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ABSTRACT  

An exclusive study of a general class of multichannel stacking 

filters is made. They are designed in the time domain as optimum 

multichannel Wiener filters for various models of random stationary processes 

and include some known stacking filters as special cases. It is shown that 

filters of this class may be specified as two- and three-dimensional velocity 

filters, polarisation filters and stacking filters for the rejection or 

enhancement of signals with differential normal moveout. The two- and 

three-dimensional Fourier transforms are used as valuable tools for the 

characterisation of velocity filters. Transforms for special differential 

moveout filters are also given. The concept of a stacking filter transfer 

function is defined and it tis shown under which conditions it 

can be obtained from the two- or three-dimensional Fourier transform of a 

filter. 	It gives a deep insight into the filter characteristics. 

A discussion of the given multichannel normal equations shows 

how to select special time windows to obtain zero phase transfer functions. 

Zero phase stacking filter components do not necessarily guarantee zero phase 

transfer functions, while non-zero phase components may give phasefree 

transfer functions. 

Some rules for the characteristics of the class of filters 

are presented. They are used in the design of special velocity filters, 

which have superior properties over known velocity filters. A study of the 

presented multichannel normal equations leads as well to the discovery of 

the 'scaling effect'. This effect helps to reduce computer calculations 

of filters. It also explains observations connected with their character-

isation and application. Because the filter design depends on a host of 

design parameters, computational experiments were done to show in which way 

important parameters influence filter characteristics. A short re-appraisal 

of the basic theory of time series analysis is given. The theory of 

continuous and discrete stacking filters is also reviewed. 
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CHAPTER 1 

INTRODUCTION  

Seismics is one of the most widely accepted and successful 

methods in exploration and the study of the solid earth. As most 

geophysical disciplines it is primarily concerned with the extraction of 

useful subsurface information from surface observations. The measurements 

are available in the form of seismograms; the problem (often referred to as 

the inverse seismic problem) is their proper interpretation in geological 

terms. In particular, one wishes to replace the mass of original data, 

which is of a complicated nature, by a small number of descriptive character- 

istics. 	(  

A large part of basic seismic research is therefore directed 

towards a better understanding of the physical processes involved in the 

seismic method. A seismogram may be regarded as the response of the system 

consisting of the earth and recording apparatus to an impulsive source, for 

instance an explosion. This system, although usually very complicated, is 

susceptible to basically three seismic approaches towards its analysis. 

1. Computation of synthetic seismograms and comparison with 

actual field data. 

2. Model seismic experiments and comparison with field data. 

3. Application of different techniques based on various 

principles of communication theory. 

The third technical approach was given a large impetus with 

the arrival of digital computers because most processing is in fact only 

possible on fast computers with large storage facilities. For all three 

basic techniques it is necessary to simplify to develop a working model. 

There can never be a unique all-embracing model in any case. A compromise 

between simplicity and reality is always necessary. Nevertheless, there 

is great hope that the combination of all different approaches will lead to 
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an understanding of the inverse seismic problem which is not obtainable with 

one technique alone. Therefore experience and knowledge gained in all 

seismic disciplines are most valuable for the design of digital processing 

techniques. There may sometimes even be a creative phase necessary for the 

design of processes beyond the reach of any specified mathematical theory. 

Within digital processes applicable to seismograms most techniques are 

filtering procedures. There exist basically three types of digital filters: 

1. The single channel filter. 

2. The n-dimensional filter based on the mathematical 

theory of n-dimensional Fourier transforms. 

3. The multichannel filter based on the theory of 

matrix polynomials. 

The last two filters are logical extensions of the single 

channel filter concept and as such include it as a special case. This work 

is confined to multichannel input - single channel output filters. This is 

a special case of a multichannel filter. The application of these filters 

is often referred to as multichannel stacking and their design is based on 

stochastic models. The design in this thesis is also partly done in analog 

and partly in discrete form. The analog version of the normal equations 

which usually specifies two-sided filter responses (Wiener, 1949 ) 	is used 

because of its simplicity for mathematical considerations. The discrete 

version (Robinson, 1967 ) is used for actual filter computations. 

The sampling theorem as given in Chapter 11 is of utmost importance in 

understanding the relationship between the two formulations. To help dis-

tinguish between them, t* is used throughout the thesis as a discrete and 

t as a continuous time parameter. For the sake of simplicity the sampling 

interval is always taken as one time unit. Sampling therefore implies 

throughout this work, taking samples of a continuous function separated by 

this unit. 



-7- 

The design of any kind of filter has to be based on mathematical concepts. 

Random stationary functions are chosen in this work as models for seismic 

record sections. The theory of random stationary functions is reviewed and 

should be sufficient to appreciate the mathematical rules, which have been 

obeyed in the filter design. In particular it is reminded that the usual 

Fourier integral as presented in chapter 11 is not defined for a stationary 

function and that auto- and crosscorrelations are conceptual functions, 

which can be only obtained in a limiting process. 

Although one may use a purely functional approach for the 

filter design, it is not until the theory of random stationary functions 

is introduced that certain procedures become meaningful in a physical 

sense. This theory, as conceived by Yule (1921,1927) and established in 

full generality by Khintchine (1934) makes use of averaging procedures, 

which were arrived at from the probability point of view. The full importance 

of the theory towards the solution of various engineering problems is 

emphasized by Wiener (1949) and Kolmogorov (1942). 

The statistical approach has become very popular and sucess-

ful in connection with the processing of seismograms and is justified by 

various authors as for instance Wadsworth (1953) and Robinson (1967). 

A full understanding of the theory of stationary functions is not possible 

without having conceived various basic theorems as for instance the pre-

dictive decomposition theorem (Wold,1938 ) and the power spectrum factor-

isation (Kolmogorov, 1939). With the help of both theorems it can be shown 

that any stationary function with a continuous power spectrum can be thought 

to be a convolution of a minimum delay wavelet with a random stationary 

function, which has a white (broad band) spectrum. It is this property of 

random stationary functions, which brings them so near to the concept of 

the nature of a seismogram as given by Ricker (1953). A seismogram 

according to Ricker is an elaborate wavelet complex and the analysis of a 
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seismogram consists of breaking the record down into its components. 

The filtering process of predictive deconvolution (Robinson, 1957) is a 

classical example for the usefulness of the assumption that seismogram 

sections are stationary. 

The particular stochastic model chosen in this treatment is the following 

one. It is assumed, that a seismic record section can be represented as 

a multichannel process, where each trace is the sum of three components, 

a signal (often primaries), correlated noise (often multiples) and 

uncorrelated noise. Signal and correlated noise are the common components 

in the record section, which differ only by their moveout from trace to 

trace. The stacking filter is designed to optimally filter the signal 

component and reject simultaneously all noise components. The fact that the 

filters are designed in the time domain allows the incorporation of various 

information available from the input traces. It is shown that the given design 

is very general and that the investigated class of filters may find application 

in various seismic problems. The two- and three- dimensional Fourier transforms 

are used to characterise some stacking filters. 

It must be generally emphasized, that it was not the 

intention to give strict proofs for all individual steps. It was more the 

aim to discuss and characterise a useful class of stacking filters and 

outline applications for various seismic problems. The notation used in this 

thesis corresponds to the notation used by Robinson (1963, 1967 b). 
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CHAPTER 11  

BASIC CONCEPTS OF TIME SERIES ANALYSIS AND COMMUNICATION THEORY  

The most important concepts essential for the understanding 

of this thesis are reviewed. The inclusion of various topics from time 

series analysis and communication theory in this chapter is intended as a 

reminder of their importance and an introduction to the special notation 

used in this thesis. The treatment includes a discussion of the Fourier-

transform, the sampling theorem, time series, convolution, Z-transform and 

random processes. (Wiener, 1949; Lee,1960; Jury,1964; Papoulis,1962) 

2.1 Fourier Transform  

From a mathematical point of view Fourier transforms exist 

for various classes of functions and various conditions (Papoulis, 1962; 

Lanczos, 1966; Lighthill, 1966). 	It is always assumed that the necessary 

mathematical conditions are fulfilled to guarantee the existence of the 

transform. As Fourier transforms, the following pair is used in this thesis: 

G(f) = g(t)e-2Tiftdt (2.1.1) 
-co 

g(t)  = c(f)e+2triftdf 	 (2.1.2) 
-co 

G(f) is the Fourier transform of g(t) and g(t) is the 

inverse Fourier transform of G(f). t is time (e.g. milliseconds) and f is 

frequency (e.g. cycles per millisecond). The spectrum G(f) is generally a 

complex function which extends over all frequencies from minus to plus 

infinity. In polar form one may write: 

G(f) = IG(f)le
54(f) (2.1.3) 

G(f) is called the amplitude spectrum and 4;(f) the phase spectrum. 	If 

g(t) is real valued, then G(f) = G* (-f), where G^(f) is the complex 

conjugate of G(f). The knowledge of G(f) for f>0 is then sufficient to 

describe g(t). Extensive use is made of the following Fourier transform 

pairs: 
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oo 

r
gl (t1 ) g2 (t-t1) dt1 	G1  (f) G2(f) 

-co  

g(to-J3)  oa(ocf) e-2Tif f3  

	

rec (t) 	sinc (f) 

	

sinc (t) 	rec (f) 

where 

and 

rec (t) 

sinc (t) 
{.

1 for It I4 
0 for MI> 
sin (lit)  

itt 

2 
1 
2 

Also the following abbreviation for convolution is used: 
co 

c
g1(t1  g2(t-t1) dti  = gi(t)* g2(t) = g2(t)* gilt) 

-co 

Further it is reminded that if a sampled function is given 

in form of q equidistant values in the time domain, q values transform 
•• 

into q complex values in the frequency domain ( Cooley and Tuckey, 1965). 

For the q values of the sampled function 

(g (0), g (1), 	, g (q-1)) 

these are the q complex values 

-2nikj/a G(j/q) =21  g(k)e 	(j=0,1,2, . GOO 2 q-1) 
k=0 

The inverse transform of (2.1.5) is: 

q-1 2nikj/a g(j) = (1/q) . 	G(k/q) e 	(j=0,1,2, 	, q-l) 
k=0 

(2.1.4) 

(2.1.5) 

(2.1.6) 

One usually defines however, as the Fourier transform for the sampled 

values (2.1.4) the following continuous expression : 

q -1 
G(f) =:E g(k) e-21ifk 

k=0 
(2.1.7) 

The Fourier transform has three inherent attributes in 

communication theory - 

1. 	It is a tool of analysis for time functions. 
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2. It is a concept to describe theoretical 

considerations of time functions often in an 

easier form in the frequency domain. 

3. It is a tool for processing which is due to an 

existing fast discrete Fourier transform algo-

rithm (Cooley and Tuckey, 1965), 

which may be applied to do a fast convolution 

of two sampled functions. 

2.2 Sampling Theorem  

In this section a short introduction to the sampling theorem 

is given, which is essential to describe the connection between discrete 

and analog formulations of time functions (Papoulis, 1962 ). 	It can be 

expressed as follows: 

Let 
Ir°  

G(f) = 	g(t) e-2iftdt 
-co 

(2.2.1) 

be the Fourier transform of the analog function g(t) and 

+co 
-2Trifn 6(f) = 	g(n) e 

n=-oo 

the corresponding function of the sampled values 

(2.2.2) 

gt  = ( 	g(-2), g(-1), g(o), g(1), g(2), 	), 

then both transforms are connected with each other by the expression 

+co 
G(f) = 	G(f+n) 

n=-co 
(2.2.3) 

From (2.2.3) one may immediately conclude - 

1. If G(f) is confined to 	then 6(f) = G(f) for 

In this case no information gets lost due 

to sampling. 

2. If G(f)40 for Ifi>i, then (f)*G(f) for IfI<. and 

the functions G(f+n) (-mm4+0 overlap in expression 



-12- 

(2.2.3). 	This effect is known as aliasing. 	To 

prevent it, G(f) may be multiplied with rec (f) before 

sampling. This process is referred to as anti-aliasing. 

3. An analog function with the same Fourier transform for 

I f1-14 as the discrete function gt  is 

+co 

rgAt) = 	g(n) sinc (t-n) 	 (2.2.4) 
n=-co 

This equation is obtained by taking the inverse 

Fourier transform of G(f) rec (f). 	It is of great 

help in later chapters to associate sampled values 

with the continuous function 2(t). Note that Z(t*)=g(t*). 

2.3 	Time Series  

In this section the concept of discrete time series is 

presented. A discrete time series is a sequence of equidistant observations 

which are associated with the discrete time parameter t*. Without loss of 

generality one may take the spacing between each successive observation to 

be one unit of time and thus represent the time series as 

xt = x(t*) = ( 	x(-3), x(-2), x(-1), x(0), x(1) 0009 ) 

An M-channel time series (multichannel time series) is then represented by 

x
1
(-2), x

1
(-1), x

1
(0), x

1
(1), 

x2(-2), x2(-1), x2(0), x2(1), 

41,  

•••• 

xm(-2), xm(-1), xm(0), xm(1), 

The following definitions (Robinson, 	1967 	) are used in 

  

x (t*) 

x
2(t*) 

•••• 

• •• •, 

 

 

connection with discrete time series: 

1. If a time series is one-sided in the way that x(-1'*)=0 

for -t*4.0, the series is called physically realizable. 

2. If for a realizable time series the equation 
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2 x (tu)<Wholds, then the time series is called a wavelet. 
-t*=0 

00 
Av 

3. If 	x2  (tz;)(A), the time series is called an energy 

T/2 
4. If 	lim 1 <I.  x2(t*)<00, the time series is called 

Tla) T tic=-772. 

a power signal. 

2.4 Convolution  

Convolution is a mathematical concept, which describes the 

physical process of time domain filtering. When a wavelet y(t) passes 

through a linear time invariant filter, the output z(t) is known to be the 

convolution of the input wavelet y(t) with the unit impulse response of the 

• filter a(t). The expression for convolution in continuous form is: 

z(t) = S a('C) y(t—t) dtaa(t)* y(t)= y(t)* a(t) 
-00  

(2.4.1) 

For the discrete case, where the sampling interval is chosen to be one, 

the expression is: 

OD 

z(t*) = 	a(T*) y(t* -t*Y! a(t*)* y(t*):: y(t*)* a(t*) 	(2.4.2) 
T*=-CO 

This is a numerical process done in the time domain. One 

is therefore able to specify many mathematical filters in the computer which 

have no equivalent electrical circuits. Examples are the class of Wiener 

single and multichannel filters, all-pass phase shift filters, phase-free 

reject and band-pass filters. Other linear operations, such as static 

corrections and inter-polation are also examples of convolution. Thus 

convolution is an extremely powerful tool for processing seismic data. The 

concept is strongly related to stationary linear systems and linear ordinary 

differential equations with constant coefficients (Doetsch, 	1961; 

Cheng, 1959). The relation with linear systems is expressed in the fact that 

signal. 
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the convolution integral can be interpreted as a superposition integral 

(Lee, • 1960 , 	p. 323). 	There is also another strong connection 

between convolution and harmonic functions. This finds its expression in 

the convolution theorem. This theorem states that the Fourier transform 

of a convolution is the product of the Fourier transforms of the convolved 

functions. 

2.5 Z-Transform  

The Z-transform of a digital signal xt  is defined as 

,^* t* xtt) z 
t*=-oo 

(2.5.1) 

where z is supposed to be a complex variable (Jury, 1967 ). 	There 

are strong connections with the Laplace and Fourier transforms which are 

treated elsewhere. The importance of the Z-transform lies in the fact that 

many concepts related to digital functions find an easier formulation and 

explanation with this transform. So for instance may the Z-transform of 

the convolution of two time series x
t 
and y

t 
be simply expressed as the 

following product Z(z) = X(z) Y(z) where X(z) is the Z-transform of xt and 

Y(z) the Z-transform of yt. The Fourier transform of an energy signal is 

easily obtained by substituting z = e-nif  in the corresponding Z-transform. 

A further concept most easily defined in the Z-domain is the concept of 

minimum, mixed and maximum delay. A discrete wavelet is called minimum 

delay if all its roots are outside the unit circle in the Z-domain. It is 

called maximum delay if all its roots are inside and it is called mixed 

delay if there are roots both inside and outside the unit circle. 

Random Processes  

In Chapter 1V a multichannel filter is designed. The pro-

cedure for this is purely mathematical and therefore has to be based on 

mathematical concepts. On the other hand it is expected that these filters 

will also operate on real seismic traces. A mathematical concept which 
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seems to be a good approximation for actual seismic traces is the 

concept of a random stationary process. Random stationary processes will 

be used in this thesis as so-called 'stochastic models' for the design of 

optimum stacking filters. They can be defined for the continuous and 

discrete case. A short description of random stationary functions for the 

discrete case is given below. 

Random is every function xt' 
whose instantaneous value x(t*) 

cannot be determined precisely. It is however assumed that a range of 

possible values fx(t*)1 exists with an associated probability distribution 

each possible value. In the language of describing the likeliness of 

probability theory, one says 

The complete functiontxti is 

that for each t*, x(t) is a 
A 	

random variable. 

called a random process. One must bear in 

mind, that an observed record of a random process is merely one record of 

a whole infinite collection of possible records, which might have been 

observed. This collection of possible records is called an 'ensemble' and 

any particular record is called a 'realization' or 'member' of the process. 

When dealing with random processes, one describes the 'steady state' type 

of behaviour by the term - stationary. More precisely,txtlis called 

'completely stationary' if all the statistical properties oftxOldo not 

change with time. If the first and second moments of&(-11do not change 

with time, one says that txti is 'stationary up to the second order' or 

simply 'stationary'. 

The classical theory of spectral analysis which is used in 

this thesis, applies only to stationary random processes. This is still 

a severe restriction and it is doubtful whether any 'real-life' process 

possesses this property. In fact, stationarity is a mathematical 

idealisation and it is well known that every physical behaviour can only be 

described approximately with mathematical concepts. Therefore in practical 

applications the most one could hope for is that over a certain time interval 

on a seismogram the process would not depart 'too far' from stationarity for 
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the results of the analysis to be invalid. Statistical tests exist to 

verify the hypothesis of stationarity of seismograms (Bryan, 1967) and 

extensive tests showed that this assumption is in fact often justified on 

seismogram sections. Because the given design of digital filters is also 

based on stationarity, a satisfactory performance of these filters can be 

regarded as an indirect justification for the assumption. 

Often one refers to functions having all the attributes of 

random stationary functions, though known for all time, also as random 

functions. This is, strictly speaking, of course wrong. 	In actual fact, 

one always operates with these 'known random' functions, unless 'real time' 

processing is done. A recorded seismogram section is a typical example 

for such an assumed 'known random' function. The general harmonic analysis 

however, applies to both types of functions if the basic assumptions are the 

same. 

2.7 Basic functions of spectral analysis  

There is a number of important functions related to stationary 

randdm processes. Some of them are reviewed in this section. For any 

random process, one may form averages with respect to the ensemble of 

realizations [x(;'°)1 for a fixed integer valued time. 	Such averages are 

called ensemble averages and are denoted by the expectation symbol E. In 

particular the mean value m = Ei?c(t*)1 and the variance 6= E((x(t*)-m)2i of 

a stationary random process are independent of time -At*. Likewise, the 

autocorrelation coefficients Txx  ('t*) = EPIt* +"C*) x(N1 are independent 

of 

There is another type of average known as time average, in 

which the averaging process is carried out with respect to all values of 

time for a given realization. A stationary process is called ergodic if 

the ensemble and time averages are equal with probability one. As a result, 

the autocorrelation of an ergodic process may be expressed as the time average: 
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„ T 
Tim 1 cv) = T-)co T

T+1 	
x(.-#.te: +V) x(Ate') xx te;=-T 

(2.7.1) 

The crosscorrelation of two stationary processes{ xt  land 

{ yt  iis defined as 

(xy (V*) = Etx(;* +1c*) y(-7* )1 whose time average presentation is 

T 
lim 1 

'Pxy ('*) = Tloo 2T+1 	x(t* +V) y(*) 	(2.7.2) 
Tw=-T 

The Fourier transform of (2.7.1) is known as the power spectrum and the 

transform of (2.7.2) is called the crosspower spectrum. 

It can be shown that autocorrelation functions are symmetric 

and that all functions with the same amplitude spectrum have the same 

autocorrelation. It seems therefore clear that the autocorrelation is of 

utmost importance in the harmonic analysis of a random process where variety 

in waveform of the realizations is an inherent attribute. Crosscorrelations 

of random functions are used in communication theory in various ways. They 

are of utmost importance for the design of multichannel filters. 
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CHAPTER 111  

INTRODUCTION TO MULTICHANNEL FILTER THEORY 

A seismogram generally consists of more than one trace. 

Events which may be followed from trace to trace and record to record, 

usually have more value to the seismic interpreter and hence are 

statistically more important than events which appear on only one trace. A 

function describing this inter-relation from trace to trace is, for instance, 

the crosscorrelation of two traces. All crosscorrelations between individual 

traces are incorporated in the autocorrelation matrix of a multichannel 

system. This matrix is a basic element for the design of a multichannel 

filter. Because a multichannel filter uses more information of the input 

traces, one should expect that it generally works better than individually 

designed filters for each trace. 	It is however also logical that if there 

are 110 essential crosscorrelations among the traces, then there is hardly 

any use in applying a multichannel filter. The geophysicist is therefore 

interested in characteristics and performance of these filters for individual 

cases which are related to practical problems. 

The theory of multichannel stacking filters can be presented 

in analog form (Wiener, 1949 ) and in digital form (Robinson, 1967 b ) 

Optimum least squares filters can be designed as realizable and non-realizable 

filters. The analog version of the normal equations presented in the 

geophysical literature (Meyerhoff, 1966; Foster, et al., 1968; Davies ,et al. 

1968; Burg,1964 ) is the one which will usually specify physically non-

realizable analog filters. A short introduction to this special version is 

given below. In more detail the digital form is treated which is actually 

used for the computation of filters. 
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3.1 'The theory of optimum multichannel stacking filters in continuous form  

the 

x1(t) 	 

x2(0 	 

Let N random stationary ergodic functions xi(t),(i=1,..,N) be 

input to the multichannel stacking filter as shown in figure 3.1.1. 

a (t) 

a (t) 

y(t) 

Figure 3.1.1 Stacking filter 

z(t) and y(t) are stationary processes representing the desired and actual 

output of the filter. The N linear filters ai(t) (-co< t<00), which operate 

on the input traces xi(t) to minimize 

= lim 1 T 
(z (t) - y(t))

2 
dt 

T-w2T -T 

where 

equations: 

a. (t)* 
1=3. 1 1X3.

.x. 3 

N 
y(t) = 	a.(t)* xi(t) 

1=1 1  
satisfy the set of simultaneous 

co 1 zx.  (t), (J=1,..,N) 	(3.1.1) 

lim 1 
__-c x.(t+t)x.(t) dt x.x.(t) = 

3 	T44,02T -T 1  

Tz   (Pz x.(') 
= lim 1 	(t+t)x.(t) dt 

T4002T -T 

(3.1.2) 

(3.1.3) 

The proof is usually given by making use of concepts from the theory of 

functions (Wiener, 1949; Robinson, 1962). If equations (3.1.1) are to be 

used on multichannel traces right away, the auto- and crosscorrelations 

have to be necessarily estimated from finite length record sections. To do 

the best estimation is a problem in its own and is extensively treated by 

Blackman and Tuckey (1968). 

