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ABSTRACT

An exclusive study of a general class of multichannel stacking
filters is made. They are designed in the time domain as optimum
multichannel Wiener filters for various models of random stationary processes
‘énd include some known stacking filters as special cases. It is shown that
filters of this class may be specified as tﬁo- and three-dimensional velocity
filters, polarisation filters and stacking filters.for the rejection or
enhancement of signals with differential normal moveout. The two- and
three-dimenéional Fourier transforms are used as valuable tools for the
characterisation of velocity filters. Transforms for special differential
moveout filters are also given.. The concept of a stacking filter transfer
function is defined and it is shown under which conditions it
can be obtained from the two- or three-dimensional Fourier transform of a
filter. It gives a deep insight into the filter characteristics.

A discussion of the given multichannel normal equations shows
how to select SPecial‘time windows to obtain zero phase transfer functions.
Zero phase stacking filter components do not necessarily guarantee zero phase
transfer functions, while non-zero phase components may give phasefree
transfer functions.

Some pules for the characféristics of the class of filters
are presented. They are used in the design of special velocity'filters,
which have superior properties over known velocity filters. A study of the
presented multichannel normal equations leads as well to the discovery of
the 'scaling.effect'. This effect helps to reduce computer calculations
of filters. It also explains observations connected with their character-
_isation and application. Because the filter design depends on a host of
design parameters, computational experiments were done fo show in which way
important parameters influence filtef characteristics. A short re-appraisal
of the basic theory of time series analysis is given. The theory of

continuous and discrete stacking filters is also reviewed.
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CHAPTER -1
INTRODUCTION
Seismics is one of the most widely accepted and successful
methods in exploration and the study of the solid earth. As most

geophysical disciplines it is primarily concerned with the extraction of
useful subsurface information from surface observations. The measurements
are available in the form of seismégrams; the problem (often referred to as
the invérse seismic problem) is their proper interpretation in.geological
terms. In particular, one wishes to replace the mass of original data,

. which is of a complicated nature, by a small number of descriptive character-
istiecs. '

A large part of basic seismic research is therefore directed
. towards a better understanding of the physical processes involved in the
seismic method. A seismogram may be regarded as the response of the system
consisting of the earth and recording apparatus to an impulsive source, for

instance an explosion. This system, although usually very complicated, is

susceptible to basically three seismic approaches towards its analysis.

1. Computation of synthetic seismograms and comparison with
actual field data.

2. Model seismic experiments and comparison with field data.

3. Application of different techniques based on Qarious

principles of communication theory.

The third technical apﬁroach was given a large impetus with
‘tﬁe arrival of digital computers because most processing is in fact only
possible on fast computers with large storage facilities. For all three
basic techniques it is necessary to.simplify to develop a working model.
There can never be a unique all-embracing model in any case. A compromise
between simplicity and reality is always necessary. Nevertheless, there

is great hope that the combination of all different approaches will lead to



an understanding of the inverse seismic problem which is not obtainable with
one technique alone. Therefore experience and knowledge gained in all
seismic disciplines are most valuable for the design of digital processing
.techniques. There may sometimes even be a creative phase necessary for the
design of processes beyond the reach of any specified mathematical theory.
Within digital processes applicable to seismograms most techniques are

filtering procedures. There exist basically three types of digital filters:

1. The single channel filter.

2. The n-dimensional filter based on the mathematical
theory of n-dimensional Fourier transforms.

3. The mu%tichannel filter based on the theory of

matrix polynomials.

The last two filters are logical extensions of the single
channel filter concept and as such include it as a special case. This work
is confined to multichannel input - single channel output filters. This is
a special case of a multichannel filter. The application of these filters
is often referred to as multichannel stacking and their design is based on
stochastic models. The design in this thesis is also partly done in analog
and partly in discrete form. The analog version of the normal equations
which usually specifies‘two-sidéd filter responses (Wiener, 194§ ) is used
because of its simplicity for mathematical considerations. The discrete
version (Robinson, 1967 ) is used for actual filter computations.

The sampling fheorem as given in Chapter 11 is of utmost importance in
understanding the relatioﬂship between the two formulations. To help dis-
tinguish between them, t* is used throughout the thesis as a discrete and

t as a continuous time parameter. Eor the sake of simplicity the sampling
interval is always taken as one time unit. Sampling therefbre implies
throughout this work, taking samples of a confinuous fﬁnction separated by

this unit.



The design of any kind of filter has to be based on mathematical concepts.
Random stationary functions are chosen in this work as models for seismic
record sections. The theory of random stationary functions is reviewed and
should be sufficient to appreciate the mathematical rules, which have been
obeyed in the filter design. In particular it is reminded that the usual
Fourier integral as presented in chapter 11 is not defined for a stationary
function and that auto- and crosscorrelations are conceptual functionms,
which can be only obtained in a limiting process.
Although one may use a purely functional approach for the

filter design, it is not until the theory of random stationary functions

is introduced that certain procedures become meaningful in a physical
sense. This theory, as conceived by Yule (1921,1927) and established in
full generality by Khintchine (1934) makes use of averaging procedures,
which were arrived at from the probability point of view. The full importance
of the theory towards the solution of various engineering problems is
.emphasiéed by Wiener (1949) and Kolmogorov (1942).

The statistical approach has become very popular and sucess-
ful in connection with the processing of seismograms and is justified by
various authors as for instance Wadsworfh (i953) and Robinson (1967).

A full underétanding of the theory of stationary functions is not possible
without having conceived various basic théorems as for instance the pre-
dictive decomposition theorem (Wold,1938 ) and the.vpowef spectrum factor-
isation (Kolmogofov, 1939). With the help of both theorems it can be shown
that any stationary function with a continuous power spectrum can be thought
to be a convolution of a minimum delay wavelet with a random stationary
function, which has a white (broad band) spectrum.‘It is this property of
random stationary functions, which brings them so near to the concept of |
the nature of a seismogram as given by Ricker (1953). A seismogram

according to Ricker is an elaborate wavelet complex and the analysis of a



seismogram consists of breaking.the record down into its components.
The filteriﬁg process of predictive deconvolution (Robinson,.1957) is a
classical example for the usefulness Qf the assumption that seismogram
sections are stationary.
The particular stochastic model chosen in this treatment is the following
one. It is assumed, that a seismic record section can be represented as
a multichannel process, where each trace is the sum of three components,
a signal (often primaries), correlated noise (often multiples) and
uncorrelated noise. Signal and correlated noise are the common components
in the record section, which differ only by their moveout from trace to
trace. The stacking filter is designed to optimally filter the signal
component and reject simultaneously all noise components. The fact that the
filters are designed in the time domain allows the incorporation of various’
information available from the input traces. It is shown that the given design
is very general and that the investigated class of filters may find application
_in various seismic problems. The two- and three- dimensional Fourier transforms
are used to characterise some stacking filters.

It must be generally emphasized, that it was not the
intention to give strict proofs for all individual‘éteps. It was moré the
aim to discuss and characterise a useful class of stacking filters and -
outline applications for various seismic problems. The notation used in this

thesis corresponds to the notation used by Robinson (1963, 1967 b).



" CHAPTER 11

BASIC CONCEPTS OF TiME SERIES ANALYSIS AND COMMUNICATION THEORY

The most important concepts essential for the understanaing
of this thesis are reviewed. The inclusion of various topics from time
series analysis and communication theory in this chapter is intended as a
reminder of their importance and an introduction to the special notation
used in this thesis. The treatment includes a discussion of the Fourier-
transform, the sampling theorem, time series, convolution, Z—transform and

random processes. (Wiener, 1949; Lee,1960; Jury,1964; Papoulis,1962)

2.1 Fourier Transform

From a mathematical point of view Fourier transforms exist
for various classes of functions and various conditions (Papoulis, 1962;
Lanczos, 1966; Lighthill, 1966). It is always assumed that the necessary
mathematical conditions are fulfiiled to guarantee the existence of the
_ transform. As Fourier transforms, the following pair is used in this thesis:

—2W1ftdt

G(£f) =.J21t)e (2.1.1)

o .
g(t) = jng)e+2“iftdf | : : (2.1.2)
¥ G(£f) is the Fourier transform of g(t) and g(t) is the
inverse Fourier transform of G(f). t is time (e.g. milliseconds) and f is
frequency (e.g. cycles per millisecond). The spectrum G(f) is generally a

complex function which extends over all frequencies from minus to plus

infinity. In polar form one may write:

G(£) =.lG(f)lei§(f) | - (2.1.3)
G(f) is called the amplitude spectrum.'and @(f) the phase spectrum. If
g(t) is real valued, then G(f) = G* (-f), where G%(f) is the complex
conjugate of G(f).  The knowledge of G(f) for £50 is then sufficient to
describe g(t). Extensive use is made of the following-Fourier transform‘

pairs:
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00
fgl(tl) g'2 (t—tl) dtl —_ Gl(f) G2(f)
—0
g8 —  wxowe) o 2THE
rec (t) — sinc (f)
sinec (t) —  rec (f)
_ 1 for |{t|<3
where rec (t) = {_O for [tl> ;
. sin (rt)
and sinc (t) Tt

Also the following abbreviation for convolution is used:
oo )
_{il(tl) gy(t-t)) dt, = g (£)#* g,(t) = g, ()% g, (%)

- Further it is reminded that if a sampled function is given
in form of q equidistant values in the time domain, q values transform

into q complex values in the frequency domain ( Cooley and Tuckey, 1965).

_ For the.q values of the sampled function
(g (0), g (1), ... , g (q-1)) - ' (2.1.4)
these are the q complex values
= -2wikj/q ,
G(j/q) =j% g(k)le i/q (§=0,1,2, «e.. 4, Q1) (2.1.5)
k=0 :
The inverse transform of (2.1.5) is:

q-1 ey ' : ' ' ‘
g(i) = (/@) 60/q) 2™/ (520,1,2, .... , q-1) (2.1.6)
“k= - .

0
One usually defines however, as the Fourier transform for the sampled
values (2.1.4) the following continuous expression :

q-1

G(£) = g(k) e
2

L (2.1.7)

The Fourier transform has three inherent attributes in

communication theory -

1. It is a tool of analysis for time functioms.
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2. It is a concept to describe theoretical
considerations of time functions often in an
easier form in the frequency domain.

3. It is a tool for processing which is due to an
existing fast discrete Fourier transform algo-
rithm (Cooley and Tuckey, 1965),
which may be applied to do a faét convolution

of two sampled functions.

2.2 Sampling Theorem

In this section a short introduction to the sampling theorem
is given, which is essential to describe the connéction between discrete
and analog formulations of time functions (Papoulis, 1962 ). It can be-
expressed as follows:

| ‘ ¥ -2vift
Let 7 G(f) = fog(t) e “'TTTdt ' (2.2.1)
- %0 _
be the Fourier transform of the analbg function g(t) and:
+00

G(f) = Z g(n) e
n=-00

~2miin o | (2.2.2)

the corresponding function of the sampled values
g, = (... g(-2), g(-1), g(0), g(1), g(2), .... ),
then both transforms are connected with each other by the expression
+00 . _ . | ‘
G(£) = T G(£m) (2.2.3)

n=-co
From (2.2.3) one may immediately conclude -
1. If G(£) is confinea to |fl$% then G(£) = G(f) for
|f1$%. In this case no information gets lost due
" to sampling. ,
2. If G(£)40 for |£]>}, then E(£)#6(£) for |£l¢ and

the functions G(f+n) (-oon¢+co) overlap in expression
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(2.2.3). This effect is known as aliasing. To
prevent it, G(f) may be multiplied with rec (f) before
sampling. This process is referred to as anti-aliasing.
3. An analog function with the same Fourier transform for

,fls% as the discrete function g, is

~ + 00 |

g(t) = Z g(n) sinc (t-n) | (2.2.4)

n=-00 -

This equation is obtained by taking the inverse
Fourier transform of G(£f) rec (£). It is of great

help in later chapters to associate sampled values

with the continuous function gtf). Note that Ekt*)=g(t*).
2.3 Time Series

In this section the conéept of discrete time series is
presented. A discrete time seriés is a sequence of equidistant observations
which are associated with the discrete time parameter t%.,  Without loss of
generality one may take the spacing between each successive observation to
be one unit of time and.thus represent the time series as
X, = x(t*) = ( ...., x(-3), x(-2), x(-1), x(0), x(1) .... )

An M-channel time series (multichannel time series) is then represented by

[ e ] [ oo, % (-2), % (1), %, (0), % (1), ...
%, (1) coees %y(-2), %,(-1), %,(0), #2(;),
xt = =
5@ || e w2, XM(-l)I, 5(0)s 1)y e

The following definitions (Robinson, =~ 1967 ) are used in

connection with discrete time series:
1. If a time series is one-sided in the way that x(%%)=0
for %*(O, the series is called physically realizable.

2. If for a realizable time series the equation
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x2(€*)<a)holds, then the time series is called a wavelet.

430
00
3. If R x2(f*)<oo,'the time series is called an energy
TH=-00
signal.
& 72
y, If 1im 1 €:; x2(§*)<oo, the time series is called

Tro T T%=-T/2

a power signal.

2.4 Convolution

Convolution is a mathematical concept, which describes the
' physical process of time domain filtering. When a wavelet y(t) passes

{
through a linear time invariant filter, the output z(t) is known to be the

convolution of the input wavelet y(t) with the unit impulse response of the

filter a(t). The expression for convolution in continuous form is:

o0 .
2(t) = Sam g(t-T) drzalt)* y(t) = y(t)* alt) (2.4.1)

For the discrete case, where the sampling interval is chosen to be one,

the expression is;

w .
z(t%) = 2 a(T#) y(t* -n) £ a(td)® y(t#)= y(t#)* a(th) (2.4.2)

THZ-00
This is a numerical process done in the time domain. One

is therefore able to specify many mathematical filters in the comﬁuter which
have no equivalent electrical circuits. Examples are the class of Wiener
single and multichannel filters, all-pass phase'shift filters, phase-free
reject and band-pass filters. Other linear operations, such as static
correétioné and inter-polation are also examples of convolution.  Thus
convolution is an extremely pOW9rful tool for processing seismic data. The
rconcept is strongly related to stationary linear systemé and linear ordinary
differential equations with constant coefficients (Doetsch, 1961;.

Cheng, 1959). The relation with linear systems is expressed in the fact that
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the convolution infegral can be‘interpreted as a superposition integral
(Lee, - 1966 . p. 323). There is also another strong connection
between convolution and harmonic funétions. This finds its expression in
the confolution theorem. This theorem states that the Fourier transform
of a convolution is the product of the Fourier transforms of the convolved

functions.

2.5 Z-Transform

The Z-transform of a digital signal x,_ is defined as

t
i ~ ?:‘:
Xz) = x(t*) =z (2.5.1)
T4=-00
where z is supposed to be a complex variable (Jury, 1967 ). There

are strong connections with the Laplace and Fourier transforms which are
treated elsewhere. The importance of the Z-transform lies in the fact that
many concepts related to digital functions find an easier formulation and
explanation with this transform. So for instance may the Z-transform of
the convolution of two time series x_ and Y be simply expressed as the

t

following product Z(z) = X(2) Y(z) where X(z) is the Z-transform of X, and

Y(z) the Z-transform of Vi The Fourier transform of an energy sigﬁal is
easily obtained by substituting z = e-ZWif in the corresponding Z-transform.
A further concept most easily defined in the Z-domain is the concept of
minimum, mixed and maximum delay. A discrete wavelet is called minimum'
delay if all its roots are outside the unit circle iﬁ the Z-domain. It is

called maximum delay if all its roots are inside and it is called mixed

delay if there are roots both inside and outside the unit circle.

2;6 Random Processes

- In Chapter 1V a multichannel filter is designed. The pro-
cedure for this is purely mathematical and therefore has to be based on
mathematical concepts. On the other hand it is expected that these filters

will also operate on real seismic traces. A mathematical concept which
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seems to be a good.approximation for actual seismic traces is the

concept of a random stationary process. Random stationary processes will
be used in this thesis as so-called 'stochastic models' for the design of
optimum stacking filters. They can be defined for the continuous and
discrete case. A short description of random stationary functions for the

discrete case is given below.

Random is every function x _, whose instantaneous value x(t%)
cannot be determined precisely. It is however assumed that a range of
possible values {x(g*)g exists with an associated probability distribution
describing the likeliness of each possible value. In the language of
probability theory, one says that for each t%, x(%*) is a random variable.
The complete fupction{xtg is called a random process. One must bear in
mind, that an observed record of a random process is merely one record of
a whole infinite collection of possible records, which might have been
observed. This collection of possible records is called an 'ensemble' and

'any particular record is called a 'realization' or 'membgr' of the process.
When dealing with random processes, one describes the 'steady state' type
of behaviour by the term —‘stationary. More precisely,ixtlis called
'completely stationary' if all the statistical properties of x(%*)}do not’
change with time. If the first and second moments of x(%*)ldo not change
with time, one says that {xti is fstationary up to_thg second order' or

simply 'stationary!'.

The classical theory of spectral analysis which is used in
this thesis, applies only to stationary random processes. This is still
a severe restriction and it is doubtful whether any 'regl-life' process
possesses this property. In fact, stétionarity is a mathematical
idea;isation and it is well known that every physical behaviour can only be
described approximately with mathematical concepts. Therefore in practical
applications the most one could hope for is that over a certain time interval

on a seismogram the process would not depart 'too far' from stationarity for
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the results of the analysis to be invalid. Statistical tests exist to
verify the hypothesis of stationarity of seismograms (Bryan, 1967) and
extensive tests showed that this assumption is in fact often justified on
.Seismogram sections. Because the given design of digital filters is also
based on stationarity, a satisfactory performance of these filters can be

regarded as an indirect Jjustification for the assumption.

Often one refers to functions haviﬁg all the attributes of
random stationary.functions, though known for all time, also as random
functions. This is, strictly speaking, of course wrong. In actual fact,
one always operates with these 'known random' functions, unless 'real time'
processing is done. A recorded seismogram section is a typical example

t
for such an assumed 'known random' function. The general harmonic analysis

however, applies to both types of functions if the basic assumptions are the

" same.

2.7 Basic functions of spectral analysis

There is a number of important functions related to stationary
random processes. Some of them are reviewed in this section. For any
random process, one may form averages with respect to the ensemble of
realizations {x(%*)z'for a fixed integer valued time. Such‘averages are
called ensemble averagéé and are denoted by the expectation symbol E. In
particular the mean value m = Ei}(%*)} and the variance 4= E{(x(f*)-m)Qi of
a stationary. random process are independent of time T, Likewise, the
aﬁtocorrelation coefficients ?xx (T*) = E{x(?;* +T%) x(%*)} are independent

P
of t*.

There is another type of average known as time average, in
which the averaging process is carried out with respect to all values of
time for a given realization. A stationary process is called ergodic if
the ensemble and time averages are equal with probability one. As a result,

the autocorrelation of an ergodic process may be expressed as the time averaget
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T

(N -— liTn l 2 A.'v: =': Ag: .
Voo () = Li05mrm L x(t% +T#) x(x%) (2.7.1)

The crosscorrelation of two stationary processes{ Xy land

{yt }is defined as

\ny () = E{x(%f-‘ +TH) y(%’-‘)} whose time average presentation is
lim 1 T - A
Py ) = Tow BT é}T x(E +H) y(E) (2.7.2)

The Fourier transform of (2.7.1) is known as the power spectrum and the

transform of (2.7.2) is called the crosspower spectrum.

It can be shown that autocorrelation functions are symmetric

and that all functions with the same amplitude spectrum have the same

autocorrelation. It seems therefore clear that the autocorrelation is of

utmost importance in the harmonic analysis of a random process where variety

in waveform of the realizations is an inherent attribute. Crosscorrelations

of random functions are used in communication theory in various ways. They

are of utmost importance for the design of multichannel filters.
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CHAPTER 111

INTRODUCTION TO MULTICHANNEL FILTER THEORY

A seismogram generally consists of more than one trace.
Events which may be followed from trace to trace and record to record,
usually have more value to the seismic interpreter and hence are
statistically more important than events which apﬁear on only one trace. A
function deScribihg this inter-relation from trace to trace is, for instance,
the crosscorrelation of two traces. All crosscorrelations between individual
traces are incorporated in the autocorrelation matrix of a multichannel
'system. This matrix is a basic element for the design of a multichannel

t .

filter. Because a multichannel filter uses more information of the input
traces, one should expect that it generally Qorks better than individually
" designed filters for each trace. It is however also logical that if fhere
are no essential crosscorrelations among the traces, then there is hardly
any use in applying a multichannel filter. The geophysicist is therefore
interested in characteristics and performance of these filters for individual

cases which are related to practical problems.

