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ABSTRACT

The work presented in this thesis is divided

into two distinct parts.

The first part deals with tﬁe thecry of non-linear
Lagrangians. Techniques are presented for computing
S-matrix elements for non-polynomial scalar field
Lagrangians with derivative interactions. To second
order in the interaction Lagrangian it is shown that
all the dependence arising from the derivative part is
completely separated out as operators acting on integrals
identical to those obtained inla non-derivative
theory. The Fourier transforms of self-energy graphs
for a class of non-local interaction Lagrangians are
tﬁken in the massless case. The on-mass-shell
contributions are determined by the analytic continuation
of the coefficienés appearing in the series expansion of
the Lagrangian. As special examples two Lagrengians
which are iso-scalar analogues of chiral SU(2) x SU(2)
Lagrangians are treated. The possible eguivalence of
on-mass-shell matrix elements for Lagrangians related
by non-lineax fisld transformations is discussed. The
extension of these techniques for Lagrangisns with iso-
spin and hence for the chiral SU(2) x sﬁ(z) Lagrangians

is also precented.

The second part is phenomenclogical. The absorption
model is applied to vhotonroduction processes at inter-
mediate energies assuming vector dominance. U(6,56)
symnmetry is used to uniguel; determine the couplings of

the exchanzed pseudc-scazlar and vector mesons.



An aprroximate extension of this model using
phenomenological form factors to describe three
particle final state reactions is given in the three
papers included. The reactions considered are RfQ-»§a°Tr9,
W p—>» Y WYD  and Wp—» Ww AN The first
two of these papers were essentially »resented by

Dr.J.L.3chonfelder in his thesis.



PART I

NON-LINEAR FIELD THEORY

"It often happens that objectively the masses need a certain
change."

Chairman Mao Tse-Tung

"The United Front in Cultural Work"

October 30th, 1944,
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CHAPTER 1

In this chapter a general review of non-linear
field theory and of the formulation of chiral lagrangians

is given

1) Introduction

Lagrangians of interacting quantised fields were

(1)

originally classified into those of the first and
those of the second kind. The first kind are renormalisable
and the second kind unrenormalisable. A non-linear

lLagrangian expressible as an infinite power series in

the field variable

) = q v(x)

1

%i: ) §¥ @

L ¢ 1.9
(1.1)

was therefore considered to be a mixture of the two
kinds. The lerms q‘. with € £W are renormalisable
whereas the terms with YW are not. As early as 1954
(2)

in a much neglected »aper Okubo showed, fer the
example of <) being an exsonential of X,

that & non-linear Lagrangian could be renormalisable.

The major step forward was not to treat the infinite

series by normal perturbation methods. In 1962 the
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problem of dealing with non-linear Lagrangians was

(3) (&)

. revived by Efimov and by Fradkin . Although

it was stressed that finite results could be obtained

e e $ e
~

the ﬁork was considered of academic rather than of

direct physical interest until only a few years ago.

One of the recent advances of particle physics

has been the formulation of chirally;invafiant Lagrangians(S)
using non~linear realisations of the chiral éroup. These
non~linear Lagrangians can be given a direct physical
meaning. There has already been reasonable success

in using the chiral Lagrangians by expanding them as

a power series in <@ and then evaluating the lowest
order contributions (tree diagrams) (6) to the appropriate
emplitudes. Clearly this can only be considered as

a first step and one is next interested in evaluating

the closed loop contributions and higher.

In the following section a review is given of the
formulation of some chiral SU(2) x SU(2) Lagrangians.
These Lagrangians possess the algebraic complexities of
containing derivatives of the field and, naturally, of
involving isco-spin. The above~mentioned authors have
restricted themselves to Lagrangians of the form given
in (1.1). Cne of the main objectives of this work is
to develop rmethods for dealing with the physical non-
linear chiral Lagrangians. _hese technisues can then

be used to evaluate the contributions to self-energies
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and scattering amplitudes. This will be dealt with in
the thesis of (.Shafi with whom I nave collaborated for
muca of the work. Self-consistency relations will be

given there which give rise to a finite prediction for

the pion mass.

For simplicity we first look at the situation for a
non~-polynomial Lagrangian given by equation (l.l1l) i.e. we
ﬂeglect the derivative part and the iso-spin. This is
sufficient to see the general featur;s. /e see that
two coupling constants apprear in egquation (1.1). The
coupling g is termed the major.coupling constant and
determines the order of any contribuéion. To each order
in g there are an infinite number of terms to all orders
in f. Thus the second order vacuum contributions can

be represented diagramatically as the infinite sum.

—— &

x S ERRE
LOL Y ddf daflg DO ADBE | DR

i.e. the r'th diagram corresponds to there being a
Lagrangian  c(¢) €' @° at each vertex. The number
~of r'th order diagrams is r! and hence we must expect the
expansion tc be a divergeat series. Also from conventienal
held theory we know that each diagram for T S>W is
unrenormalisable in the usual sense of the word. The
ultraviolet divergences therefore get progressively worse

in the perturbation exyansion.
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The crucial point is that although each term in
the series is divergent.a sunmation can be performed
which either eliminates or at least greatly reduces
the number.of ultraviolet infinities. Summation
methods for divergent series always give rise to the
problem of unigueness, however it has been shown that
the self-energy diagrams obtained this way do satisfy
the requirements of analyticity and iandau-Cutkosky
anitarity (3).

Once the summation has been performed we represent

the diagramatic divergent series above by just one

superpropagator, i.e. by

_—

QUi QAs(R)

The obvious next step would be to perform the summation
in the major coupling constant g. So far as the author

is aware this is still a very open problem.

The techniques for dealing with non-polynomial
Lagrangians yield nmatrix elements in x-space. A review
of the methods intrcduced by Efimov and Fradkin is given
in the following chapter. These techniques are then
extended for the case of Lagrangians containing derivatives
of the scalar field. Although p-space 1is of more physical
interest, x-space is useful for studying the overall ultra-
violet divergences which may occur. This is also looked

at in chapter 2.
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- The Fourier transforms of the second order self-
energy diagrams are taken in chapter 3 assuming zero
mass fields. A comparison of the on-mass-shell self-
energy contributions is then made for two particular

Lagrangians.

The final chapter deals with extending the technigues
to include iso-spin and thus allowiné the chiral Lagrangians

to be treated.

A need for extending the technigues for dealing
with non-linear Lagrangians also arises from weak and
gravitational interaction theories. Zinstein's

gravitational Lagrangian is
- v A p A f
P~ - '\‘TJ:S' (3\‘ (\—‘\lp r‘v) - r‘\w v\g)

with the Christoffel symbol

\
‘—‘\w = Ai \?(a\‘%\'? "'&" %\‘3 - é?%\“‘) )

Y is the gravitational constant and %: Ak %dq. .
The covariant components qn“, can be given as a ratio of
two polyncuiesls in the contravariant comuonents QSN
thus giving rise to non-linearity in the field variable.
Of more interest is the coupling of the gravitational
field to other physical fields where it seems likely that
the gravitational constant W has the effect of being a
cut-off parameter and thus sup resses infinities guite

. (7) - .. . .
naturally . For example, the electrcmagnetic interaction

(1.2)

(1.3)
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Lagrangian for the electron could be taken as

L= e 9 Xplqg

The second order self-energy for the electron is then

diagramatically given by

vhere «ZhI ST e is the graviton superpropagator.
The author is at present working on the evaluation of
diagrams including gravitons. The electron's self-mass

arising from the above diagram is

Sn = 3oy (Ee) + OW ]

)

where d:f‘i‘_ = a3 and Ww ~ \G”“_ The terms of 0(1)

re indeed negiigible and hence

o

3|5’

A
6

Thus the inclusion of the gravitons as above yields a

finite self-mass for the electron without the necessity

of putting in a cut-off paremeter.

An example of ron-linearity arising in a weak
Lagrangian is to consider an intermediate neutral vector
meson \1“ interacting with guarks 9. In Stilchelberg's

/A~
N \ 2 ) - \ . L ' .
representaticn ( Uy Q\\. i 6?33 the interaction

Lagrangian can Se written in the fornm.

1.4

(1.5)

(1.6)
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= =</ A W |
b =% Q ¥plir¥) @R, + ™ Q\st%w - \) Q (1.7)

which is clearly non-linear in B.

2) Chiral Lagrangians

We shall review here the simplest case of non-linear’

chiral SU(2) x SU(2) Lagrangians with derivative couplings (5).

Mesons of the ($,%) representation can be described by the

field matrix
A= 3 +irg Al (1.8)

where I\(®@.9)is, at least for the tiime being, to be regarded
as an arbitrary isoscalar function of the @ fields. Imposing

the unitary constraint

AN =1 (1.9)

we obtain the non-linear relation
a 2
a” + . A(SJE) =1 : (1.10)

Thus the @ field may te eliminated and the field matrix

beconmes

Yo
\h-_- Y_\ - Q. [\f(g.@] *1Y.Q [\(9-9} (1.11)



The total Lagrangian for the @ fields is now taken as

e = 80 T3 3. X

(9)

It has in fact been shown that this vrescription for
a chiral SU(2) x SU(2) invariant Lagrangian containing only
two derivatives is unique. Using equation (1.11) we

explicitly obtain

+ (22N@ 2D [ AR v e )
VD (-1 2.2)

The interaction Lagrangian may now be obtained by subtracting

off the free part, i.e.
t'm\’ = P"\'o\n\ - Ai a\*‘l’e\‘?

Before considering various choices for the function
A((_p.(g) we shall look at the ultra~violet .ehaviour of the
Lagrangian. Assuming that large @~WM , Qﬂg ~ ¥  and

N(Q.®) > R~ ™" then

b an-3 V-2
L . M&\‘\W N ™M \M‘%\. N M N \\/\
Tetal \ - \"\"“‘\
v
We note that both parts =~ **. Since Q% is couled
vy

isotorically differently in both parts this leacing order

could not ve cancelled out. Thus we must have

(1.12)

(1.13)

(1.14)

(1.15)



- 17 -

LTS Y
LT@\'Q\ ~ M

Since FTOpRX-N® ~ MY e see that the ultra-violet

behaviour of the interaction Lagrangian is given by

2R

2~a«\ ~ M
~ M\* 4 ‘R&O

R>0

Assuming the usual Dyson power counting method for

(10) holds for non-linear as well

estimating divergences
as for the coanventional polynomial type Lagrangians we can
divide the chiral Lagrangians into three classes. A

polynomial Lagrangian with the behaviour
o
i~ ™

can be renormalised for N4W with a finite number of
renormalisation constants. For non-polynomial Lagrangians
such theories are called normal since it is hoped they can
be renormalised in a similar way. A renormalisation

(11) for model non-lirear

procedure has been given
Lagrangians with n = 2 and 3 however it is now questionable
as to the renormalisability of a non-linear H4 theory. For
N4 2 there should te no overall infinities arising at all
and these thzories are classified as supernormal. .The term
abnormal is given to theories with W»W since here
difficulties arise in polymomial Lagrangians and one
therefore exrects similar, if not worse, difficulties to
arise in no..~-linear theories. In fact the Dyson power

counting metnod has to be sligntly amended as we shall see

(1.16)

(1.17)
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in chapter 2 but the above classification is still useful.
Consequently, using this classification we see that the
non-~linear realisations of chipal groups for the meson
field < yield only normal and abnormal interaction
Lagrangians., If we restrict ourselves to normal
theories some divergences still arise. In certain cases
these can be avoided by using, in a self-consistent

(12)

manner, the total Lagrangian witich is supernormal

for R<-\ and normal for ¥ = O or -1.

If we assume the basic equivalence theorem to be
correct then the question of the sigﬁificance of the
abnormal parametrisations arises. The equivalence
theorem states that if a local point transformation of
fields is made such that the physical spectrum associated
with these fields is unaltered and consequently the Hilbert
spaces of in~ and out- states also remain the same then'the
on~nass-shell S-matrix glements are identical for the
original and the transforued Lagrangians. This theorem(13)
was first stated by Chisholm, Zamefuchi, O'Raifeartaigh
and Salam who, together with Borchers, have all proved it
to varying degrees of restrictiveness on the field
transformations and rigour. It has also been extended by

(2)

Coleman, Yess and Zumino who claim that the result
applies to diagrams with equal numbers of closed loops.
The abnormal parametrisations of the chiral Lagrangians
can be obtained from normal ones by a (non~linear, point

transformation from the one set of co-ordinates <% to the

] P . - . -
other. @ ., The difficulty in applying the tieorem

-
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lies in a lack of criteria for determining what
transformations leave unchanged the in- and out- states

of the interpolating fields.

Three important parametrisations are now given.
In each case N is to be taken as a constant but different

in eacii case.

a) Gasiorowicz - Geffen Co-ordinates

Alg.®) = A

_ R (R Dp2)(®.XD)
L-\',\.\ - { a‘? 'e“t * i" G\ -Ng.9)

W

b) Schwinger Co-ordinates

Nooy= D
®.R) R

b _ 2 O30 | ) R B3DEHT)
Terd T 2 (\aRe.@) 2 OaRe.)

~ W
¢) Stereographic Co-ordinates

NAloo) = — 2
?%) (\-\-ng.g)

Do = A D
Tokal 2 (VRN

~ M0

(1.18)

(1.19)

(1.20)



Techniques for calculating the x-space contributions
for general second order graphs are given. The discussion
includes Lagrangians with derivative couplings but iso-spin

is not included. Overall ultra-violet behaviour is discussed.

1) Non-Derivative Lagrangians.

In this section we briefly review the techniques for
dealing with non-derivative Lagrangians without iso-spin

(3) )

as were first given by LEfimov and Fradkin The

Lagrangian is assumed to have an infinite series expansion

in the field variable i.e. we consider the Lagrangian

() = 32 <) ¥ (2.1)

L g7

The normal ordering of @{(®) can now be defined by normally
ordering each term in the expansion (2.1). The second order

term in the S-matrix expansion
) o )
H L)
S = Z %\: S (2.2)
a=o
is given oy
<™ (g‘jé‘z\é‘zg T{G(q:m) Lr(f»(i&.k (2.3)

The Feynman propagator A\ is defined in the usual way,
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Alx,-2c) = <T$Q(‘xb Q?(ﬁc-b} > (2.h)
then expanding S(Z) into normal ordered products by
Hori's lemma (1%) one obtains
S F S\ . o) ok -
- % W -X“‘“(A) Ry AR (2.5)
[ NN
vhere
8 PRI
T = os(888) (A& oo
DW= Py
= S AD
=k %\A@Qb F(Q\ {?1)\ (2.6)

Q=0 = Ql

with

= KR) ®a= @(7y)

(3) (%)

Using the Efimov-Fradkin lemma we now give

an integral representation of Hori's exponential operator:
LN NS
oe(504) Flawed

= _%T.Sauéu‘ Qx?(:— uut + ut\% -~ Ty g_.i!) L CCY

=L Yan A g (~uu?) Floa o, Rax¥)

(2.7)
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The integrations are taken over the whole of the complex
u-plane. Thus on substituting (2.7) into equation (2.6)

and using equation (2.1),

~uutl & LY ©
Taal®) = {onast o ) |2 olae) sted

o
- _Lxdmw Q—uu‘z Slraed B clsad (549! (QAGY QU £
~ < =\ .
.5e0 st
)
= Zc(“m)c(vm) Tam)t(cam)) ( Agz)‘ Lo
L
e
(2.8)
The last step requires the assumption that integration and
sunmation may be interchanged and then use is made of tie
orthogonality identity
o
%Sdué.n‘ Y WU = S N (2.9)
An alternative approach to derive a form for 1“.‘1\(&)
is to use the Laplace transform T(Y or U‘(Qﬁ
* ~@% ~ ¢
ol@) = | a8 & ULY) | (2.10)
° -
defined by analytic corntinuation where necessary. Hoting
that
B sla) = Yc\‘s < (-%) ¢(¥) (2.11)
o °

equation (2.6) may be immediately written as
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Lo d

T = | {8805, " N $9 50

R Y

~

Once the laplace transform of G{®) is known this

method will yield, on performing the \\ and \; integrations,

a closed form for In,'\ (A\ equivalent to having performed
the summation,by Borel technique, in -the last line of
equation (2.8). The series form can be obtained from

equation (2.12) by using

i‘ <« @ = icm 833 <t (&) s
=0 S=0 Q

which implies

5O = q 2 O T (&Y s

T

This equation may be substituted into equation (2.12),
the integrations can then be trivially performed by partial

integration and the last line of equation {(2.¢) is obtained.

This method of using I.aplace transforms is more
suitable for extending to Lagrangians with derivative
couplings whether iso-siin is included or not. It is also
rrore suitable for extending to higher orders. Reference
15 gives the rules for a general n' th order (in thé major
coupling constant) graph. It can be seen that the n th
order extensicn of equation (2.3) contains n{(n-1)

integration variables (two for each superpropogator)

(2.12)

(2.13)

(2.14)
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whereas the extension of equation (2.12) contains only

n integration variables (one for each vertex).

2) Derivative Lagrangians

(15)

Delbourgo, Salam and Strathdee have ountlined a
méthod for treating non-polynomial Lagrangians containing
derivative interactions by exteanding .the techniques of

(3) (4)

Efimov and Fradkin given in the previous section.
in this section the techniques required for calculating

the S-matrix elements for these Lagrangians are given.