As the treatment in chapter IV will show, equations (3.1.1) 

are however used differently in this thesis. They can be looked upon as the 

basic equations for a further theoretical design procedure. 
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In the frequency domain equations (3.1.1) become 

N 
A.(f)1P 	(f) x.x. 

i=1 	3 
= 

 

zx. (f) 	(j=1,....,N) 	(3.1.5) 
3 

where the hermitian matrix T? 	(f) is called the coherency matrix of 
x.x. 3 

the input traces. The inverse Fourier transform of this matrix is the 

autocorrelation matrix. 	A special case for equation (3.1.5) is the single 

channel case where for only one input trace xi (t) = x(t) the optimum 

filter is 

(3.1.6) 
= Cx(f)/Cx(f) 

Another very important case which is generally treated in the geophysical 

literature is the following one where the stochastic model of the seismic 

traces is assumed to have the presentation 

s.(t) 	(t) 	11.(t) 1 	1 	1 	1 (i=1,....,N) ; z(t)=s(t), 	(3.1.7) 

and signals si(t), correlated noise rift) and uncorrelated noise ni(t) 

satisfy the conditions 

~xixj('C) = (Ps s 
3 
CO+ (Pr 1 r ('r)+ (119n 1 n 3:('r) 6 . . , 	, =1,....,N) 	(3.1.8) 

yzxier) =Tssi(T), 	(j=1,....,N) 	 (3.1.9) 

This means that signals and noise are uncorrelated with each other. The 

normal equations under this condition become in the time domain 

a.M)24)s.s.(C) + (Pr.r.M) + (17n.n.(t)Siq =pss.C17), 	(3.1.10) 
1=1 1 	1 3 	3 	I 3 3 ('J=1 ..,N) 

or in the frequency domain 

N 	rr 
Ai(f)C.s.(f) +r.r.(f)+ITn.n.3 (f)Siji ='1ss.3 (1 E),(j=1,..,N) (3.1.11) i=1 	13 	1 3 	a.  

By choosing the minimization criterion 
T 	N 	T 

7 liM 1 
c (s(t)4 ai(t)*s.(t))21c 	a.(t)*r.(t)) 4 

2 ,1 ( a.(t)*n(t))2 
I= T403 2T -T 	i=1 	1 	3.. 	I -T i=1 1 -T 

one would again obtain (3.1.10), however with the weighted correlation 

functions 1 i (100r.r. 	- (to and VW .. (t). (See also section 3.2.5.) 
p 

1 j 	1 j 
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3.2 The theory of multichannel filters in discrete form 

The introduction to the theory of digital multichannel 

filters in this thesis is given in more detail because it is the theory 

which is most adapted to actual digital computer processing. To make this 

treatment more general, the theory for the N-input and M-output channel case 

is presented. 

3.2.1 Introduction to the theory of matrix polynomials  

For the sake of understanding the basic concepts 

of the theory of discrete multichannel filters a very short introduction to 

the most important properties of matrix polynomials is given. They are 

also called polynomial matrices or A,matrices (Lambda-matrices). The 

theory of matrix polynomials is a logical extension of the theory of constant 

matrices and it is the basis for the theory of discrete multichannel filters. 

A notrixpolynoillialisclefinedasA(z)=-B-zi where z denotes an 
i=0 

indeterminate which is assumed to be commutative with itself and the constant 

M x N matrices, a.(i=0,..m). For a constant value of z a matrix polynomial 

reduces to a constant matrix. For operations with A-matrices it is therefore 

demanded that the usual matrix algebra applies. Regarding a A-matrix as 

a polynomial with matrix coefficients leads to the name matrix polynomial. 

Regarding it as a matrix with polynomial entries leads to the name polynomial 

matrix. 

The product of two polynomial matrices A(z) and B(z), is not 

necessarily commutative. 	It is a polynomial matrix E(z):1(z) 13(z), whose 

coefficients are obtained by convolving the coefficients of A(z) and 13(z). 

Further and detailed treatment of this theory is given in various works 

as for instance: Frazer, Duncan, Collar, 1963; Gantmacher, 1959. 

3.2.2 Basic concepts of a digital multichannel filter  

A box with N inputs and M outputs is shown in figure 3.2.2.1. 
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FIGURE 3.2.2.1 Multichannel filter. 

Exciting input channel 1 with a spike. (1, 0, .... ), a 

multichannel response on all M outputs is expected whose Z-transforms are 

All (z), A21  (z), 	, Am, (z). 

A11 
(z) is the Z-transform of the response on output channel 

(z) on output channel 2, etc. Putting a spike on input channel K 
1, A21 

will result again in M different outputs AlK(z), 	, AmK(z). The 

behaviourofthe box is fwaydescribedbythemxNresponsesAij (z) ,(i=1,.M; 

j=1,.,N). Such a box is called a digital multichannel filter. To keep the 

theory within reasonable limits, it is demanded that the following 

mathematical conditions are fulfilled: 

1. The multichannel filter has to be time invariant. 

(The application of the same input spikes at different 

times results in the same outputs). 

2. The responses of the multichannel filter have to be 

wavelets. 

3. The multichannel filter has to be linear. This means: 

(a) Applying more spikes on different input channels 

or at different times or both results in the super- 

position of the corresponding output wavelets. 

(b) Scaling of an input spike results in the same 

scaling of the output wavelets. 

Condition 3 leads to the superposition principle. This principle states 

that, regarding each input trace as a sequence of differently scaled spikes 

at subsequent times, the overall output is the superposition of all the 
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scaled corresponding stimulus responses belonging to each individual spike. 

It describes in single channel filter theory the fact that the filter 

output can be expressed as a convolution of the input with the stimulus 

response. For a multichannel filter the principle demands that the 

multichannel output is connected with the multichannel input by the follow- 

ing matrix multiplication. 

A
11
(z) A

12
(z) 	.... A

1N 
 (z) X

1
(z) Y

1
(z) 

X
2
(z) Y

2
(z) 

AM1(z) 	AMN 
 (z) _ XNCz)  (3.2.2.1) 

Or in short, A(z) X(z) = Y(z) where X(z) is the Z-transform of the multi-

channel input and Y(z) the Z-transform of the multichannel output. The 

Z-transform of a multichannel filter therefore has the mathematical 

representation of a polynomial matrix. It may also be written in the 

form of a matrix polynomial 
• = 
A(z) = a

o1 m
zm 	 (3.2.2.2) 

Each coefficient is a constant M x N matrix. Multichannel convolution is 

expressed in the time domain in concise form as: 

(3.2.2.3) a
o 
x
t 
+ a

l
x
t -1 

+ 	= v + a
m
x
t-m 't 

y
1
(t*) 

where yt  = and x
t 

= 

xN(t*) ym(t*) 

A polynomial matrix with only one entry is the special case of a single 

channel filter. When all the entries of an N x N polynomial matrix are 

zero except those on the main diagonal, the matrix describes the application 

of N filters to N traces. It is shown below how even two-dimensional filters 

can be included as special cases in the theory of multichannel filters. 
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Having two two-dimensional operators a.. ,(i=1,.n;k=1,.m) and 13 

b..,(i=1,..,k;j=1,.., 1) and defining the two functions 13 

n m 
A(t,y) = 	a..t 1yj-1 

i=1 j=1 13  

B(t,y) = 	b..ti-1yj-1 

i=1 3=1 13  

(3.2.2.4) 

(3.2.2.5) 

the coefficients of the function C(t,y) = A(t,y). B(t,y) are called the 

Figure 3.2.2.4 

To give an example the 2 x 2 operator of figure 3.2.2.2 was convolved with 

the 2 x 2 operator of figure 3.2.2.3. The result is shown in figure 

3.2.2.4. This operation can be formulated as a multichannel filter process. 

For this purpose a..(i,j = 1,2) is regarded as two single channel filters 13 

and b..(i,j = 1,2) as two input time series of length two. 	C.. are then 13 	 13 

three output time series of length three. Taking the Z-transforms 

A
1 
 (z)=a

11+a21z 	B1  (z)=b11
+b
21
z  

A2(z)=a12+a22z 	B
2
(z)=b

12+b22z  

and letting the Z-transforms of the three output traces be 

C1 (z)=a11b11+(a21b11+a11b21)z+a  1b21z
2 

C2(z)=(a11 b12 +a12 b11. )+(a22  b11 +a21 b12 +a12 b21 +a11 b22 )z+(a21b22+a22b21)z
2 

C
3(z)=a b +(a b +a b )z+a b z

2 
12 12 	22 12 12 22 	22 22 

t 
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it may be seen that two-dimensional convolution for the above example can 

be written as 

     

     

A1(z) 0 0 

A2(z) A1(z) 	0 

0 	A2(z) A1(z) 

 

B1(z) 

B2(z) 

0 

 

C1(z) 

C2(z) 

C3(z) 

   

   

     

For the general case the Z-transforms are 

A.(z) =a. zi-1 	(j=1,...,m) 	(3.2.2.6) 
1J
.   

k 
B.(z) = 	b..z

1-1 
 . 

1=1 

With these terms the following (1 + m) 

(j=1,...;1) 

x (1 + m) matrix 

(3.2.2.7) 

A1(z) 0 0 

A2(z) A1(z) 0 

A3(z) A2(z) A1(z) 0 0 

(3.2.2.8) 
A(z) = Am(z) . . . 

Am(z) 
0 0 

A1(z) 0 

0 0 0 A
m
(z) A

2
(z) A1(z) 

and the (m + I) - length vector 

BT(z) = (B1(z), B2(z), 	B1(z) ....0) is defined. 	It can be easily 

verified that the matrix product A(z) B(z) = C(z), which now corresponds 

to a multichannel process, possesses the coefficients of the two-dimensional 

convolution. Note that BT(z) is the transpose of B(z). 	In particular, 

Whell N input traces B.(z) have to be convolved with an N-trace filter A1(z) 

then 2N-1 output traces result. Of special importance in this case is 
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then, as shown in Chapter Vl the centre trace of the output 

N 
CN(z) = 	Ai(z)3 	(z) 

i=1 	N+1-i 
(3.2.2.9) 

This description of two-dimensional convolution in multichannel filter terms 

can be easily extended to three and higher dimensional convolution. Two-

dimensional convolution can be done by taking the discrete two-dimensional 

Fourier transforms of the input traces and the filter, multiplying both and 

taking again the inverse transform of the product (See Chapter V1). 

3.2.3 Auto- and crosscorrelation matrix of a multichannel time series  

A p channel stochastic process may be presented by the column 

X1(  vector x
t = 

x (t*) 

1 

whereeachelementx.(t*) denotes a single channel process. The multi-

channel autocorrelation coefficient for time shift s is given by the p xp 

matrix. 

(P11(s)  4)12(s)  • • • (Plp(s)  

og (s) =t
is  = Etxttst 	

= 
xx  

L(s ) 	 Ppp" 

klij 	xx (0=q0 (s).=q9 c.(;*  + s) x.(6*)1 .. 
] 

is the single-channel auto- 

correlation for i=j or the dual channel crosscorrelation for itj. If 

xY 
(s) = E (xt+sT 

t
1 y 	correspondingly is called a crosscorrelation matrix 
) 

coefficient for time shift s. Under the assumption that correlation functions 

are of finite length 2n + 1, the Z-transform of a multichannel autocorrelation 

matrix can be written as 
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n 	 n 
4)11(i)zi 	4)1p(i)zi  i=-n 	i=-n 

(3.2.3.1) 

zi  4)PP
(i) zi  

i=-n 

n may be any integer value between one and infinity. This is an extended 

	

symmetric A-matrix (Robinson, 1967 ) 	Due to this fact, it is 

sufficient to know only the one-sided autocorrelation matrix, where the 

summation is from i=0 to i=n. 

3.2.4 Design of a digital multichannel - Wiener filter 

It was shown that multichannel convolution can be expressed 

as yt 
	a.xt- , where x

t is the multichannel input, 	the multichannel i i=0 

output and ai(i=0,...m) are constant matrices. One would like to know how 

to determine the numerical values of a. in order to optimize the specific 

problem, where a known xt  has to be transformed into a desired output,zt. 

Below a short review of the solution to this problem 

(Robinson, 	1967 ) is given. The solution rests on three main assumptions: 

1. The time series representing the input xt  and the - 

output z
t are random stationary functions. 

2. The approximation criterion is taken in such a way 

as to minimize the trace of the mean-square-error 

matrix between the desired output zt  and the actual 

output yt. This trace is given by 

I = tr E ((zt-yt)(zt-yt)Ti 

where (z
t
-y
t
)
T 

is the transpose of (z
t-yt

). 

3. The filter is time invariant, physically realizable 

and stable. 
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3.2.5 Derivation of the multichannel normal ecLuations  

An (m+1) length multichannel filter is chosen where the 

coefficients are M x N matrices 

a11(s) a12  (s) a1N  (s) 

as = a(s) 	= (s=0,...,m) (3.2.5.1) 

a
M1
(s) aM2 (s) 	.. aMN (s) 

The input time series are given by the N x 1 vector valued time series 

xl(t
xt 	. = xU5 = 

(t1 
N(t*) and the desired output by the (M x 1) vector - valued 

The actual output is given by the matrix equation 
ytuti  +a,xt_i+.4.+amxt-m 

The error between the desired output and actual output is then 

et=zt-yt=zt-(a0xt+...+amxt-m) 

Defining the mean-square error-matrix by 

(3.2.5.2) 

E te1  2(t) E te1  (t)e2  (t)i 	E 	Memel 

z ( 
time series z = z(t)

4 
 = 
l, 

t 	

1 

zNUt) • 

(3.2.5.3) 

E tem(t)ei(t)1 	 E (_ 
m
2,_,1 

l' 

the trace of this matrix is then the sum of the diagonal entries 

I = tr E te
t
et
T
1= E {e1  2(t)1 + Ete2

2
(t)i + 	+ E te 2(t)i 	(3.2.5.4) 

This means in other words, the sum of the squared errors resulting on all 

outputs-is going to be minimized. Because the error 

m 
 

m 	 m 
 et = z -yt = zt- 	

T 	 T 

S
asxt-s and etet =(z

t 	
a
s
x
t-s

)(z
t 	

asxt-s) the s=0 	s=0 

mean-square-error matrix becomes 

E te
t
e
t 
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El
t
e
tTi= E[z z t 	Etz

t xt-r 
T 	aT  - 	a s  Etx zT  r 	t-s t r=0 	s=0 

m m 
+ ,( a Efx x 	a r  T s 	t-s t-r r=0 s=0 

This can be written by making use of the definition of the auto- and 

crosscorrelation matrix 

E 	
t
x xT 	GO (r-s) t-s t-r 	xx 

E kt-s.T_ri= Yzx(r-s) 

as 	Et e 
t t 

= E[z
t tT  z- 

0Tzx(r)ar r= 

 

asTxz(-s )  s=0 

m m 
• ( 	a 	r-s)a 

r=0 s=0 s 1 xx(  

Setting the partial derivatives of the trace I = tr Eet 
t  eTi in respect to 

the (m+l)xMxN filter coefficients equal to zero results in the set of 

simultaneous equations 

aokPxx(0 ),-a14?xx( -1)-, 	iem.49xx(-m) = 49  zx(0)  

aolfxx(1 	xx )+alTxx(0)  + 	+am /9 (1-m)  = Yzx(1)  
(3.2.5.5) 

aotpxx(m)+ailp (m-1)+ .... +a TI (0) = 	- (m) 
m xx 	zx 

These are the discrete multichannel normal equations. All a
s(s=0,m) are 

M x N matrices, all 0 xx 	 t 
(s)(s=-m,m) are N x N matrices and ante°, 

zx(s)(s=0,m) 

are M x N matrices. 

In concise form equations (3.2.55) may be written as 

. a r T WI xx  (s-r) = 0 zx  (s), (s=0,...,m) r=0 

As already mentioned, Wiggins and Robinson (1965) presented a recursive 
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solution of these equations which is generally available. With the help of 

the computed filter coefficients the minimum value of the trace of the mean-

square-error matrix is 

m 
Irvin = trOzz (0) - 	(r)a

T 
i 	izx 	r 

r=0 
(3.2.5.6) 

For the design of a multichannel Wiener-filter the only 

elements necessary are therefore the one-sided auto- and crosscorrelation 

matrices. 

In case a more detailed assumption is made about the input 

and output, a least squares error criterion may be chosen, which leads to 

slightly different normal equations. Let x, = st+rt+nt  , where st  is a 

multichannel process of N signals and rt,nt  are multichannel processes 

representing correlated and uncorrelated noise. It is also assumed that 

the signals s are not correlated with the noise and that the desired N-trace 

output array is chosen as st. The error vector (3.2.5.2) may now be 

decomposed into the three components 

e
t=st 	asst-s

+r
t-s

+n
t-s) 0 

et=
s
et+

ret+
n
et 

where = 	as
st-s et st s=0 

m 

	

r
et 	

a
s
rt-s 

s=0 

ne -4
0 

 n 

	

t 	s t-s 
s= 

Instead of taking (3.2.5.4) for the computation of the normal equations, one 

may also choose 

13y = trE (setseTt  
r r 

trE 	et et
T  

+ v  trE
ne 

n 
t t 

(3.2.5.7) 
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thus giving different weights to the errors caused by the signal and noise 

components. Setting the partial derivatives of Iv  with respect to all 

filter coefficients equal to zero leads to the normal equations 

arp  
0 	

ss(s-0+- terr(s-r)+  vYnn(s-r)  r= 
=k10ss  (s),(s=0,..,m) (3.2.5.8) 

  

wheretp
ss  is the N x N autocorrelation matrix of the signal vector st 

and i  

the N x N autocorrelation matrices of the noise vectors. Trr'  In 

It is a known fact that the assignment of a weighting factor 

to the autocorrelation matrix of the correlated noise (Galbraith and 

Wiggins, 	1968 ) may lead to considerable improvement in the signal to 

correlated noise ratio. The above treatment shows that such a weighting 

factor can be already included in the least squares criterion which for a 

big value of 4 exaggerates the importance of correlated noise in the design. 

Computational experiments are done in later chapters which show the effect 

of C and V on the filtering process. 
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3.3 Exact and approximate solutions of multichannel normal equations  

In the previous two sections normal equations for optimum 

multichannel stacking filters for the discrete (3.2.5.5) and analog case 

(3.1.1) were presented. 	Complete analog solutions are generally not 

available while discrete solutions of (3.2.5.5) are easily obtained with 

the fast multichannel - Levinson algorithm. 

Throughout the rest of this work normal equations are 

discussed in analog form. Below it is shown under which conditions the 

discrete algorithm can be applied to give (at least approximate) solutions 

for the analog case. The analog normal equations (3.1.5) can be written 

in concise form as: 

N 

1 

 A 

3  j 
A(f)C/..

13(f) = 111.(f), 	(i=1,..,N) 	(3.3.1) 
=  

They generally specify two-sided continuous responses where Aj(f)(j=1,...,N) 

covers the range IfF: DO. These solutions can never be obtained with the 

discrete normal equations. Discrete solutions are always physically 

realizable and have a spectrum which is entirely defined in the range 

If (3.3.1) has to be solved with the discrete algorithm, one has to make 

sure, first of all, that the equations have the form 

N 
rec(f) 	 3 A.(f) (P

1
..(f) 	(i=1,..,N) rec (f), 	(3.3.2) 

j=1 3  

so that their solutions are also confined to the range 
If  14. 	

The• 

solutions of (3.3.1) and (3.3.2) are connected with each other by the 

following formula 

ti 
2(f) = dA.(f) rec (f), 	(j=1,..,N) 	(3.3.3) 

This is self explanatory, because solutions of (3.3.1) and (3.3.2.) for a 

giverifclonotdeperidollotherfrequenciesandinPal4ticular") cannot 

depend on 	Solutions of (3.3.2.) may be physically not realizable. 

There is the possibility that by multiplying the right side of (3.3.2) with 

I f I < 



cipl
xx 

 (v= 
`gam 

(Rxm.=[(Pim 

	

(ft-) 	 ,m) 

TNN(T)  
	420J 

and 

-21iftd e 	where td ) 0 
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rec(f) 	A.(f) 	(f) 
J.1 	-13 

 

-211-ift d 	. 
(f)rec(f) e 	,(1=1,.,N) 

 

 

(3.3.4) 

   

-2miftd 
one would obtain solutions A.(f) = A.(f) e 	or a.(t).--31(t-td  ),(j=1,.,N) 3 	 3 	3  

which are shifted into positive times. There is always a value for td , such 

that the remaining negative part of the time responses for (3.3.4) is 

negligible. If it is therefore assumed, that the time domain solutions 

a.(t), (j=1,..,N) of (3.3.4) can be neglected for t< 0 (which is justified 

for large td ), then they fulfil the same properties as the solutions of 

the discrete normal equations (3.2.5.5). Solutions for (3.3.4) were therefore 

computed as follows: 

The auto- and crosscorrelations of (3.3.4) 

400 

(Rift.) =Srec(f)_ij(f) e27 	df 	(3.3.5) ifr 

yier) = :sec(f) 1Di(f)e 	e 	df 	(3.3.6) 
-2Miftd 

2mifr 

were sampled for 061,71-m and with 

the normal equations 
Sm 

a (1) 
r ixx('-r) = (Pzx(r)  

0 

were solved with the fast multichannel Levinson algorithm. 

The discrete solutions depend very much on the values m and td. 

It is immediately clear that m and td  must tend towards infinity, if the 

obtained discrete solutions should represent complete continuous solutions. 

These practically unobtainable solutions will be refered to as the "exact" 

solutions. 
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It is however possible to compute finite length discrete 

filterswithafinitenumberof0 
3_
..(V)and01.(T*) and a finite positive 
3 	13 

td. 	The obtained discrete filters of various possible length m and a given 

td 

a.m(t*) (05t*Lm) 
	

(j=1,...,N) 	(3.3.7) 

are called the 'approximate' discrete solutions. An approximate analog 

solution for (3.3.4) is then 

a.m(t) = 	a.m  (1) sinc (t-i), (j=1,..,N) 
3 	i=0 3  

(3.3.8 ) 

Among the 'approximate' solutions one is only interested in the best 

approximations to the 'exact' solution for the shortest possible filter 

length. The least squares error (3.2.5.6) is a good criterion to give an 

upper limit for the filter length (Galbraith and Wiggins, 1968), from where 

onwards further convergence becomes very slow. It is also a criterion for 

the optimal choice of the value td  . For all solved problems the filters 

were never longer than thirty samples and the delay td  was always about half 

the filter length. If for instance the solutions for the analog normal 

equations are known to be symmetric to the time origin, then td  should be 

chosen as half the filter length. This is generally done in later chapters. 

In this way discrete symmetric operators of finite length are obtained. 

The N realizable time responses obtained with (3.2.5.5) for a positive delay 

td  can be shifted into negative time by the same amound td. Performing 

subsequently the stacking filter process with this non realizable stacking 

filter will approximate the zero delay desired output. 
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CHAPTER 1V 

MULTICHANNEL STACKING FILTERS 

The concept of multichannel stacking filters is already well 

established and its superiority over single channel filter operations in 

certain processing techniques is known. 	The normal equations (3.2.5.5) 

are used for the computation of stacking filters in basically three 

different ways 

1. Specifying idealized input and output data 

to obtain the correlation matrices. 

2. Presetting the correlation matrices due to 

specific mathematical considerations. 

3. Straightforward application to real seismic 

data. 

The first two approaches are deterministic, and the third 

one is a practical approach. The first approach is the simplest and is 

hardly treated in the literature. It has the disadvantage that computed 

filters are very sensitive to changes in the input traces from the chosen 

model. 

The thiid approach is known as multichannel deconvolution. 