The theory of multichannel stacking filters can be presented
in analog form (Wiener, 1949 .) and in digital form (Robinson,' 1967 b )
Optimum least squares filters can be designed as realizable and non-realizable .
filters. The analog version of the normal equations presented in the
geophysical literature (Meyerhoff, 1966; Foster, et al., 1968; Davies ,et al.
1968; Burg,1964 ) js the one which will usually specify physically non-
realizable analog filters. A short introduction to this special version is
given below. In more detail the digital form is treated which is actually

used for the computation of filters.
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3.1 The theory of optimum multichannel stacking filters in continuous form

Let N random stationary ergodic functions xi(t),(i=l,..,N) be

the input to the multichannel stacking filter as shown in figure 3.1.1.

xl(t) a, (t)

%, (t) a, (t) V,\ y(t)

Figure 3.1.1 Stacking filter

z(t) and y(t) are stationary processes representing the desired and actual
output of the filter. The N linear filters ai(t) (-e0< t< 00 ), which operate

on the input traces xi(t) to minimize

g g lim 1 gz (z (t) - y(t))? at

T-00 2T
N
where y(t) = 2:‘ ai(t)* xi(t) satisfy the set of simultaneous
i=1
equations:
N ,
g ag (0 (0 =@, (£, (=L, W) (3.1.1)
izl 1] J
lim 1 T
SUX < ) = _._g xi(t+'t‘)x.(t) dt (3.1.2)
1% T2002T ~T ]
cpz < () = Lm 1 () (t+)x. () dt . (3.1.3)
j T002T =T ]

. The proof is usually given by making use of concepts from the theopy of
"functions (Wiener, 1949; Robinson, 1962). If equétions (3.1.1) are to be
used on multichannel traces right aQay, the auto- and crosscorrelations
have to be necessarily estimated from finite length record sections. To do
the best estimation is a problem in its own and is extensively treated by
Bléckman and Tuckey (1968).

As the treatment in chapter IV will show, equations- (3.1.1)
are however used differently in this thesis. They can be looked upon as the

basic equations for a further theoretical design procedure.
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In the frequency domain equations (3.1.1) become

N

Z a )P, (0 =(I)zx. (£) (G=1,.e..,N) (3.1.5)

i=1 1] J

where the hermitian matrix Q@ X, (£) is called the coherency matrix of
i J

the input traces. The inverse Fourier transform of this matrix is the

autocorrelation matrix. A special case for equation (3.1.5) is the single

channel case where for only one input trace Xy (t) = =(t) the optimum
filter is
a) = Q&P @ | (3.1.6)

Another very important case which is generally treated in the geophysical
literature is the following one where the stochastic model of the seismic
traces is assumed to have the presentation

x(t) = s;(t) + v, (t) + n, (1) , (i=1,....,N) 3 z(t)=s(r), (3.1.7)
and signals si(t), correlated noise ri(t) and uncorrelated noise ni(t)
éatisfy the conditions

(Pxixj (T) = (Psisj(’t.')+ﬂprirj (’C‘)+‘Pninj'('t') ‘Sij , (1,i=1,....,N) (3.1.8)

Pzx,(T) = Pss, W), (§=1,....,0 | (3.1.9)

This means that signals and noise are uncorrelated with each other. The
normal equations under this condition become in the time domain
N . 8
% . .r. T 3.1.10
':’gl ai(’t’) [\Psis](’('.') + (Prlrj(’t') + (Pn n. (’C') 13] (Pss (t.)(J_1 Ng 1.10)
= ces

or in the frequency domain

Z A. (f)[@ (f) + @r r. (f)+@n n. (f)&l.]] =@ssj £),G=1,..,N) (3.1.11)

By ch0051ng the m1n1m1zat10n crlterlon
T N

g zg;a ()= i, (t)) 49? i{#ai(t)*n(t))z
i=

v 1lim g .
I= =1\ (s(o)- 2 a; (t)*s, (t)) ®
T>00 2% -T . =T =T i=1
one would again obtain (3.1.10), however with the weighted correlation

functions @ and Y @). (See also section 3.2.5.)
?(Prirj aninj
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3.2 The theory of multichannel filters in discrete form

The introduction to the theory of digital multichannel
filters in this thesis is given in more detail because it is the theofy
which is most adapted to actual digital computer processing. To make this
treatment more general, the theory for the N-input and M-output channel case

is presented.

'3.2.1 Introduction to the theory of matrix polynomials

For the sake of understanding the basic concepts
of the theory of discrete multichannel filters a very short introduction to
the most important properties of matrix polynomials is given. They are
also called polynomial matrices or A-matrices (Lambda-matrices). The
theory of matrix polynomials is a logical extension of the theory of constant
matrices and it is the basis for the theory of discrete multichannel filters.
A matrix polynomial is defined as Z(z) = Zf aizi where z denotes an
.indeterminate which is assumed to be commut;;gve with itself and the constant
Mx N matrices ai(i=0,..m). For a constant va;ue of z a matrix polynomial
reduces to a constant matrix. For operations with A-matrices it is therefore
demanded that the usual matrix algebra applies. Regarding a A-matrix as
a polynomial with matrix coefficients lgads to the name matrix polynomial.

Regarding it as a matrix with polynomial entries leads to the name polynomial

matrix.

The product of two polynomial matrices z(z) and E(z), is not
necessarily commutative. It is a polynomial matrix C(z)=A(z) %(z), whose
coefficients are obtained by convolving the coefficients of A(z) and B(z).
Further and detailed treatment of this theory 1s given in various works

as for instance: Frazer, Duncan, Collar, 1963; Gantmacher, 1959.

3.2.2 Basic concepts of a digital multichannel filter

A box with N inputs and M outputs is shown in figure 3.2.2.1.
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1 .1
2 — >
N — M

FIGURE 3.2.2.1 Multichannel filter.

Exciting input channel 1 with a spike (1, 0, .... ), a
multichannel response on all M outputs is expected whose Z-transforms are

All (z), A2l (z)y vuoee Ay (z).

All (z) is the Z-transform of the response on output channel
1, A2l (z) on output channel 2, etc. Putting a spike on input chamnel X
will result again in M different outputs AlK(Z)’ cees s AMK(Z); The
behaviour of the box is fully described by the M x N responses Aij (z) ,(i=1,.M;
j=1,.,N). Such a box is called a digital multichannel filter. To keep the
theory within reasonable limits, it is demanded that the following

_mathematical conditions are fulfilled:

1. The multichannel filter has to be tiﬁe invariént.
(The application of the same input spikes at different
times results in the same outputs).
2. The responses of the multichannel filter have to be
wavelets.
3. The multichannel filter has to”be linear. This means:
(a) Applying moré spikes on different input channels
or at different times or both results in the super-
position of the corresponding output wavelets.
(b) Scaling of an input spike results in the same

scaling of the output wavelets.

Condition 3 leads to the superposition pfinciple. This principle states

that, regardingreach input trace as a sequence of differently scaled spikes

at subsequent times, the overall output is the superposition of all the
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scaled corresponding stimulus responses helonging to each individual spike.
It describeé in single channel filter theory the fact that the filter
output can be expressed as a convolufion of the input with the stimulus
response. For a multichannel filter the principle demands that the
multichannel output is connected with the multichannel input by the follow-

ing matrix multiplication.

(All(z) ALz ... an )] [x ] Y2
X,(2) Y2'(z)
A1 (2) A [ Xy Y (3.2.2.1)

Or in short, Z(z) X(z) = Y(z) where X(z) is the ZQtransform of the multi-
channel input and Y(z) the Z-transform of the multichamnel output. The
Z-transform of a multichannel filter therefore has the mathematical
representation of a polynomial matrix. It may also be written in the

form of a matrix polynomial

-
-

A(z) = a +a_ z+....+2 z" . (3.2.2.2)
o 1 m

Each coefficient is a constant M x N matrix.  Multichannel convolution is

expressed in the time domain in concise form as:

a X tax ,t....tax =y “(3.2.2.3)
[y () e, (£5)

wher‘e‘yt = | and X =
| () e

A polynomial matrix with only one entry is the special case of a single
channel filter. When all the entries of an N x N polynomial matrix are

zero except those on the main diagonal; the matrix describes the application
of N filters to N traces. It is shown below how even two-dimensional filters

can be included as special cases in the theory of multichannel filters.
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Having two two-dimensional‘operators aij ,(i=1l,.n3;k=1,.m) and

N ~
bij,(i=l,..,k;j=l,..,l),and defining the two functions

8

n . .
CACt,y) = % ai.tl'ly3'l (3.2.2.4)
izl §=1
B(t,y) = {f 1 bijtl"lyj'l (3.2.2.5)
izl j=1

the coefficients of the function C(t,y) = A(t,y) B(t,y) are called the

convolution of a.. and b, .; _ T m
1] 1 cij'Séb ?g;oarsbi-r+l,j-s+l

s,

415 322 ' 12 0292
%11 %1 by1 Py
>t >t
Figure 3.2.2.2 Figure 3.2.2.3
- 81503, 359P1 0131 5b55 3yoP0
3110101335055 3550111859y 5%3; 50013105, a51P0t85500;
311013 351Dy %ay305, ay1P0

Figure 3.2.2.4

To give an example the 2 x 2 operator of figure 3.2.2.2 was convolved with
the 2 x 2 operator of figure 3.2.2.3. The result is shown in figure
3.2.2.4, This operation can be formulated as a multichannel filter process.
For this purpose aij(i’j = 1,2) is regarded as two single channel filters

and bij(i’j = 1,2) as two input time series of length two. Cij are then

three output time series of length three. Taking the Z-transforms
Al(z)=all+a2lz Bl(z)=bll+b2lz
A2(z)=al2+a22z B2(z)=bl2+b22z

and letting the Z-transforms of the three output traces be

- _ 2
C,(z)=a,;b),+(ay,byytay by )zta, by 2

i} 2
Cx(2)=(ay by ptay pby g Mlagyby 1 +an) Py gtay gy g 1Py p )2+ (@) D gytag Dy )2

' _ 2
Cg(z)=a b, +(a,b ta),b,5)z+a,0b,,2
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it may be seen  that two-dimensional convolution for the above example can

be written as

-Al(z) 0 0 TBl(z) leZ)
A2(z) Al(z) 0 B2(Z) =.C2(Z)
| 0 A2(z) Al(z)~ | 0 | .Cs(z{

For the general case the Z-transforms are

i-1

1
u
N

Aj(z) (3=1,...,m) : (3.2.2.6)

(3=1,...,1) (3.2.2.7)

n
YAA
™)
ol
N
=
[
[

Bj(z)

With these terms the following (T +m) x (T + m) matrix

-Al(z) 0 0 . . . T -
Ay(z) A,(z) 0 . . .
As(z) A, (2) A,(z) . . 0 0
- . . . . . . (3.2.2.8)
A(z) = | A (2) . . . . . .
0 Am(z) - . | . o] 0
. . ; Al(z) 0
| o 0 0 A (2) . 8,(2) Al(z)J

and the (m + 1) - length vector
BT(z) = (Bl(z), B2(z), e Bi(z) ....0) is defined. It can be easily

' verified that the matrix product Z(z) B(z) = C(z), which now corresponds

to a multichannel process, possesses the coefficients of the two-dimensional
convoiution. Note that BT(z) is the transpose of B(z). In particular,
when N input traces Bi(z) have to be convolved with an N-trace filter Ai(z)

then 2N-1 output traces result. Of special importance in this case is
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then, as shown in Chapter V1 the centre trace of the output
. XN n
Cylz) = A (2B, (2) (3.2.2.9)
i=l
- This description of two-dimensional convolution in multichannel filter terms
can be easily extended to three and higher dimensional convolution.  Two-
dimensional convolution can be done by taking the discrete two-dimensional

Fourier transforms of the input traces and the fiiter, multiplying both and

taking again the inverse transform of the product (See Chapter V1).

3.2.3 Auto- and crosscorrelation matrix of a multichannel time series

p channel stochastic process may be presented by the column

x. (t*)
171 (
vector X, =
X (t:'-‘)
P
where each element xi(t*) denotes a single channel process. The multi-

channel autocorrelation coefficient for time shift s is given by the p xp

matrix.

(Pll(s) LPlz(s) (Plp(s)

(Pxx(s) = (‘Ps = E{xt+sx.1r:} | =

1 () e
- - ) h* h* l_ . - +0-
VDijﬁs) (Pxixj(s) E {xi(t + 8) xj(t )} is the single-channel auto
correlation for i=j or the dual channel crosscorrelation for ifj. If
y, (£%)
e T represents another q channel stochastic process, then
y_(t*) ‘

: g T . . . .
(ny(s) = E {Xt+syt} correspondingly is called a crosscorrelation matrix

coefficient for time shift s. Under the assumption that correlation functionms
are of finite length 2n + 1, the Z-transform of a multichannel autocorrelation

matrix can be written as
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[ o (1) i 2 i
;g;n qjll z" ... E;_n q)lp(l)z
(3.2.3.1)
n . n N
. 1 . 1
£ gppl(l) z5 ... ;ézn %)pp(l) z

n may be any integer value between one and infinity. This is an extended
symmetric A-matrix (Robinson, . 1967 ) . Due to this fact, it is
sufficient to know only the one-sided autocorrelation matrix, where the

summation is from i=0 to i=n.

3.2.4 Design of a digital multichannel - Wiener filter

It was shown that multichannel convolution can be expressed

m : .
as y =§i a,x_ ., where x_ is the multichannel input, y_ the multichannel
t =0 1 t-1 t t

output and ai(i=0,...m) are constant matrices. One would like to know how
to determine the numerical values of a; in order to optimize the specific

problem, where a known Xy has to be transformed into a desired output.z

t

Below a short review of the solution to this problem

(Robinson, =~ 1967 ) is given. The solution rests on three main assumptions:

1. The time series representing the input . and the

output z, are random stationary functions.

t
2. The approximation criterion is taken in such a way
és to minimize the trace of the mean-square-error
matrix between the desired oﬁtput z_ and the actual
output y, . This trace is given by
I=trE{ (v )y
)" l

where (zt--yt is the transpose of (zt-yt).

3. The filter is time invariant, physically realizable

and stable.
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3.2.5 Derivation of the multichannel normal equations

An (m+l) length multichannel filter is chosen where the
coefficients are M x N matrices

rall(s) alQ(S) .. alN(s)

a_ = a(s) = (s=0,...,m) (3.2.5.1)

aMl(s) aMQ(S) e aMN(s)

The input time series are given by the N x 1 vector valued time series

x, ()
X, = (8 =| * «| @nd the desired output by the (M x 1) vector - valued
xy (1)
z_ ()
. . X 1
time series z,_ = z(t) =
t *
zN(t)

The actual output is given by the matrix equation Y Tagk ta X, _qtesta x, o

The error befween the desired output and actual output is then

e "2~y Tz ~(agx +o.cta x, ) (3.2.5.2)

Defining the mean-square error-matrix by
[‘ 2 . . -
E{e®(0)] £ {e,(0)e,(0)} ... E [o (e ()]

E {etetTi = | (3.2.5.3)

E{eM(t)el(t)} e, wee.. Ede 2(1:)%

the trace of this matrix is then the sum of the diagonal entries

_ T 2 2 2
I=trE {etet }- E {el (t)} + E {e2 (t)} + ... + E {eM (t)} (3.2.5.4)
This means in other words, the sum of the squared errors resulting on all

outputs -is going to be minimized. Because the error

=]

T
Oasxt—s) the

e, =z -~y = z - ax and e, e T=(z - ax, Mz -
t t 7t t 0 s t-s t 't t =0 s t-s"t

A
ALY

mean-square-error matrix becomes
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Ty _ T, T T T
E[etet } E{tht i i-o E{tht-ri 4~ éo 2 E[ t-s ti
Al Ty _ T
N §=O éo s E{ t sxt—rg %

This can be written by making use of the definition of the auto- and

crosscorrelation matrix

E{tszr& (P_S)

E {2 o) Qo)

™ T m T m A
as E{eteti E{ztztg— rizo zx(r)ar - é:o as(sz(—s)
t g & Pl

Setting the partial derivatives of the trace I = tr E {etezg in respect to

the (m+1)xMxN filter coefficients equal to zero results in the set of

simultaneous equations

% ‘PXX(OHalkpxx(_l)-f +am“Pxx(_m) = szx(O)
a, (Pxx(l)+altpxx(0) + e +amtpxx(l-m) = kpzx(l)
(3.2.5.5)
a gpxx(m)+al tpxx(m—l)+ +am&pxx(0) = &p 5 (M)
These are the discrete multichannel r;ormal equations. All aS(s=O,m) are

M x N matrices, all kPXX(s)(s=—m,m) are N x N matrices and all LPZX(S)(S=O,m).

are M x N matrices.

In concise form equations (3.2.55) may be written as

- )
i . ar(PXX(s-r) = ,(sz(s) , (s=0,...,m)

As already mentioned, Wiggins and Robinson (1965) presented a recursive
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solution of these equations which is generally available. With the help of
the computed filter coefficients the minimum value of the trace of the mean-

square-error matrix is

m
I, = trg (0) - tréogpzx(r)az (3.2.5.6)

For the design of a multichannel Wiener-filter the only
elements necessary are therefore the one-sided auto- and crosscorrelation

matrices.

In case a more detailed assumption is made about the input

and output, a least squares error criterion may be chosen, which leads to

slightly different normal equations. Let xt = st+rt+nt » Where Sy is a
multichannel process of N signals and r, ,n, are multichannel processes
representing correlated and uncorrelated noilse. It is also assumed that"

the signals s, are not correlated with the noise and that the desired N-trace

t

output array is chosen as s_. The error vector (3.2.5.2) may now be

t

.decomposed into the three components

m

=g - +
€+ 5t s£=0 agle gty s™ilq)

m
s - -
where et—st 2{ asst-s
s=0
m
re =- ar
t s30 s t-s
m
ne =- an
i sSo s t-s

Instead of taking (3.?.5.4) for the computation of the normal equations, one '

may also choose

_ s s T r »r T n nT (3.2.5.7)
Iey = trE{ e, et} +QtrE { ey et} +VtrE{ e, etg :
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thus giving different weights to the errors caused by the signal and noise
components. Setting the partial derivatives of I?y with respect to all

filter coefficients equal to zero leads to the normal equations

m o
ri:o ar[gpss(s—r)+s7llorr(s—r)+v(Pnn(s-r)] =\PSS(S),(S=O,..,m) (3.2.5.8)

where LPss is the N x N autocorrelation matrix of the signal vector s + and

7 LP the N ® N autocorrelation matrices of the noise vectors.
rr’ ¥Ynn

It is a known fact that the assignment of a weighting factor
to the autocorrelation matrix of the correlated noise (Galbraith and
Wiggins, 1968 ) may lead to considerable improvement in the signal to
correlated noise ratio. The above treatment shows that such a weighting
factor can be already included in the least squares criterion which for a
big value of Q exaggerates the importance of correléted noise in the design.
Computational experiments are done.in later chapters which show the effect

of Q and ¥ on the filtering process.
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3.3 Exact and approximate solutions of multichannel normal equations

In the previous two sections normal equations for optimum
. i
multichannel stacking filters for the discrete (3.2.5.5) and analog case
(3.1.1) were presented. Complete analog solutions are generally not

available while discrete solutions of (3.2.5.5) are easily obtained with

the fast multichannel - Levinson algorithm.

Throughout the rest of this work normal equations are
diéqussed in analog form. Below it is shown under which conditions the
discrete algorithm can be applied to give (at least approximate) solutions
for the analog case. The analog normal equations (3.1.5) can be written

in concise form as:

jiil ﬁj(f)@ij(f) = @i(f), (i=1,..,N) | (3.3.1)
They generally specify two-sided continuous responses where ﬁj(f)(j=l,...,N)
¢overs the range lf1<00. These solutions cén never be obtained with the
discrete normal equations. Discrete solutions are always physically
realizable and have a spectrum which is entirely defined in the range lfl(%

If (3.3.1) has to be solved with the discrete algorithm, one has to make

sure, first of all, that the equations have the form

=

rec(£) ) Q..6) = Q.8 rec (£),  (iz1,..,0) (3.3.2)
) S i3 i . U

‘so that their solutions are also confined to the range If k%f The-
solutions of (3.3.1) and (3.3.2) are connected with each other by the
following formula

~ ”~

Aj(f) = Aj(f) rec (£), (4=1,..,N) (3.3.3)
This is self explaﬂatory, because solutions of (3.3.1) and (3.3.2.) for a
given £ do not depend on other frequencies and in particular Aj(f) cannot
depend on lf]}%. Solutions of (3.3.2.) may be physically not realizable.

