - 2D23.[ t3a  + 2M2a ] , 
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D1 = (Pi  A)(P2Pb) - (Pb  A)(Pi  P2) 

D2 = m2
2  
(Pb 	- (P2  A)(P2Pb) 

D3  = (Pi  P2)(P2 	- ni2
2  
(Pi  , 

A  = Pb - Pi ; 

TCGH = 8ma {(P1 A)[(Pa Pb) (3Pb)] (Pb A)[(P1 Pa)  + (P1 PO}  

X [ - m22  Fl  + (p2  p3) F2  - (p2  pa) F3] 

+ 8ma2  Dl  {Fi  [ (p2  pa ) + (p2  p3)] - F2  [m32  + 	pa)] + F3[m2a  + (p3  pa)]}, 

2m2 
+P. 

m2 4. F2 2222 
2 	3 	3 	2F1 F2 02 p3) + 2F1 F302 pa) TCH = -8 {F1 2 

, 	, - 2 F2 F303 pa  )1 [ma
2 	

3 Pail 

where 

Fl = (Pi  P3)(Pa Pb) - (Pi  Pa)(P3Pb) 

F2  = (Pi  P2)(Pa  Pb) - (P2  Pa)(Pi  Pa) , 

F3 = (PIP2)(P3Pb)  - (PIP3)(P2 Pb) • 

The momentum factors p(1
3) and p(3) are given by 

+7724  pi2+ 	2  2s m2 -2s )n2 -2m2 m2 ] 2 
) 12 1 12 2 	1 2  

1 = 2W3 

2 
(3) _ [s12  + 	+ tia  - 2.912  rni23  - 2 s 12  t3a  -4,mb  u3a] 2  

Pb 	 2 W3 

and, p (D) and p (D) are the above momentum factors evaluated "at the pole", 
1 
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i.e. with s12  =W 2 = m2 

cos Bib - [ t
i  - mb + 2E(3)  E (3)]b   

(3) 2pl p
(b3) 

(P1P2 )  =1(.912- r4.  - n4) etc , 

(p3  pa) = *(n22
3  + ma 

2 - t3a  ) etc. 
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