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ABSTRACT 

The rate of deposition of polystyrene latex particles 

on to smooth plastic films has been determined with the rotating 

disc technique. 

When the particles were negatively charged and the film 

positively charged, the deposition rate was in close agreement with 

the Levich theory of diffusion-controlled transport to a rotating 

disc. 	The results also constitute a confirmation of the Stokes-

Einstein equation for diffusion of spherical particles. 

With negative particles and a negative film, high electrolyte 

concentrations were required to produce measurable deposition and the 

kinetics could not be accounted for by the appropriate modification 

of the Derjaguin-Landau-Verwey-Overbeek theory of colloid stability 

for the case of sphere-plate interactions (including a treatment for 

the diffusion of particles in a linear potential field). A 

theoretical analysis of the effect of surface roughness on the 

magnitude of the potential energy barrier to deposition has been 

made, from which it was found that a surface roughness comprising 

spherical projections of the order of 50 Z high and 300 1 in radius 

reduces the total interaction energy by a factor of two. However, 

even allowing for these surface roughness effects, deposition was 

not in accord with theory. 	Furthermore, the anomalous deposition 

in this system was not proportional to time or sol concentration, 
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although the sol itself was substantially unaffected by electrolyte 

under the conditions of the experiment. 

The evidence strongly suggests that - even with this 

seemingly ideal model for studying sphere-plate interaction - 

anomalous deposition occurred preferentially on to areas of locally 

favourable potential or geometry (or both). This phenomenon may 

prove to be of importance in practical deposition systems. 
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1.0 INTRODUCTION 

The deposition of particles from colloidal suspensions on 

effectively "infinite" plane surfaces - is of considerable technological 

importance. A few examples will indicate the wide range of problems 

in which an understanding of this deposition process would be advan-

tageous. (1) In the filtration process for water purification the 

colloidal material present in untreated water can be effectively 

removed by deposition on the very much larger particles making up the 

filter bed. (2) In the mining industry the "slime" coating of 

mineral particles in the froth flotation process can so alter the 

surface chemical properties of these particles that greatly reduced 

yields of mineral concentrate are obtained. (3) It has been found 

in the detergency of textiles that liberated dirt may re-deposit on 

the cleaned fabric and can subsequently be very difficult to remove 

even in the presence of surface-active agents. (4) In any process 

involving the flow of fluids containing particles of colloidal size 

through pipes, deposition of the particles on the walls of the pipes 

can present quite an important industrial problem. One particular 

example of this type of problem is that of heat exchange columns. If 

thermally insulating particles present in the fluid in the heat ex-

changer deposit on the walls, then it is evident that a gradually 

reduced efficiency of the heat exchange unit will result. 

Though this problem of deposition is of technological 

importance, little fundamental work on the deposition process has 

yet been performed. Hunter and Alexander(1) examined the deposition 
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of kaolinite in a column of coarse silica particles, and attempted 

to correlate the deposition to the stability of the kaolinite sole. 

A number of technical studies on the re-deposition of liberated soil 

on fabrics has been summarized by Durham
(2)

. Also preliminary work 

on the quite distinct problem of the removal of deposited particles 

has received some attention(3). Thiessen(4)  showed by electron 

micrographs of deposited gold particles on kaolin platelets that 

there is a different surface chemical nature on the edges of the 

platelets, where deposition occurred, from the faces, where deposi-

tion did not occur. Also he showed that in the presence of anionic 

sarfaCIP4active agents deposition only occured on the, platelet edges, 

whereas with both cationic surface-active agents and barium chloride 

solutions the deposition-occurred on both the,faces and edges. These 

factO indicated that the, surface potential of the kaolin surface was 

responsible for the deposition and varied, in either magnitude or 

sign, from the faces to the edges of the platelets. 

Unfortunately, owing to both the heterogeneity of surfaces 

(as exemplified by the work of Thiessen) and hydrodynamic considerations, 

measurement of deposition:on textile fibres or in granular filters can 

only be used to give a qualitative picture of the. deposition process. 

Ideally, the deposition of colloidal particles on plane surfaces 

could provide a test of the Derjaguin-Landau-Verwey-Overbeek (D.L.V.0.)(5)  

theory of the stability of lyophobic colloidb; however, for this to be 

Obtained one requires a deposition system in which the diffusion of 

particles to the deposition surface is known and controllable. 
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Durham(6)  and von Lange(7) in their at flies of soil re-deposition 

on textile fibres, have indicated that the D.L.V.O. theory of colloid 

stability should provide a sound basis for the representation of the 

deposition process. 

Marshall(8) developed a method for the study of deposition 

in which the diffusion to the deposition surface was both controllable 

and known. He achieved this by using the surface of a rotating 

_ 	disc(9) as the deposition surface and utilizing smooth plastic:films 

as his deposition surface. By this means he was able to study the 

deposition of carbon blaok particles in a quantitative manner. However, 

he found that his experimental depositions were several orders of 

magnitude higher than those expected theoretically on the basis of a 

simple extension of the D.L.V.O. theory for sphere-plate interactions. 

These discrepancies may have been due to the failure of the hydro-

dynamic mass transfer equations to be applicable for diffusing particles 

of colloidal size. However, it was not possible for this matter to 

be checked in his system owing to the slow coagulation of his sol. 

(In his system it was essential to use detergents for the stabilization 

of his sol, and consequently it was virtually impossible to obtain 

oppositely charged surfaces without the sol becoming unstable). 

Other factors he considered to explain the discrepancies between theory 

and experiment were the effect of small surface roughness of his plastic 

films, and the fact that his "graphitized" carbon black particles were 

not geometric spheres but polygonal in character, a geometry that 

cannot be treated.in the present state of the analytical equations 
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comprising the D.L.V.O. theory of colloid stability. 

It is consequently evident that, if these uncertainties are 

to be resolved, the work of Marshall must be repeated with a model 

colloid of simple geometrical form. Furthermore, it is essential 

that the validity of the hydrodynamic mass transfer equations for 

colloidal particles in the rotating disc system be firmly established. 

In such a model system it should be possible to provide a stringent 

test of the D.L.V.O. theory for sphere-plate interactions. This 

test would perhaps be more testing than those performed for the 

coagulation of spherical particles, because in the rotating disc 

system individually deposited particles are actually determined 

directly, rather than by the effects of the particle-particle inter-

actions on other physical parameters (e.g. light scattering). It is 

only in the case of fairly large particles that direct coagulation 

measurements have been made by the use of the Coulter counter, and it 

appears that the light-scattering and Coulter counter data for 

coagulating particles agree fairly well(W. However, there are a 

number of simplifying assumptions in the light-scattering treatment 

of coagulation and even though they do not appear to have a significant 

effect for measurements on large particles, there will always remain 

a degree of uncertainty of interpretation for particle-particle inter-

actions for much smaller particles. It is to be expected that the 

rotating disc system will provide a sufficiently severe test of the 

D.L.V.O. theory of colloid stability to indicate whether for small 

particles the discrepancies recorded by different workers(10,11) for 
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the Hamaker constant for polystyrene latex spheres from coagulation 

data are due to uncertainties in the interpretation of coagulation 

data or to the necessary simplifications in the analytical treatment 

of coagulation by the D.L.V.O. theory. 

In the present investigation, the D.L.V.O. theory of colloid 

stability has been tested for the case of the deposition of poly-

styrene latex spheres on smooth plastic surfaces using the rotating 

disc technique. Polystyrene latex spheres appear in the electron

micrographs to be perfectly spherical and can be prepared with a very 

narrow size distribut1on42)  which provides the ideal model colloid 

system. For a complete test of the hydrodynamic mass transfer 

equations for the rotating disc, these latex particles can be prepared 

with a variety of surface charged gronPs, so that the resating dis-' 

persion remains stable even in the absence of surface-active agents, 

in which case the complications experienced by Marshall can be avoided. 

The maximum deposition rate can be determined by using a positively 

Charged plastic file as the deposition surface and this maximum rate 

can then be compared with the theoretical one. 
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2.0. THE NATURE OF THE IONIC DOUBLE-LAYER  

2.1. Introduction 

When a solid is immersed in water, some of the ionogenic 

groups present on its surface ionize, and the surface of the body 

consequently becomes charged. This charged surface influences the 

distribution of ions in solution near the surface, forming an ionic 

double-layer. The interaction of two double-layers of like sign 

results in the mutual repulsion between the bodies bearing theM. 

Before considering the nature of this double-layer interaction, it 

is necessary to examine the structure of an isolated double-layer. 

The structure of the double-layer has been covered in detail 

in the standard works(1), and consequently only a condensed review 

will be given here. The following symbols will be used without bar-

ther definition, and considerations will apply to hydrophobic surfaces. 

• is the perpendicular distance from the surface. 

z is the valency of an ion. 

e is the electronic charge. 

E.: is the bulk dielectric constant of the liquid medium. 

is the Debye-Hgokel reciprocal thickness parameter (1/d), 

defined by 

011-  2 
Zz n 

EAcT  

yo is the potential at the Surface. 
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yi is the potential at a distance x from the surface. 

k is the Boltzmann constant. 

T is the absolute temperature. 

d is the double-layer thickness. 

no is the bulk concentration of ions in solution per ml. 

n is the concentration of ions at a distance x from the 

sneeze. 

a is the radius of the particles. 

cr is the surface charge density. 

/D is the charge density per unit volume in the diffuse part of 

the double-layer. 

2.2. The Theory of the Ionic Double-Layer • 

Helmholtz(2) considered the double-layer as a layer of 

counter-ions close to a charged interface, and Perrin(3) compared this 

to a condenser with separation between the plates of d, in which the 

potential gradient was linear. These approaches were an over-

simplification and a complete analysis of the double-layer was given 

by Golly(4) and independently by Chapman.(, H. They considered the 

charged surface to consist of a uniform charge, and the pcitential 

distribution around this surface to be described by the Poisson 

equation, 

2y) = 
(1) 
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and the distribution of ions (considered as point charges) about its 

charged surface to be described by the Boltzmann relation. 

n exp(-zey/kT) 	(2) 

On combining equations (1) and (2) the well-known Poisson-Boltzmann 

equation is obtained. 

	 li zeno  exp(-zeV,VkT) ( 3) 

The Poisson-Boltzmann equation is the starting point for all 

double-layer calculations. This equation can be solved analytically 

for a flat double-layer. If the assumption of Gm' and Chapman is 

used, namely, that the surfact*oam.be treated as a mathematical plane 

of uniform "smeared out" charge, then the distribution of potential 

from the surface is given by 

In 	&xp(ze02kT) + 1] [exP(zeY/0/2kT) - 1] 	(4) 
ESxgzeVr2kT) - 	exp(zelp0/2kT) + 1] 

This equation is rather cumbersome to use; it may be reduced to, 

a yo  oxP(4 ) 	(5) 

for "small 	defined 	(zaNkT) « 1,. showing that the 

potential falls exponentially, approaching zero over a distance of the 
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order of magnitude l/K. (the "thickness" of the double-layer). 

A number of corrections to the Poisson-Boltzmann equation 

have been made(6). These arise from the many assumptions underlying 

the derivation of the equation. For Instance, it is assumed that the 

dielectric constant of water has the same value in the double-layer 

as for bulk water. The polarizability effects of the charged surface 

on the liquid medium are completely neglected. The ionic volume of 

the ions in solution has also been neglected, though Stern(7) later 

provided a useful correction for the layer of ions next to the charged 

surface. He considered that the first layer of ions formed a rigid 

layer, of finite dimensions, next to the surface, over which the 

potential drop was linear (i.e. a parallel plate type condenser), and 

that outside this layer the potential and ion concentrations were of 

such values that the assumption of ions as point charges could be 

applied. 

More recently, Levine and. Be11(8)  have considered corrections 

Taking into account the"discreteness-of-chargd"of the surface aid its 

neighbouring ions. All of the corrections that have been applied to 

the double-layer are applicable only for specific conditions, and 

consequently no complete quantitative treatment for the double-layer 

is available. However, the modifications that are available can be 

used to give an indication of the direction and magnitude of the various 

corrections to the double-layer theory. Bolt(9) has shown that, 

provided the surface potentials and ionic concentrations are not too 

high (<, 60mV and < 10-211 respectively), then the corrections, fortunately, 
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become insignificant by a process of partial self-compensation. If, 

however, the potentials and ionic concentrations are high, the 

corrections rapidly increase in significance, and at 101H electrolyte 

concentration and any value of the surface potential they may become 

greater than mt. 

nas Poisson-Boltzmann equation can be solved for spherical 

double-layers as well as plane double-layers, though it can be solved 

analytically only for "small" surface potentials (zey/AT 44 1)9  

which yields a solution of the same form as the well known Debye-

Hfickel equation(100 

a  exp (-tx) 	(6) 
x + a 

From this the potential is seen to fall off, for small particles, 

more rapidly than the purely exponential case for the plane double-

layer0 

In the case where the potential is "high" (zekpAT » 1) 

there is no analytical expression for the potential distribution around 

a spherical particle and the distribution is obtained by numerical 

integration of the Poisson-BOltzmann equation. Mier(11)  was the 

first to attempt the numerical integration. He-Shared that the 

approximate expression ( 0) was sufficiently accurate up to 

zey'/kT 	4 and) Ka 	2. However Hoskin(12), repeating the oal- 

oulations for a wider range_of potential and Ka, found that only for 
zey//k2 c 1 did the approximate equation correspond to the accurate 
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numerical analysis at 	value if ,a.. On increasing 6a and the 

potential, the divergence increased rapidly. More recently, Loeb, 

Wierssma and Overbeek(13) have performed a complete analysis for a 

very large number of values of potential and2(a and have confirmed 

the results of Bodkin. Using the tables in ref.(13) it is now 

possible to calculate the potential distribution for all practical 

cases. 

2.3. Surface Charge Density and the Origin of Surface Charge  

The surface charge density can be evaluated from the Poisson-

Boltzmann equation for doublerlayers by using the equation 

oo 

ale (7) 

Hence, the general expression for a plane double-layer is given by, 

2n;kT 	zeyio  
Binh 

2kT 
(a) 

For small enough potentials for the exponentials to be expanded, 

(9) 

From these equations_a determination of the surface potential #o yields 

a value of the surface charge density. However, in practice only the 
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zeta-potential cp can be determined. In most cases the zeta-

potential is considered equivalent to the Stern potential (%)9  i.e. 

the potential at the edge of the Stern rigid layer of ions or the 

innermost edge of the diffuse part of the double-layer. As the Stern 

layer is the site of specifically adtorbed ions, which control the 

value of the Stern potential by the charge that these ions carry, it 

is usual to consider the Stern potential as being synonymous with the 

effective surface potential, and hence calculated surface charge 

densities from zeta-potential measurements are for the charge density 

at the Stern plane. 

In the case of spherical double-layers, the surface charge 

density can be evaluated completely from the Poisson-Boltzmann 

equation only by numerical integration. These valdes have been tab 

ulated by Loeb, Wiersema and 0verbeek(13)so and are usable fOr all 

practical cases where zeta-potentials can be evaluated. Tic) useful 

approximate equations, however, are available. 

Etio. (1 +Ka 
411 V11( (n) 

which is valid only for small potentials (zeyfkT e< 1), an 

Cr 	
i
f 	Eexp(-zie0T) - 1] 	(11) 
. 2000 

where c is the molar concentration of ions in solution. Equation (10, 
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however, is applicable only for large values ofI(a at any potential. 

The surface charge may arise from either (or both) of two 

different processes. 

(a) The ionizable groups on the surface may dissociated 

to yield a charged site, or 

(b) specific Adsorption of ions from solution may occur, 

yielding a surface charge density dependent upon the 

"adsorption potential" and concentration of adsorbing 

ions. 

The latter case is prominent with surface-active agents. 
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3.0. THE POTENTIAL ENERGY OF INTERACTION 

OF TWO DOUBLE. LAYERS  

3.1. Introduction 

When two particles bearing a surface charge approach one 

another they are subject to a repulsion if the charges are ofthe 

same sign. This repulsion is due to the interaction of the diffuse 

double-layers surrounding the particles and from the theory of the 

double-layer it is possible to evaluate the potential energy of 

interaction. In their classical monograph, Verwey and Overbeek(1) 

presented a complete mathematical treatment of this problem and 

consequently, only the results of this treatment and their limita-

tions will be summarized in this chapter. 

3.2. The Interaction of Two Plane-Parallel Double-Layers  

The simplest case is that for two plane parallel doUble-

layers. 

When two plane parallel double-layers, bearing the same sign, 

approach one another, the two diffdse dodble-layers begin to interfere 

and neither of them can develop fully. As a consequence, the 

potential. noehere reaches the level it has at large distances froth the 

surface. This last mentioned level is usually taken as zero potential. 

It is assumed that the surface potentials are maintained constant 

during interaction of the bodies by rapid equilibration of the 

"potential-determining ions". 



Consideration of symmetry shows that the minimum value of 

the potential will be reached half-way between the plate surfaces* 

Thus the value of this minimum potential can be evaluated from the 

Poisson-Boltzmann equation with the adjustment of the necessary 

boundary conditions* The energy of interaction is obtained from 

coneideratIons of the work done against the forces of interaction of 

the two double-lays4s when the two surfaces approach one another from 

infinity. The repulsive energy (7i) for two like plane-parallel 

double-layers was given by Verwey and Overbeek(1) as, 

2 
vR 	f(u.z) 11C,  (1) 

where V is given by ze%/kT, in whichlyd  is the potential minimum 

between the two plates at a distance d from the surface of either and 

Z is given by zeY/4/kT. f(V.Z) and V are described by complicated 

elliptic functions, the values of which can be evaluated from tables 

of elliptic integrals* Because this is a tedious procedure it is 

much more convenient to use approximate equations for the free energy 

of interaction of double-layers. 

Derjaguin(2) developed a simple approximate expression for 

the repulsive energy between two plane parallel double-layers by con- 

sidering that the gradient of the hydrostatio pressure and the force 

on the space charge balance each other at any point in the liquid 

phase when the whole system is in equilibrium. From this consideration 

he obtained the force between two flat double-layers as, 
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P = 2nkT cosh (zettikT) - 1 ] 	(2), 

from which the energy is readily obtained using the approximate 

expression, valid only for small potentials. 

zeOT = Ccexp(-)(d) 
	

(3). 

The energy is given by, 

6
r0 2  exp (-2I(d) 
	

(4) 

where ' is given by, 

[

exp (zeyg/2kT) 7  1 

exp (zetiV2kT) 

Equation (4) is valid only ifKd » 1. Verwey and Overbeek(1)  have 

shown that forKil <1 equation (4) rather over-estimates the interaction 

energy, the deviation from the accurate solution (eq.(1)) being larger 

the higher the value of the surface potential. A somewhat more 

accurate approximation has been given by Verwey and Overbeek(1) as, 

. 32 ne  y 2,1 _ tanh (Xd) 	(5) 
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3.3. The Interaction of Two Spherical Double-layers 

It is impossible to solve the problem of the interaction of 

two spherical double-layers analytically because of mathematical 

difficulties. A purely numerical or graphical method seems unpromising 

because of the number of essential parameters (surface potential, 

thickness of the double-layer, radius of the particles and the distance 

between particles) are too large. However, by the application of 

diverse methods of approach, it is possible to cover the interaction 

of spherical double-layers almost completely. 

Derjaguin(2'3)  indicated and applied an ingenious method for 

deriving the interaction energy of spherical double-layers from that 

of infinitely large plane double-layers of the same composition. His 

method is applicable only when the range of interaction is small 

compared with the radius of the particle. 

He considered the sphere to be composed of rings with their 

centres on the axis of symmetry. Then the interaction energy of 

each pair of plane parallel rings is summed over the surface of the 

sphere. 

Considering two spheres of radius a and distance H apart, 

the spheres are divided into a number of rings of radius h and width 

dh. Then the interaction energy of each pair of rings is given by, 

2gh V(H) dh, 

where V(H) is the interaction energy of plane double-layers at a 
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diStance H apart. Consequently, the total energy of interaction of 

the two spherical double-layers is given by 

H. . large 
VR  = 211a 	V(H)dh 
	

(6) 
Ho 

where (Ho 2a) is the distance between the centres of the spheres. 

From the geometry of the system hdh can be expressed in terms of H for, 

hdh2- h2/a2 dH  

and if h2/a2  -.4 0, then hdh --4.adH/2, and H . large may be replaced 

by infinity. Hence, 

04 

a 	V(H)dH 
	

(7) 
Ho 

This simplification is valid only if the range of interaction is 

small, i.e.Ka »1, Moreover, unless the potentials are also very 

small, even with largea, to maintain h2/a2  ---> 0, it is necessary 

that H »l. These conditions are inherent in this method of analysis 

despite the expressions for the energy of interaction for plane double-

layers used in equation (7). If the approximate expressions for 

plane double-layer interaction are used, then the conditionlICE » 1 is 

inherent in their use regardless of this method of analysis. 

By this treatment the most accurate expression for the 



a 
2 z VR 

2 
grommoimmeg. 

2 
in [1 + exp( -00)] (9) 
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interaction of spherical double-layers is given by, 

G (zeyilkT9Y.H0) 
	

(8) 

in which G(zety00/kTAR0) is an elliptic function, the values of which 

can be evaluated from tables of elliptic integrals. 

For small surface potentials, using the approximate 

equation (5), the interaction potential for spherical double-layers 

is 

When, however, however, the distance of separation is of the same order asLthe 

radius of the particles equation (9) is rather inaccurate and must be 

replaced by, 

   

   

1 2a a .4. H 	'13 P (-.Ho) 
o 

 (1o) 

    

3.3.1, The Interaction of a Spherical Double-layer and 

an Infinitely Large Plane Double-layer  

The ease of the interaction energy of a spherical double-

layer and a plane double-layer is treated in the same manner as for 

two spherical double-layers. In this case the geometry -is slightly 

different, changing equation (7) to 
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00 

V 
8-p 

2lfa V(H)dH 
	(n) 

H 
 

in which the same restrictions as for two spheical double-layers 

apply. 

Comparison of equation (7) and (ii) shows that the repulsive 

energy for the sphere-plate system is twice that for the sphere-

sphere system. 

3.4. Interaction at Constant Surface Charge  

In the preceding treatment the repulsive energy of inter-

acting double-layers was considered for the case of constant potential. 