There is the possibility that by multiplying the right side of (3.3.2) with
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-29ift
e where td>0
N —2Hiftd‘ :
rec(f)z A.(E) dj..(f) =@.(f)rec(f) e ,(i=1,.,N) (3.3.4)
5373 i i
P —2niftd ~
one would obtain solutions Aj(f) = Aj(f) e or aj(t)=aj(t—td),(j=l,.,N)

which are shifted into positive times. There is always a value for t,, such
that the remaining negative part of the time responses for (3.3.4) is
negligible. If it is therefore assumed, that the time domain solutions
aj(t), (3=1,..,N) of (3.3.4) can be neglected for t< O (which is justified
for large t;), then they fulfil the same properties as the solutions of

the discrete normal equations (3.2.5.5). Solutions for (3.3.4) were therefore
computed as follows:

.The auto- and crosscorrelations of (3.3.4)

100
- _omify

@ = reccf)@ijm T af (3.3.5)
) @ -2nift, 2mifv

(Pj(u) = _::ec(f) j(f)e e af (3.3.6)

were sampled for O0$%T#m and with

PO s T
N1 NN
o (sz('c){kplcr:).........tpN(fcj (=0, ....m)
‘the normal equations

g; 20 0 T0) = (@) (T=0,....m)

were éolved with the fast multichannel Levinson .algorithmm.

The discrete solutions depend very much on the values m and tyr
It is‘immediately clear that m and ty must tend towards infinity, 1if the
6btained discrete solutions should represent complete continuous solutions.
These practically uncbtainable solutions will be refered to~as the "exact"

solutions.
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It 1s however possible to compute finite length discrete

filters with a finite number of q?ijCI*) and (Pj(T*) and a finite positive

td. The obtained discrete filters of various possible length m and a given
td |

ajm('t*) (Ost#gm) (3=1,...,N) (3.3.7)
are called the 'approximate' discrete solutions. An approximate analog

solution for (3.3.4) is then

m
m - m,, . s ‘o ) 3.8
aj (t) = E;bvaj (i) sinc (t-1), (§=1,..,N) (3.3.8.)

Among the 'approximate' solutions one is only interested in the best
approximations to the 'exact' solution for the shortest possible filter
length. The least squares error (3.2.5.6) is a good criterion to give an
upper limit for the filter length (Galbraith and Wiggins, 1968), from where
onwards further convergence becomes very slow. It is also a criferion for

the optimal choice of the value t For all solved problems the filters

a

Wwere never longer than thirty samples and the delay t, was always about half

d
the filter length. If for instance the solutions for the analog normal
equations are known to be symmetric to the fime oriéin, then td should be
chosen as half the filter length. This is generally done in later chapters.
In this way discrete symmetric operators of finite length are obtained.

The N realizable time responses obtained with (3.2{5.5) for a positive delay
td can be shifted into negative time by.the same amound td. Performing

subsequently the stacking filter process with this non realizable stacking

filter will approximate the zero delay desired output.
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CHAPTER -1V

MULTICHANNEL STACKING FILTERS

The concept of multichannel stacking filters is already well
established and its superiority over single channel filter opérations in
certain processing techniques is known. The normal equations (3.2.5.5)
are used for the computation of stacking filters in basically three

different ways

1. Specifying idealized input and output data
to obtain the correlation matrices.
2. Presetting the correlation matrices due to
t
specific mathematical considerations.

3. Straightforward application to real seismic

data.

The first two approachés are deterministic, and the third
one is a practical approach. The first approach is the simplest and is
hard%y treated in the literature. It has the disadvantage that computed
filters are very sensitive to changes in the input traces from the chosen

model.

The third approach is known as multichannel deconvolution.
It ié a straightforward application in the way that the autocorrelation
matrix is computed from a section of actual field data. The desired
output is chosen as a spike at zero position. Thus the one-sided cross-
correlations between the desired output and each input trace also become
- spikes at zero position. A multichannel deconvolution filter therefore is
entirely specified by the autocorrelation matrix of the traces. This special
process which can be regarded as the corresponding process for single
channel deconvolution, shows generally littlé improvement (Davies and

Mercado, 1968) over single channel processes.
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Tﬂe'second approaéh is the most popular and is also used in
this thesis. The main advantage is that with this design procedure, many
filters can be computed which would be impossible to obtain with other
techniqués. For instance, this approach leads to ghost suppression
filters (Schneider, et. al., 1964), suboptimum velocity filters (Foster,
Sengbush, Watson, 1964), optimum multichannel velocity filters (Sengbush,
Foster, 1968) and optimum horizontal stackfilters (Galbraith and Wiggins,
1968). The design procedure is basically the same in all cases. It

starts by specifying an analog stochastic model.

x.(t) = s.(t) + r.(t) + n.(t), (i=1,..,N) (4.1)
1 1 1 1

where each trace xi(t) consists of a signal si(t),'correlated noise ri(t)
and uncorrelated noise ni(t). A varied form of this assumption is (Foster,

Sengbush, 1968)

xi(t) = s(t—T&) + r(tffg) + ni(t) , (i=1,..,N) (4.2)

"where signals and correlated noise are expected to have the same wave form
on each trace. In the case of Common Depth Point (CDP) data (Mayne, 1965)
the model may even be assumed to be

x.(t) = s(t) + r(t-T) + n.(t), (i=1l,..,N) (4.3)
1 1 1

The specification of models in analog form is necessary, because the
relative arrival times11 and %; for the signals and correlated noise do not
T

necessarily fall on sample points. and %2 are assumed as

5
random variables for which probability density functions are chosen which
seem to fit various filtering problems best. This ensures that the filters
will be applicable to a broad class of input traces with similar statistical -
properties in their arrival times. With the probability density functions,
finélly expectation values for the correlation functions of the traces are
computed. Apart from uncertainties in the arrivals of signals and

correlated noise, many other uncertainties may be incorporated into this

design procedure.
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The necessary compromise between simplicity of a model and the
reality shoﬁld always be oriented on the actual knowledge about traces.
Wrong assumptions about input traces may have a strong negative influence
on . the filtering process. If much is known about given seismic traces,
the statistical changes assumed for the model should be confined to small
ranges. The performance of a more specifically designed filter will then
be better than one of a very general filter where broader assumptions about
the statistics of traces were included. The design of a multichannel
stacking filter will therefore ultimately, as in the present case,make use of
many design parameters. They make it possible to tailor filters for
many  individual purposes. These design parameters are not equally important.
Their importance is revealed by doing computational experiments with the
filters. They often influence filter characteristics in a very logical
way and there exists a number of general rules about them. Some of the

rules are presented in due course.
The following stochastic model is given in this work

%, () = s (£-T3) +r (t—’t’i) + 0, (t),(i=1,..,N) (4.4)

Initially it is assumed that signals and cofrelated'noise differ only in move-
out from trace to trace. 171 and ‘%} are specially chosen random
variables. As desired output z(t) = s‘(f-td) is taken, where s (t) is

‘the common signal in the input ‘traces . td'deSCribes various possible

delays of the output signal. The value of td’ where the expected error

(3.2.5.6) is minimum, is known as optimum delay.

Generally it is possiblg to design a-N-input M-output channel
filter, where all M desired outputs are' s (t). Computational experiments
(Galbraith and Wiggins, 1968) showed however, that for optimum delay of the
specified output, éll M actual output traces give néafly the same results.
Because the design of a single channel output filter is computationally

more efficient, there seems to be enough justification for only concentrating

on the multichannel stacking filter case.



-38-

4.1 Design of a general purpose multichannel stacking filter

In the following treatment the design of the general class
of sfackinglfilters is presented which is investigated in this thesis.
.Two- and three-dimensional velocity filters? polarisation filters and
multichannel stacking filters for differential normal moveouts
are included in the given derivation. A certain value of this work may
therefore be found in the fact that all these filters can be treated from
a general point of view. Characteristics and rules observed with one

special type can usually be generalized for the whole class of filters.

Derivation of the autocorrelation matrix

tr Ly totate CHANNEL _

X > r
\
\ \ \
G\ hetd N\liraty | CHANNEL 3
~
\\
tit N X ot » CHANNEL. j+1

FIGURE 4.l.1 Time window.
N seismic channels are given (figure 4.1.1 shows three of

these). It is important to notice that fhere are no restrictions as to where
these channels have been recorded. They need not necessarily have been
recorded in sequence along a line with equidi;tant recording positions.
Positions may also be arbitrarily distributed in three-dimensional space.

The signal si(t) on trace i may arrive at the relative “l:imec><,i and the

signal sj(t)von trace j at the relative tiﬂmsa%. The autocorrelation

Fa%4 .
function of each trace is then %% s (T) and independent ofex., while the

.crosscorrelation between si(t) and sj(t) is given by

T
_lim 1 . o
LVsisj(rc)—T-)oo‘TT_g s (t oli)s (t o(j T)dt _A (4.1.1)
=(.’P' Ttot-ot, ) (4.1.2)
s s j i

and depends on the relative shiftczj—a&.
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It is assumed that the relative arrival timescxi andc><j are random

variables defined as follows:

o<, =t + atr/z tm o+ XI‘ (4.1.3)
.=t +4t./2 +mat./At + . (4.1.4)
°<] J J ,yl J r X]

where t. and<4tj, (j=1,..,N) describe two limiting curves in figure L.1.1.
qz and X:jare independent random variables, with the following arbitrarily
chosen probability density functions

.1
p () = At e (n/ 8t (4.1.5)

(Y ) = —t'rec (p5/t) » (G =Ll (4.1.6)
J c

Channel r is an arbitrarily chosen reference trace.
tc will be referred to as chatter. The meaning of v,xj,xr becomes clear
at once by discussing equations (4.1.3) and (4.1.4) for the special cases
where.one of the variables 72 cn*xj quals zerc. The random variable'g
forces the arrival times to fall on non-overlapping curves, which divide
-dtj on each.trace in the same ratio, while Xj permits-a certain
deviation of these afriyalsvfroﬁ the fixed family of curves. Equation

(4.1.2) can now be written as

: -3 t_+y.-t.- At. /2~ ) (4.1.7)
tpsisj('c) =¢ s ('t+tj+ Atj/2+nzd’rj/A Y57t 487277 i 1.
or with the help of the abbreviations

tij = tj—ti+ (<1tj -4at;)/2
oAt - ’ ' : 4.1.8)
Tyy =4t579 : | ¢ |

~

f)z = '72(4tj/ 4t 1)

as
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@ ¢ @ = (p’s o (Tt +ﬁ+xj -¥;) (4.1.9)
i%j _ ,

This becomes in the frequency domain the crosspower spectrum

_ & 2wit, f21r1f21!1 f -21iy. £
Qoo ®=(Q,, e Do G

e
i3

The expectation of this is

E{qj - (f)g g g( (ﬁ)p(xl)p(Xé)@ . (f)d«“ldgldxz
| | (4.2.10)

where the probability density plOﬁ) is related to pOOQ) by

A

@) = . - )
p, (7] | at o, By PO(I at /4, -1

Due to the symmetry of all probability density functions and the statistical

. independence of the random variables, equation (4.1.10) can be written as a

product including three Fourier integrals

2vift

_ AR ij . .
E {@ij(f)] - E{@Sisj(f)} = (ﬁs L (De | I(£) T,(£) T (£)  (4.1.11)

' i 2winf
where Il(f) = S;Fl(q)e dn = sinc Otijf)
+00 Zn_iglf o
IQ(f) = SQF(Xl)e Xm=SlnC (tcf)
I,(£) = 1,(£)
so that

2Mit. . fa .
{@ (f)}-— sinec (t f)31nc("t" f)e 1] ®s s (£) (#.1.12)

This becomes in the time domain the following convolution integral

' ’E"ﬂ“t.. ~
B{?ﬁj(Tjg il ll -rec 131“; rec(ﬁl)ﬁl— rec(zi)* %%.S @ (4.1.13)

i~ P
Lij_ IHj' } tc tc tc
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For the special assumption that'si(t) and sj(t) are broad band signals

Qs s () = sinc(t) or @Ss(f)=rec (£)

the expectation of the crosspower spectrum becomes

g _ 21riftij
E{éﬁij(fj} = rec(f) sinc (tcf)31ncﬂtzjf) e (4.1.14)

The time domain presentation can be written as

N

+

E {%j @)} = (

sinc2(t £)sinc(T, .fcos2ufr+t. . )df
c ij ij

Nl

(4.1.15)
This integral can be further simplified as shown in appendix 1 and easily
computed on a.digital computer. The autocorrelation functions under the

special broad band condition turn out to be

E {:piim} = sine(®) (4.1.16)

"Derivation of the crosscorrelation matrix

The crosscorrelation between the desired output signal

so(t) = s (t-t,) and the input signal on trace j can be written as

d

lim 1 T ~
N o — -t
‘«psosj(t)-T_)w——QT ) s (t fcd)s (t—o(j )dt (4.1.17)

wherec:(j is given in (4.1.4), so that
_ | N | _
s s.mﬁ’é 5. (Tt +at. /2494t /At _+Y .-t ) (4.1.18)
LPOII JTJM?J/ ZAJ/rXJd
Using the following abbreviations

't'.=‘1:'.+ t./2-t
173 4 II/ d

a1 A P L

]
at,
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one gets for the expectation of this expression

) THt.+at./2-t ~
1 T L1-- L 3777 dl,
B{ _(’C’)} = — rec(—=)%—— rec| : % ®© (4.1.19)
$208j tc tc latjl 'Atj' %% s

This has for the assumption that so(t) and sj(t) is broad band the Fourier

transform

S.

’ 2nift.
B{@So,j(f)l = Bi@j(f)} = rec(f) sinc (t_f) sinc (Atjf)e 3 (4.1.20)

By making use of the inverse Fourier transform the time domain presentation

can also be written as
+§‘ i
E ‘P'(T)E = g sinc(t _f) sinc (@t.f) cos 2vf@+T3) df (4.1.21)
] "15 c J ]

_This integral can be further simplified and easily programmed on a digital

computer as shown in appendix 1.

F:om a mathematical point of view, correlated noise is
expressed in the same way as signals. The expectation of the autocorrelation
matrik for the correlated noise is therefore computed exactly in the same
way as the autocorrelation matrix for the signals, only for a different
moveout window. If more signal- and correlated noise familiés are known to
be present in the input'traces which are uncorrelated to each other and fall
into different moveout windows, then the total autocorrelation matrix of the

traces is the sum of the autocorrelation matrices of the above specified kind.

With the formuiae (u,l;ls), (9.1.16) and (4.1.21) one now has
tﬂe possibility of computing discrete filters. If uncorrelated noise is in
the input traces, it is clear that the autocorrelation functions 6f this noise
must be added to the diagonal of the autocorrelation matrix. Deterministic
multichannel stacking filters can be made less sensitive to gain variations
of the input traces. The technique (Baldwin, 1964) may be described as

follows. It is assumed that the gain on each channel is a random variable,
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independent from the gain on any other channel. The gain value is assumed

to be uniformly distributed between 1-&¢ and 1+ . This means the probability

density function for the gain is Py (g)-—zizrec(géi) . If the input traces
are given by Ei = 8i%; » where g; is the variable gain, the autocorrelation
is (PL_____= g.? (P . The expectation of this is
X, X, * XX,
i71 i71

dg; = 2°'~(Px X, g g dg (l+ )\@ Xy

=

i

%1

.W‘
4]

\
~
el
~
0q

oS

X
I
I

The crosscorrelation is LP;;———-

- Xj g.gj(Px whose expectation is because

of the assumed statistical independence for the gains

+00 2
E{ iiijg = (Pxixj('c){ S_wgips(gi)dgi] = ‘Pxixj(’t)

The technique therefore, is to leave the crosscorrelations unchanged and

multiply the autocorrelations by the factor (1 + 03/3). In the particular

case where signals are broad band and (PX % = sinc (T), this corresponds to
adding a constant amount of white noise to each trace. This addition of
white noise is also important for another reason. The autocorrelation

matrix usually tends to be singular, thus leading to unstable filters. This
effect is often remedied by adding a spike at zero position to the auto-

correlations (Galbraith, Wiggins, 1968).

The broad band assumption for all signals is a restriction
which is mainly made for fhe sake of simplicity. This assumption is known
- (Schneider, Prince and Giles, 1965) to give already good results, thus showing
. that the phase relations between signals (or organized noise) are more
important in multichannel_filter design than their amplitudés. This
restriction may be made less severe by making one of tﬁe following three

assumptions:
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l; " The autocorl;elations LPSS("C’)', (‘Prr(/c) and
LPninj (T)= (Pnn(ft‘). Sij are known (or at least
an estimate of them is available).

2. The autocorrelation functions of all input
components are the same.

3. Signals and noise change in band width from trace

to trace.

If in the first case all three autocorrelations are known, they
can be incorporated in the design by convolving them with equations (4.1.15),
(4.1.16) and (4.1.21). Thé problem of estimating these functions from
traces 1s discussed in Chapter 1X. The second assumption leads to the
same results as the broad band assumption, because the input traces could
be deconvolved, thus becoming broad band as well. An approach to take care

of the third assumption is given in appendix 11.

One may argue that neither signal nor noise on actual

" seismograms will show much change in band width from trace to trace and

that therefore further statistical averaging in this respect is unnecessary.
In Chaptér V111l enough reason is given to show.why the broad band assumption
is the most economical one for the design. Nevertheless, the computations
in appendix 11 are of general value. They show that, by taking variable
band width from trace to trace into accéunt, the abpve specified power and
crosspower spectra have to be furfher ﬁultiplied with.certain tapefing
functions in.the frequency domain. Favouring this special feature has
therefore to be paid for with some kind of high frequency loss in the
correlation functions. This loss is transferred into the high frequehcy
écntent of the obtained stacking filters. Later it is shown that allowance
for chatter as well as high amounts of uncorrelated noise also suppress the
high fﬁequency content of filters. Favouring one ﬁnéertainty in the design

will therefore benefit the other two as well. Because it is not possible to
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design a filter which exactly fits the properties of the input traces, it
is a consolation to know that the filter shows a certain stability towards

changes of design criteria.
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4.2 Multichannel normal equations and symmetries of solutions

With the above specified power- and crosspower spectra it is
now possible to compute the responses of various kinds of stacking filters.
For the rest of this work, it is assumed for the design that the signals are
broad banfi and the correlation functions are’ givén as

E {Q)ii(f)§= rec(f) | (4.2.1)

5 Qwiti.f L.
E {@ij(f)}:rec(f)sinc (t sine(T; e I (i#9) (4.2.2)

2niv.f
E {@j.(f%: rec(f)sinc(tcf)sinc(Atjf)e J ' (4.2.3)

Let tjk and Atjk(j=l,N; k=1,L) be the parameters for L regions designed for

signals, while ‘Ejk and d-:c'jk (j=1,N; k=1,K) are the corresponding pafameters
for K regions designed for correlated noise. With the parametersQandV as
introduced in 3.2.5 the continuous normal equations in the frequency domain

for the most general case of the stacking filter become

N N
A.(f) R,.(Ff) = G.(F), (j=1,...,N) (4.2.4)
~ i 7 T1] |
izl
where
. k ..— k -
o L k 21r1fti. K —k 2n1fti.
R, .(f)=rec(f)sinc” (¢t _£) 2 sinc(T,.fle ]+92 sinc(T, .f)e J +yrec(f)-<s. .
1] < i ij e ij , i3
(4.2.5)
. L N 2mi fr N
G,(£) =rec(f)sinc(t £) |$ sincldtifle 3 . (4.2.8)
J c k=l J .
and atoat
e Xk —d 2 (4.2.7)
ij i i 5 : .
T k =.4rc]j< —At]:.f H '(:]f = t]]f +4tj,k/2 (4+.2.8)

i3
Without solving the system (4.2.4%) one may already draw a number of important

conclusions concerning the solutions 'Ai(f) or ai(t):
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1. If R;5(£) = R; (-f) and G (f) = Gj(—f), then all time
responses ai(t),(i=l,N) are symmetrlq about the origint = 0 , thus each
component has a zero.phase response. This can be immediately verified by
replacing Ai(f) with Aiéf) in (4.2.4) and observing that the expressions
for Ai(f) must be the same as for Ai(—f). One may easily verify, that, for
instance, a time window satisfying the conditions tj =-413/2 belongs to
this cése. Special windows of this case are given in figure 4.2.1 and
figure 4,2.2. Stacking filters of this type are referred to as trace-

symmetric.