It is a straightforward application in the way that the autocorrelation 

matrix is computed from a section of actual field data. The desired 

output is chosen as a spike at zero position. Thus the one-sided cross- 

correlations between the desired output and each input trace also become 

spikes at zero position. A multichannel deconvolution filter therefore is 

entirely specified by the autocorrelation matrix of the traces. This special 

process which can be regarded as the corresponding process for single 

channel deconvolution, shows generally little improvement (Davies and 

Mercado, 1968) over single channel processes. 
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The second approach is the most popular and is also used in 

this thesis. The main advantage is that with this design procedure, many 

filters can be computed which would be impossible to obtain with other 

techniques. 	For instance, this approach leads to ghost suppression 

filters (Schneider, et. al., 1964), suboptimum velocity filters (Foster, 

Sengbush, Watson, 1964), optimum multichannel velocity filters (Sengbush, 

Foster, 1968) and optimum horizontal stackfilters (Galbraith and Wiggins, 

1968). 	The design procedure is basically the same in all cases. 	It 

starts by specifying an analog stochastic model. 

x.(t) := s.(t) + r.(t) + n.(t), (i=1,..,N) 
1 	1 

(4.1) 

where each trace x.(t) consists of a signal si(t), correlated noise r.(t) 

and uncorrelated noise n.(t). A varied form of this assumption is (Foster, 

Sengbush, 1968) 

x.1(t) := s(
t-V.) + 	+ n.(t) , 

1 
(4.2) 

'where signals and correlated noise are expected to have the same wave form 

on each trace. 	In the case of Common Depth Point (CDP) data (Mayne, 1965) 

the model may even be assumed to be 

x.(t) „ s(t) + r(t-E) 	n.(t), (1=1,..,N) 	(4.3) 
1 	1 	1 

The specification of models in analog fort is necessary, because the 

relativearrival.timesr.arldfor the signals and correlated noise do not 

necessarily fall on sample pointS. 	and 2'i  are assumed as 

random variables for which probability density functions are chosen which 

seem to fit various filtering problems best. This ensures that the filters 

will be applicable to a broad class of input traces with similar statistical 

properties in their arrival times. With the probability density functions, 

finally expectation values for the correlation functions of the traces are 

computed. Apart from uncertainties in the arrivals of signals and 

correlated noise, many other uncertainties may be incorporated into this 

design procedure. 
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The necessary compromise between simplicity of a model and the 

reality should always be oriented on the actual knowledge about traces. 

Wrong assumptions about input traces may have a strong negative influence 

on the filtering process. 	If much is known about given seismic traces, 

the statistical changes assumed for the model should be confined to small 

ranges. The performance of a more specifically designed filter will then 

be better than one of a very general filter where broader assumptions about 

the statistics of traces were included. The design of a multichannel 

stacking filter will therefore ultimately, as in the present case,make use of 

many 	design parameters. They make it possible to tailor filters for 

many individual purposes. These design parameters are not equally important. 

Their importance is revealed by doing computational experiments with the 

filters. They often influence filter characteristics in a very logical 

way and there exists a number of general rules about them. Some of the 

rules are presented in due course. 

The following stochastic model is given in this work 

xi(t) = s (t-'.) + r (t-'1CI) + ni(t),(i=1,..,N) 
	(4.4) 

Initially it is assumed that signals and correlated noise differ only in move- 

outfromtracetotrace.T%and 	are specially chosen random 

variables. 	As desired output z(t) = s (t-td) is taken, where s (t) is 

-the common signal in the input traces . 	t
d 
de
s
cribes various possible 

delays of the output signal. The value of td' 
where the expected error 

(3.2.5.6) is minimum, is known as optimum delay. 

Generally it is possible to design a N-input M-output channel 

filter, where all M desired outputs are s (t). Computational experiments 

(Galbraith and Wiggins, 1968) showed however, that for optimum delay of the 

specified output, all M actual output traces give nearly the same results. 

Because the design of a single channel output filter is computationally 

more efficient, there seems to be enough justification for only concentrating 

on the multichannel stacking filter case. 
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4.1 Design of a general purpose multichannel stacking filter  

In the following treatment the design of the general class 

of stacking filters is presented which is investigated in this thesis. 

Two- and three-dimensional velocity filters, polarisation filters and 

multichannel stacking filters for differential normal moveouts 

are included in the given derivation. A certain value of this work may 

therefore be found in the fact that all these filters can be treated from 

a general point of view. Characteristics and rules observed with one 

special type can usually be generalized for the whole class of filters. 

Derivation of the autocorrelation matrix 

CHANNEL .r 

CHANNEL j 

CHANNEL 
t= 0 

FIGURE 4.1.1 Time window. 

N seismic channels are given (figure 4.1.1 shows three of 

these). It is important to notice that there are no restrictions as to where 

these channels have been recorded. They need not necessarily have been 

recorded in sequence along a line with equidistant recording positions. 

Positions may also be arbitrarily distributed in three-dimensional space. 

The signal s.(t) on trace i may arrive at the relative timepC. and the 

signal s.(t) on trace j at the relative time CC... 	The autocorrelation 
3 

function of each trace is then Cgs s  (2') and independent ofc4i, while the 

crosscorrelation between s.(t) and s.(t) is given by 

fsisi(T)=g1101012.1 	
s (t-of)s (t-x.-T)dt 	(4.1.1) 

-T  

=Fs s ('t+0;-0,1) 	 (4.1.2) 

and depends on the relative shift 0e.-M. 
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Itisassumedthattherelativearrivaltimescx.ando4.am  random 
3 

variables defined as follows: 

ocr  = tr  + 4tr/2 +12 + ?r 

= ti  + dti/2 +ryetiMtr+ 
3 

wheretj 	.d andt , (j=1,..,N) describe two limiting curves in figure 4.1.1. 

and Q . are independent random variables, with the following arbitrarily 

chosen probability density functions 

po(12) = At1  rec (#7/43tr) 
" r 

= 
1

c

tr.ec (11j/tc) t 
 

(4.1.5) 

(j = 1,...,N) 	(4.1.6) 

Channel r is an arbitrarily chosen reference trace. 

t
c 
will be referred to as chatter. The meaning of 12,3j,81, becomes clear 

at once by discussing equations (4.1.3) and (4.1.4) for the special cases 

where one of the variables 7z or ?j  equals zero. The random variable 12 

forces the arrival times to fall on non-overlapping curves, which divide 

dt.
3 
 on each trace in the same ratio, while V. permits a certain 

u3 

deviation of these arrivals from the fixed family of curves. Equation 

(4.1.2) can now be written as 

hp • 	fr? f krc+-t.+4t./2+40-t-./6,t +9. --t. - dt./2 s.s. 	s s 	3 	3 	3 	r 03 1 	1  1 
(4.1.7) 

or with the help of the abbreviations 

t.. = t.-t.+ (4t. — cat.)/2 13 3 1 	1 

,1j '4tJ-4ti 

= 12(4-ti l4tr-3.) 

as 

(4.1.8) 
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= cps 	tij i—tzA  ÷y; 	 ii ) 
	

(4.1.9) 

This becomes in the frequency domain the crosspower spectrum 

  

2rit..f 2Triif 21Ti/ f -2110 f 
(f )e 	13  e 	e 	vj  e 	

ol 

 

f = 0SSS. 1 ] 

  

The expectation of this is 

 

+0+0+m 

EiOs.s. 3
1 (f)1 = 	

-- .cP1tP(g1)P(X 

(4.1.10) 

where the probability density p1(') is related to p0(10 by 

4=1  
= 	

1  
P 

'dY4Itr -'I I Ot j/41tr —31 

Due to the symmetry of all probability density functions and the statistical 

independence of the random variables, equation (4.1.10) can be written as a 

product including three Fourier integrals 

E Nii(f)1 = Ej 
271ft.. 

s.s .(f )1 = (Ps s (f )eIl(f),I2(f)-13(f) 	(4.1.11) 
1 3 

where 1(f) 

2(f) 

3(f) 

= 

=(il)e 

= 2(f) 

+ 00 

( 

) 	P‘11)  

00 

+02 

j 

iirifdayi  = sinc ("cif) 

dg =sinc 	tcf) 1 

so that 

ER. .(f)i= sinc2 	1 (tf)sincer..f)e 	3 
(f) 	(4.1.12) 13 	 s s  

This becomes in the time domain the following convolution integral 

E E . . ( L-) 
113 	

1  

It • 
rec 	*1 reTlyl- rec(-11* q) ,s s t t 	tc tc 	c c 

(4.1.13) 



Forthespecialassumption.thats.
1
(t) and s.Ct) are broad band signals 

(12s s ('t") = sinc('r) or qss5 (f)=rec (f) 

the expectation of the crosspower spectrum becomes 

2Tift.. 

13 .(f)i = rec(f) sinc2(tf)sinc(r..f) e 	13  (4.1.14) 1 ] 

The time domain presentation can be written as 

=r1  sinc2(tcf)sinca-lif)cos2Wti-tii)df 
2 

(4.1.15) 

This integral can be further simplified as shown in appendix 1 and easily 

computed on a_digital computer. The autocorrelation functions under the 

special broad band condition turn out to be 

E {(4o..('t-) }  = sinc(t) 	 (4.1.16) 

Derivation of the crosscorrelation matrix  

The crosscorrelation between the desired output signal 

s
0  (t) = s (t-td'  

) and the input signal on trace j can be written as 

0 	 In 
lim 1 t s.(t)=Tn) 2T +Ts  (t-t 	(t-04.-dt ]  

-T 

where &. is given in (4.1.4), so that 

A.. 
0 
s 	(T)= s . (t+t +4t /2+10 t.Mt r  +g. -td  ) 

Using the following abbreviations 

ft.=t.+45t./2-t 
3 	3 	d 

(4.1.17) 

(4.1.18) 

4t. 

rtz= etr  t 
A 	I 

P2T = At 
zit • 

 



tl reccry. 1 

' 0 3 	
tc, 

rec(. 	

) 

T+t.+4t./2-t 

I 4t - 1 (Ps (t) 	(4.1.19) 
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one gets for the expectation of this expression 

This has for the assumption that s0(t) and.
3
(t) is broad band the Fourier 

transform 

EIS s. 	3
(tcf) sinc 	 e 	3 	(4.1.20) 

0 3 

By making use of the inverse Fourier transform the time domain presentation 

can also be written as 

EKT 	
I 

)1 = 	sinc(tcf) sinc (4tjf) cos 27o fr+1.1) df (4.1.21) 

This integral can be further simplified and easily programmed on a digital 

computer as shown in appendix 1. 

From a mathematical point of view, correlated noise is 

expressed in the same way as signals. The expectation of the autocorrelation 

matrix for the correlated noise is therefore computed exactly in the same 

way as the autocorrelation matrix for the signals, only for a different 

moveout window. If more signal- and correlated noise families are known to 

be present in the input traces which are uncorrelated to each other and fall 

into different moveout windows, then the total autocorrelation matrix of the 

traces is the sum of the autocorrelation matrices of the above specified kind. 

With the formulae (4.1.15), (14.1.16) and (4.1.21) one now has 

the possibility of computing discrete filters. If uncorrelated noise is in 

the input traces, it is clear that the autocorrelation functions of this noise 

must be added to the diagonal of the autocorrelation matrix. Deterministic 

multichannel stacking filters can be made lesS sensitive to gain variations 

of the input traces. The technique (Baldwin, 1964) may be described as 

follows. It is assumed that the gain on each channel is a random variable, 
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independent from the gain on any other channel. The gain value is assumed 

to be uniformly distributed between 1-0cand 1+0L. This means the probability 

_ 
density function for the gain is p3  (g) - -2c

1  rec( 2m1=1  ) . 	If the input traces 

are given by 71  = gixi  , where gi is the variable gain, the autocorrelation 

is 0 
1 	

g12 

x. x. 1 

The expectation of this is 

+00 

E 	

110C- 
g 2 	0C? 

-- 1 = 	
= 

	g12dg1 
= (1+ dkpx x  (T ) 

	

x.x. 	P3(gi)gi Yx.x.dgi 	2cx. Tx.x. 

	

1 	-00 	1 1 	1 1 1-10(.. 	1 1 

The crosscorrelation is tP—
g1 

 — X. x. 
whose expectation is because 

of the assumed statistical(independence for the gains 

+CO 	2 
E 	_1.)  = 	T.) ( 	i3i .] = 19x.a) 

	

tx.x Tx.x. {) 	x3 
3 	1 3

( 	
-c0

gp(g)dg 
 

The technique therefore, is to leave the crosscorrelations unchanged and 

multiply the autocorrelations by the factor (1 + (2/3). In the particular 

case where signals are broad band and (110 	= sinc ('t'), this corresponds to 
xixi  

adding a constant amount of white noise to each trace. This addition of 

white noise is also important for another reason. The autocorrelation 

matrix usually tends to be singular, thus leading to unstable filters. This 

effect is often remedied by adding a spike at zero position to the auto-

correlations (Galbraith, Wiggins, 1968). 

The broad band assumption for all signals is a restriction 

which is mainly made for the sake of simplicity. This assumption is known 

(Schneider, Prince and Giles, 1965) to give already good results, thus showing 

that the phase relations between signals (or organized noise) are more 

important in multichannel filter design than their amplitudes. This 

restriction may be made less severe by making one of the following three 

assumptions: 



-44- 

1. 	The autocorrelations 
ASS 

 (t), 0
rr 

9 (T) and 

4tan.n.m42,Tri (t ) ii 
1 

are known (or at least 

an estimate of them is available). 

2. The autocorrelation functions of all input 

components are the same. 

3. Signals and noise change in band width from trace 

to trace. 

If in the first case all three autocorrelations are known, they 

can be incorporated in the design by convolving them with equations (4.1.15), 

(4.1.16) and (4.1.21). 	The problem of estimating these functions from 

traces is discussed in Chapter 1X. The second assumption leads to the 

same results as the broad band assumption, because the input traces could 

be deconvolved, thus becoming broad band as well. An approach to take care 

of the third assumption is given in appendix 11. 

One may argue that neither signal nor noise on actual 

'seismograms will show much change in band width from trace to trace and 

that therefore further statistical averaging in this respect is unnecessary. 

In Chapter V111 enough reason is given to show why the broad band assumption 

is the most economical one for the design. Nevertheless, the computations 

in appendix 11 are of general value. They show that, by taking variable 

band width from trace to trace into account, the above specified power and 

crosspower spectra have to be further multiplied with certain tapering 

functions in the frequency domain. Favouring this special feature has 

therefore to be paid for with some kind of high frequency loss in the 

correlation functions. This loss is transferred into the high frequency 

content of the obtained stacking filters. Later it is shown that allowance 

for chatter as well as high amounts of uncorrelated noise also suppress the 

high frequency content of filters. Favouring one uncertainty in the design 

will therefore benefit the other two as well. Because it is not possible to 
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design a filter which exactly fits the properties of the input traces, it 

is a consolation to know that the filter shows a certain stability towards 

changes of design criteria. 
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4.2 Multichannel normal equations and symmetries of solutions  

With the above specified power- and crosspower spectra it is 

now possible to compute the responses of various kinds of stacking filters. 

For the rest of this work, it is assumed for the design that the signals are 

broad band and the correlation functions are given as 

El[11)..(f)i= rec(f) 11 
2rit..f 

E i  .(6i=rec(f)sinc
2(tcf)sinc(1-ijf )e 	

13  (14j) 
]  

211.1t.f 
E 	141 .(q= rec(f)sinc(tcOsinc(at.f)e 

(4.2.1) 

(4.2.2) 

(4.2.3) 

Let t.
k 
anddtj  k(j=1,N; k=1,L) be the parameters for L regions designed for 

signals,whilet-
k 
 anddt.

k  (j=1,N; k=1,K) are the corresponding parameters 

for K regions designed for correlated noise. With the parameters3andVas 

introduced in 3.2.5 the continuous normal equations in the frequency domain 

for the most general case of the stacking filter become 

N 
Ai(f) 	 G-(f), (j=1,...,N) 

i=1 1 	
13 	3 

(4.2.4) 

2 
R..(0=rec(f)sinc(tcf I3 

G.(f) =rec(f)sinc(tc
f) 

7 

k t.. 	= t. 
13 

•Lij
k 
 =4ti  

k=1 

k=1 

k 	k 
- t. + 

3 	1 

-Pti  

sincer..fle 

sinc(4t.f)e 

k 	2riftij 
13 

2rifr . 

7 

k 	k 
4t •-4t . 

1  

K 
1  sincazijf)e 	3  

k=1 

t
k
. 	+ QtJ.

k
/2 	(4.2.8) 

(4.2.5) 

(4.2.6) 

(4.2.7) 

-4)rec(f). ij 

2 

; 	. = 

Without solving the system (4.2.4) one may already draw a number of important 

conclusions concerning the solutions Ai(f) or ai(t): 

where 
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1.IfR..(f)=R.J.-f)andG.M=G.(-f), then all time 
1] 	1j 	3 

responses ai(t),(i=1,N) are symmetric about the origint = 0 , thus each 

component has a zero phase response. This can be immediately verified by 

replacingA.(f)withA.E-f) in (4.2.4) and observing that the expressions 

for A.(f) must be the same as for A.(-f). 	One may easily verify, that, for 

instance,atimewindowsatisfyingtheconditionst.=-43t./2 belongs to 

this case. 	Special windows of this case are given in figure 4.2.1 and 

figure 4.2.2. 	Stacking filters of this type are referred to as trace- 

symmetric. 

2. If R..(f),(i,j=1, 	 ,N ) is a Toeplitz-matrix ij 

(symmetric to the main diagonal and with the same elements along each diagonal) 

and the following equalities hold 
GI(f)  = GN+1-i(f)'( i=1,..-,N) 

then 	 Ai(f) = Allia_i(f),( i=1,..,N) 

or a.(t) 
1 	= aN+1-i(t)'( 1.71,—,N)  

The proof is easily found by first reflecting the equations with respect to 

the centre equation (or a fictitious horizontal centre line, if the number 

of equations is even)and then reflecting the columns of the coherency matrix 

with respect to the centre column. Time windows fulfilling these conditions 

are symmetric to the centre trace and the time origin. Two examples of such 

cases are given in figure 4.2.3 and figure 4.2.4. A more special case is 

the window of figure 5.1.1.1. Note that condition 1 is automatically 

fulfilled as well. Filters of this type will be referred to as symmetric 

filters. 

3. If the coherency matrix has the same elements along each 

diagonal and is in addition hermitian and G.(f)i 	= G* 
	

(f)'(1=1  
,..,N) then 

N+1-i  

the solutions will always fulfil 

AI(f)=A N+1-1 .(f); 	a.(t)=aN+1-1  
.(-t) (i=1

' 	
N) 

The proof is given for a three channel system, which can generally be 
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extended to any number of channels. 

Let the system be given by 

A1R1  + A
2
R
2 
+ A

3
R
3 = G1 

A1R2 
+ A

2R1 + A3R2=  G  2 

* ' * 
A1R3 + A2

R
2 + A3R1=  G1 

Substituting A3  for A1,A2  for A
2 
and Al  for A

3 
gives 

A
3
R
1
+  A

2
R
2 

+ A1R3 = G1 

* * 	* 	* 
A3R2+  A2R1 + A1R2 = G2 

AR+ A'R +AR = G 3 3 	2 2 	1 1 	1 

(4.2.9) 

(4.2.10) 

By interchanging the third row with the first and the third column with 

first, one obtains 

* * 	* 
A1R1 + A2R2 + A3R3 = G1 

* * 
A1R2 + A2R1 + A3R2 = G2 

A1R3 + A2R2  + A3R1 = G1 

(4.2.11) 

By taking the complex conjugate of each row, again equations (4.2.9) are 

obtained. 	Condition 3 is fulfilled by (4.2.4) whenever the time window is 

centrosymmetric to the centre point. These filters are called centro-

symmetric filters. A typical time window for this case is given in figure 

4.2.5 or figure 4.2.6. 

The various symmetries of the time responses as investigated 

in this section become of great importance in Chapter Vi, where phase 

properties of stacking filters are discussed. Two other important relations 

between time windows and responses of stacking filter components can be 

expressed as follows: 
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4. If a given time window has the same ti  and tIti  

on two different traces, then the obtained 

responses for these traces are the same. 	In 

figure 4.2.1 for instance, the responses fOr 

trace 3 and trace 5 are the same. 

5. If two time windows can be obtained from each 

other by rearranging the traces, then the 

responses computed for traces with the same t. 

and 4t. are the same. 1 

The proof for both statements is obtained in a similar way 

as described above by rearranging the normal equations. 
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FIGURE 4.2.1 Trace-symmetric time window. FIGURE 4.2.2 Trace symmetric window. 

t=0 

FIGURE 4.2.3 Symmetric time window. FIGURE 4.2.4 Symmetric time window. 

FIGURE 4.2.5 Centro-symmetric window. 

t=0 

FIGURE 4.2.6 Centrosymmetric window. 

FIGURE 4.2.7  

Trace-symmetric window for a optimum 
multichannel velocity filter. 
If R is a reject region then P is a 
pass region (or vice versa). 
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CHAPTER V  

DISCUSSION OF SPECIAL STACKING FILTERS  

The full generality of the normal equations (4.2.4) becomes 

more clear in this chapter where their application to individual practical 

cases is treated. It is shown how time window configurations have to be 

selected for various filtering problems. The choice of a time window for 

each problem is not unique. 	Special windows, however, should be selected 

to obtain filters with simple phase relations. 	The normal equations (4.2.4) 

incorporate those presented by Schneider, Prince and Giles (1965). 

In section 5.1 it is shown how the normal equations (4.2.4) 

are used to obtain velocity filters. The equations for optimum multichannel 

velocity filters ( Foster 	and Sengbush, 1968 	) are derived. These 

filters may be regarded as a special case of more generally designed two-

dimensional multichannel velocity filters. Equations (4.2.4) are also used 

in connection with three-dimensional velocity filtering problems. Finally 

in section 5.2 the application of (4.2.4) for the rejection or enhancement 

of signals possessing differential normal moveout is discussed. 

5.1 	Multichannel velocity filters  

The concept of filtering seismic signals, based on constant 

trace to trace moveout, was developed both for nuclear surveillance and for 

exploration seismology. The filters used for this purpose are known as 

velocity filters and have already a long history in seismic data processing. 

A variety of such filters has been discussed, including the 'Fanfilters' of 

Fail and Grau (1963), the 'Pie-Slice Filters' of Embree et. al. (1963), and 

'Doublet' filters of Foster et. al. (1964). 	A more general and flexible 

theory of velocity filters based upon a stochastic model of the data 

generating process and designed in the form of .a multichannel Wiener filter 

was presented by Sengbush and Foster (1968). These filters may be more 
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adapted to special problems by incorporating more information from the input 

traces. Comparison of multichannel velocity filters with pie-slice and 

doublet filters (Sengbush and Foster,l968) has shown the superiority of the 

former, especially when the velocity pass and reject band is narrow. As 

long as signals falling into any region of figure 4.2.7 have to be passed 

or rejected, optimum multichannel velocity filters are flexible enough to 

solve the problem. There exist, however, a host of problems, where 

differently designed two-dimensional multichannel velocity filters have 

better characteristics than optimum multichannel velocity filters. The 

three-dimensional velocity filters presented in 5.1.3 can be regarded as a 

logical extension of two-dimensional multichannel velocity filters. 

A full insight into properties of computed filters cannot be 

obtained before Chapter V11 where the two- and three-dimensional Fourier-

transforms are applied for the characterisation of filters. Many 

characteristics of two-dimensional velocity filters are observed in a similar 

'form in the three-dimensional case. Because two-dimensional multichannel 

velocity filters are superior to other velocity filters, one can expect that, 

due to the similar design, the same applies to the given three-dimensional 

multichannel velocity filters. 

5.1.1 Optimum multichannel velocity filters 

Optimum multichannel velocity filters which are presented and 

excellently discussed by Sengbush and Foster (1968), can be obtained from 

(4.2.4). 	Because their approach for the filter computation was differently 

chosen, it is shown below how to derive a pass-reject optimum multichannel 

velocity filter from the given normal equations. For reasons of better 

comparison, the same parameters are used as by Sengbush and Foster. 

ti  and t.+dt. in (4.2.4) are forced to fall along straight 

lines of the time window given in figure 5.1.1.1. The chatter .t is chosen as 

zero. Region 1 and 3 are specified as reject regions and region 2 as a pass 
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region. 	In this way, the normal equations (4.2.4) give a pass-reject 

optimum multichannel velocity filter designed without chatter. If 

alternatively 1 and 3 are pass regions and 2 a reject region, one obtains 

the normal equations for a reject-pass optimum multichannel velocity filter. 

Whenever it is referred to optimum multichannel velocity filters in this 

work, one of these two versions of symmetric filters designed for three 

regions is meant. 

CHANNEL 1 

CHANNEL 2 

CHANNEL 3 

CHANNEL 4 

CHANNEL 5 
tr:0 

FIGURE 5.1.1.1 Symmetric time window for the centre trace estimate of a 

optimum multichannel velocity filter. 