We consider a one component scalar field Lagrangian

given by

P (2,8,9) =113y Fpm: - 1ot + Ly (@,8y)
vwhere the interaction Lagrangian is of the form

| SRCY @) = hiul@: + Q' e dyg oled) -
QA

For the time being O(®) =2nd o) are taken to be arbitrary
~ functions of the field < waich have a Taylor series

expansion adout @=©, g and h are the major coupling

constants. The normal ordering in eguation (2.16) is again

defined by expanding ulq) and (@) and then normally

ordering eazch tera.

We first derive the general second order matrix

elements for the derivative part of (2.16)

(2.15)

(2.16)
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3{:(%@»00 = Q& S ol - (2.17)

s e B
-~

The contributions from the product of L-;_ (Qa@\-Q)

with the non-derivative part

Whita) = W ule) - o : (2.18)

can then bve simply deduced by the same methods, and

are given towards the end of this section.

For notational convenience the concept of a " 5-vector®

is introduced defined as

D = (W, é%\‘cem)

The S-matrix expansion is still given by equation (2.2) but

the second order term must be amended to
gm = %”j‘d“%\ a2, T*RLI(Q..RB\ P (Qu\’l&} (2.20)

where the modified time ordering oserator T* is introduced
which is defired such that the order of time ordering anl
differentiation is inverted in taking vacuum expectation

(16)

values of the following kind
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AT*QQ\.L'::\\ q(':cb}> = A\,‘L'x.—s:b = g;e “‘A(ﬁt\—'ﬁﬂv)

w~~_

where A(‘x.-*:::-,) is the Feynman proragator defined
in equation (2.4%). '

(2)

Expanding S into normal ordered products eqguation

(2.5) is extended to

o |
g‘"z %’ Xé“%, c\‘%:zl Sgw,“(h(z.-zm cQ"‘Lao g‘(\? .
LNCRN Y

™ a .
*2 g“\\\,‘n‘,\\(h(;.\;ih) B Q\.(’Gb Q‘S? <® S‘? .

N - e a0 .
* Sm\,\\.,mw (AMaeR) -« pir) ,‘2_“_\’:-_3_ @& g_@éb

USRI TR g

- ‘ )
+g““‘o\‘&‘;“‘-’s\'3 (ALQ‘_%D)' ) Q\;l%bc?gtib %.—\) QVG{DC&&EQ ‘%(%.—b:

(2.22)
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The coefficient functions in this normal product expansion

can be written, as for equation (2.5), in the form

S @ e[ 82 Y(2 (2 o6 lo

R0

(2.235%w=0

where AnN is the 5 x 5 matrix

A A,

Dan =
A\h A\A\‘h (2.24)

.,
\,
N

The indices n, n refer to the number of external lines
(including derived scalar lines) at the vertices "1" and

n2mn and K, L are the "S5-vector" labels.

We may now proceed by either extending the
Efimov-Fradkin lemma or by using Laplace transforams.
The generalisation for derivative interactions of the
second method is the more straightforward but we shall

give both methods here.

Introducing the "5-vector! integration variables
U 2and its complex conjugate Uu‘“ the exponential
" operator in equation (2.23) can be represented by, in

analogy to equation (2.7),

5 Y
QJ\? L&E\,ﬁ& o 6@:,&)

# Xésum o o Funa + . A vUN S )

‘m‘ M &Qir“

(2.25)
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Making the usual argument shifts in the Lagrangians

all second order contributions to the S-matrix are given

by
Seson (B
~ | \e 9 \™ & \' |
) S A A(&Q\;\b (éch,\) LI (Q\‘*AU*A\L\,-, Q“?*A\‘\“"‘ A\“"t“*)' E
i} ?\1 (Qa*\)*i Ran> U&\
R0
Qh$t=°
(2.26)
where
~ U\
Q%A = :‘\‘-g S Fut, o
I\ w % "““*‘u\‘“?‘
= 3 _ dndad Ay diuty, © (2.27)
2 ) »
Taking L-x_ to be as given in equation (2.17) we have,
for the case of no external derived scalar lines,
e = [ AT 21T 21 (A gt 3
- 5(Au Ay, Uy) UL, SLu®) (2.28)

In order to perform the eight vector intergrations we

expand the integrand in a Taylor series about U‘. and
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retain only the second order term. The remaining
terms in the series vanish with the use of identities

like

*
Y BRI} * % —
= Yd‘u(\.\d W @ 17 Ul UL U = AQuq

KWy x
'T—“:.,Xé‘u(\h&&\.\eu* ¢ Ua.\)g.sg(“y“\b =0 : (2.29)
The integral (2.28) then reduces to

S (B = 2{duat X - ) (2.30)

where )((05 is the contribution from the second order

term of the Taylor series and is given by

atso 1
X(u) = % aa-—(‘y g'_ii* % (A\‘\U '\' A\k\Vg uw\ g_m'“;}" ‘S.( Au’\' Av,_\hb}
u: =0

= _.X& A\A\V-‘A\A\V\ * \'\'L\\h A‘\\Vz é— '\-A\; A‘.\u —— .
Oy

au» @uv

.[%Q]“u (AusAvi)
\13':6

=3 ® K@m S o (A

(2.31)
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where the operator @ 'is defined by

. 2
—— @ = A A\\w\ A\m-. ¥ \*.A\“A\“V'l A, ‘:‘S—A * A\‘“A\‘“ Av A, (%)

(2.32)

Substituting tack into equation (2.30) we have
Qe () = O 2lanad e {217 121" slany st
L SN ) - v Q (AW YR V) u)l)‘ u

=0 1.

(2.33)

The second order contribution has now been expressed as
an operator acting on the integral -S.m.,“(bﬁ already
obtained in equation {2.8) as the second order contribution

for a non-derivative Lagrangian.

This same result can also be obtained by using the
Laplace transform method. Substituting the 5-dimensional

Laplace transform ll(k,ﬂ) of e\x (@r\) , where

EI(QM) = g éssm) Q_Q“kh L—;(\') , , (2-3;)

into equation (2.23. and noting that

e%..\ balen) = Yaéskm Yo P L3) @ (2.35)
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we obtain

%m,wm..\-(& B Kg S‘ ASX‘M éskam \-\\,\S‘ (’\%\j\ :

o

'i—; (Yuw) “?'\: () ] (Xum Avm\f\za)

(2.36)
vhich is the obvious extension of equation (2.12).

Again taking L-; to be given by equation (2.17) gives

Katen - s00| 55— s o

o
where U(\) is the Laplace transform of G‘LQ) .
Substituting into equation (2.36) we then obtain for

the case of no external derived scalar lines

S
[ = | [ anan 88, T .

« v ~ éz N @1 ) o
G(X\\ U(‘h) a’;,*@‘s,,\.s (X“\SKXG‘S,_,\, é‘swé (&&,\D_\

. Q}-? (X\A‘h‘\'\\\. A\..'S-_\ X X‘sz‘l-w * K\\. A\'Nz\_vb

(2.38)

The vector integrations are performed by partial

integration to give
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S (B) = Y f a8, a%, AR E) Tl eMAh,

°[&A\a\v\ A‘\w,_ Wy A\uh\nw;A\& & \‘3-,_"' A\h A\n AV, A\u(k \\35 ]

® %
- @F | At e S s

= O 1...(8) (2.39)

i.e. the same result as obtained by the previcus method

and given by equation (2.33).

It is easy to see how equation (2.38) may be
generalised for higher order S-matrix elements. Performing
the required partial integrations, however, becomes far
more complex algebraicaliy and hence the generalisation

of the operator @ to n'th order is by no means trivial.

All other gravhs may be derived in a similar manner
but they are more immediately obtained by partial
"differentiation of gm-.m(ﬁ with respect to the A\A\, D,
and A\mo, prepagators. note nere that it becones
inportant that we have distinguished between A\“ and

AV: . For the partial differentiaticn they nust be
regarded as independent variables and only after this has

been perforned may one use

Ay, = = Dya (2.40)
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From the general formula (2.23) it follows that

S\t\*\,\r,wn (A) = Aw S “(A\

\\

Sy () = s (R)

A\I\VQ

Smﬂ"\“ R (A\ A\h &3\ % >“(A)

g AR, PG 3NV (AB @ gm,&\ (53

éA\mh

g WAL NR YT, ve (& gm-‘“ k&

éA\l\Vu Aga.

In addition there is the symmetry relation

% (!\,\{‘,(\’\‘ t A) = S k™R ( A\

These propagator differentiations act only on the @
operator and so may be easily perforred to give the

following formulae for 21l second order contributions.

S“\’\\;“ (&) = k\'\'A\\\\hAv‘ * Gl A\h y.,.Avl @%B _X_“\.’“ (A

S“‘"\‘X;“ (& =‘ &%\\? AVIAYz -X.“\-)“L&3

%m«\,\\ ONORY (N =W (Apwa A\\\ A, 353 -Xm-)“ )

(2.41)

(2.42)
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Doy (B) = ¥ Qg Ay, Teg 1D

N S

\g“\,g,.\\g MLV S (& = \'\‘ %\\g %vs .S-“\',Q\ (A) (2.43)

In practice it is also very useful to note the identity

o \! | |
%ma\-&;v = (CS—E) g“\‘,e (2.4%)

which again follows from the general formula (2.23).

Wle now make the observation that all the secoand
order graphs are written in the form of an operator
acfing on Yewyall) integrals. These integrals are
identical to those which one obtains for second order
graprhs with m external lines at one vertex and n at the(
other using a non-derivative Lagrangian (y(®). Thus
all the dependence coming from éhe derivative part of the
Lagrangian has been completely separated out. Use of
the identity (2.44) means in practice that we need only
evaluate -S“\-’Q(,A) and from this we may calculate all
possible second order gravhs corresponding to a Lagrangian

given by equation (2.17).

To take into account the contributions from the
product of the two Lagrangians 9\;(@5 and 9\1(‘@1,@“\.}
defined in equations (2.18) and (2.17) respectively, we
again expand the modified time ordering orperator into a

series of normal ordered products. The corresponding



.
AN

A N
coefficient functions in the expansion are Sw)“(A\ ,&%m\.’m\w(h\

A
and Sma‘,s\ﬂ.,vg(A) where

A

Depe ()

1]

S ELLERLE W) (EN AR

@) Yrl@aw \q‘m -

R m=0

Ab{ {ananeaas s s 4

A

= AVI A\h, 1“\3\\ (A§ o (2.45)

t\(\b being the Laplace transform of  G(®),

A s A
SN\“ SO,V (A§ 55», %“\3“(-A>

1

A

QA% .X“\-)“(A) (2.46)

n

and

N

.
Seayoamg W= Aye T, o (8

(2.47)

There are also similar contributions with v\\QQD and

[
L‘&L%s%,\a) interchanged.  The 1“\.’“ integrals are
again identical to those which occur in second order for
a non-derivative Lagrangian but correspond to a Lagrangian
u(qg) at ore vertex and G{Q) at the other. For the

remainder of this work we only consider the contributions

from the derivative interaction Lagrangian.



- 36 -

3) Ultra-violet Behaviour

So far no restrictions have been piaced on thé
form of U{w@) , the non-derivative part of the Lagrangian,
other than the condition that it can be expanded as an
infinite power series in @ . To be able to make
definite statements concerning ultra-violet behaviour
é.nd about the Fourier transforms we must impose certain
restrictions on the coefficients app;aaring in the series
expansion of U{®) . Ve shall restrict the discussion
to the class of Lagrangians - (Q.,é.‘.qb defined in
equation (2.17) vhere U(Q) is defined as a linear

combination of expressions of the fornm

(g2 Qa)‘

wig?) =
(‘_ ¥QQ&)§

with d and § being integers. From chapter 1 we

see that the iso-scalar analogues of the chiral Lagrangians
fall into this class. The restriction PPd% 0 is also
made since with this condition we shall see that we meet
no difficulties with overall ultra-violet divergences.

Any expression of the form (2.48) but with Bsd can
always be written as a sum of terms satisfying the
condition @%4%.0 together with a nolynomial in Q‘.

2

This polynomial in q can then be treated servarately.

Expanding wus{q@Y) binornially we have

b = ) (BT D Ea) ()

C=0

(2.48)

(2.49)
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Since W(®) is some linear combination of the wrlaM's

we deduce that

e o U'(Q) =Z C(V) (g’.qﬂ,}v\

20

(2.50)

where ¢{(f) is a polynomial in r.

Ve shall now look in detail_ at the second order

self-energy contributions Sy, S\,‘\.,\ s %‘,“.’{,ﬁ, ,ga.ﬁ s g"ﬁb
and Sg,‘w.,e which are given by equations (2.39)

and (2.43). Explicitly we have
.= O Too®)
»g\,\.-,\ (b) = (\‘\‘A\Wh A‘-’: ~ aA\“ A“’tA“t GQ.A) 5&‘—&1033 (A)
Surr (= W(Apon s Apdy, 2 Toio
SS.‘,Q (A) = @ -S-!l',e (A)
g:_‘,\n,a (53 = (\'\- A\mh A\vl ~Q A\\\ Avav\ _6@1) -1130 (A)

S&,\w;o (B) = g‘%\“ AStASI In',e ug

(2.51)
where, from equation (2.8),
L)
Yoo ) = ‘%?“z <(ean) o) (maaa} § AT (2.52)

vso
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A 2
with ‘? ='?\2¥a and for later convenience we have
distinguished between the couplings at each vertex by

the subindices "1" and 2'.

To give meaning to the divergent. series (2.52; and
to study their overall ultra-viclet behaviours, Borel's
method of summation is aprlied. Since the coefficients,
G , are polynomials ia r the summation (2.52) can be

written as a linear combination of séries of the form
’ @ :
AL 20
K&“_\\(Ay :-.-Z (e 0N § A
T=0 .\._\

Borel's method of sunmation is now to write the factorial

coefficients in (2.53) as integrals,
> N { (2TYaR parc pac
- o o
%a“ﬁh(&z 2 fé\ Q ‘ g A R
¢ ©

and invert the order of integration and summation to

give, on performing the summation,

% AR

o
" A:Yd\ e !
Jann s \-SArR

The asymptotic behaviour (A—> °0) of this integral is
Yo = Qoaned? (35) + OUY)
s (D) = (oar-D (g 2Ly

Thus, a priori, we may expect 11“-,5 (A} to also have
this asym>totic behaviour. However, it can he shown

that the linear combination cf osi“*\‘(53 integrals is

(2.53)

(2.54)

(2.55)

(2.56)
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SN |
such that the behaviour (g«&) vanishes if <(~¥)
is zero. From equation (2.49) we see that <(~¥)

vanishes for
0=14,2, . 5 Q-a

and thus the asymptotic behaviour (A>®)of (2.52) is

given by C=-(R-a) and hence
Tonyo(B) ~ (£OF

v (MR

An-easier way to derive this result is to write the

sumnation (2.52) as a Sommerfeld-Watson contour integral

Tao(D= Lg ™ @) Tlaaaansd (ROAS
AL e UV

where the contour C is about the positive half of the

real axis in the complex z-plane. In the following

chapter this Somuerfeld-Vatson method will again be

enployed for taking the Fourier transfora and there

the uniqueness of the analytic continuation of the

coefficients <(I) is important. Here it is only

necessary that their continuation agrees at the integer

(
(17) that the contour can be

points. If can be showm
opened up and then collapsed about the negative real axis.

The poles on the negative real axis can then e picked up

(2.57)

(2.58)

(2.59)
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to yield an infinite series in inverse powers of A
and hence the overall ultra—violét behaviour is given
by the leading pole. Due to the vanishing of e(-%)
for 0<Q-d we see that the fifst possible pole is
at 2=-(Q-a). Although, for n = 1 say, tke
coefficient <(xaw) vanishes at this point the gamma
function in (2.59) may give rise to a sinple pole.
Hence we again have the asymptotic behaviour given in

equation (2.58).

We note that applying the Dyson power counting

method to the Lagrangian (2.48j we héVe
wlgd) ~ () (2.60)

The integral 'Xg“3°(&) represents a graph with 2n
external lines at one vertex and none at the other and
hence a naive Dyson power count would indicate a
behaviour (WY ®-® a;t one vertex and (WD*®  at
the other and hence an overall behaviour of (‘dxfdéma-n
which we see is not correct. The Dyson rule for non-
linear Lagrangians is therefore to take the worst

- behaviour occurring at either vertex and sguare the

result to give a behaviour in agreenent with equation (2.58).

This method naturally only yields the worst behaviocur
but cancellations of tae leading divergences may take
place. e see now from eguation (2.51) that we expect
the following overall behavicurs for the second order

self-energy contributions
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© S & MR

Supn 8) ~ MR

~

g\,‘.-,\w (A) ~ M\\-*M-‘*a
%13°(A) ~ M%*‘R-‘!Q

S%He( A ~ M‘H\d-h\i

6and-uQ
S&,\w;e (A) ~ M (2.61)

Thﬁs ga:,gu\) yields the worst behaviour and with

the restriction f%a& 1is, at worst, WY, Taking

the Fourier transform this would give rise to an overali
ultra-violet log divergence. However, we shall see
that this leading order is in fact cancelled out and
consequently with Lagrangians whose non-derivative

parts are given by equation (2.49) (with @Sa>, © )
we shall meet no difificulties with overall ultra-violet

divergences for the second order self-energies.

L) Conclusions

The technigues required to caliculate second order
diagrans for non-linear scalar Lagrangians with derivative

couplings have been explicitly given. It has been shown

how the dependence arising from the derivative part can
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be factored out as operators acting on integrals

identical to those arising in a non-derivative theory.