2. If Rij(f),(i,j=l,........,N ) is a Toeplitz-matrix

(symmetric to the main diagonal and with the same elements along each diagonal)

and the following equalities hold Gi(f) AF),(C i=1,..,N)

N+l -i
Ay (E),0 171,.00,N)

then  A.(E)
i

or ai(t) = (1), ( i:l:":N)

N+l i

The proof is easily found by first feflecting the equations with respect to
the centre equation (or a fictitious horizontal centre line, if the number
of equations is even)and then reflecting the columns of the coherency matrix
‘with respect to the centre column. Time windows fulfilling these cdnditions
are symmetric to the centre trace and the time origin. Two examples of such
cases are given in figure 4.2.3 and figure 4.2.4. A more special case is
the window of figure 5,1.1.1, Note that condition 1 is automatically
fulfilled as well. Filters of this type willAbe referred to as symmetric

filters.

3. If the coherency matrix has the same elements along each

diagonal and is in addition hermitian and G, (f) = _i(f)a(i=l,..,N) then

¢ N1
the solutions will always fulfil

A, (f) A (f), a; (t)= ay ( t) (i=1,..,N)

The proof is given for a three channel system, which can generally be
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extended to any number of channels.
Let the system be given by

AlRl + A2R2 + A3R3 = Gl

ARy + AR + ARE G, (4.2.9)

o

AlRS + A2R2 + A3R1= Gl

&

for A2 and Al for A3 gives

N

Substituting A: for A,, AL

e

A3Rl+ A2R2 + Ale = Gl
A3R2+ A2Rl + AlR2 = G, (4.2.10)
A3 3+ A2R2 + AlRl = Gl

By interchanging the third row with the first and the third column with

first, one obtains

fa o

3

% J PR

AlRl + A R2 + A R3 = Gl
o :".

AlR2 + A2Rl + A R = G2 (4.2.11)
% ] _

Ale + A2R2 + A Rl = Gl

By taking the complex conjugate of each ro?, again équations (4.2.9) are
obtained. Condition 3 is fulfilled by (4.2.4) whenever the time window is
centrosymmetric to the centre point. Thése filters are called centro-
symmetric filters. A typical time window'forvthié caselis given in figure

4.2.5 or figure 4.2.6.

The various symmetries of the time responses as investigated
in this section begome of great importance in Chapter V1, where phase
properties of stacking filters are discussed. Two other important relationsl
between time windows and responses of stacking filter components can be

expressed as follows:
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4, If a given time window has the same ti anddti
on two different traces, then the obtained
responses for these traces are the same. In
figure 4.2.1 for instance, the responses for
trace 3 and trace 5 are the same.

5. If two time windows can be obtained from each
other by rearranging the traces, then the
responses computed for traces with the same ti

and dti are the same.

The proof for both statements is obtained in a similar way

as described above by rearranging the normal equations.
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FIGURE 4.2.4 Symmetric time window.

FIGURE 4.2.3 Symmetric time window.

. e -y -
t T t
b == — -
| |
-l==r-9
. --L_J
of | Iy
.1“]. } |
A
|
S
lew =l==q--4
ﬁ'..'lh'|lv,||—||

FIGURE 4.2.6 Centrosymmetric window.

FIGURE 4.2.5 Centro-symmetric window.

FIGURE %#.2.7-

Trace-symmetric window for a optimum

multichannel velocity filter.

If R is a reject region then P is a

pass region (or vice versa).
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CHAPTER V

DISCUSSION OF SPECIAL STACKING FILTERS

The full generality of the normal equations (4.2.4) becomes
more clear in this chapter where their application to individual practical
cases 1s treated. It is shown how time window configurations have to be
selected for various filtering problems. The choice Qf a time window for
each problem is not unique. Special windows, however, should be selected
to obtain filters with simple phase relations. The normal equations (4.2.4)

incorporate those presented by Schneider, Prince and Giles (1965).

In section 5.1 it is shown how the normal equations (4.2.4)
are used to obtain velocity filters. The equations for optimum multichannel
velocity filters ( Foster and  Sengbush, 1968 ) are derived. These
filters may be regarded as a special case of more generally designed two-
dimensional multichannel velocity filters. Equations (4.2.4) are also used
in connection with three-dimensional velocity filtering problems. Finally
in section 5.2 the application of (4.2.4) for the rejection or enhancement

of signals possessing differential normal moveout is discussed.

5.1 Multichannel velocity filters

The concept of filtering seismic signals, based on constant
trace to trace moveout, was developed both for nuclear surveillance and for
exploration seismology. The filters‘ﬁsed for this purpose are knéwn as
velocity filters and have alreédy-a long history in seismic data processing.
A variety of such filters has been discussed, including the 'Fanfilters' of
Fail and Grau (1963), the 'Pie-Slice Filters' of Embree et. al. (1963); and
'Doublet' filters of Foster et. al. (1964). A more genéral and flexible
theory of velocity filters based upon a stochastic model of the data
generéting process and designed in the form of a multichannel Wiener filter

was presented by Sengbush and Foster (1968). These filters may be more
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adapted to special problems by incorporating more information from the input
traces. Comparison of multichannel yelocity filters with pie-slice and
_doublet filters (Sengbush and Foster,1968) has shown the superiority of the
former, especially when the velocity pass and reject band is narrow. .As
long as signals falling into any region of figure .2.7 have to be passed
or rejected, optimum multichannel velocity filters are flexible enough to
solve the problem. There exist, however, a host of.problems,'where
differently designed two-dimensional multichannel velocity filters have
better characteristics than optimum multichannel velocity filters. The:
three-dimensional velocity filters presented in 5.1.3 can be regarded as a

logical extension of two-dimensional multichannel velocity filters.

‘A full insight into properties of computed filters cannot be
obtained before Chapter V1l where the two- and three-dimensional Fourier-
transforms are applied for the characterisation of filters. Many
characteristiés of twg;dimensionalAveiocity filters are observed in a similar
‘form in the three-dimensional case. Because two-dimensional multichannel
velocity filters are superior to other velocity filters, one can expect that,
due to tﬁe similar design, fhe same applies to fhe given three-dimensional

multichannel velocity filters.

5.1.1 Optimum multichannel velocity filters

Optimum multichanﬁel velocity filtefé whiéh are presented and
'exceilently discussed by Sengbush‘and.Foster (1968), can be obtained from
(4.2.4). Because their approach for the filter computation was differently
chosen, it is shown below how to derive a pass—rejeét optimum multichannel
velocity filter from the given normal équations. bFor reasons of better

comparison, the same parameters are used as by Sengbush and Foster.

ti‘and ti'm'ti in (4.2.4) are forced to fall along straight
lines of the time window given in figure 5.1.1.1. The chatter.t is chosen as

zero. Region 1 and 3 are specified as reject regions and region 2 as a pass
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region. In this way, the normal equations (4.2.4) give a pass-reject
optimum multichannel velocity filter designed without chatter. If
alternatively 1 and 3 are pass regions and 2 a reject region, one obtains
the normal equations for a reject-pass optimum multichannel velocity filtér.
Whenever it is referred to optimum multichannel velocity filters in this
work, one of these two versions of symmetric filters designed for three

regions is meant.
\?\ \ 2 / ,// CHANNEL 1
; CHANNEL 2
i \>% _ CHANNEL 3
| / \ CHANNEL 4
// / 2 \ \\ CHANNEL 5

FIGURE 5.1.1.1 Symmetric time window for the centre trace estimate of a

optimum multichannel velocity filter.

To have this treatment as general as possible, any number N of input channels-
is allowed. (Figure 5.1.1.1 presents only a five channel case).z=(N+1)/2
is the centre trace number. In case N is even a fictitious reference trace

is introduced as centre trace.

Consider reject region 1 of figure 5.1.1.1. The coherency
‘matriz for the broad band case, with no chatter (rc =0) for this region is

-fully described by

R;,(£) = rec(f) | (5.1.1.1)
1 Qvifti. -
Rij(f) = rec(f)sinc(Tijf)e G (5.1.1.2)

The values ti’éjti’qyij and tij become, with the help of figure 5.1.1.1

t. = (z-i)LT - . (5.1.1.3)
1 C
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At = (z-i)’C(’:(X—ot) ' (5.1.1.14)
rcij = E-NT,(-0 . (5.1.1.5)
tyy =5 QDT+ (5.1.1.6)

Put into equation (5.1.1.2) gives

inf(i—j)ft;(oup .

Riicf) = rec(£)sinc(T £(3-00(i-3))e (5.1.1.7)

For reject region 3, one obtains by replacing T; with —T; in (5.1.1.7)
3 —ivf(i—j)T;@¢+X)
Rij(f) = rec(f)sinc(@éf(g—d)(i—j))e (5.1.1.8)
By assuming that the correlated noise, which falls into region 1 and 3 are
uncorrelated with each other, the coherency matrix of the total correlated
noise becomes R.. (f) = R.%(f) + R.?(f), which is
ij ij ij

SlDQVfaﬂ%(l—j)—SlDQWfT;g(l-j)

=i T_G9E (5.1.1.9)

Rig(f) = -rec(f)

The coherency matrix for the pass region 2 is obtained from (5.1.1.9) by
puttinget= O and X= 1

sin 2ﬂfT;(i—j)

TEE (5.1.1.10)

Rii(f) = pec(f)

Correspondingly one gets with formulé (4.1.20) and'tC = 0 and td =0

sin 2vfté(j-2)

Gj(f) = rec(f) (5.1.1.11)

TM(z-3)T £
C
The normal equations for this special problem may therefore be written as

N .
S r _ .
12:1 Ai(f)[Rij(f) + qRij(f) +ysijrec(f)] = Gj(f) ,” Fj-l,..,N) (5.1.1.12)

where Ai(f),(izl,.Nkue the Fourier transforms of the desired filters.

Equations (5.1.1.12) correspond to equations (A-15)(p. 34, Sengbush,
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and Foster, 1968 ) for the case, where signal and noise are broad band.

Taking the limit X-)Doin (5.1.1.9) for a finiteX shows that

Rig(f) becomes zero. In this case (5.1.1.12) reduces to

N
$ A (D) RS+, crec(£)| = 6.(F) , (3=1,..,8)  (5.1.1.13)
i=1 * 1] 1] J

Designing a pass filter is therefore the same as specifying
a pass-reject filter, where the reject region is given as the total region

outside the pass region. In a similar way to the above derivation, one

obtains for a reject-pass optimum multichannel velocity filter

: N
S r . S .
ii‘zﬁi(f)[Rij (£)+ QRij(f)ﬂ}Sijrec(f)] = Gj(f), (j=1,..N)

with : (5.1.1.14)

6S(£) = rec(f)—= Sln?fl'fX'té(]'Z)'SlHQTf@L’l'c(]'Z)
j X-OL - T (G-2)f
The high symmetry of the time window leads to highly symmetric filters which

fulfil all conditions 1 to 3 of section 4.2.

With the more general equations (4.2.4) in mind, one can
however, immediately  draw the following two conclusions concérning optimum

multichannel velocity Filters.

1. The version which will allow additional chattér
in the arrival times of the signals, is easily
obtained by multiplying the left side of equétions
(5.1.1.12), (5.1.1.13) or (5.1.1.14%) with term
sinc(tcf). The necessity of this term seems
logical since expecting the signals to have constant
moveout seems to be a restriction, which most

certainly does more harm than good on actual traces.
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In the derivation of the nbrmal equations for
optimum multichannel velocity filters, it was
shown that they actually inélude three design
regions. However, for many seismic problems
only two regions are necessary. In section 7.2
it will be shown that characteristics of velocity
filters are generally superior for the case when

two regions are sufficient for the design.
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5.1.2 General two-dimensional multichannel velocity filters

In the design of a stacking filter which passes signa;s
having constant moveout “T&<Tﬁft; and rejects éignals falling into the
regioncLTa<tu:XT; one could make use of an optimum multichannel Qelocity filter
which also includes the reject region -xT;<t<—dfté; In this case however,
it is logical to compute a filter for two regions only. The choice of a
-time window for a multichannel Qelocity filter is not unique as shown below.
Figure 5.1.2.1 shows four cases for a given problem out of an infinite
numbér of possibilities. All windows are chosen in such a way that they
appear to operate in the same manner for the given moveout range. The
centre point of the time window does not necessarily have to fall upon a
trace. It may be on any point along the vertical line VL. For each of
these.windows different stacking filters are obtained although they all will
perform in a very similar way. Sufficient justification is given in

Chapter V1 for why the centre trace estimate should be selected.

Figure 5.;.2.1 d shows:this so-called centre trace estimate.
This is also the case where the overall width of the time windows is shortest
if positive and negative moveout signals fall into the window. Galbraith
and Wiggins (1968) showed that for the numerical solution of normal equations
the filter length should always cover the total width of the time window.
'ThHis ensures that the expected error (3.2.5.6) does not decrease any more
éssentially by increasing the filter length. The centre trace estimate
therefore leads to the shortest filter operator and the shortest computation
time. The normal equations for the centre trace estimate fulfil condition
3 of sectibn.4.2, thus leading to centrosymmetric filters. This case also
posseéses simple phase characteristics as is shown in Chapter V1. The
normal equations for a pass-reject filter with the time window of figure

5.1.2.1 4 - are
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N sin2ufT (i-3) . |
5_i=1 Ai(f) [rec(f:-ﬂ(i_j )fc-(':f + gRij(f) +véijrec(f) = Gj(f),(j=l,. LN

where Rii(f) is given in (5.1.1.7) and Gj(f) in (5.1.1.11). The computed
~filter could also be used in cases where the reject region falls to the right

of figure 5.1.2.1 d. One would then only have to reverse the order of the

input traces.

(c) (d)

FIGURE 5.1.2.1 Time windows for velocity filters.

Multichannel velocity filters presented so far are only special
cases of more general velocity filters, where any number of reject and pass
regions for constant moveouts may be given. It is easy to specify in such
a caée the necessary normal equations with (4.2.4). To keep phase relations
simple, one should however, in any case of a more complex time window, try

to choose the centre trace estimate.

One may by no means éxpect that choosing certain pass and
‘reject regions guarantees complete rejection or enhancement of signals in
these regions. In Chapter V1 the two-dimensional Fourier transform is
applied for the characterisation of velocity filters. This shows in which
way time windows approximately influence their transfer characteristics.
It will also be shown that filters for a small number of narrow regions possess

better characteristics than filters for a large number of broad regions.
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FIGURE 5.1.2.2

Centrosymmetric time window.

This window is obtained by inverting the order of
the traces in figure 5.1.2.1 d. If region 1 is

a pass region, then region 2 is a reject region
(or vice versa). Note, whenever it is referred
to a time window only the window shape (defined
by 7 ,a,yand the position of the centre trace) and
not the éctual number of traces involved is meant.
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5.1.3 Three-dimensional multichannel velocity filters

It has already been emphasized that there are no restrictions
to the spatial dimension in which the given class of filters can be épplied.
The common problem in reflection seismic is predominantly still a two-
dimensional one. Application and research of three-dimensional velocity
filters is therefore mainly confined to problems in earthquake seismology.
Already there exist various approaches for the analysis of three-dimensional
filtering and array problems (Carpenter, . 1965; Binder, 1967 and
Lacoss, et. al., 1969).0f special value as an introduction to three-dimen-
sional filters is the work of Burg (1964) . His approach is also
based on the multichannel Wiener filtef theory, ana_his assumption that
signals and noise are uncorrelated, gives essentially the.corresponding
equations for (3.1.11). These are not further statistically averaged, as
in this work, by making use of properly selected probability density

functions in the time domain.

How to obtain special ﬁhree-dimensional velocity filters with .
(4.2.4) is shoﬁn below. To avoid too much generality, the following
treatment is applied to the processing of outputs of a two-dimensional array
of seismometers. Figure 5.1.3.1 shows a horizontal plane, where Nx x.Ny
geophones may be placed on a rectangular_grid. Their displacement in
~x-direction be one x-unit, in y-direction one y—unitf Two planes are
'given in the coordinate system which cut a wedge put of the lower semi-
infinite space. These planes représent the upper and lower limit of a
range in which plane wave arrivals are gxpected. As a further restriction,
it is demanded that the waves are polarized. This means the normal vectors
of the plane waves lie in a plane. It also corresponds to forcing the plane
waves to dividedt; andzﬂ; in the same ratio. The appropriate time window
for figure 5.1.3:1 is given in figure 5.1.3.2. The window which specifies
céntrpsymmetric filters is presented in'figure 5.1.3.3. It is obtained by

shifting the limits of the time window of figure 5.1.3.2 so that they cut
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* UPPER LIMIT

LOWER LIMIT

UPPER LIMIT 2= Tox -Tyy

LOWER LIMIT: z:—h("C‘x+4"()’( )X — (’ty+4’t‘§,)

FIGURE 5.1.3.1 Two-dimensional recording array

Ati
0
ATy
2AT,
3AT,
ATy
AT, +AT,
24T, +AT,
AT +ATy
AT,
AT,+2AT,
24T 42 A'Ey
34T, +2AT,

FIGURE 5.1.3.2 Time Window FIGURE 5.1.3.3 Centre trace estimate
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each other at the centre trace. The normal equations (4.2.4)can now be
used to obtain three-dimensional velocity filters with polarisation filter

characteristics.

The probability density functions chosen in section 4.1 for
the signals falling into the window of figure 4.1.1 have to be chosen
slightly differently in the case of a multichannel velocity filter which
does not restrict the normal vectors to lie in a ﬁlane. In appendix IV it
is shoﬁn how multichannel normal equations for this case have to be
specified. This certainly very interesting time domain approach for the
computation of general three-dimensional velocity filters is however, not
any further followed in this thesis. In section 7.3 examples are given for
pqlarisation filters and tﬁe three-dimensional Fourier transform ié applied

for their characterisation.

5.2 Multichannel stacking filters for differential normal moveouts

The assumption that seismic signals arrive as plane waves,
thus having conétant moveout on traces recorded at equidistant array
positions is certainly more valid in refraction or earthquake seismology
than in reflection seismics. Three attempts (D'Hoeraene, ~ 1966;
Schneider, Prince and Giles, 1955 and Galbraith.and Wiggins,'1968) are
known where filters are designed for the rejeétion and enhancement of
signals with differential normal moveout. Ail authors give design proceduresA
ﬁhich influenced the approach chosen in this work. However, they only
describe a few properties of these filters. In section 7.4 transforms are
given for some differential normal moveout filters which characterise them
"in a similar way as two- or three-dimensional Fourier transforms characterise
velocity filters. Figures 5.2.1 and 5.2.2 give two typical examples for
two- and three-dimensional problems where the given design is applicable,
Each figure shows an equidistant recording array and a curved wave front at a

fixed time.
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FIGURE 5.2.1 One-dimensional FIGURE 5.2.2 Two-dimensional array

equidistant array and curved and curved wave front.

wave front.
Detector positions do not necessarily have to be on a straight

line or in a plane to specify time windows and to make use of equations

(4.2.4.) These general cases are however not discussed in this work.
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CHAPTER V1

INTERPRBTATION OF THE TWO-DIMENSIONAL FOURIER TRANSFORM OF A TWO-

DIMENSIONAL MULTICHANNEL STACKING FILTER

In Chapter 111 it was shown that two-dimensional convolution
of N traces with an N-trace operator can be regarded as a multichannel
filter process leading to 2N-1 output traces. The corresponding process
in the (f-k) domain is multiplication of the two-dimensional Fourier
transforms of both operators. The two-dimensional amplitude spectrum of
the filter shows at once which pegions in the (f-k) domain of the input

traces are passed and which are rejected.

There is however, a big disadvantage connected with this kind
of interpretation. This is fhat the product of the 2-D Fourier transforms
. of N input traces and an N-trace operator demands 2N-1 output traces in the
time domain. Often as in our case, one is interested in only one output
trace. For this purpose, the centre trace of the output is selected. By
taking this trace out of the 2N-1 output traces, a single trace results,
whichH no longer represents the product of the Fourier transforms of the input
and the two-dimensional operator. It is therefore not immediately obvious
that the application' of the 2—D_fourier transform to a multiéhanpel velocity‘
filter is justified beéause the process of sfacking differs from two-
dimensional convolution. In this chapter it is shown how the 2-D Fourier
transform of a stacking filter has to be interpreted to describe exactly

the N-channel input one channel output relation.