To have this treatment as general as possible, any number N of input channels 

is allowed. 	(Figure 5.1.1.1 presents only a five channel case).z=(N+1)/2 

is the centre trace number. In case N is even a fictitious reference trace 

is introduced as centre trace. 

Consider reject region 1 of figure 5.1.1.1. 	The coherency 

matrix for the broad band case, with no chatter (tc  =0) for this region is 

fully described by 

R7.(f) = rec(f) 	 (5.1.1.1) 
11 

2wift.. 
R. .(f) .(f) = rec(f)sinc(re..f)e 	13 

1 (itj) 	(5.1.1.2) 

The values t.,43t. td. andtij  become, with the help of figure 5.1.1.1 ij  
• 

t. = (z-i)ccrt-' 
	

(5.1.1.3) 



Put into equation (5.1.1.2) gives 

inf(i-j)17+9) 
R. (f) = rec(f)sinc(TCf(8-00(i-jfle 	c 	o 
13 (5.1.1.7) 

For reject region 3, one obtains by replacing TC with -1K; in (5.1.1.7) 

-iiff(i-j)TC(A+e) 
R.3  = rec(f)sinc(licf(V-04)(i-j))e 	 (5.1.1.8) 13 	0 

By assuming that the correlated noise, which falls into region 1 and 3 are 

uncorrelated with each other, the coherency matrix of the total correlated 

	

1 	3 noise becomes R..r(f) = 	+ R..(f), which is 1] 	13 	13 

sin2irfafrc(i-j)-sin2liftc?(i-j) 
R.1.1(f) = -rec(f) ,}.i4 --- 	  13 	

ti4 t 	c(i-Df 
(5.1.1.9) 

The coherency matrix for the pass region 2 is obtained from (5.1.1.9) by 

puttinga= 0 and r 1 

sin 2Tft- (i-j) 
R.(f) = rec(f) 	  13 	 ft-(i-j)f c 

(5.1.1.10) 

Correspondingly one gets with formula (4.1.20) and tc  = 0 and td  = 0 

sin 2iTfr(j-z) 
G.(f) = 	  rec(f) 	 (5.1.1.11) 

7 	-T(z-j)t-cf 

The normal equations for this special problem may therefore be written as 

) , 	(j=1,.. ,N) 	(5.1.1.12) 
i=1 1 	13 	13 

where Ai(f) ,(4=1,.N)are the Fourier transforms of the desired filters. 

Equations (5.1.1.12) correspond to equations (A-15)(p. 34, Sengbush, 
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and Foster, 1968 ) 	for the case, where signal and noise are broad band. 

Taking the limit --)D0 in (5.1.1.9) for a finitect shows that 

R. (f) becomes zero. 	In this case (5.1.1.12) reduces to 

./1.(f)[1(f)-t14..rec(f1 =G.(f) , (j=1,..,N) 	(5.1.1.13) 
1=1 1 

Designing a pass filter is therefore the same as specifying 

a pass-reject filter, where the reject region is given as the total region 

outside the pass region. 	In a similar way to the above derivation, one 

obtains for a reject-pass optimum multichannel velocity filter 

N

i... A.4. 	Q( (f)+R.:(f)-11/Siirec(f)]=Gf), (j=1,..N) 
1=11 	) 13 

with 	 (5.1.1.14) 

sin21-11;(j-z)-sin2Trfix17c(j-z) 

The high symmetry of the time window leads to highly symmetric filters which 

fulfil all conditions 1 to 3 of section 4.2. 

With the more general equations (4.2.4) in mind, one can 

however, immediately draw the following two conclusions concerning optimum 

multichannel velocity filters. 

1. 	The version which will allow additional chatter 

in the arrival times of the signals, is easily 

obtained by multiplying the left side of equations 

(5.1.1.12), (5.1.1.13) or (5.1.1.14) with term 

sinc(tf). 	The necessity of this term seems 

logical since expecting the signals to have constant 

moveout seems to be a restriction, which most 

certainly does more harm than good on actual traces. 

e(f) = rec(f) 1  
3 	

C)C 	
IC-(j-z)f c   
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2. In the derivation of the normal equations for 

optimum multichannel velocity filters, it was 

shown that they actually include three design 

regions. 	However, for many seismic problems 

only two regions are necessary. 	In section 7.2 

it will be shown that characteristics of velocity 

filters are generally superior for the case when 

two regions are sufficient for the design. 



-57- 

5.1.2 General two-dimensional multichannel velocity filters  

In the design of a stacking filter which passes signals 

having constant moveout -t- 41-1:-.4. 1"C'c  and rejects signals falling into the 

region cercce-crc  one could make use of an optimum multichannel velocity filter 

which also includes the reject region -VT-ct<-00:. In this case however, 
c 

it is logical to compute a filter for two regions only. The choice of a 

time window for a multichannel velocity filter is not unique as shown below. 

Figure 5.1.2.1 shows four cases for a given problem out of an infinite 

number of possibilities. All windows are chosen in such a way that they 

appear to operate in the same manner for the given moveout range. The 

centre point of the time window does not necessarily have to fall upon a 

trace. It may be on any point along the vertical line VL. For each of 

these windows different stacking filters are obtained although they all will 

perform in a very similar way. Sufficient justification is given in 

Chapter V1 for why the centre trace estimate should be selected. 

Figure 5.1.2.1 d shows this so-called centre trace estimate. 

This is also the case where the overall width of the time windows is shortest 

if positive and negative moveout signals fall into the window. Galbraith 

and Wiggins (1968) showed that for the numerical solution of normal equations 

the filter length should always cover the total width of the time window. 

This ensures that the expected error (3.2.5.6) does not decrease any more 

essentially by increasing the filter length. The centre trace estimate 

therefore leads to the shortest filter operator and the shortest computation 

time. The normal equations for the centre trace estimate fulfil condition 

3 of section 4.2, thus leading to centrosymmetric filters. This case also 

possesses simple phase characteristics as is shown in Chapter Vl. 	The 

normal equations for a pass-reject filter with the time window of figure 

5.1.2.1 d are 
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sin2-11fT-(i-j) 
A.
1
(f)[rec(f) 	 

11(il- j)T"cf 	4C +R..(f)-1-1cifec(+G.(f),(j=1,..,N) 
11  

where R.1(1') is given in (5.1.1.7) and G.(f) in (5.1.1.11). 	The computed 
ij  

filter could also be used in cases where the reject region falls to the right 

of figure 5.1.2.1 d. 	One would then only have to reverse the order of the 

input traces. 

VL 

(a) 
	

(b) 

(c) 
	

(d) 

FIGURE 5.1.2.1 Time windows for velocity filters. 

Multichannel velocity filters presented so far are only special 

cases of more general velocity filters, where any number of reject and pass 

regions for constant moveouts may be given. It is easy to specify in such 

a case the necessary normal equations with (4.2.4). To keep phase relations 

simple, one should however, in any case of a more complex time window, try 

to choose the centre trace estimate. 

One may by no means expect that choosing certain pass and 

reject regions guarantees complete rejection or enhancement of signals in 

these regions. In Chapter V1 the two-dimensional Fourier transform is 

applied for the characterisation of velocity filters. This shows in which 

way time windows approximately influence their transfer characteristics. 

It will also be shown that filters for a small number of narrow regions possess 

better characteristics than filters for a large number of broad regions. 
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FIGURE 5.1.2.2 	Centrosymmetric time window. 

This window is obtained by inverting the order of 
the traces in figure 5.1.2.1 d. 	If region 1 is 
a pass'region, then region 2 is a reject region 
(or vice versa). Note, whenever it is referred 
to a time window only the window shape (defined 
by (117',a, and the position of the centre trace) and 
not the ..ctual number of traces involved is meant. 
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5.1.3 Three-dimensional multichannel velocity filters  

It has already been emphasized that there are no restrictions 

to the spatial dimension in which the given class of filters can be applied. 

The common problem in reflection seismic is predominantly still a two-

dimensional one. Application and research of three-dimensional velocity 

filters is therefore mainly confined to problems in earthquake seismology. 

Already there exist various approaches for the analysis of three-dimensional 

filtering and array problems (Carpenter, 1965; Binder, 1967 and 

Lacoss, et. al., 1969).0f special value as an introduction to three-dimen- 

sional filters is the work of Burg (1964) . 	His approach is also 

based on the multichannel Wiener filter theory, and his assumption that 

signals and noise are uncorrelated, gives essentially the corresponding 

equations for (3.1.11). These are not further statistically averaged, as 

in this work, by making use of properly selected probability density 

functions in the time domain. 

How to obtain special three-dimensional velocity filters with 

(4.2.4) is shown below. 	To avoid too much generality, the following 

treatment is applied to the processing of outputs of a two-dimensional array 

of seismometers. Figure 5.1.3.1 shows a horizontal plane, where N x N x y 

geophones may be placed on a rectangular grid. Their displacement in 

x7direction be one x-unit, in y-direction one y-unit. Two planes are 

'given in the coordinate system which cut a wedge out of the lower semi-

infinite space. These planes represent the upper and lower limit of a 

range in which plane wave arrivals are expected. As a further restriction, 

it is demanded that the waves are polarized. This means the normal vectors 

of the plane waves lie in a plane. 	It also corresponds to forcing the plane 

waves to divide4r; andei; in the same ratio. The appropriate time window 

for figure 5.1.3:1 is given in figure 5.1.3.2. 	The window which specifies 

centrosymmetric filters is presented in figure 5.1.3.3. 	It is obtained by 

shifting the limits of the time window of figure 5.1.3.2 so that they cut 
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each other at the centre trace. 	The normal equations(4.2.4)can now be 

used to obtain three-dimensional velocity filters with polarisation filter 

characteristics. 

The probability density functions chosen in section 4.1 for 

the signals falling into the window of figure 4.1.1 have to be chosen 

slightly differently in the case of a multichannel velocity filter which 

does not restrict the normal vectors to lie in a plane. 	In appendix IV it 

is shown how multichannel normal equations for this case have to be 

specified. This certainly very interesting time domain approach for the 

computation of general three-dimensional velocity filters is however, not 

any further followed in this thesis. 	In section 7.3 examples are given for 

polarisation filters and the three-dimensional Fourier transform is applied 

for their characterisation. 

5.2 Multichannel stacking filters for differential normal moveouts  

The assumption that seismic signals arrive as plane waves, 

thus having constant moveout on traces recorded at equidistant array 

positions is certainly more valid in refraction or earthquake seismology 

than in reflection seismics. Three attempts (D'Hoeraene, 1966; 

Schneider, Prince and Giles, 1965 and Galbraith and Wiggins, 1968) are 

known where filters are designed for the rejection and enhancement of 

signals with differential normal moveout. All authors give design procedures 

which influenced the approach chosen in this work. However, they only 

describe a few properties of these filters. 	In section 7.4 transforms are 

given for some differential normal moveout filters which characterise them 

in a similar way as two- or three-dimensional Fourier transforms characterise 

velocity filters. 	Figures 5.2.1 and 5.2.2 give two typical examples for 

two- and three-dimensional problems where the given design is applicable. 

Each figure shows an equidistant recording array and a curved wave front at a 

fixed time. 
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FIGURE 5.2.1 One-dimensional 

equidistant array and curved 

wave front. 

 

FIGURE 5.2.2 Two-dimensional array 

 

and curved wave front. 

Detector positions do not necessarily have to be on a straight 

line or in a plane to specify time windows and to make use of equations 

(4.2.4.) These general cases are however not discussed in this work. 



CHAPTER V1 

INTERPRETATION OF THE TWO-DIMENSIONAL FOURIER TRANSFORM OF A TWO- 

DIMENSIONAL MULTICHANNEL STACKING FILTER 

In Chapter 111 it was shown that two-dimensional convolution 

of N traces with an N-trace operator can be regarded as a multichannel 

filter process leading to 2N-1 output traces. The corresponding process 

in the (f-k) domain is multiplication of the two-dimensional Fourier 

transforms of both operators. The two-dimensional amplitude spectrum of 

the filter shows at once which regions in the (f-k) domain of the input 

traces are passed and which are rejected. 

There is hoWever, a big disadvantage connected with this kind 

of interpretation. This is that the product of the 2-D Fourier transforms 

of N input traces and an N-trace operator demands 2N-1 output traces in the 

time domain. Often as in our case, one is interested in only one output 

trace. For this purpose, the centre trace of the output is selected. By 

taking this trace out of the 2N-1 output traces, a single trace results, 

which no longer represents the product of the Fourier transforms of the input 

and the two-dimensional operator. It is therefore not immediately obvious 

that the application of the 2-D. Fourier transform to a multichannel velocity 

filter is justified because the process of stacking differs from two-

dimensional convolution. In this chapter it is shown how the 2-D Fourier 

transform of a stacking filter has to be interpreted to describe exactly 

the N-channel input one channel output relation; 

In the case where velocity filters are designed in the 

frequency domain, the object of applying the 2-D Fourier transform to a 

computed filter is to show how much the transfer characteristics of the 

obtained filter approximate the desired ones. In the given case however, 

where the design is done in the time domain, it is possible to use the two- 
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dimensional Fourier transform of a filter as a tool of analysis to show how 

changes of parameters in the time domain influence characteristics in the 

frequency domain. 

6.1 	(f-k) - space  

A plane wave front impinging on the detector array is given 

in figure 6.1.1. The velocity with which the wave front travels 

horizontally is v = V/sina: where V is the propagation velocity,04the angle 

between the wave front and the horizontal and v is the apparent velocity. 

A travelling cosine wave along the x-axis may then be written in the form 

f(x-vt) = Acos27(kx-ft) = Acos2wk(x-vt) 

where A is the amplitude, f the frequency and k the apparent wave number. 

The apparent velocity can be expressed as v = f/k. A travelling wave may 

therefore be described in either the time-distance (t-x) space or the 

frequency wave number (f-k) space. Hence a plane harmonic wave can be 

presented by a point in (f-k) space. 

>K 
FIGURE 6.1.1 One-dimensional array 	FIGURE 6.1.2 (f-k) domain and a 

with an arriving plane wave 	line with constant velocity 

An arbitrary function f(t,x) may be generally expressed by a 

complex function F(f,k) in (f-k) space. Both functions are connected by the 

two-dimensional Fourier transform pair. 

+IV +CO 
F(f,k) = 	f(t,x)e-2wi(ft-kx)dxdt 

-0 -c0 
(6.1.1) 
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+0, +00 
271- (ft-kx) f(t,x) = 	FU,k)e dfdk 

-W-00 
(6.1.2) 

A digitized reflection seismogram can be regarded as a 

sampled function in both t- and x-domain. The Fourier transform of a 

one-dimensional operator is a periodic function. 	In a similar way, two- 

dimensional sampling results in a two-dimensional Fourier transform which is 

periodic in both frequency and wave number. If the time domain sampling 

interval is h, the spectral period is 1/h and the Nyquist frequency is 1/2h. 

If the distance between traces is L1, the k-spectral period is 1/6  and the 

Nyquist wave number is 1/24 . The discrete version of the Fourier transform 

pair for a two-dimensional operator f(jh,W(i=-I1,I2; j=-J1,J2) is then 

F(f,k)=h
J2 

f(jh,i1A)e
-27Ti(fjh-kia) 	(6.1.3) 

i=-I1 j=-J1 

+l/2h +1/2.A 
f(jh,iA)=1 F(f,k)e2Ii(fill-ki6)dfdk 	(6.1.4) 

-1/2h -1/26 

Without loss of generality h is used again as one time unit and LI as one 

space unit. 	The relation F(f,k) = F(-f,-k) holds for every real 

operator, which makes IF(f,k)I a centrosymmetric function. 	IF(f,k)1 is 

therefore completely described in the sector (041(41A5 ; 04f41/2h) of figure 

6.1.3 . This region is called the basic section. 	Sengbush and Foster 

(1968) call the left half of this part the primary region. 

: 1\i _ 	, 

w 37/& 

FIGURE 6.1.3 Periodic (f-k) diagram of a two-dimensional discrete operator 
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6.2 The transfer function of a multichannel stacking filter for „.„ 

signals with constant moveout  

Let ,a.(tet), (-n<t*<m; i=-N,..,N) be the operator of a discrete 

stacking filter as shown in figure 6.2.1. Without loss of generality an 

odd number 2N +1 of traces is chosen for the following considerations. The 

filter components are labelled from -N to +N. 	(For an even number see 

appendix ill). 

d_1(e) 

FIGURE 6.2.1 Discrete stacking filter 

.The discrete function 

(t*) = 	a.(teg)*sinc(t*-04.) 
i=-N 

I I 	Li))  a, (e) 
ao(c) 

(6.2.1) 

is defined as the stacking filter response for broad band signals with the 

moveoutsoe.(i=-N,N). The importance of this function becomes clear when 

2N +1 inputs are given which have the form 

x.(t*)=x(t*-o.6)=x(tez)*sinc(t*-pe. , (i=-N,. ,N) (6.2.2) 

The output can then be written-  as 

y(te:) = x(tec)*Z... 	(t*sinc(tec-04.) 	 (6.2.3) 
i=-N 

y(t*) = x(t*)*foc,(tel) 	 (6.2.4) 

where f (te;) takes the typical role of a unit impulse response. 	If 
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(t* ) is known for allc. the performance of the filter is known for all 

functions (6.2.2). 	In section 4.1 the stacking filters were designed in 

such a way that when thec4i(i=-N,...,N) fall on specified curves within a pass 

or reject region,fo(t*) should be ideally a unit spike or zero. The 

Fourier transform of f04  (t*) is defined as the transfer function of the 

stacking filter: 

N 	-2rifa. 
F 	(f) = 	A.(f)e 	3' I fl < 1/2  

j=-N 
(6.2.5) 

If signals in the input have constant moveout 

04.= it,'(j=-N,...,N), the transfer function 

N 	-2flifT-j 
F(f,t) = 	A.(f)e 
	

(6.2.6) 
j=-N 

can be found with the help of the two-dimensional Fourier transform of the 

multichannel filter. This Fourier transform is 

F(f,k) 	 -2Tri(fl-ki)  
1=-n j=-N 

N 
F(f,k) = 

j
1 e2AikjA

j
(f) 

=-N 
 

(6.2.7) 

(6.2.8) 

Taking the values of the transform along the line k=-ftresults again in 

expression (6.2.6). This very important result shows that the two-dimen-

"sional Fourier transform of a stacking filter includes all stacking 

filter transfer functions for signals with constant moveouts. If an 

additional filter B(f) is applied to the stacked output, the whole system 

possesses the transform 

FB(f,k) = B(f)L
N 
 e'
0  
llN3A.(f) 

j=-N 
(6.2.9) 

Applying B(f) on the stacked output is the same as applying it on each 

individual input before the stacking filter process. 
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At this point something has to be said about the phase 

characteristics of transfer functions. The usually complex function 

(6.2.6) for an arbitrary multichannel velocity filter becomes real and 

phase free for two important cases. For their discussion it is sufficient 

to know the amplitude spectra of the transfer functions only. 

First Case  

In section 4.2 it was shown that when a time window is 

centrosymmetric, the stacking filter is centrosymmetric as well. 	In this 

caseA.M=A*.(f), (i=-N,..N) and ai(te;)=a_i(-t*),(i=-N,..N).By choosing 

themoveoutoftheinputsignalsas04.=fej,(j=-N,.,N) the transfer 

function becomes 

N  F(f,T) = 	A.(f)e-21ifj17  
j=-N 3  

L.Iliom.FLui.me-211ifiti.pi!me2ififjt)  

j=1 3  

Because A
0  (f) is real and every term has its complex conjugate in the sum, 

the transfer function is real and phase free. 

Second Case  

This case is actually included in the first one, but because 

of its importance it is discussed separately. When the time window is 

symmetric, the stacking filter fulfills the conditions 

al(VI )r-a.(--tfc) = a .(t*) 1 

Ai(f) = A_i(f) = At (f) , (i=-N,... ,N) 

With a. = j'ty(j=-N,N) in this case the transfer function becomes 
3 
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N 	-21fifj F(f;t) = 
j-N 3  

= A
0 
 (f) 	2 	A.(f) cos2Trfjqr 

j=1 3  

BecauseallA.(f),(j=41,..,N) are real the transfer function is real 

as well. 

In actual fact, both formulations are contained in the 

following simple statement: 

Let A1(f) = A. (f) and c<i  = 	(i=-N,..,N) 

then the transfer function is real. 

This is seen immediately by writing Foc(f) in the following 

way 

N 
F 	(f) = 	A.(f)e 

j=-N 3  
(6.2.10) 

N 	-24ifoc. 	2rifot, 

o(f) 	(A.(f)e 	3+A*(f)e 
j=1 

It is this more general case which is to be considered in section 7.3 where 

transfer functions of polarisation filters are investigated. In the second 

case all components of the highly symmetric stacking filter are phase free. 

It is therefore not surprising that transfer functions are also phase free. 

Phase free components alone do not necessarily guarantee phase free transfer 

functions. 	In section 4.2 it was shown that trace symmetric time windows 

of the form of figure 4.2.1 or figure 4.2.2 always specify phase free 

components. Transfer functions in this case are however, only phase free 

forft=0. Alternatively the first case shows that filter components do not 

have to be necessarily phase free to give zero phase transfer functions. 

So far it was shown how to interpret the two-dimensional 

Fourier transform of a stacking filter. The function of this two-dimensional 
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Fourier transform along the line k=-ft" for If1.5. 1 gives the transfer 

function for the case where input signals have the same waveform and constant 

moveout on each trace. It therefore provides an ideal transform of the 

stacking filter, if these kind of input signals are expected. It is however 

of little value for signals which have changing waveform and non-constant 

moveout from trace to trace. In section 7.4 it is shown how to transform a 

stacking filter to obtain transfer functions, which belong to signals with 

certain differential normal moveouts. 

In case of the two-dimensional Fourier transform of a stacking 

filter one should also note, that if the aperiodic functions xi(te:)=sinc(te'it) 

(i=-N,...,N) are chosen as input to the filter, then the inverse of 

the transfer function for constant moveout corresponds to the response of 

the filter for this special input. 

It can be also easily verified, that if the (f-k) diagram is 

computed from A 
-
.(f),(j=-N,...,N) instead of from A.(f),(j=-N,..,N) one obtains 

N 
j'....:N  e2-rrikj -3 
	

e- 	A  2Trikj . 
7(f,k) = 	A .(f) = 	 (6.2.11) . 

j=-N 	j=-N 	

3(f) 
 

where I(f,k)=F(f,-k). The transfer function for constant moveout is now 

obtained by taking the values of '(f,k) along the line k=fq: in the range 

. Because of this reason the (f-k) diagram of a stacking filter is, 

throughout this thesis, presented in form of formula (6.2.11). Note, that 

formula (6.2.11) and (6.2.8) are identical for symmetric filters. 

Another reason for inverting the stacking filter components is the following 

one: If the input traces have the Fourier transforms Xi(f),(i=-N,..,N) the 

Fourier transform of the stacked output can be written as 

Y(f)= 	A.(f)X.(f) 
i=-11 J. 

The same expression is also obtained by doing a two-dimensional convolution 

of the filter A-i
(f), (i=-N,..,N) with the same input and taking the centre 

trace of the convolution as shown in section 3.2.2. 
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Example Number 1  

To make the above theoretical considerations more clear, an 

example is given. A multichannel filter was designed which passes signals 

falling into region 1 and rejects signals falling into region 2 of figure 

5.1.2.2. 

The design parameters are: 

number of traces: 

length of filter: 

uncorrelated noise: 

chatter: 

region parameter: 

region parameter: 

region parameter: 

correlated noise:  

N = 6 

LF = 17 

V = 0.08 

t = 0.01 

0‹. = 2.0 

= 4.0 

1:"C  = 0.8 

= 30 

The six responses of the computed optimum filter are given 

in figure 6.2.1 and as expected, it is a centrosymmetric filter. 	Its 

two-dimensional amplitude spectrum is shown in. figure 6.2.2. This figure 

presents the basic region of figure 6.1.3. All contours and isometric 

plots in this thesis show the amplitude spectrumk(f,k)lin decibels 

(%)  
F(f,k) = 20logio

1F
(
f,k)1  

,A  
maxi 

within the range from 0dB to -30dB. I 
Amax I 

is the maximum amplitude 

encountered in the basic range. 