Consequently, to maintain thermodynamic equilibrium, the surface 

charge must change with interaction. It is quite conceivable that 

this change of charge, which implies movement of charge carriers from 

one part of the system to the other, is a process much slower than the 

time of a Brownian encounter of two particles. In that case during 

the interaction of the double-layers not the surface potential but the 

surface charge must be regarded as constant. 

Frens(4) has recently examined the case for constant surface 

charge and has found that for plane double-layers the use of constant 

charge expressions become significant only belowKd < 0.5. In this 

range, the repulsive potential was found to be greater at constant 

charge than at constant potential,• the differences increasing the higher 

the value of the surface potential. 



35. 

3.5. Heterocoagulation 

In the preceding sections the interaction of double-Layers 

bearing identical surface potentials have been considered. However, 

in many oases it is of interest to know the repulsion between double-

layers of unequal potential. 

ThiS situation was first examined by Perjaguin(5), who showed 

thatunder certain circumstances unequal potentials of the same sign'

could lead to an electrostatic attraction. Later, Bierman(6)  examined-

the interaction between non-identical particles from a different 

stand-point and arrived- at the same general conclusions. His approach 

was from a consideration of the change in charge of the two surfaces, 

during interaction of two double-layers, by unequal adsorption of ions 

on'the two surfacesi on the assumption that the electro-chemical 

potentialS at the surface and in the medium were equal (i.e. at 

equilibrium). 

perjaguin(5)  also showed that because of the presence of an 

electrostatic attraction between non-identical plane double-layers of 

like :Aga, there woula necessarily result a force barrier and, further-

more, the magnitude of this force barrier was dependent oi_Litl on the 

surface of lower potential. Therie general effects of the interaction 

of two plane double-layers are presented in Figs. (3.1-2). 

The evaluation of the energies of interaction of non-identical 

double-layers are accurately done by numerical integration. For plane 

double-layers, Devereux and de Bruyn(7) have tabulated a complete set 

of numerical computations, from which the interaction energies can be 
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readily Obtained, and they have shown that both a force barrier 

and an energy barrier exist and are dependent only,  upon the surface 

of lower potential. However, no such computations for sphere-sphere 

interactions have been made. Recently, Hogg, Healy std Puerstenau(8)  

have derived some simple expressions for the interaction energies of 

non-identilal plane parallel double-layers and spherical double-

layers. Their expression for plane double-layers is, 

2 	2;) (1 - cothXE) + 2y101  Y/132  cosechKH (12) 
81 

01 VjO  

This is strictly valid only if (P01 and  7 02  are small .6:11 »1. 

However they have compared equation (12) with the results tabulated 

by Devereux and de Bruyn(7) and have shown that equation (12) is usable 

up to surface potentials of 70 mV. With equation (12) they. have used 

the same treatment as Perjagain(3) to obtain the interaction energies 

of non-identical spherical double-layers. Their final expression is 

TR 
€'1.42(g1 Yr',g2) 

4(al  + a2) + ln(1-exp(-2X110) 

   

(13) 

This is valid only forKa»19 .H0»1 and H0  «a.j.  and a2. It is of 

interest to consider equation (13) whentli T 01 22  'O2 = //it) and  
al 	a2  a; then equation (13). reduces to 
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Ea e in (1 + exp( -00) 
	

(9) 

ihiCh is identical with that derived by Derjaguin for spherical 

particles of surface potential n. Therefore9  it appears that 

equation (9) is.thelimiting case of the more general equation (13), 

In Figs. (3.3-4) is shown the potential energy curves for the 

interaction of spherical double-layers according to equation (13). 

From these graphs it is evident that the pOtential energy maximum is 

not invariably dependent 2E1z:upon the lower potential. Calculations 

show that for the interaction of plane double-layers (eq.12) the 

energy maximum is indeed dependent only upon the lower potential in 

accord with -theory. Consequently9  this deviation of the energy 

maximum from lower potential dependency must arise in going from 

equation (12) to (13). 

In Fig. (3,5) is shown the deviation of the energy maximum 

from lower potential dependency as a function of the difference in the 

particle surface potentials for various values of the lower surface 

potential.. The curves in Fig.(3.5) can conveniently be combined into 
a single curve by changing the variable (V01 - 	to the dimension- 102) 

less variable (Y,01 7Y02x/v)021 (Pig.3.64). This deviation of the 

energy maximum from lower potential dependency can be calculated 

theoretically from compariison between the maximum energy in equation (13) 

with the energy at contact 0(11 = 0) for equal lower potentials from 

equation (9), and is given by, 
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[ 

change in maximum energy (1%) . 36.136 (x + 2)2  In 
2
(x  + 2)2  ;) 

x + 2x + 2 

2 
;) 

	

+ x2  In ( 2 x 
	- 1 	(14) 

x + 2x + 

where x is the dimensionless variable 
(V)1 TO2)1W02° A much 

simpler approximate equation for this deviation has been computed and 

is, 

	

change in maximum energy (%) . 0.0066 + 108.68x + 1.76x2 	(15)  
1 + 2.36x 

Thus using equation (15), and assuming that this deviation is constant 

over the entire potential energy curve, a dimensionless correction 

factor can be calculated for the potential energy of interaction of 

two non-identical double-layers. The potential energy is then given 

by, 

V 	1- 2 	k4.9 
2 	2 ) [2(1P01y02 	1 + exp {-K H0) 

ln 	 
R 	4(a1 + a2) 	01  

	

A l4  A2 	
1 - exp (-MHO) 

In 1 - exp ,v, N;) 	(0.0o66 + 108.68x + 1.76x2)  
'L 7. 	100(1 + 2.36x) 

  

(16) 
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Comparisons between equations (13) and (16) are shown in Fig.(3.6). 

It is assumed that equation (16) is applicable over the 

whole range of XH values. However, it is probable that at large 

distances of separation, the error is minimal and the energy is given 

by equation (13). The dotted curve in Fig.(3.7) is a likely pos-

sibility flr the repulsive potential energy curve. Though the only 

sure value that is known ie that of the potential energy maximum and 

until an accurate numerical analysis has been done on this system, 

uncertainties, though in general fairly small, will always be 

present. 

All calculations, carried out for the interaction of non-

identical double-layers, have been done on the basis of maintaining 

constant surface potential during interaction. As has been stated 

in section (3.4) this can only be maintained by the change in 

adsorption of counter-ions during interaction. If the potential 

energy is to pass through a maximum and eventually change sign, then 

it must be accompanied by the charge of one of the interacting 

surfaces changing sign. Thus the potential energy maximum must 

represent the point at which ions, oppositely charged to the surface, 

are adsorbing. It is difficult to see how this could happen in 

practice, and it is more likely that the interaction of constant 

surface charge rather than potential must be considered. Frens(4)  

has shown for identical double-layers that the calculation of their 

interaction potential energy must be done on the basis of constant 

surface charge for distances of approach of)CH 4 1. In. Fig.(304)9 
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it can be seen that the potential energy maximum occurs at distances of 

separation of less than H = 19  and it has also been found from cal-

culations that this maximum never occurs at distances of separation 

greater than. KH = 4. It thus seems reasonable that for distances of 

approach of ):11 < 10 the repulsion energy should be calculated on the 

basis of mlintaining constant charge9  in which ease the electrostatic 

potential energy maximum would never occur. Thus equations (13) 

and (16) probably give too low a value for the repulsion potential 

energy9  but in the absence of correct values of the repulsion energy9  

equation (13) will be used for all subsequent calculations. 
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4.0. THE STABILITY OF COLLOIDS 

4.1. Introduction 

The stability of "lyophobic " colloids is explained by the 

Derjaguin-Landau-Yerwey-Overbeek theory (DLV0)(1'2). The basis of 

this theory is the competition between the electrostatic repulsive 

forces between the particles due to the interaction of their double-

layers and the long-range attractive forces betieen the particles. 

Before the total potential energy curves can be discussed, it is 

necessary to consider the nature of the long-range attractive forces 

between particles. 

4.2. The London-van-der-Waals Energy between Bodies  

The attraction between neutral atoms was introduced in 1873 

by van der Waals(3). Later London(4) placed this attraction on a 

sound quantum-mechanical foundation. The energy was considered to 

arise from the rapidly fluctuating dipole moment generated in the 

neutral atom by the zero point energy of the electrons. The 

fluctuating dipole in one atom momentarily polarizes the other one in the 

direction that the two atoms attract each other. London showed that 

this energy of attraction varies inversely as the sixth power of their 

distance of separation, and is (to a first approximation) independent 

of the interaction with other atoms. Therefore, for a large number 

of atoms in a condensed body the total energy may be found by simple 
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summation, which for some cases may be replaced by an integration. 

Using the method of integration of atom-atom attractive 

energies, the attraction energy between two infinite flat plates 

may be derived. The energy betWeen plates is given by 

7
A 

- A 	[ 1 	1 	2  

	

481T d2 	(d + 02 	(d + 8/2)2  

in which A is the "Hamaker constant" defined by 

A  = 112(12 

where X is the wavelength characteristic of the atom dipole fluc-

tuations, and g is the number of atoms per cm3 of material in the 

body. b is the thickness of the plate. For thick plates (where 

d « b) equation (1) reduces to 

-A 

4 81d 2 

This attraction decays comparatively slowly with increasing distance, 

a property explaining the long-range character of the London-van der 

Waals forces between colloidal particles. 

Hamaker(5) solved the problem of the energy of attraction 

between two spheres. He obtained 

(1) 

( 2 ) 

(3) 0  
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2 
+ '2 	 + 2InC x 	x2r x  A 	  

VA  - 12  x2  xy + x x xy + + y 	2 

(4) 

where y = alai  and x = H/2a1. For the special case of equal radius 

a 	equation (4) reduces to 

VA 
[ 

A 	2a2  
= -Z  H(H + 4a) 

2a2 

(H + 4a)2  
+ In 	H 	(5). 

+ 4a 

The attraction energy for the sphere-plate system may be 

obtained from equation (4) by putting a2  -><NO. However, a better 

derivation for the sphere-plate system has been given by Clayfield and 

Lumb(6). They obtained the following expression for the van der Waals 

energy for the sphere-plate system 

 

2a(H 

[ 	

+. 13 	H 	a 	a  
H(H + 2a)+ in n  + a - Tr--;--t t) 7 - (H + 2a + -ln :t  t.+t  

 

V sk a  - 
s-p , 6 

 

   

(6) 

where t is the thickness of the plate, When t » a equation (6) 

reduces to 

A [

201 + a 
H(H + 2a V 

a-p 

  

(7). + 2a 

 

   



As the plate will for most practical systems be very much greater in 

thickness than the tpdius of the colloidal particles, it can be 

regarded as infinitely thick and equation (7) can be used. 

4.3. The Influence of "Retardation" on the London-

van der Waals Forces  

As the London-van der Waals forces are essentially of 

electrical origin, a certain time is necessary for their propagation, 

and it is expected that if the time of travel of an electromagnetic 

wave from one atom to another is of the same order or larger than the 

time of the eleCtronic fluctuations (i.e. the wave-length of the 

London frequency is of the same order as the distance between atoms) 

then the London-van der Weals forces will be smaller than that given 

by London(4)  . This problem was worked out by Casimir and Polder(7), 

who found that for large distances of separation the energy decreases 

asl/d7  instead of 1/d6. The-retarded energy may be represented as 

V 	V,f( 
telt (8) 

where p 	21TRA • 

Schenkel and Kitchener(8)  derived an approximate expression 

for f(p) usable from 0.5 < p <00 , Their expression is 

f(p) . 2442  - 	2,52 
2 

P3 	
(9) 
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With this expression it is possible ttr obtain an equation for the 

sphere-sphere interaction energy in the retarded case. 

Clayfield and Lumb(9) have recent1y derived equations for 

both the sphere-sphere and sphere-plate systems in the retarded case 

employing equation (9). For the sphere-sphere case they obtained 

V S -5ret 

A  
111  11TH+2a) 0.04083 [ a2  (74a)2 

{ 	

+ 2 4.  ,..1) 
(H+2a)2  H2  

+ 2a (1  s74-483: 
- 
1)11 

+ in 
H+2arH(H+4a)  

    

0.01808A 	1 _ - 

H3 	3  

2 	. 	id) 	4.  a (( 	1 
1r 	H+4aY (H+2a)3  H4-4a)2  

1 	2 	1 
+ 

 
6 -(H+4a) WiET THT 

[ 

+ 0.000351W 2( 1 	2 	

1 
+ 

1(2 	' a 	H4-4a)4 +  (H+2a)4  + H4  

(: 1 .  _ 1 
(114-4a)3  H3  

1 /f  1 	2  
+ H+4a/  2 - (H2a) 

•5
` 

 4- 
112 

(in) 

and for the sphere-plate system 

1  

H2  
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A? 0.04083 0.006028" 8a3(H+a)-  
S-Fret  11 

(--.649 
e(H+2a)2  -rr H3(H+2a)3  

000009365 2  

 

(8,3(5H2+10Ha+6a2)) 

H4(H+2a)4  

  

  

   

If the two bodies are composed of the same material and the 

medium between the bodies is not a vacuum, then the medium will have 

a "Hawker constant" different from the solid bodies, and, in con-

sequence, the total "Hamaker constant" will have a value intermediate 

between the bodies and the medium. Hamaker(4)  showed that the value 

of the effective "Hamaker interaction constant" is given by 

= 	- 21'12 A22 
	(12) 

where A11 is the "Hamaker constant" for the solid bodies and A22 is the 

"Hamaker constant" of the medium. Al2  is the "Hamaker constant" for 

the interaction of the solid body with the medium, and is given 

approximately (provided the London frequencies are similar for the two 

materials) by 

22 	 ill 9122 

	 (13). 

Hence 

- 

A (14). 
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If the two solid bodies are composed of different material, then the 

problem becomes more complicated; the total "Hamaker constant" for 

interaction becomes 

A - 
A13 - 412 -- A32 

+ A22 
	(15). 

where A
33 

is the "Hamaker constant" for one of the solid bodies. In 

equation (15) only one of the four terms on the right-hand side is 

known and consequently for two bodies of different material inter- 

acting leads to uncertainties to the value of the "Hamaker constant" 

to use. Even for the case of equation (14) where both All  and A22  

are known, their values are by no means precisely known. For 

instance, the values of the "Hamaker constant" for polystyrene determined 

theoretically and experimentally(10-12) from coagulation data show 

wide differences in value (10-14  - 5 x 10-13). 
The foregoing method of calculating the van der Waals 

interaction energy between bodies has three major short comings. 

(1) The "Hamaker constant" is known only for a few pairs of atoms or 

molecules. (2) In the condensation to solids, the atoms or molecules 

may undergo such changes that the calculation of the van der Waals 

forces on the basis of free atoms or molecules is in error. 

(3) Retardation effects can be calculated only for a limited range 

of separation distances. 

Lifshitz(13)  developed a physically more satisfactory 

approach for calculating the interaction energy between bodies. He 



54. 

started directly from the electronic properties of the interacting 

macroscopic "bodies and calculated their van der Weals attraction from 

the imaginary parts of their complex dielectric constants. Owing 

to mathematical difficulties, only the case of parallel plate 

interactions has received any detailed study. In this treatment 

a constant 1.17-) is obtained dependent only on the nature of the 

materials of the bodies. iiC.)is called the Lifshitz-van der Waals 

constant in which'h is Planck's constant ands) is given by 

JJ . E l(i)  - 1  
i-...1(i) + 1 

o 

E. 2(11) -1  
a2ag 1  

oa (16) 

where 	I) is the imaginary part of the dielectric constant of body(1) 

and E2(1 V is the imaginary part of the dielectric constant of body(2). 

Also 1 (:)is related to the "Hawker constant" by 

-E. C.5 . 	TT A 3 (17). 

For the case of a liquid medium between the two plates 

Dzyaloshinakii, Lifshitz and Pitaevskii(14) found that the Lifshitz-

van der Waals constant is given by 

 

Ei(iV - €3(i1) 	2(±V  
83.0-V -3(±V 	2(±V 

--o 

 

In principle -tCL) can be evaluated from direct physical measurements 

on the systems under investigation. However, the Lifshitz- 
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van der Waals constant has been worked out fully only for a few 

metals and non-metals in vacuo and for even fewer cases immersed in 

water 	Consequently, until more information is available, it 

will be necessary to rely on the values in existence of the "Hamaker 

constant". 

4.4. The Total Potential Energy Curves and the 

Stability of Colloids 

Total potential energy curves were presented by Verwey and 

Overbeek(2). These curves were produced by the summation of the 

double-layer repulsion energy and the van der Waals attraction energy► 

v A  (19) 

It is found that there exists a potential energy barrier, the 

magnitude of which, for a given Hamaker constant, depends upon both 

the surface potential of the colloidal particles and the concentration 

of electrolyte. At high surface potential and low electrolyte 

concentration this energy barrier is high and hence the sol is stable. 

A reduction of potential and increase in electrolyte concentration or 

both reduces the height of the energy barrier till a state is reached 

where no barrier exists. In this case the resulting sol is completely 

unstable, and rapid coagulation occurs. However, there is no sharp  

transition between stability and instability; as the potential energy 
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barrier increases the sol becomes more and more stable. In the 

region between instability and complete stability the sol is said 

to be in a state of "slow coagulation". The general form of the 

potential energy curves is shown in Fig.(4.1). 

Verwey and Overbeek(2) also showed that at large distances 

of separation and for fairly large particles there is a further 

potential energy minimum, called the "secondary minimum", which 

arises from the fact that the double-layer repulsion energy falls 

off more rapidly than the van der Waals attraction energy. If this 

"secondary minimum" is a few kT units deep, it is expected that 

coagulation of the sol particles into this minimum would occur. As 

there is no energy barrier to coagulation, the coagulation into this 

minimum is reversible and hence "slow coagulation" results. Also on 

dilution of the coagulated sol,or reduction in electrolyte concentration 

(which leads to a higher repulsion energy and disappearance of the 

"secondary minimum") the SO1 should spontaneously re-disperse. 

4.5. The Kinetics of Coagulation 

Von Smolachowski(16) was the first to consider the problem 

of the kinetics of coagulation. His treatment concerned the case of 

rapid coagulation, in which every encounter between particles leads 

to a permanent contact. The rate of this coagulation is then solely 

controlled by Brownian diffusion. He found that the number of i-fold 

particles present after a time t (1i) is 
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c4a 	
-) 0 

i = 1 4-77f 
	

(20) 

where .1.-)  is the original number of particles and T is called the 

coagulation time, giving the time in which the number of particles 

is just halved. T is given by 

T = 1/41rDalio 	 (21) 

where D is the diffusion coefficient of the particles, usually 

represented by the Stokes-Einstein equation, 

D = kT/Orla 
	 (22) 

whereilis the viscosity of the liquid. 

Smoluchowski assumed that the difference between rapid and 

slow coagulation arose from the fact that in the former every 

encounter lead to contact whilst in the latter only a fraction a of 

the encounters lead to contact. The course of coagulation is then 

fully described by equation (20), and only the time of coagulation 

changes, 

1/411Da1100( 	 (23) 

Consequently, he considered that all coagulation-time curves 
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should be transformable into each other simply by changing the time scale. 

However, there was no theory giving the relation between the factor a 

and the magnitude of double-layer potential etc. 

Fuchs(17) analysed the problem of the kinetics of coagulation 

from a different standpoint. He considered, in the case of considerable 

interaction between particles, the diffusion equations determining 

their encounters should be solved for diffusion in a field of force. 

Using this method Derjaguin(16) derived an expression for the stability 

ratio of colloidal sole. The stability ratio is the ratio of the 

rate of rapid coagulation to the rate of slow coagulation, given by 

W 	2a 	exp(V/kT)dH 
	

(24) 
H2  

2a 

Equation (24)oan be solved completely only by numerical integration, 

though a useful approximation is given by Verwey and Overbeek(2) as, 

exp(Vmax/kT) 
	

(25) 
2)(a 

where V ax  is the value of the potential energy barrier. Thus with m 

the use of equation (25), measurements of coagulation rates should give 

a value to the potential energy barrier, and with the knowledge of the 

values of surface potential, the Hamaker constant for the particles can 

be evaluated. 
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4.6. Empirical Stability Relations p 

Several empirical relations for colloid stability have been 

presented. 0stwald(19) postulated that the coagulation concentration 

of electrolyte corresponds to the same logarithm of the activity 

coefficient of the dissociating ions. 

	

- log f s  const. 
	 (26) 

He claimed that the coagulation is proportional to a 1/6th. power of 

the valency. This result has been confirmed from the D.L.V.O. theory 

of colloid stability, where the coagulating concentration (zero energy 

barrier) is given by 

(107)3  (kT)5X4  

	

A2Z6e6N 
	 (27) 

Eilers and Korff
(2o) 

proposed that a critical zeta-potential 

is required for colloid stability, and suggested that, 

1/consto 	(28) 

,and that providing the constant was greater than 0.5 x 10-2 the sol 

would be stable. Derjaguin(1) showed from the D.L.V.00 theory of 

colloid stability that an approximate expression connecting zeta 

potential and surface potential is 

100 
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conet. (29) 

Reerink and Overbeek(21) have produced an empirical ex-

pression connecting the stability ratio and the coagulating 

concentration of electrolyte. Their expression is 

-ln W = k1  In Ce 
	 (30) 

where k1 and k2 are constants and Ce 
is the electrolyte concentration 

for coagulation. They showed theoretically, using approximate 

equations from the D.L.V.0. theory of colloid stability, that 

d in W/d Inee 	- 2.06 x 107  (942/z2) 
	

(31) 

at 25°C. However, equation (31) can be correct only forKHDI  = 1 

and Hm/a = a constant, where Hill is the distance of maximum potential 

from the surface. Consequently equation (31) should be applied only 

when W ->, 1.(i.e. over a small range of IT). By the same treatment the 

coagulating concentration OW . 1) is given by, 

Ccoag = 2.04 x 10-5  V/Itz2 	(32) 

Equation (32) has been used extensively by Ottewill(10)  for the 

determination of the Hamaker constant from coagulation data. For 
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really reliable values of Hamaker constant the complete set of potential 

energy curves should always be constructed9  and values of Hamaker 

constant fitted for experimental stability ratios. 
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5.0 PREPARATION OF MODEL COLLOIDS  

BY POLYMERISATION 

5.1. Introduction 

In order to employ or to verify the theory of colloid 

stability outlined in previous chapters, it is necessary to prepare 

dispersions with well-defined particles of uniform size. It has 

been shown
(1) that sole of narrow size range can be prepared by the 

emulsion pblymerisation technique. Also, by varying the conditions 

and reagents used in the polymerisation, the type and magnitude of 

the surface groupings can be varied to produce different sol 

characteristics. For example, by using persulphate as initiator 

and long chain alkyl sulphates as stabilizers, polystyrene latex 

sols can be produced which have sulphate surface groupings of 

sufficient number that the sols are completely stable in the absence 

of added detergent. In this case the deposition of these latexes 

(for example, on to positively charged surfaces) can be studied in 

the absence of added detergent, so that both surfaces can retain 

their charge characteristics during the deposition, without coagula-

tion of the sol occurring. Such latex particles should be an ideal 

model system for the test of the D.L.V.O. theory of colloid stability. 