In the case where velocity filters are designed in the
frequency domain, the object of applying the 2-D Fourier transfofm to a
computed filter is to show how much the transfer characteriétics of the
obtained filter approximate the desired ones. In the given case however,

where the design is done in the time domain, it is possible to use the two-
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dimensional Fourier transform of a filter as a tool of analysis to show how
changes of parameters in the time domain influence characteristics in the

frequency domain.

6.1 (f-k) - space

A plane wave front impinging on the detector array is given
in figure 6.1.1. The velocity with which the wave front travels
horizontally is v = V/sinw where V is the propagation velocity, o,the angle

between the wave front and the horizontal and v is the apparent velocity.

A travelling cosine wave along the x-axis may then be written in the form

Cf(x-vt) = Acos2m(kx-ft) = Acos2rk(x-vt)
t

where A is_the amplitude, f the frequency and k the apparent wave number,
The apparent velocity can be expréssed as v = f£/k. A travelling wave may
“therefore be described in either the time-distance (t-x) space or the
frequency wave number (f-k) space. Hence a plane harmonic wave can be

presented by a point in (f-k) space.

€1
0 12 3 4
= v={/K
7K
FIGURE 6.1.1 One-dimensional array FIGURE 6.1.2 (f-k) domain and a
with an arriﬁing plane wave - line with constant velocity
An arbitrary function f(t,x) may be generally expressed by a

complex function F(f,k) in (f-k) space. Both functions are connected by the

two-dimensional Fourier transform pair.

0 +Q@ . :
F(£,k) = ( ( £(t,x)e 2MEE-k) g gy (6.1.1)

“o -~
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2wi(ft-kx)

F(t,x) = { F(£f,k)e dfdk (6.1.2)

A digitized reflection seismogram can be regarded as a
sampled function in both t- and x-domain. The Fourief transform of a
one-dimensional operator is a periodic function. In a similar way, two-
dimensional sampling results in a two-dimensional Fourier transform which is
periodic in both frequency and wave number. If the time domain sampling
interval is h, the spectral period is 1/h and the Nyquist frequency is 1/2h.
If the distance between traces is A, the k-spectral period is 1/4 and the
Nyquist wave number is 1/24 . The discrete version of the Fourier transform

pair for a two-dimensional operator f(jh,iA)(i=-I1,I2; j=-J1,J2) is then

I2 J2

P(£,)ha S § £(3h,ia)e 2Mi(FIbkia) (6.1.3)
i1 3=-g1 -
+1/2h +1/2a R

£(3h,18)=( g (£, k)e 2T (EThkid) 4 (6.1.4)
Ji/on Lis2a

Without loss of generality h is used again as one time unit and 4 as one
space unit. The relation . F(f,k) = F(—f,-k)* holds for every real
operator, which makes IF(f,k)I a centrosymmétric function. IF(f,k)|>is
therefore completely described in the sector (0<k<1l/A ; 0<f<1/2h) of figure
6.1.3 . This region is called the basic section. Sengbush and Foster
(1968) call the left half of this part.the primary'regioﬁ.

. if\ . .
oo rodt - - -y - - — - T ———————

Wl \'31‘!5]&2

léh%-jt—- /;§;¢7 ? |
' ///// /////// A ! > 'K

g

FIGURE 6.1.3 Periodic (f-k) diagram of a two-dimensional discrete operator




-67~

6.2 The transfer function of a multichannel stacking filter for

signals with constant moveocut

Let ai(t*), (-n¢t®em; i=-N,..,N) be the operator of a discrete

stacking filter as shown in figure 6.2.1. Without loss of generality an
odd number 2N +1 of traces is chosen for the following considerations. The
filter components are labelled from -N to +N. (For an even number see

appendix 111).

X
(.nl)l ! — , %’_[ > a1(tn)
[ l , I | . KI al(tu)(m)
| M‘l l a_l(t*)

FIGURE 6.2.1 Discrete stacking filter

.The discrete function

N
£, (t%) = é_Nai(t-=)=-sinc(t==—o<i-) (s.g.l)

is defined as the stacking filter response for broad band signals with the
moveoutse(i(i=—N,N). The importance of this function becomes clear when

2N +1 inputs are given which have the form

xi(t*)=x(t*—o%)=x(t*)*sinc(t*-u&), (i=-N,..,N) (6.2.2)

The output can then be written as

N .

y(t%) = x(t*)*i a, (t#)*sinc(t#-o, ) (6.2.3)
Py 1 1 ' R
i=-N

y(t%) = x(-t:’:):':f(x'(t*) . (6.2.4)

where %L(t*) takes the typical role of a unit impulse response. If
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%&L(t* ) is known for all &, the performance of the filter is known for all
functions (6.2.2). In section 4.1 the stacking filters were designed in
such a way that when thec(i(i=—N,...,N) fall on specified curves within a pass
or reject region,ﬁxft*) should be ideally a unit spike or zero. The
Fourier tfansform of f, (%) is defined as the transfer function of the

stacking filter:

N 2w ifed,
E(£) =& Ay(f)e 1| glc1r2 (6.2.5)

If signals in the input have constant moveout

u%: jt, (j=-N,...,N), the transfer function

N- -2nif '
i A.(f)e (6.2.6)
o

F(£,)

can be found with the help of the two-dimensional Fourier transform of the

multichannel filter. This Fourier transform is
m N . .
F(£,k) = { a,(1)e 2mi(f1-k3) (6.2.7)
1==n j==N ]
| ¥ oiks ,
F(f,k) = e "M (£) (6.2.8)
j:-N 3 . ’

Taking the values of the transform along the line k=-fT results again in
.expression (6.2.6). This very important result shows that the two-dimen-
"sional Fourier transform of a stacking filter inciudes all stacking
filter transfer functions for signais.with constant moveouts. If an
additional filter B(f) is applied to the stacked output, the whole system

possesses the transform

N .
PeEK = 3 S P | (6.2.9)
j:—N . )

Applying B(f) on the stacked output is the same as applying it on each

individual input before the stacking filter process.
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At this point something has to be said about the phase
characteris%ics of transfer functions. The usually complex function
(6.2.6) for an arbitrary multichannel velocity filter becomes real and
phase free for two important cases. For their discussion it is sufficient

to know the amplitude spectra of the transfer functions only.

First Case

In section 4.2 it was shown that when a time window is
centrosymmetric, the stacking filter is centrosymmetric as well. In this
case Ai(f) = A*_i(f), (i=-H,..N) and ai(t*)=a_i(-t*),(i=-N,..N).By choosing
the moveout of the input signals as 0%=’tj,(j=—N,.,N) the transfer

function becomes

F(£,T)

"
o
J.

~

Hy

~

o

1

N
=
[
Hy
e
a

N . " .,
M) +5_ (a0 MR, 4T () PTHEIT)
31

Because Ao(f) is real and every term has its complex conjugate in the sum,
the transfer function is real and phase free.
Second Case

This case is actually included in the first one, but because
of its importance it is discussed separately. . When the time window is

symmetric, the stacking filter fulfills the conditions

ai(te:) = ai(-ta':) = a_i(t*) » (i=-N,...,N)

and A(E) = A_(£)

% i==N,...,N
A% (f) , (i=-N, )

Withtxj = jT,(3=-N,N) in this case the transfer function becomes
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N ~OTifiT

F(£,T) Aj(f)e

. |
A(E) + 25 A(£) cosanfiT
0 iS |

Because all Aj(f),(j=-N,.-,N) are real the transfer function is real

as well.

In actual fact, both formulations are contained in the

following simple statement:

Let A, (f) = A%, (f) and o(; = -, (is-N,..,N)

then the transfer function is real.

This is seen immediately by writing ngf) in the following

way
N © -2nife,
_ i
F, (£) = i A(£)e | (6.2.10)
J=-N
N ~2if, 2T foty
= Ay(E) + & (a5(f)e HaR(£)e D)

3=1

It is this more general case which is to be considered in section 7.3 where
transfer functions of polarisation filters are investigated. In the second
case all components of tﬁe highly symmetric stacking filter are phase free.
‘It is therefore not surprising that transfer funcﬁions are also phase free.
Phase free components alone do not gecessarily guarantee phase free transfer
functions. In section 4.2 it was shown that trace symmetric time windows
of the form of figure 4.2.1 or figure 4.2.2 always specify phase free
components. | Transfer functions in this case are however, only phase free
forrt¥0. Alternatively the first case shows that filter components do not

have to be necessarily phase free to give zero phase transfer functions.

So far it was shown how to interpret the two-dimensional

Fourier transform of a stacking filter. The function of this two-dimensional
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Fourier transform along the line k=-fT for Ifls 3 gives the transfer
function for the case where input signals have the same waveform and constant
moveout on each trace. It therefore provides an ideal transform of the
stacking filter, if these kind of input signals are expected. It is however
of little value for signals which have changing waveform and non-constant
moveout from trace to trace. In section 7.4 it is shown how to transform a
stacking filter to obtain transfer functions, which belong to signals with
certain differential normal moveouts.

In case of the two-dimensional Fourier transform of a stacking
filter one should also note, that if the aperiodic functions xi(t*)=sinc(t*‘ft)
{i=-N,...,N) are chosen as input to the filter, then the inverse of
the transfer function for constant mo&eout corresponds to the response of
the filter for this special input.

It can be also easily verified, that if the (f-k) diagram is

computed from A_j(f),(j=—N,.;.,N) instead of from Aj(f),(j=—N,..,N) one obtains

. N N
r~ sy
F(£f,k) = :E: e 2THKI A_s(£) =

j{; e 2™k 4 () (6.2.11)
Sw o 3 |
where ?«f,k)=?(f,—k). The transfer function for constant moveout is now
fad

obtained by taking the values of F(f,k) along the line k=f7T in the range
lf1$%. Because of this reason the (f-k) diagram of a stacking filter is,
throughout this thesis, presented in form of formula (6.2.11). Note, that
- formula (6.2.11) and (6.2.8) are identical for symmetric filters.

‘Another reason for inverting the stacking filter components is the following

one: If the input traces have the Fourier transforms Xi(f),(i=-N,..,N) the

Fourier transform of the stacked output can be written as
N

Y(£)= A; (B)X, (£)
i=-N *

The same expression is also obtained by doing a two-dimensional convolution
of the filter A_i(f), (i=-N,..,N) with the same input and taking the centre

trace of the convolution as shown in section 3.2.2.
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Example Number 1

To make the above theoretical considerations more clear, an
example is given. A multichannel filter was designed which passes signals
falling into region 1 and rejects signals falling into region 2 of figure

5.1.2.2.

The design parameters are:

number ofvtraées: N =6
length of filter: LEF = 17
uncorrelated noise: Y = 0.08
chatter: = 0.01

region parameter:
region parameter:
region parameter: = 0.8

correlated noise: = 30

O or? ol P} a'+
H
r
o

The six responses of the computed optimum filter are given
in figure 6.2.1 and as expected, it is a centrosymmetric filter. Its
two-dimensional amplitude spectrﬁm is shown in figure 6.2.2. This figure
presehts the basic region of figure 6.1.3. All contours and isometric

plots in this thesis show the amplitude spectruml ?ff,k)'in decibels

o
Bexy = 2010g. JECEK
2 ' 10 A
max
within the fange from 0dB to -30dB. ’Amax’ is the maximum amplitude

encountered in the basic range.

In figure 6.2.2 the T-lines are shown for T=-0.83;0.8;1.6;3.2.
The 1ineT=3.2 cuts the line k=1 at £=5/16 and therefore can be thought to

continue from (k=0; £= 5/16)in the same direction to the right to cut the
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horizontal line f=6.5 at k=1.2 With formula (6.2.11) the transfer
functions for constant moveout signals are found along these lines

between f=0 and £=0.5. Figure 6.2.3 shows the amplitude spectra of some
transfer functions for the above filter. They were obtained by passing
broad band signals with the given constant moveout through the stacking
filter and taking the Fourier transform of the output. They can however,
be easily obtained by taking the values along the cérresponding’tLlines of
figure 6.2.2. For T= 4.0 the filter again has good pass characteristics
for the range around half the Nyquist frequency. All transfer functions

have zero phase.

By making use of the concept of the transfer function along
the T-1lines, the characteristics of the two-dimensional amplitude spectrum
(figure 6.2.2) also find an easy explanation. Due to the design procedure
of Chapter lY, transfer functions along all lines falling into pass region 1
of figure 6.2.4 should ideally equal.one; while all transfer functions
' falling into sector 2 of figure 6.2.5 should ideally equal zero. Both of
these copditions have to be fulfilled simultaneously by the stacking filter.
Figure 6.2.6 shows which regions of the filter are supposed to be pass
regions (+) and which reject regions(-). In figure 6.2.6 there are two
regions which should both be pass and rgject regions at one time. One
expects in such a case, that the }éast squares principle makes a compromise
between both. Comparing figure 6.2.6 with figure 6.2.2 shows at‘once the

described similarities. On region A and B there are no constraints.

With the above example, it is obvious that the defined
concept of the stacking filter transfer function is of great help for the
analysis of the characteristics of a multichannel velocity filter.

Transfer functions for signals with constant moveout can be found for any
kind of %tacking filter in the way described above. In figure 6.2.7 (f-k)-

plots of a 6-trace and 12-trace straightforward stack are given. These
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stacking filter components are zero-delay unit spikes.
may again be obtained along radial lines from the origin.
forward stack has an ideal response for zero-moveout signals.

functions however, change enormously for small deviations from the

zZero.
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CHAPTER V11

COMPUTATIONAL EXPERIMENTS AND FILTER CHARACTERISTICS

The basic aim in previous chapters was to emphasize the
generality of the normal equations (4.2.4) and to discuss their application
for various two-dimensional and three-dimensional filtering problems. Com-
puted filters alone however show 1little about their performance.
Characterising a filter is therefore as important as its design procedufe.
Filters reveal their inherent properties by applying them to properly
selected signal traces. Compared with the characterisation by a transform
from which responses for a broad class of test signais can be obtained
simultaneously(see example number l)this approach is, howéver, very simple.
The aim in this chapter is therefore to characterise the given stacking
filters with appropriate transforms, which give a deep insight into their
genefal performance. Before doing so, the salient points of previous

chapters are summarized below.

1. The analog normal equations (4.2.4) are designed with
the least squares principle for random stationary
processes.

2. 'Approximate' solutions for the analog normal equatibns
are obtained with the discrete equations (3.2.5.5).
They are solved with thevfast multichannel Levinson
algorithm. .

3. Stacking filters can be computed for two-and three-
dimensional problems where signals have constant

"C#“differential normal moveout.
4, Time windows for a given problem are not unique.
Symmetries of windows are reflected in symmetries

of computed stacking-filter'components.
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5. The transfer function of a stacking filter as defined by
the output for broad band signals with censtant moveout is
helpful concept for the characterisation of a
filter. Phase properties of transfer functions
depend strongly on the shape of a time window.

Symmetric and centrosymmetric windows have zero-
phase transfer functions for all signals with
cnnstant moveout. Transfer functions can be
obtained from the two-dimensional Fourier trans-

form of a filter.

In this chapter some characteristics of two-dimensional velocity filters
are presented. In section 7.2 symmetric and centrosymmetric velocity
filtefs are compared. In section 7.3 an introduction to the three-dimensional
Fourier transform is given and a étacking filter transfer function for the
three-dimensional case is defined. Also some characteristics of three-
dimensional polarisation filters are discussed. In section 7.4 suitable
transforms are derived for the characterisation of filters designed for

differential normal moveout signals.

Not all inherent proPertigs of a filter can be obtained from
Fourier transforms. For the characterisation of filters in the presence of
uncorrelated noise other functions are presenfed'in section 7.6 which are also
.important. A good insight into characteristics of two-dimensional
multichannel velocity filters is helpful for the understanding of the total
class of filters. For practical reasons, two-dimensional velocity filters

are only computed for either six or twelve traces.
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7.1  Optimum multiqpqyggl velocity filters

Filters for symmetric regions, as given in figure 5.1.1.1,
designed without provision for chatter, are discussed by Foster and Sengbush
(1968). The value of their treatment is of special importance since ‘they
compare optimum multichannel velocity filters with doublet and'pie-slice!
filters and show the superiority of the former in many aspects. Although
they describe the observed foldings along the line'k;O.S, they give little
explanation for them. It is with the help of the concept of the transfer
function for signals with constant moveout and the periodicity of the
(f-k)domain that a deeper insight into the numerous foldings is gained. Using
periodicity one realizes that in the case of filters with symmetric regions
the (f-k)plot has to be symmetric about k=0.5 and consequently folding of the
T-lines will take place along +this 1line . The transfer characteristics
are therefore entirely contained in the square (0<f¢0.5; 0<k¢0.5) of the
two-dimensionél Fourier transform. This, however, is an unnecessary
"restriction. There is more freedom for the design of filters available in

the total basic region of the (f-k) domain. Non-symmetric filters can make

use of this.

So far, it seems that it is possible to predict approximately
the features of an (f-k) diégram for a two-dimensional multichannel
velocity filter with the sole knowledge of the form of the time window.
There is, however, one more inherent feature common to optimum multichannel
velocity filters;that is the suppression of the amplitude spectrum for
overlapping pass regions in the (f-k) domain. To show this effect, various
12-trace pass filters were computed with equation (5,1.1.13). The time
window for this case is given>in figuré 4.2.4. The only parameter that was
varied'was’té, which took on the values T; = 0.5; ;.Q; 1.5; 2.0. The
factor y was chosen as Y= 0.08. (f-k) plots are given in figure 7.1.1 to

figure 7.1.4. For TE<1 it is seen that the amplitude characteristics
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approximate well with the desired response in the pass region. The
approximation around the Nyquist frequency fN = 0.5 however, becomes worse

as TZ reaches the value T; = 1. For’tc7l it is observed that the pass

- region becomes narrower instead of wider for high frequencies. For this
reason, Foster and Sengbush discussed (f-k) diagrams almost exclusively in
the region (0<k<0.5; O<f<fc), where they defined fc as tﬁe folding frequency.
It was decided in this thesis to show generally the whole basic region.

For symmetric Filters however, only the sector (0¢k<¢0.5; 0¢f<0.5) is shown.

For all problems, where there is no overlapping of pass- with
pass regions or reject with pasé regions, one has the heuristic feeling
that the expected error (3(2.5.6) as a function of the filter length should
fend to zero. One may however, never expect that the error approaches zero
for filters where time window configurations posséss overlapping regions.
This is because the desired transfer functions cannot be completely
approximated anymore in the specified range. For the above sequence of
filters the expected errors are shown in figure 7.1.5. Each curve has a
different length because for broader windows longer filters were chosen.
Optimum delay is always in the middle of each filter. The curves show
that expected errors increase with increaéed overlapping of pass regions.

If the overlapping of regions occurs more than once, the relation between a
time window and its (f-k) plot is even more complex. A filter designed

for*{é = 4 will approximate an (f-k) diagram as shown in figure 7.1.6.

All symmetric filters for an even number 2N of traces have
one thing in common: i.e. their two-dimensional amplitude spectrum equals:
. zero along the line k = 0.5, From equation (6.2.8 A) ( appendix 111)
it can be shown that the two-dimensional transform

2N-1
m (=) . .
N - 2 - =23i(fn-kj)
F(f,k) = i i 2N-1, aj(n)e

n=-m j-‘-'- (—é—
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or ON-1 ON-1
F(f,k)=§i 2 LT, (£) =2 AL (£)cos2mk]
ON-1 .,
j-_—Q__ J=z
equals zero for k = 0.5
oN-1
F(£,0.5) =$ 2 A (£)costi = 0
Ly |
=1

This equation does not hold for a symmetric stacking filter with an odd
number 2N +1 of components. In such a case, the two-dimensional Fourier
transform along the line k = 0.5 becomes

N sy N : . .
F(£00= § 2™ ()ma (0045 A ()™ e 2"1k3]
j==N J - 0 =1 3 o

N
:Ao(f)+2§élAj(f)c032nkj

or N .
F(£,0.5)=A,(£)+ S (-1)7A_(£)
ey ]
J=1
An example of a symmetric filter with an odd number of components (filter

number 6) is given in figure 7.1.7 which shows the contours of an ll-trace

filter where all other parameters are the same as for filter number 3.