The worst ultra-violet behaviour expected can be estimated
T by medifying Dyson's power counting method. It is noted

that if the vacuum diagranm SS°3° gives rise to an

overall ultra-violet divergence then, in gemneral, the

éadpole-like diagranms

3“30(63 = 0

will have the same hehaviour.
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CHAPTER 3

Fourier transforms of the self-energy cont;ibutions
derived in the previous chapter are taken for the case
of zero mass fields. Iso-scalar anzlogues of the
chiral Lagrangians, discussed in chapter 1, are tfeated

as special exanples.

1) Fourier Transforms

The method of taking Fourier transforms for theories
with massive fields will be discussed in the thesis
of. Q.Shafi. Here we shall consider the zero mass case

for which an elegant technique for taking Fourier

transforms exists. The case of non-derivative Lagrangians
» 2
has been discussed in great detail by Efimov (’), by
*
Volkov (17), and by Salam and Strathdee (18). The

Fourier transform is first taken in the Symanzik region

in p-space (¢g*«@) and the results obtained are then
analytically continued tc time-like values of pa. Fer
‘P.gg one continues the propagators Alx) into Euclidean

X-space. Eence in the zero mass case one obtains

Al = ‘* 1 —

where 5éz=-2f:~?£?. From this equation it follows that

lkv&uﬁ -Lkhﬂdiéeﬁnv

4 R _ WY
Aporsd) = -3 Ot B g _?\;_:]

* This reference shows that the method is egquivalent to a

regularisation of the massless propagator.

(3.1)

(3.2)
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Hence the () operator defined in equaticn (2.32)

takes on the following form
© = (v B b+ bAZ + B (&Y

= () A (248524 AS)) (3.3)

Thus

g\‘:\( A) % () ( A’gq‘)

@Z el O (A)! £ A

=(\\-TQ"Z cle) A (Qxad)) QAT

¢

=t d3 @A T(Rad) (eMTRY)TAR?
AN AW
< (3.4)

. where we have written the sum as a Somnmerfeld-Watson
integral with the contour C taken ccunter clockwise
around the poles on the positive z-axis iIncluding the
point z = 0. Details of such a procedure may e found
in references 17 and 1:. Volkov has discussed the

. R . s s 2
restrictions imposed on the coefficients QLY.

The invalidity of Carlscn's Theorem fcor the forral
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povwer series (3.4) implies that the analytic continuation
of the coefficients c(t)* from the positive integers
to complex values z is not, in general, unique.. For

example additional terms of the form
<
dlo) 2mwe A

with undetermined coefficients AQF)-'may be added.
Following Volkov it is, however, possible in certain
cases to obtain a unique continuation of c(D. For

instance the requirement

’ A
w26 ) ey d‘ﬂ” = Q (3.5)
t~yco
with O 2a<2 and QPO  determines €@  uniquely
and sets aAlR)=0o . The condition (3.5) determines

(17)

a class of non-local interactions and witk our
restriction that c(¢) is a polynomial in r the Lagrangians,
and in particular the chiral Lagrangians, that we are
considering fall into this class. In the case of

more general coefficients the presence of the terms Alf) nws N
would lead, after taking the Fourier transforms, to an
undetermined entire function in the energy for the
_self-energy graphs. These coefiicients dA) srobably
play the role of an infinite set of renorialisation
constants. It is of extreme importance that these are
identically zero for non-lccal interactions satisfying
condition (3.3), in particular for.chiral Lagrangzians

not written in exnonential co-ordinates.
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The integral (3.4) has a cut in L from O to +o0
The Fourier transform will first be taken for negative
values of Q“' and the result then analytically continued
to positive physical values of % with an averaging
procedure determined by unitarity. For the massless
case the Fourier transform of B?Wné) is given by the

Gel'fand-Shilov fornmula (18)

V(D) = lgé‘*u» Q' A¥)

- (\bw)" \ (— o )%-2
2wz V) Tlr-)  \\bwt

i

(3.6)

which is valid initially in the strip O&Ne2<® and
outside it by analytic continuation. In order to take

the Fourier transform of S;“‘(An_ﬁd) the Sommerfeld-
Watson contour is deformed to lie in the strip \< Rel22a) 4D
along the imaginary axis. This can be done without
picking up additional pole contributions since no

overall ultra-violet divergences are present. The
validity of this deformation also depends on being

able to write the gamma function coefficients as

integrals as was outlined in the previous chavpter.

This is discussed in references 17 and 1C. One obtains
for $=fW4® and in the ReWNS O half of the (-¥)-

plane

e, = 1 {d%e & S, (A6, -
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-l : .
X w3 A4\
_ R Y dz Q(Q\ 21 -? ( -S )
= -3 2w Andma MO aR) \6w"
daio .
,,,,,,,,, -

where -\<Red < -3 . e next collapse the contour
back around the positive real axis and pick up the residues

of the first and second order poles to obtain

b

R pat-g %
. ¢ @s-dels-YaR §
F(S,_Q“) = -cley S « g-ﬁg =) () b2 )

C=0
)
__SZ F (25) <Y
(Ac O}

=\

. \2c
:1’:::) PR \e’i‘s(\e g

/""'\

\egc('-z) ~Q(95aD) ‘;.!; ] (3.8)

=

wlg—

Here we point out that the original x-space sun
(3.4) contains only odd poﬁers of {\ while tﬂe
evaluation of the Sowmerfeld-Vatson contour integral,
after taking the Fourier transform. also yields terms
arising from initially non-existent even powers of 0\
The mathematical reazson for this is that the Fourier transform
(3.7) of ZS!GXD has itself simple poles at the integers
%z = 2,3,4,4... and therefore changes - as a rencrmalisation -
the original simple poles under the Sommerfeld-Vatson
integral (3.4) into a series of double poles while

introducing simple poles for the even powers of A

analytic ccntinuation of F(S,"gq) to positive

values of the coupling constant "«“ from below and above

(3.7)
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the cut in the '@‘—plane determines the physical

amplitude to be
F(=840) = 4 Fle,-26) +RF (e,-2%") (5.9)

where

d+R =\ az  Re@-P) =0 (3.10)

The second equation in (3.10) follows from unitarity.

Thus

d= é (\".\53 and g:' é(\'\'\‘“} (3.11)

where b is an arbitrary real constant. Therefore the
Fourier transform of the self-energy diagran 53\3\([§)

is given by

ASNUAY

_ 2 A 3.° (v«\)c(%.*‘/ﬂq ( s \ 2
= -cl@y's + % 2_% c(-%) ‘o.%nz v ol e

Cza

- .

__Sfif\(af)ci€fl(ﬁss:as \ (4s¥a 4»\ e \Qgscki)\
Z_‘ Qea \Wwwt G% b Rzt

= () + -2-:—‘: ‘} (3.12)

where ‘?2 = % ('?3’?:3\/1
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The amplitude F(S,-?‘,B) may be written in

the form
““MNMF(S)QQ':&) = $‘(g’gq) * b Fi(g)l\?q) * (3.13)
vhere F,(s,&“) is an entire function of s. In

the 1limit s+ 0, i.e. on mass-shell, one obtains

b?a(g,gﬂ = ‘“~ %-?.i.f- C(-YQ)Q at [V=O0 _ (3.11_‘_)

while

F(ef =0 at $=0 (3.15)

The p-space contributions from 23\,\.-,\(5) and
S\“‘.’\,\,(AX may be evaluated in a similar manner. We

note that the p-space contribution from &3\,‘.3\(03 is

F\ (£,8%) = 1 Ry-d gén.m A 2 S (e, & )

= -1 Yd\‘"&' Q‘?m. i §~ %\,\a‘,\ (A(:::\,-Q“‘)
Oy

= '—'\Xé"f'& Q\Pm @\; (% Q\muﬁ"z +\\-AP‘ AV,AYt é% éé‘A-IQ:"G‘(AX

(3.16)

For the massless propagator

' A = éa@ﬂ) (3.17)
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and hence on performing the a\. differentiation

Fla® = -ilave v ug, aby) - Bes698, e M)

_\\'é(ﬁ:) aj&w 1@ 30 (Abﬁﬁ‘l
(3.18)
From equation (2.58)
d-
Toold) ~ E)F
n ‘32“‘3-“ . for small x (3.19)
Hence
évie;e(A\ ~ ot
ZWQ-wd-2 '
Svdy LosalBy = =6 | (3.20)

and since P> da\  both must vanish at x = O.

Consequently equation (3.18) reduces to
GRS “““"S S @ 3 (A,8%)

= —\\.F(S,Q“’,\B) (3.21)
The p-space contribution fron g\,\;')\,y(A) is

P8 = ippripn- 1t 0% Sy (hea8)

(3.22)
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which, in an identical manner, reduces to

P8 = WY - (3.2

Thus the contributions from &8\,\..,\(& and g\“‘-‘\w(A3
cancel. We stress that without our restrictions on

the coefficients <(¥) the relations (3.21) and (3.23)
are not necessarily valid since the & - function
integrations will not in general vanish.

The self-energy contribution S;a3o(&) is a p2

independent constant. From eguation (2.51)

ga‘,o(A) = '?\1 @Z clrad) olf) (Aea)t §°AF

= R0 eV D@D TR (5 21
=20

This is the contribution that in theprevious chapter
appeared to have the worst overall ultra-violet behaviour,
i.e. log divergent if P=4d«\ . However, the
asymptotic behaviour for largze O is given by the
coefficient at r = -1 which in fact vanishes due to

the factor (2r 4 2) which has arisen by application of
the () overator. Hence the asymptotic behaviour is
lower than b? and soc no overall divergences occur.
rerforning as before the Fourier transform by Scmmerfeld-
Watson tecinique, only the enerzr independent term has

to be taken into account. Ye immediately o%tain the

expression
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-\ 0 .
Ax _ clrw) @) (234) g‘ﬂ (- S )9‘1“9‘

nTB2 Yo dmz TRrwW) ot
‘*‘\Q N S=°

Q-8 = Sy

P S T

~.

= - \bw §i c(@) (=) Y

(3.25)
Hence
Q
G(8Y) = W ) at-) (3.26)
£ |
is the Fourier transform of %a-’c(h) . Ue note that
here no ambiguity parameter arises.
The'contribution from %a_)“-ﬁ(& always vanishes
trivially in x-space since it is of the form
W
where
— 2
SQ’NGLM:D) = 2 &) (3.28)

with ‘Q('-l’) some function of 2% and the integral

{(3.27) then vanishes identically by symmeiry.

Finally we have from eguation (2.51)

o)
ga,\w ol D=2 Qpv Ag,ﬁgzﬁz elead) o) @)t $TAT

C=0
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= Q%\‘V \bw 'Q?ZQ(H\) c(v}_ (2ra)) & A”‘?‘B (3.29)

=0

which as shown in the previous chapter exhibits no
overall ultra-violet divergences. For the p~-space
contribution we have the expression

A~

v & R
V(- 0¥ a: 02| A clBx)cl®) (=S
(-89 = -¢ =8 IR Sam e (\w)

Aricd e
2
= —-?"T\‘ () cl-Ye) -f% (3.30)

an& analytically continuing in -Q“ using equation (3.9)
2
WD = s bW ctietw) T ENER Y
%

which clearly vanishes on the nmass-shell.

2 o2

All final results are to be evzluated with ’?\'-'- s .

Then with the definition X2= +(82QNY2 it follous that
Moox\ S F 20 t=\er (3.32)

[

and our results hold for positive and negative values

of the couwvling ‘¥

Thus the self-energies froa all seccnd order diagrams
for Lagrangians falling into the class that we have

considered may be simply determined b»y substituting
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into equations (3.12), (3.26) and (3.31) the coefficients

c(c) appearing in the expansion of ((®) , the non-

derivative part of the Lagrangizan. We remark, especially .

with reference to eguations (3.26) and (3.31), that the
use of the Sommerfeld-Watson method in taking Fourier
transforms of divergent series has a formal character.
However, the results given here can also be obtained using

other methods (19).

The Lagrangian we are considering can be shown to be
equivalent to a free field Lagrangian. If we therefore
wish to require that the sum of all second order self-
energy grapihs vanishes on mass-shell for zero mass

particles then this implies
LRE)+G(E) =0 o s=o

and allows the ambiguity parameter b to be uniguely

determined as

bv= -2 cly =) K2
- W -V by

It is seen that zero self-energy (to second order) on

mass~-shell implies, in general, ©X0. An extremely

interesting point to note is the ccefficient <:(—{)

appears in the aunerator of the expression for 5.

From equation (2.4%9) we know that this coefficient

vanishes if Q-2 A0 i.e. for a theory where the
vt o ~Y4 .

scalar part of the Lagrangian &~ 1)) (or vetter)

rplying the usual powef counting method of Dyson.

(3.33)

(3.34)



When the self-energy. graphs contain additional
ultra-violet divergences then it is not possible to
deduce from equation (3.33) a unique value for b. This

nm-_w,il:L\be the case for the chiral Lagrangians.

2) Special Examples

Ve now apoly the results to the scalar (no iso-spin,
analogues of the c¢hiral Lagrangians described: in chapter 1.

These are of the form

ble,op@d = ¥ - A & 3@ ¢ (3.35)

3
where Q(®) is a metric on the circle S, We
consider two different co-ordinate systems of E;{
Co-ordinate system I is obtained by restricting the
a .
co~-ordinates of the plane R to a circle of radius YA
giving
C

‘3 ®) = 12 >3 (3.36)

vwaich is the scalar analogue of Gasiorowicz co-ordinates.

For co-ordinate system II we take the stereographic

1
co-ordinate systen on g to obtain

\
cgl(qb T (v R (3.37)

wiiich is the scalar analogue of toth YWeinberg and

Schwinger cc-ordinates.
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In the massless case these scalar Lagrangians
can be reduced to the usual free massless scalar field

Lagrangian

i T

T ) = 110 By e

by the transformation

¥ = Gle) -' | (3.39)

where
G(e®) = Y\_%@ﬂ\"é@ (3.40)

. X B\
The Lagrangians E_ and 9~ may be generated from
the free Lagrangian f.(qg of equation (3.38) by

the respective transformations

G = —J): s (A) (3.41)

and

W= _‘-;T Yas ()—‘;2) (3.42)

These transformations from a free field theory are,
of course, not possi»le for the chiral SU(2) x SU(2)
T =
theory. The two Lagrangians 2. ,%\ are also related
by a co-ordinate transformation of the field since
: 13¢ : , :
Lagrangian <5) can be obtained from the Lagrangian

!:t(ﬁﬁ) by the transformation
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— 2
X7 \v Xa?

Subtracting from the total Lagrangian the free

part one obtains the following two interaction Lagrangians

I
L (R = PRR N qT_‘\iQ" - \Qk .

and
-E . «
. % = \lC & _) - R
R~‘d,(\(a<$) 9 €>VQP $q¢§;(\*\eq§?. \Gg
where

9 __ 2
W= X

Note that the two interaction Lagrangians are also
related by differentiation with respect to the coupling

constant. We have
3x X
P O = @—@\:‘ W R ()

This relatiorn would enable one to deduce, in perturbaticn
=
theory. all the Green's functions of Q.“* to any

order in the major coupling constant from the corresponding

X

Green's functions of e_ and is hence another reason for

Wk
having distinguished between the couplings arising at each

vertex.

(3.43)

(3.44)

(3.45)

(3.46)

(3.47)



—
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Ve see that in both co-ordinate systems the total
Lagrangians can be dealt with as special cases of the
previous chapter. Simply by noting that 31(%\'““\-2
and %n(@«, M™  ve can immediately tell that the
B independent contribution to the on-mass-shell self~
energy, i.e. that of S§,$°’ will be zero for co-ordinate
system II but non zero for co-ordinate system I.

Explicitly the respective coefficients and couplings are

<X = ‘ ..)3‘

cB(e) = (o) = 'Q:" = "\3

and from equations (3.14) and (3.26) the second order

contributions for the total Lagrangians are

gn(gzo)\(z) = Ti?‘_\.? (: gi‘a_b

oW N

. 2 e
Note that, since >~ =\\-\r¢? the gv,\ on-mass-shell

contributions are egual in both co~ordinate systems.

To consider the interaction Lagrangians (3.44);
and (3.45) we need only evaluate the additional
contributions resulting from the subtraction of the free
part from the total Lagrangian. Explicitly the integrals
for the non-derivative part of the interaction Lagrangian

reduce to

" (3.48)

(3.49)
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Too(B) =) e @ 88T _ g

Y. W)= -@?‘Z <led ) (Bsad)) SRS - R .50
tTe

where the additional contributions from the free part

are just the single terms subtracted off from the infinite
suns. These sums simply yield the results already given

in equation (3.49). Applying the appropriate operators

as defined in equation (2.51) fo obtain expressions for

the x-space second order contributioﬁs we see that

the additioral termns only contribute to gn\.\-,\,v(b), ga',a (A)
and %a_,‘w.,g(bb, The respective expressions for

these additional terms are

A P
S‘;\\',\;V (A) = - A“\Vﬁ (3.51)

\

Sae (D

!

= &gf C(\) A\x\\:t A\m»z
~ 68 (M) O A (3.52)

!