In this chapter the preparation of a "monodisperse" poly-

styrene latex sol is described, and also the preparation of a 

positively charged plastic by the co-polymerisation of styrene with 
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vinyl-pyridine. To obtain a latex of narrow size-range, attention 

has to be given to the principles of emulsion polymerisation. 

5.2. The Theory of Emulsion Polymerisation 

A theory of emulsion polymerisation was presented by 

Harkins(2) in 1947. According to Harkins, with relatively insoluble 

monomers,dearly all of the polymer particle nuclei! are initiated in 

the monomer solubilized in the interior of the micelles of the surface-

active agent. In consequence, the total number of polymer particles 

prodUced depends upon the number of micelles present. As the polymer 

is formed the surface-active agent adsorbs on its surface and when 

the concentration of free surface-active agent is reduded to a level 

at which no micelles are present, then no more polymer particles are 

formed. 

The micelles of the surface-active agent produce only an 

insignificant fraction of the polymer, which "grows" on the polymer 

thus initiated. This occurs by the polymerisation of the monomer 

present in the swollen polymer particle, the monomer being supplied 

by diffusion, from the monomer emulsion droplets, through the aqueous 

phase and into the polymer particle, forming monomer-polymer particles.(3)  

The emulsion droplets, therefore, serve only as a distributed reservoir 

of monomer and no particle formation occurs in them. For moderately 

soluble monomers (e.g. vinyl acetate) new polymer particles can 

readily be produced in the absence of micelles(4) in the presence of 
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"growing" polymer particles, whereas for an insoluble monomer 

(e.g. styrene) no new polymer particles are formed in this situation. 

It has been shown(a) that the rate of "growth" of the 

polymer particles is dependent upon the size of the "growing" polymer 

particles. Small particles "grow" faster than large ones, and, 

therefore, this differential rate tends to produce latexes -in which 

the size distribution of the polymer particles is narrow. 

A free-radical mechanism is proposed for the polymerisation 

) of styrene.(5,1a • 	A common source of free-radicals is potassium 

persulphate 

ED 	ED 0 - SO2 - 0 - 0 - SO2 - 0 --> 2 0 - SO2-0* (1) 

The polymerisation then proceeds by the following course of reactions- 

e 0_ 502 -0...„ 1„1„ c11. 02 ,1,41 _ 011= m1. + HSO
4 
(2) 

4 P. 
• ph - C = CH2 

ph - CH = CH. 4- ph - CH = CH2  —> ph - - CH = aH. (3) 

ph 

or 
ph, - Ca' 

ph - C 
	

CH2 + ph - CH CH2 --o ph - 6H - m3 
	(4) 
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The reaction is terminated by either a polymer free-radical interacting 

with a monomer free-radical, 

2 	CH 	CH- + ph - CH = CH. 

n ph 

	

ph - CH2  - CH2 	CHI d)  CH - CH2  - CH2  - CH2 	(5). 1  

ph 	ph 	ph 

or by a polymer free-radical interacting with a sulphate free radical 

ph - CH2 - CH2 	gE - CH2;) CH = CR- + -0 - SO2 - , 	I 

	

ph 	n ph 

ph - CH2  - CH2 	CH - CH2 	 CH - CH2  - 0 - S0
3 
	(6). 

Ph 	n 

If the persulphate concentration is raised, the polymerisation 

rate increases and the rate of chain termination increases, yielding a 

low molecular weight polymer with a high density of terminal sulphate 

groups. It has also been shown(6) that if the persulphate concen-

tration is high, chain branching can occur. However, this occurs 

only if the polymerisation is taken to high conversion values. In 

general, for the production of latexes for studies of colloid 

stability, the conversion rarely exceeds 70% and may be as low as 

54. 
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5.3. The Preparation of a "Monodisperse" Polystyrene 

Latex Sol by Etulsion Polymerisation  

It was required that the polystyrene latex sol had a high 

surface charge density. Consequently, it was necessary for all 

polymerisation: to be performed with fairly high concentrations of the 

initiator, potassium persulphate. To maintain only sulphate groups 

on the surface, the stabilizing surface-active agent used was an 

alkyl sulphate. Sodium octadecyl sulphate (SOS) was used because of 

its low comoc. (e,, 10 -5.M under the conditions used). It was expected 

that the amount of free SOS that would have to be eventually removed 

by dialysis would be small and could, consequently, be removed 

comparatively quickly. 

The materials used were as follows. Styrene (Hopkins and 

Williams Ltd.) contained about 20 ppm of tert-butyl catechol as a 

stabilizer and consequently, the sample was freshly distilled at 42°C 

before each Polymerisation. The sodium octadecyl sulphate was 

kindly supplied by Dr. G.A. JohTlson of the Unilever Research Laboratories, 

Port Sunlight and the potassium persulphate was of "Analar" grade. 

The first method of emulsion polymerisation tried was that 

used by Johnson(? for polyvinyl acetate and was as follows:- 

To 300 ml of 2 x 10-511 sodium octadecyl sulphate solution, 

in a 500 ml round-bottomed flask, 5 g of potassium persulphate were 

added. Then 50 ml of freshly distilled styrene was added and the 
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mixture stirred vigorously to emulsify the styrene. The mixture 

was then placed in a water bath at 7000, with constant stirring for 

six hours. The latex sol obtained was filtered through a Whatman 

No.541 filter paper to remove large aggregates. It was then 

dialysed at room temperature for two weeks against distilled water 

in a well-boiled "Disking" cellophane dialysis bag. 

The resulting dialysed latex was examined under the 

electron microscope (Fig.5.1). It is seen that this sol is far from 

Itt monodisperse", and it was "grown" further. This was performed in 

the following manner. 

50 ml of the "seed latex" (the one to be "grown" further) 

and 42 ml of freshly distilled styrene and 1.5 g potassium persulphate 

were added to 250 ml of distilled water contained in a 500 ml round-

bottomed flask. The mixture was polymerised with constant stirring 

for 12 hrs at 65°C. No surface-active agent was added as the 

particles seemed sufficiently stable and without any surface-active 

agent no new particles should be formed. The resulting latex was 

dialysed against distilled water for two weeks. 

The electron micrographs of this latex are shown in Fig.5.2. 

In this case the growth stage has evened out the size distribution of 

the large particles, as expected, but new particle formation has 

occurred. The large particles are about 2µ in diameter, and it has 

been found(8) that there appears to be an upper size limit for 

polyatyrene latex particles. It thus appears that above a certain 
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FIG (502) ELECTRON-MICROGRAPH OF LATEX "B" 
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size the probability of the initiation of a polymer free-radical is 

less than for monomer free-radical formation outside the polymer 

particle leading to new particle formation. Once formed these new 

particles will "grow" further and as their size increases, their 

size distribution gets more and more narrow. It would thus be 

expected that if a number of latex particles have reached their 

maximum size and new particle growth has occurred, then a bi-modal 

distribution of particle size should occur. This is what is found 

(Fig.502). It was consequently concluded that a different approach 

to the preparation of the latex aol was required, with more stringent 

conditions. 

5.3.1. Dialysis  

During dialysis three components are removed from the 

latex sol; (a) the initiator, (b) the surface-active agent (only 

from the "seed" latex) and (c) any unreacted monomer styrene. 

(a) 	Tests showed that the initiator was readily removed by 

dialysis' at room tempera ure, the extent of removal being determined 

  

by the changes in conductivity of the water against which the dialysis 

was carried out. By dialysing against 10 1 of distilled water with 

changes every 12 h, it required only three changes for the initiator 

to be completely removed. 
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(b) 	The surface-active agent (SOS) is sparingly soluble at 

room temperature, but very soluble at 70°C. It was, therefore, 

expected that at a concentration of 2 x 10-5M at room temperature 

the surface-active agent would be colloidally dispersed, resulting 

in a very prolonged dialysis for removal. Therefore, dialysis 

was tried at 70°C, when the surface-active agent would be in 

solution and more readily removed. It was found that a week was 

required to reduce the concentration of the sodium octadecyl 

sulphate to a level below 10"61f, with changes of water every 12 h, 

as indicated by foaming tests. As the seed sol (the only one 

stabilized) would be diluted by a factor of 6 in the growth stage, 

and by a further factor of from 500 to 50,000 in the deposition 

experiments, this surface-active agent level was considered suitable 

for experimental purposes. 

In no case was the polymerisation taken to completion and 

therefore a certain amount of monomer remained in the latex sol. The 

presence of monomer leads to softness of the particles and deformation 

in the electron microscope. This could be removed effectively from 

the sol only by dialysis at 70°C, which took from one to two weeks 

depending upon the stage of the "growth" of the particles. The 

extent of removal was followed by the colour changes produced by the 

reaction of the "free styrene" with alkaline permanganate solution. 

The colour after five minutes was as followst- 
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Yellow 	> 4 x 1016 styrene 

Green 	4 x 10A styrene 

Purple 	4 8 x 104A styrene. 

Dialysis was, therefore, continued until a permanent purple colour 

was obtained for five minutes or longer, at which stage the aol was 

considered sufficiently free of monomer for experimental purposes. 

The dialysis procedure subsequently used in all poly-

merisations was to dialyse at room temperature over-night to remove 

the initiator (at this temperature further polymerisation should be 

negligible), and then to complete the dialysis at 70°C. 

5.3.2. Preparation of the Seed Latex (1) 

The seed latex was prepared in order that the size of the 

particles was small, and "growth" could be carried out Without 

approaching the optimum size limit. The procedure was as follows: 

To 2 x 10-5M sodium octadecyl sulphate (300 ml), in a 

500 ml round-bottomed flask at 65°C, was added freshly distilled 

styrene (2 m1). 	Thiel mixture was then emulsified by shaking and 

ultrasonic treatment for 30 minutes. The flatik was then put into 

a water bath at 65°C, and nitrogen ("white spot" grade) bUbbled 

through for ten minutes. Then potassium persulphate (0.5 g) was 

added and the polymerisation continued for three hours, using 

nitrogen bubbles for agitation. (Too high a rate of bubbling had to 

be avoided, as the system had a tendency to foam). The sol was then 
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dialysed fully as described previously. 

The dialysed sol was examined in the electron microscope 

and the electron micrograph is shown in Fig.(5.3). The mean 

particle diameter was 0.192 t 0.03µ9  and their size distribution is 

shown in Fig.(5.5). These particles were too small for easy optical 

examination in deposition experiments and were thus "grown" further. 

5.3.3. Preparation of Growth Latex (2) 

In this stage it was considered essential for the latex 

particles to reach equilibrium with the monomer styrene before  

the initiator was added, so that most of the monomer styrene would 

be within the polymer particles, reducing the probability of new 

particle formation. Latex (1) was sufficiently stable that no 

further surface-active agent was required in this stage. The 

experimental procedure was as followst- 

Fully dialysed latex (1) (50 ml) was diluted to 300 ml 

with distilled waterill a 500 ml roUnd-bottomed flask. To this was 

added freshly distilled styrene (3 ml), and the mixture was shaken 

periodically at room temperature for one hour. Then the flask was 

placed in a water bath at 65°C, with nitrogen passing through it for 

one hour. Potassium persulphate (0.3 g) was then added and the 

polymerisation carried, out for three hours with nitrogen bubbles for 

agitation. The latex was then dialysed (as previously described) 

for two weeks. 
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FIG (3.3) ELECTRON—MICROGRAPH OF LATEX (1) 

• 

0 

• • 

C 
• 

a 
	 • • . • 

• 
at 

lr • • 

2 1.1, 



_78 - 

fig.(5.5) PARTICLE SIZE HISTOGRAM 
FOR LATEX (1). 
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Latex (2) was examined in the the electron microscope, 

Fig.(5.4), and its size distribution determined Fig.(5.6). This sol 

was closely "monodisperse" with a mean diameter of 0.308 1: 0.00111. 

This sol was used for all subsequent investigations. 

5.3.4. The Determination of the Concentration  

of Latex (2)  

The concentrated latex sol (which contained 0. 10" 

particles/ml) was kept with 0.1% potassium persulphate to act as a 

fungicide, for it was observed that with the first latexes produced, 

mould did form. The latex was dialysed and diluted as required. 

The working sol had a concentration from 109  to 10
10  particles/ml. 

The determination of particle concentration was a tedious process 

and consequently after an initial determination the concentration of 

fresh sole was determined by turbidity measurements. 

The latex sol as prepared was extremely stable, and it was 

not possible to determine the concentration by centrifugation and 

weighing of the solid content. 

An attempt was made to measure the concentration gravimetri-

cally by evaporating the sol to dryness, but as the weights involved 

were very small, it was not possible to make an accurate determination. 

Therefore, it was decided to determine the sol concentration by 

particle counting in a haemacytometer cell. 

One of the major difficulties in this determination was the 
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SIG (5,1+) ELECTRON-MICROGRAPH OF LATEX (2) 
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fig.(5.6) PARTICLE SIZE HISTOGRAM 
FOR LATEX (2). 
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removal of deposited latex particles after each determination. The 

cleaning procedure used was to wash the cell and cover-slips in benzene 

and then to subject them to 30 minutes of an ultrasonic cleaning bath 

in an aqueous solution of a.non-ionic detergent, finally rinsing 

well with distilled water. Eleven determinations, comprising 

counts over 200 squares in each determination, were made on a sol 

containing 0.10e particles/ml, and a mean value of 1.103 t 0.033 x 108  

particles/61 was obtained. This is comparable to the approximate 

value obtained by the gravimetric technique of 1.06 x 108  particles/61. 

By dilution, the sol concentration as a function of 

turbidity was determined, Fig.(5.7) and from these data the particle 

concentration of the sol could be easily and quickly determined. 

5.4. The Preparation of Poly-2-vinyl pyridine/styrene  
Copolymer  

A plastic was required, having a fairly high positive 

surface charge so that maximum deposition rates of latex (2) on its 

surface could be studied. When conventional emulsion polymerisation 

was used, the negatively charged sulphate groups outweighed the 

positive charge effect of the pyridine nitrogen, even though cetyl 

trimethyl ammonium bromide was used as the stabilizer. It is probable 

that even with a weak initiator (H202), which would produce terminal 

carboxyl groups, that the plastic would be only weakly positive with 

perhaps areas of negative charge. Consequently, solution poly-

merisation was used for the preparation of Poly-2-vinyl pyridine/ 
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fig.(5.7) TURBIDITY AS A FUNCTION OF 
SOI CONCENTRATION FOR 

LATEX(2) 
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styrene copolymer. It was prepared in a similar manner to that 

described by Utsumi, Ida, Takahashi and Sugitomoc9)namely, as 

folloWes 

To freshly distilled 2-vinyl pyridine (7.5 ml) (distilled 

at 70°C) and freshly distilled styrene (2 ml) in a 50 ml round-

bottomed flask, methyl alcohol (2 ml) was added. Nitrogen was 

passed for one hour at room temperature and then benzoyl peroxide 

(0.1 g) was added. Nitrogen was bubbled through the mixture at 

room temperature for 12 h and the flask was wrapped in black paper 

to exclude light. By this time the viscosity of the solution had 

increased considerably and it was no longer feasible to pass nitrogen. 

The flask was then sealed and kept in the dark for•two.days at room 

temperature. At this stage the polymer was solid in the bottom of the 

flask and was clear golden brown in colour. The polymer was die-

solved in chloroform and.reprecipitated with ether to purify it. This 

Procedure was performed twice. The polymer thus produced contained 

0,80% Z.vinyl pyridine and later gave a zeta-potential of+72mV in 

distilled water. This polymer *as used in •stibsequent investigations 

of maximum deposition ratee. 

A negatively charged substrate was prepared from the 

commercial polymer "Formvar" (polyvinylformaldehyde) of electron 

microscopy grade supplied by Schawinigan Ltd. 

Both polymers are insoluble in water but readily soluble in 

chloroform. 
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6.0 THE ROTATING DISC  

6.1. Introduction  

The rotating disc electrode has been used extensively 

by electrochemists(5-10),  because the hydrodynamio mass transfer 

equations for it have been solved completely. Moreover, the 

diffusion flux is constant over the entire disc surface, giving a 

large uniform reaction area. 

Marshall(1)  first used this technique for the study of 

the deposition of colloidal particles on plane surfaces and obtained 

reproducible deposition measurements with this technique. Unfortunately, 

owing to the particular system studied, he was unable to test fully 

the hydrodynamic mass transfer equations as applied to particlei of 

colloidal size. 

In this chapter a rigorous test of the hydrodynamic mass 

transfer equations for the rotating disc system for particles of 

colloidal size is presented. 

6.2. The Theory of the Rotating Disc 

The equations for convective diffusion assume their simplest 

form when the surface of a rotating disc is taken as the reaction 

(2) surface. Von Kerman 	and later Cochran(3) solved the hydrodynamics 
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of the case in which a liquid is entrained by a rotating disc whose 

axis is perpendicular to its plane surface. Cochran's exact solution 

provides the following picture of fluid motion. Far from the surface, 

the fluid moves towards the disc surface, and in a thin layer immediately 

adjacent to the disc surface, the liquid acquires a rotating motion. 

The angular velocity of the liquid increases until at the disc surface it 

acquires the angular velocity of the disc. Furthermore, the fluid 

acquires a radial velocity under the influence of the centrifugal force. 

The velocity profile is shown in Fig.(6.1). 

The exact solution of Cochran for the velocity profile is, 

Tr 	 r(..)F() 

V tp 	= 
	 r (A) 

V 	 (r  (A1/2 ( s̀) 

-/AJP (1) 

where Vr, V?, and Vy  are the radial, tangential and axial velocities 

respectively, and p is the hydrostatic pressure. r is the radius of 

the disc surface, and L)  is the angular velocity of rotation. ,' is 

the density of the liquid and 1) is the kinematic viscosity of the 

liquid. 	4S is the dimensionless distance from the disc surface, 

defined by 

(6)/1) )1/2 y 

(1) 
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fig.(6.1) STREAMLINES FOR FLOW TO 
THE SURFACE OF A ROTATING 

DISC. 
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where y is the axial distance from the surface. The functions 

F(1), GT, H() and 13(.9 were tabulated by Cochran. These velocity- 

distance relations will be considered in more detail later. 

Levich(4)  using the data of Cochran, solved the case for 

the convective diffusion to the surface of a rotating disc in an 

infinite volume of fluid. He found that the equivalent diffusion 

boundary layer is constant over the entire surface of the disc, hence 

the mass flux to the surface is constant over its entire surface. 

Levich°s expression for the mass transfer is 

= 0.62 D2/3).) -1/6w1/2 Co 	(2) 

where D is the diffusion coefficient and Co is the concentration of 

particles per ml in the external solution. 

Equation (2) has certain restrictions governing its use; 

(1) it is valid only in the laminar flow regime, which occurs 

theoretically in the range 

10 < Re 4 105  

where Re  is the Reynolds number, defined by 

(3) 

where U is the linear velocity of the fluid and 	a "characteristic 



90. 

length", (which can be equated to R the radius of the disc). Thus 

equation (3) for a rotating disc is, 

21rR2  Re 	x r.p.m. 
601) 

(4) 

Riddiford(5) claimed that in practical systems, un-

controllable convective currents are present below Reynolds numbers 

of 100. However, recently Daguenet and Robert(6) have shown, for 

an electrolytic process, that the diffusion is governed by 

equation (2) provided 

60 < Re 	2.7 x 105 
	

(5) 

(2) Only if R »cP0  can the edge effects of the disc be neglected. 

So  is the hydrodpaamic boundary layer, given by 

3.6 (\)/Li)1/2 
	

(6) 

(3) According to Riddiford and Gregory,(7)  at low values of the 

Prandt1 number (11(D) the Levich equation requires modification. Their 

expression is 

j 
	0.62 D2/3 \) "1/6  I-01/2 Co 	 (7) 

[ 1 + 0.35 (D/0)9.36  ] 
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However, Kishinevskii and Denisova(,8)9 from a study of the dissolution 

rates of benzoic acid in water, have shown that the mass transfer 

follows equation (2) if the Ptandtl number is greater than 1000. 

Otherwise equation (7) must be used. With colloidal particles of 

radius 0.1µ in water, the Prandtl number is about 1069 using the 

Stokes-Einstein equation for the evaluation of the diffusion 

coefficient for the particles. 

D m kT/611ka 
	

(8) 

where k is the Holtzman constant and T is the absolute temperature; 

a is the radius of the particles and rtis the viscosity of the liquid 
medium. 

There is one other case where the mass transfer may not be 

described by equation (2). That is when deposition can occur by 

"impaction". 

Impaction occurs when a particle leaves its streamlines 

owing to its own inertia and deposits; under such circumstances, a 

higher deposition rate than expected from equation (2) would be 

observed. Fuchs(12) showed that this does not occur if the Stokes 

number (Stk) is very much less than 1.2. The Stokes-number is 

given by 

Stk = 2Re
.2 	 (9) 

9/72 
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which for the rotating disc system on substituting for the Reynolds 

number is 

Stk 	ilPa2 x r.P.m. 	 (10) 
135•11 

where po  and (Jars the density of the fluid and of the particles 

respectively. 

For particles of 0.154A radius and a density of 1.06 g cm-3  

in water with a disc speed of 360 r.p.m., the Stokes number has the 

value of 2 x 10-7. Consequently, for any impaction to occur 

aggregation of the particles would have to take place so that the 

radius of the aggregates would be of the order of 1000 times the 

radius of the primary particles. In the present investigation 

this did not occur. 