In figure 6.2.2 the'-lines are shown for r=-0.8;0.8;1.6;3.2. 

The line '=3.2 cuts the line k=1 at f=5116 and therefore can be thought to 

continue from (k=0; f= 5/16)in the same direction to the right to cut the 
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horizontal line f=0.5 at k=1.2 
	

With formula (6.2.11) the transfer 

functions for constant moveout signals are found along these lines 

between f=0 and f=0.5. 	Figure 6.2.3 shows the amplitude spectra of some 

transfer functions for the above filter. They were obtained by passing 

broad band signals with the given constant moveout through the stacking 

filter and taking the Fourier transform of the output. They can however, 

be easily obtained by taking the values along the correspondingt-lines of 

figure 6.2.2. 	Fort= 4.0 the filter again has good pass characteristics 

for the range around half the Nyquist frequency. All transfer functions 

have zero phase. 

By making use of the concept of the transfer function along 

the 't-lines, the characteristics of the two-dimensional amplitude spectrum 

(figure 6.2.2) also find an easy explanation. 	Due to the design procedure 

of Chapter 1V, transfer functions along all lines falling into pass region 1 

of figure 6.2.4 should ideally equal one; while all transfer functions 

falling into sector 2 of figure 6.2.5 should ideally equal zero. 	Both of 

these conditions have to be fulfilled simultaneously by the stacking filter. 

Figure 6.2.6 shows which regions of the filter are supposed to be pass 

regions (-0 and which reject regions(-). 	In figure 6.2.6 there are two 

regions which should both be pass and reject regions at one time. One 

expects in such a case, that the least squares principle makes a compromise 

between both. 	Comparing figure 6.2.6 with figure 6.2.2 shows at once the 

described similarities. On region A and B there are no constraints. 

With the above example, it is obvious that the defined 

concept of the stacking filter transfer function is of great help for the 

analysis of the characteristics of a multichannel velocity filter. 

Transfer functions for signals with constant moveout can be found for any 

kind of stacking filter in the way described above. 	In figure 6.2.7 (f-k)- 

plots of a 6-trace and 12-trace straightforward stack are given. These 
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FIGURE 6.2.2 Filter number 1 (f-k) plot 

2'c=0.8 ;OC=2.0 ;(=4.0 ; N=6 ; LF=17;Y=0.08 ;(=30.0 ; =0.01 
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FIGURE 6.2.2 a 	Filter number 1 

Isometric plot of figure 6.2.2 viewed 
from Ck=1 ; f=0.5) 
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stacking filter components are zero-delay unit spikes. Transfer functions 

may again be obtained along radial lines from the origin. The straight-

forward stack has an ideal response for zero-moveout signals. Transfer 

functions however, change enormously for small deviations from the moveout 

zero. 

0)0 
	

K 
FIGURE 6.2.5 Reject region for filter number 1 
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FIGURE 6.2.6 Pass and reject region for filter number 1 
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kz0;f::0 

6-trace stack 

k=0.5 :f =0.5  

12-trace stack 

FIGURE 6.2.7  Isometric plot of 6-trace and 12-trace 
straight forward stack 
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CHAPTER V11 

COMPUTATIONAL EXPERIMENTS AND FILTER CHARACTERISTICS  

The basic aim in previous chapters was to emphasize the 

generality of the normal equations (4.2.4) and to discuss their application 

for various two-dimensional and three-dimensional filtering problems. Com-

puted filters alone however show little about their performance. 

Characterising a filter is therefore as important as its design procedure. 

Filters reveal their inherent properties by applying them to properly 

selected signal traces. Compared with the characterisation by a transform 

from which responses for a broad class of test signals can be obtained 

simultaneously(see example number 1)this approach is, however, very simple. 

The aim in this chapter is therefore to characterise the given stacking 

filters with appropriate transforms, which give a deep insight into their 

general performance. Before doing so, the salient points of previous 

chapters are summarized below. 

1. The analog normal equations (4.2.4) are designed with 

the least squares principle for random stationary 

processes. 

2. 'Approximate' solutions for the analog normal equations 

are obtained with the discrete equations (3.2.5.5). 

They are solved with the fast multichannel Levinson 

algorithm. 

3. Stacking filters can be computed for two-and three-

dimensional problems where signals have constant 

o2+`•ttifferential normal moveout. 

4. Time windows for a given problem are not unique. 

Symmetries of windows are reflected in symmetries 

of computed stacking filter components. 
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5. The transfer function of a stacking filter as defined by 

the output for broad band signals with constant moveout is 

helpful concept for the characterisation of a 

filter. Phase properties of transfer functions 

depend strongly on the shape of a time window. 

Symmetric and centrosymmetric windows have zero- 

phase transfer functions for all signals with 

constant moveout. Transfer functions can be 

obtained from the two-dimensional Fourier trans- 

form of a filter. 

In this chapter some characteristics of two-dimensional velocity filters 

are presented. 	In section 7.2 symmetric and centrosymmetric velocity 

filters are compared. 	In section 7.3 an introduction to the three-dimensional 

Fourier transform is given and a stacking filter transfer function for the 

three-dimensional case is defined. Also some characteristics of three- 

dimensional polarisation filters are discussed. 	In section 7.4 suitable 

transforms are derived for the characterisation of filters designed for 

differential normal moveout signals. 

Not all inherent properties of a filter can be obtained from 

Fourier transforms. For the characterisation of filters in the presence of 

uncorrelated noise other functions are presented in section 7.6 which are also 

important. A good insight into characteristics of two-dimensional 

multichannel velocity filters is helpful for the understanding of the total 

class of filters. 	For practical reasons, two-dimensional velocity filters 

are only computed for either six or twelve traces. 
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7.1 Optimum multichannel velocity filters  

Filters for symmetric regions, as given in figure 5.1.1.1, 

designed without provision for chatter, are discussed by Foster and Sengbush 

(1968). The value of their treatment is of special importance since they 

compare optimum multichannel velocity filters with doublet andipie-slice' 

filters and show the superiority of the former in many aspects. Although 

they describe the observed foldings along the line k=0.5, they give little 

explanation for them. It is with the help of the concept of the transfer 

function for signals with constant moveout and the periodicity of the 

(f-k)domain that a deeper insight into the numerous foldings is gained. Using 

periodicity one realizes that in the case of filters with symmetric regions 

the (f-k)plot has to be symmetric about k=0.5 and consequently folding of the 

t-lines will take place along this line . The transfer characteristics 

are therefore entirely contained in the square (0(f40.5; 04kt0.5) of the 

two-dimensional Fourier transform. This, however, is an unnecessary 

'restriction. There is more freedom for the design of filters available in 

the total basic region of the (f-k) domain. Non-symmetric filters can make 

use of this. 

So far, it seems that it is possible to predict approximately 

the features of an (f-k) diagram for a two-dimensional multichannel 

velocity filter with the sole knowledge of the form of the time window. 

There is, however, one more inherent feature common to optimum multichannel 

velocity filters that is the suppression of the amplitude spectrum for 

overlapping pass regions in the (f-k) domain. To show this effect, various 

12-trace pass filters were computed with equation (5.1.1.13). The time 

window for this case is given in figure 4.2.4. The only parameter that was 

varied wasT"c, which took on the values "(:- = 0.5; 1.0; 1.5; 2.0. 	The 

factory was chosen as V= 0.08. 	(f-k) plots are given in figure 7.1.1 to 

figure 7.1.4. For 	it is seen that the amplitude characteristics 
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approximate well with the desired response in the pass region. The 

approximation around the Nyquist frequency fN  = 0.5 however, becomes worse 

as T.,  reaches the valuel:-  = 1. 	For rt-c)1 it is observed that the pass 

region becomes narrower instead of wider for high frequencies. For this 

reason, Foster and Sengbush discussed (f-k) diagrams almost exclusively in 

the region (0<k<0.5; 0<f<f
c
), where they defined f

c 
as the folding frequency. 

It was decided in this thesis to show generally the whole basic region. 

For symmetric filters however, only the sector (041(40.5; 04ft0.5) is shown. 

For all problems, where there is no overlapping of pass- with 

pass regions or reject with pass regions, one has the heuristic feeling 

that the expected error (3:2.5.6) as a function of the filter length should 

tend to zero. One may however, never expect that the error approaches zero 

for filters where time window configurations possess overlapping regions. 

This is because the desired transfer functions cannot be completely 

approximated anymore in the specified range. For the above sequence of 

filters the expected errors are shown in figure 7.1.5. 	Each curve has a 

different length because for broader windows longer filters were chosen. 

Optimum delay is always in the middle of each filter. The curves show 

that expected errors increase with increased overlapping of pass regions. 

If the overlapping of regions occurs more than once, the relation between a 

time window and its (f-k) plot is even more complex. A filter designed 

for; = 4 will approximate an (f-k) diagram as shown in figure 7.1.6. 

All symmetric filters for an even number 2N of traces have 

one thing in common: i.e. their two-dimensional amplitude spectrum equals 

zero along the line k = 0.5. 	From equation (6.2.8 A) 	( appendix 111) 

it can be shown that the two-dimensional transform 

m (
2N 1

)  F(f,k) = 	2 	a.(n)e-2-31(fn-ki)  2N-1 m=-m j= 
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or 	2N-1 	2N-1  

F(f,k)=Sr  2 	
e2xikjA.(f) A.(f)cos2nkj 

2N-1  
j 3=  2 	=1  

equals zero for k = 0.5 

2N-1  

F(f,0.5) = 2 	A.(f)cosnj = 0 
j=i 3  

This equation does not hold for a symmetric stacking filter with an odd 

number 2N +1 of components. 	In such a case, the two-dimensional Fourier 

transform along the line k = 0.5 becomes 

,,N . . re2Tiikji.e-21ikj] 
F( f,k)= 	1r)=A_(f)4 A.(f) 

j-N j=1 

N 
=A0(f)+2g.  A.(f)cos21kj 

j=1 3  

or 	 N 
F(f,0.5)=A0 

	

, 
 (-1)JA.(f) 

j=1 

An example of a symmetric filter with an odd number of components (filter 

number 6) is given in figure 7.1.7 which shows the contours of an 11-trace 

filter where all other parameters are the same as for filter number 3. 

From figure 7.1.1 to figure 7.1.4 one can conclude that the 

plateaux are very flat for narrow time windows and become continuously 

rippled by increasing the window width. The height of the hills in the 

reject region decreases with increasing ^'
c
, and the escarpment becomes 

steeper as well. All transfer functions approximate the value 0dB for near 

zero frequencies. This is a typical feature of optimum multichannel 

velocity filters which is not obtained by any other velocity filters. It 

will be observed again in a similar form in section 7:3 where corresponding 

three-dimensional velocity filters are investigated. For narrow pass 

regions, the contours of the escarpment become increasingly more parallel to 
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the f-axis for low frequencies. Apart from minor changes it may appear 

that filter number 2 to number 4 (figure 7.1.1 to figure 7.1.3) represent 

a scaled section (scaled in f-direction) of filter number 5 ,(Figure 7.1.4) 

This is justified in the discussion in Chapter V111 where a 

deeper insight into the relation between time windows and (f-k) plots will 

be obtained. To complete this short treatment about optimum multichannel 

velocity filters, their most important characteristics are repeated - 

1. Decreasing the width of reject regions or 

increasing the amount of correlated noise 

results in increased rejection within these 

regions. 

2. Increasing the uncorrelated noise in the design 

results in a loss of high frequency content in 

the signal region. 



k:0 :f:0 

f =0.5 

f=0.5 

-85-- 

1c=0.5 
Filter number 2 
(f-k) diagram and isometric plot 

re;c4: 0.5 ; N=12 ; LF=7 ; V=0.08 ; tc= 0.01 

0;0 
FIGURE 7.1.1 
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K=0.5 f.0.5 

FIGURE 7.1.2 	Filter number 3 

(f-k) diagram and isometric plot 
rt;= 1.0 ; N=12 ; LF=13 ;y=0.08 ; tc=0.01 
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FIGURE 7.1.4. 	Filter number 5 

- (f-k) diagram and isometric plot 

eq=2.0 ; N=12 ; LF=25 ; V=0.08 ; tc=0.01 
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FIGURE 7.1.5 Expected Errors as a function of the filter length 

f.0 5 
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FIGURE 7.1.6 (f-k) diagram for a pass filter with Pre  = 4. 
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0; 0 

f=05 

k=o3 
FIGURE 7.1.7 	Filter number 6 

(f-k) digaram and isometric plot 

tc=1.0; N=11 ; LF=13 ;)1=0.08 ; tc=0.01 
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7.2 A comparative study of symmetric and centro-symmetric velocity filters  

By making use of the above rules which relate time windows 

with the characteristics of the (f-k) diagram, it is easy to give examples 

which show the superiority of centro-symmetric filters (designed for two 

regions) over symmetric filters (optimum multichannel velocity filters designed 

for three regions). Both types have the same essential attribute; they 

show minimum distortion since all transfer functions for signals 

with constant moveout have zero phase. Three different examples are 

discussed below. They are selected to emphasize three different features 

which are responsible for the fact that centro-symmetric filters generally 

possess superior characteristics over symmetric filters. 

1. Example number 2 (filter number 7) gives the Corresponding 

symmetric filter for filter, number 1. It shows how 

much of the pass region of example number 1 is lost 

by admitting an additional symmetric reject region in 

the design. 

2. In example number 3, a centro-symmetric reject pass 

filter is compared with its corresponding symmetric.  

version. In the symmetric version pass regions 

overlap, thus showing rejection in a region where 

centro-symmetric filters still approximate fairly 

well the desired pass region. 

3. One may easily get the impression that due only to 

fewer overlappings of regions in the (f-k) diagram, 

do filters, designed for two regions, possess superior 

characteristics over the ones designed for three 

regions. Example number 4 shows that even when 

little or no overlapping occurs, then two reject 

regions have a stronger negative influence on a pass 

region than one reject region. 
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Example Number 2  

The symmetric version for filter number 1 is computed with 

(5.1.1.12). 	Figure 7.2.1 shows the six computed components of filter 

number 7 and figure 7.2.1 a shows the contours of its two-dimensional 

amplitude spectrum. The contours should be compared with filter number 1. 

(figure 6.2.2.) The pass region in the left half of figure 7.2.1 a, shows 

a considerable loss if compared with the characteristics of figure 6.2.2. 

Even in regions which remain pure pass regions in both cases the approximation 

is better for the centrosymmetric filter. Figure 7.2.1 b gives 

an isometric plot of filter number7, viewed from the upper right-hand 

corner. 	It can be compared with the plot of figure 6.2.2 a. 

Example Number 3  

A symmetric reject-pass filter for the time window of figure 

5.1.1.1 and its centro-symmetric version for the window of figure 4.2.6 were 

computed with the following design parameters : 

1;=0.5; N=12; LF=19; V=1.0; tc=0.2;0-C=1; 	=3; 3 =30 

The contours of the amplitude spectrum for the symmetric filter are given in 

figure 7.2.4 and they show the expected suppression where pass regions 

overlap. An isometric plot of half the basic region viewed from the origin 

is given in figure 7.2.4 a. 	Figure 7.2.5 gives the contours of the 

corresponding centro-symmetric version and figure 7.2.5 a, shows its 

isometric plot viewed from (k = 1; f = 0). Most of the contours in this 

case, follow the typical trend of the pass region. The right half of the 

reject region seems to still influence the pass region for high frequencies 

by depressing the contours by about 6dB. The approximation of the desired 

pass region is still good if compared with the symmetric case where an 

approximation is impossible. This is especially shown by the isometric plot 

of figure 7.2.5 b, which gives a view from the point (k = 1; f = 0.5). 

Both the symmetric and centro-symmetric filter favour the transfer 
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characteristics of the reject region for frequencies in the specified parts. 

The contours of the pass region obtained for low frequencies are in both 

cases strongly bent towards the k-axis where pass regions occupy a fairly 

wide range. This feature is especially strong for the symmetric filter and 

it may be heuristically explained by the fact that no restrictions were 

imposed on the internal regions of the (f-k) diagram. Pass regions may there- 

fore deviate into this part without violating any specified conditions. 

Example Number 4  

One may argue that the interference of design regions in the 

(f-k) diagram effects predominantly high frequencies in a range where, due 

to the usual sampling of seismograms, hardly any arrivals are expected. 

Each additional design region however, influences the whole 

• (f-k) plot in every point, thus showing the strong inter-dependence of all 

valuas with each other. A number of computational experiments showed that 

with fewer design regions values in non-overlapping regions are also better 

approximated. To show this effect, a symmetric and centro-symmetric pass-

reject filter were computed for the following design parameters: 

N=12; LF=13; V=0.08; tc=0.01; oc=1; i=1.1; TC=1.0; 3=1 

The (f-k) diagrams of the symmetric and centro-symmetric filter are given in 

figure 7.2.6 and figure 7.2.7. 	Both diagrams may be compared with the one 

of filter number 3 which has the same design parameters without reject 

regions. It is seen that although there is increased rejection and a 

steeper escarpment for low frequencies, there is also an increased ripple 

in the plateaux of the pass region. Very high values are on the opposite 

side of the pass region across the reject region. Reject regions are in 

both cases nearly entirely depressed to -30dB. The ripple in the pass 

region of the symmetric filter falls into a range of 5dB, while the ripple 

for the centro-symmetric filter covers only a range of 3dB. All transfer 

functions for zero frequency are, for the symmetric case, about 6dB further 
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down than for the centro-symmetric. 

Altogether the three examples were selected to emphasize 

that whenever two regions are sufficient for the design, centro-symmetric 

filters should be computed. They have superior characteristics over 

optimum multichannel velocity filters. Three different effects mainly 

account for this: 

1. Less possible overlapping of pass with reject 

regions (example number 2). 

2. Less possible overlapping of pass with pass 

regions (example number 3). 

3. Less influence of one region on other regions 

which generally occurs without any overlapping 

(example number 4). 

Computational experiments further show that approximations of 

expected pass and reject regions increase with the number of traces and the 

filter length. To give an example, in figure 7.2.8 the (f-k) plot of a 

six-trace filter with the design parameters of filter number 3 is shown. 

The contours should be compared with the ones of figure 7.1.2. The escarp-

ment is in this case less steep and fewer hills in the reject region are 

higher. Nevertheless, the pass-regions in both cases are nearly equally 

good. 

With the help of the above examples, it is seen how a more 

complex time window will influence the (f-k) plot. The more regions that 

are chosen in the time domain, the more they will interfere with each other 

in the (f-k) domain. One more feature of multichannel velocity filters which 

was constantly observed in the (f-k) diagram is worthwhile mentioning and is 

described as follows: Whenever reject regions with a high value for3lie 

next to a pass region, they 'push' the pass region into parts of the (f-k)-

diagram with fewer restrictions. This has already been seen with filter 
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number 8 and number 9, where the pushing effects is especially strong for 

low frequencies. 	Figure 7.2.9 shows the Cf-k) diagram of another centro- 

symmetric pass-reject filter. Here this effect may be well observed in 

the lower right corner of the basic section. 
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FIGURE 7.2.1 b 	Filter number 7 

Isometric plot viewed from (f=0.5 ; k=1.0) 

FIGURE 7.2.1 	Filter number 7 

Components of the stacking filter 
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FIGURE 7.2.1. a 	Filter number 7: (f-k) plot 
2-0=0.8 ;04:=2 ; v =4 ; N=6 ; LF=17 ; V=0.08 ; 13=30 ; tc=0.01 
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FIGURE 7.2.4 a 	Isometric plot 
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FIGURE 7.2.4 	Filter number .8 

(f-k ) diagram 	rtc=0. 5 ; OC=1. 0 ; 8.3.0 ; 
11:=12 ; LF=19 ;11=1.0 ; tc=0.2;S=30- 
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FIGURE 7.2.5  Filter number 9 

(f-k) diagram 
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FIGURE 7.2.5 a Filter number 9 

Isometric plot viewed from (k=1.0 ; f=0.0) 

f=Q5 

FIGURE 7.2.5. b 	Filter number 9 

Isometric plot viewed from (k=1.0 ; f=0.5) 
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FIGURE 7.2.6  Filter number 10 
(f-k) diagram 
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FIGURE 7.2.7 	Filter number 11 .(f-k) diagram 

ftc:=1.0 ; N=12 ; LF=13 ;CX=1.0 ; 8=1.1 ; y=o.o8 ;3=1.0 ; tc=o.oi 
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FIGURE 7.2.6 a 	Filter number 10 

Isometric plot 

FIGURE 7.2.7. a 	Filter number 11 

Isometric plot 

k: 0.5 
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1=0; fx0 

FIGURE 7.2.8  Filter number 12 

(f-k) diagram and isometric plot 

1:7-=1.0 ; N=6 ; LF=7 ;V=0.08 
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1;0 

0;0 

FIGURE 7.2,9 	Filter number 13 
(f-k) diagram of a pass- reject filter to show the pushing effect. 
rr=0.25 ;01=1.0 ; ?=4.0 ; N=12 ; LF=11 ; 1)=0.08 ; Q =20 ; t c=0.01 
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7.3  Characteristics of three-dimensional multichannel velocity filters  

In section 5.1.3 it was shown how to specify certain time 

windows for traces recorded with a two-dimensional array. With these 

windows and the normal equations (4.2.4) three-dimensional stacking filters 

can be computed which will enhance or reject plane waves falling into a 

certain range (figure 5.1.3.1) with normal vectors lying in a plane. 	In 

this section some of these filters are computed and characterised. 

The three-dimensional 
	

Fourier transform is the appropriate tool for the 

characterisation of the filters. Transfer functions for three-dimensional 

filters are defined similar to the two-dimensional case.They are contained in 

the three-dimensional Fourier transform.Their phases depend on 

the window shape and 	centro-symmetric or symmetric windows should 

again be chosen to keep phase properties simple. These time windows are 

the ones which, due to the shortest possible length of all corresponding 

time windows, also lead to the fastest convergence of filters. 

Let a.(t*)(i=1,.,N x  N y;-nct*sm) be the components of the 

stacking filter for the two-dimensional recording array of figure 5.1.3.1. 

Without loss of generality N
x and Ny  are chosen to be odd so that the centre 

of the recording array falls together with the recording position of the 

centre trace. For reasons of simplicity, the traces and filter components 

are re-numbered by giving each detector position the two. indices 

With N1 = (N 1)/2 and Ml = (N -1)/2 one may write 

a-N1,-M1(t*)=a1(t*);  a-N1+1,-M1(t*)=a2(t*); 	a0,0(t*)=a(N N +1)/2( t*) x y 

• • a 
N1,M1(t*)  = aN N (t*)  x y 

N1 M1 
Let 	f (t*) 	a..(t*)*sinc(t*-0c..) 	(7.3.1) 

oC i=-N1 j=-M1 
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be the response and Fa(f)  
M1 

= 	A..(f)e 	
i] 

i=-N1 j=-M1 1J 
(7.3.2) 

the transfer function for broad band signals with moveoutc ij.... 

moveout belongs to a plane wave 

+"Cyi , I ik N1; I jjsM1) 

the transfer function becomes 

N1 	M1 	-2rif( r i+T- j) 

	

F(f,17 	A..(f)e 	x y 

	

x 	 -N1 j=-M1 13  

If the 

(7.3.3) 

Because the three-dimensional Fourier transform can be expressed as 

m 	N1 	VI 	-2Wi(fT - 

13 
F(f,k ,k ) = 	: 	a..(1)e 

x 	T=-n i=-N1 j= -M1 

kxi -k j) 

N1 M1 
A..(f)e 

i= -N1 j=-M1 13  

2/ti(k x  i + k yj) 
(7.3.4) 

one may find the transfer function (7.3.3) from it along the line: 

k = -ft ; k = -ft in the range IfIcl. k ,k is known as the vector x x y 	y 	x y 

wave number (Burg, 	1964 ) . 	One may again reverse the order of the 

filter (see (6.2.13)) to obtain the transfer function along k x  =frx  ; k Y
17 =f 

For symmetric and centro-symmetx;ic time windows the transfer funCtions for 

all possible plane waves have zero phase due to equation (6.2.10). The 

basic region of the three-dimensional Fourier transform of a real sampled 

three-dimensional operator is given in figure 7.3.1. The transfer function 

of the stacking filter for a plane wave characterised by ri; = a 

and 	= b is obtained along the line A. In the case where a>1 or b>l,the line 

kx
=fa; k =fb runs through additional blocks of the same basic type which 

repeat periodically in the kx 
and k direction. 