. and
)

%a,\w‘,e(ﬁ) =7 9‘%\!\' gf <) A&A?z

= Aqp R PO R (3.53)

It is here that e notice the aprsearance of overall

ultra-violet divergences. In equation (3.52) there
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is a quartic divergence and in equation (3.53) a
quadratic divergence. A renormalisation procedure

for certain non-:zolynomial scalar Lagrangians without
derivative couplings yielding oéerall log and quadratic
divergences has been discussed in reference 1ll. A
renormalisation will not be attempted here but in
removing the divergences in equations (3.52) and (3.53),
finite parts will remain which we denote by 04 and 02
respectively. Thus the Fourier transforms of the
expressions (3.51), (3.52) and (3.53) together yield

the following additional contribution to the self-energy
ar :
g (g) = S =x C\‘_ X Cls

Thus on mass-shell we are left with the undetermined
constant 04 arising from the removal of the guartic
divergence. Clearly this constant is not necessarily
the same in both co-ordinate systems. Hence equations
(3.49) must be amended to

o Q) Q
Sl(sa,\i) = 9%‘5‘\9 * \3'{% + Cy

R

SECEXT TSR LN

and are the final second order on-mass-shell self-
energy contributions for the two special interaction

Lzgrangians considered.

(3.54)

(3.55)



3) Conclusions

The Fourier transforms of the second order self-

energy graphs, evaluated in chapter 2, have been taken

T Tassuming massless fields. The on-mass-shell contributions

to the self-energy are then determined by the analytically
continued expansion coefficients C€(¥) to the critical
p'oints 2=-\,"Y9,0 and yield, for a theory with no overall
ultra-violet divergences, the geﬁeral"self-mass contribution

3 RN b~
S\ = _cﬂ\)éz?_@‘c( S %s:{-c@c(-ﬂ (5.56)

where b is a real pavrameter. Restricting ourselves to
the class of non-local interactions defined by equation
(2.49) it is clear that the second order self-mass

will be an invariant for those field transformations

¢— < = &) (3.57)

which leave unchanged

eV  aa  eldel=D
(2R Ly

In general, hcwever, there are additional ultra-violet
divergences wnich introduce extra renormalisation

paraneters and then this statement beconmes nore complicated.

In the case of the scalar analogues of the chiral
Lagrangians considered the finite self-energy grarh SSng(hD

gives the same result on nmass-shell for both co-ordinate
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2 ),
systems; the invariance of <(2) /(R2g1Y

is
quite remarizable. However the S;-,e,m) graphs are
infinite. Hence in this model, using the Efimov-
Fradkin method of partial summat:';on of perturbation
theories, the theorem of Coleman, Wess and Zumino (9)
that co-ordinate transformations leave invariant the
on-pass-shell results of S-matrix elements with a

fixed number of loops, cannot be chetcked directly

because. the S-matrix elements are infinite to each order
in 9\\“\.(@,@\.&@). This theorem must be implemented

by the reguirement of a co-ordinate independent choice

of the parameter v and the renormalisation parameters.
Co-ordinate independence to second order can be guaranteed

by a suitable choice of the renormalisation parameters

. At
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CHAPTER 4

Techniques for calculating contributions from

—-chiral SU(2) x SU(2) Lagrangians are presented.

1) x-space lethods for the Chiral Lagranzians

We shall now look at extending the techniques
already presented so as to take into'éccount'iso-spin an
thus treat correctly the chkiral Lagrangians described
in chapter 1. The chiral SU(2) x SU(2) meson Lagrangians

may always be written in the form

z.39) = q: R KBy Gl ‘ (4a1)
vhere
o) 2 (o)
Opid) = S U (2.2) + Y& U (2.3) (4.2)

Latin letters are used for the iso-spin labels and Greek

letters for the Lorentz labels. Defining the Feynman

propagator
LT{@i=) @D = Aylxex) 4.3)

and derivatives thereof by the modified time ordering

operator T*

<T*‘{q>;,,,cx.) Cb:‘('x,)‘l = A;,N-l(‘acs—mt)

= & Dy lmexd
O,
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< T*q Q i)“(m‘) q:‘,* (mbl > = A i,* ',“\y (':?\— &-.)

Oy DRy

either technique described in chapter 2 carn be extended
to obtain, for the case of m externai.non-derived scalar
lines with iSo-spin labels (\y,--..-, len at one vertex
and n lines with iso-spin labels 3“"""&“ at the

other,

S G- ""i-&.&\r - 3yn (A) = 9\\3.3‘\; * 1 Loee ’.\".\.\‘" - "‘\":\‘Q“"“"“K A\

(4.5)
where
@k\‘\',\l“ = 1 A“\!r.)\tyw A'l\\")‘l,\'
o
% A\\“\\ " A*u\- 3ty A%\’mﬂ Y
CIAT
-\
A“"\‘}? A‘n\\;?‘ Aq,',\n:,v Aq;k,y S S_ (%,6)
Ayp sy

and
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] i""" ’i")&\v-“ )&t\'-\\:'\',\l"\\ (A> .

o X&x&vn‘“‘“‘& =R G N B B

o
Y k-1
. QX?‘X“ B\Q \‘X
_\_Xé WS e e .9 S
= 8 bl 3l ba) Suy A,

CupDaly) Gy fu®) e

As before all other second order graphs can be simply
obtained by the appropriate proiagator differentiations.

Thus in analogy to equation (2.%3) we obtain

S,

Uy oo ,‘»\,\““Q ',&‘.’. .a ’.\“

=\_\-\- A\n\n,\hv A‘%\z-ﬁ Al QA\\-..\A % A‘\Bhua Aq;‘h" éa__—.Al ] *

959

()

1.

Sye--e ""“-nﬂ';:\\:"‘ . t&t\'-

\\ .\Q”\IQ 1Y ( &3

Y

g i\, ERTR in-n.\-.(p\ ',&\; - )&t\-n&\(") (A)

- Q
3 \*X.A\w e Ak’rsv A%‘*“‘“ é_l—&a,- -}L" Bt '\»-"’S““"“"‘-"“t'\“(&
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S,

} 2l :'\m"l--a(@,i-.(\b ', .&s, .- ,&l\ ( A)

)

IRRRRA LY l-..‘\“,\l\,

= & %\Ag A\v‘,\qv AQ',!:.,Y -X-.Mr"'tﬂ-’.tﬂ\\ﬂ':&\

N (8)

l'l)' m=e )“‘l}‘\‘-\(&)‘ '\“‘) .’ &\, R ’-&‘.\.. k‘(vu

= \-\_ %\‘g Aﬂ.’\“ﬁy -X' in—-' ) iu-a;ﬂ'g &\,- LR S\-\ A i“,\ i“;\l'&“ (A)

N

S iu ==y .h... (g) > i"'A(\0 -}&\’ ==y '\aﬂ@):&-h) (A)

= \'\" %‘Ag (&Vd 1 Go---- s.l\-u.',:\u’“ y&\-& . "“‘"“\ ‘\“3 S"“‘ &“(A)

(4.8)

where the suffix Lm(vb denotes an external derived

scalar line with iso-spin (g . In anzalogy to

equation (2.44) we also have

Si.,-.-.,inm 3§ =aom (o) =U 3 Aa. ' S (A)

a= ‘amad J4 froratany®
=\
(449)

Thus we again conclu@e that 2ll second order graphs

are writiten in the form of an operator acting on integrals
which are identical to those arising for second order graphs
using a noxn-derivative "Lagrangian” U\, (E}). Wle are

now left with the difficulty of solving tae integral
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1'1‘,.-..,;:“-’“ Wty (&) which must, in gemneral,
be operated on by an arbitrary number of [k:i

differentiations. Once these differentiations have

T beeir-performed we can use the fact that [5;;3 is

diagonal in its iso-spin labels, i.c.

A"-"‘(m\"x\3 = é.\'\ A(m\-&zx (4010)
and similarly for the derived propagators.
Taking the non-derivative part of the Lagrangian to
be given by equation (4.2) and assuming the expansions
L]
W) O <
5\( O (933 =z a(c) ¥ (9‘23 é\!
=0
(4.11)

Q,. RuRe Um)(§-<§3 = 2§("‘5 § R, (2-Q)
Ttz

then the integral (4.7) splits up into 4 parts:

an L) (A
-I L S LU KRR XN (A3 = 1 ‘- "‘.‘z-'xﬁ '-‘!\‘\3\1‘1(A\ * 1 neesabany® okt )

" N ()
M -S.;“ NITAIECT A WA & \LA\ ¥ .S‘ VDR FRC ) ‘.‘R\Q\R\.\ 3

(4.12)

The result of operating on these with

ﬁ -
alN; .. (4.13)

d=% anaa > Y200
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is as follows

{ ﬁ o) -S-M\ .
ks éAi <\ Y Las-s a0 '-\\-l.X\\‘z(A)

20, \"-

% anad i
- é 8 a39_ 339* -1 U U ‘ -‘-—\ o
‘\ K e A -—-—- -
‘A Y ‘1 3 \1\& \1‘\' 1 a [ . ol

0 (Aatuhacnd) 6™ (6Fe)

f_t\-&%]
Sa BF _u.u¥
"5\13 ém,z Z 5&.- < jéig Yl
=9 ‘\“a 11\*'
o A -8
2An-9%AR
N VU % C e U A —=——
\iisﬂ . T u-\a\m u"“‘* A K @(An Q-Q)
ST (B W)
CLaa¥z)

= 6““ &h" i Z 5\4\ .“hs 8‘(1“\- By L*‘t\qt.&l‘“\ . &:ﬁn' ]
B8 (e -234)

| TR i\&i\ ‘aus Ana

k-8
Sé'*u Qa* e Ny (M. \SM = A-“? TN ;\ OB 6 (W)
w
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\'.mv,]
= 5\1@.5\1&2‘ iy, e Ol -orve Qe diar * = damar
EXL NN UL ECT )
G g4, $Ame

- £ :L“Z Qs alt) (A2 (Ara20-W - oo (A0-20-WA2z 42) (B0 -

LY. Y

NS (tra18)

The last two lines are shown in detail in the appendix,.

The notation used is t‘\*’/a] for the integral part of

o+, d,......... »dawse are some permutation of the
nurbers Vy.-------.,904% and 5;\_ ..... {ae is the

symmetric combination of all kronecker &'S e.g.

S

Walaly o S Siyig + éuaé-‘t’\w * 5.“.‘*8.‘1.‘3 (4.15)

st T e
- a(A-‘hu".&.vwb ta---- tan’h® * Laaatay, ia\\hﬁ. SR, ( A)

d =)

3, % arnd
Q‘* 63“ é Q ‘ uh.w st Qﬁ.\w K
w> @(A“L\Q

& ¥ ox (.
Aizmhisua bv‘hﬂ#n',\buh S (AQ\“\BG&“A Oy, Uy, G (Q Q\)
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Coawad]

E E % Sudd o
= é{h_,,"‘uy "_ﬁg— e .

S=Q Ry - oo Ry S ATIRAR

- QU

3 \ U, -
Aagay A3astan Laen

)
M AT
=+ Ui ‘f\.“*hz (i U N CR WM SUIDLE
=0

-n-Ra8
. &“’as MR (A2 (D520 -D) - - . (Dx-An-2raAD) (A 9»‘.5 A (o G)v

t.‘\i'lj_\\—l ®

! ~n n LY LA~
- Z L i % z W ey 85 AT

%:0 Aty - o g SAmataY v=e
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Lpd
where 8‘\“---. I is as defined before except that the term
Simﬂ'\wn must not occur e.g.

3.

L . s = . . . N ..
Cila Lanatas Vamtan Lalanmay 8\:\1\,\!:& * S Lyiinaakan &“"\t‘““

N
5i \alava & 5'\\'\;\;\‘ ¥b\‘ Anet > W (417

" .lma.
T‘ a(b ‘M\ \ TR ST \‘\‘\ ;\1\\-.,( A)

e
2 Xy -ug “ @
= S &9 a S STNUNER ¥ 1 )
| . S = Y Eal RIS

@“\( AA\“\; Aae“b G\h\i‘q‘ U\%) (\A*- \.3)

E E : 2 Pyt ~wf
= 8\&‘ 8‘\‘\_ o - Vo g: &3633 ) .
W

S=o Adg--- dga s Inak

A0at-%

!m-a.'sﬂ
ke O Qe “S\m. \cle(ls‘u.-s)

[ -
Lagay 7 VR [ X S

* (D »
L6 (Rag) G, 6 ()
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2) Conclusions

It has veen shoun that, although the principles
for dealing with Lagrangians containing iso-spin are
\‘*zig\éame as for the iso-scalar Lagrangians, the notation
and algebra is somewhat.more complicated. | Use of the
formulae given does save considerable time and energy
ih, for example, calculating second order corrections

to W scattering amplitudes using Wéinbergfs

co-ordinates.

The general form for the on-mass-shell self-
energies in the massless case couid be found in an
identical manner tc that used in chapter 3. However,
since the SU(2) x SU(2) chiral Lagrangians are not
equivalent to a free field theory such a calculation
is only of academic interest so we shall not go into
the details. Assuming no overall ultra-violet
divergences to be precent, the self-energy contributions
for an interaction Lagrangian given by equation (4.1)
can te shown to be of the same general form as given

in equation (3.55) for the caze of no isc-spin.

Similar technigues tc those presented nmay also be
used for gravitaticnal and weak interaction theories.
A full mastery of non-linear wethods could well lead to
the disappearasnce of the infinities which are normally

so prevalent in Field theories.
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APPENDIX

This appendix contains the details for computing
‘—~-—integrals arising in chapter 4. They are computed by
termwise integration as in the case of no iso-spin.

Ve shall make use of the orthogonality condition

-uut
;‘;Xd‘“‘“* T UTU = S (a.1)

and the double sum identities

s ™ :
2 2 S (R -2 4T - (AR-eaS -} (Vreaw),
(B-Y (- )

™z nzo
S
_ Ll (3r-atas-m)! | (2Ramad! (DIAR-2WY
B (e-=} WY A2RADY
A
= (283 (2r-20) (2r- 2w (W) (4.2)
S(asa) ‘
and
L A o
o one
2 (1) (1) (aram caamy
LT Ww=a
T
=) (o) (ot 2 e
L=

= (Asa) (4.3)
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These identities are derived with the use of the addition

(20)

theorem for binomial coefficients (see Edmonds , appendix 1).

Consider the integration

- S 63;_.‘339* . Z z N gl ) (Y Ly Y (Belt)

Expanding binomially we have

W = ZZZZE?Z ), | ettt

Tz =3 W=a o0 g 2o ™20

\\(\‘YB(@)(O(\ ™ Q\ m\(“\) QIS-AT Ak

At xAC-9P4m-tn oA A adan
Oy LY Ua Va
(A.5)

Using the orthogonality condition (A.1) gives

W - i Z i i? M RO (F) Y D

2 a N=@ =g "=y

“(2r 2042 OO - - (k)
(A.6)

Summing over m and n using the identity (A.2) gives

W= i z Z ) %@( ) W (Qra3a9) (298 (28-2%) (WD)

Qe

=0 R=0o -a

(A.7)

and finally summing over B and k using the identity (A.3)

results in



0
- A RE @2+ (A}
) \_\ Zé v ® Qreamy ™ 4.8

In equations (4.14) and (4.19) we are interested in an

integral of the form

Rt

: . = XM Z z LGRSO RIEY (Y (uuty,
L--oiotan )

= =0

-U"‘--- u'\’.“ (A-9)

Clearly -S'\n----w'\m must be symmetric in the iso-spin labels

and hence

Y = C du...q,

o (A.10)

. .
Lo slawm

Multiplying equation (A.10) by i3, S\"\‘..-.--S and

‘anaNan

using equation (A.8) one obtains

C . (Qna)(a-1).--- B3

- f“_"@;&? Z 2 N taud ™ (e (u)
5\

T=q t:8

e
= z AE) Visas) @ea20e242),  (Awaoad)), (4.17)
£ (oA

and consequently
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R
-S'\‘ e Nag & 8'\\ -- s \am z “{\‘)“‘*“} (Dra2nrs ) (Avra 2\
N R pesny (e 2o

(A.12)

Equations (4.16) and (4.18) involve an integral of the

fornm

-« D

N )
Fu By Z Z ) R L) (g o -

M- .\a.ms','\\&l = & b

Tz =9
*O3, - - Digaa

(A.;i.'j’)

N

AN
Again looking at the iso-spin symmetry of the integral we see

that X is of the fornm

Mess s

\< W-- "amz',:\\‘x( = —B 8&‘&2.‘\ - .‘lm’@ * Eé;\‘:\‘&

Wt (A.14)

Multiplying equation (A.14) by S:\\&t and using equation (A.12)

gives

LoD aat] Si i

[ ]
Y \
= X&.Q Sgg Z z AO BGD k\_\-\.é' (\_S‘-\gjt A Us,--- u"nn:
W
c=0 =0

© .
- é'\\-_ - \asan Z D) Riran) (220 (Ae15)
38.---. (2aaD) L
=0

Multiplying equation (A.14) instead by 3 and

AV é'il.‘&'n:

using equation (A.12) gives
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Llen) D & lawd) S i,

e =B *Z Z ) ) Cwlf LS (T 0t

<o t:=0

= S'\\ -- -\u\ Z P\(t)%(t *“\ (&Q-\&‘\*‘\-\ t&" *'3.‘\*"3) (&V*&'s\'\ﬁ\
38..... (2:van) (A.16)

Equations (4.15) and (4.16) can now be used to find D and E,

hence we have

R

\-(. . L = 2 A Qlgan) (e 20D (A 2o Y
Y= \1(\4,,‘)‘\.\\ T:g\ s. - . (ﬂ“*S)

. g (Ac+2023) 5‘.‘_. el ~ (2%1D) (S(\\‘\-,_§;‘... EIMQX (4.17)



PART II

U(6,6) AND THE ABSORPTION MODEL

FOR PHOTOPRODUCTION PROCESSES

"Let there be light: and there was light.'