It might be considered that small protrusions on the surface 

of the disc would appreciably disturb the streamlines. 	In the 

present investigation the deposited particles would themselves con-

stitute micro-protrusions. However, Rogers and Taylor(13) have shown 

that for protrusions of the order of 10µ there is no macroscopic 

effect on the laminar streamlines. 
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6.3. 0. Experimental Results 

6.3.1. The Rotating Disc Apparatus  

An improved apparatus based on the recommendations of 

Riddiford(5) was used, Fig.(6.2). Improvements over the apparatus 

employed by Marshall(la) were a heavier mechanical construction and a 

spring transmission, both designed to reduce vibration. The body of 

the disc (4 am diem.) was turned from polymethacrylate plastic and the 

working surface was ground flat and true in the actual collet chuck 

used in the apparatus. The plastic was coated with black paint to 

reduce the background reflections when the experimental surface was 

under optical examination (with the experimental surface, a coated 

cover-glass, in position). 

The sol (500 ml) was contained in a glass dish of 12 cm 

diameter, which could be raised into a standard position for each 

experiment. The rate of rotation was accurately controlled by 

using synchronous motors with different reduction gears. Three 

different speeds were used (120, 240 and 360 r.p.m.). 

6.3.2. The Deposition Surface 

The substrate, onto which particles were to deposit, was 

prepared by coating a clean circular microscope cover-glass (22 mm 

diam0) with a polymer. The cover-glass was cleaned in hot chrome-

sulphuric acid, well washed in distilled water and dried in a 

desiccator. A smooth coating was obtained from a chloroform 
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FIG (6.2a) THE ROTATING DISC APPARATUS 
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rIG(6.2) THE ROTATING DISC APPARATUS. 
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solution of the polymer by using the falling level technique that has 

been employed for preparing films for electron microscopy.(14) Such 

films are known to be very smooth and of uniform thickness. The 

coated cover-glasses were attached to the rotating disc with paraffin 

wax. 

6.3.3. The Measurement of Deposition 

Deposition experiments were carried out by rotating the 

disc for the required time in a diluted latex suspension of known 

particle concentration. This was followed by a 30 a rinse in 

distilled water. The disc, with the coated cover-glass still attanhed, 

was then dried in a desiccator. Finally, it was examined under a 

microscope at 400 times magnification. The surface of the disc was 

illuminated intensely at grazing incidence to reveal the particles as 

points of scattered light.(15) The surface density of particles was 

determined by counting over 400 squares covering four different areas 

of the surface. The mean deviation of the counts was about 1: 3%. 

The results were conveniently expressed as He  the number of particles 

deposited per 104 sq.micron of surface. 

6.4. 'The Test of the Levich Equation 

In order to test fully the applicability of the Levich 

equation (equation (2)) for the mass transfer of colloidal particles 

to the surface of a rotating disc, it was essential that conditions 

were so arranged that every particle coming into contact with the disc 
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surface became firmly attached. This was ensured by using the 

negatively charged (-70mV) polystyrene latex particles and a film 

of the positively charged(found from the measurement of the electro- 

osmotic velocity within a micro-electrophoresis cell, coated with 

the polymer, to be + 72mV) co-polymer of 2-vinyl pyridine and styrene 

as the deposition surface in distilled water. 	Under these con-

ditions the latex sol was completely stable and the deposited particles 

were strongly attached to the plastic surface by a combination of 

electrostatic and van der Waals attractive forces. Even quite 

vigorous washing in distilled water caused no measurable removal. 

Deposition measurements were made for different sol 

concentrations and different times of rotation at three different 

speeds of rotation, Figs.(6.4, 6.5). It is readily seen that these 

curves are linear, in accord with the Levich theory. From these 

results it was found that the deposition was a linear function of the 

square-root of the speed of rotation, Fig.(6.6). Thus the results 

confirm the form of the Levich equation for the mass transfer of 

colloidal particles to the surface of a rotating disc. 

As the deposition should be constant over the entire surface 

of the disc, the deposition should be uniform and randomly deposited. 

All deposits examined appeared uniformly random, but it was considered 

necessary to apply a strict test for the randomness of deposition. 

Consequently, from the mean of one of the deposition measurements, a 

Poisson distribution of the number of squares containing certain 
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f ig.(6.3) THE DISTRIBUTION OF DEPOSITED 
PARTICLES COMPARED TO A 

POISSON DISTRIBUTION. 
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fig.(6.4) INFLUENCE OF SOL 
CONCENTRATION ON 

DEPOSITION 
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numbers of particles was constructed and compared with the 

experimentally determined distribution (Pig.6.3). As can be seen 

the agreement is very close. On application of the x2-  test, it 

was found that the observed deposition was a Poisson distribution 

to within 94 confidence limits. Thus it can confidently be con-

cluded that the deposition was uniform with the particles randomly 

deposited. 

The Levich equation was derived from considerations of a.  

disc rotating in an "infinite" volume of fluid. This condition is, 

of course, not met exactly in practical systems and consequently it 

was necessary to determine how critical is the position of the disc 

surface in the sol. Gregory and Riddiford(7) have shown that 

providing the disc surface is more than 0.5 cm from any bounding 

surface, then the streamlines can fully develop and the mass transfer 

is described by the Levich equation. This criterion was tested 

(Fig.6.7) and it was found to be correct under the experimental 

conditions of the present investigation. Therefore, it has been 

found that the position of the disc surface in the liquid is not 

at all critical. 

All the above results were compared directly with the 

Levich equation by evaluating the "rate constant" (j/W1/2  C
o) for 

each point and comparing it with the theoretical value, namely, 

0.62 (kT/611.11a)2/31)-1/6. The mean experimental value for the 

"rate- constant" was 7.59 ± 0.30 x 10-6, which is in full 

agreement with the theoretical value of 7.66 x 10-6, (Appendix I). 
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However, it is possible that the eleotroviscous effects of the particles 

may affect their diffusion coefficient and thus alter the experimental 

value of the "rate constant". This effect will now be considered. 

6.4.1. The Effect of the Primary Electroviscous 

Effect on the Deposition Rate Constant  

The viscosity of a suspension of spherical particles bearing 

no electrical double-layer was given by Einstein(16) as, 

Ti s  = 	(1 + 2.5(P) 	(11) 

where 418  is the viscosity of the suspension and "lo  is the viscosity 

of the liquid medium. (pis the volume fraction occupied by the 

spherical particles. 

For spherical particles possessing an electrical double-

layer the viscosity of the sol is greater as the movement of the 

particles causes a distortion of the double-layer, which increases the 

drag on the particles. Von Smoluchowski(17)  presented the following 

expreSsion for the viscosity of a suspension of spherical particles 

bearing a double-layer (though he gave no derivation), 

 

2.51 +,1 	(!:=1) 2  

rtoa2 

	

211-  
(12) 
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where > is the specific conductivity of the liquid medium, '8 is the 

zeta-potential of the particles and gE- is the dielectric constant of 

the liquid medium. 

Later Krasny-Ergen.(18) published a derivation for the viscosity 

of a sol in which the particles possess a double-layer. His equation 

was almost identical to equation (12), the only modification being a 

factor of 3/2 multiplying the correcting term due to the eleotro- 

kinetic potential. His derivation had the restriction that it applied 

only When the thickness of the double-layer was small compared to the 

particle radius.,  

Booth(19) re examined this problem, but without the restriction 

on thedouble-layer thickness, and obtained the following expression, 

- "ID  

10 if *
eJ 
kT ]

+Ka) 2  Z(14 a) 
(13) 

where q* kTizi Wi 	t 1 	54*Enizi  2 9 woe; 	i  is the mobility of fo 

an ion of species i and Z((a) is a rather complicated function of aca 

which was expressed graphically by Booth,(19) 

If the assumption is made that the ion mobilities are equal, 

then equation (14) may readily be transformed into a similar expression 

to the Smoluchowski equation, and is 
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[ 

\2  rrLs -410  . 2._ _ 
i 	

1 	(1S 

^20  cp 	) 	+ Aloa2 	2-npr (xa)2(1 +as,)2  z( ) 	(14) 

Several attempts have been made to determine experimentally 

the magnitude of the primary electroviscous 'effect. It is generally 

found
(19-22) that the Smoluohowski equation yields values ofn?e  that are L 

of several orders of magnitude too hie'. The Booth equation gives 

values of `7s of the same order 
of magnitude as found experimentally.(19-22) 

The lack of complete agreement
(19-21) is probably due to the nature of 

the systems studied. Recently, Stone-Masui and Matillon,(22)  using 

a well characterised series of "monodisperse" polystyrene latex sole, 

have shown their experimental results to be in complete accord with the 

Booth equation. Hence the Booth equation will be used to estimate the 

effect of the primary eleotroviscous effect on the mass transfer to 

the rotating disc. 

The mass transfer equation for the rotating disc system 

contains two viscosity terms, namely 

0.62(kT 	2/3  (2:2)-1/6 w1/2 C
o  

Hence an increase in the viscosity of the sol due to the primary eleotro-

viscous effect would lead to a decrease in the mass flux to the surface 

of the rotating disc. For the conditions operative in the test of 

the mass transfer to the surface of a rotating disc, values of 
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eleotrophoretic zeta-potential9  conductivity andlCa can be inserted 

into equation (14). When this is done it is found that there is an 

increase in viscosity by a factor of (1 + 6.5 x 10-5) on pure water. 

On substitution into the Levich equation9  it is found that the 

theoretical mass transfer is too large by a factor of (1 + 4 x 105). 

Consequently9  it is unlikely that the primary electroviscous effect 

has any effect upon the theoretical deposition rates. 

6.5. Conclusions 

It has been shown that the Levich equation for the mass 

transfer of colloidal particles to the surface of a rotating disc is 

fully applicable. It has also been shown that the primary electro-

viscous effect has negligible effect upon the theoretical deposition 

rates. Thus, indirectly the use of the Stokes-Einstein equation 

for the calculation of the diffusion coefficient of colloidal particles 

has been confirmed. 
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7.0 ELECTROPHORESIS 

7.1. Theory 

The theory of electrophoresis was first treated by 

Helmholtz(1) in 1879. Later his treatment was extended and im-

proved by von Smoluchowsiki(2)9 without appreciably altering the 

form of the equations. For streamlined flow and from the con-

siderations of the electrical and frictional forces9  the-electro-

phoretic velocity V of the colloidal particles was obtained as, 

(1) 

where E; is the dielectric constant =dolls the viscosity of the 

liquid medium. 	S is the zeta-potential and X is the applied field 

strength. 

Underlying the derivation of equation (1) are several 

assumptions, namely. 

(1) 	The particle is rigid and insulating. 

(0 	The applied electric field although distorted by the 

presence of the particle can simply be added to the field 

of the double-layer. 

(3) 
	

The conductivity, dielectric constant and viscosity of 

the liquid medium have the same values in the double-

layer as outside it. 



The particle radius is large in comparison to the thick-

ness of the double-layer. 

The liquid at the particle surface has the velocity of 

the particle, and the velocity gradient begins at the 

surface. (By the surface of the particle is meant the 

shear plane outside the Stern layer. This point was 

discussed in Chapter 2). 

From von Smoluchowskil s treatment, the electrophoretic 

velocity is found to be dependent upon the potential of the particle 

(rather than its charge) and independent of shape or size. 

In 1924 Hackel(3) applied the Debye-Backel theory(4) of 

the conductance of strong electrolytes to colloidal particles, and 

obtained the following expression for the electrophoretic velocity of 

colloidal particles, 

= (2) 

which is essentially the same as the Heldholtz-Smoluchowski equation, 

but with a factor of 0 instead of 1/4. Since Mickel used the same 

assumptions as Smoluchowaki, but did not indicate the source of error 

in the latter's analysis, there remained a doubt to which expression' 

was applicable. This remained until 1931 when Henry(5) renewed the 

analysis and showed that the two expressions were applicable under 

appropriate conditions. 
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In Henry's analysis the deformation of the applied electric 

field by the particle and its associated double-layer was taken into 

account. He showed that the effect of the particle on the electric 

field.was dependent upon the shape of the particle, its size and 

the thickness of the double-layer. For his complete analysis he 

considered only spherical particles, though he did indicate the 

form of shape correction factors for other geometries. 

For spherical particles the electrophoretic velocity was 

given by Henry by two discontinuous functions, usable for different 

parts of the range of Ksa values for the particles. 

For 	> 25 
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where 1\ is a factor taking into account the conductivity of the 

particles and is given by 

(5) 
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where ; is the specific conductivity of the electrolyte solution, 

and 6 is the specific conductivity of the particles. For an 

insulating particle A has the value 

By using the Debye-Htokel(4) linear approximation of the 

Poisson-Boltzman equation for the pOtential distribution about a 

spherical particle (small potentials), Henry obtained the following 

expressions for an insulating particle from equations (3) and (4) 

respectively. 

      

   

(6) 
25= ICa 
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from which it is readily seen that at large7ka9 equation <6) reduces 

to the Smoludhowsiki equation, 

4-Ttert 	 (1) 

and at small bCa, equation (7) reduces to the Mickel equation, 

5 

(7) 
bC. a 
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(2). 

These approximate equations do not cover the complete 

range of 	values for the evaluation of zeta-potential from 

electrophoretic velocity determinations. However, the values of 

the electrophoretic velocity for the intermediate Xa values can 

readily be obtained by interpolation between the functions in 

equations (6) and (7). 

Later Henry(6) and independently Booth(7) extended 

equations (3) and (4) to take into account the effect of the surface 

conductance of the particles on the applied field. 

Surface conductance arises because owing to the double-

layer surrounding the particles, there is a higher concentration of 

ions in the double-layer than in the bulk solution. Generally the 

correction factors are not large for large particles and large values 

of Ka, but increase in importance as Ka decreases and the particle 

size decreases. However, as the effect of surface conductance is 

taken into account in the following treatments, it need not be 

considered in detail. 

7.1.1. The Relaxation Effect  

In all the preceding theories of electrophoresis the 

double-layer is assumed to move entirely with the particle without 
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deformation. 	In the theory of ionic conduction in an alternating 

field, Debye and Hfickel(4) have shown that the "ion atmosphere" lags 

behind the ion,' as the applied field induoes the "ion atmosphere" to 

move in the opposite direction to the ion. Consequently, there is . 

required a certain finite time for the distorted ion-atmosphere to 

regain spherical symmetry. This time is known as the relaxation 

time and the distortion of the "ion-atmosphere" has the effect of 

retarding the movement of the ion. In a similar manner it is 

expected that the double-layer surrounding the migrating colloidal 

particle undergoes relaxation, as the charge sign is opposite that 

on the particle. 	Consequently, in circumstances where the double- 

layer is thick, a considerable slowing up of the particle due to 

relaxation could take place. It is expected that, for a given 

K value, the magnitude of the retardation to be a function of the 

zeta-Totential of the particle. 	For the higher the zeta-potential 

the higher is the charge in the double-layer and hence the greater 

the deformation of the double-layer with particle migration. 

This problem has been examined by Overbeek(8)  and in-

dependently by Booth(9). They both showed that for intermediate 

values of Ka, the electrophoretic velocity of colloidal particles 

varies as a power series in zeta-potential. 	Owing to the laborious 

nature of the computations the series was calculated only for a 

few terms, and is thus still only exactly applicable for low 

potentials. For symmetrical electrolytes the expression derived 

by Overbeek for the electrophoretic velocity is, 
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where the functions f1( a), f3( a) and f4(' a) have been tabulated 

by Overbeek(1o). A-  and'era are the frictional oonstants of the - 

ions and are given by, 

CI (9) 

where 	is the limiting equivalent conductance of the ions. 

N is the Avagadro's nnMber and Z ie the ion valency. 

Recently, Niersema, Loeb and Overbeek(11)  have re-examined 

and extended the treatments of Overbeek(8)  and Booth(9)  by numerical 

methods using a computer, and employing more accurate expressions for 

the potential, distribution about a spherical particle.(12)  Their 

computations were carried out only for the range 0.2 <Ya < 50, but 

it is seen in Fig.(7.1) that at the limits of this range the approximate 

expression by Overbeek (eq.7) is approximately equivalent to the 

numerical values, and consequently, would be valid even for high zeta-

potentials outside this range. E in this graph is the dimensionless 

electrophoretic mobility given by, 
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In Fig.(7,2) is shown the limits of applicability of the 

various approximate equations. The limits for the numerical 

computations are fixed either because the computations were not 

taken to high enough potentials (ze6AT mg 6)9  or because the function 

E r g(eS/kT) passes through a maximum. This latter case occurs for 

1 ,c la ,c 109  and indicates that for this range ofia no value of 

mobility greater than 3.5 should be possible. Cases of mobility 

greater than those possible from this theory are rare but recently 

a number of cases have been found to occur with the synthetic 

latices(13-15)9  showing that the numerical computations still do 

not give a fully accurate description of electrophoretic behaviour. 

7.2. The Electrophoresis Apparatus  

The electrophoretic mobilities of the polystyrene latex 

particles were determined in a modified flat microscope electro-

phoresis cell. The detailed construction of which has been fully 

described by Shergold, Mellgren and Kitchener.(16) In essence9  this 

apparatus consists of a glass cell fitting into two "Perspex" electrode 

compartments, as shown in Fig.(7.3). The glass cell is demountable 

from its electrode compartments9  which is of advantage in the present 

work9  for, apart from being much easier to clean than the conventional 

apparatus, the cell walls can easily be coated with plastic films, 

so that in the same apparatus the electrophoretic velocity of the 

particles and the electro-osmotic velocity of the liquid along the 

cell walls can be measured* The determination of the zeta-potential 
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FIG (7.3) MICRO-ELECTROPHORESIS APPARATUS 
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of the plastic substrates from electro-osmotic flow in this apparatus 

is of importance for the measurements are made on the plastic. films 

in the same physical state as they are in the deposition measurements. 

The glass cell (supplied by Tintometer Bales Ltd.) was a 

1 mm standard spectrophotometer cell 60 mm long and 15 mm wide 

constructed without ends. In use the cell was sealed to the Perspex" 

electrode compartments with silicone moulding paste and clamped to 

the microscope state. 

The optical system of the microscope consisted of a dark 

field sub-stage condenser (Cooke, low-power dark ground, numerical 

aperture 0.70 - 0.80), a X40 long working distance objective 

(Vickers, A.E.I., numerical aperture, 0.57) capable of focusing on 

any level within the glass cell, and a X8 eyepiece. Heat from the 

light source was removed by a heat filter and a dilute copper sulphate 

solution cello 

The electrodes were of platinized platinum, and the voltage 

applied across the cell was supplied by a stabilized d.c0 power supply 

unit. The circuit used with this apparatus is shown in Figo(7.4)* 

7.2.1. The Theory of the Microscopic Method 

In this method the electrophoretic velocity is measured by 

timing the movement of individual particles over a set distance at a 

. given applied field strength. However, the eleotro-osmotic 

streaming of the liquid past the cell walls cannot be eliminated or 
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counteracted by any known method and must be taken into account if the 

true electrophoretic velocity is to be measured. Since the system is 

closed, and, therefore, the nett flow of liquid through the cell must 

be zero, the flow of liquid along the walls is counterbalanced by a 

flow in the opposite direction in the centre of the cell. Therefore, 

the velocity of the liquid varies with the depth of the cell. 

It has been shown
(17)that the electro-osmotic velocity is 

related to the liquid velocity at any position within the cell by the 

equation 

U 	122_ 
2 a2 

where VW is the velocity of the liquid at level h, U is the electro-

osmotic velocity at the wall, h is the distance from the centre of the 

cell, and 2a is the total depth of the cell. (This equation is a 

parabola, symmetrical about the centre of the cell). -Consequently, 

from equation (11) putting Vw  = 0 it is found that the velocity of the 

liquid is zero at a distance of ±0,578a measured from the centre of 

the cell. As the measured:velocity of the particles is given by, 

Yobs 
	 (12) 

where 7, is the electrophoretic velocity, then at the depth where 

Vw = 0 the observed velocity of the particles is their true electro- 

phoretic velocity. These positions within the cell are known as the 
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stationary levels. 

If the velocity of the particles is measured at the 

stationary levels and also at the top of the parabola (h = 0), then 

the value of the electro.osmotic velocity of the liquid can be cal-

culated, being related to the observed velocity by the equation 

Yobs . V
E  = U/2 
	(13). 

Equation (11), however, is correct only for cells in which 

the width is large compared to the thickness, Komogata
(18) 

has 

studied the more general case where the width is not great compared 

to the thickness. If the ratio of the cell width to thickness is K, 

and if ao 
is the position of the stationary levels in terms of 

fractional depth from the top of the cell, then 

1 + 32 

12 	1/5K 
(14). 

Thus for the particular cell used where K = 10, the stationary 

levels occur at 0.194 and 0.806 of the total depth of the cell. 

7.3. The Experimental Results 

The usual method of determining the field strength by 

measuring the current flowing through the cell and the conductivity 

of the sol could not be used in this investigation with any degree 

of accuraoy. There were two possible reasons for this state of 
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affairs. 

(1) With the electrolyte conditions used for testing the parabolic 

profile for this apparatus (10M sodium hexadecyl sulphate) by using 

different applied voltages, it was necessary to change the current 

scale on the ammeter. It was found that there were differences 

of accuracy between the two scales by comparing with another meter, 

and by the determination of the resistance of a standard resistor 

at different applied voltages. 

(2) It was just possible that at these very low ionic strengths, 

surface conductance along the walls of the cell also lead to 

erroneous values of the current passing through the cell. It was, 

therefore, decided to determine the effective distance between the 

electrodes, and thence by measuring the applied potential across the 

cell, the field strength could be readily calculated. 

The effective distance between the electrodes was determined 

by measuring the current at given applied voltages for various sodium 

chloride concentrations, and from the values of the conductiVity of 

these salt solutions the distance between the electroides could be 

calculated. .Determinations were made with both 'Formvar'-coated 

cells and plain glass cells with applied voltages of between 10 and 

50 V. Sodium chloride concentrations of 105, 10-4  and 103M were 

used. 	From these determinations a mean distance between the 

electrodes of 83.2 ±0.4 mm was recorded. Using this value 

reproducible values of electrophoretic mobility were obtained. 
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In a glass cell (uncoated walls) the velocity profile at 

two values of the applied potential was determined for polystyrene -- 

latex particles in 10-6M sodium hexadecyl sulphate solution, Fig.(7.5). 