From figure 7.1.1 to figure 7.1.4 one can conclude that the
‘plateaux are very flat for narrow time windows and become continuously
;ippled by increasing the window width. The height of the hills in the
rejecf region decreases with increasing't;, and the escarpment becomes
steeper as well. All transfer functionsiapproximate the value OdB for near
zero frequéncies. This is a typical feafﬁre of optimum multichannel
§elocity filters which is not obtained by any other velocity filters. It
will be observed again in a similar form in section 7.3 where corrésponding
threefdimensionai velocity filters ére investigated. For narrow pass

regions, the contours of the escarpment become increasingly more parallel to
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the f-axis for low frequencies. Apart from minor changes it may appear
that filter number 2 to number 4 (figure 7.1.1 to figure 7.1.3) represent
a scaled section (scaled in f-direction) of filter number 5 . (Figure 7°l°&)
This is justified in the discussion in Chapter V11l where a
deeper insight into the relation between time windows and (f-k) plots will

be obtained. To complete this short treatment about optimum multichannel

velocity filters, their most important characteristics are repeated -

1. Decreasing the width of reject regions or
Increasing the amount of correlated noise
results in increased rejection within these
regions.

2. Increasing the uncorrelated noise in the design
results in a loss of high frequency content in

the signal region.
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f=0.5

f=0.5

0,0 ! 4 =0.5

FIGURE 7.1.1  Filter number 2

(f-k) diagram and isometric plot
T = 0.5 3 N=12 ; LF=7 ;Y=0.08 ; t = 0.01
Cc Cc
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Filter number 5 -

FIGURE 7.1.%

(f-k) dlagram and isometric plot

; LF=25 ; Y=0.08 ; t_=0.01

=12

fC;:z.o s N
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EXPECTED ERROR
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Lc=2.0
Tez15
Ta'c:l.o
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. 0 LF
FIGURE 7.1.5 Expected Errors as a function of the filter length
f-05
PASS : PASS
PASS PASS
0;0 k=10

FIGURE 7.1.6 (f-k) diagram for a pass filter with ’(‘; = o,
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f=CL5;:a

f=05

PIGURE 7.1.7 Filter number 6

(f-k) digaram and isometric plot

Te=1.0; N=11 ; LF=13 ;¥=0.08 ; t_=0.01
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7.2 A comparative study of symmetric and centro-symmetric velocity filters

By making use of the above rules which relate time windows
with the characteristics of the (f-k) diagram, it is easy to give examples
which show the superiority of centro-symmetric filters (designed for two
regions) over symmetric filters (6ptimum multichannel velocity filters designed
for three regions). Both types have the same essential attribute; they
show minimum distortion since all transfer functions for signals
with constant moveout have zero phase. Three different examples are
discussed below. They are selected to emphasize three different features
which are responsible for the fact that centro-symmetric filters generally

possess superior characteristics over symmetric filters.

Vl. Example number 2 (filter number 7) gives the corresponding
| symmetric filter for filter. number 1. It shows how
much of the pass region of example number 1 is lost
by admitting an additional symmetric reject region in

the design.

2. In example number 3, a centro-symmetric reject pass
filter is compared ﬁiﬁxits cérresponding symmetric
version. In the symmetric version pass regions
overlap, thus showing pejection in a region where
centro-symmetric filfers still approximate fairly
well the desiréd paés region. |

3. One may eaéily-get the impression that due only to
fewer overlappings of regions in the (f-k) diagram,
do filters, designed for two regions, possess superior
characteristics over the ones designed for three
regions. Example number 4 shows that even when
little or no overlapping ocgurs,“tﬁen two reject
regions have a stronger negative influence on a pass

region than one reject region.
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Example Number 2

The symmetric version for filter number 1 is computed with

(S.l.l.lZ). Figure 7.2.1 shows the six computed components of filter

number .7- and figure 7.2.1 a shows the contours of its two-dimensional
amplitude spectrum. The contours should be compared with filter number 1.
(figure 6.2.2.) The pass region in the left half of figure 7.2.1 a, shows

a considerable loss if compared with the characteristics of figure 6.2.2,

Even in regions which remain pure pass regions in both cases the approximation
is better for the centrosymmetric filter. Figure 7.2.1 b gives

an isometric plot of filter number7, viewed from the upper right-hand

corner, It can be compared with the plot of figure 6.2.2 a.

Example Number 3.

A symmetric reject-pass filter for the time window of figufe
5.1.1.1 and its centro-symmetric version for the window of figure 4.2.6 were
.computed with the following design parameters :
¢;=O.5; N=12; LF=19; Yy =1.0; tc=0.2; o< =1; 8 =3; ? =30
The contours of the amplitude spectrum for the symmetric filter are given in
figure 7.2.4 and they show the expected'suppression where pass regioné
overlap. An isometric plot of half the basic region-viewed from the origin
is given in figure 7.2.4 a. Figure 7.2.5 gives the contours of the
corresponding centro-symmetric version and figure 7.2.5 é,bshows its
isometric plot viewed from (k = 1; £ = 0). Most.of the contours in this
case, follow the typical trend of the pass region. The right half of the
reject region seems to still influence the pass region for high frequencies
by depressing the contours by about GdB, The appfoximation of the desired
pass region is still good if compared with the symmetric case where an
approximation is impossible. This is especially ;hown by the isometric plot
of figure 7.2.5 b, which gives a view from the point (k = 1; £ = 0.5).

Both the symmetric and centro-symmetric filter favour the transfer
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characteristics of the reject region for frequencies in the specified parts.
The contours of the pass region obtained for low frequencies are in both

cases strongly bent towards the k-axis where pass regions occupy a falrly

.wide range. This feature is especially strong for the symmetric filter and
it may be heuristically explained by the fact that no restrictions were
imposed on the internal regions of the (f-k) diagram. Pass regions may there-

fore deviate into this part without violating any specified conditions.

Example Number 4

One may argue that the interference of design regions in the
(f-k) diagram effects predominantly high frequencies in a range where, due

to the usual sampling of séismograms, hardly any arrivals are expected.

Each additional design region‘however, influences the whole
- (f-k) plot in every point, thus showing the strong inter-dependence of all
valvzs with each other. A number of computational experiments showed that
with fewer design regions values in non-overlapping regions are also better
approximated. To show this effect, a symmetric and centro-symmetric pass-
rejecf filter were computed for the folldwing design parameters:

N=12; LF=13; V=0.08; t_=0.01; ot=1; X=l.l; T =1.03 ?=l.

The (f-k) diagrams of the symmetric and centrg—symmetric filter are given in
figure 7.2.6 and figure 7.2.7, Both diagrams may be compared with the one
of filter number 3 which has the same design parameters without reject
regions., It is seen that although there is increased rejection and a
steeper escarpment for low frequencies, there is also an increased ripple
in the plateaux of the pass region.' Very high values are on the opposite.
.side of thé pass region across the rejecf region. Reject regioné are in
both cases nearly entirely depressed to -30dB. The ripple .in the pass
region of the symmetric filter falls into a range of 5dB; while the ripple
for the centro-symmetric filter covers only a range of 3dB. All transfer

functions for zero frequency are, for the symmetric case, about 6dB further
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down than for the centro-symmetric.

Altogether the three examples were selected to emphasize
that whenever two regions are sufficient for the design, centro-symmetric
"filters should be computed. They have superior characteristics over
optimum multichannel velocity filters. Three different effects mainly

account for this:

1. Less possible éverlapping of pass with reject
regions (example number 2).

2. Less possible overlapping of pass with pass
regions (example number 3).

3. Less influence of one regién on other regions
which generally occurs without any overlapping

(example number 4).

Computational experiments further show that approximations of
expected pass and reject regions increase with the number of traces and thé
filter length. To give’an examplé;Aiﬂ“figured;ZZ.B the (f-k) plot of a
six—tracé‘filter with the design paramefers of filter number 3 is shown.

The contours should be comparéd with the ones of figure 7.1.2. The escarp-
ment is in this case less steep.aﬁd fewer hills in the reject region are

higher. Nevertheless, the pass-regions in béth cases are nearly equally

good.,

With the help of the above examples, it is seen how a more
complex time window will influence the (f-k) plot. The more regions that
are chosen in the time domain, the ﬁore they will interfere with each other
'in the (f-k) domain. One more feature of multichannel velocity filters which
was constantly observed in the (f-k) diagram is worthwhile mentioning and is
described as follows: Whenever reject regions with a_highbvalue fortglie
next to a pass region, they 'push' the pass region into parts of the (f-k)-

diagram with fewer restrictions. This has already been seen with filter
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number 8 and number 9, where the 'pushing effect' is especially strong for
low frequencies. Figure 7.2.9 shows the (f-k) diagram of another centro-
symmetric pass-reject filter, Here this effect may be well observed in

the lower right corner of the basic section.
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FIGURE 7.2.4 a Isometric plot

FIGURE 7.2.4 Filter number '8

(f-kx) diagram T =0.5 ;¢=1.0 ;¥=3.0 ;
N=12 ; LF=19 ;V<=1.0 ; t_=0.2;Q =30.
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Filter number 9

FIGURE 7.2.5 a
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Filter number 10

PIGURE 7.2.6 a

Isometric plot
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FIGURE 7.2.7. a
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Filter number 13

FIGURE 7.2.9

(f-k) diagram of a pass- reject filter to show the pushing effect.
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7.3  Characteristics of three~dimensional multichannel velocity filters

In section 5.1.3 it was shown how to specify certain time
windows for traces recorded with a two-dimensional array.: With these
windows and the nbrmal equations (4.2.4) three-dimensional stacking filters
can be computed which will enhance or reject plane waves falling into a
certain range (figure 5.1.3.1) with normal vectors lying in a plane. In
this section some of these filters are computed and Eharacterised.

The three-dimensional Fourier transform is the appropriate tool for the
characterisation of the filters. Transfer functions for three-dimensional
filters are defined similar to the two—dimensionél case.They are contained in
the three-dimensional Fourier transform.Their phases depend on

the window Shape and centro-symmetric or symmetric windows should

again be chosen‘to keep phase properties simple. These time windows are

the ones which, due to the shortest possible length of all corresponding

time windows,'also lead to the fastest convergence of filters.

Let ai(t*)(i=l,.,NXNyj—ngt*sm) be the components of the
stacking filter for the two-dimensional recording array of figure 5.1.3.1.
Without loss of generali“ty.Nx and Ny are chosen to be odd so that the centre
of the recording array falls together with the recording position of the
centre trace. For reasons of simplicity, the traces and filter components
are re-numbered by giving each detector position the two.indices i, j.

With N1 = (Nx-l)/Q and M1 = (Ny—l)/2 one may write

3, (F9)78 ()5 a gy o (F9)=ap ()5 o ao,o(t")za(NxNyﬂ)/g(t“)

reee Ay (FF) = ay g ()
X'y

N1 M1 :
Let £ () = 21 a..(t*)%sinc(t®-x..) (7.3.1)
e i=iNl 4==Mp M | +
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N1 M1 —QKiﬁxi.
be the response and ﬁxff) = 21 2{ Ai.(f)e ] (7.3.2)
- i=-N1 j=-m1 M

the transfer function for broad band signals with moveoutc(ij. If the
moveout belongs to a plane wave

o4y 57 T + T3, (filents [ 4lem)
the transfer function becomes

N1 o, M -2mif (T 14T 5) .
F(f,T;,T;)=2£ A..(f)e y (7.3.3)

iToNl §==mM1 M
Because the three-dimensional Fourier transform can be expressed as

m N1 _wmMl -2mi(f1 - ki -k _j)
Uy

Pk k) =3 8 S a.De
* ¥ T=p i=mNl =M M
N1 M1 21ri(kxi + k 3)
= AL (£)e Y (7.3.4)
iZ-N1 gty
one may find the transfer function (7.3.3) from it along the line:
k = -ft.; k_= -fT in the range |f|¢3. k_,k_is known as the vector
x T y .y , x>y

wave number (Burg, 164 ) ., One may again reverse the order of the

filter (see (6.2.13)) to obtain the transfer function along k =T 3 ky=ft§

For symmetric and cenfrg—symmetfic time windows the transfer functions for

all possible plane waves have zero phase due to equation (6.2.10). The

basic region of the three-dimensional Fourier transform of a real sampled
three-dimensional operator is given in figure 7.83.1. The transfer function

of the stacking filter for a plane wa&e charactefised by ’t; = a

and‘t& =b is obtained along the line A. In the case where a>l or b>1l,the line
' kx=fa; ky=fb runs through additional blocks of the same basic type which

repeat periodically in the kx and ky.direction.

In the rest of this section some examplés are discussed.

The recordihg pattern of figure 7.3.3 is given with NX=5 and Ny=4.
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For a three-dimensional pass fil%er the parameters't%=l,43T;=—2,T§=l,4¥t§=—2
are chosen for the pass region, The additional design parameters are
specified as LF = 7,y = 0.08 and tc =.0.0l. The resulting symmetric time
window fér the twenty traces is shown in figure 7.3.2. Due to the high
symmetry of this window the computed stacking filter contains only four
different responses. These are given in table 7.3.1. Figure 7.3.2 shows
the traces to which they have to be applied. Figure 7.3.5 gives the
expected response of the polarisation filter in the basic range of the
three-dimensional Fourier transform. Both figure 7.3.2 and figure 7.3.5
are again logically connected with the help of the defined concept of the
stackiﬁg filter transfer function. Figure 7.3.4 shows the three-dimensional
Fourier transform of the computed stacking filter. To simplify the
presentation, horizontal layers (for fixed frequencies) of this transform
are given. The contours of a filter (number 15) with the above
parameters, however, with Nx = 4 and Ny = 3 are shown in figure 7.3.8. The
_pass regions are broader in this second case. This example was selected to
show that the approximation of the desired characteristics increases with
the size of the array. All transfer functions also start with no rejection
for zero frequency, a feature already observed for two-dimensional opfimum

multichannel velocity pass filters.

A straight forward three-dimensional stack (all traces of the
two-dimensional array are added) has also a three;dimensional Fourier
tranéform. It ié independent of'the.frequency. Any horizontal cut through
the basic region of a 5x4 recording array is given in figure 7.3.9, one for
a 11 x 11 array in figure 7.3.10. The straight forﬁard three-dimensional
stack passes perfectly plane waves, which fall peréendicularly on the array
from below. The selection of these waves from others coming in with

certain angles increases with the number of detectors in the array.
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OneAmight think that detectors should be placed on all grid
points of a‘rectangular array. but this is not necessary . The given
time domain design is very flexible to compute filter components for any
kind of array. It must be generally emphasized that detector positions
can have arbitrary spacing among each other. It is only necessary for the
characterisation of the filter with the discrete Fourier transform that their
coordinates should fall on grid inter-sections. Below is the design of filter
number 16, which  is expected to have the desired pass characteristic of
figure 7.3.5 where however, detectors are placed on the cross of figure
7.3.6. The time window for this array has to be specified as shown in
figure 7.3.7. The obtained stacking filter components al(t*) to as(t*)
and alo(t*) are given in table 7.3.2 and the three-dimensional Fourier
transform is shown in figure 7.3.11. Filter number 16 no longer acts as
a polarisation filter for the selected direction. The characteristics
approximate very well to what onc would expect for a general three-dimensional
.velocity filter where'plane waves are to be passed with normal vectors falling

within an inverted pyramid instead of on a plane.

The desired'polarisation filter'characteristics of the
cross-shaped array are far better approximated if plane waves are to be
selected whose direction of propagation falls together with the direction
of one branch of the cross. To give aﬁ example for this case, again the
detector positions of figure 7.3.6 are used. . This time, however,'plane
waves are to.be filtered whose three-dimensional transfer diagram is given
in figure 7.3.12. The time window is shown in figure 7.3.13. The three-
dimensional transform of the stacking filter (number 17) obtained is presented
in figure 7.3.18. Transfer characteristics for this case approximate very .

well the desired ones.

It is clear from the last two examples that an array may
have good polarisation properties in oneé direction and less good characteris-

tics in another direction. Optimizing a three-dimensional filter for a



-110-

given design region and fixed detector positibns does still not result in
an absolute optimum for a given number of detectors where their position has
to be included in the design as well. It is generally possible to ﬁinimize
the mean square error with respect to both filters and seismometer locations
(Burg, 1964 ) . This leads to non-linear equations which are difficult
to solve. A semi-practical approach, where responses are computed for
various detector positions would however, be very helpful. This certainly

very interesting line of further research is not followed in this work.

To complete this section two more examples of polarisation
filters are discussed. The recording array for both cases is given in
figure 7.3.15, This array has the advantage that due to its high symmetry,
a computed filter can be applied four times by simply interchanging the
filte? components in a circular way. Four directions can then be easily
scanned with only one set of filters. For the first example the desired
transfer characteristic in the (f,kx,ky) domain is the one of figure 7.3.5.
The time window of the pass region is given in figure 7.3.16 . Additional
design parameters are N = 21; LF = 11; YV = 0.5. The three-dimensional
Fourier transform is shown in figure 7.3.19. Characteristics are comparable
approximately with filter number 14 (fig.7.3.4). There are, however, high

values throughout the middle of the basic region. Filter number 19

provides the second example where filter number 18 is supplemented by

allowing an additional reject region (figure 7.3.1%) in the design. The
weighting factor for the correlated noise is ?:= 1. The time window for

the reject rggion is given in figure 7.3.17. In the (f,kx,ky) space there
is boﬁh a pass and reject region simultaneously along the line kx = ky = 0.
The pass region in figure 7.3.20 is shifted into a region with no constraints.
This typical feature was already observed with two-dimensional multichannel

velocity filters. One may also notice. that high values may be encountered

in regions which were not included in the design. Rejection increases with
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increasing the weighting factor Q@ of the noise. Figure 7.3.21 shows the

characteristics for the last example (filter number 20), where q =20.

One may generally conclude, that features of two-dimensional
multichannel velocity filters can be observed in a similar way in the three-
dimensional case. Uncorrelated noise in the design depresses the high
frequency content. Overlapping of regions may occur. The more regions
that are used in the design, the greater may be their interference in the

(f, kx,ky) domain.
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a, (t%) a, (t*) a, (t¥) a, (t*)

0.0097 0.0054 ~0.0041 -0.0023

-0.021y4 "0.0239 -0.0054 -0.0022

0.00863 -0.0128 0.0344 -0.0200

-0.0060 -0.0023 0.0022 0.1247

0.0063 -0.0128 0.0344 -0.0200

-0.0214 0.0239 -0.0054 -0.0022

0.0097 0.0054 -0.0041 -0.0023

TABLE 7.3.1 Stacking filter components of

filter number 14
a; (%) a, (t¥) a, (%) a, (t*) ag (t¥%) alo(t*)
0.0086 0.0022 -0.0062 0.0097 -0.0219 0.0409
-0.0046 0.0134 -0.0013 -0.0058 -0.0073 0.0236
-0.0150 0.0080 0.0181 -0.0158 -0.0096 0.0201
0.0003 -0.0055 0.0145 0.0193 -0.0344 0.0263
0.0046 -0.0047 -0.0028 0.0249 0.0423 -0.0227
0.00hY -0.004% ~-0.0015 -0.0031 0.1323 0.0u466
0.0046 -0.0047 -0.0028 0.0249 0.0423 -0.0227
0.0003 -0.0055 0.0145 0.0193 -0.0344 0.0263
-0.0150 0.0080 0.0181 -0.0159 -0.0096 0.0201
-0.0046 0.0134 -0.0013 -0.0058 -0.0073 0.0236
0.0086 0.0022 -0.0062 0.0097 -0.0219 0.0u409
TABLE 7.3.2

Stacking filter components for filter

number 16
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FILTER No. TRACE No. -
1'.'.‘? -3 2
T P
24 —— ——d-2
34— 2 - ——q-3
b-H——- -4
b -t —— L .—L 5
24— -——r6
34——1-- T—-r7
bd——1—— -8
U —-—4-9
34-—1—- ———-10
34——+ -+ 1
b—1-— -1 12
bq-~ ~=1 13
3--~ =1 14
24—~ -~~~ 15
b-r-- T 16
br-—- -—1 17
34~—o - ~~1 18
24—~ Fo o 19

~ FIGURE 7.3.2 Filter number 14 Time window

FIGURE 7.3.3 Recording array for filter number 14




~114-

weaBerp (S )

HT Jequnu ,Hwﬂ...‘n J

he"L TANOId




=115~

e~ .
o=
| ©°
. o
=~ 5
: 3
5 o Hl e
A7 © m % [ £
| d© A
I n7o a lauu.Sr.oqﬂocn:mHQBHFqWWohM.
| o Ll ST S T S B
L\ . ol I T T T T T T
| . =1 IS e e i R e T T T S S Sy R
ol o N I (| P T [
| m ¢IH H nm\.. - ll__nl_ll_l._||.—.l—|.+. +r—|.—|.*| e
& N ! N [ 1 !
| o0 54 nb.L T - T LLI— L|+¢s
_ -8 ~ ~H Lo AN g il
| ps - -._ IHIkN T\ _-_
—_ - « 4[4 | i
“ N c2hew o il | d_r‘ _.—_
A v _ ! ]
b < Ht 1l H il
~ o L ] !
WL\ ) ._.. .HT_A
o £ ,ﬂ EIL.II/.
- N N
w ' T
) N I
1n — PO,
m ' TT7717 |
M [ ~.I.._|_ |
>
5



-116-

Filter number 15

FIGURE 7.3.8

(f,k_,k ) diagram (continued on next page)

Xy
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FIGURE 7.3.8 Filter number 15

(f,kx,ky) diagram (continuation from previous page)
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Filter number 19

FIGURE 7.3.20
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7.4 Characteristics of differential normal moveout filters

By specifying various types of time windows, the normal
equations (4.2.4) have been used for the desigﬁ of two- and three-
dimensionai velocity filters. The two- or three-dimensional Fourier
transform of the filters contains all transfer functions for
signals with constant moveout. It is therefore the most appropriate tool
for the filter characterisation. If, however, signals pass through a
velocity filter which have diffevential instead of constant moveout then the
(f-k) plot of a filter is of no further help. Equally it generally makes
little sense to apply a two-dimensional Fourier transform to a filter which
was designed for differential normal moveout.  One would then obtain the
transfer functions for signals with constant moveout from it.