Genesis chapter I verse 3,
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CHAPTER 1 -

1) Introduction

e et P

~
Calculations are presented for two-body and

quasi-two-body photonroduction processes using the

(1) and incorporating the U(6,6)
(2) (3

absorption model

symmetry scheme to determine the coupling strengths.

For any two-~body production process one can start by
writing down all possivle one particle exchange t-channel
graphs assuming only O  and 1 meson exchanges. These
Born graphs are hoprefully a good approximation at the
higher energies where s-channel resonances can be
neélected and in the near forwvard direction where the
u-channel exchanges, dominant in the backward direction,
may also be neglected. In fact the Born amplitudes
alene do not yield good results and Sepkovich (1)
proposed that scattering of the incoming particles
could take place before the meson is exchanged and
similarly afterwards for the cutgoing particles.

These absorption corrections are aprroximated by assuming
elastic scattering to he the dominant mechanism. They
have the effect of greatly reducing the large contribution
arising frowm the low pariial waves of the Boran terms.

Botn O  and 1  exchange amnlitudes are therefore improved
hovwever the bad energy dependence of the vector exchanges
still remains. Consequently the model is useful for
reactions dominated by pseudoscalar exchange but. since

most such reactions do pernit the exchange of one or more
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vector particles, we should only expect the model to
work in the intermediate energy region, ideally 4-3
GeV incident momentum, owing to the poor asymptotic

behaviour of the vector exchange graphs.

The couplings at the vertices of the Born diagrams
can sometimes be obtained by exrerimentally measuring
ébpropriate decay widths. However they are frequently
inaccessible so we calculate then aséﬁming U(6,5)
symmetry. U(6,5) allows all the meson~baryon-baryon
(MBB) and meson-meson~-meson (ifiiH) couplings for O and 1~
mesons and for 4 and X baryons to be related to just
two coupling constants. Thus once these couplings are
fixed we are left with a parameter free theory for all
the production processes involving O\\V,%' and 31V
particies. In particular the couplings for strange
particles will be determined from non-strange effects.
This model has been previously applied with coasiderable

(4)

success to strong interactisn processes

The photoprcduction reactions fall into four categories,
namely

a) ¥N—=>O ¥

) ¥N-> O 3

e) ¥N—> \"%"

a ¥ ‘TR
where Il denotes the target mnrcton or neutron. Juch of
the photorrcduction experirental data is for processes a)
and this category will bve treated in full in the thesis of

DeGeFincham. There has recently teen an increase of data
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for processes b) and ¢’ and no doubt data on processes
d) will be forthcoming soon. Here we shall be dealing

with these last three categories.

. e T
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CHARTER 2

A general description of the U(6,6) absorption

model applied to photoproduction processes is presented.

™~
The unmodified helicity amplitudes are given in section 2.

1) U(6,6) and Vector Dominance

(5)

We assume the vector dcminance -model ‘'~’; the u-spin
scalar transformation properlty of the photen gives,

for the amplitude for any meson-baryon final state,

TEN>WE) = Xp\ T{F, Ny M) + 5 (wa N *"“35]

(2.1)

thus relating the photoproduction amplitude to purely
strong amplitudes for the scattering of transversely
polarised vector mesons off a nucleon target. Taking

the SU(6) prediction for Qs-¢ mixing, i.e.

0« N [ o>

we obtain

TN M) = Ko T(FN-5ME) + X, T N> E)

+* XQT (CQ““-.; V\B}

(2.3)

vhere

Xag'- Xt Xe = A2\ 1 2 (2.4)
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The P -rhoton coupling XP is given by

Q= xy %g‘\-w

(2.5)
where
Qgee
= o= \-% (2.6)
W
and
& _ | .
‘*.“ \3? \.\ ( o?)
Alternatively XP may be evaluated using the decay 0o —» dv
In. either case we obtain
Xy & - OO%
>~ . (2.8)

We need now only consider the Born gravhs for the

o
purely strong reactions V-‘-,N—?’ B, These graphs
involve the exchange of 35 mesons which through U(6,6)

couple uniquely to 56 x 56 or 35 x 35. Thus the

4

three varticle vertices are written as

Lsam = %ﬁmc BoanMe”

\—Mnm = \\ M:’ MBQ Mc“ (2.9)
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where A, B, C and D are the U(6,8) labels. Just
retaining those parts of the currents in which we shall

be interested we have, for the pseudoscalar current,
As = O 40 + I + 00 (2.10)

where

(@) = %&\*?\5“-‘)—\?‘% (T*?Ss“\;«a; s

$=q(1+2) 2 (Do)
5®) =a, (Fs )¢

W B e B EEde

and, for the vector current,
= Q)+ i) + 1™ *&‘(\0 (2.12)
where
W) =¥ £\ (W Am}( R S
\\\‘(Q) = %'ﬁ{’\ k\*’ 9&\\) (N‘\\B'\“—‘r’& N %k\-\- _\?)(\\\ 3-%\"\\\)“*35;_3
WD = =825 (1 2 Erua By g (B

&x(x9).= ‘}%?1 EZvanr’ka(Xﬁf(;aéch\:)Yb
y
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HY =W R Rgugy Gveds - (e 2) Rel@ads

*%QV t@v‘?\a" c?v?@\t\ ei\ (2.13)

The following notation has been used

p = momentum of incoming particle
p = momentum of outgoing particle
q=p-p

P=p+p

% = Epva Pyq ¥y %g

W = meson mass

©~\ = baryon nass

¥, D and S are the faﬁiliar anti-symmetric, symmetric
and singlet SU(3) couplings respectively. YJe have also
introduced exrlicitly a G coupling for the meson-octet-

decurlet vertex defined as
=~ L
(bNM}c‘ =Ja O \\"\:'Eust;' (2.94)

where I, ¥ and D are the usual meson and baryon fields (3).
The §2 arises in equation (2.1%) as we have normalised
to PP -

The two couplins constants which aprear in the

currents given in eguations (2.11) ané {2.13) are calculated

from Chew-Low TiW scattering, giving
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I

a2
Quwn
Ww

U ey
wea = & (120 (37

&
and from the NHovisibirsk (6) experiment for the ?-—‘99:\'\'
decay width, giving
2 2
Aeer - R = RW
M W

Thus by using U(6,6) the coupling of the decuplet
is completely specified. For.the mesons the D:F ratios
and the ratio of the charge to moment couplings are
also completely determined. The only arbitrariness
in"the model ncw lies in the choice of the U:(6,5) masses w
and m. We adort the following prescription: m = mean

mass of %+ octet in SS(Q) and &\‘((3‘) m = mean mass of

“e

1" octet and %—"' decuplet in \g(v) and '\\.(BB ; W = mean

-

mass of O octet in &S(Q) and {s{v) p = mean mass of

17 nonet in ,S\-(o} s S\.\(th ,'Qs(v},&\, (») cnd &\.\V) .
WYe denote these masses by m, m', » and }C respectively.
In the propagatcrs the experimental masses of the

varticles are taxen.

2) The Unmodified Helicity Amnlitudes

It is now a simple matter to write down the Born
amplitudes, in terms of these currents, for the processes
in which we are interested. Denoting the pseudoscalar
and vector exchange anplitudes oz Tp and Tv respectively
and the excianzed pseudoscalar and vector nasses by Ve

. - , - + N . '
and \"v resypectively, we neve, for O % prcauction,

(2.15)

(2.16)
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(2.17)

| &s\"’)

T;QD: sl \__\\‘% | -
Lo v WA e

R

+ roduction,
for 0% P

(2.19)
\ &gt?)
Lﬁ)= &s(“) ‘c—\}v - .
AT "
*Q v/ \}"—l S \
(D) ‘."%\“’ -
T = W LR
for V"Y' production, o
\ ’ &s (V)
T?(g\_. &5 () % _\;a? n
* AN L0V
) N (03 Y_-%S‘Y N
Ny = \Yy Y-y
- 2.23)
for V& product (
B ' etV
Te = e Tov ) (2.24)
) \~ (V
| L-qp * Qe /4] \y
T '&\Lﬂ _
v

Y-y
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The metric is taken as %\w= (-\—\,—\,-\,-\) .

The 0 4  production processes will be dealt with by
D.G.Fincham in his thesis so we shall restrict ourselves
here to the remainiﬁg reactions. Using equations (2.11)
and (2.13) we obtain the following expressions for the

anplitudes
(B)
= 'B ?\ x(?g) U(?\ ?q\‘cP\.(?:.\ (2.25)

where

v

B, -~ (\*“1‘“)?‘

(2.26)
\?5

®) —_—
= Bg_ E\rvn); ?31 ?\K Ux(?a) ul?\) E Ve ?‘\d ?1-\;?3\?:})
(2.27)

where

8,

b ] (2028-)

\\2

‘.\“\

2

*.ﬂa“
3abXe (\ S 5

(é)
T C\ u\?Q KS U&?) tk).\u \51\‘ Qay CQ\AKQQD Qv\?‘&) (2.29)

where

- JahX \
_S;‘_‘.__S(\*- 3\‘1“.)(%‘-3%)'5(5 S S)—;- +(2430)
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)
"—‘-V = U(Q-QYIC,_(Q\-\Q;«)\; \a(“\\ )(?\\; ?5\\)

* C3\6\. - Cq (to-T) (Q\\r ?3\.\} uiRy) -
vy
-ty BB Bed + 2 e

~DRpLea) P2 PR ~DFylpa) Pa, R aw»)}

(2.31)

where

VC": \‘\x _\‘L F-\- 2 '\"‘
X (1 ) (P39 - () (D3- sb}‘e 25

(2.32)

Ca= (W DN -25) (D3F-HT 12

~Vy

(o)
T‘P = b ?\Q“A\?e) u\?) E\Q«\w ?‘n?‘\)\c?v(-?'ﬁ c?y(?ﬂ)
(2.33)

where

'b‘ __%_“\_2 (\_\- cl.“\) G“b \.“ \3? (2.34%)
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(o - :
W =D a P Tl N?b%“?\-‘?h?afh\@
e T AR PRl — (?:*QD‘.‘ h“eﬁ?‘b VapRplt)

* 2 Rufd) G?d?s_\c} (2.35) -

where

1}

(2.36)

(\-& 3‘“‘) Qx?

& \2 \‘V

We have distinguished between the incoming nuclecn and
photon and the outgoing baryon and meson by the labels
HAn uRn N3N ang M4 respectively. m, and p; then denofe
the mass and L-momentum of particle "i". F'and D' are
the SU(3) couplings at the M4l vertex; F,D,S and G are

the couplings at the MBB vertex.

To include absorption corrections the matrix elements

T are diagonalised in the helicity representation of

(7

Jacob and Wick . \ie define, for the general two

body reaction 1 + 23 + &4,

@ = OaRATIGD (2.37)

where T = Tp + Tv'and the index i specifies the helicity

dependence. The restriction imposed by parity reduces
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the number of independent helicity amplitudes to half
which are then evaluated in the centre of mass frame.
Explicit expressions for these amplitudes are long so
only those corresponding to present availablé data

are given viz. O 3' production and Y'¥%' (pseudoscalar

exchange only) production.

The helicity dependence of the amplitudes for
Q %" production is shown in Table *. We obtain the

following expressions for the helicity amplitudes

Q= :’A" LRy QR @t be¥a v BV, v - w=bh
C

B —_— -‘.-——-
D@, = =t \QX “- (€.Q-Barcen Q) eenbh

e ¥ winh | @b

X B& _S!S_(B%v\*%eh '\-‘Bs\'\— G)Sg/ﬁ‘-l‘

@3 = = BQ| 2 . (t.q-Tawcex) wsda

933¢ ™3

~ - R 1V \2a

'*'Ega S%{?S*v¥.€rnﬁ»b,-*‘ESSV\*?H&\QA;X
CPE =a_\§_ E‘V\*_Q\'{ %m\gli Y (Bi%\;\’\+mg/9.

®F =2 B RO b - B Wby

QQ
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%p = == &si—— (B, G- Bokee®) win¥a

- - R oo | 28

+B,%‘§'Bgv\- eV — 'BSV\+%9/&—]

qé?"':—L—- &sifl'v\-(‘iﬂb ‘t§¥333ﬂ§)«;nﬁﬁja
233C

~ e Ran® m\e/{\%%

- B\ Bzt - Ven- en%‘%}
S Rm. AR Rl R Rawy- ceny
- ) )

(2.38)

where Ei is the energy of particle "i", K and @ are the
magnitudes of the incoming and outgoing 3-momentun in
the centre of mass frame and 9 is the centre of mass

scattering angle. Also

C= (E\"'“\D(E’B*mg

& = C *GW

—

3 !{\8%. LR+ + R B3 (B, - Qeer®)] (\-cend)

X Q”\(%in‘%ck

B.= -——Sicwm £2) +RE3( T, -3 ens®) | (| veerd)

¥ QAR Ut %Qk
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B = %—_g— (Qexxb —EQ K wn® (2.39)

Table 2 shows the helicity dependence for "%f*
production and we obtain the following expressions for

the pscudoscalar exchange part of the helicity amplitudes

C

Q\ = - Qi = - Q\ “.. (an -Eq\{) mag/Q

QPE = ($i = = <3\\x*(JE:KQ-‘Eq\{)‘%ﬁhﬁ*ﬁeﬂ&fqﬁi

£
W
1l
|
)
t
]

= 32 G K 2indh, e 04

i

@ = ¢ = -3 QM ™R Wb oy

Qs = -y = CORLE,Q+TEK) wtth eri¥y

P = = G EQ +EX) =ty (2.40)

where

\"\1 = -s:‘g{\«(Ez*mg L (E\-\-\T\Q] (2.41)

¢
The helicity amplitudes for T‘}C), TI()D).and T‘(,D)

are embarassingly long and so are not given here.

They are evaluated using standard techniques and patience.
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3) Absorption Effects

As vector dominance relates electromagnetic
interactions to strong interactions, the two incoming
particles can be considered to be a nucleon and a zero
charged vector meson. This model allows strong
elastic scattering to take place in the initial as
well as in the final state as for the usual strong

interaction absorption model originally proposed by

(1) €

Sopkovich This model has been widely discussed

s0 we restrict ourselves here to just a brief sumnary.

The production partial wave amplitude from
channel o to channel § is related to the Born

anplitude Téd by
<R\ TR D

- E‘EQZ@ R S\ EED L R Tha\day

+ ) LRRATRN BOHLQR SLV KD (s
dial
where d,,d- @, and fa are the helicities of the
particles. S;id and ES%Q are the S-matrix elements for
elastic scattering in the initial and final states
respectively. This elastic scattering is assured to
be pure non-spin flip, Its form is parametrised in
térns of a real Gaussian model of radius R(s) and

opacity C(s), thus giving
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24 A = | - o) exg -/ R W2 )

where Q::\--‘,; and K is the magnitude of the 3-momentum
in the centre of mass frame. The parameters R{s) and
C(s) describing the elastic scattering are, in general,
not known. In the initial state we take R(s) from WP
elastic scattering and C(s) = 1. If the final state
contains no strange particles we use the same values

for R(s) and C(s). For stranée particle produection we
take R(s) from W9 elastic scattering and again C(s) = 1.
Elastic scattering data gives R(ST“—‘- 26 Gev™ for
o and WP, and W) '=-32 GeV™'  for WY at the

intermediate energies that we consider

The partial wave projections of the Born helicity

amplitudes were obtained by numericzl integration

. +\ e
_Y? (é) = ét QP;<53W.(G) f&&uﬁﬂg )

modified according to equation (2.42), and the new

partial wave series re-summed
X 3
@) = 2 (2 T &3, 0
3

to give the rmodified amplitudes. The differential
¢cross-section according to the absorption model was

then obtained by

é&d? = \ _l_“:E: VR
at etwwws 2 L \:\

(2.43)

(2.44)

(2.45)

(2.46)
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where the summation is over the independent helicity
amplitudes. K is the magnitude of the ceatre of

mass 3-morentum of the particles in the initial state.

For completeness the usual method of obtaining
the spin density matrix elements for the decay of
(8)

outgoing resonances is outlined . In the centre

of mass system they are given by

Pran = 2D AT A TN (2.47)
AMhda

and similarly for 9)\‘*)‘ vhere

N = ‘.'LZ Vo \? (2.48)

These distributions are then transformed to the
rest frame of the decaying resonance. In this frane
the z-axis is taken parallel to the incident aomentunm
and the y-axis perpendicular to the production plane.
With respect to these new axes the density matrix

elements are given by

S S

- A \Y -_—

P Fabs Z d\*‘a\‘a Wa) P)‘a)% é‘\‘s’*’s ) (2.59)
a\\ A

where Wy is the angle between the directions of the

incident particle and particle "4!" as seen in the rest

frame of particle "3", The expression for ?p;\,‘is

obtained in an analogous manner.

Thus given the helicity amplitudes evaluated in
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the previous section we are now able to compute the
relevant differential cross-sections and spin density
matrix elements. Hovwever, we shall see in the following
chapter that these amplitudes may need to be ;mended

due to the requirements of gauge invariance.
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CHAPTER 3

A dicussion of the theoretical predictions bf the

nodel is given.