It is seen that the profile is truly parabolic and symmetrical about 

the centre of the cell. Also, the agreement for the two different 

applied voltages is quite good. Consequently, this cell was used 

for all subsequent electrophoresis measurements. 

The electrophoretic mobility for polystyrene latex particles 

in 1CM sodium hexadecyl sulphate and various sodium chloride con-

centrations was measured (see Chapter 8), and converted into zeta-

potentials by the methods of von Smoluchowski(2) and Wiersema, Loeb 

and Overbeek(1a). These results are represented in Fig.(7.6). From 

the corrections for relaxation by the Wiersema method(11)  on this 

data it is evident that the relaxation effect for these particles is 

very large. Moreover, there was a small range of salt concentrations 

(5 e )1Ca e 10), where the zeta-potentials could not be determined by 

the Wiersema method, because the experimentally determined electro-

phoretic mobilities were too high. According to the numerical 

computations of Wiersema(11) it should not be possible to obtain 

electrophoretic mobilities greater than 3.76p/volt/sec at Ka = 5 as 

the function E = 0 (e SAT) passes through a maximum at this value of 

mobility. However, the experimentally determined mobility was 4.13a/ 

volt/sec, which is considerably higher than the maximum for 

E = rge SAT). There has recently been reported such high mobilities 

for "monodisperse" polystyrene latex particles(13-15) and Wiersema  
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fig.( 75) THE ELECTROPHORETIC MOBILITY 
OF POLYSTYRENE LATEX PARTICLES IN 
10-6 M SODIUM HEXADECYL SULPHATE 
AS A FUNCTION OF CELL DEPTH. 

04  • 

  

 

INO 

  

6 

a 1.• 

  

Oh r. 

 

  

0-2 

a) 
0 

+4 

• 

• 

02 0.4 0.6 0.8 
depth of cell(mm.) 

• 

—9—  V = 30 V. 

—0--  V = 40V. 



PO
TE

NT
IA

L  
(m

V
)  

FIG(7•CG) ZETA POTENTIAL FOR POLYSTYRENE LATEX PARTICLES AS A FUNCTION OF Na CL 
CONCENTRATION IN 10-6M SODIUM I-IEXADECYL SULPHATE . 

—Ca 	 5 	 -4 
LOGI()  (No.CL) 



128. 

in his paper quotes anomalous results for silver iodide sole. 

Consequently, it appears that the numerical computations still yield 

too low a value for the electrophoretic mobility. Unfortunately, in 

the absence Of a more complete description of the relation between the 

relaxation effect and electrophoretic mobility, the numerical values 

as tabulated by Wiersema, Loeb and Overbeek will have to be used, with 

the realization that these values may be too low. In the present 

case, sufficient data could be obtained on either side of the "critical" 

IQ'. range so that interpolation for this region could be obtained 

fairly confidently, though the inadequacy of the theory in the 

"critical"- range also throws doubt on the accuracy in adjoining ranges. 

It is of interest to note that the zeta-potential as a 

function of electrolyte concentration still passes through a maximum 

on adjustment for relaxation. This effect is probably due to the 

effect of the salt concentration upon the extent of adsorption of 

the sodium hexadecyl sulphate, though it has been suggested by 

Levine and Bell(19) that the zeta-potential should pass through a 

maximum due to the "discreteness-of-charge effect". Which of these 

two factors is responsible for the maximum is uncertain, though it 

seems unlikely that the salt concentration could change the amount 

of adsorption of such a small concentration of surface-active agent 

So that the zeta.potential is just about doubled. Consequently, 

it is possible that both factors are operative together. 

In Figs.(7.7 and 7.8) are shown the zeta-potentials of the 
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FIG(7.8) THE ZETA-POTENTIAL Or AltroPmvAng  FILM As ATuNcTION 

01 SODIUM CHLORIDE CONCENTRATION. 
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'Formvar' surface and the polystyrene latex particles at the high 

ionic strengths found to be necessary for uniform reproducible 

deposition measurements. At the high ionic strength (0.1M) the 

measurement of the electrophoretic mobility was difficult because 

of the tendency of gassing to occur at the electrodes. Thus for 

this determination after one particle had been timed for a set 

distance in both directions, the cell was flushed with sol and the 

measurement repeated. Values of the eleotrophoretic mobility 

(Appendix 2) are the mean of 40 separate determinations. 

It is of interest to note that even at these high ionic 

strengths, the treatment of Wiersema(11)  yields small corrections, 

presumably because the zeta-potentials involved are high. The 

values of the zeta,Totentials thus determined were subsequently 

used for the calculation of potential energy curves for the inter-

action of spherical polystyrene particles with the plane Tormvart 

surface. 
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8.0 DEPOSITION AGAINST A POTENTIAL ENERGY 

BARRIER 

801. Experimental Procedure  

In preliminary experiments, deposition measurements of 

polystyrene latex particles on "negatively" charged plastic films 

were made in exactly the same way as has been described for the 

deposition on a "positively" charged plastic film (Chap.6). However, 

in this case the sol concentration and time of deposition were 

increased, for measurable deposition, because of the presence of 

a potential energy barrier to deposition. 

Two plastic films were used in these measurements, 

(1) polystyrene (prepared in the same way as the latex sol and 

precipitated with ethanol) and, (2) electron microscopy grade 

"Formvar" (polyvinyl-formaldehyde). With both of these substrates 

in 10-511 sodium chloride solution, the sol concentration was about 

109  particles/mi and the time of deposition 60 minutes for a 

measurable deposition to be obtained. 

It was found with both these substrates that the deposition 

was not uniform, in contrast to the case with the positively charged 

substrates (Chap.6). Different samples of polystyrene were prepared 

and all showed the same non-uniform deposition. In 10-511 sodium 

chloride solution the deposition was very much less with the 

polystyrene than with the "Formvar", and perhaps because the deposition 
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was higher with the latter, the non-uniformity of the deposition was 

much more pronounced. In Fig.(8.1) is shown depositions of poly.-

styrene latex spheres on a "Formvar" surface in 10-N! sodium chloride 

solution, all photographs being taken from the same disc. It, 

therefore, became evident that before any meaningful deposition 

measurements could be made, the origin of this non-uniform deposition 

had to be investigated and a means of obtaining a uniform deposition 

sought. All further work was carried out on "Formvar" films only. 

8.2. The Origin of the Non-Uniform Deposition 

It seemed possible that the non-uniform deposition was 

caused by irregularities in the plastic film due to the "Formvar" 

containing "small" particles of a component insoluble in chloroform. 

Indeed, the chloroform solution of "Formvar" showed a Tyndall beam, 

which indicated that such particles were present. Consequently, 

the "Formvar" solution was filtered through a 0.2µ membrane filter. 

This treatment gave a solution optically much clearer, and the faint 

Tyndall beam observed was probably due to the polymer itself and not 

insoluble particulate matter. However, subsequent deposition 

measurements on a film prepared from this solution still showed a 

non-uniform deposition. Therefore, it did not seem that the nature 

of the polymer solution was the cause of the uneven deposition. 

Another possible cause was that, during the film preparation, 

the evaporation of chloroform led to condensation of water droplets on 
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the film during formation, the net result of which would be to 

produce a two-phase system leading, on complete "drying" to an 

incomplete polymer film, where areas of the underlying glass 

surface would be available for deposition. Such incomplete films 

have, in fact, been produced in this way(1). Consequently, it was 

decided to prepare the plastic films in a desiccant atmosphere. 

This was achieved by using a slight modification of the apparatus 

described by Revell and Agar(2); it is shown in Fig.(8.2). However, 

the use of this new apparats did not remove the non-uniformity of 

deposition, indicating that little moisture condensation was occurring 

during film preparation, and therefore the non-uniform deposition 

was due to another cause. Nevertheless, all subsequent films were 

prepared in this apparatus to ensure that no variation in the relative 

humidity of the laboratory could effect the morphology of the prepared 

films. 

In Fig.(8.1) it can be seen that some of the deposits 

resemble a "ripple pattern" that could be formed by the flow of liquid 

with nonuniform drainage rates, which could have occurred during the 

film preparation. For, during film preparation, a thin film of 

polymer solution is formed on the disc, which drains to a uniform 

thickness, the solvent evaporating off leaving a uniformly thin 

polymer film. Revell and Agar(2) used microscope slides, which 

being rectangular, would lead to a uniform laminar drainage of the 

film in the vertical direction. However, with a circular cover-slip 

of 22 mm diameter it might be expected that both edge effects due to 
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FIG(8. a). APPARATUS FOR PREPARING SMOOTH PLASTIC FILMS. 
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the size of the cover-slip and non-vertical drainage flow due to the 

circular character of the disc may occur. Thus the film formed on 

a circular cover-slip may contain ridges, leading to uneven deposition 

because of the variation in the geometry of the surface. Consequently, 

both the underlying glass surface and the coated glass surface were 

examined under the interference microscope, using a sodium lamp as 

the source of illumination. It was not possible to detect any 

differences in smoothness between the coated and uncoated discs. 

In Fig.(8.3.) is shown the interference fringes of a cut film, from 

which the thickness of the film was determined as 1500A; hence it 

would not be possible with a film of this thickness for areas of 

uncoated glass to be present in the film and remain undetected in the 

interference microscope. It thus appears that the films are smooth 
o 

to the limit of the interference measurements (ce_300 A ). Electron 

micrographs of these "Formvar" surfaces (Fig.(8.4)) show that they 

are smooth to a high degree; the only "roughness" consists of low 

"mounds", not exceeding 50 A in height and about 300 A across, and 

these probably follow the contours of the underlying glass surface 

for the appeirance of the coated and uncoated glass is similar. 

It is therefore unlikely that surface roughness could be the cause of 

such macroscopic variations in deposition such as those shown in 

Fig.(8.1). 

It therefore appears that the non-uniformity of deposition 

is not due to the morphological characteristics of the films; it can 

therefore be due only to variations in the surface-chemical properties 



FIG (8.3) INTERFERENCE FRINGES FOR A CUT "FORMVAR" FILM ON A 

GLASS COVER-SLIP. SODIUM LIGHT USED. 
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FIG (8.4a) ELECTRON-MICROGRAPH OF THE SURFACE OF A GLASS COVER-SLIP 
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FIG (8.4b) ELECTRON-MICROGRAPH OF THE SURFACE OF A "FORMVAR" 

FILM ON A GLASS COVER-SLIP 

98,000 X 
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of these films or to hydrodynamic forces operative on deposited 

particles both during deposition and removal of the disc from the 

test solution. 

If the surface-chemical nature of the plastic was the 

cause of heterogeneous deposition, then this would suggest that the 

plastic surface had varying zeta-potentials on its surface ranging 

from very high where no deposition occurred to very low where 

deposition readily occurred. The low deposition areas are, presumably, 

sites of charge brought about by ionizable groups on the surface, and 

the high deposition areas are possibly areas of hydrocarbon chain with 

few negative sites.. When a. drop of distilled water was placed on a 

freshly mounted "Formvar" surface, it was observed that the advancing 

contact angle was irregular in outline, which indicates a variation 

of local angle of contact. 	It is possible that this could have 

arisen from greasy contamination of the surface as a result of 

handling and exposure to air during mounting(9) 

It was thought that it may be possible to adsorb an anionic 

surface-active agent on the low charge density sites whilst leaving 

the high charge density sites relatively unaffected. To test this 

hypothesis a deposition measurement was carried out in a solution of 

1011 sodium hexadecyl sulphate and 10-4  sodium chloride. This 

resulted in a much lower deposition, but it appeared uniform. On 

increasing the electrolyte concentration to 10- 11 a relatively high 

and visually uniform deposition was observed. It, therefore, appeared 
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that the surface-active agent had indeed caused a "levelling" of the 

surface charge of "Formvar". Consequently, a series of deposition 

measurements were made in 10-6M sodium hexadecyl sulphate and varying 

concentrations of sodium chloride. 	These results are shown in Fig.(8.5) 

where W is the stability ratio, which is given by the ratio of the 

theoretical maximum deposition (limited by diffusion only) to 

experimentally observed deposition. 

8.201. Hydrodynamic Considerations  

In Fig.(8.1a) it is seen that the deposition is "streaky". 

It seemed possible that these lines of deposition were caused by the 

movement of deposited particles by the passage of a meniscus (contact 

angle) over them. It was found that on removing the disc from water 

and 1O-6M sodium hexadecyl sulphate a contact angle was rapidly formed. 

It was, therefore, important to ascertain whether this movement of a 

meniscus led to any significant displacement of deposited particles. 

If removal of deposited particles was occurring, then the deposition 

measurements already carried out would be too low. It was, therefore, 

decided to arrange the experimental conditions so that an air/liquid 

meniscus did not pass over the disc surface and to determine whether 

the amount of deposition increased. 

The method used was to add ethanol to the sol after completion 

of deposition so that a wetting film was obtained. Usually about' 

19% ethanol was used. The disc was given a final rinse in absolute 
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alcohol, otherwise the alcohol evaporated faster than the water and a 

contact angle gradually developed. 	As alcohol is known to cause 

coagulation of a polystyrene 801, it was essential that the test 

solution was so diluted before the addition of alcohol that the number 

of particles left, if deposited because of the alcohol, would be 

insignificant compared to the measured deposition. This procedure 

was difficult to arrange, for (Wring dilution an air/liquid meniscus was 

not allowed to pass over the disc surface. Washing was made easier by 

isolating the disc surface from the rest of the sol by lowering it into 

contact with a 10 ml dish during the washing process. Dilution was 

continued until the sol concentration was less than 104  particles/ml. 

It was found after this treatment that the deposition was 

about twice that without the alcohol treatment, Fig.(8.5). However, 

it was possible to remove all the deposited particles if, after 

washing, the disc was rotated for 15 minutes. 

Leaving the particles to diffuse off after diluting, with 

no rotation, led to a reduction in the deposit by a factor of two 

after two days. It, therefore, appears that the particles were so 

weakly held that they could be removed by capillary forces and at least 

half of the particles were so weakly attached that they could diffuse 

away spontaneously* 

One other test for the removal capacity of capillary forces 

was made. In this test, after rotation and dilution, the disc was 

rinsed only in 15% ethanol. It was then placed in a vertical position 
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to dry. 	After a few minutes a meniscus formed and a drop of liquid 

collected at the bottom of the disc. 	The disc surface was then 

placed in a horizontal position for completion of drying. Microscopic 

examination revealed that most of the particles had collected into 

that final drop, showing that the meniscus had, indeed, caused the 

movement of the deposited particles. 

It, therefore, appeared that the adhesion energy of the 

deposited particles was so weak that they could be readily removed by 

capillary forces. Because of this, the possibility of the movement 

of deposited particles due to the shearing forces present in the 

rotating disc was considered. 

8.2.2. Hydrodynamic Forces Operating on Deposited 

Particles as a Result of Fluid Flow  

The analysis of the hydrodynamic forces operating on bodies 

at plane surfaces due to laminar flow conditions is extremely complicated 

and has not been fully treated. Happel and Brenner(3)  determined the 

drag forces on particles moving in a pipe under Poiseuille flow as a 

function of their position from the axis of the pipe. Later Mixoudas(4) 

extrapolated the equations of Rappel and Brenner for the case of a 

particle at rest on the wall of the tube. She obtained the following 

expreasion for the drag force (TD) 

TD 	12111(d2/D)(1 m di2D)U 
	

(1) 
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where d is the diameter of the particle, D the diameter of the pipe 

and U the fluid velocity, is the viscosity of the fluid. 

Jeffrey and Pearson
(5) 
 claimed to have shown the existence 

of a "lift force" on the particles normal to the wall of the pipe. 

However, their experiments were conducted on particles moving in a 

fluid, under Poiseuille flew, well away from the wall and consequently, 

they did not give any indication of the magnitude of this force near 

or at the surface of the pipe. Maroudas(4), from the considerations 

of a rotating cylinder in a fluid flow, derived an expression for 

the "Lift force" on a stationary particle at the wall of a pipe where 

the flow regime was Poiseuille. 	The expression obtained for the 

"lift force" (TL) was 

TL 	16U2nrL  (d/D) ( 	d/D)(l 2d/3D) 	(2) 

where (5L  is the density of the fluid. 

By taking moments of the three forces acting on the particle 

(drag, lift and weight), assuming that all the forces act at the same 

point on the particle, about the centre of the particle, Maroudas(4)  

derived an expression for the minimum fluid velocity required to just 

start the particle moving. This minimum velocity, called the critical 

velocity, Tfc, is given by 
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( 	d 	2 + 2 : - -FB 	3 1 	A 	gqras-(1)1 34-.)( _ .) 

8d2(1 d/D)(1 - 2d/31))(1 

( 3 ) 

where 	is the density of the particles and g is the acceleration 

due to gravity. 

Equation (3) does not appear to offer any useful information 

on the fluid velocity required to remove deposited particles for it is 

derived on the basis that the only force keeping the particles on the 

surface is their weight (for the colloidal particles used in this 

investigation, 9.1 x 1013  dyne, which "is insignificant compared to 

the adhesional forces). Recently, Goldman, Cox and Brenner(6) and 

O'Neill(7)  have analysed the problem of the shearing forces on 

particle at rest on a plane surface in a fluid under Stokes's flow. 

In both analyses the main assumptione were that the fluid varies as a 

linear function of distance from the wall, the fluid is incompressible 

and the flow velocity is such that the inertial effects of the fluid 

can be neglected. They showed that there-is no normal component of 

force to the surface, i.e. there are no 'lift forces'. The only force 

operating on the particle is in the direction of flow and is equal to 

the Stokes's shear force with a factor correcting for the effect of the 

wall.- Their equation is 
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6 1T/aUf 
	

(4) 

where U is the fluid shear velocity at the centre of the particle and 

the factor f is 1.7009. They also showed that a couple acts on the 

sphere which would aid its rolling, and is given by 

C 	eiV1112ITG 
	

(5) 

where G is a factor taking into account the effects of the wall and is 

numerically 0.944. Once the particle starts moving it continues to 

roll. The rolling motion contributes to the stream-lines around the 

particle (rotational flow) then producing a 'lift force° on the 

particle and eventually the particle lifts clear of the surface. 

Consequently, once a particle starts moving, it readily becomes detached 

(unless, of course, a potential barrier to detachment is present). 

Therefore, in the removal of the deposited particles by fluid flow the 

problem resolves itself into a question of what fluid velocity is 

required to start 6 deposited particle moving. Providing the fluid 

velocity about the particle is less than 10-1 am s
-1

9 and the rate of 

change of fluid velocity with distance is linear, it would be 

justifiable to use equation (4) for the calculation of the shear force 

on the particle. 

The fluid flow near the surface of a rotating disc was 

described fully by Cochran0) in the following equations 
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V= 

V 

= 

= 

w 

rCJF(') 

rOG(1) 

(r L,)1/2H (1) 
(31)Wp() 

(0/1))1/2y 

(6) 

where for small distances from the surface 	< 0.3) the dimensionless 

distance functions9  (F( )9 GM 9 H(`g) and p(1)) are given by 

F(1) = 0.51_ 0.512 + 0.205 ?̀  - 0.0316'4 

0(1) = 1 - 0.6161+ 0.17 3 _ 0.11y "600 

11(1) 	(0.511e - 0.33 	0.103 	....) 

p(1) = comet 1.94! + 0.955Y - 0.146 3  + 0008140 

From these flow equations the fluid flow relative to that at the disc 

surface can be calculated. 	A particle deposited on the disc 

experiences shear forces due to the relative fluid flow about the 

particle centre and the disc surface9  and by substituting the value of 

the relative fluid velocity at the particle centre into equation (4) 

the shearing force on the particle may be calculated. It is also 

seen from equation (7) that the fluid velocity is linear with distance for 

I:4 10-29  1.e0 for less than 1µ from the surface9  consequently the use 
of equation (4) for this system is justifiable. For simplicity fluid 

velocities relative to the disc surface were 6alculated for 1. 10-3 

(1630 2) for a disc rotating at 360 r.p.m0 and above the edge of a disc 

(7) 

0 
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2 cm diameter. The velocities are 

1.94 x 10-2 - 1 VX cm s 

. 1.41 x 10-2 cm s-1  (8) 
V = 2.32 x 10-6 cm s-1 

and the pressure difference at this point 

7.34 x 10-4  dyn cm-2 
	

(9). 

Therefore, the only significant fluid forces acting upon a deposited 

particle in the above designated position are those due to the radial 

and tangential fluid velocities. Assuming the pressure change acted 

over the total cross-sectional area of the particle then the "lift. 

force" due to this pressure change would amount to only 5.5 x 1013  dyne, 

which is less than the weight of the polystyrene particles relative to 

the fluid (9.1 x 1043  dyne). As the adhesional forces are considerably 

larger than the weight of the particles, it is justifiable to assert that 

no significant "lift force", due to pressure differences in the rotating 

disc system, exists on deposited particles. On substituting Vr  and 

Vy) into equation (4) the shear forces acting on.the particle due to shear 

flow are 

Fr 	9.1 x 10-  dyn 

Fr. 6.6 x 10-8  dyn 
(10) 
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Resolving these forces yields a total shearing force parallel to the 

disc surface of 1.03 x 10-7  dyn. This can be assumed to be the maximum 

force on any deposited particle, for the fluid velocities and hence 

the shearing forces decrease as one moves towards the axis of rotation. 

The force of adhesion is usually greater than 10-7  dyn though it may 

be of the same order of magnitude for 'secondary minimum' deposits. 

Hence only if the deposition surfaces (plane and sphere) were 

mathematically pure and there was no deformation of either surface on 

deposition could the particles be removed by the hydrodynamic forces 

of the rotating disc system under the conditions used for deposition 

measurements. 	In practice, both surface roughness and deformation 

of surfaces during adhesion occur and consequently it is unlikely that 

these hydrodynamic forces could remove deposits in the 'primary 

minimum'. However, in the cases where removal was observed, it was 

found that deposition was always uniform except for a small region at 

the edge of the disc. Consequently, it seems that removal was 

occurring by diffusion and not by shearing forces. 