For differential normal moveout filters, one has to look for other transforms,
which include all transfer functidns for the differential normal moveout

signals used in the design.

In this section it is shown how with simple manipulations,
a diagram for a stacking filter may be computed from which the transfer
functions for signals belonging +to a specified family of differ-
ential normal moveout curves can be obtained. It is also shown that for
a special class of filters, such a transform is again the most appropriate
‘tool of characterisation. The technique is explained with the help of ‘the

following examples.

Example Number 6

The problem is to characterise filter number 12
(designed for signals with contant moveout) for signals having the following

moveout:
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o = 0 on trace 1

1
o = T u u 2
oty = 2T MM 37 (00T +00)
o(u = oyt " " u
0(5 - ~ " n 5
&g = 9T " " 6 (7.4.1)

For this purpose, a new stacking filter (Bj(f), j=1,..,10)
is defined from the six components of filter number 12 as shown in table

7.4.1.

Bl(f) B, (£) B, (£) B, (£) B (£) Bg(£) B, (£) Bg(£) By (£) Blo(f)

Al(f) A2(f) A3(f) 0 Au(f) 0] AS(f). 0 0] A6(f)

"TABLE 7.4.1

In this way, the transfer function for the given moveout (7.4.1)

26 "2'ﬂ'ifOCj
Foc(f) = & Aj\f) e (7.4.2)
J=1
is expressed as
10 .
F(£,7) = F, (£) =£ B, (£F)e 2MHIT.
3=1

This formula can be obtained from the two-dimensional Fourier transform of
Bj(f),(j =1,..,10)
+27idk

10
F(£,k) =§_ B,(f)e (7.4.3)
=13

along the line k = -fT

The function (7.4.3) is called the traﬁsfer diagram of filter number 12 for
the family of curves (7.4.1). For the above example the two-dimensional
amplitudg spectrum of this diagram is given in figure 7.4.1. It contains
all amplitude spectra of the transfer functions for any given 7T of the

family of curves (7.4.1) and has to be interpreted as follows; Each transfer
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function for a vaiUe T is obtainéd along the line which connects the origin
with that vélue on the T-axis. The given diagram should be comparéd with
the contours of figure 7.2.8. Both blots have the same transfer function
for T= b.

From the above example it is obvious that the described
technique is of value if the moveout has the form cxj = k7%, where k is an
integer number. If the moveout is c(j = kT+ @., Whgﬁif:gj may be a real
number, the same procedure has to be done with Aj(f)e J instead of Aj(f).

The greater the curvature of the test curves, the more zero components have

to be introduced in the newly defined vector.

The transfer diagram of filter number 12 for the family of

curves
X1 = 522 + 7 &Ly = -1/2 +°T (.7.4.4)
o = 3/2 +Q X5 = -3/2 +T (~00¢T<¢+00)
= -5/2 +T

X3 = 172 +°T g
BJ.Qtrif
,(5=1,..,6)

into the ( £ -k ) domain . The amplitude spectrum of this transform

" is correspondingly obtained by transforming Bj(f)=Aj(f) e

is given in figure 7.4.2. This example shows in addition, how to derive
a useful filter in a quick way from a given stacking filter by simply
shifting the stacking filter components for constant amounts on each trace.

This observation may be generalized in the following way:

Let'Aj(f), (§=-N,..,N) be the components of a stacking filter and
~ . .
F(f,k) be the two-dimensional Fourier transform as defined with formula (6.2.11
Shifting each component by the contant amount j6 leads to the stacking filter

~2nidif

B. =A, j==Nyuen :
J(f) Aj(f)e s (j' N,...,N)

whose corresponding transform %B(f,k) is related to ?kf,k) by the formula
~ ~ : A
FB(f,k)=f(f,k+6f), If15%. Any line k=£1y with [f]¢2 in F(f,k) maps into the

line k=£(Ty+6) in B(£,x).
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If a filter has to be computed for the time window of figure
7.4.9 b, one may make use of the stacking filter for the time window of figure
7.4.9 a without solving again the normal equations. The stacking filter com-
ponents need only be delayed by constant amounts on each trace .The filter
obtained by this process is the optimum filter for a window,where the window
limits have the.same shift as the filter components. .In this way it is
possible to derive may useful filters from a computed one.

In the following part of this section differential normal
moveout filters are characterised. Transforms for some of these filters
are given from which all transfer functions for the differential normal
moveout signals can be obtaiped which were assumed in the filter design.

An appropriate example for such a time window is shown in figure 7.4.3.
Filtefs with these kind of windows are important for two-dimensional
problems encountered in the filtering of CDP-data. The centre point is
selected in such a way that the overall leng{h of the window is short. The
family of curves which is inherently assumed in the design of a filter for

the given window is

&g = 157

X1 = 0 X5 = 57
Xy = g = T o =
2 T 6= 7T 102 18T (_pereo0)
o3 = 2q X7 = gT 11 = 227
oy = 3T >Xg = 127 >12 = 26T
' (7.4.5)

From the twelve filter components obtained in this case, a 27-trace filter
has to be defined in the way described above. The two-dimensional Fourier

transform of it contains all transfer functions for signals

belonging to the family of curves (7.4.5) Three examples are given below:

Examﬁle Number 7.

A stacking filter for the time window of figure 7.4.3 without

reject region was computed for'the'following design parameters(filter no.21)

12; LF =27; Q=0; V=0.08; f'tp=1; Tp = 05 ty =13

N =
T; and T, is defined in figure 7.4.3.
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The trace-symmetric stacking filter components are given in table 7.4.2,
The amplitude-spectrum of the transfer diagram is ;hown in figure 7.4.4 .
Signals belonging to the curves (7.4.5) with any value I’tl(l pass with
~hardly any change in their amplitude characteristics. However, for
frequencies below f = 0.16 the filter rejects very well those signals which
fall into the reject region close to the escarpment. Frequencies higher

than f = 0.25 pass for every value of T.

This is no longer the case for filter number 22 with the above

parameters, where however, T; = 1/3. Contours and isometric plot for this
case are given in figure 7.4.5. Note that again for the scaled time
windows transfer diagrams seem to be scaled versions of each other. (This

{
effect is explained in Chapter V111). The two~dimensional Fourier transform
for the last differential normal moveout filter is shown in figure 7.4.6.
It charac%erises the performance of the filter for signals with |
constant moveout. One may conclude that when constant moveout signals fall
into the pass region of figure 7.4.3 they pass nearly undistorted. A
rejection of constant moveout signals outside this range is worse than the
rejeétion of differential normal moveout‘signals which fall into the curved
reject region. A good knowledge of the actual moveout incorporated into the
filter design is thefefore of great help to obtain optimum rejeétion. It

was generally found that the escarpment has maximum steepness if the filtered

signals were the same ones as used in the filter design.

Example Number 8

A stacking filter for the window of figure 7.4.3 was computed

with the fbllowing design parameters  (filter number 23)
N=12; LF =11; t, =6; VY= 0.08; Q= 2.03 't‘P = 0.5; -’t‘R = 0.25

The amplitude spectrum of the transfer diagram is shown in figure 7.4.7.

Apart from depressions for high frequencies, pass and reject regions are
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fairly well approximated. For signals falling on curves outside the

specified rénge, the filter becomes very selective for certain frequencies
and certain values T . An applicatién of these filters has therefore to
be done with extreme care. Figure 7.4.8 shows the amplitude spectrum of

the transfer diagram for filter number 24 , which has the above design

parameters, where however,’tk = 0.05. As expected, the narrower reject
region is better approximated in this case. Apart from the strong

selectivity of the filter outside specified regions, observed features are
very similar to multichannel velocity filters. For instance one may easily
predict the values T; and‘tk of the above filter type, for which pass and
reject regions will overlap in the transfer diagram.

The technique described for the characterisation of
differential nofmal moveout filters is very useful, because properties of
these filters are revealed which cannot be found otherwise. The given
examples 1in this section were based on seismic considerations. Although
‘these examples show the complexity of the problem, further research on this
subject is certainly useful. It was generally found thét reject and pass
regions are well approximated. It is, howgvef, difficult to predict

characteristics outside specified regions. These may sometimes even exceed

the height of pass regions.



-132-

Isometric plot of the transfer diagram

L
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Rl

20

k=10

Transfer diagram of filter number 12 for the

FIGURE 7.4.1

family of curves (7.4.1)
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Isometric plot
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Filter number 21

FIGURE 7.4.4

Amplitude spectrum of the transfer diagram for the curves (7.4.5)
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Stacking filter components

Filter number 21

(continued on next page)
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TABLE 7.4.2 Stacking filter components

ggf
=1

P

0.3%

0.25

.00

.00 0.12 0.25  0.37 _ 0.5

FIGURE 7.4.6 (f-k) diagram of the differential nbpmal

moveout filter number 22



138-

Isometric plot

Filter number 23

FIGURE 7.4.7

Amplitude spectrum of the transfer diagram for the curves (7.4.5)
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FIGURE 7.4.8

Amplitude spectrum of the transfer diagram for the curves (7.4.5)
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FIGURE 7.4.9 Relationship between shifted stacking

filter components and time windows .

If the normal equations for the upﬁer window are
N

s A ()R S(£) =6,(£) 5 (371,...5N)
i=1
where R, (f) and G (f) is given in (4.2.5) and (4.2.6), then the

ones for the lower window are obtalned by replacing T, with
ti—ti+di in the upper ones. 7
This leads to the following normal equations:
N
Fa%4
S (R eMhT

i=1
The solutions of these are in the time domain a (t) a, (t- d ),(i=1,.N)

) R, (f) -G (£) , (3=1,..,N)

and therefore can be expressed with the solutions of the

filter for the upper window.
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7.5 The influence of chatter

The aim in previous sections of this chapter was to character—
ise various stacking filters with their most appropriate transforms. These
" transforms revealed various properties which are common to all filters.

In the rest of this chapter some more design parameters are described. In
this section, in particular, the influence of the chatter parameter tc is
discussed. It is shown that for small values tcl it is not necessary to
provide for chattér in the filter design. The same purposé is achieved by
applying a special filter to the stacked output. Below, some computational
experiments were done with pass¥velocity filters to show how various values

of t, influence the (f-k) plot.
{

The design parameters of filter number 3 were chosen and
some (f-k) plots for filters with various values of tc were computed.
Figure 7.5.1 shows the (f-k) plots of some of these filters. The contours
should be compared with the ones of figure 7.1.2 . One sees immediately that
t, influences only the frequency content of the (f-k) diagram. The trans-
fer characteristics stay very much the same for low frequencies. In
figure 7.5.2 some zero moveout transfer functions for the given filter type
are shown. By incrgasing tc higher frequencies are increasingly rejected.
This seems obvious because a ce;tain value for tc means a biggef distortion
for high frequency signals than for low ones; It is therefore quite
logical that (f-k) diagrams of multichannel velocity filters designed for

high values t, show suppressed characteristics for high frequencies.

The fact that only the frequency content is changed by tc

" leads to the idea of applying a filter to the output which has a -similar
effect as the incorporation of tc into the normal equationsf These
equations give a hint towards the selection qf such a filter. It is
assumed, expression (4.2.3) has the factor sinc2 (tcf) instead of sinc(tcf).

Both functions are very similar for small values of tc and |f|<.%.
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With the condition that Y = O  these
slightly changed normal equations correspond to a problem where, for the
filtered siénals rec(f) sinc (tcf) instead of rec (f), a corresponding
filter is designed with no chatter at all. Filtering the broad band
signals in the input with sinc (tcf) is the same as filtering the output
with B(f) = rec (f) sinc (tcf). In this way there is no need for
incbrporating tc in any filter design at all. B(f) is the filter which
takes care of the influence of t,.  Some amplitude spectra of B(f) for
various values tc were computed. They were very similar to the zero
moveout transfer functions of figure 7.5.2. as long as ) and t_ were less

than one.
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FIGURE 7.5.2 Zero moveout transfer functions
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7.6 Influence of the weighting factor for correlated and uncorrelated noise

In this section some computational experiments are discussed
which were done in connection with the parameters q and /. For reasons of
simplicity the following treatment is confined to two-dimensional velocity

filters. Results may however be generalized.

In previous sections stacking filters were characterised with
certain transforms, from which transfer functions for given moveouts could
be obtained. Using Parsevals theorem, the output energy for broad band

signals for a particular moveout @ becomes:

ol

1
'f.('t);gr |Fce o] 2ae=2(
= 0

N .
s A.(f)e_2m]ft1 %ar (7.6.1)
=17

Nj=

This function can usually be gquite well estimated by simply looking at the
" two-dimensional Fourier transform. If, for instance, signals have the
moveout T, and correlated noise the moveout ’C; the signal to correlated

noise ratio for this case can be expressed as

- o~ o~ ' ‘ :
S, = E (T))/E (T) _ (7.6.2)
If signals have the rectangular band width rec (f/'rz)', (¢z<1) then their passed
energy is obtained as ‘ |

12 | ' |
E@) =2 § ?I F(f,'t')l 24¢ - | (7.6.3)
0 o

If K broad band noise families uncorrelated to each other with the constant

moveouts Q’i,(i=l,. ,K) are present, their total energy in the output is

K
E=£_ E(T})
i

E(T) was computed for filter number 12 with ’IZ= 1 and also for the 6-trace
straightforward stack(see figure 6_.2.7). Both functions are shown in

figure 7.6.1. If the constant moveouts for broad band signals and noise
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are known, one may read their appropriate energy values from the graph and
obtain the signal to correlated noise ratio by simple division. The
straightforward stack leads to good ratios, if the signals have more or less
exact zero moveout. However, for fairly small deviations from this the’
ratios are more favourable in the case of filter number 12. Increasing g
may considerably improve the signal to correlated noise ratio. Figure
7.6.2 shows some functions E(T) for filter number 1, where g’takes on
various values. In figure 7.6.Y4 some corresponding (f-k) plots are given.
The influence of @ on transfer characteristics can often be quite well
predicted by recalling the relation between time windows and (f-k) plots and
remembering thg fact that high values of q depress réject regions. Note

that both pass and reject region are generally effected when q is increased.

So far, little attention has been given to transfer
characteristics of stacking filters to uncorrelated noise. Characteristics
related to signals and correlated noise can be defived from the two-
dimensional Fourier transform. This transform, however, gives no information
about the respénse of the filter to uncorrelated noise. The presence of
this noise is often quite considerable and by increasing it in the design
(or the weighting factor ) of the error) considerable improvement of tﬁe
signal to total noise ratio can be obtained. Let ni(t*))(i=l,..,N) be the
‘uncorrelated noise components in the inputv;nd ai(t*),(i=l,.,N;—nst*$m).
ﬁhe components of the stacking filter.  The corrésponding noise in the

output is then

N :
n(tﬁ'\') = Z ai(-t‘:'ﬁ )%’:ni(t;'n')
i=l

whose autocorrelation is

) (t) = Z Paa, @G, @,



-147-

from which the noise power is obtained as

By = Panl®)

By making, therefore, a further assumption that

(Pn.n.ot* = a sinc (T#)

i'i
one sees that
N .m N '

En=a§;l(Fg.a‘(O)=a NG (7.6.4)

The sum of the squared stacking filter components therefore
' is a good criterion to investigate the performance of a filter on uncorrelated

{

noise. Especially for the straight forward stack, where the filter
components are zero delay spikes of a height‘l/N the power of the passed
" noise is En=a/N. It is well known, that if noise events are randomly.
distributed, then simple addition of traces represents the best possible
technique for its suppression ( Burg, 13864 ). Ideally therefore, what
is desired is a Stacking filter which approximates well the specified pass
and feject regions and shows also optimaily the same characteristics in
relation to uncorrelated noise as a straight forward stack. ~ For optimum
multichannel vélocity filters it is known that increasing uncorrelated noise -
in the design results in a depression of the pass regions of the (f-k)
diagram. This propérty was observed for all filters belonging to the class
treated in this thesis. From this observation one may still not conclude
in which way the response. for uncoprélated noisé is changed. If special
aftention is therefore to be given to the improvement of the signal to un-
correlated noise ratio in the output, the following function can.be used to

characterise a filter for broad band signals.

S(T) = E (T)/E_ ‘ B ‘ (7.6.5)

E(®) is given in (7.6.3) and E 1s used as in (7.6.4) with a = 1.
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For instance if broad band signals and noise with the same power in the
traces and the constant moveouts T; and’C; are givgn, the éignal to total
noise ratio becomes with (7.6.5)
S(’Cé) ' _ E(’C;)

s(T) + 1 E(T) + B
A number of functions S(T) for a series of filters was computed where the
design_parameters.are the ones of filter number 12 except for the value Y,
which was ihcreased steadily. The functions are shown in figure 7.6.3.
The dotted line belongs to the straight forward stack. There is no doubt
that for low values V , the signal to uncorrelated noise ratio can be fairly
poor. This is certainly one of the reasons why velocity filters with good
pass and reject characteristics applied to real seismograms may still show
bad results. By increasing ) , the signal to noise ratio may, however, be
improved. It was generally found that for about )/ = 100, a limiting curve
S(T) is obtained. For 3}/ > 100 no further essential improvement of the signal
to noise ratio is possible. TFigure 7.6.5 shows some (f-k) diagrams for
filter numberju2énd various values Y . These characteristics stay nearly
unchanged for }/>100. A good signal to total noise ratio for the output
trace is generally achieved by giving]xﬂilg and ) a value of approximately
40, By doing this, one should.however be aware of the changes caused in
4the (f-k) diagram. All computational experiments show that the improvement
of one filter property has to be paid for with é deterioration of other
filter characteristics. These experiments also emphasize the importance of
the time domain design. "By designiné a filter in the (£-k) domain it would

be difficult to influence the signal to noise ratio.



E ('c- ) -149-

QA

FIGURE 7.6.1

E(@) 10bswe

Emax

05

FIGURE 7.6.2

4.0 20 ‘ 3.0 :}—

FIGURE 7.6.3




=150-

- ,/‘l

- X' l.
=10 ..+ - e
?- N s

o
Q5.0 3

v
7 £
= Ty ‘l’;
ey Y
e i

0 TIE T oZe  0.375  0.50  0.625 G765  0.875  t.0D

40. 2

JO
"
)
o
S

" FIGURE 7.6.4 (f-k) diagrams to demonstrate the influence of ?



-151-

V20000

(f-k) diagrams for filter number 12 for

FIGURE 7.6.5

various values of Y
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7.7  Design of suboptimum stacking filters

In this section some methods of obtaining filters for large

arrays from optimum stacking filters designed for small arrays are shown. The
characteristics of these filters are not as good as the ones of the optimum
stacking filters. They are therefore called suboptimum. Note that this
term is used here in a different sense as by Foster, Sengbush, Watson (1964).
Suboptimum filters need less computation time and computer space for the
deéign. Three different approaches for the filter computation are given
below. For reasons of simplicity the tréatment is confined to the case of
two-dimensional velocity filters. Most ideas can be logically extended to

the whole class of filters.