>~

1) Gauge Invariance and XN—>Q 3t

Continuity of the electric current implies that the
matrix element for a photoproduction ‘process, must obey

the condition
Xy §p =© | (3.1)

where \<v is the 4-momentum of the photon. Each
photoproduction amplitude is written in the form QP;\\,
where Qp“ is the polarisation vector of the photon.
Thus replacing Ry by \<\‘ one must obtain zero for a

gauge invariant theory. e immediately see that for

(B) 4(C)
v p
are gauge invariant due to the presence of

the processes in which we are interested T

and T(D)
P

the term E\*K\V.P;‘C\NQ“ in &g(‘h and &\;L?) defined

in equations (2.11) and (2.13).

(B) can be obtained

(9¢10) ;.

A gauge invariant extension to T

by including parts of three other graphs

¥ e 3
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The gauge invariant amplitude then contains contributions
from the t-channel, s-chanunel, u-channel and contact
graphs, The relative contributions from these three
”gdgifional graphs depend on what basic assumptions‘are

taken.

Cur t-channel matrix element is: such that the
photon interacts with the "orbital current" of a
moving charged particle, the total iso-spin is equal
to 1 and only the vector part of the photon counles.
In both reference 9 and 10 a géuge invariant extension
is defined such that the firstvproperty is maintained.
Thus only the "orbital parts' of the s~channel and

u-channel graphs are retained giving for YWWN—»> WA,

of DI Tyigd Py U
v - Ny

- of Q,ﬁ?bf\\ Uplgd Doy URD
S- Ny

TV o UM Tylpd pap )

U- g
T = -3 e Uylgd) @ple) ul}d) (3.2)

T T % TR
where \ Y s ) and \ are the t-chanrnel, s-channel,
u-channel and contact graph contributions respectively.
Comparing.T vith ecuation (2.24) and remembering to introduce

the P -photon counling )kP we see that
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- -anX A\
ef = ~ahfy (142 g

’

In reference 9 only those parts of T ang TR
are retained that correspond to the iso-spin I = 1
amplitude in the t-channel and to the iso-vector part
of the photon, It is pointed out in reference 10
that, for example, in the case of &Q-—*“*Ao the
u~channel graph does not vanish as it should corresponding
to the electroragnetic orbital current of the neutrally
charged {\. We therefore foilow x;éference 10 and
consider the full iso-scalar and iso-vector contributions.
Consequently the gauge invariant extensions for the
four O %"' production processes in which we shall be

mainly interested are given by
T ™ n —
TS T 4 T TS

vhere (@,0)= (-4%,-2), (\,@),(®,-V) and (®,-V) for
¥p-—> WA, ¥p>TWA X AY and ¥a->TA
respectively.

211
In the centre of mass frame ' =Q. The heliéity
amplitudes for Tm and —\-E are easily evaluated so

that the @y given in equation (2.37) are amended to
Py = v - Bew- o
v ?\ - ‘V\‘

B = @ - H Rl B anthet

+o B? V\_ %\X\% ngl‘l
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®
Py = 2 - FRlr W) uitpemda
*oRWr 0 ey
$u = @ ‘.Be"\‘*?‘-“s%
¢S%:- cPSB x %Q\'\.\.%%qxlgh
o= -%BB‘(W-QQ&%—?W*%:N%3%%
—BR3rein’ 2

PP= B 35 By oit¥a- -5 Baced 24h) 2,
o Ry- w0l em¥a

Ps = T - By Wit A

(3.5)
where
Re= ~ 2% (\+2) TG
~ v I
= - %JQ‘\QXR D F 9 B (B.AT
PB'* (\-\' ) GS& (u—mg ST%\‘Q}\:B*“D
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where ™\, 1is the mass of the exchanged decuplet in the

u-channel and all other notation is as in chapter 2.

Gauge invariant extensionsto the helicity amplitudes
for ‘&P—’r\(\' N and ¥n-> XK"Y are identical to those
for ¥p-»W'A® and Ba->WYA" with R and WY

replacing "W and A respectively.

The six chanrels already mentioned, &?—)‘\;A?,K\\—)“;Al’
Ke—» \(.\.\,:.o and ¥a—y X*Y}~ are:the only 0"%“'
photoproduction processes which allow vseudoscalar
exchange. The other charge states of ¥W—=>TWA
do not allow pion exchange by charge conjugation and
the F coupling for W  éxchange at the MMM vertex
is zero for the other charge states of ¥W—» wRY
The couprlings of the pseudoscalar and vector exchanges

for the six channels are shown in table 3.

The terms added to the helicity amplitudes to
ensure guage invariance are seen to be approximately
S-wave. Since we are applying absorption to the
initial and final states the contributiorns from these
additional amplitudes are very small particularly near

the forward direction.

The theoretical results for the differential cross-
section at energies frcm 3 to 16 GeV are shown in figures

1, 2, 3(a) and 4(a). The data chows the very interesting

feature, pointed out by Richter (11), that in the near
forward direction the differential cross-sections appear

\-A3
to fall as @ This slope rapidly decreases at
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around t = -C.2 and then becomes similar to that for $Q-»W'a.

The contribution from W exchénge alone is also shown

and we see that the steep slope in the forward direction
_ﬁ_;s-_r\xgt accounted for. However, the inclusim:z of P
exchange improves this particularly at the higher
energies. The larger \Y| ‘behaviour is quite pleasing
although the change in the slope is not sharp enough at
t = -« 0.2 and, in fact, becomes almosit negligible at
16 GeV, the slope in the larger \¥\ region then being
too steen. The energy dependence is good with the

normalisation consistently a little too low. The

correct turn-over in the forward directiocn is obtained.

At present there is only preliminary data available
at 16 GeV for the remaining three charge states of ¥W->WA,
The theoretical predictions at 11 GeV are shown in
figures 3(b), (c¢) and (d) and comparison is made with
experiment at 16 GeV in figures & (b), {(¢) and (d).

From table 3 for the coupliﬁgs we see that the -w
exchange contributions to ¥Q > W A'™ and Va-H»TwrH
are equal and taree times those for ¥X@- w'A®  and ‘
X“—#T\"‘A*. However, the equality (up to this
factor of 3) of all four reactions is slightly brocken

by the gauge invariant extensions being different in
each case, and also broken by a difference in {the
relative sign between the T exchange and P exchange
anpylitudes. The constructive interference in the

vider angle regicn for ¥Q->WwYA and ¥n-> wYA™

gives tco large a differential cross-secticn whereas the
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destructive interference in this region for 89-%'\\' AN
and ¥n—>»W AY gives too small a prediction. This
is not surprising since the predicted ? exchange
contribution is probably too large at 15 GeV. We

have stressed that the energy dependence for vector
exchange amplitudes is known to bve wrong and is why

we should only expect the model to work at intermediate
energies. It can, however, be seen that the relative
sign between the 9 and W exchange amplitudes does
appear to be correct. Ferhaps more may be said when

data at lower energies becomes available.

The spin density matrix elements for the decay of
the A resonance for BQ-»W A'Y at 3 and 4.65 GeV,
are shown in figure 5. Being sensitive to the 0
exchange contribution more experimental data here would

prove extreuely useful.

So far there is no experimental data available
on the differential cross-sections for 8Q—>» wYQre
and ¥n—» WY QYT in figure & we show the predicted
angular distribution at 4.65 GeV. The cross-section
for ¥R—»¥W'W® out to \W\=0-6 is calculated as
O-\b ‘;‘g. This value is compatible with the
experimental value of Q+QAX-\O \n\s (12) fer the total

cross~section for this reaction.

2) Elastic Scattering and Sp—rV°p (V°=¢% w,®)

C parity excludes vector exchanges in the reactions

¥WN~-5 VN thus leaving only W° and v  exchanges.
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pseudo-
These/scalar exchange amplitudes are already gauge

invariant. There is only experimental data for the

reaction when the nucleon is a proton and hence we
-uwshal} restrict ourselves to this case although all the

discussion will also go through for the case of a

target neutron.

From equation (2.3) vector dominance allows us to

write

T(Rp—r\%)
=Xg TLER =>VR) + Kou Tlp V%) + X T lp—> o)

(37)

Consequently for each production process two parts of

the amplitude allow, in gemeral, W and w exchanges
and one part is elastic sc&}ttering of V?,P-%\PQ multiplied
by the appropriate factor. To include this part of the
total amplitude we take values of the total cross-sections
for S)P, W and W fron the Quark ifodel predictions
since these are so far in agreement with experinent.

(13)

These predictions are

AP = Sxlwg) = —2\1{6‘(“*93 X S‘-h\‘gﬁ]

SrleP = LS EP + SWE - SR (3.8)
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giving
Si(e = Srlwg) = A- o

SlaQ) = WS

From the Optical Theorem we obtain fhe differential

cross~sections in the forward direction to be

X &% tm—»g@\ = 52 (e

Y=o

.X,'u, S‘—S_@-(mQ—#L\)Q\ = \1.% \\\: \&QV/Q—&
%=0

Xz‘,‘., %%(Q?—»q?e)\ = 59 4o (BeV/ey?

=Q

For this diffractive part of the differential cross-

sections we use the form

%g. = N axp (Rvaatd)

In all threec processes we take B = 9 and C = 2,5 which
are obtained from WQ elastic scattering, A is, of
course, determined frow equation (3.10). So our

diffractive differential cross-sections are

(3.9)

(3.10)

(3.11)
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gs%.(t“P“ﬁ'geQ;) = \Q]R ste(ﬁw\.*fljs\ns ka(.%aﬁffn
%x—e— (Sp=>wd= IS & (Ar+2-5¥) who eV 2

88 (xp->2® =59 xp (9 ~2-5W) b @evy?

(3.12)

Since the diffractive amplitude is pu?ely imaginary
and the exchange amplitude is purely real there is no
interference between the two mechanisms. We thus-
evaluate the differential cross-sections arising from
the pseudoscalar exchange amplitudes given in equation
(2.39) using the absorption corrections and then add

the diffractive contribution.

The SU(3) couplings for T\° and v\  exchanges
are shown in table k. The final results for the
differential cross-sections for XQ*E gg? at 4 GevV,
o> We  at 2.15 GeV and 4.15 GeV and ¥Q—>RQ
at 4.15 GeV are shcwn as continuous curves in figures
7, 8(a), 8(b) and © respectively. Without the inclusion
of the diffractive part the results are given as dotted

lines in these figures.
The good fit for ¥O=>TQ  at 4 GeV tell us
nothing more than that we have chosen the correct

varameters for the diffractive part since in this pr:cess
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the meson exchange contribution is negligible in comparison.
We could have started from here and then obtained the
diffractive differential cross-sections for Wwe and KR

production.

Both diffractive and exchange contributions are
seen to be important for ¥P->wQ at 2.15 and 4.15 GeV.
These combine to give extremely good results at both

energies.

The reaction KQ-% ®Q at 4.15 GeV does not
allow W® exchange and the exchange contribution
is small. The evaluated differential cross-secticn
aprears to be slightly to§ large in the forward direction,
and then falls off too rapidly with increasing \\\.
It is hardly surprising that we do not obtain good
agreement here since our assumption that the X9 elastic
scattering differertial c¢ross-section is similar to the Y

is probably unreasonable.

In figure 1C we show the spin density matrix
elements for the decay of the P meson in XP—-” 3"’?
at 3 and 4.65 GeV. The inclusion of an exchange
contribution for this reaction has more effect here
than in the differential cross-sectiocn. ' However,
the difference is not large enough to ascertzin whether

an improvement has heen obtained.

Figure 11 shows the decay matrix elements for 3?"’ we

at 1.95 and L.15 GeV. The results are as improvenrent
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on those for diffraction only and are in good agreement

with experiment.

No data appears to be available for the decay

EE R S )

ma{:;ix elements for B? > ®RP.

3) Remaining Processes

Restricting ourselves again to ?_he targe't baryon
being a proton, the photoproduction of 9*‘\. , WA,
\(.‘1-20’ \(‘.ozﬁ ’ ?-A'\-'\' , g.\.g , ggd\- , wA* , ® A—\' ,
\{"g‘{r* and \':“ ‘?:"0 all allow O  exchanges. Except for
the reactions \S?—%VQA-‘-, ‘69-»\&”2* and K?—’r \("Q‘ﬁ'*’
1~ exchanges are also allowed. The vector amplitudes
are not gauge inveriant but since no experimental data
is available for the differential cross-sections and
since we expect the pseudoscalar exchanges tc dominate
we shall not consider this problem here. The couplings
for \ "‘5_* production are given in table 5 and for v %:*

production in tables 6 and 7.

Figure 12 shows the predicticns for the angular
distributions of KP*’ Q'A“ and $Q-» S*AQ at 4.65 GeV.
The cross-section for KP—?'Q'A*" in the region ~O<\W\%-3
iscalculated to be -6"3‘;5. This is in good agreement
with the experimental value cf +6t-D po (%) for

this part of the cross-secti:zn.

At 5 GeV the predicticns for g’\'“ production are
° *
shown in figure 13, for W¥YA W72, =nd W2

in figure 14, for ROA*)‘”A* and CQA‘\' in figure 35
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o
and for YRV and WeRTY in figure 16. No
data is so far available on the cross-sections for these

processes.

4) CGonclusions

For processes dominated by pion excéhanze the model
réproduces well the overall characteristics of tke data,
though detailed agreement is not alwé&s good. However,
if must be remembered that the model is parameter free.
It is an interesting point to investigate whether the
general success of the absorptisn model for pion exchange
can be extended to reactions proceeding by kaon exchange.
Calculations for the reactions XQ-%\(*As“*S_? (15)
have been found to be not very encouraging in contrast
to the excellent fits obtained for 9‘§-»W (4).
Unforturately there is no experimental data yet avaﬂable‘
for the strangeness exchange processes we have considered
here to allow investigation of this point. It would
also be very useful to have better data on the decay
‘density matrix elements in such reactions as VWA

allowing a more accurate test of the U(6,6) predictizons

for the vector exchange contributions.

An extension of the model is to epxly the absorption
corrections to Reggeised amplitudes. Some extremely

goocd fits have been oxtained (15)

using this model for
strong interactions but for phctoproduction difficulties
present with our model are not always eliminated. The

ansvwer to this may lie in a wrong assutiption about vector

dominance.
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l.

Differential cross-section for \S?-é'“—A'H'

at 5 and 4.65 GeV. The data is from DESY (17).

Differential cross-section for KQ—»‘““A**

at 5 and 8 GeV. The data is from SLAC <187,

Differential cross-section for KQ%“‘N‘*
0> | ¥n-—>nYA  and ¥n->wWAY

at 11 GeV. The data is from SLAC (18).

Differential cross-section for KQ—» w-AYY
o>, ¥a>wrA  ang ¥o->T"A*

at 16 GeV. The data is from SILAC (18) (19).

Spin density matrix elements for the decay
of the & in ¥Q>TW A™ at 3 and 4.65 GeV.
(17)

The data is from DZ3Y

Differential cross-section for Kp-—)\{“i?"._

and ¥n—=> WYY a: 4.65 GeV.

Differential cross-section for &?A) 9°?

at 4 GeV. The data is from DESY (177,

Differential cross-section for &p-—suo‘;

at a) 2.15 GeV
b) L4.15 GeV

The data is from
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Differential cross-section for KP%QP

at 4.15 GeV. The data is from DESY (17).

Spin density matrix elements for the decay
of the P in ¥p—=4§®P at 3 and 4.65 GeV.

The data is from DESY (17).

Spin density matrix elements for the decay
of the W in Xp—amp at 1.95 and 4.15 GeV.
The data is from DESY (17).

Differential cross-section for ¥p-» § &A™

and ¥p->¢*X  at 4.65 GeV.

Differential cross-section for Kp—% g*'“

at 5GeV.

Differential cross-section for &Q-»\{“A,

Xp>K"2®  and Xp3WeRY at 5 cev.

Differential cross-section for Kp-% gaA*
Ep—> wA" and ¥p->A*  at 5 Gev.
Differential cross-section for Kp-—“’ Wo Ryt

and 8Q->¥YR® at 5 Gev.
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Lbstract

Detailed calculations for the reaction W pP—>WR W AYY
at 10 GeV/C, using the double neripheral and virtual
diffraction models, are presented. The couplings are
determined by using U(%,6) symmetry. "Off shell' and
"abgorption! effects are included in an approximate
way by the use of vhenomenological form factors.

Good agreement with experiment is fo;nd-for all the

relevant one dimensional distributions.



Introduction

In previous papers we nresented detailed caliculations
using the "Deck" virtual diffraction model for the
reaction W P->¥°W p (1) 2nd the double peripheral
(2)

model (DFK) for W P->¥"w'n Thks paper reports
on calculations for K‘P-%\{‘v’A**at 1C GeV/C including
contributions from both mechanisms. _hs in the previous
work we have talien account of "off shell! and "absorption'
effects in an approximate way by use of phenomenological
form factors. The number of free parameters in the

model is significantly reduced by imposing U(6,6),

(2)

symmetry to relate the couplings involved.

The data for this reaction is notable for its
apparent lack of anyeasily resolved quasi-two particle
contributions. This is not wholly surprising as any
resonances in the W & *and W A systems would be
weakly coupled higher baryon resonances. It is also
noted that almost all events have the O scattered
backwards in the overall centre of mass frame and the
events are Tairly evenly divided bvetween the W
scattered forward ( WX isotroxic) and the W scattered
forward ( X isotroric.. These features are strongly
suggestive of double peripheral mechanisms with strange

and non-strange mescn exchanges.