It, therefore, seems that hydrodynamic shear forces in the 

experimental rotating disc system used does not cause removal of 

particles, though the particles can apparently diffuse away and be 

moved by capillary forces. Consequently, there is a good deal of 

uncertainty about what is happening to the deposited particles when 

the disc is removed from the sol. It is just possible that particles 

were actually being deposited by the process of taking the disc from 

the solution. 	If this were occurring it would have no significant 
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effect on the deposition onto the positively charged substrate (because 

of the low sol concentration), but as the particle concentration for 

the deposition onto "Formvar" was 100 times that for the deposition 

onto the positively charged film there may be a significant proportion 

of deposited particles which have deposited during the removal of the 

disc from the solo. It, therefore, became essential to examine 

deposition under conditions where these uncertainties did not arise. 

Consequently, a modification to the existing rotating disc apparatus 

was made, which is described in the next section. 

8.3. A Modification to the Rotating Disc Apparatus  

It was considered essential that deposits should be examined 

in the deposition medium without the need for removing the disc. For 

this to be done, the rotating disc system had to be inverted because 

of the design of the apparatus (Fig.6.2) this was easily done. The 

microscope optical system described in Chapter (6) was used. 	The 

objective was sealed against water with silicone rubber and used as a 

water immersion objective. 	The apparatus is shown in Fig.(8.6), and 

the water seal for the reaction vessel in Fig.(8.7). The latter 

consisted of a "Teflon" (p.t.f.e.) block, made to fit a B/34 ground= 

glass socket, with a central hole drilled slightly larger than the 

diameter of the disc shaft. The disc shaft was made from polished 

stainless steel, the "Teflon" acted as a friction-free bearing, so that 

the speed of rotation of the disc was that of the motor. However, as 

the assembly was not a perfect water seal, a layer of mercury was 
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FIG (8.6) THE ROTATING DISC APPARATUS FOR MEASURING DEPOSITION 

IN SITU 
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FIG.(8.7) DIAGRAM OF APPARATUS FOR MEASURING DEPOSITION IN SITU. 
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placed attthe bottom of the dish to complete the seal. 

The main difficulty with this apparatus was in arranging 

the illumination conditions so that deposited partidles could be 

resolved. In setting up the illumination, a positively charged film 

(as used for the test of the Levich equation - Chaper 6) was used so 

that reliable particle counts both in the solution and in air could 

be made. Only when the particle counts were the same in the solution 

as in air was the illumination considered correct, for then it was 

certain that all deposited particles were being seen and counted. To 

achieve this condition the apparatus had to be used in a dark-room, 

and the outside of the dish painted black. Also all the metal parts 

of the microscope objective were blackened with matt paint. In this 

way stray illumination on the disc surface was eliminated and good 

resolution of particles was obtained. However it was found that 

during the course of a series of measurements, the wax fixing the coated 

cover-glass to the disc tended to crystallize and thus reduced the 

contrast appreciably. This problem was overcome by mounting the 

cover-glass with an air pocket trapped underneath; this arrangement 

markedly increased the contrast and hence resolution of the deposited 

particles. 

The rate of deposition was measured by rotating the disc for 

a given time (10 minute intervals) then stopping the motor, racking 

down the microscope objective and counting the deposited particles. 

This was repeated until a time period of from 60 to 90 minutes had been 
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covered. 

8.4. Deposition Results 

Using this modified rotating disc apparatus, -the deposition 

measurements in 10-2M NaCl and 106M sodium hexadecyl sulphate solution 

were repeated. 	The deposition was found to be very much less than 

in the previous measurements (mean stability ratio of about 400). 

However, it was noticed that the depositions were not uniform, yielding 

areas where deposition did not occur and areas where the deposition was 

high (equivalent to W = 80). Consequently, any mean value of the 

stability ratio would have been meaningless.:  Therefore, a more con-

centrated solution of the surface-active agent was required to yield 

a uniform deposition. Unfortunately, owing to its solubility at room 

temperature, sodium hexadeoyl sulphate could not be used. 10-4M 

sodium dodecyl sulphate was used instead and this yielded reproducible 

and apparently uniform results. Deposition measurements were made at 

003M and 0.111 sodium chloride concentration (Figs.8.8 8'09). However, 

in this case the deposition was not linear with time or proportional 

to sol conoentratppn. 	At 5 x 10-2.M Na01 a peculiar form to the 

deposition curve occurred (Fig.8.11). 	In this case there appeared to 

be a reproducible time lag before deposition began and then deposition 

was linear with time. 	Careful examination of the deposition in the 

early stages revealed a slight non-uniformity of deposition. Consequently,. 

the solution of electrolyte and surface-active agent were put into the 

apparatus for one hour before the sol was added. Subsequently, the 
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deposition was uniform and the rate of deposition was the same as on 

the linear part of the graph for the non-conditioned surface. It, 

therefore, appears that the initial "induction period" was due to the 

time of adsorption of the sodium dodecyl sulphate. For all subsequent 

deposition measurements one hour's conditioning of the disc was 

carried out before the latex sol was added. The results for 3, 4 and 

5 x 102M sodium chloride are shown in Fig.(8.10), from which it is 

seen that the rate of deposition was constant with time. 

From the initial rates of deposition the stability ratio was 

calculated. This is given by the maximum possible deposition rate 

(obtained from the Levich equation) divided by the experimental 

deposition rate. These stability ratios for the five salt concentrations 

examined are shown in Fig.(8.12). At 10-2M NaC1 in 104M sodium 

dodecyl sulphate solution no deposition was obtained over 80 minutes 

and, therefore, the system appears to be completely stable to deposition 

at this level of electrolyte. 

It was necessary to examine the stability of the latex sol 

itself under the deposition conditions. 	It was found that for all 

salt concentrations up to 2M sodium chloride it was not possible to 

follow the coagulation of the latex sol by normal optical methods, for 

the optical density scarcely changed even when visible coagulation was 

observed, and even in 2M lanthanum nitrate solution, rapid coagulation 

did not occur. Where coagulation did occur, the flocs were very slow 

to settle (because of small density differences) which resulted in 
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FIG (8.13) THE COAGULATION OF LATEX (2) WITH SODIUM CHLORIDE 

IN 10-4M S.D.S. 
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misleading coagulation data. Instead it was found that by comparing 

the appearance of the sole with added electrolyte after certain intervals 

of time (Fig.8.13), the conditions of sol stability could be easily 

gauged. With 10-4M sodium dodecyl sulphate solution, after 20 h the 

sol was stable to sodium chloride concentrations of less than 0.6M and 

even after 48 h the sol was stable to electrolyte concentrations of less 

than 0.5M. Therefore, the sol is virtually completely stable to 

coagulation in the conditions used for all the deposition measurements. 
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9.0 DISCUSSION 

The main problem of this work is to relate the values of 

the stability ratio, Fig.(8.12)9  with theoretical potential energy 

curves, calculated on the basis of the D.L.V.O. theory, for the case 

of the interaction of a negatively charged sphere and a negatively 

charged plate. 

The van der Waals attraction energy for the sphere-plate 

system, with neglect of "retardation", is covered by Hamakergs(1)  

original work on "sphere-sphere" interaction,, one of the spheres being 

taken as having infinite radius. The appropriate expression is 

A [ 2a 	(H + 20.)  V 	ln 
s-p 	

-b 
H H + 2a 

where A is the Hamaker constant, a the radius of the sphere and H the 

distance of separation of the surface of the sphere and the plate. 

This equation can be used for distances of approach H cciN, where j\ is 

the characteristic wavelength of atom-dipole fluctuations in the dis-

persion energy theory, although it tends to overestimate Vs-p  (see 

Section 4.3). For large distances, namely9  for H 0.17k, the inter-

action energy is significantly lower than that given by equation (1), on 

account of retardation. •Clayfield9  Lumb and Miller(2) have derived 

the following approximate expression to allow for the retardation 

effect 

(1) 
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A 	4a3  V 	= 	[0.04083-- 0.006027 4 . 2(H + a)  
B-P 	. irkir H2(H 2a)2 	H(H + 2a) 

2 X2 	20H 10a + 6a2) +0.000117— 0 .12 H 	+ 2a)2  

Strictly9  this is applicable only when H ›W-tio For the present 

calculations9  )11 has been taken as 105 cm; thus equation (2) is valid 

for H > 80 A. Complete attraction energy curves were constructed by 

smooth interpolation between equations (1) and (2)9  Fig.(9.1). 

The expression used for the calculation of the double-layer 

repulsion energy (sphere/plate) was that derived by Hogg9 Healy and 

Fuerstenau(3) for materials of unlike surface potential9  namely9  

   

V Eake + .  1 2  
4 

2V1Y2 	In[ 1 + exp(-X11]  + ln(1 exp(- Ala) 
y/2 4.  \Ji2 	1 - exp(-KR 
'1 	'2 

 

 

   

(3) 

Total potential energy curves were calculated for the 

systems corresponding to points A E in Fig.(8.12)9  with the usual 

assumption thattpl, te2  of equation (3) can be approximated by the zeta- 
potentials. 	Before the theoretical potential energy curves can be 

calculated9  an estimate of the total Hawker constant for the inter-

acting system must be made. 

(2) 
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9.1. The Hamaker Constant  

In the system under investigation, the two interacting 

.surfaces (polystyrene and "Formvar") probably have different Hamaker 

constants. The total Hamaker constant for the interaction of two 

dissimilar materials in water (Al2/3) is given by 

Al2/3 = Al2 	A3 	
A13 - A23 
	( 4) 

where A11,  A22 and  A33  are the Hamaker constants of material (1), 

material (2) and water in vac= respectively. This total interaction 

energy cannot be calculated exactly because only the term A in 33 

equation. (4) is known. 	However, by making the assumption that the 

geometrical mean law holds, i.e. that 

Aij 	= ,/ Aiijj 
	 (5) 

where Aij is the Hamaker constant for the interaction of particles of 

material i and material j in a vacuum. Also from the consideration(13) 

that 

2 

A11/3 = (-5711 - lc; 

2 

A2213b22 	 ) 

where All  /3  and A22/3  are the Hamaker constants for material (1) and 

(6) 
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material (2) in water respectively; the following approximate 

expression for the total Hamaker constant for two dissimilar 

materials in water (A16) is obtained from equation (4)9 

Al2/3 = jA11/3°A22/3 
	 (7) 

where A11 and A22 > A33° 
Consequently, from values of the Hamaker 

constant of Polystyrene and "Formvar" in water, it is possible to 

estimate the magnitude of the total Hamaker constant for the inter-

action of the two materials. 

In Table (1) is collected a variety of experimentally 

determined values for the Hamaker constants of organic materials in 

water, and in Table (2) theoretical values of these materials.. 

It is seen from these values that there is considerable 

uncertainty about the absolute value of the Hamaker constant in 

water. However, all the organic materials investigated have Hamaker 

- 14 constants of between 10 	and 5 x 10-13 ergs. Consequently, it is 

probable that polyvinylformaldehyde has a similar Hamaker constant 

to polystyrene. However, even assuming that polystyrene has a 

- 14 Hamaker constant as low as 10 	ergs and "Formvar" one as high as 

1012 ergs will, on application of equation (7), yield a total Hamaker 

constant for their interaction in water of 1013 ergs. It, therefore, 

seems unlikely that the total Hamaker constant for the interaction 

of polystyrene with "Formvar" in water lies outside the range 
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TABLE 1  

Experimental Hamaker CCnstants for the Interaction 

of a Variety of Organio Materials in Water  

Material Method 
A11/3 (ergs) 

Ref. 

t 
Polystyrene Coagulation (BaNO3) 0.103 - 1.10 x 10''13 (6)  
Latex 

°°(Na0104) 0.4 - 0.7 x 1013  (7)  

Styrene/ 
butadiene 

Coagulation (NaNO3) 0.3 - 0.38 x 10-13  
- 

(9) 

Latex if 	(MgC12) 0.2 - 1.1 x 10 13  (9) 
!I 	(La(NO3)2) 0.4 - 2.6 x 10-13 (9)  

A variety 
of latexes 

Coagulation (NaC1) 0.9 - 1.5 x 10-12 (10)  

If 	(Ca012) 0.8 - 1.4 x 1012  (10) 

Paraffin 
wax 

Coagulation (101) 1.78 x 10-13 (11) 

a 	(K01 + Bel) 1.36 x 10-13  (11) 

" 	(KC1 + Pb(NO3)2) 1.78 x 10-13  (11) 

n 	(K01 + DO2(NO3)2 1.49 x 10-13  (11) 

Arachidic 
acid 

Coagulation (various 
ions) 

0.015 - 0.18 x 1013 (12) 
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TABLE 2 

Theoretical Hdmdker Constants for the Interaction of a 

Variety of Organic Materials in Water  

Material A11/3 (ergs) Ref. 

Polystyrene 5 x 10139 	9 x 10-13 (14) 

2.75 - 4.78 x 10-13 (6)  

0.34 - 2.6 x 1013  (7)  

0.5 x 1013 (8)  
• 

Polyethylene 0.2 x 1013 (8) 

Paraffin wax 1.60 x 1013 (11)  

, 0.2 x 10-13 (8) 

Stearic acid 0.79 - 3.68 x 1014  (12)  
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. 0.1 - 100 x 10-13 ergs. Consequently, theoretical potential A1213 
energy curves were calculated for this range of Hamaker constant 

(Appendix 5 and 6). The total potential energy curves for the 

coagulation of polystyrene particles dispersed in water are shown in 

Fig.(9.2 and 903),  and for the deposition of polystyrene on to a plane 

"Formvar" film in Fig. (9.4-6). 

Before these theoretical curves can be compared to the 

experimentally observed deposition, it is necessary to obtain a 

relationship between the potential energy barrier and the stability 

ratio. This is derived in the next section. 

9.2. The Relation between the Stability Ratio and the  

Potential Energy Barrier to Deposition. 

In the rotating disc system the mass flux arriving at the 

disc surface is controlled solely by linear diffusion, the effective 

diffusion path length being controlled by the speed of rotation of 

"the disc. Therefore, the problem that has to be resolved is the 

effect of a potential gradient upon the rate of linear diffusion. 

The theory of linear diffusion in a potential field was 

formulated by Kramers(4) who arrived at the following expression for 

the stationary diffusion flux, j, between two planes, A and B, along 

a potential, V, which is a function of the distance H, only I- 
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A 

D[ C exp (VikT)] B 

rB  

j

exp (VAT)dH 

A 

 

(7) 

where C is the local concentration of particles. 

In the present problem9  the total diffusion path can be 

divided into three parts9  Fig.(9.7)9  namely9  (1) the section where 

the diffusion is controlled solely by Fick°s law (i.e. where there is 

no significant potential field)9  (2) the section subject to the 

potential energy barrier (from plane Y to plane B), and, (3) the 

section from the potential energy maximum (%) to the wall. Every 

particle arriving at plane B will rapidly be deposited, so that the 

stationary concentration of particles at plane B can be taken as 

zero. 

Section (1) (b1 in thickness) comprises practically all of 

the Nernst diffusion Layer-(thickness 09  which in the rotating disc 

experiments was of the,order of 10-4 cm. Calculated potential energy 

curves (Figs. 9.4-6) show that Section (2) is generally less than 

100 A (62)•and Section (3) is of.the order of 5 1 (63). Since 

bi  » (62  + 63)9  61.1,-; b. Equation (7) can now be simplified by 

noting that at the outermost plane (A) C = Co  (the concentration of 

particles in the bulk solution), while at plane B, C = 0 and V 
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Hence 

j 
	DC 0 	

(8) 
exp (VikT)dH 

A 

The maximum flux possible (in the absence of a repulsive potential 

barrier) is given by 

DC  (9) 

 

Hence, the stability ratio is given by 

B 

W = i 	exp (V/kT)dH 
	 (io). 

A 

This equation is the linear analogue of the well-known Fuchs expression 

for the stability of sols (radial diffusion)(5). 

If potential energy curves are assumed, W can be evaluated 

by graphical integration of equation (10). Alternatively a useful 

approximation can be obtained by treating the potential energy curve 

as effectively flat over section (1) together with a rise in potential 

over section (2). 

Dividing the integral into these two parts, 



W 	5 1 + 	exp (VAT)dll 1 B  

Y 
(12). 
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Y 
W 	exp (VAT)01 + o  B  exp (VAT)St A 

the first,term approximates closely to unity (as V . 0, and bitIgb); 

hence 

In general, the second term should be evaluated over the effective 

range of the potential energy curve; but - for the case of a high 

barrier and negligible secondary minimum (e.g. Fig.(9.6 lines A and C) 

an. approximate value can be obtained by treating the barrier as a 

linear rise from V = 0 to V . Vm  over a distance 52, giving the 

approximate working equation 

W 	1 + t-- b2 e (VmAT)  

where V > 0. As b2/b varies from 2 x 10 3 to 8 x 103 in practice 

(Figs. 9.4-6), W remains fairly small for VIkT values of less than 

10, (see Table 3). 

9.3. Comparison of Theory and Experiment  

WheaN values were calculated from the theoretical potential 

energy curves, (Fig.9.4-6), it was found that the theoretical values 

were orders of magnitude higher than the experimental values (rig.8.12) 

If-j7)--T 7)--T (13) 
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TABLE 3  

The Influence of the Potential Energy Barrier on the  

Stability Ratio for Deposition  

VIkT 1r(824 . 2 x 103  (Fig.9.4) 

0.1 1.0 

5.0 1.1 

10.0 3.2 

12.0 2.8 x 10 

15.0 4.1 x 10
2 

17.0 	. 2.8 x103  

20.0 4.8 x 104 



189. 

for the range of Hamaker constants used. 

The particles counted were definitely not retained in a 

°secondary minimum°, as they could not be removedwhen the sol was 

replaced by a solution of much lower ionic strength and the disc 

rotated for two days. Furthermore, the deposition rate was less 

than jmax; in other words, the particles had surmounted a potential 

energy barrier, not fallen into a potential well. 

It was, therefore, necessary to consider alternative 

explanations to account for the deposition observed. 

Theoretically, the sol should coagulate before deposition 

occurs, for in sphere-plate interactions both the repulsion and a 

attraction energies are twice those for the sphere-sphere inter-

actions, and hence the potential energy barrier to deposition should 

be about twice that for coagulation of the solo In practice, it was 

found that deposition was approaching the maximum rate whilst the sol 

remained stable. Consequently, it appears that the potential energy 

barrier for the sphere-plate interaction was actually less than that 

for the sphere-sphere interaction. There are two possible ways in 

which this could arise. . 

(1) The Hamaker constant of the "Formvar"/water system 

(Alio) might be so much greater than that for the polystyrene/water 

system (App/w)9  that the total Hamaker constant for the interaction 

of polystyrene with "Formvar" in water (Apo) could be greater than 
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that for polystyrene with polystyrene in water. However, to account 

for the experimental deposition in the light of coagulation data in 

this way would necessitate that Appiw  was very much greater than 

twice App/w. EVen if Apo was only three times that of Appor  it 

would need Arrvw  to be nine times that of Appvw  (from equation (7)). 

From the values of Hanaker constants reported for organic materials 

in water (Tables 1 and 2) it is unlikely that these two polymers 

could have such widely different Hamaker constants. Therefore, the 

discrepancy between deposition data and coagulation data lies in a 

different explanation. 

(2) It is known from the electron micrographs of the 

"Formvar" surface (Fig. 8.4b) that the surface was not perfectly plane, 

but consisted-of small mounds of roughly spherical shape, about 501 
0 

high and 300 A in radius. Consequently, the interaction energy of 

polystyrene spheres with a "Formvar" surface should not have been cal-

culated on a sphere-plate model, but a large sphere interacting with 

a small sphere. In that case the repulsion term for deposition would 

be less than that for coagulation (instead of twice). However, the 

interaction of a sphere with a rough plane surface is not simple to 

calculate, for in some oases the underlying plane surface beneath the 

spherical projections makes a contribution to the total potential 

energy of interaction. In appendix (7.0) an approximate expression 

for the interaction energy of a spherical particle and a spherical 

projection on a plane surface has been derived. It is seen in 
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Appendix (5 and 6) and in Figs.(9.4-6) that the rough surface has 

the effect of reducing the total interaction energy to less than one 

quarter of that for a smooth surface. It, therefore, seems that 

surface roughness could qualitatively explain why deposition occurs 

while the sol is completely stable. (Similarly, Nordin(15)  has 

indicated from theoretical calculations that the interaction of two 

corrugated flat plates would be less than that between two smooth 

plates). 

The potential energy curves for the deposition on. to a 

rough surface (Figs. 9.4-6), shown as broken lines, yield a 

theoretical value of W much lower than for the smooth surfaces but 

in most cases, it is still very much larger than the experimental 

value. 

Furthermore, although experiment and theory could be 

fitted for the highest salt concentration by choosing a value of the 

. Hamaker constant of 8 x 10014  ergs, this value was inadequate for the 

results of the other electrolyte concentrations. Therefore, the 

surface roughness effects, important though they are, are not alone 

sufficient to explain all the measured depositions. 

Other refinements to the DoL.V.O0 theory might also be 

considered. Firstly, the use of equation (12) in place of the 

approximation (equation 13) would somewhat reduce W, but graphical 

integration of equation (12) showed that for all the theoretical 

curves at the experimental electrolyte concentrations, the reductio 
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is less than a factor of two. Secondly, the assumption of "constant 

charge" instead of "constant potential" would, if anything, slightly 

increase the repulsion at close distances of approach ( 0 c 0.5)(16). 

Thirdly, it is well-known that the dielectric constant in the inner 

part of the diffuse electrical double-layer is likely to be less than 

80 and this would also tend to reduce the repulsion. Sparnalay
(17) 

has examined this problem together with the effect of the ionic sizes 

and concludes that the corrections are negligibly small for concen-

trations of the order of 10=3  M, but rise to a contribution of from 

10-20% at 10 2,M. His treatment is incapable of analysing concen-

trations as high as those used in this investigation, though the 

magnitude of the effect is probably greater than 21. Fourthly, 

strictly, the "discreteness-of-charge" effect ought to be taken 

into account for the present system as the average separation between 
0 

charges has been estimated to be about 40 A - i.e. comparable with the 

critical distance between the particles and the plate. This also 

would be expected to result in a small decrease in repulsion energy(18) 

However, it is unlikely that these refinements of the double-layer 

theory could explain effects orders of magnitude different from 

those calculated on classical double-layer theory. Furthermore, it 

would not be justifiable to attempt to fit theory and experiment 

because the results in Fig. (8.12) take no account of vitally 

important evidence revealed by the curves in Figs. (8.8 and 8.9), 

which suggest that the true explanation of why the deposition was 

always greater than the theoretical is probably of quite a different 
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nature. 