In the rest of this section some examples are discussed. 

The recording pattern of figure 7.3.3 is given with Nx=5 and N =4. 



-108- 

For a three-dimensional pass filter the parameters tx=1,pc-=-2,T-y=1,61.C'y=-2 

are chosen for the pass region. The additional design parameters are 

specified as LF = 7,11= 0.08 and tc  = 0.01. 	The resulting symmetric time 

window for the twenty traces is shown in figure 7.3.2. 	Due to the high 

symmetry of this window the computed stacking filter contains only four 

different responses. These are given in table 7.3.1. 	Figure 7.3.2 shows 

the traces to which they have to be applied. 	Figure 7.3.5 gives the 

expected response of the polarisation filter in the basic range of the 

three-dimensional Fourier transform. 	Both figure 7.3.2 and figure 7.3.5 

are again logically connected with the help of the defined concept of the 

stacking filter transfer function. 	Figure 7.3.4 shows the three-dimensional 

Fourier transform of the computed stacking filter. To simplify the 

presentation, horizontal layers (for fixed frequencies) of this transform 

are given. The contours of a filter (number 15) with the above 

parameters, however, with N
x = 4 Elnd N = 3 are shown in figure 7.3.8. The 

pass regions are broader in this second case. This example was selected to 

show that the approximation of the desired characteristics increases with 

the size of the array. All transfer functions-  also start with no rejection 

for zero frequency, a feature already observed for two-dimensional optimum 

multichannel velocity pass filters. 

A straight forward three-dimensional stack (all traces of the 

two-dimensional array are added) has also a three-dimensional Fourier 

transform. It is independent of the frequency. Any horizontal cut through 

the basic region of a 5x4 recording array is given in figure 7.3.9, one for 

a 11 x 11 array in figure 7.3.10. The straight forward three-dimensional 

stack passes perfectly plane waves, which fall perpendicularly on the array 

from below. The selection of these waves from others coming in with 

certain angles increases with the number of detectors in the array. 
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One might think that detectors should be placed on all grid 

points of a rectangular array, but this is not necessary . The given 

time domain design is very flexible to compute filter components for any 

kind of array. It must be generally emphasized that detector positions 

can have arbitrary spacing among each other. It is only necessary for the 

characterisation of the filter with the discrete Fourier transform that their 

coordinates should fall on grid inter-sections. Below is the design of filter 

number 16, which is expected to have the desired pass characteristic of 

figure 7.3.5 where however, detectors are placed on the cross of figure 

7.3.6. 	The time window for this array has to be specified as shown in 

figure 7.3.7. 	The obtained stacking filter components al(t*) to as(t*) 

and a
10(t*) are given in table 7.3.2 and the three-dimensional Fourier 

transform is shown in figure 7.3.11. Filter number 16 no longer acts as 

a polarisation filter for the selected direction. The characteristics 

approximate very well to what one would expect for a general three-dimensional 

.velocity filter where plane waves are to be passed with normal vectors falling 

within an inverted pyramid instead of on a plane. 

The desired polarisation filter characteristics of the 

cross-shaped array are far better approximated if plane waves are to be 

selected whose direction of propagation falls together with the direction 

of one branch of the cross. To give an example for this case, again the 

detector positions of figure 7.3.6 are used. This time, however, plane 

waves are to be filtered whose three-dimensional transfer diagram is given 

in figure 7.3.12. 	The time window is shown in figure 7.3.13. 	The three- 

dimensional transform of the stacking filter (number 17) obtained is presented 

in figure 7.3.18. Transfer characteristics for this case approximate very 

well the desired ones. 

It is clear from the last two examples that an array may 

have good polarisation properties in one direction and less good characteris- 

tics in another direction. Optimizing a three-dimensional filter for a 
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given design region and fixed detector positions does still not result in 

an absolute optimum for a given number of detectors where their position has 

to be included in the design as well. 	It is generally possible to minimize 

the mean square error with respect to both filters and seismometer locations 

(Burg, 1964 	) . 	This leads to non-linear equations which are difficult 

to solve. A semi-practical approach, where responses are computed for 

various detector positions would however, be very helpful. 	This certainly 

very interesting line of further research is not followed in this work. 

To complete this section two more examples of polarisation 

filters are discussed. The recording array for both cases is given in 

figure 7.3.15. 	This array has the advantage that due to its high symmetry, 

a computed filter can be applied four times by simply interchanging the 

filter components in a circular way. Four directions can then be easily 

scanned with only one set of filters. For the first example the desired 

transfer characteristic in the (f,k ,k ) domain is the one of figure 7.3.5. 
x y 

The time window of the pass region is. given in figure 7.3.16 . Additional 

design parameters are N = 21; LF = 11; V = 0.5. The three-dimensional 

Fourier transform is shown in figure 7.3.19. Characteristics are comparable 

approximately with filter number 14 (fig.7.3.4). 	There are, however, high 

values throughout the middle of the basic region. Filter number 19 

provides the second example where filter number 18 is supplemented by 

allowing an additional reject region (figure 7.3.14) in the design. The 

weighting factor for the correlated noise is i= 1. The time window for 

the reject region is given in figure 7.3.17. 	In the (f,k x  ,k y
) space there 

is both a pass and reject region simultaneously along the line kx 
= k = O. 

The pass region in figure 7.3.20 is shifted into a region with no constraints. 

This typical feature was already observed with two-dimensional multichannel 

velocity filters. One may also notice that high values may be encountered 

in regions which were not included in the design. Rejection increases with 
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increasing the weighting factor 4of the noise. Figure 7.3.21 shows the 

characteristics for the last example (filter number 20), where q=20. 

One may generally conclude, that features of two-dimensional 

multichannel velocity filters can be observed in a similar way in the three- 

dimensional case. 	Uncorrelated noise in the design depresses the high 

frequency content. Overlapping of regions may occur. The more regions 

that are used in the design, the greater may be their interference in the 

(f, k x  ,ky  ) domain. 
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a
1 
 (t*) a

2 
(t*) a

3 
(t*) a

4 
(t*) 

0.0097 0.0054 -0.0041 -0.0023 
-0.0214 0.0239 -0.0054 -0.0022 
0.0063 -0.0128 0.0344 -0.0200 

-0.0060 -0.0023 0.0022 0.1247 
0.0063 -0.0128 0.0344 -0.0200 

-0.0214 0.0239 -0.0054 -0.0022 
0.0097 0.0054 -0.0041 -0.0023 

TABLE 7.3.1 Stacking filter components of 
filter number 14 

a
1 
 (t*) a

2 
(t*) a

3 
(t*) a

4 
(t*) a

5 
(t*) a

10
(t*) 

0.0086 0.0022 -0.0062 0.0097 -0.0219 0.0409 
-0.0046 0.0134 -0.0013 -0.0058 -0.0073 0.0236 
-0.0150 0.0080 0.0181 -0.0159 -0.0096 0.0201 
0.0003 -0.0055 0.0145 0.0193 -0.0344 0.0263 
0.0046 -0.0047 -0.0028 0.0249 0.0423 -0.0227 
0.0044 -0.0044 -0.0015 -0.0031 0.1323 0.0466 
0.0046 -0.0047 -0.0028 0.0249 0.0423 -0.0227 
0.0003 -0.0055 0.0145 0.0193 -0.0344 0.0263 

-0.0150 0.0080 0.0181 -0.0159 -0.0096 0.0201 
-0.0046 0.0134 -0.0013 -0.0058 -0.0073 0.0236 
0.0086 0.0022 -0.0062 0.0097 -0.0219 0.0409 

TABLE 7.3.2 Stacking filter components for filter 
number 16 
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(f,k x  ,k y) diagram (continued on next page) 
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7.4 Characteristics of differential normal moveout filters  

By specifying various types of time windows, the normal 

equations (4.2.4) have been used for the design of two- and three-

dimensional velocity filters. The two- or three-dimensional Fourier 

transform of the filters contains all transfer functions for 

signals with constant moveout. 	It is therefore the most appropriate tool 

for the filter characterisation. 	If, however, signals pass through a 

velocity filter which have differential instead of constant moveout then the 

(f-k) plot of a filter is of no further help. Equally it generally makes 

little sense to apply a two-dimensional Fourier transform to a filter which 

was designed for differential normal moveout. One would then obtain the 

transfer functions for signals with constant moveout from it. 

For differential normal moveout filters, one has to look for other transforms, 

which include all transfer functions for the differential normal moveout 

signals used in the design. 

In this section it is shown how with simple manipulations, 

a diagram for a stacking filter may be computed from which the transfer 

functions for signals belonging to a specified family of differ-

ential 

 

normal moveout curves can be obtained. It is also shown that for 

a special class of filters, such a transform is again the most appropriate 

tool of characterisation. The technique is explained with the help of the 

following examples. 

Example Number 6  

The problem is to characterise filter number 12 

(designed for signals with contant moveout) for signals having the following 

moveout: 
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o 1 
= 0 	on trace 1 

= 	1:' 	11 	II 	2 

= 	2t- 	II 	If 	3 (-00<ec +CO ) 

= 4't If If  4 

= 61: tr Ii 5 

= 9 i.- 	IT 	n 	6 

 

 

ce6  (7.4.1) 

For this purpose, a new stacking filter (B.(f), j = 1,..,10) 

is defined from the six components of filter number 12 as shown in table 

7.4.1. 

B
1 
 (f) B

2
(f) B

3
(f) B

4
(f) B

5
(f) B

6
(f) B

7
(f) B

8
(f) B

9
(f) B

10
(f) 

A (f) A2(f) A3(f) 	0 	A4(f) 	0 	A5(f) 	0 	0 	A6(f) 

TABLE 7.4.1 

In this way, the transfer function for the given moveout (7.4.1) 

6 	-2nifoc. 
FDC (f) 	= 	A.f) e 

J=1 
(7.4.2) 

is expressed as 

10 
F(f,,r) = F, (f) 	B.(f)e-TnifTr 

j=1 3  

This formula can be obtained from the two-dimensional Fourier transform of 

B.(f),(j = 
3 

,10 	+2nijk 
F(f,k) =Zs_ B.(f)e 

j=1 3  
(7.4.3) 

along the line k = -fl: 

The function (7.4.3) is called the transfer diagram of filter number 12 for 

the family of curves (7.4.1). 	For the above example the two-dimensional 

amplitude spectrum of this diagram is given in figure 7.4.1. 	It contains 

all amplitude spectra of the transfer functions for any given 1;of the 

family of curves (7.4.1) and has to be interpreted as follows; Each transfer 
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function for a value rCis obtained along the line which connects the origin 

with that value on the q:-axis. The given diagram should be compared with 

the contours of figure 7.2.8. 	Both plots have the same transfer function 

for q:= 0. 

From the Rhove example it is obvious that the described 

techniqueisofvalueifthemoveouthastheformoC.=krt, where k is an 

integer number. 	IfthemoveoutisoC.=k1;+ 	where (. may be a real 
2-Iriff 3. 

number, the same procedure has to be done with A.(f)e 	instead of A.(f). 
3 	 3 

The greater the curvature of the test curves, the more zero components have 

to be introduced in the newly defined vector. 

The transfer diagram of filter number 12 for the family of 

curves 

= 5/2 +'1 C'e4 = -1/2 +I"' (.7.4.4) 

OZ2 = 3/2 + °45 = -3/2 +T." (-490<t4+00) 

CX3 = 1/2 +1-; (>4 6 = -5/2 +V 

02ffif 
Iscorrespondinglyobtainedbytransforming 8.(f)=A.(f) e 	,(j=1,..,6) 

into the ( f - k ) domain . 	The amplitude spectrum of this transform 

is given in figure 7.4.2. 	This example shows in addition, how to derive 

a useful filter in a quick way from a given stacking filter by simply 

shifting the stacking filter components for constant amounts on each trace. 

This observation may be generalized in the following way.: 

Let A.(f), (j=-N,..,N) be the components of a stacking filter and 

F(f,k) be the two-dimensional Fourier transform as defined with formula (6.2.11 

Shifting each component by the contant amount 	leads to the stacking filter 

B.(f)=A.(f)e-21i6if , (j=-N,...,N) 
3 	3 

whose corresponding transform F8  (f,k) is related to F(f,k) by the formula 

P(f,k)=?(f,k+Sf),.1. Any line k=fr0  with If1.4.1 in F(f,k) maps into the 

line k=f(1,-  0+0 in 713(f,k). 
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If a filter has to be computed for the time window of figure 

7.4.9 b, one may make use of the stacking filter for the time window of figure 

7.4.9 a without solving again the normal equations. The stacking filter com-

ponents need only be delayed by constant amounts on each trace .The filter 

obtained by this process is the optimum filter for a window,where the window 

limits have the same shift as the filter components. 	this way it is 

possible to derive may useful filters from a computed one. 

In the following part of this section differential normal 

moveout filters are characterised. Transforms for some of these filters 

are given from which all transfer functions for the differential normal 

moveout signals can be obtained which were assumed in the filter design. 

An appropriate example for such a time window is shown in figure 7.4.3. 

Filters with these kind of windows are important for two-dimensional 

problems encountered in the filtering of CDP-data. The centre point is 

selected in such a way that the overall length of the window is short. The 

family of curves which is inherently assumed in the design of a filter for 

the given window is 

°41 = 0 005 = 049 = 15't 

042 = 046 = 7T".. 0410 = 18T; ( -00<V4 00) 
043 = 2 V 0c7 = 9rt" 0411 = 22' 

OC4 = 3'C .C>8 	= 12V 0412 = 261.7 

(7.4.5) 

From the twelve filter components obtained in this case, a 27-trace filter 

has to be defined in the way described above. The two-dimensional Fourier 

transform of it contains all transfer functions for signals 

belonging to the family of curves (7.4.5) Three examples are given below: 

Example Number 7. 

A stacking filter for the time window of figure 7.4.3 without 

reject region was computed for the following design parameters(filter no.21) 

N= 12; LF = 27; 	0; 	= 0.08; T = 1; TR  = 0; td  = 13 

p and 2'R  is defined in figure 7.4.3. 
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The trace-symmetric stacking filter components are given in table 7.4.2. 

The amplitude-spectrum of the transfer diagram is shown in figure 7.4.4 . 

Signals belonging to the curves (7.4.5) with any value I rd<1 pass with 

hardly any change in their amplitude characteristics. However, for 

frequencies below f = 0.16 the filter rejects very well those signals which 

fall into the reject region close to the escarpment. Frequencies higher 

than f = 0.25 pass for every value of V. 

This is no longer the case for filter number 22 with the above 

parameters, where however,Ts = 1/3. Contours and isometric plot for this 

case are given in figure 7.4.5. 	Note that again for the scaled time 

windows transfer diagrams seem to be scaled versions of each other. (This 

effect is explained in Chapter V111). The two-dimensional Fourier transform 

for the last differential normal moveout filter is shown in figure 7.4.6. 

It characterises the performance of the filter for 	signals with 

constant moveout. One may conclude that when constant moveout signals fall 

into the pass region of figure 7.4.3 they pass nearly undistorted. A 

rejection of constant moveout signals outside this range is worse than the 

rejection of differential normal moveout signals which fall into the curved 

reject region. A good knowledge of the actual moveout incorporated into the 

filter design is therefore of great help to obtain optimum rejection. It 

was generally found that the escarpment has maximum steepness if the filtered 

signals were the same ones as used in the filter design. 

Example Number 8  

A stacking filter for the window of figure 7.4.3 was computed 

with the following design parameters (filter number 23) 

N = 12; LF = 11; td  = 6; V= 0.08; 91 = 2.0; T = 0.5; R = 0.25 

The amplitude spectrum of the transfer diagram is shown in figure 7.4.7. 

Apart from depressions for high frequencies, pass and reject regions are 
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fairly well approximated. For signals falling on curves outside the 

specified range, the filter becomes very selective for certain frequencies 

and certain values 
	An application of these filters has therefore to 

be done with extreme care. 	Figure 7.4.8 shows the amplitude spectrum of 

the transfer diagram for filter number 24 , which has the above design 

parameters, where however,Tiz  = 0.05. 	As expected, the narrower reject 

region is better approximated in this case. Apart from the strong 

selectivity of the filter outside specified regions, observed features are 

very similar to multichannel velocity filters. For instance one may easily 

predict the values':' and Rof the above filter type, for which pass and 

reject regions will overlap in the transfer diagram. 

The technique described for the characterisation of 

differential normal moveout filters is very useful, because properties of 

these filters are revealed which cannot be found otherwise. The given 

examples in this section were based on seismic considerations. Although 

these examples show the complexity of the problem, further research on this 

subject is certainly useful. 	It was generally found that reject and pass 

regions are well approximated. 	It is, however, difficult to predict 

characteristics outside specified regions. These may sometimes even exceed 

the height of pass regions. 
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0; 0 

Isometric plot of the transfer diagram 

FIGURE 7.4.1 	Transfer diagram of filter number 12 for the 

family of curves (7.4.1) 
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Isometric plot 

FIGURE 7.4.4 	Filter number 21 

Amplitude spectrum of the transfer diagram for the curves (7.4.5) 
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FIGURE 7.4.5 	Filter number 22 

Amplitude spectrum of the transfer diagram for the curves (7.4.5) 
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.1576679PE-02 -.23400016E-02 -.89600450E-05 .25206942E-073 
.18732843E-02 -.12776696E-02 --.38428111E-03 -.3371141'-16E-03 

---.23850548E-02 .722.  111`32E-u5 -. 14838971E-0? -.35603595E-04 
-...18732838E-02 -.1e/78702E-02 -.311428113E-03 -.33784317E-0'A 
-.15766793E-02 -.23400020E-02 -.8P604063E-05 .25206940E-U3 
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-.244445R6E-02 -.45419199E-03 -.21014001E-0? .39040944t.-U73 
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-.32562707E-02 -'-.2827731?E-02 .95096902E-03 .4439226/E-02 
.41296554E-:02 -.24110064E-02 i..94959600E-03 .10502601E-01 
.52911080E-02 -'.14156241E-02 .39269820E-02 .13839110L-01 

-1.6.51302004E-02 -.29108344E-03 .10b20172E-01 .74004221E-0? 
-.54918898E-.02 .62108495E-02 .83086205E-02 .15215125E-0p, 
_ 	.93270580E"•03 - .78796903E-02_ .20015011E-02 .72682036L-0:i 
M44760570E"02 .- 18791989E-0? -  .19973809E-02-  -.19042705E-U? 
.39605995E-02 .18527832E-03 .41511463E-03 .-.20914342r-_-02 

a5(09 
.16974060E-.0?' 
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 0") 

';75587746E-04 
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.18586974E.-02 
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-.13632270E-02 
-.37865141E-0? .53791636E-03 -.11679524E-02 -.24444652E-02 
.51685779E-02f- .-.29626446F-03 .45161666E-0A -.32557156E-02 
-.59376630E-02! .32247696E-02 -.11020o72E-02 --.37693584E-02 

-.59561654E-02 .68550144L-03 -.39020336E-02 
.12310185E-02 -.69445443E-02 -.275927(0L-02 -.11188491E-02 

7:.11366198E-01i -.75674364E-02 -.77218951E-02- .20025726E-02 
.19242584E-01i -.24591461E-02 ,-.15182382E-01_ .97016185E-03 

777,16659204E-01h .11756446E-01 ie.18329459E-01 -.89649304E-02 
.10473923E-01! .,2523573E-01 -.15499567E-0' 4.291201403E-01 

-.37306909E-02 E_ .25325031E-01 .60976572E-02 -.57496641E-01 
.16436806E-021. .19047564E-01 .38022168E-01 -.890087R1E-01 
.16782608E02! .86765030E-02 .56671973E-01 .11626519E+00 
.27594387E-02i .54693282E-02 .66660952E-01 .79662606E+00 
.1678.2b09E-02 .66785030E-02 .568/1973E-01' -.11626519E+00 
.18436606E-up .19047564E-01- .36022168E-01 -.89008781E-01 
.37306910E-02 .2535031E-01 .60976572E-02 -.57496641E-01. 
.10473923E-01 .2523573E-01 -.15499567E-01 -.291201303E-01 
.16659204E-01 .11756447E-01 -.16329459E-01 -.89649394E-02 
.19242564E-011 -.24591480E-02 -.15182382E-V1 .97016190E-03 
A11.366198E-01. -.75674365E-02 -.77218951E-02 .20025727E-02 
.1.2310782E-U2 -.8940)443E-02 -.27592769E-02 -,111q8490E-02 
,..32757016E-027 -.59561654E-02 .68550120E-03 .-.3q020336E-02 
-.59378632E-02i 7.32247699E-02 .11020675E-02 -.37693585E-02 
.51685781E-02 -.296265421:-03 .45161734E-03 -.32557156E-02 
-.37865135E-0? -.53791780E-03 -.11679516E-02 -.2444482E-02 
:,.16974055E-0?'  .75567033E-04 -.18586976E-02 .-.13632269E-02 

TABLE 7.4.2 	Filter number 21 

Stacking filter components (continued on next page) 
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TABLE 7.4.2 Stacking filter components 

 

FIGURE 7.4.6 	(f-k) diagram of the differential normal 

moveout filter number 22 



lt0  ;1 .0.0 

nr) 
o 	 /1) • ,() 

cb.co 	0.121 	0.25 0175 

20 
> 

-it 

1' 
1.00 

138- 

0; 0 

F.7.0 , Kr 1 

Isometric plot 

FIGURE 7.4.7 	Filter number 23 

Amplitude spectrum of the transfer diagram for the curves (7.4.5) 
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FIGURE 7.4.8 	Filter number 24 

Amplitude spectrum of the transfer diagram for the curves (7.4.5) 
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FIGURE 7.4.9 Relationship between shifted stacking 

filter components and time windows . 

If the normal equations for the upper window are 
N 

A.(f)R-.(f) =G.(f) 	, (j=1,...,N) 
1 	1] 

whereR..(f)andG.(f) is given in (4.2.5) and (4.2.6), then the 
1J 	J 

ones for the lower window are obtained by replacing ti  with 

t.1=t.+d.1 
 in the upper ones. 

This leads to the following normal equations: 

N 
 (nf)Oridif)R..m...G3.

(f) 	, (j=1,..,N) 
 i=1 

The solutions of these are in the time domain a.(t)=a.1
(t-d.),(i=1,.N) 

and therefore can be expressed with the solutions of the 

filter for the upper window. 
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7.5 The influence of chatter  

The aim in previous sections of this chapter'was to character-

ise various stacking filters with their most appropriate transforms. These 

transforms revealed various properties which are common to all filters. 

In the rest of this chapter some more design parameters are described. 	In 

this section, in particular, the influence of the chatter parameter t
c 
is 

discussed. 	It is shown that for small values t
c it is not necessary to 

provide for chatter in the filter design. The same purpose is achieved by 

applying a special filter to the stacked output. Below, some computational 

experiments were done with pass-velocity filters to show how various values 

of tc  influence the (f-k) plot. 

The design parameters of filter number 3 were chosen and 

some (f-k) plots for filters with various values of tc  were computed. 

Figure 7.5.1 shows the (f-k) plots of some of these filters. 	The contours 

should be compared with the ones of figure 7.1.2 . One sees immediately that 

tc influences only the frequency content of the (f-k) diagram. The trans-

fer characteristics stay very much the same for low frequencies. In 

figure 7.5.2 some zero moveout transfer functions for the given filter type 

are shown. 	By increasing tc  higher frequencies are increasingly rejected. 

This seems obvious because a certain value for t
c 

means a bigger distortion 

for high frequency signals than for low ones. It is therefore quite 

logical that (f-k) diagrams of multichannel velocity filters designed for 

high values t
c 
show suppressed characteristics for high frequencies. 