In section 2 we prezent the matrix elements used
and our choice of parameters. Cur results and conclusions

are discusseq in sectien 3.



2. Model:

The DPil processes are represented diagramatically
in figures la and 1lb, the exchanges (I X) are (wlwg™D
in la and (WR*$,W),(WR°,¢) in ib. In addition there
i5 the possibility of the virtual diffraction diagrams
represented in figures 2a and 2b. Since the data shouws
few events with the A scattered away from the backward
direction no attewmpt has been made t; include contributions
involving baryon exchange to either the DPK or sirtual.

diffraction processes.

Using U(6,6) symmetry the H~functions are written
down in an identical manner to that used in references
1 and 2. For the DPH we have, for (g’,‘“‘)a(\n,g“)and (¥ w89

exchanges respectively.
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The indices a, b, 1, 2 and 3 refer to the target proton,
inconming kaon, oﬁtgoing kaon, outgoing pion and outgoing A\
respectively. The U(6,6) couplings g and h are as

(2)

previocusly used and we have alsc introduced the
coupling h for an IMK vertex containing two strange -
nesons, its value is 1.17 times that of hp being fixed

from the W*¥(590) decay. The U(6,6) masses which anpear
are, in GeV,

= 1.18 (mean mass of %? and 2% baryons)
X\ Y

Yo

Pn = .533 (mean mass of O  octet and 1~ nonet)

Py

The Deck effect I-functions are, for Xw virtual diffraction

417 (mean mass of O octet)

250 (mean mass of 1  nonet)

and Rp virtual diffraction resvectively



ME\\ = .\%\\-\- ) ~ ___ht_ "\"’“ A (3\25“\\,“\;3

(\‘3& o)

<\ xR (35S TN

a V2 (2, 08 , )
M - Q v(#}.‘\h‘\“‘&\ W N\
\% ‘K\ Y “\ (Sea-5) ?\QY_LQQQQ*LQQQQ-*N‘Q

< Frlag (338 ¢y)
(2.2)

where

oR eyt ¥ -Aen-Au -V
W

Dlx,y,2) = (2.3)

and we have taken the differential cross-section for WKW

and RQ elastic scattering as 50 exp (7.5t) (GeV/C)"l¥

Fhenomenological form factors of the form
R = ¥ X (2.4)

are now included for each of the particle exchanges and
the values taken for the varameters %\0} and \ are
as used ir references 1 and 2. Introducing these form
factors into eguations (2.1} ard (2.2) to modify the
matrix elements, the T matrix for the reaction is now

taken as

T)‘:% =T.\\AQ-;,\3§ ‘V\(\ Mg+ Me+Wg + Mg *\"\v}\‘“\?m\x)

(2.5)
where —G\\ L?'s;\'s) is the %- s.pin wave function and UA(QQ,\Q

the spin "‘i wave functicn with helicities )\3 and )\c\

resrectively.



The relevant distributions can now be calculated from

M= 2 AT - (2.6

Mha

where A is evaluated in the usual way.

Results and Discussion

The Data was taken from the Aachen - Berlin - CER -
London (I.C.) - Vienna collaboration's WP exposure at
10 GeV/C.  The restriction S(wxwW)>AReV/c was applied to
the data and to the theoretical calcuiations since we
have assumed a virtual diffraction parametrisation
in the VR subsystem. This parametrisation can only
be expected to be valid at high energies {c.f. reference 1).
Our overall normalisation was fixed by the data, the
relative normalisations of the various contributing

processes having been fixed by the model.

Our results for the mass-squared distributions SRW),2(wA)
and R(wA) are shown in fizures 3.a), (b) and (c)
respectively. In all these plots we find good agreemeﬁt
between theory and experiment. The reaks in these
ldistributions at high and low nasses are the kirematic
reflections of the forward/backward peaked angular
distributions wihich eare a feature of multiperipheral
models. In particular the sharp peaking at low mass
in the Wl subsystem which is given correctly by the
model results mainly from the strongly pesked virtual

difZraction prccesses.



The momentum transfer squared distributions \(Qﬁb;\cﬁﬁb
and Y(wW) are shown in figures 4{a), (b) and (¢)
respectively. Comparatively poor agreement is found
for the \'(QA3 distribution; however this would undoubtedly
be improved by allowing for the finite decay width of
the A . The t(XK) distribution is in good agreement
showing strong forward peaking typical of virtual
diffraction. The third plot, for Y(ww) is interesting
in that it shows quite strikingly the presence of both
the strange and non-strange exchanges. In this
distribution the forward peak is dué~entire1y to strange
meson exchange and the large momentum transfer scattering
which peaks at about Z(GeV/C)2 is due to the non-strange
exchange and virtual diffraction processes. The
ability of our model to obtain agreement for this plot
demonstrates that we are able to predict correctly the

relative ccntributions from these types of processes.
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Double peripheral diagrams for
(a) non-strange exchange only, and

(b) strange and non-strange exchange.
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Summary. Detailed calculations of the « Deck» virtual diffraction
background plus possible coherent diffractively produced resonances
and the incoherent K} resonance are presented at 6 and 10 GeV/c for the
reaction K p—K*'r—p, « Off-shell » and « absorption » effects have been
allowed for by the inclusion of phenomenological form factors. A simple
parametrization for the diffractive production of the resonances in the K*x
enhancement is employed and these amplitudes, which include the sub-
sequent decay, interfere with the «Deck » background. A reasonable
fit to experiment iz obtained. ’

1. — Introduction.

In a previous paper under this title (*), hereafter referred to as I, we presented
calculations with the simple « Deck » virtual diffraction model as suggested
by FRASER and RoBERTS and also Ross and Yaw (2). We demonstrated in I

(*) The research reported in this document has been sponsored in part by the
Air Force Office of Scientific Research OAR through the European Office of Aerospace
Research, United States Air Force.
(**) Present address: Department of Mathematical Physics, University of Bir-
mingham, Birmingham.
(***) Beit Scientific Research Fellow.
®) J. L. SCHONFELDER: Nuove Cimento 61 A, 114 (1969).
(*) G. Fraser and R. G. RoBERTS: Nuovo Cimento, 47, 293 (1967); M. Ross and
Y. Y. Yam: Phys. Rev. Lett., 19, 546 (1967).
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that this model was, at best, a model for background and we pointed out that,
as the most likely resonances responsible for the K*n enhancement would
interfere strongly with this background, it would be desirable to include such
resonances explicitly in the calculation. We also concluded in I that neglecting
« off-ghell » and ¢ absorption » effects was not strictly warranted and that some
attempt to include these was algo desirable.

Consideration of the relevant experimental data and the summarized par-
ticle properties (*) suggests that at least three resonances must be present in
the K*r enhancement; the K(1230), K(1320) and K(1420). All of these
resonances have I-spin 1, and J*= 1%, 1* and 2% are the most likely spin-
parity assignments. The 1" mesons allow vacuum exchange in the ¢-channel
and so are most likely to be produced by that process, i.e. diffractively. The
2% meson does not allow vacuum exchange but pion exchange is possible and
we assume that this is the dominant production mechanism.

The inclusion of « off-shell » and ¢ absorption » effects is by no means a
trivial problem to do «correctly ». The inclusion of absorption effects by some
technique like that suggested by SCHONFELDER (*) would involve considerable
labour which the crudeness of the present model does not warrant. Conse-
quently it was decided that, following the work of JosEPH and PILKUEN and
also GISLEN (°), these effects could be taken acecount of in an approximate
way by the use of phenomenological form factors. This is a far from satisfac-
tory method of tackling the problem but as this is a somewhat exploratory
calculation it was hoped that such a simple-minded approach would be
sufficient.

In Sect. 2 of the paper we shall outline the way in which we have para-
metrized the backgound and resonance amplitudes. The results of our cal-
culation are presented in Sect. 3.

2. — The model.

For the background amplitude we use the same forms as in I except for
the inclusion of a form factor for the two i-channcl exchanges. The processes
are represented diagrammatically in Fig. 1, The M -functions for these processes

(®) A. H. RoSENFELD, N. BARASH-ScuMIpT, A. BARBARO-GALTIERI, L. R. PRICE,
M. Roos, P. 8opixg, W. J. WiLnis and C. G. WoHL: Particle properties tables (January,
1968), UCRL-8030.

(%) J. L. SCHONFELDER: Nuovo Cimento, 58 A, 221 (1968).

(®) J. Josepn and H. PmkuHN: Nuove Cimenio, 33, 1407 (1964); L. GISLEN:
Nuovo Cimento, 54 A, 919 (1968).
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are, from I, b—m e —— — 1
Fn(tm) S 2
M= dursebon gy A O
a 3
1
(1) M = % f— A B
2= Jtrnlay (Bra—mg) ~ 7’ b~ 1
~ o <
Fex(ta) A4,
M = -._K____. —_— —_6-7 2
0, J¥gnDn) op—m2) a1+ i gv,qua
a 3
where 4= p,—p,. As in ref. (*) we have assumed
that the form faetors factorize into the produect of L G 2

two funetions, each dependent on one ¢-variable and
we have taken the form as given in that reference, viz.

——1
— O,

2) F(t) = F(0) ey Fi_g. 1. — Deck effect for
K p>K*¥grp. ——— n—;

s Koy e

No form faetor is introduced explicitly for the vaec- R *0(890); P;

uum exchanges gince the vaenum exchange ampli-
tudes ¢ 4 » are caleulated from experimental results
and hence any form factors etc. are implicitly ineluded. The treatment of
process B we shall postpone until we have dealt with the resonance processes
as we have treated all s-ehannel poles in a gimilar manner,.
We now turn to the resonance amplitudes D1, D2 and F say, which are
represented diagrammatically in Fig. 2. For the
D1 or D2 1 deeay vertices we shall again use the eovariants
- and eouplings of ScADRoN (®). In the case of

b————
de "2 D1 and D2 where there are two possible coup-
a 3

lings we shall assume lowest-order «angular-
E 1 only the coupling whose appropriate covariant

(O virtual diffraction.

momentum barrier » coupling (), ¢.e. we take

b————— .-a-.—(/ contains the lowest number of momentum fac-

5 "2 tors. The propagators for these unstable reso-

a 3 nances we shall take as the numerators as given

Fig. 2. — Resonance production  in ref. (°) and the denominators will be given a

for K'p~>K*'x"p. ;_{‘*0‘8"’0 complex mags. The production process for E,

——— K5 - - (890 taken as single-pion exchange, ean be written

b K80 o down by quite standard techniques. The dif-
K*(1320); ——— K*(1420); own by quite standar e ques.

€ inelastic virtual diffraction
or vacuum exchange.

fractive produetion amplitude is not so well
defined. In order that we end up with an in-

(°) M. D. Scabrown: Phys. Rev., 165, 1640 (1968).
(*) T. J. WEARE: Nuovo Cimento, 56 A, 64 (1968).
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variant 7-matrix, we must have a vector index on the diffractive produc-
tion amplitude which will contract out with the corresponding index on the
spin-1 propagator for the resonance. The simplest agsumption that one can
make is that the K~ and the K are coupled to the vacuum exchange as if
the vacuum exchange were a 0 object. The remaining scalar part of the am-
plitude can then be parametrized as for elastic scattering. Thus we obtain
the following M-functions for resonance production and decay:

. PurK)
T (S32—Mps) + L

‘Pog Ao s

MDI'u = nglx*

similarly for D2,

Pap(K)
) ﬂ[EM: Ixgurn Euper Pre Kapsa: E81)g:7n/25)/—|—7ﬁ—'57n; -

Frn(tsa)

IicprnPoyPos (Vs Gxwn

where ZY(K) and #*(K) are the spin-1 and spin-2 propagator numerators and
K =mp,+p,. We have again introduced form factors for the #-channel ex-
changes, explicitly for the pion exchange process F and implicitly in the dif-
fractive production amplitudes.

We now consider the energy dependence of the s-channel exchanges. The
amplitude for two spinless particles scattering via a spin-J resonance in the
direct channel can be written, in the centre-of-mass frame, as

J J
__ YaPugaPia Ps(cos8 0)
(4) M= R S

It is well known from low-energy phenomenclogy that a reasonable energy
dependence for such an amplitude can be obtained if the couplings and mo-
mentum factors in eq. (4) are replaced by the appropriate constant partial
widths. This is essentially equivalent to evaluating these factors at the pole
which is the method we have adopted.

The full T-matrix for the reaction is now taken as

(5) T = 8”(}»1, pl)a(zli? pa)[ﬂ[,g + JIB __!'— lWo _IL Mpl + ﬂfﬂz _]L Jl[za],uu(}*a’ pa)
and the unpolarized cross-sections are calculated from

(6) S,leng*KTﬂ

spins

Pt . PyF3 4 Poo¥%
{tp — ms )2 {813 — m:)z {ts — mi)z

2—PAREAFB 2Py Fp o 2—PA0EAF0 }+

(812 — M) (s — m3) (83— mg)(tgs — M3) (tlb—”ng)(t;-ab; m3)
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-

+ Py I3y Prps Iy
(815—m51)* + T oMy (815~ M3)" - Thamiy

+ 2PDD12FD1FD2[(812_ mzm)(sm _’mfm) + Fnlmnlpnzmnz]} n

[(812— m3;)* + T5imp][(81s— mpe)* + T5ams]

20 ¥ Fp1(81 — M) { PimFy Pop Iy PonFo } 4

4
(81— Mmp1)* + Lpympy | (fp— m3) (812 — i) (T — mi)

20+ znF pa (810 — m?)z_)_ PapoF 4 PrpFy 4 Pepa Fy o ?iEFfE, -
(12— Mpg)* - T paMpe | (b — Mm3) (83— M) {tar —M3) (81— m3)* +- T'gmy ’

where P,, etc. are the factors resulting from the spin sums and ¥, etc. are as
in I except that they now include form factors where appropriate. (Detailed
expressions for these quantities are recorded in the Appendix.)

These expressions were readily programmed and the required distributions
generated using the programs for phase-space evaluation reported in I.

3. — Results and discussion.

Figures 3 and 4 show the results at 10 GeV/c, Fig. 5 and 6 the results at
6 GeV/c. The data are identical to those used in I. We have again restricted
the kinematics and have only eonsidered theoretical and experimental contri-
butions for which 8,;>3, 8;;>5 and |{,/<< 1. In our choice of form factors
we have followed GISLEN {*) and have taken the parameters as

F (f) = 0.95exp[2-5f],

(7)
F.(t)= 0.8 exp[2t].

With these factors and mnormalization taken from experimental elastic scat-
tering we find that the absolute magnitude of the background as well as the
shape is quite good. This can be seen in Fig. 3a) where in the region away
from the resonances the cross-section is entirely due to background terms.

Initially we took the normalization for all resonance amplitudes from
experiment., The contributions from the diffractively produced resonances
were too large. This was to be expected since an inelastic diffraction is unlikely
to be as strong as elastic diffraction. The Kj-resonance contribution came
out to be too small. Again this was as expected since, for simplicity, we
neglected %, p% ® and ¢ exchange production.

At 10 GeV/e we reduced both X, amplitudes by a factor of 2 and increased
the K; amplitude by a factor of 3. At 6 GeV/c these factors were 2.8 and 1.5
respectively. We used no other parameters apart from the form factors given
in eq. (7).
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The masses and widths used to calculate the coupling strengths for these
resonances were taken from ref. (3). These values are tentative especially
for the Kj’s and consequently the effective coupling strengths used are within
experimental-error bounds.
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Fig. 3. — Mass-squared plots at 10GeV/ec. Fig. 4. - Momentum transfer plots at

10 GeV/e.

Unlike in I we now obtain fairly good agreement for all the mass-squared
plots as can be seen in Fig. 3 and 5. The momentum-transfer distributions
shown in Fig. 4 and 6 also show reasonable agreement although the # .« distyi-
bution at 10 GeV/e, Fig. 4b), appears to peak at a slightly too small value of [¢].
It is hardly surprising that some disagreement should occur in this distribu-
tion since it is the ¢, dependence of the matrix element that is most strongly
related to the exact nature of the resonance production mechanism.

In conelusion then it would seem fair to say that these results demonstrate
that the virtual diffraction model for background with coherent diffractively



326 J. L. SCHONFELDER and A. P. HUNT

o
o
wE
~

=]
(92}
ol

b)

no. of events
=3

o
T

0 L L
5 6 7

{(Gev)

8
1

Fig. 5. — Mass-squared plots at 6 GeV/e.
144 events.

3B

30

~N
(=]
T

o,
T

no. of events
=3
T
|

4
-
1
o
o
3

L

0 05 1.0 15 20

[(Gev/cﬂ
Fig. 6. — Momentum transfer plots at

6 GeV/c. 144 events.

produced resonances plus the incoherent K}(1420) can reasonably aceount for
most of the cross-section in the reaction K p — K*'x~p at high energies with-
out drastic changes to calculated normalizations.