In contrast to the deposition of negative particles on 

to a positive surface (Chapter 6)9  the deposition of negative par-

ticles on to a negative surface was, firstly, not linear with time, 

and secondly, not proportional to sol concentration. The results 

will, therefore, be referred to as "anomalous deposition". Its 

origin has not been fully investigated, but some tentative deductions 

can be made from the results of Chapter 8. 

The non-linearity of deposition with respect to time 

was not noticeable at low ionic concentrations (Fig.8.10), but became 

detectable above Nd  = 40 with 0.1 M NaCi, (Figo8.9), and was very 

marked from N
d - 10 upwards with 0.3 M NaC1 (Fig. 8.8). As these 

depositions` represent only a very small fractional coverage of the 

surface (Nd  = 100 is equivalent to a fractional coverage of4P10-3), 

they cannot be ascribed to incipient saturation in the Langmuir 

sense, unless it is postulated at the same time that the number of 

sites effectively available for deposition is very small compared 

with the geometrical capacity of the plane surface. (Even if the 

particles can be considered to deposit only on to the spherical 

projections on the surface, the available sites for deposition would 

still effectively be equivalent to the geometrical area of the plane 

surface, because the deposition sites would then be about 400 A 
o 

apart whilst the diameter of the particles is 30061). Furthermore, 

the available number of sites must be supposed to decrease as the 
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concentration of electrolyte increases (since curvature sets in at 

lower values of Nd). 

Combined With the anomaly of deposition contrary to the 

potential energy curves for the surface as a whole, it is suggested 

that some heterogeneity of electrostatic potential must exist. 

"Anomalous deposition" could occur on to areas with less negative 

potential than the average value. The effect of added electrolyte 

would be to reduce the effective spread of such areas and possibly 

also reduce their inequality of potential by further adsorption of 

anionic surface-active agent (through the common ion effect). 

In support of this heterogeneity hypothesis is the observa-

tion of gross microscopic unevenness of deposition on to plain 

"Formvar" films (Fig. 8.1). Although the use of sodium dodecyl 

sulphate served to eliminate obvious heterogeneity, there was no 

means of ensuring that it produced uniformity of potential on a gab-

microscopic scale. Weakly charged areas would not need to be large 

to provide a "hole" in the general potential energy barrier. For 

example, Figs. (9.4-6), shows that the range of action of surface 
0 

forces is less than 100 A, whereas the radius of the latex particles 
0 

was 1540 A . It can easily be shown, therefore, that even with 

contact between sphere and plate the effective area exerting a force 

on the sphere would be• confined to a spot about 200 A radius for a 

smooth plate and about 100 1 for a rough plate as designated in 

Appendix (7.0). 
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An alternative explanation of the above evidence might 

be sought in an incipient coagulation of the 13019  increasing with 

time and with salt concentration. Since the mass transfer is 

proportional to the radius of the particles to the power 
-2  /3 and 

the number of particles in the sol, then if all the particles were 

coagulated into doublets the deposition rate would be reduced by a 

factor of three assuming the barrier to deposition of doublets was 

the same as that for single particles. However, as the potential 

energy barrier to the deposition of double-particles with its axis 

parallel to the plate would be double that for the sphere-plate, it 

might be expected that a marked reduction in deposition rate with 

time would result if coagulation of the sol was occurring. Against 

this hypothesis, however, is the fact that the optical turbidity of 

the sole did not change deteotably over a long period unless much 

higher salt and sol concentrations were used than those employed in 

the deposition measurements (see Fig.8.13). In addition, a direct 

test was carried out for the system with the medium of highest 

electrolyte concentration (0.3 M); particle counts made on samples 

of the sol before and after one hour in the rotating disc apparatus 

showed a reduction of count of leas than 10%9  which is totally 

inadequate to explain a fall in deposition rate by a factor of three 

within 30 minutes (Fig.8.8). (Incidentally9  similar tests with and 

without rotation of the disc showed no difference, eliminating the 

possibility of orthokinetic coagulation.) The dependence of 

"anomalous deposition" on sol concentration also tells against this 
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theory (see below). Heterogeneity, therefore, remains the most 

plausible explanation of the non-linearity of deposition with time. 

The effect of varying the sol concentration was particularly 

surprising. Whereas for the deposition of negatively charged 

particles on to a positively charged plate deposition rates were 

accurately proportional to sol concentrations (Fig.6.4), for negative 

particles on to a negative surface, the kinetic order appeared to be 

about 2, both with 0.1 M NaCl (Fig.8.9) and 0.3 M NaCl (Fig.8.8). 

This suggests that deposition occurred via coupled pairs of particles, 

which would pre-suppose that a small proportion of the polystyrene 

particles are held together in a "secondary minimum". These double-

particles would then be held near the plate surface in a much deeper 

"secondary minimum" because the energy of interaction between double= 

particles and the plate (axis parallel to the plate) would be four 

times that for the sphere-sphere interactions. From the available 

potential energy curves, it would not be expected that the doublet-

plate "secondary minimum" would be greater than 5kT and consequently, 

the "secondary minimum" for the sphere-sphere interaction would be 

about a kT deep. 

A tentative theory to account for all the facts could be 

based on the establishment of a small population of doublets in the 

"secondary minima" with respect to one another and to the plate. Such 

double-particles would traverse the rotating disc in spiral lines at a 

distance of about 50 A from the surface and on encountering "favourable" 
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sites would have a chance of passing over a locally low potential 

energy barrier into the primary minimum. A "favourable" site might 

be a projection which also carried a weak electrostatic potential. 

The evidence available from the present work is not sufficient to 

justify more detailed speculation as to the origin of "anomalous 

deposition". 
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1000 GENERAL CONCLUSIONS 

It has been shown that for the case of maximum deposition 

rate (negative particles depositing on to a positive. plate) the mass 

transfer of particles. to the surface of the - rotating disc is 

accurately described by the Levich diffusion equation(1)0  As the 

agreement depends on the correctness of the diffusion coefficient 

of 0.34 diameter particles which was calculated from the Stokes-

Einstein equation9  the results also constitute a confirmation of the 

validity of this equation. 

In the case of negatively charged particles depositing on to 

a negatively charged plane surface9  it was found that non-uniform 

deposition occurred. A surface-active agent was required to reduce 

the magnitude of this non-uniformity of deposition to undetectable 

limits. Nevertheless9  when an apparently uniform deposit was obtained 

by this method9  it was found that the deposition was orders of 

magnitude higher than that predicted on the basis of the Derjaguin-

Landau-Verwey-Overbeek theory of colloid stability9  although the 

regions of non-deposition were explicable by the theory. A 

correction to the total potential energy of interaction for a rough 

surface resulted in lower energy barriers than predicted for smooth 

surfaces9  but still not sufficiently low to explain the observed 

deposition. 	It has also been emphasized that the deposition 

measured was not into the °secondary minimum', as shown by the slow 
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rate and the impossibility of removing the deposits 'by long rotation 

of the disc in a dispersion medium of lower ionic strength. In 

view of the fact that with no surface-active agent the deposition 

was visibly non-uniform on a microscopic scale, it was postulated 

that the non-uniformity was due to the variations in surface 

potential. With the surface-active agent present, the deposition, 

which appeared uniform on a microscopic scale, could not be proved 

to be uniform on a sub-microscopic scaled Therefore, the deposition 

results were interpreted on the basis of both surface roughness and 

local variations in surface potential. This conclusion was dictated 

also by the anomalous kinetics. 

It is, therefore, evident that this seemingly almost ideal 

model system for studying forces of interacting surfaces fell short 

of ideality on the grounds of surface roughness and heterogeneity of 

surface potential. it has been shown theoretically that a snail 

degree of'surface roughness reduces the total potential energy 

barrier for the deposition of a sphere on to the plate markedly. 

It is probable that practically all solid surfaces (except possibly 

cleavage surfaces of high quality Mica etc., over small areas) will 

have some degree of surface roughness and consequently, the 

deposition rate will always be faster than that predicted on the 

basis of the D.L.V.O. theory of colloid stability for perfectly 

smooth bodies. 	Therefore, for a better test of this theory a 

surface smooth to molecular dimensions is required. Such a 

surface could be obtained. by using a liquid surface (e.g. mercury). 
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It is expected that a goleang -moroury surface would be smooth to the 

degree required (i.e. projections of less than 1/49 and would 

exhibit no variations in surface potential. 

Conversely9  it appears from this work that deposition 

studies could be a way of studying heterogeneities on the sub-, 

microscopic scale. 	In 1942 Thiessen 2) showed the existence of 

a variation in surface potential between the edges and facet of 

kaolin platelets using a deposition technique. It is now envisaged 

that even smaller variations than those found by Thiessen could be 

examined by carefully controlled deposition experiments. Therefore, 

this work has indicated a new technique that could be used for 

studying small heterogeneities of surface properties of materials 

such as glass9  plastics9  metals and polished minerals. 
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APPEDDIX 1  

The Experimental Results for the Deposition of Polystyrene Latex 

Particles on a Poly-2-vinyl Pyridine/Styrene Copolymer Surface  

A.101. Deposition at Constant time 	. 30 min)  

360 r.p.m. 240 r.p.m. 120 r.p.m. 

.... 
Sol.Conc. 
Particles/ 
ml x 107 

ii 
d jAJ/2Co x106 ) N d 4 k 4/2C0(x106‘ 

41 	1  
N d ( x106) 44 	 /2C  41  

0  

- ' 
6.6 - - - - 320 7.60 
5.5 454 7.53 378 7.68 265 7.71 
4.4 376 7071 289 7.28 206 7.51 
3.3 286 7.75 238 7.97 146 6.89 
2.2 191 8.13 146 7032 102 7.29 
1.1 92 7.60 72 7.13 51 7.27 

A.1.20 Deposition at Constant Sol Concentration 

360 r.p.m. 
(Co  = 404x107  p/ml) 

240 r.p.m. 
(Co  = 4.2x107  p/m1) 

120 r.p.m. 
(Co  = 505x107p/ml) 

Time(min) Nd  j/Ii.4/2  0(x106) Nd  3/L4/2C(x106) Nd  j/63 /200(x106 ) 

30 376 7.71 285 7.54 265 7.71 
25 310 7.66 245 7.04 222 7.58 
20 258 7093 195 7.55 184 7.83 
15 193 7.92 151 8.00 131 7.48 
10 123 7.65 97 7.78 92 7.74 
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A.1.3. Deposition at Different Depths of Immersion of Disc Surface  

Depth of Disc surface from 240 r.p.m.(0 	= 1.1x107  p/ml,t = 30 min.) 
Bottom of Dish (cm) Nd i/L1/20o (x 106) 

0.4 72.9 7.22 
1.4 71.4 7.09 
2.5 72.0 7.13 
3.5 72.4 7.17 
4.0 72.0 7.13 
4.5 g to top of solution 

Theoretical Deposition rate constant (0.62 D2/31)-1/6) = 7.66 x 10-6. 

The mean Experimental rate constant (341/200) = 7.59 - 0.3 x 10-6. 
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APPENDIX 2 

A.2.1. The ElectroRhoretic Mobility of Polystyrene Latex 

Particles as a Function of NaC1 Concentration with 

10M Sodium Hexadecyl Sulphate  

. 	, 	.- 

Ionic Strength 

. 

17(µ/Volt/sec) (mV) Helmholtz Eq. 

..6 10 

10-5  

5 x 10-5  

10-4 

2 x 10-4   
- 4 x l0 4 

10-3  

5 x 10-3 
2 10- 

5 x 10-2  

10
.1  

- 2.14 

- 3.47 

- 3.74 

- 4.13 

- 4.53 

- 4.36 

- 4.40 

, 4.04 

- 3.20 

-  1 .57 

- 0.86 

- 30.0 

- 48.5 

- 52.0 

r 57.8 

63.4 

- 61.0 

.- 61.6 

- 56.6 

'• 44.8 

- 22.2 

- 12,0 
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A.2.2. The Electrophoretic Mobility of Polystyrene .  

Latex Particles as a Function of NaC1 Concentration 

A.2.2.1. In 4  x 104M Sodium Dodecyl Sulphate  

NaC1 conc.(M) U(µ/volt sec) S(mV) Helmholtz Eq. 

10-2 - 
2 x 10-2   „I  
3 x 10' 
4 x 101 
5 x 10-' 

5.15 
- 5.20 
- 5.17. 
- 4.06 
- 3.36 

- 72.0 
- 72.9 
- 72.4 
- 56.9 
- 47.0 

A.2.2.2. In 2 x 10-4Sodium Dodecyl Sulphate  

NaCl conc.(M) 13(µ/Volt/sec) S (mV) Helmholtz Eq. 

3 x 10.2 

4 lc 10"... 
5 x 10 , 

10-i  

- 5.23 
- 4.31 
- 2.85 	i 
- 2.72 

- 73.2 
- 60.4 
- 39.9 
- 38.0 

A.2.2.3. In 104M Sodium Dodecyl Sulphate 

NaCl conc.(M) HAL/volt/sec) 1 (mV) Helmholtz Eq. 

3 x 10.  
4 x 10

-22 
 

5 x 10-2 

10
-1  

- 5.16 
- 4.30 
- 2.92 
- 2.77 

- 72.2 
- 60.3 
- 40.9 
- 38.7 
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A.2.3. The Electro-osmotic Mobility. of Water at a 

Formvar surface as a Function of NaC1 Concentration 

A.2.3.1. In 4 x 10M Sodium Dodecyl Sulphate  

NaC1 conc.00 7(µ/Volt/seo) S(mV) of Formvar 
— , 

10-2  
2 x.10-2  
3 x 

10-2 

4 x l g::  

5.84 
4.79 
3.69 
3.16 
3.02 

- 81.6 
- 67.2 
- 51.6 
- 44.2 
- 42.3 

A.2.3.2. In 2 x 10-4M Sodium Dodeo1 Sulphate  

NaC1 Conc.(M) U(p/volt sec) j)(mV) of Formvar 

3 x 10
-  2- 

4 x 10-2 
5 x 10-

1  
2  

10-  

.3.64 
3.36 
3.09 
2965 

- 50.9 
- 47.1 
- 43.3 	• 
—37.0 

A.2.3.3. In 10-4M Sodium Dodesyl SuiDhate  

NaCl conc.(M) U(1/volt/sec) (iall') of Formvar 

3 x 10
-2
2 4 x 10- 

0- 5 x 1 2 

10-1  

3.67 
3.37 
3.01 
2.62 

- 51.3 
- 47.2 
- 42.2 
- 36.6 
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APPENDIX 3.0 

THE DEPOSITION OP POLYSTYRENE LATEX SPHERES  

ON TO IFORKVARI  

A.3.1. 0.3M NaC1 and 10041,1 S.D.S. 

N d 

t (miry) 1.28x108  pia 9.6x10 p/mi 7065x.107 pidl 6.41:107p/m1 

10 38.2 17.7 10.6 6.0 
20 53.2 32,4 22.4 10.5 
30 67.5 44.4 30.4 14.2 
40 71.9 49.2 34.1 17.5 
5o 79.1 60.2 36.8 19.2 
6o 81.6 63.0 40.6 21.1 
70 84.0 66.5 42.2 22.8 
80 44.6 22.6 
90 22.6 

k 

A.3.2. 0.1M NaCl and 104K S.D.B. 

Nd 

t (10n) i 1.24108  ppal 6.44.07P/61 

10 • 38.2 7.1 
`20 58.4 15.8 
30 90.5 22.6 
40 106.9 31.6 
50 120.9 38.7 
60 42.,4 
7o 45.8 
80 52.5 
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A.3.3. 5 x 10- 44 NaCl and 1074.14 S.D.S. 

1.28 x 108  particles/ml  

Nd 

t (ilia) Run (1) Run (2) Run (3) 
1 h conditioning of 
surface before addition 
of sol. 

5 2.2 
10 2.9' 4.4 14.4 
15 3.9 
20 4.2 11.3 25.7 
25 12.5 
30 17.1 . 17.1 38.6 
35 18.9 
40 28.1 29.4 51.6 
45 33.2 
50 37.5 39.8 67.0 
55 45.6 
60 51.0 • 47.1 78.0 
70 67.6 
73 60.4 
80 72.5 

A.3.4. 1.28 x 108  Tertioles/61  

Nd 
 

2 x 10-4M S.D.S. 4 x 104M S.D.S. 

t 4 x 10-2M NaCl 3 x 102M NaCl 
. . 

10 3.7 1a 
20 8.3 3.3 
30 11.8 5.6 
40 15.3 6.6 
50 20.8 7.6 . 
60 24.3 
70 28.9 
80 32.7 

J 
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A.305. Stability Ratios for Deposition for  

Co = 1.28 x 108  particles/61  

[ NaCl (M) Initial rate of Deposition/min' W 

0.3 5.0 8 
0.1 3.6 11 
0.05 1.3 30 
0.04 0.4 99 
0.03 0.016 247 
0.01 NO DEPOSIT oo 
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APPENDIX 4.0  

Total Potential Energy for the Interaction of Latex 

0 
Spheres of radius 1540 A 

A.4.1. 0.3 M NaCl [K. 1.8x 107] and 10-4  N S.D.S.S. -37.5mV 

VAT 

o 

Ho(A) A = 1413 ergs A . 5x10-1  ergs A = 1014  ergs 

5.01 20.52 51.17 75.69 
5.56 18.44 46.74 69.42 
6.67 16.66 39.86 59.02 
7.79 13.78 33.33 49.01 
8.90 10.10 27.10 40.70 

10.01 6.75 21.75 33.61 
11.12 3.66 17.01 27.69 
12.24 1.17 13.17 22.81 
13.35 - 1.02 9.93 18.69 
14.46 - 2.94 7.06 15.10 
15.57 - 4.46 4.84 12.32 
16.69 - 5.56 3.04 9.96 
19.47 - 7.59 - 0.26 5.62 
22.25 - 8.48 - 2.09 2.99 
25.03 - 8.69 - 3.03 1.49 
27.81 - 8.40 - 3.36 0.64 
33.37 - 7.53 - 3.40 -0.12 
38.93 - 6.27 - 2.90 -0.18 
44.49 - 5.59 - 2.71 -0.39 
50.06 - 4.97 - 2.43 -0.43 
55462 - 4.41 - 2.37 -0.41 
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A.4.2. 0.1 M NaC1 and 10-4M S.D.S. 

= -40.6 my. [(= 1,;04 x 107] 

VAT 

H0(A) A = 10-13  ergs 

,-. 

- 1 
A = 5x10 	4ergs A = 10 14 ergs 

5.78 68.71 95.81 117.53 
6.74 67.47 90.42 108.78 
7.71 64.51 84.36 100.24 
8.67 60.91 78.41 92.41 
9.63 56.82 72.42 84.90 
11.56 48.32 61.12 71,36 
13.49 40.34 51.19 59.87 
15.41 32.90 42.30 49.82 
17.34 26.31 34.61 41.24 
19.27 20.76 28.18 34.11 
21.20 16.19 22.88 28.22 
23.12 12.21 18.34 23.24 
25.05 8.76 14.41 18.92 
26.98 6.28 11.46 15.60 
28.90 4.07 8.89 12.75 
33.72 0.06 4.19 7.49 
38.54 -1.35 1,82 4.36 
43.35 -2.88 1000 2.48 
48.17 i-3034 -0.71 1.39 
57.80 -3043 -1.31 0.40 
67.44 ..2.96 ...1.19 0.24 
77.07 -2.79 -1.28 0.08 
86.71 ,2.54 -1.23 -0.18 
96.34 -2.27 -1.12 -0.20 
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APPENDIX 5.0 

Total Potential Energy for the Interaction of a Latex. 

Sphere of Radius 1540 with.a Plane Surface (Formvar)  

A.5.1. 0.3 M Na01 and 10 16 S. D. S.  

fl-Latex 7 -37°5 inV9  ;Formvar -31.5 mV 

VAT 

Ho (I) A = 10-13  ergs A = 5x10-14  ergs A = 10°.1 	ergs 

5.01 11.30 73.6 123.4 
5.56 13.02 69.0 113.8 
6.67 13.09 59.1 95.9 
7.79 9.09 49.6 78,3 
8.90 4.35 39.0 66.6 

10.01 - 0.46 30.3 54.9 
11.12 - 4.58 23.0 45.1 
12.24 - 8.96 16.0 36.0 
13.35 -11.07 11.9 30.2 
14.46 -14.04 7.26 24.3 
15.57 -16.45 4.12 ;9.8 
16.69 -16.65 1.41 15.9 
19.47 -18.94 -3.59 8.77 
22.25 -19.52 -6.10 4.64 
25.03 -19.30 -7.44 2.05 
27.81 -18,52 -7.91 0.57 
33,37 -16.39 -7.70 -0.75 
38.93 -14.39 -7,02 -1,11 
44.49 -12.55 -6.21 -1.13 
50.06 -10.99 -5.47 -1.06 
55.62 - 9.94 -4.96 -0.98 
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A.5.2. 0.1 M Na01 and 10- M S.D.S.  