The fact that only the frequency content is changed by tc  

leads to the idea of applying a filter to the output which has a similar 

effect as the incorporation of tc  into the normal equations. These 

equations give a hint towards the selection of such a filter. It is 

assumed, expression (4.2.3) has the factor sinc2  (t
c
f) instead of sinc(t

c
f). 

Both functions are very similar for small values of tc  and If' 4. 2. 
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With the condition that V = 0 these 

slightly changed normal equations correspond to a problem where, for the 

filtered signals recCf) sinc Ct
c
f) instead of rec Cf), a corresponding 

filter is designed with no chatter at all. Filtering the broad band 

signals in the input with sinc (tcf) is the same as filtering the output 

with B(f) = rec (f) sinc (t
c
f). 	In this way there is no need for 

incorporating t
c 

in any filter design at all. 	B(f) is the filter which 

takes care of the influence of t
c
. 	Some amplitude spectra of B(f) for 

various values t
c 
were computed. 	They were very similar to the zero 

moveout transfer functions of figure 7.5.2. as long as V and tc  were less 

than one. 
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FIGURE 7.5.1 	(f-k) diagrams (continued on next page) 



2.0 C 

K=05 

-144- 

f= 0.5 

FIGURE 7.5.1 	(f-k) diagram 
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FIGURE 7.5.2 	Zero moveout transfer functions 
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7.6 	Influence of the weighting factor for correlated and uncorrelated noise  

In this section some computational experiments are discussed 

which were done in connection with the parameters and)). For reasons of 

simplicity the following treatment is confined to two-dimensional velocity 

filters. 	Results may however be generalized. 

In previous sections stacking filters were characterised with 

certain transforms, from which transfer functions for given moveouts could 

be obtained. Using Parsevals theorem, the output energy for broad band 

signals for a particular moveout t' becomes: 

+1 	1  
E(t')=S 	e' I2 df=2d<

N 
 A.(f)e

-27ijfti
2
df 

0 j=1 - 2 

(7.6.1) 

This function can usually be quite well estimated by simply looking at the 

two-dimensional Fourier transform. 	If, for instance, signals have the 

moveout T's  and correlated noise the moveout qs the signal to correlated 

noise ratio for this case can be expressed as 

Sr  = E ( rs)/E (Tr) 	 (7.6.2) 

If signals have the rectangular band-width rec (f/42))(141) then their passed 

energy is obtained as 

1/27 
E(') = 2 S IF(f,t7)1 2df 

0 
(7.6.3) 

If K broad band noise families uncorrelated to each other with the constant 

moveouts re.,(1=1,.,K) are present,.their total energy in the output is 

K 
E =, 	E ( )  

i=1 

E(`t) was computed for filter number 12 with 41= 1 and also for the 6-trace 

straightforward stack(see figure 6.2.7). Both functions are shown in 

figure 7.6.1. 	If the constant moveouts for broad band signals and noise 
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are known, one may read their appropriate energy values from the graph and 

obtain the signal to correlated noise ratio by simple division. The 

straightforward stack leads to good ratios, if the signals have more or less 

exact zero moveout. However, for fairly small deviations from this the 

ratios are more favourable in the case of filter number 12. Increasing 9 
may considerably improve the signal to correlated noise ratio. Figure 

7.6.2 shows some functions E(t) for filter number 1, where crtakes on 

various values. 	In figure 7.6.4 some corresponding (f-k) plots are given. 

The influence of Q on transfer characteristics can often be quite well 

predicted by recalling the relation between time windows and (f-k) plots and 

remembering the fact that high values of depress reject regions. 	Note• 

that both pass and reject region are generally effected when is increased. 

So far, little attention has been given to transfer 

characteristics of stacking filters to uncorrelated noise. 	Characteristics 

related to signals and correlated noise can be derived from the two-

dimensional Fourier transform. This transform, however, gives no information 

about the response of the filter to uncorrelated noise. The presence of 

this noise is often quite considerable and by increasing it in the design 

(or the weighting factor V of the error) considerable improvement of the 

signal to total noise ratio can be obtained. 	Let n.(t*)
) 
 (i=1,..,N) be the 

uncorrelated noise components in the input and ai(te:),(i=1,.,N;-n.it*.lm) 

the components of the stacking filter. The corresponding noise in the 

output is then 

N 
n(t*) = 	a.(t*)*n.(t*) 

i=1 

whose autocorrelation is 

N 

Tinn(Z*) = T . . aa (ft*)*  
i=1 

Ct*), n.n. 
1 
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from which the noise power is obtained as 

= Tnn(0)  

By making, therefore, a further assumption that 

n.n.(1,*)= a sinc et*) 
3_ 3_ 

one sees that 

m e =a$ Ta.a.(°)=4- 1=1 	1 1 	t^=-n i=1 
a1. (t") (7.6.4) 

The sum of the squared stacking filter components therefore 

is a good criterion to investigate the performance of a filter on uncorrelated 

noise. 	Especially for the straight forward stack, where the filter 

components are zero delay spikes of a height 1/N the power of the passed 

noise is En=a/M. 	It is well known, that if noise events are randomly 

distributed, then simple addition of traces represents the best possible 

technique for its suppression ( Burg, 1964 ). 	Ideally therefore, what 

is desired is a stacking filter which approximates well the specified pass 

and reject regions and shows also optimally the same characteristics in 

relation to uncorrelated noise as a straight forward stack. For optimum 

multichannel velocity filters it is known that increasing uncorrelated noise 

in the design results in a depression of the pass regions of the (f-k) 

diagram. This property was observed for all filters belonging to the class 

treated in this thesis. From this observation one may still not conclude 

in which way the response for uncorrelated noise is changed. If special 

attention is therefore to be given to the improvement of the signal to un-

correlated noise ratio in the output, the following function can be used to 

characterise a filter for broad band signals. 

S(t) = E (T)/En 	 (7.6.5) 

E('t) is given in (7.6.3) and En  is used as in (7.6.4) witha = 1. 
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For instance if broad band signals and noise with the same power in the 

traces and the constant moveouts sand 'Zr' are given, the signal to total 

noise ratio becomes with (7.6.5) 

S(T's ) 	E(27') 

S(2;) + 1 

 

E(T;) + E
n 

A number of functions Sft) for a series of filters was computed where the 

design parameters are the ones of filter number 12 except for the value )J 

which was increased steadily. 	The functions are shown in figure 7.6.3. 

The dotted line belongs to the straight forward stack. There is no doubt 

that for low values V, the signal to uncorrelated noise ratio can be fairly 

poor. This is certainly one of the reasons why velocity filters with good 

pass and reject characteristics applied to real seismograms may still show 

bad results. 	By increasing )) , the signal to noise ratio may, however, be 

improved. 	It was generally found that for about 1,/ -= 100, a limiting curve 

S(T) is obtained. For V> 100 no further essential improvement of the signal 

to noise ratio is possible. Figure 7.6.5 shows some (f-k) diagrams for 

filter number 12 and various values V. These characteristics stay nearly 

unchanged for V>100. A good signal to total noise ratio for the output 

trace is generally achieved by giving both 03 and V a value of approximately 

40. 	By doing this, one should however be aware of the changes caused in 

the (f-k) diagram. All computational experiments show that the improvement 

of one filter property has to be paid for with a deterioration of other 

filter characteristics. These experiments also emphasize the importance of 

the time domain design. By designing a filter in the (f-k) domain it would 

be difficult to influence the signal to noise ratio. 
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f 

FIGURE 7.6.5 (f-k) diagrams for filter number 12 for 

various values of V 
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7.7 Design ofsuboptimum stacking filters 

In this section some methods of obtaining filters for large 

arrays from optimum stacking filters designed for small arrays are shown. The 

characteristics of these filters are not as good as the ones of the optimum 

stacking filters. 	They are therefore called suboptimum. Note that this 

term is used here in a different sense as by Foster, Sengbush, Watson (1964). 

Suboptimum filters need less computation time and computer space for the 

design. Three different approaches for the filter computation are given 

below. 	For reasons of simplicity the treatment is confined to the case of 

two-dimensional velocity filters. 	Most ideas can be logically extended to 

the whole class of filters. 

1. The two-dimensional convolution technique. 

In chapter V1 it was shown that two-dimensional convolution 

of an N-trace operator with a M-trace operator leads to an (N + M - 1) 

trace operator. The two-dimensional Fourier transform of the (N + M - 1) 

trace operator is the product of the transforms of the N- and M-trace 

operators. In this way one may obtain a stacking filter for N + M - 1 

traces from two stacking filters designed for N and M traces. 	If N- and 

M-trace operators have similar characteristics in the (f-k) domain, the 

response of the (N + M -1)-trace filter is better than either of the smaller 

filters, because the product of the Fourier transforms enhances pass- and 

depresses reject regions (dB values in the given (f-k) plots have to be 

added). 	If N and M trace operator are both symmetric or centro-symmetric, 

the (N + M -1) trace filter is also symmetric or centro-symmetric. 

2. Cascade filter technique. 

Let 2M traces be given where signals arrive with the constant 

moveout et. A 2M-trace filter for a certain window is desired, however 

onlyanM-tracefiltera.(t*), (j=1,.M)for the same window shape is available. 



-153- 

It is shown below how to use two of the given filters on all 2M traces. 

By applying the filter to traces 1 to M and again to traces M +1 to 2M, 

two output signals result with moveout MT7'. After filtering these two 

output traces with a stacking filter bi(t*),(1 = 1,2) where the time window 

is M times broader than the given one, one obtains again a single trace 

filtered output. Because of the broad design region for the 2-channel 

filter numerous foldings in its (f-k) diagram may occur. 	This technique 

therefore, should be only used for narrow design regions. 	Instead of 

applying these stacking filters in cascade, one may use the stacking filter 

ci(t*),(i = 1,..,2M) 

c.W) = a-1(t*)*b1  (t*), (i=1,..,M ) 

c.I+M (t*) = a.(-0)*b2
(t*),(i=1,..,M ) 

1 

3. Supplementing of time windows 

When a time window for M + N traces is given each filter 

component obtained depends on the total shape of the window and on all 

traces. Nevertheless, it seems logical that if for M and N subsequent 

traces of the window two stacking filters ai(t*)for i=1,.,M and i=M+1,.,M+N 

are individually computed, the stacking filter ai(t*) (i=1,M+N) should show 

suboptimum characteristics if applied to all M+N traces simultaneously. 

The experiments carried out were generally successful, especially when a 

given time window was separated at a centre point. To give an example, a 

6-trace filter for the time window of figure 7.7.1 was computed. 	The 

filter components are given in table 7.7.1. With these components the 

following11-tracefilterwasdefined:c.(t*) = a.(t*) 
1 	1 	$ 

ci+5(t*) = a7...i(t*),(i=1,..,6).The stacking filter is now a suboptimum 

filter for the time window of figure 4.2.4. The two-dimensional Fourier 

transformofc.(t*), (i=1,11) is given in figure 7.7.2. 	It shows that 	the 

characteristics are the ones of the desired time window. When compared 

with the characteristics of filter number 6 (see figure 7.1.7) one may 
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easily see that the specified regions are less well approximated. Also the 

reject region of the suboptimum filter is higher and the escarpment is less 

steep. 	The essential difference lies however, in the computation time. 

The suboptimum filter was computed in 2.5 sec, while the optimum filter 

needed 12 sec. 	The described method therefore, is of special value, for 

very large arrays. 

The technique is also useful to obtain filters for less 

traces from filters designed for many traces. Whenever time windows were 

reduced by taking various traces out, the remaining components usually 

showed reasonably well characteristics which corresponded to the expected 

characteristics of the left time window. 	This approach is purely practical. 

To be certain that the method works, the two-dimensional Fourier transform 

should be applied to the resulting filter to check its characteristics. 
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FIGURE 7.7.1 	Time window for a pass filter 

(end trace estimate) 

al(t') 	a2(t*) 
	

a3(t) 

,64936139E-02 
.6672768t-04 
-.1H/1.54400E-01 
-.15747459E-01 
-.870687c2E-02 
-.12404779E-01 
-.71472265E-02 
-.12404779E-01 
-.87068703E-02 
-.15747459L-01 
-.184')4900E-G1 
.66728797L-04 
,64936139E-02  

(re 

,224-.3t7,51 

-.40144179E-v2 
-.12(7170570E-01 

-.▪ 2eu2U65E-u2 

.• 133L-01  

.42.12121L-0-e. 

.:.) ti  

.1.2te-Z5'=)?L-(1 

.39113(07-01 
41,Ye74:1,44E-01 

-.9960)271L-U? 
•74601 (1L-u2 

-.'-)9b0)? (UL-0 

.3"-4113/.17L-01 

.3,i(95t)46L-, 

.42121',275L-2 

TABLE 7.7.1 	Stacking filter components for the filter with 

the time window of figure 7.7.1; N=6 ;T:c=1.0 ;))=0.06 
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FIGURE 7.7.2 	(f-k) diagram of a 11-trace suboptimum filter 
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Isometric plot of 7.7.2 
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CHAPTER V111  

THE SCALING EFFECT  

From the normal equations (4.2.4) a number of conclusions 

could be drawn about the symmetries of the stacking filters. These 

symmetries are important to find the phase responses of transfer functions 

for special cases as discussed in Chapter Vl. 

There is however, one more important property revealed by the 

normal equations which is discussed in this chapter separately because it gives 

deep insight into multichannel stacking filters. This property 

is also of great economical value for the design of stacking filters and 

makes their application therefore even more attractive. By making full 

use of the described effect, it is possible to derive a number of stacking 

filters from a computed one by scaling the filter responses. In this way 

a tremendous amount of computer time for the filter design can be saved. 

Scaled filters have approximately the same characteristics as the ones which 

are directly computed from the normal equations. 

i, Let t, and&t,
k  kj=_L,..,N;k=1,..,L)be the design parameters 

- 	 • forLtimewindowsdesignedforthesignals,whilet k  and.k At3 (j=1,N;k=1,K) 

are the corresponding design parameters for K regions of correlated noise. 

The continuous version of the normal equations for the most general case in 

.the frequency domain is 

A.(f)rec(f) [R. .(f)+ 116ij 	
3  

rec(f)G.(f),(j=1,.N)(8.1) 
i=1 1  

whereR..Misgivenin(4.2.5) 	
7

) in (4.2.6) however for the 13  

following considerations without the factor rec(f) and V= 0. One 

realizes that by replacing the design parameters with the scaled ones (with 

/Vs scaling factor) such as, 
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"k 	1 k 	rs- k 1 	k 	1 -k 	C:k 1-k 
t. = - t. ; 	= -4t. ; t.= 	t. ; 4t. = -4t. ; 
3 	IL 3 	3 	fri 3 	3 *1 3 	3 	II 3 	c 	c 

the following normal equations are obtained 

N 

1] 	
(j=1,..,N) 

1] 	3 1=1 

"ere f)=R—W/DarldaJf) = G.(f/42) 1] 	1]  

(8.2) 

A comparison between the normal equations (8.2) and (8.1) 

shows that replacing rec(f) with rec(fhq) in (8.2) gives 

N A 
rec(fh7/)Z....  A.U)[ 	.(f) + 1ij c 

i=1 	
3.3 	i 

= rec(fhr) ar
J
.(f), (j=1,..,N) 	(8.*3) 

andleadstothesolutionA.(f)=A..(fA), (j=1,.N). This means the knowledge 

of the solution of (8.1) includes the knowledge of all other problems, where 

signals and regions are a scaled version of (8.1). 	In the special case where 

qp1 even the solution of (8.2) is included in (8.1). 	Since solutions 

of the above normal equations for a fixed value of f cannot be influenced by 

other frequencies they have to be 

2-j(f) = Aj(fhl) rec(f), (j=1,..,N) 
	

(8 . 4 ) 

This important property of the continuous frequency domain version of 

the normal equations is also valid to a certain degree for the discrete 

approximate solutions. 	If a. (ttl) (-n<te'<n, j=1,.N)are the discrete 

solutions, an approximate solution for (8.1) would be in the time domain 

n 
a.11(t) = 	an(i) sinc(t-i), Cj=1,..,N) 

i=-n 

The continuous functions 

'a\j11(t)=19a.
n 
 (ft) 	ar!(i) sinc (qt-i), 

J 	`i= -n 3  

(8.5) 

(8.6) 

should therefore be an 'approximate' solution for (8.3). 



-159- 

The Fourier transform of C8.6) is confined to the range 

Ifl< 1/217 . If 'Vs less than one, sampling of C8.6) can be done without 

aliasing 

" n , 
a. (V° a.Ci) sinc (It* - i), (j=1,..,N) 	(8.7) 

Li=-n 3  

This expression represents an approximate discrete solution which could be 

obtained by computing the stacking filter for a broader scaled design region, 

using however, the narrower band signal rec (f/1). 	Because (8.7) is 

generally an infinitely long operator it has to be truncated. These scaled 

discrete filters were always given a fairly short length of the width of the 

time window and the results obtained were found to be satisfactory. 

To give some examples, the response of filter number 4 was 

scaled with fyi .= 3/4 using the above described scaling procedure. The two 

dimensional Fourier transform of the scaled filter is given in figure 8.1. 

It has about the same (f-k) diagram as filter number 5, however, confined 

to the range Ifk 3/8. 	In the same way, filter number 2 was scaled with 

1
= 1/2 and //= 1/4. 	Contours and isometric presentations for the scaled 

responses are given in figure 8.2 and figure 8.3. Comparing the (f-k) plots 

of filter number 3 (Fig. 7.1.2) and number 5 (Figure 7.1.4) with Fig. 8.2 and 

8.3 it could be noticed that characteristics of the scaled responses are 

about as good in the expected frequency range as the ones of the directly 

computed filters. 

If 7241 the gain in width of the time window obtained by 

simply scaling the responses of filters has to be paid for with a loss of 

the high frequency content in the scaled responses. This loss is often 

acceptable (may even be desirable), because the seismic frequency content 

is usually expected in the low part of the basic region. The lowest limit 

of Vor scaling is therefore given by the highest frequency which is to be 

filtered by the scaled stacking filter. A look at the computer time 
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CCDC 6600) for the differently designed filters as given in table 8.1 

reveals the importance of the scaling effect. The computer time for the 

scaling process itself took in all cases less than 0.5 sec. for a stacking 

filter. Designing a filter for a broader time window by scaling the 

responses for a narrower window may mean a tremendous saving of computing 

time. From each filter one may derive any number of scaled versions. To 

make an a priori broad band assumption for the signals is therefore useful 

in getting the optimum out of the scaling procedure. 

So far the scaling effect was treated only for T141. This 

corresponds to broadening the time windows. Choosing trl corresponds to 

narrowing the time windows. The computation time involved in the filter 

design for broad time windows is longer than that for narrow windows. It 

would not be justified in this case to suffer also a loss in the character-

istics of the scaled responses. As a matter of fact, it can be shown that 

a filter designed for a broad time window already includes all filter 

responses for '>1 (see formula 8.4). 

To show the scaling effect forivl the discrete filter number 

4 was scaled with 1= 3/2 by making use of formula (8.7) again. The two-

dimensional 1ourier transform of the scaled filter is given in figure 8.4. 

It is essentially the expected one of filter number 3. There is, however, 

a step of around 6 dB at f = 0.25. The difference in height from the lower 

plateau to the reject region is the same as in filter number 3. This 

filter could be used in the same way as long as the frequency content is 

confined to I ft< 0.25. 	The step in the plateau is due to aliasing, 

because the Fourier transform of each component (8.6) exceeds the range 

I f 	1/2 and the frequencies 1/2<I f1<1/212 have to be folded back in the 

scaled and sampled filter. 	For the case 11= 3/2 the aliased frequencies 

lie in the range 0.25<lfl<0.5: 	The fact that the step between the two 

plateaux is about 6 dB, shows that the amplitude spectrum of the Fourier 
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transform in the upper pass region is twice as high. It may be recalled 

that the sampled function of sinc (r) for 11>1/2 has the Fourier transform 

{1 for 
S(f) = 

2 for 

f< 

1-272<lfl< 
(8.8) 

The amplitude ratio at the step is two and the dB value is therefore 

20 log10  2f.:6.02. The fact that the corners of the step are not sharp is 

due to truncation of the discrete scaled responses. 

To prevent aliasing, one therefore has to antialias the 

responses fori1>l as given in formula (8.4). 	This means equation (8.6) 

has to be convolved with sinc(t) 

ton 	n' 
ai(t)=4Za13:1(1t)* sinc(t) 	

` 	
a.(i)sinc(7V-i)sinc(t-T) dt 

0i= -n 3  
(8.9) 

	

a. 	17 (t) =Z11 • al;(i)sinc(t-ihq), (j=1,..,N) 	(8.10) 

	

J 	ti=-n 

and sampled again 

n "41 
a.(t*) 	a(i)sinc(t*-i/), (j=1,.. ,N) 

-n 3  
(8.11) 

Formula (8.10) is an 'approximate' solution of (8.2) in the time domain. 

It has to be used instead of (8.6) whenever a scaled version of a discrete 

filter for opi is desired. 	Using equation (8.11), the time responses of 

filter number 4 were again scaled with /2= 3/2. The two-dimensional 

Fourier transform is given in figure 8.5. 	As can be seen the (f-k) plot 

corresponds to the expected one of filter number 3. 

The above examples to describe the scaling effect were 

selected from two-dimensional multichannel velocity filters. This was 

done to use the two-dimensional Fourier transform as a tool to compare the 

differently designed filters. 	It must, however, strongly be emphasized 

that the scaling effect applies to the total class of the given stacking 
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filters. 	Formula (8.6) and (8.11) can be used in every case. 

Apart from the enormous amount of computer time which may be 

saved by making full use of the scaling effect, 	it also explains 

other observations which so far, have no mathematical explanation. When 

designing a pass-reject filter one has the heuristic feeling that the 

stepout between signal and correlated noise must increase as the dominant 

wave length of signal and noise increases. Various experiments were done 

where broad band signals were filtered with one stacking filter and low-

passed signals filtered with half the Nyquist frequency and twice the 

moveout were filtered with another filter where the window was twice as 

wide. 	The responses for several signal stepouts agreed to within one 

percent. This observation which applies to all stacking filters is 

explained below, both for a multichannel velocity filter and a general 

stacking filter. 

If the two dimensional Fourier transform for an exact 

solution of (8.1) is 

N  
F(f,k) 	e2lrikiA.(f) rec (f) 

j=1 
(8.12) 

then the transform for the exact solution of (8.2) for a scaled region is 

a scaled version 

N 
F(fil,k) = 	e2Rikj A.(fPn) rec (f) 

3 j=1 
(8.13) 

The best one can hope for is that the (f-k) plots of finite length filters, 

designed for time windows, which are scaled versions of each other, satisfy 

the relation between (8.12) and (8.13) approximately. 	Comparing the (f-k) 

diagrams of filter number 2 to number .4 shows that these transforms have the 

general character of being scaled. The hills in the reject region, which 

should have the same height for the exact solutions may however, show great 

changes. 



-163- 

It is assumed that the exact solution of a velocity filter 

is given. 	Figure 8.6 a, may contain its two-dimensional Fourier transform. 

The inverse Fourier transform along the line A is the stacking filter 

response f0(t) for broad band signals with constant moveout't0. 	Owing to 

(8.12) and (8.13) the values along the line A will appear along line B of 

figure 8.6 b, which may contain the two-dimensional Fourier transform of the 

filter designed for the scaled region with /2= 1. This line B is now the 

transfer function for the signals rec (f/i) (low-passed with half the Nyquist-

frequency) having twice the moveout. The inverse Fourier transform of the 

function along the line B is lf0 2  (t) and is therefore a scaled version of 2  

f0(t). 

With the help of the scaling effect a deep insight is gained 

into the relation between (f-k) diagrams and time windows of multichannel 

velocity filters. These rules may be extended to three-dimensional 

multichannel velocity, polarisation or differential normal moveout filters. 

For the most general case of a stacking filter one may express therefore, 

the following rule (which applies exactly only for the 'exact' solutions). 