The authors would like to thank Prof. P. T. MATTEHEWS for his help and
encouragement. Thanks are also due to Drs. M. Losty and M. E. MERMIKIDES
of the H.E.N.P. group at Imperiul College who supplied the experimental data.
One of us (J.L.S.) would like to acknowledge the financial assistance of a
Scholarship from the Royal Commission for the Exhibition of 1851 which he
held during the early part of doing this work,
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APPENDIX

We present here the detailed expressions used in eq. (6) to calculate to
unpolarized cross-sections. First we give the gpin sum terms

Py = (p1pb)z/m21‘“ ™y
Py = (E(mn—mi mg/mi y
Poo = (pp AV (ps A) My — [Ban(0s A)2 + 2 (po A) (D2 4) (D1 o)1 [m5 +

+ [(pa2s)? + 2 (py A)2]mi—my ,
Py =—m B+ (plpb)mbEi(lE)/mi y

Pao = mp By — (1’11pb)mbE(m/m§_(PbA)(El(:m 1Y) mb/ml—}— (po A)(Puy) M, 7 fmi

P = (0o} A) (05 A) My — [(p100)? + (0o 4)2]fm] + ma
Popy=p&" + pP"p cos?8/m? ,

Pypy= (pips)P1 cos O/mi—pi™ps”
PBDI — mb E(B)p;Dl)

(Dl) (Dl)

(D1)

P cos BfmS3 ,

PODIZp;;DD (3) Ap [p(Dl) (3)+p(D1) (3) cose]/ﬂll
+ p”’” P cos B[ (ps A)(p1 A) /My — (p1py) ]} 1

SlImlaI'ly fOI' .PDD2, PAD27 P.BD27 Papz,

(D13, (D2) (D1, (D2, (D1),_ (D2)
Popra=1py D5 " + D05 Do DT 'pi™ cos B,

B i 5in® 0 cos26 .

Pz = mEpy
The notation we have used here is as in the Appendix of ref. (*) except that
all the momentum and energy guantities which have process labels as super-
seripts are factors to be evaluated, in the (12) centre-of-mass frame, at the
pole for the process designated by the label. #is the angle between the three-
vectors p® and p{® in the (12) centre-of-mass frame. These quantities can
be evaluated in terms of the invariants s and ¢

(Papy) = (M1 + my—12)/2 ,
(prd) = (M1 + Ty —134)/2
(P, 4) = (m: + by — M3)/2 ’

BY = (sn+ mi—m;)]2W,,
p®  =[(s12 +mi—my)* —4dmis, P2W,,
EY = (sa+ms—1:)[2Ws,
P& = [(812 + Mmp—tes)2 — AMis, [H2 W,

cosf =[ty— mi—m? + 2B E{?’]/Zp @ p@
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The quantities B, pi™", ps™ etc., can be evaluated by taking s;,= m;, mpy,
My, or My and wy= m,, My, My OT My in the above expressions. The fac-
tors F,, ete. are defined to inelude the common spin-} trace factor

Fy = 64”3231’;1)2%::: exP[bryts] [Frltn)]?,
Fi = 64784, Pty XD [bry sl
TG — Bdms;ypi? ag, exp [brptse] [Frce ()12,
For= 6478, P01 €XP [btsa] 5
gimilarly for F3,
Fr=ay Fr(ty) ,

where the momentum factors oceurring can be caleulated by analogous expres-
sions to the above and the parameters a,, a5 and ag are used to fix the nor-
malizations of the resonances.

RIASSUNTO ()

Si presentano calcoli dettagliati del fondo di diffrazione virtuale di «Deck» pin
risonanze prodotte diffrattivamente, coerenti, possibili e la risonanza K} incoerente a 6
€ 10 GeV/c per la reazione K p—K*z p. Si & tenuto conto degli effetti di « assorbi-
mento » e « fuori strato » con 'inclusione di fattori di forma fenomenologici. Si usa una
semplice parametrizzazione per la produzione diffrattiva delle risonanze nell’accresci-
mento K*r e queste ampiezze, che includono il decadimento susseguente, interferiscono
col fondo di « Deck ». Si ottiene una ragionevole approssimazione agli esperimenti.

(*) Traduzione a cura della Redazione.

Bupryanenas anddparuust 1 pearama K-p - K¥irp. - 11,

Pesiome (*). — Jag peaxnun K—p — K*—p mpu 6 u 10 I'sB/c npemnararores moapo-
OHbIe BBIMHCIIEHMsI BHPTYaJbpHOTO ImuddpaxmuoHHoro thoma « Jleka » ILOC BO3MOXKHBIX
KOTEPEHTHBIX OU(PPaKIMOHHO POXIECHHEIX PE3OHAHCOB M HEKOTEPEHTHOrO pe3oHaHca K.
ITocpencTBOM BKIIOUYEHHs (DEHOMEHONOTHIECKAX (AKTOPOB Obuim yureHBI 3QdeKThl « BHe
0000k » ¥ « moriomeHus », IlpumMeHsercs npocTas HapaMeTrpwusanms 1is qubdpak-
OMOHHOTO POXIEHMA PE3OHAHCOB B K*r ycujeHWH, W 3TH aAMIUIMTYZObI, KOTOPBIC BKIO-
YaroT HOCHeNyrOIlnuii pacnaz, uareppepupyror ¢ houom « Hexa ». Ilonyyaercs pazymHoe
COOTBETCTBHE C SKCIIEPUMEHTOM.

(*) Ilepesedeno pedaxyueil.
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Abstract: Detailed calculations for the reaction K p —K*7"n at 6 and 10 GeV/c are
presented. The non-resonant background, which accounts for most of the cross
section, is assumed to be due to double peripheral exchange mechanisms. The
relative strengths of the couplings for the various exchanges involved are fixed by
using U(6, 6) symmetry. "Off-shell" and "absorption® effects are included in an
apprommate way by the use of phenomenological form factors. A contribution
from the K*(1420) resonance is included explicitly and the production and decay
amplitude for this process is allowed to interfere with the background. Encourag-
ing agreement with experiment is found for all the relevant one dimensional dis-
tributions.

1. INTRODUCTION

In this paper we present the results of a double peripheral model [1]
(DPM) analysis of the reaction K'p — K*“7'n at 6 and 10 GeV/c. This re-
action is notable for an apparent lack of strong quasi-two-particle inter-
medlate state contrlbutlons The only clearly resolved resonance is a
K} n(1420) in the K*7 sub- -system and this appears to be responsible for less
than 20% of the total cross-section. Almost all the observed events have the
baryon scattered backwards in the overall centre of mass frame and except
for a few events, which mainly appear in the K*(1420) band, the K* (890) is
scattered forward. The pion is mainly produced isotropically. These fea-
tures are suggestive of a DPM with non-strange meson exchange.

1 Beit Scientific Research Fellow.
The research reported in this document has been sponsored in part by the Air
Force Office of Scientific Research OAR through the European Office of Aerospace
Research, United States Air Force,
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Our approach is similar to that of Gislén [2] differing in that we use the
U(6, 6) symmetry scheme [3] to calculate the relative strengths of the cou-
plings involved in the DPM processes. This method has had considerable
success for the single particle exchange absorption model [4]. Also we in-
clude an amplitude for the peripheral production of the K (1420) and its sub-
sequent decay into a K (890) and a 7. This is done in the same way as in our

%0
previous work for the K* 7 p final state [5].

It is essential in such calculations to take account of "off-shell" and "ab-
sorption” effects. The most desirable approach would be to correct for ab-
sorption using a method like that suggested by Schonfelder [6]. However such
a calculation is by no means a trivial one. As a first approximation we make
use of the same phenomenological form factors as used in refs. [2,5]. Even
though this is a somewhat unsatisfactory procedure we do have significantly
fewer parameters than would be present in a double-Regge model [7]. We
show in the remainder of the paper that the model does account fairly well
for the data and we therefore hope to begin a more thorough treatment using
the suggestion of ref. [6] for the calculation of absorption effects.

In sect. 2 we outline the matrix elements used and give our choice of pa-
rameters. The results are presented and discussed in sect. 3.

2. MATRIX ELEMENTS

Strange meson exchanges would have to be doubly charged so we are re-
stricted to considering DPM processes as represented in fig. la. The ex-
changed particles (I,1I) are assumed to be members of the U(6, 6) supermul-
tiplet 35 for mesons. Application of the various conservation laws at each
Vertex restrlcts the p0551b1e number of exchanges to four, viz. (p°,7 *,

(=%, p ), (w, p*) and (d),p ). SU(3) predicts zero for the ¢-p-7 coupling so
the last of these is removed. We refer to the remaining three processes as
A, B and C respectively.

We write down our matrix elements using U(86, 6) couplings [3] in the
same manner as Migneron et al. [4]. The resulting M-functions for the three
processes are

M " = Ae-‘u(plypzypb)y5 ’

Mg, = By, pa,[Gloa+P3), + Hy,],

Mgy = C€,,(b1:Pp) €3 (03 -Pas PGBy + 30 + HN ], (1)
where
A=—30\/§——g(1+—-)(1-—~— ) 5
Hv H 4l (11 -mE)(t g -m2)
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The masses which appear have the following values, measured in GeV,

mN = 0.938 )
pp =0.417  (mean mass of 0 octet),
ty =0.850  (mean mass of 17 nonet),

my = 0.765,

17
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m, =0.138,

m, = 0.783,

g and % are the U(6, 6) couplings for BBM and MMM vertices respectively
and we use the values of ref. [4].

We now introduce the form factors. Following Joseph and Pilkuhn [1] we
assume that the form factors factorise into two functions each depending on
just one momentum transfer variable i.e. if F(tlb,t3a) is the required form
factor then

F(tlb, t3a) = F(tlb)F(t3a) ’ @)
where we take
o) = FO)e . (3)

These form factors are included in the matrix elements (1) by multiplying
the quantities A, B and C by the factors approprlate to the exchanges in-
volved. For 7 exchange we use A, =2.5 (GeV/c)~2 and F, (0) is evaluated by
extrapolation to the pole g1v1ng a Value of 0.95. For the vector exchanges we
take A, =2p =2 (GeV/c)~2 and F,(0) = F, (O) 0.8 since extrapolation to the
pole is not likely to be valid over the larger distances now involved. }‘ms
parameter is essentially free but the value of 0.8 is as we used for K ex-
change in ref. [5}.

The matrix element for the production and decay of the K*(1420) reso-
nance, responsible for the observed peaking at 2 (GeV)2 in the SK*q distri-
bution, is assumed to be dominated by single-pion exchange as in ref. [5].
This is undoubtedly a more correct assumption as we are now dealing with
charge exchange thus removing the possibility of n, w and ¢ exchanges. The
entire production and decay process is represented in fig. 1b. The normali-
zation is fixed by calculating the couplings at the vertices A and B from the
experimentally determined width and branching ratios [8] for the K *(1420).
The pion form factor is again included for the production exchange process
and as in ref. [5], we evaluated the momentum factors for the resonant part
of the amplitude "at the pole" (see appendix). The M-function for this pro-
cess is now written as

9’(21/,8, yG(K)
(312 - mlzj) + iFDmD

My, = 8alp o€, EAY) &pip,Aps

2m
1 N
x goe (v )(1- 5\/_)/5, (4)
(toq - m7)
where mp and I'yy are the mass and total width for the K* (1420) and ?Z(K)
is the spin-2 propagator as defined by Scadron [9]. The various covariants
used are defined as

Ap = 3(py-19), Ag = 3(by -y +P3), K=pi+py. (5)
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The full 7-matrix for the reaction is now
T= 6“ Ql’pl)ﬁ(k3’p3)[MA+ MB + MC+ MD]]J. u(ka’pa) . (6)
To calculate the required mass and momentum transfer distributions we

have to evaluate Zg,ing | 7|2. Noticing that the only non-zero interference
term is between A and D, we obtain

2 2
2AD T sy (s19 - M%) D Tpp

> ]T]2=A2T + +
P T A Y

2 2 2 2 2 2
+ B [TBGG +Tggy GH+ TguH ]+C [TCGG +Togy GH+ TogH IF ")

where the factors 7" are defined in the appendix. This expression is easily
coded for use with the phase space programmes reported in ref. [3].

3. RESULTS AND DISCUSSION

The results for this calculation at 6 GeV/c are shown in figs. 2 and 3;
at 10 GeV/c in figs. 4 and 5. The experimental data was supplied by the
H.E.N.P. group at Imperial College and was taken from the Birmingham-
Glasgow-London (I.C.)-Munich-Oxford collaborations K p exposure at
6 GeV/c and the Aachen-Berlin-CERN-London (L.C.)-Vienna collaborations
K™p exposure at 10 GeV/c.

Unfortunately we were unable to obtain an absolute normalisation for the
experimental results and so we have normalised the theoretical curves to a
cross section 90% of that for the data. This figure is chosen to allow ap-
proximately for processes not taken into account in the model. Looking at
the #-distributions (figs. 3 and 5) we see that the results decrease too rapid-
ly outside the forward peak. This is probably due to the presence of some
non-peripheral processes and, possibly, an over drastic f behaviour of the
form factors. The over rapid fall off is reflected kinematically into the
mass-squared plots where it produces cross sections which are too small
at large sg*_and s__ and at small sg*,- This is a feature that may well be
improved the "correct" inclusion of absorption effects. Also, looking at
the mass~-squared plots for the 7n sub-system, it appears that there is
probably a contribution from the A(1236) resonance producing a peak at
Sqn = 1.5 GeV2 and possibly a small contribution from a higher mass reso-
nance, perhaps the N'(1470). In the mass-squared plots for the K*r subsys-
tem there is a suggestion of a contribution from the K* 'A(1320), even though
we are dealing with a charge exchange reaction so that dlffractlve production
cannot occur. There is, however, no trace of the KA(1230), the other @
peak resonance.

One unsatisfactory feature of this model lies in the total energy depen-
dence. At 10 GeV/c the relative magnitudes of the background and resonant
contributions are given correctly by the model but at 6 GeV/c the background
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(a) K'P—K*n’n at 6 GeV/c

{362 events)
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Fig. 2. Mass-squared distributions at 6 GeV/c.

is significantly too small relative to the resonance. To obtain the curves in
figs. 2 and 3 the background amplitude was increased by a factor of 2 rela-
tive to the resonance. This is not wholly surprising since the resonance am-
plitude is assumed due to single pion exchange, which is known to give rise
to a reasonable energy dependence, but the DPM terms all have vector ex-
changes which are known to predict an incorrect energy dependence. This
poor energy dependence does not show up in the mass-squared distributions
as these are dominated by the kinematic effect of the restricted momentum-~
transfer distributions, but causes the total energy dependence to be incor-
rect.

4. CONCLUSION

In conclusion we may say that these results suggest that the DPM gives
a mechanism which can account well for most of the direct three particle
cross section in high energy inelastic processes and that it would be desir-
able to perform a more thorough analysis taking account of "off-shell" and
"absorption" effects in a more satisfactory manner. The major difficulty
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(a)
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Fig. 3. Momentum transfer distributions at 6 GeV/c,

0

with this model, in common with the normal two particle peripheral model,
is still the incorrect energy dependence of vector exchange amplitudes.
Presumably this problem will find a similar solution in both the single and
double peripheral models.

The authors wish to express their gratitude to Professor P. T. Matthews
for his help and encouragement and to Drs. M. Losty and M. Mermikides of
the HENP group, who supplied the experimental data. One of us (J.1.8.)
would like to acknowledge the financial assistance of a scholarship from the
Royal Commission for the Exhibition of 1851.

APPENDIX

The explicit forms for the quantities not given fully in the text are as
follows, where notation is as in refs. [5, 6],

10V2 2my by B0 TR o) ) )
_ 1VVa _ m
b==3 gAng(1+ up><l Iy (g, - m2) Py Py cosbyy,
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Tan = 47l 22 /m3) - )0y 5,) + 0y p)
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Fig. 5. Momentum transfer distributions at 10 GeV/c.
TCG = [plpb) t3a + 2(P1Pa) (i’bP3) + 2(1’an) (Pl P3)]
X[Dy (b £,) + Dy by ) + Dy(py 8) - Dylpy A)]
-ty + 40,2 )b, 2NID; By p,) + Dy b, )]
- 2D (0, Db, 2,15 + 200 5)by 1) + 200y 510y B3]
+ 2D, (o) Dby 0, b, + 200,00y 8,) + 200, 5,) by 2]

2 2
- [y, Ty, + 40, 2038010y Py 2y) - Dylpy A)] - 2D [tg, + 2mi ],
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2

2

A=p, -y

Togu = 87, 10 Db, ) + Ggp)] - (B D2y ) + 0y 2]}
X [y By + 0y p) Fy = (0 0,) Fy]

* Bmi Dy {F|[ by 0,) + (by £3)] - Fz[mg + (b0 )] + F3[mi + (g0,

_ 2 2 2 2 2
TCH = -8{F1 my + Fg m3 + F3 ma - 2F1 Fz(zbzp3) + 2F1 F3(p2pa)
2
- 2F2 F3(P3Pa)} [ma + (1-'73Pa)] ,
where

Fy = () )b, By) - (b 5)(a ),
F, = 0, 0,)(0, 1) - 0y 2,)(P,1,),

Fy = (b, 0,)(bg,) - (b )by By)-
(3) g ,®

The momentum factors pl and pb are given by
1
2 4 4 2 2 2,22
KON [Syp+ 7y + My - 289 Y - 255y - 2my 7]
L=

2Wq

b

nof=

2 4 2 2 , 2
[s]g+ My + £, = 2519 My - 2519 L3y ~ 2} I3,]
2W3

2

p =

(D)

and, pl and pg)) are the above momentum factors evaluated "at the pole”,
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i.e. with S19 —W’3 = mp
3) ..(3)
9(3) [ ml-m +2E( ( ]
(8) ’

1b 2p(li)

Ccos

Py

1 2_ 2
(plpz) = 2(812 "ml "'mz) etc,

= 10m2 e 2 -
(P3Pa) = g(mg+m tBa) ete.
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