-40.6 my, S  Formvar = 1Latsx = 	36.6 na 

V/kT 

Ho(A) A . 10-13  ergs A = 5x10-14 ergs0"14  ergs 

5.78 112.5 166.2 209,2 
6.74 111.9 157.5 193.9 
7.71 106.0 146.5 178.5 
8,67 100.3. 135.8 164.3 
9.63 93.7 125.7 151.2 

11,56 79.3 105,9 127.1 
13.49 65.7 88.4 106.6 
15.41 53.0  72.8 88.6 
17.34 42.1 59.5 73.4 
19.27 32.6 48.2 60.6 
21.20 22.8 37,4 48.7 
23.12 17.9 31.0 41,3 
25.05 12.2 24.1 33.6 
26.98 7.91. 18.9 27.6 
28.90 4.27 14.4 22.5 
33,72 - 2.31 6.29 13.2 
38.54 - 5.68 1.77 7.73 
43.35 - 7.50 - 0.97 4.25 
48.17 - 8.30 - 1.46 2.21 
57.80 ... 8.25 - 3.50 0.30 
67.44 - 7.34 - 3.44 - 0.32 
77.07 - 6.12 - 2.98 .. 0.46 
86.71 - 4.89 "2.40 - 0.43 
96.34 - 3.88 - 1.93 - 0.37 
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A.5.3. 0.05M NaC1 and 10-4M S.D.S.  

d--Latex -42.2 mV. 	S  normvar . -42.0 mV 

VAT 

o .0.3 14 ,. 
H (A) o A = 10 	ergs. A = 5x1Q7 	ergs 4 ., 0 	ergs 

5.45 1960 253.9 299.5 
6.82 197.6 - 2426 278.6 
8.18 190.1 227.8 257,9 
9.55 180,4 212.6 238.3 

10.91 168.5 196.7 219.3 
12.27 156.8 181.7 201.7 
13,64 145,1 165.6 185..5 
16.36 122.6 141.1 155.9 
19.09 102.5 118.2 130.8 
21.82 84.2 97,9 108.8 
24'64 68.4 80.5 90.2 
27.27 55.1' 65.9 74.6 
30.00 42,6 53.0 60.2 
32.72 35.1 	- 43.9 51.0 
35.45 27.0 35.2 41.7 
38.18 20.8 28.4 34.4 
40.91 15.7 22.6 28.2 
47.72 6.13 12.P 16.8 
54.54 0.92 6.00 10.1 
61.36 - 2,22 2.25 5.81 
68.18 - 3.62 ..0.22 3.30 
81.81 .- 4.10 1.30 0.94 
95,45 - 3.45 - 1.45 0.15 

109.08 - 2.82 - 1.21 - 0.08 
122472 - 2.03 -. 0.98 - 0414 
136.35 - 1.66 r 0.82 , 0.14 
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A.5.4. 0.04M Nal and 2 x 10-421  

Ltatex  - 66.2 mV  

V'/k2' 

0 
Ho(A) A = 5i10 	3ergs A = 10-13  ergs '14 

 
A = 10 	ergs 

6.10 17.8 423.4 514.7 
7.62 83.8 407.4 480.2 
9,15 116.1 305.3 . 445.9 
10,67 129.8 361.2: 413.0 
12.20 135.9 '335.9 380.9 
13.72 132.4 310.8 350.9 
15.24 127,0 287.'1 323.4 
18,29 111.3 242,9 272.5 
21.34 92.2 204,0 229.1 
24.39 71.7 1694 191.2 
27.44 530 ' 139.3 158.6 
30.49 39.5 114.7 131.6 
33.54 21.4 90.7 106.3 
36.59 12.0 76.2 90.4 
39.63 3.07 61.0 73.9 
42,68 - 3.82 49.3 61.3 
45.73 -10.2 - 	39.2 50.4 
53.35 --20.6 20.9 30.3 
60.98 -25,6 10.4.  18,5 
68.60 r26.1 4.14 10.9 
76.22 .24•9 .: 0.70 6,47 
91,46 -19.4 - 1.78 2.19 
106.71 -14.0 _ 1.99 0.69 
121.95 -10.4 - 1.80 0.14 
137.20 , 8.17 -1.53 - 0.03 
152.44 - 7400 - 1.36 - 0.09 



A = 10 1 erge 

685.9 
645.3 
603,9 
562.1 
521.6 
461,7 
444.6 
410.2 
346.6 
291.5 
243.5 
202.4 
167.0 
135.7 
115.7 
94.8 
78.5 
64.6  
38.9 
24.o 
14.3 
8.58 
3,03 
1.02 
0.29 
0,03 

- 0.07 
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A,2.5. 0.03M NaC1 and 4 x 10-4M S.D.S.  

= 778.2 mV  -Latex 	,50,9 mV.  

VAT 

0 
H0(A) 

A =. 5x10-13  ergs. A = 1013 ergs 

5.28 106,7 579.5 
7.04 218.0 566.8 
8.80 260,9 540.9 

10.56 276.4 509.6 
12.32 278.6 477.0 
14.09 267.1 442.3 
15.85 256.9 410.1 
17.61 242.7 381.4 
21.13 207.9 320,8 
24.65 173.4 269.8 
28.17 140.8 224,6 
31.69 112,4 185.8 
35.21 86.4 152.2 
38.73 63.1 122.4 
42,25 49.9 103.6 
45.77 34.3 83.7 
49.30 22,7 68.2 
52.82 13.2' 55.2 
61,62 .4  4.24 314 
70.42 -11.9 17.4 
79.23 -15,1 8.89 
88.03 -15.0 4.25 

105.63 -12.2 0.24 
123,24,  - 9.27 - 0.87 
140.85 - 7.50 7  1.14 

158.45 - 6.78 - 1.22 
176.06 6.34 - 1,22 

ti 	 
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APPENDIX 6.0  

The Total Potential Energy for the Interaction between 

a Sphere and a Rough Plate  

Roughness assumed to consist of spherical projections 

44 high and 333 across (Fig.8.4b), from which the radius of 

the spherical segment is readily calculated to be 336 

A.6.1. IN 0.3M NaCl and 104M S.D.S.  

1-Late x..M.:1245 11211IForm110,2=111L2JEL 

A.6.1.1. Attraction Energy.(A = 1 -13 ergs)  

R 0 a)  -V  Ai 	Segmenl 
Ai' H 	g 

o 
-VT 	 P Pi  AA 	11 = E + 44 58 o -VAAT  

5.01 20,4 11.4 31.8 
5.56 
6.67 

13.6 
9.50 

11,3 
10.9 

24.9 
20.4 

7.79 7.40 10,7 18.1 
8,90 6.08 10.5 16.6 
10.01 5.30 10.3 15.6 
11.12 4,87 10.1 14.9 
12.24 4.45 9.87 14.3 
13,35 4.10 9.58 13.7 
14.46 3.78 9.38 13.2 
15.57 3.43 9.19 12.6 
16.69 3.12 9.06 12.2 
19.47 2.55 8.50 11.1 
22,25 2,11 8,00 10.1 
25.03 1.79 7.54 9.33 
27.81 1.47 7.08 8.55 
33.37 0.99 6.24 7.23 
38.93 0.70 5.45 6.15 
44.49 0.51 4.77 5.28 
50.06 0.41 4.18 4.59 
55.62 0.34 3.59 3.93 
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A.6.1.2. Repulsion Energy 

Ho(2) 
.,,. /„(Segment , 
wRi"(a . 336 

h 	sp-pl 	n)  
VR"" H . R + 44 I) o 

I. 
VRAT 

5.01 24.33 0.06 24.39 
5.56 22.39 0.05 22.44 
6.67 18.82 0.04 18.86 
7.79 15.80 0.035 15.84 
6.90 13.17 0.03 13.20 

10.01 10.93 0.02 10.95 
11.12 9.07 0.02 9.09 
12.24 7,33 0.01 7.34 
13.35 6.24 0.01 6.25 
14.46 _5.12 0.005 5.13 

15,57 4.24 0.004 4.24 
16.69 3.49 0.001 3.49 
19.47 2.12 - 2.12 
22.25 1.31 - 1.31 
25,03 0.79 - 0.79 
27.81 0.48 - 0.48 
33.37 0.18 - 0.18 
38,93 0.065 - 0.065 
44.49 0.024 - 0.024 
50.06 0.009 - 0.009 
55.62 0.003 - 0.003 
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A.6.1.3. Total Potential Energy 

VAT 

H4 A = 10-13ergs A = 5x10-14 ergs A = 10-14  ergs 

5.01 - 7.39 8.49 21.2 
5.56 - 2.40 10.0 20.0 
6.67 - 1.55 8.66 16.8 
7.79 - 2.26 6.79 14.0 
8.90 - 3.38 4.90 11.5 
10.01 - 4.63 3.15 9.39 
11.12 - 5.84 1.64 7.60 
12.24 - 6.98 0.19 6.91 
13.35 - 7.44 -0.61 4.87 
14.46 ® 8.03 -1.47 3.81 
15.57 .. 8.38 -2.06 2.98 
16.69 - 8.69 -2.61 2.27 
19.47 - 8.93 .-3.43 1.01 
22.25 - 8.80 -3.74 0.30 
25.03 - 8.54 -3.86 -0.14 
27.81 - 8.07 ..3.82 -4).38 
33.37 - 7.05 -3.42 -0.54 
38.93 .. 6.08 -3,01 -0.55 
44.49 -, 5.21 -2.62 -0.50 
50.06 - 4.58 ..2.29 -0.45 
55.62 •• 3.93 -1.96 -0.39 
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A.6.2. IN 0.1M NaC1 and 1074M S.D.S.  

ormvar = -36.6 mV.  

A.6.2.1. Attraotion Energy (A = 10713  ergs)  

IT0 (1)  _v 
 AH ..- H

cT 	Segment 
Ai o 

- VIAT 	sP-Pa 	) 
- 	H= E o + 44 44 2) 

-V1  /kT 

5.78 
6.74 
7.71 
8.67 
9.63 

13.49 
15.41 
17.34 
19.27 
21.20 
23.12 
25.05 
26.98 
28.90 
33.72 
38.54 
43.35 
48.17 
57,80 
67.44 
77.07 
86.71 
96.34 

11.56
10.36 

12.40 
9.26 
7.48 
6.30 
5.51 
4.70 
4.19 
3053 
3.06 
2.64 
2.27 
1099 
1074 
1.54 
1.36 
0.96 
0.71 
0.54 
0.44 
0.32 
0.22 
0.18 
0.13 
0.10 

11.20 
10.98 
10.73 
10.56 

9.98 
9.55 
9.19 
8.90 
8052 
8.20 
7,88 
7.52 
7.21 
6.90 
6.20 
5.50 
4.90 
4.36 
3.38 
2.68 
2.20 
1.81 
1.60 

23.60 
20,24 
18.21 
16.86  
15.87  
14.68  
13.74  
12.72  
11.96  
11,16  
10.47  
9.87  
9.26  
8.75  
8.26  
7.16  
6.21 
5.44  
4.80  
3.70  
2.90  
2.38  
1.94 
1.70 
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A.6.2.2. Repulsion Energy 

Ho(i) v  AT 	Segment 	) 

R 	a = 336 1 ) 
" A," 
v /Ki 	Hp= R  	E 	+ 44 i) 0 

v han 
'11/1" 

5.78 
6.74 
7.71 
8.67 
9.63 
11.56 
13049 
15.41 
17.34 
19.27 
21.20 
23.12 
25.05 
26.98 
28.90 
33.72 
38.54 
43.35 
48.17 
57.80 
67.44 
77.07 
86.71 
96.34 

39.39 
36.36 
33.40 
30.69 
28.23 
23.72 
19.90 
16.58 
13.76 
11.42 
9.23 
7.86 
6.44 
5.34 
4.40 
2.67 
1.65 
1.00 
0.61 
0.22 
0.082 
0.030 
0.011 
0.004 

2.80 
2.54 
2.30 
2.10 
1.90 
1.56 
1.29 
1.04 
0.84 
0.68 
0.51 
0.40 
0.36 
0.30 
0.22 
0.11 
0.08 
0.01 
- 
- 
_ 
- 
- 
_ 

42.19 
38.90 
35.70  
32.79 
30.13 
25.28  
21.19  
17.62  
14.60  
12.10 
9074 
8.26 
6.80 
5.64 
4.62  
2.78 
1.73 
1.01 
0.61  
0.22  
0.082 
0.030 
0.011 
0.004 
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A. 6.2.3. Total  Potential Energy 

VAT 

Ho ( ) A = 1013ergs A = 5x10-14  ergs A = 10-14  ergs 

5.78 18.6 30.4 39.8 
6.74 18.7 28.8 36.9 
7.71 17.5 26.6 33.9 
8.67 15.9 24.3 31.1 
9.63 14.3 22.7 28.5 

11.56 10.6 17.9 23.8 
13.49 7.45 14.3 19.8 
15.41 4.90 11?3 16.4 
17.34 2.64 8.60 13.4 
19.27 0.94 6.50 11.0 
21.20 -0.73 4.49 8.69 
23.12 -1.61 3.31 7.27 
25.05 -2.46 2.15 5.87 
26.98 -3.11 1.24 4.76 
28.90 -3.64 0.47 3.79 
33.72 -4.38 -0.82 2.06 
38.54 -4.48 -1.37 1.11 
43.35 -4.43 -1.69 0.47 
48.17 -4.19 -1.79 0.13 
57.80 -3.48 -1.63 -0.15 
67.44 -2.82 -1.37 -0.21 
77.07 -2.35 -1.16 -0.21 
86.71 -1.93 -0.96 -0.18 
96.34 -1.70 -0.85 -0.17 
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A.6.3. IN 0.05M NaC1 and 10K S.D.S.  

iLatex = -42.2 mV9  Formvar . -42.0 Or.  

A.6.3.1. Attraction. Energy (A = 10-13  ergs)  

Ho 
(

L
) 
 .vA 

 / a  (Seg m
H
en t) 

 o 
-VA  A T H P-H + 44 	

) 
 0 

. 

"
v
A 
i
-
m 

5.45 
6.82 
8.18 
9.55 
10.91 
12.27 
13.64 
16.36 
19.09 
21.82 
24.54 
27.27 
30.00 
32.72 
35.45 
38.18 
40.91 
47.72 
5 4.54 
61.36 
68.18 
81.81 
95.45 

14.10 
9.10 
6.82 
5.59 
4.95 
4.43 
4.00 
3.21 
2.61 
2.19 
1.84 
1.50 
1.26 
1.03 
0.86 
0.73 
0.63 
0.45 
0.36 
0.29 
0.23 
0.16 
0.10 

11.26 
10.98 
10.66 
10.37 
10.06 
9.80 
9.53  
9.04  
8.58 
8.04 
7.61 
7.19 
6.72 
6.31 
5.92 
5.58 
5.20 
4.40 
3.69 
3.08  
2.61 
1.99 
1.60 

. 

25.36 
20.08 
17.48  
15.96 
15.01  
14.23 
13.53 
12.25 
11.19 
10.23  
9.45  
8.69  
7.98  
7.34  
6.78  
6.31  
5.83 
4.85 
4.05 
3.37  
2.84 
2.15 
1.70 
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A.6.3.2. Repulsion Energy 

H000 
PR/ 
	

(a
er 	 egment 	

) . 	X 336 
 v  / 	s-1 

RI  _ kT Hp . pH 
 o+ 44 18 

VR/kT 

5.45 55.69 16.10 71.79 
6.82 51.51 14.57 66.08,  
$.18 47.54 13.20 60.74 
9.55 43.84 11.95 55.79 

10.91 40.29 10.78 51.07 
1?.27 37.01 9.70 46.71 
13.64 34.03 8.79 42.82 
16.36 28.58 7.18 35.76 
19.09 23.98 5.85 29.83 
21.82 19.98 4.80 24.78 
24.54 16.58 4.0o 20.58 
27.27 13.75 3.37 17.12 
30.00 11.12 2.78 13.90 
32.72 9.46  2.28 11.74 
35.45 7.76 1.83 9.59 
38.18 6.43 1.47 7.90 
40.91 5.30 1.23 6.53 
47.72 3.21 0.75 3.96 
54.54 1.99 0.43 2.42 
61.36 1.20 0.27 1.47 
68.18 0.73 0.17 0.90 
81.81 0.27 0.06 0.33 
95.45 0.099 0.01 0.11 
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A.6.3.3. Total Potential Energy 

VAT 

H 	(I) A = 10-13ergs A = 5x1014  ergs A = 1014  ergs 

5.45 46.4 59.1 69.3 
6.82 46.0 56.0 64.1 
8.18 43.3 52.0 59,0 
9.55 39.8 47.8 54.2 

10.91 36.1 43.6 49.6 
12.27 32.5 39.6 45.3 
13.64 29.3 35.1 41.5 
16.36 23.5 29.6 34.5 
19.09 18.6 24.2 28.7 
21.82 14.6 19.7 23.8 
24.54 11.1 15.8 19.6 
27.27 8.43 12.8 16.3 
30.00 5.92 9.90 13.1 
32.72 4.40 8.09 11.0 
35.45 2.81 6.19 8.91 
38.18 1.59 4.75 7.27 
40.91 0.70 3.63 5.95 
47.72 -0.89 1.51 3.47 
54.54 -1.63 0.41 2.01 
61.36 -1.90 -0.23 1.13 
68.18 -1.94 -0.50 0.62 
81.81 -1.82 -0.77 0.11 
95.45 -1.59 -0.74 -0.06 
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APPENDIX 7.0  

An Approximate Method for the Calculation of the Total Potential  

Energy of Interaction between a Sphere and a Rough Plane Surface  

If the assumption is made that the surface roughness of the 

plane surface is composed of spherical projections (which is 

approximately true for the "Formvar" surface (Fig.8.4))*  then the 

total potential energy of interaction between a sphere and such a 

rough surface can be calculated analytically* With this model the 

repulsiye part of the total potential energy of interaction can be 

calculated by considering the energies of interaction between two 

spheres (one of which is the sphere comprising the spherical 

projection on the plane surface), and adding to this the energy 

contribution of the plane surface beyond the spherical projection. 

The expression for the potential energy of interaction of dissimilar 

double-layers(1)  is 

Es_a_M2  4.w2)- 413p2  	(1 + exp(-XE) V
R 	 In 2 '1,2 4(a1  + a2) 	+1'2 	1 exP(-KH)  

+ in (1 - exp (-KH)) ] 
	

(1) 

From this it can be seen that if the radius of the spherical 

projections are less than that of the particle, then the repulsion 
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energy will be less than that for two equal sized spheres and much 

less than half that for the particle and a smooth plane surface. 

This expression is valid only inCel  and Ka2  » 1, and H cc al  and 

a2. Under these conditions the contribution of the underlying 

plane surface is negligible in comparison to that of the spherical 

projection (for example at 0.-3M NaCl, see Appendix 6.12.). 

However, if these conditions are not fulfilled, then the contribution 

of the underlying plane will be significant. When this occurs, the 

repulsion energy calculated is too large because the repulsion energy 

is a surface effect and contributions from within the body of the 

surface have been included, i.e. -that part of the plane surface 

within the spherical projection and that part of the sphere comprising 

the spherical projection within the underlying plane surface. This 

situation occurs only when the double-layers are not thin, which in 

this work is for ionic strengths less than or equal to 5 x 10-2. At 

an ionic strength of 5 x 10-2 the contribution of the underlying plane 

surface is about 29$ (see appendix 6.3.2.). 

To the repulsion energy must be added the attraction energy 

between a sphere and a spherical pr6lection on a plane surface. This 

is a much more complicated case than the repulsion energy and is 

considered in the next section. 

A.7.1. The Attraction Energy between a sphere and a Spherical  

Projection on a Plane Surface  

In Fig.A.7.1. is shown the geometry of the system of a sphere 
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FIG (A.7.1) GEOMETRICAL REPRESENTATION OF A 
SPHERE APPROACHING A SPHERICAL PROJECTION 

ON A PLANE SURFACE . 
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approaching a spherical projection on a plane surface. The energy 

of attraction between the sphere, centre 01, and the spherical segment 

(PAB) of the sphere, centre 02, is given by 

2;k 
Vs-Seg 	- 1 dV1 	dV2 e 6--- 

V1 	-IV2 

(2) 

where Vi is the total volume of the sphere (centre 01) and V2  is the 

total volume of the segment (PAB) of the Sphere (centre 02). q is 

the number of atoms per cm3  of material in the bodies and Xis the 

wavelength characteristic of the atom dipole fluctuations, and r is 

the distance between th,e atoms. Equation (2) can be solved 

analytically following the method of Hamaker(2). 

By 	method the energy of attraction of the two spheres 

is obtained by considering, firstly, an atom at position z. Then the 

attraction energy between this atom and the sphere, centre 01, is 

given by 

R+R
1 1;i'lih 

7 
R-R1  

[ R12  - (R r)2  dr (3) 

and, secondly, the attraction between sphere, centre 01, and sphere, 

centre 02, (assuming that the two spheres are composed of the same 

material) is given by 
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R22 
(c R)2 dR  (4)  

P  

where C = 0102. However, for the case where the sphere, centre 02, 

is embedded partially in a plane surface, only the interaction of the 

sphere, centre 01, with the spherical cap, PAB, is required. This 

is readily obtained by a suitable change in the limits of the integral 

in equation (4). Therefore, the energy of interaction between the 

sphere, centre 01, and the spherical cap (PAB) is given by 

l'O-x 

Vs-seg = 	V . girR  E R22  - C - R)2  dR 	(5) 

C-B2 
p 	c   

where the height of the spherical projection above the plane surface 

is given by (R2  - x).. The complete expression for this interaction 

energy is then given by 

C-x 411 R+R1 

R r  

1 [- 2 V ffi 
s-seg 4  2 '11 - °1-r  ] 162 - (c-8)2  1R.dr 

(6.) 

which on evaluation yields. 

V 
BB 

C+R2  

C-R2 
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VS -seg 
A (02  R22  + 2CR1  + R12) - (02  - R22  + 2CR1  + R12) 

. (0 7 X + R1)2 	 (C 7 R2  + RI)2  

(C2 	R22  + RI2 - 2CR1) - (C2  - R2
2  + R1

2  - 2CR1) 

(0 - x - R1)2 (C 	R2 - a1)2  

1 (
-
u  
2 . 822 3R12 . 2R1c) (c2 R22   . 3H1

2 .. 2Ric)  

O (C 	x + R ) 	 - 	R1)  

.. c2 4. 	2 - 2cR1 

(C 	x - R1) (C - R2  - Rl) 

+21n 

 

x + Ri  \11( 0 - R2  - 

- R1/ 	- R2 + R1 
(7) 

 

 

    

From the examination of Fig.(A.7.1) it can be seen that the 

energy of attraction calculated from equation (7) is too large at 

close distances of approach. This is because in the derivation of 

equation (7) the arc AZB was used and assumed to approximate closely 

to the plane AB. For large separation distances this assumption is 

probably 'correct. Therefore, when the components to the: energy 

calculated from equation (7) are added to those of the underlying 

plate the total energy is too large, at close distances of approach, 

as the effect of the segment AZB is included twice. Nevertheless, 
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the error should not be large and this treatment gives a good 

indiCation of the magnitude of such surface roughness effects. 
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