Let A.(f), (j=1,..,N) be the components of a stacking filter 

which was designed for broad band signals and a certain time window . 

N 	-27ifoc. 
F (f) 	= 	A.(f)e 	3  rec(f) 
04 	j=1 

is the transfer function of the filter for broad band signals with arbitrary 

moveout 0C.(i=1,..,N).Scaling the time window by a factor 7,1<1 and again 

using broad band signals in the design leads to the solutions 

ti.M=A.UPV, Ifl“1 

The transfer function of this scaled stacking filter for signals rec(f/7) 

with moveout oc. =DC.P0 becomes 
3 L 
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N 
F 	(f) = 	ACfly) e 	rec 

j=1 I  

thus showing that the equation 

(f) 1,04,(fiv j  
04. 

holds. From this it is seen that the responses are scaled versions of each 

other. 

Traces 
N 

Filter length 
L F 

Window 
Sections 

Time 
(sec) 

6 11 1 2.50 
6 13 1 3.06 
11 11 1 11.77 
12 7 1 7.40 
12 11 3 21.62 
12 17 2 35.22 
12 21 1 48.88 
12 27 1 64.34 
19 11 1 50.43 
20 7 1 26.84 
20 7 3 39.45 
21 15 1 101.75 

TABLE 8.1 Computation time for various optimum 
multichannel stacking filters 

f=0.5 
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FIGURE 8.1 	(f-k) diagram and isometric plot 
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F 

FIGURE 8.2 	(f-k) diagram and isometric plot 
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FIGURE 8.3 	(f-k) diagram and isometric plot 
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K 
FIGURE 8.4 	(f-k) diagram and isometric plot 
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FIGURE 8.5 	(f-k) diagram and isometric plot 
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CHAPTER lX 

THE CORRELATION TECHNIQUE 

The following stochastic models could be used for the 

multichannel stacking filter design in previous chapters. 

x.(t) = s(t-'l:) + ret -~) + net) (i=l, .. ,N) 
111 

Signals set), correlated noise ret) and uncorrelated noise net) are uncorrelate 

to each other . To simplify computations, the components were always 

assumed to be broad band signals. This is justified on the following 

grounds: 

1. Filters are usually computed to be kept in a 

library with the intention to apply them for 

various similar problems where autocorrelations 

of signals and noise may vary in each case. 

2. The broad band assumption corresponds to 

minimizing or maximizing transfer functions of 

the stacking filter for certain time window 

regions. 

3. The broad band assumption is the most economical, 

if filters for scaled windows are to be derived 

from computed ones. 

4. The characteristics of multichannel- velocity 

filters designed with the b~oad band assumption 

are still superior to other known velocity filters. 

The knowledge of the shape of time windows, in which signals 

are either to be enhanced or rejected, is also assumed. This assumption 

is justified because stacking filters may be applied to actual seismic 

traces in an 'indirect' way. This means that various filters may be applied 

to a mul titrace. se.ction as in the. computation of ye.locity spectra ( Taner 
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and Koehler,1969). 	Traces showing the most convincing results will imply 

that the chosen filter parameters fit the actual case best. This indirect 

approach has to be done systematically. 

If, however, a more 'direct' approach is to be chosen, then 

moveouts as well as autocorrelations of the trace components should be 

estimated prior to the filter design. 	Below a technique is 

described from which arbitrary moveouts as well as the autocorrelations 

Vas('  ); y (n) and (prin(V) rr 	may be approximately obtained from the 

stochastic model. The technique is similar to the single channel approach 

given by Ostrander (1966) and the multichannel approach of Schneider and 

Backus (1968). 	It is in actual fact based on a study of the autocorrelation 

matrix of the traces which gives a deep insight into the problem. 	This 

may already reveal most of the desired properties. Below an example is 

given. 	It is assumed that the organized noise on three traces is given by 

thewhitenoiseseriesr.(te4) = r(t* - Vii) where the relative moveout is 

= (i-3)2 and the power on each trace equals one. The moveout is shown 

in figure 9.1. The crosscorrelation function 

matrix is shown in figure 9.2. 

The moveout as shown in figure 9.1 is obtained three times 

and appears in a shifted way in all three columns (or rows) of the auto-

correlation matrix. The shift from column one to two equals'-'1 -jt'2' from 

one to three C.? - ft?' and from two to three 2' -;t%'.1  1 	3 	2 	3.  
Generally one may 

conclude that for n traces the relative moveout is obtained n times. It 

would therefore have been only necessary to compute any column or row of the 

autocorrelation matrix to recover the moveout. Note that if signal and 

correlated noise are uncorrelated, their autocorrelation matrices are simply 

added. 	If organized noise or signals are not white the moveout in the 

autocorrelation matrix stays unchanged. 	Each spike however, has now to be 

(2.*) for instance is 
97  r Pi 2 

then represented by a spike at position t* = 3. 	The autocorrelation 
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convolved with_the corresponding autocorrelation function of the signal or 

noise. 

If the traces are given as 

x.Ct*) = s(t*--Z.) + n(t*) or x.Ct*) = rCt* 	+ nCt*),(i=1,..,N) 

it is theoretically always possible to obtain (Ostrander, 1966) q2 nn 

and tessor 1  and Orr. This is not any longer the case if organized noise 

and signals are present (with or without uncorrelated noise). To show this, 

the autocorrelation matrix of five synthetic traces was computed. These 

traces are described by the following stochastic model 

x.(t*) = s(t*) + r(t* - (i - 5)2), (i=1,.,5) 

The minimum delay wavelet of the random process s (t*) is given in figure 

9.3 and the minimum delay wavelet of r (t*) in figure 9.4. 	The auto- 

correlation matrix of the five traces is shown in figure 9.5. 	It 	reveals 

some basic features which can be expressed as follows: 

1. The best chances for detecting moveouts and 

autocorrelations are by analysing the first or 

the last column (or row) of the autocorrelation 

matrix. 	In this case the correlation functions 

of signal and noise have the largest separation 

from each other. 

2. The crosscorrelation between the two extreme 

traces gives the best estimation of the auto-

correlation functions. 

3. After the relative moveout of the correlated 

noise with respect to the signal is approximately 

determined, it is immediately clear, which side 

of the two-sided autocorrelation functions is more 

accurate. 	CIn the above example it is the left 
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side for the correlated noise and the right side 

for the signal in the first column). 

It may be argued that the chosen model for an actual 'real 

life' seismogram is far too simple to compute the desired components in the 

way described above. For a more complicated model it is believed that a 

better estimation of moveouts is obtained with an average over all 

columns of the matrix. The averaging concept can be employed as follows: 

Columns i and j of the matrix are each stored term by term into a 

one-dimensional array and the crosscorrelation • C19..(V) between both is ij 

computed. The position of a maximum value of this function obtained with 

respect to the moveout origin reveals the shift between autocorrelation 

moveouts from column i to j. To give an example, each column of the 

computed autocorrelation matrix of figure 9.5 was stored into one array 

A 	 A 
and 2.j  cp..(e 	 ij ) was computed. 	Some functions co (t*) are shown in figure 9.6. 

1 

They reveal the shift of the autocorrelations from column to column in a 

very distinct way. It was generally found that the resolution obtained in 

this case was better than the resolution already obtained with the auto-

correlation matrix, in particular when signals changed their form from 

trace to trace. The outcome of results depends however, very much on the 

band width and moveouts of signals and may strongly vary from case to case. 

It is ultimately only an extensive application of the described technique 

on actual traces which will show its practical value. 
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FIGURE 9.1 Relative Moveout 

>t*  I-  74' 	  

LP r  3 -9 -3 -2 2 3 4 0 

First column 

3z-4 	-3 -1 	0 	 3 

Second column 

-L 	-1 

Third column 

FIGURE 9.2 Autocorrelation matrix 
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11. First Column 
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31 
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2.2 
Second Column 

42 

32. 	 
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Third Column 

13 

/3 

33 
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FIGURE 9.5 	Autocorrelation matrix (continued next page) 
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34 

44 
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35 

• 45 

55 
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Fourth Column 
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FIGURE 9.5 Autocorrelation matrix 

FIGURE 9 .4 Minimum delay wavelet for 	FIGURE 9 .3 Minimum wavelet for 
the random correlated noise 	the random signal 
r(tec)' 	 s(t*) 
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c
n 

(r) 

(t(tz'") 
FIGURE 9.6 Crosscorrelations between columns 

of the autocorrelation matrix of 
figure 9.5. 
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CHAPTER X 

CONCLUSIONS 

1. Discrete two-dimensional filters can be formulated as 

discrete multichannel filters. 

2. Under the assumption that signals and noise are uncorrel-

ated, a least squares criterion for multichannel filters can be chosen which 

gives different weights to errors caused by signals or noise. 

3. Continuous multichannel normal equations can be solved 

with the discrete normal equations if all correlation functions are band 

limited. Approximate continuous solutions are obtained. 

4. A general purpose stacking filter can be designed which 

may be used as a 

(a) two-dimensional velocity filter 

(b) three-dimensional velocity filter 

(c) polarisation filter 

(d) differential normal moveout filter 

5. Symmetries of the stacking filter depend on the choice of 

a time window 

(a) Time windows which are symmetric on each trace 

specify phase-free components. 

(b) Centro-symmetric time windows specify centro-

symmetric stacking filters 

(c) Symmetric time windows specify symmetric 

stacking filters 

(d) If design parameters of a window are the same 

on two different traces, the computed stacking 

filter components are also the same for these 

traces 
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(e) Stacking filters whose time windows may be 

obtained from each other by rearranging the 

traces have identical filter components for 

corresponding traces 

6. Optimum multichannel velocity filters are included in the 

class of filters discussed in this thesis. 

7. The two-dimensional Fourier transform of a stacking filter 

has to be interpreted in a way which differs from the interpretation of a 

two-dimensional convolution filter. 

8. The concept of the defined transfer function of a stacking 

filter is of great use for the characterisation of filters due to the 

following reasons: 

(a) It provides an appropriate means of describing 

the N input one output channel relation of a 

stacking filter. 

(b) It explains the characteristics of the two or 

three-dimensional Fourier transform of multichannel 

stacking filters. 

(c) For signals with constant moveout it can be obtained 

from the two- or three-dimensional Fourier transform 

along straight lines corresponding to the moveout. 

9. The phase properties of a stacking filter transfer function 

for constant moveout signals depend on the symmetries of the stacking 

filter components. 

(a) Symmetric and centro-symmetric filters have phase-

free transfer functions for signals with constant 

moveout. 

(b) Trace symmetric stacking filters have a phase-

free transfer function for zero-moveout signals. 
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10. Characteristics of centrosymmetric multichannel velocity 

filters- are superior over the ones of symmetric filters because 

(a) less 	overlapping of pass with pass or reject 

with pass regions is possible; 

(b) additional design regions have a negative 

influence on other regions. 

Both filter types have zero phase transfer functions for constant moveout 

signals. 

11. Reject regions with a large weighting factor 	'push' 

pass regions in the frequency wave number domain into regions with fewer 

restrictions. 

12. Polarisation filters can be designed for arbitrary 

detector positions. 

(a) Characteristics for a certain direction depend 

strongly on the shape of the array. 

(b) Features are similar to two-dimensional 

velocity filters. 

13. Transfer characteristics of stacking filters for certain 

families of differential normal moveout signals can be obtained 

with special transforms. 

14. Some differential normal moveout filters can be exactly 

characterised with certain transforms. 

(a) Pass and reject regions are generally 

well approximated. 

(b) Characteristics in unspecified regions are 

difficult to predict. 

(c) Filters are generally very selective in 

unspecified regions. 
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15. Constant moveout signals falling into a curved pass 

region or differential normal moveout signals falling into a velocity filter 

pass region are generally passed without distortion in their amplitude 

spectra. For optimum rejection the moveout of filtered signals should 

however match the moveout of the signals used in the filter design. 

16. The allowance for chatter in the design depresses the 

transfer characteristics for high frequencies. 	For small chatter values 

tc a moving average filter B(f) = sinc (tc
f) applied to the output trace 

achieves the same purpose as the incorporation of chatter in the design. 

17. Suboptimum filters can be derived from optimum filters 

in various ways. 

18. Increasing the weighting factor 3  and V improves the 

signal to noise ratio, but leads to greater signal distortion. 

19. The scaling effect is helpful for the filter design. 

(a) With this effect the computation time 

can be tremendously reduced. 

(b) Various scaled filter versions can be 

obtained from a computed filter. 

(c) Broadening a time window by scaling the 

components results in a high frequency loss 

of the scaled filter. 

(d) For narrowing the time window by scaling, the 

stacking filter components have to be 

antialiased. 

(e) The effect gives a deep insight into the 

characteristics and performance of filters 

with scaled regions. 

20. Autocorrelations of signals and noise can be included 

into the filter design. Differential normal moveouts and autocorrelations 



-182- 

can often be estimated with the correlation technique. 

SUGGESTIONS FOR FURTHER RESEARCH .„. 

The studies made so far have opened the venue of subsequent 

and further investigations, in particular on the following topicS: 

1. The necessity of obtaining more characteristics of 

polarisation filters for various detector positions. These could 

be tabulated in a form convenient to find optimum characteristics 

as a function of detector positions. 

2. A comparative study of the given three-dimensional 

velocity and polarisation filters with other known filters. 

	

3. 	In the process of the present investigation another 

design of a three-dimensional filter evolved, the description of 

which is given in Appendix 1V. 	Further studies on this subject 

could be carried out. 

	

4. 	Three-dimensional filters could be designed in the 

time domain, where plane wave normal vectors fall 

(a) within an inverted cone 

(b) on the surface of an inverted cone. 

	

5. 	Further characteristics of differential normal moveout 

filters. 

	

6. 	The application of the given filters and the correlation 

technique on actual seismograms. 
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APPENDIX 1  

The integral (4.1.15) can be reduced to expressions containing 

sines, cosines and integrals of the form 

cx  (sin x) dx 
-co 	x 

All three types of functions are standard programs in the computer. 

Generally any integral of the form 

/ si 2 nc (af) sinc (bf) cos (7cf) df 

may be expressed as 

1  1  F1(f) 	F2(f) df 
874a2b 	(b +c) f 3 (b - c) f) 

where 

F1  (f) = sinTif.(2a-(b+c)) + 2 sin fT(b+c) - sin fiT(2a+(b+c)) 

F2(f) = sinlif-(2a-(b-c)) + 2 sin fiT(b-c) - sin fr(2a+(b-c)) 

(sin Af  
f 3 

can be further simplified to give 

rsin Af 
f 3 

     

dfl df = sin Af  
f2 

 

cos Af 

f 
+ A sin  Af 

 

f. 

  

The integral 
df 
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APPENDIX II 

OPTIMUM FILTER FOR VARYING BAND WIDTH OF THE INPUT SIGNALS  

In the design of the general purpose stacking filter in 

section 4.1 it was shown how to provide for uncertainties in the arrival 

times, chatter and variable gain of the input traces. 

The basic idea of design consisted in the proper computation 

of expectation values of the power and crosspower spectra for the stacking 

filter normal equations. 

The following expressions were initially obtained for the 

expectations of the power and crosspower spectra. 

11, 

Os S 

n. 

= O s S 

Py 

= (1)

s 

 
S 

C f ) 	 (11.1) 

2nit..f 
( f

2
(t f)sinc(1.C. f)e 	13  

1:1  

i'ric(tcf)sine (4-t'f)  3 
(11.3) 

It would have been also possible to allow for varying band width of the 

input signals. 

In the sequel it is shown, how to obtain corresponding expressions for 

(II.1) to (II.3) in the case such variations are permitted. 

For the following discussion it is therefore assumed that 

the input signals can be expressed as 

s.(t) =s1; (t) *E(t-a.) 

where the Fourier transform of the aperiodic function Sc(t) is given 

as Se(f) = rec(f/q)/..and the power spectrum of the-stationary process 
1 

fi 	
i 

 
E(t) is rec(f). 

It is assumed that the band widths of the input signals are independent of 

each other and vary randomly over the ensemble of all possible input signals 



E j 	
11 ..(f) 

E 

E t i(f)i 

where 

sa 
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in a manner such that each channel has the following ensemble probability 

density function for the band width: 

p4(1)= 2b  rec (r2Z ) ; (a+bdi) 	(II.5) 

As desired output the following trace is taken: 	so(t) =sa
(0 *E(t) . 

s
a
(t) has the average band width of the input signals, so that its 

Fourier transform is Sa(f) = rec(f/a)/a 

By taking one special realization of the input signals in 

form of (II.4) one would have obtained the following expectation values 

for the power and crosspower spectra of the general purpose stacking filter. 

(f) 

21tit..f 13 (f)sinc
2
(tcf)sinc(2".. 3f)e 1 

(f)sinc (tcf)sinc(elt Me 	3  
3 

st,is

ci 	w (f)=rec(f/iel  

s
Si ci

(f).-rec(fici)rec(f/ .)/ 	• 
1  3 

s  (f)=rec(f/a)rec(f/ci)/aci  
a

Sj 

 

By making use of the probability density funtion (II.5) the expressions 

(II.9) to (II.11) in formulae (II.6) to (II.8) have to be replaced by 

the following ensemble averages. 



(f)i T
c(f)= 	ri-,--rec(f/f)  p4Tdc,1 sipiscj  

-Co 

/1 )2 , 2(a+b) if 
2b 	a-b 

Ifl < a -b 
2 

00 	2 
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Determination of the power spectra  

DO 

= T(f) = rec (f/Wp (ci) 
1

dci  

Do 

if a+b  
<Ifl .4* 1  2 

Determination of the crosspower spectra of the input traces  

T (f) 

1  

a
2
-b
2 

1 
2b ( tf 1  a+b) 

   

if 	Ifl K a-b 
2 

if alb < If' <: +
2
b 

I 

(1 b 
	k f 	2 
1 2 1n2(a+b) 	if  _a-b < f (.a+b 

k2  
T
c
(f) = 

if 4-03 < 
 I fi < 1  2 

Determination of the crosspower spectra between input and desired output  

CO 

EfP s (f)  =To(f) =— a rec(f/a) rec(f/) s 	 P( T) a 	
00 	

/ 
- 

if 
( 	 ( fl<a2

b  
a  

) a+b-2f 	a-b 	a 
To(f) = 	

2ab 	
if 	

2 	2 < fl<- 	
(II.14) 

a 
if 2 0 < 1 f I < 
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The functions which especially favour band width deviations from 

trace to trace therefore are 

E 	
ii

R (f)i 

ER) (f)1 
ij 

E 	(f) 

= T(f) 

= Tc(f) sinc
2 
 (tcf) sinc(Tijf) e 

= To(f) sinc(t f) 	sinc(at.f) e 

2Trit..f 
ij 

3 

(11.15) 

(11.16) 

(11.17) 

All power and crosspower spectra of signals and correlated noise have to 

be multiplied by certain tapering functions if varying band width from trace 

to trace is permitted. 
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ATTENDIX 111  

STACKING FILTER TRANSFER FUNCTION 

In case of an even number 2 N of traces, the stacking filter 

components may be labelled as 

( A  
/2N-1\(f),... A3  (f), A,(f), Al(f),... A2N)  (f)) 

2 	2 

1 
k 2 J 	2 	\ 2 

then the corresponding functions of section 6.2 become 

(2ff-11  
2 / 

N
2 
-1)ai 	, (t*)*sinc(t*-04 ) 

(2N-11  
2 	-2Trifoc. 

A.(f)e 	J 
(2N-11  3 
k. 2 / 

(2r)  

F(f,T) 	= 	2N-1  Aj-f)e-2Tifj"t- 
i=  (2 ) 

3 

f CC.(t*) 

F(f,k) =  

(6.2.1 A) 

(6.2.5 A) 

(6.2.6 A) 

(6.2.8 A) 

(2N2-1)  

=-n 	(2N2-1) a.(1)e-21r1(fl-k j )  
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APPENDIX 1V 

DESIGN OF A GENERAL THREE-DIMENSIONAL MULTICHANNEL VELOCITY FILTER  

The two-dimensional recording array of figure 5.1.3.1 is used 

for the following considerations. Each detector location is sufficiently 

described by the two variables i,j (i =1,.,Nx; j=1,..,Ny). The NxxNy  

recorded traces may be assumed to have the form 

x..(t) = s(t 	
13  + r(t -CZ..) + n..(t),(i=1,..,Nx;j=1,.,N ) (1V.1) 2.3 	13 

Signals and noise are supposed to be uncorrelated andcX..,(21. are the 
2.3 	13 

various delays. The aim is to filter all arriving plane waves in a specified 

wedge, not only polarized waves. The filtered output should then optimally 

approximate the signal s(t). 	All planes falling into the wedge of 

figure 5.1.3.1 can be expressed as: z = -oqx -o(2y 

where o<1 and 0(2 may be the following random variables 

+61.7-x/2 + 

°<2 = re'y  +,61-,-y72 

with the probability density functions 

 

1 
rec(afri  

drx 

  

p1(g) 

 

(1V.2) 

   

P2T 
1 rec(47) 

46fry 4 y 

 

The relative arrivals of plane wave signals at the points (i,j) become 

CKij = (2;+4V2+1)i + Cydy2 
A  

Crosscorrelating a signal on trace (i,j) with another one on trace (i,j) 

leads to crosscorrelation functions 

1j Slj(.) 	TSS (+ I3 - 



E  
s.. lj 
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Iiy:makIng use of the ahbreviations 

A = erx+4V2)(i-i) 

'71 = 1C1-1) 

) 

y+47 /2)Cj-j ) 

one may express the crosspower spectrum between two signals as 

n,
6ip 	

2iti f 	21* 
(f) = q) (fle 	3.3 13 

ss 13 13 

The expectation values for these expressions become with (1V.2) and (1V.3). 

	

1-,c0 	 1- 27rilf A 4,00 A  2Wicf 
(f)I = ss(f)e 	

13 3 	yi; 	1 2(c  )e 	dC 
J1(171)e  13 13 	 -CO 	' 

(f)i1313 
= Cls(f)e 

2uiln 
li'iJ

A 
sinc(ZTX(i-i)f)sinc(di 

A 
(j-j)f) 

(1V.5) 

(1V.6) 

where 
A A 	1 

	\ 
PA)  = 

A 

P (
d''N 	1 
) = 2 	13-31 2 13-31 

In a similar way one gets for the crosspower spectra between the desired 

output signal s(t) and the various input signals 

 

/ 	

ev 	211Pt..f 

ss 	- (f) 	()ss 	 Y 
(f)e 	13  sinc (etif) sinc (4rtjf) 

ij  

 

E ji 
 

(1V.7) 

 

with 	= (Tx  +4T-x/2) i + ( (7y  +4y2 )j 

If again all signals are chosen to be broad band, the corresponding 

expressions for (4.2.1), (4.2.2) and (4.2.3) become 

= rec(f) 
13 

Et 

ER 



-197- 

A 
EcC":5s..s..4ACf)} = recCf)e 	1] 

L3sinc( Wr (t-i)f)sincCdr (j-j)f) C1V.9) 
3._] 1.j 

(f)1 = rec(f)e sinc(417 if) sinc(40-  jf) (1V.10) 

These components are sufficient to specify normal equations where various 

pass and reject regions are allowed in the design (see section 4.2) 

Instead of referring to each input trace with the indices 

(i,j) it is possible to label the traces with one index from 1 to N x  Ny 
 by 

counting traces in x-direction in one row after the other. This is done 

below. For reasons of simplicity the computed power and crosspower spectra 

(1V.8) to (1V.10) are renumbered in the corresponding way. 

IfR..(f)(1-=1,..,%Ny;j=1,..,Nx
N
y
)andG.(f), (j=1,.,N x  N y) are ij  

the general terms for the power and crosspower spectra of the renumbered 

components one may write the normal equations as 

A1(f) R..(f) = G.(f), (j = 1,..,N N ) 
i = 1 	

13 	J 	 x y 

N ) are the filter components of the general 
X y 

multichannel velocity filter. These solutions may be obtained in the same 

way as the solutions of (4.2.4). 

C
NN 

Y 
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