1. The two-dimensional convolution technique.

In chapter V1 it was shown that two—dimenéional convolution
of an N-trace operator with a M-tiace operator leads to an (N + M - 1)
~trace operator. The two-dimensional Fourier transform of the (N + M = 1)

/

trace operator is the product of the transforms of the N- and M-trace
operators. In this way one may obtain a stacking filter for N + M - 1
traces from two stécking filters desigﬁed for N and.M traces. If N- and
M-trace operators have similar characteristics in the (£-k) domain, the
response of the (N + M -1)-trace filter is better than either of the smaller
filters, because the product of the Fourier transfdrms eﬁhances pass~- and
deprésses reject regions (dB values in the givén (f-k) plots have to be

added). If N and M trace operator are both symmetric or centro-symmetric, .

the (N + M -1) trace filter is also symmetric or centro-symmetric.

2. Cascade filter technique.
Let 2M traces be given where signals arrive with the constant
moveoﬁt’t. A 2M-trace filter for a certain window is desired, however

only an M-trace filter aj(t*)j(jzl,.M)for the same window shape is available.
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It is shown beloﬁ how to use tw& of the given filters on all 2M traces.
By-applying.the filter to traces 1 to M and again to traces M +1 to 2M,

two output signals result with moveouf MT. After filtering these two
output fraces with a stacking filter bi(t*),(i = 1,2) where the time window
is M times broader than the given one, one obtains again a single trace
filtered oﬁtput. Because of the broad design region for the 2-channel
filter numerous foldings in its (f-k) diagram may occur. This technique
therefore, should be only used for narrow design regioms. Instead of
applying these stacking filters in cascade, one may use the stacking filter

o (t%),(1 = 1,..,2)

Ci('t:'_-) = ai(-t:':):':bl(-t:':) s (i_—_l,__’M )

c.+M(t")

i ai(t*)*bQ(t*),'(izl,..,M )

3. Supplementing of time windows

When a_time window for M + N traces is given each filter
" component obtained depends on the total shape of the window and on all
traces. Nevertheless, it seems logical that if for M and N subsequent
traces of the window two sfacking filters ai(t*)for_i:l,.,M and i=M+l,.,M+N
are individually computed, the stacking filter ai(t*) (i=1,M+N) should show
suboptimum characteristics if applied to all M+N traces simultaneously.
The experiments carried out were generally successful, especially when a
given time window was separated af a céntre point. ‘To give an exémple, a
6-trace filter for the time windoﬁ of figure 7.7.1 was computed.- The
filter components are given in table 7.7.1. With these components the

following ll-trace filter was defined: ci(t*) = ai(t*),(i=l,--,5)

Ci+5(t*) = a7_i(t*),(i=l,--,5).The stacking filter is now a suboptimum
filter for the time window of figure 4.,2.4, The two-dimensional Fourier
transform of Ci(t*).(i=l,ll) is given in figure 7.7.2. It shows that the

characteristics are the ones of the desired time window. When compared

with the characteristics of filter number 6 (see figure 7.1.7) one may
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easily see that the specified regions are less well approximated. Also the
reject region of the suboptimum filter is higher and the escarpment is less
steep. The essential difference lies however, in the computation time.

- The suboptimum filter was computed in 2.5 sec, while the optimum filter
needed 12 sec. The described method therefore, is of special value, for

very large arrays.

The technique is also useful to obtain filters for less
traces fromifilters designed fér many traces. Whenever time windows were
reduced by taking various traces out, the remaining components usually
showed reasonably well characteristics which corresponded to the expected
characteristics of the lefF time window. This approach is purely practical.
To be certain that the method works, the two-dimensional Fourier transform

should be applied to the resulting filter to check its characteristics.
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CHAPTER V111

THE SCALING EFFECT

From the normal equations (4.2.4) a number of conclusions
could be drawn about the symmetries of the stacking filters. These
symmetries are important to find the phase resﬁonses of transfer functions

for special cases as discussed in Chapter V1.

There is however, one more important property revealed by the
normal equations which is discussed in this chapter separately because it gives
deep insight into multichannel stacking filters. This property
is also of great economicgl value for the design of étacking filters and
makes their application therefore even more attractive. By making full
use of the described effect, it is possible to derive a number of stacking
filters from a comﬁuted one by scaling the filter responses. In this way
a tremendous amount of computer time for the filter design can be saved.

Scaled filters have approxiﬁately the same characteristics as the ones which

are directly computed from the normal equations.

Let.t.k and‘Afjk(j=l,..,N;k=l,..,L)be the design parameters
for L time windows designed for the signals, while Ejk and ZK%jk(j=l,N;k=l,K)
are the corré3ponding design parameters for K regions of correlated noise.
The continuous version of the normal equations for the most general case in

_the frequency domain is

N
22:1 A, (f)rec(f) [Rij(f}+ vsij] = rec(f)Gj(f)a(]=l,-N)(S.l)

where Rij(f) is given in (4.2.5) and Gj(f) in (4.2.6) however for the
following considerations without the factor rec(f) and ¥ = 0. One
realizes that by replacing the design parameters with the scaled ones (with

OZas scaling factor) such as,
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the following normal equations are obtained

N ~ ~ ~ ) ) N
12:1 Ai(f)rec(f)[ Rij(f) + y&ij] = rec(f) Gj(f), (§=1,..,N) (8.2)

~y Fa ¥
where Rij(f) = Rij(f/Y) and Gj(f) = Gj(fﬁv)

A comparison between the normal equations (8.2) and (8.1)

shows that replacing rec(f) with rec(fﬁq) in (8.2) gives
(£/ )fjI R.(5)| R.(F) 6 = | £/m) G.(f (4=1 N) (8.3)
rec '7 -~ i [ i3 +Vy ij] = rec( ﬁ?) Gj( ), (J=1,.., .3

and leads to the solution Xj(f) = Aj(fﬁq))(j=l,.N). This means the knowledge
of the sclution of (8.1) includes the knowledge of all other problems, where
signals and regions are a scaled version of (8.1). In the special case where
M>1 even the solution of (8.2) is included in (8.1). Since solutions

of the above normal equations‘for a fixed value of f cannot be influenced by
other frequencies they have to be

(4%
= j=1,..,N .
Aj(f) Aj(fﬁq) rec(f), (j=1, ) (8 )

.

This important property of the continuous frequency domain version of
the normal equations is also valid to a certain degree for the discrete
approximate solutions. If ajn (t%) (-n<t*¢n, j=1,.Ndare the discrete

solutions, an approximate solution for (8.1) would be in the time domain

0 n
a™(t) = § al(i) sine(t-1), (3=1,..,N) (8.5)
] &, 3
The continuous functions
2~n(t)= a.’ (mt) = ﬁin ai) sine Mt-i), (3=1,..,N) (8.6)
/A I A S e T '

should therefore be an 'approximate' solution for (8.3).
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The Fourier transform of (8.6) is confined to the range
|f|< l/2qz . If qzis less than one, sampling of (8.6) can be done without

aliasing

N .
Dt PIS - n. s PO 1=1.,.. .
aj (1) Irzi aj(l) sinc (7zt i), (3=1,..,N) (8.7)

1=-Nn

This expression represents an approximate discrete solution which could be
obtained by computing the stacking filter for a broader scaled design region,
using however, the narrower band signal rec (f/q). Because (8.7) is
genérally an infinitely long operator it has to be truncated. These scaled
discrete filters were always given a fairly short length of the width of the

time window and the results obtained were found to be satisfactory.

To give some examples, the response of filter number U4 was
scaled with.02= 3/4 using the above described scaling procedure. The two
dimensional Fourier transform of the scaled filter is given in figuré 8.1.

- It has about the same (f-k) diagram as filter number 5, however, confined

to the rangel f|s 3/8. In the same way, filter number 2 was scaled with

4z= 172 and ozz 1/k. Contours and isometric presentations for the scaled
responses are given in figure 8.2 and figure 8.3. Comparing the (f-k) plots
of filter number 3 (Fig. 7.1.2) and number 5 (Figure 7.1.4) with Fig. 8.2 and
8.3 it could be noticed that characteristics of the scaled responses are
about as good in the expected frequency range as the ones of the directly

computed filters.

va47<l the gain in width of the time window obtained by
simply scaling the responses of filters has to be paid for with a loss of
the high frequency content in the scaled responses. This loss is often
acceptable (may even be desirable), because the seismic frequency content
is usually expected in the loﬁ part of the basic region. ‘The lowest limit
of'q for scaling is therefore given by the highest frequency which is to be

filtered by the scaled stacking filter. A look at the computer time
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(CbC 6600) for the differently designed filters as gi&en in table 8.1
reveals the importance of the scaling effect. The computer time for the
scaling process itself took in all cases less than 0.5 sec. for a stacking
filter. Designing a filter for a broader time window by scaling the
responses for a narrower window may mean a tremendous saving of computing
time; From each filter one may derive any number of scaled versions. To
make an a priori broad band assumption for the signals is therefore useful

in getting the optimum out of the scaling procedure.

So far the scaling effect was treated only for/?<l. This

corresponds to broadening the time windows. Choosing 7)1 corresponds to
narrowing the time windows. The computation time involved in the filter
design for broad time windows is longer than that for narrow windows. It

would not be justified in this case to suffer also a loss in the character-
istics of the scaled responses. As a matter of fact, it can be shown that
a filter designed for a broad time window already includes all filter

responses for 4zﬂ_(see formula 8.u4).

To show the scaling effect for17>l.the discrete filter number
4 was scaled with OZ= 3/2 by making use of formula (8.7) again. The two-
dimensional Fourier transform of the scaled filter is given in figure 8.4.
It is essentially the expected one of filter number 3. There is, however,
a step of around 6 dB at £ = 0.25. The difference in height from the lower
plateau to the reject region is the same as in filter number 3. This
filter could be used in the same way as long as the frequency content is
confined to lf|<.0.25. The step in the plateau is due to aliasing,
because the Fourier transform of each component (8.6) exceeds the range
|flé 1/2 and the frequencies l/2<|f|<l/2qz have to be folded back in the
scaled and sampled filter. For the case az= 3/2 the aliased frequencies
lie in the range O.25<|f|<0.5L The fact that the step between the two

plateaux is about 6 dB, shows that the amplitude spectrum of the Fourier
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transform in the upper pass region is twice as high. It may be recalled

that the sampled function of sinc (qt) for l>Q>l/2 has the Fourier transform

1 for £« %—%72
S(f) = : (8.8)
2 for %—%vz<|f[<%
The amplitude ratio at the step is two and the dB value is therefore

20 loglO 226.02. The fact that the cormers of the step are not sharp is

due to truncation of the discrete scaled responses.

To prevent aliasing, one therefore has to antialias the
responses ftanﬂ.as given in formula (8.4). This means equation (8.6)

has to be convolved with sinc(t)

A D e s _ B n.y . ey . ~
aj(t)_qzajeqt)" slnc(t) -nzi;%z_naj(1)31nc07t-1)31nc(t-T) dL‘ (8.9)

n :
() =‘7EE;' a?(i)sinc(t*iﬁq), (5=1,..,N) (8.10)
J i=—n 3
and sampled again

L S S .
aj(t") —‘7551 aj(1)31nc(t"—1/7), (3=1,..,N) (8.11)

=-n

Formula (8.10) is an 'approximate' solution of (8.2) in the time domain.
It has to be used instead of (8.6) whenever a scaled version of a discrete
filter for'Q)l is desired. Using equation (8.11), the time responses of
filter number Y4 were again scaled with'7==3/2. The two-dimensional
Fourier transform is given in figure 8.5. As can be seen the (f-k) plot

corresponds to the expected one of filter number 3.

The above examplés to describe the scaling effect were
selected from two-dimensional multichannel velocity filters. This was
done to use the two-dimensional Fourier transform as a tool to compare the
differently designed filters. It must, however, strongly be emphasized

that the scaling effect applies to the total class of the given stacking
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filters. Formula (8.6) and (8.11) can be used in every case.

Apart from the enormous amount of computer time which may be
saved by making full use of the scaling effect, it also explains
other obsefvations which so far, have no mathematical explanation.  When
designing a pass-reject filter one has the heuristic feeling that the
stepout between signal and correlated noise must increase as the dominant
wave length of signal and noise increases. Various experiments were done
where broad band signals were filtered with one stacking filter and low-
passed signals filtered with-half the Nyquist frequency and twice the
moveout were filtered with another'filter where the window was twice as
wide. The responses for several signal stepouts agreed to within one
percent. This observation which applies to all stacking filters is
explained below, both for a multichannel velocity filter and a general

stacking filter.

If the two dimensional Fourier transform for an exact

solution of (8.1) is
N 271ik]
P(£,k) = & e” AL(E) rec (£) . (8.12)
j=1 _

then the transform for the exact solution of (8.2) for a scaled region is

a scaled version

Mz

F(E/ k) = e2"iijj(f/q2) rec (£) (8.13)

351
The best one can hope for is that the (f-k) plots of finite length filters,
designéd for time windows, which are scaled versions of each other, satisfy
the relation between (8.12) and (8.13) approximately. Comparing the (f-k)
diagrams of filter number 2 to number 4 shows that these transforms have the
general character of being scaled. The hills in the reject region, which
should have the same height for the exact solutions may however, show great

changes.
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It is assumed that the exact solution of é velocity filter
is given. Figure 8.6 a, may contain its two—dimensionai Fourier transform.
The inverse Fourier transform along the line A is the stacking filter
response fo(t) for broad band signals with constant moveout’tb. Owing to
(8.12) and (8.13) the values along the line A will appear along line B of
figure 8.6 b, which may contain the two-dimensional Fourier transform of the
filter designed for the scaled region with 02= 3. This line B is now the
transfer function for the signals rec (f/1) (low-passed with half the Nyquist?
frequency) having twice the moveout. The inverse Fourier transform of the
function aldng the line B is %fo(%t) and is therefore a scaled version gf

fo(t).

With the help of the scaling effect a deep insight is gained
into the relation between (f-k) diagrams and time windows of multichannel
#elocity filters. These rules may be extended to three-dimensional
multichannel velocity, polarisation or differential normal moveout filters.
For the most general case of a stacking filter one may express therefore,

the following rule (which applies exactly only for the 'exact' solutions).

Let Ai(f)’ (j=1,..,N) be the components of a stacking filter

which was designed for broad band signals and a certain time window .

N —2Hifa3
F (f = A.(Fe rec(f)
e ng 5

is the transfer function of the filter for broad band signals with arbitrary
moveout c%i(i=1,..,N).Scaling the time window by a factor 92(1 and again

using broad band signals in the design leads to the solutions

?T (f) = A.(f/ 5 j= fled
3 =8 "7, (]'ls'.aN))l l‘zqz

The transfer function of this scaled stacking filter for signals rec(f/?)

with moveout C;Z = 0(./'YZ becomes
J J
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~ ZN "QTrio‘j (£/m)
P (f) = A (E/m) e rec (£/m
& = ] 1 1

thus showing that the equation

T =r_ Em el
& oc 1 )T Vi
holds. From this it is seen that the responses are scaled versions of each
other.

Traces Filter length Window Time

N LF Sections (sec)
6 11 1 2.50
6 13 1 3.06

11 11 1 11.77
12 7 1 7.40

12 11 3 21.62

12 17 2 35.22

12 21 1 48.88

12 27 1 B4. 34

19 11 1 50.43
20 7 1 26.84

20 7 3 39.45

21 15 1 101.75
TABLE 8.1 Computation time for various optimum

multichannel stacking filters
T=T T=AT
f=05 . - =g
v-
& f=025
< 2
o
K=1 K1

FIGURE 8.6 a FIGURE 8.6 b
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FIGURE 8.2 (f-k) diagram and isometric plot
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(f-k) diagram and isometric plot

FIGURE 8.3
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FIGURE 8.4

(f-k) diagram and isometric plot
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(f-k) diagram and isometric plot

FIGURE 8.5
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CHAPTER 1X ) A

THE CORRELATION TECHNIQUE

The following stochastic models could be used for the

multichannel stacking filter design in previous chapters.

x; (£) = s(e-T) + vt -"t\i) +n(t) (i=1,..,N)

Signals s(t), correlated noise r(t) and uncorrelated noise n(t) are uncorrelate
to each other . To simplify computations, the components were always
assumed to be broad band signals. This is justified on the following

grounds:

1. Filters are usually computed to be kept in a
library with the intention to apply them for
various similar problems where autocorrelations
of signals and noise may vary.in each case.

2. The broad band assumption corresponds to
minimizing or maximizing transfer functions of
the stacking filter for certain time window
regions.

3. The broad band assumption is the most economical,
if filters for scaled windows are to be derived
from compﬁted ones.

L, The characteristics of multichannel velocity
filters designed with the broad band assumption

are still superior to other known velocity filters.

The knowledge ofvthe shape of time windows, in which signals
are either to be enhanced or rejected, is also assumed. This assumption
is justified because stacking filters may be applied to actual seismic
traces in an 'indirect' way. This means that various filters may be applied

to a multitrace section as in the computation of velocity spectra ( Taner
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and Koehler,1969). Traces showing the most convincing results will imply
that the chosen filter parameters fit the actual case best. This indirect

approach has to be done systematically.

If, howevef, a more 'direct' approach is to be chosen, then
moveouts as well as autocorrelations of the trace components should be
estimated prior to the filter design. Below a technique is
déscribed from which arbitrary moveouts as well as the autocérrelations
qQSSCt*); qQPPCC*) and <p%n0t*) may be approximately obtained from the
stochastic model. The technique is similar to the single channel approach
given by Ostrander (1966) and the multichannel approach of Schneider and
Backus (1968). It is in actual fact based on a study of the autocorrelation
matrix of the traces which gives a deep insight into the problem. This
may already reveal most of the desired properties. Below an example is
given. It is assumed that the organized noise on three traces is given by

the white noise series ri(t*) = r(t*-—ﬁ%} where the relative moveout is

" . 2 .

T& = (i-3)" and the power on each trace equals one. The moveout is shown

in figure 9.1. The crosscorrelation function (Fr . (T%) for instance is
12

then represented by a spike at position +t* = 3. The autocorrelation

matrix is shown in figure 9.2.

The moveout as shown in figure 9.1 is obtained three times
“and appears in a shifted way in all three columns (or rows) of the auto-
correlation matrix. The shift from column one to two equals ﬁ%_-ﬁ? » from
one to-three %1 - %% and from two to three %2 —‘%2. Generally one may
conclude that for n traces the relative moveout is obtained n times. It
would therefore have been only hecessary to compute any column or row of the
autocorrelation matrix to recover the moveout. Note that if signal and
correlated noise are uncorrelated, their autocorrelation métrices are simply
added. If organized noise or signals are not white the moveout in the

autocorrelation matrix stays unchanged. Each spike however, has now to be
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convolved with the corresponding autocorrelation function of the signal or

noise.
If the traces are given as

xi(t*) = s(t*—Ti) + n(t*) or xi(t*) = r(t* -’ti) + n(t%),(i=1,..,N)

it is theoretically always possible to obtain (Ostrander, 1966) %%n,’tg
ot . . . . .
o . .
and.%gs r T1 and (PIT, This is not any longer the case if organized noise
and signals are present (with or without uncorrelated noise). To show this,
the autocorrelation matrix of five synthetic traces was computed.  These

traces are described by the following stochastic model

x, (6%) = s(t#) + v(t# = (1 - 5)°), (i=1,.,5)

The minimum delay wavelet of the random process s (t*) is given in figure
9.3 and the minimum delay wavelet of r (t%) in figure 9.4. The auto-
correlation matrix of the five traces is shown in figure 9.5. It reveals

some basic features which can be expressed as follows:

1. The best chances for detecting moveouts and
autocorrelations are by analysing the first or
the last column (or row) of the autocorrelation
matrix. In this case the correlation functions
of signal and noise have the largest separation
from each other.

2. The crosscorrelation between the two extreme
traces gives the best estimation of the auto-
correlation functions.

3. After the relative moveout of the correlated
noise with respect to the signal is approximately
determined, it is immediately clear, which side
of the two-sided autocorfelation functions is more

accurate., (In the above example it is the left
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side for the correlated noise and the right side

for the signal in the first column).

It may be argued that the chosen model for an actual 'real
life' seismogram is far too simple to compute thé desired compeonents in the
way described above. For a more complicated model it is believed that a
better estimation of moveouts is obtained with an average over all

columns of the matrix. The averaging concept can be employed as follows:

Columns 1 and j of the matrix are each stored term by term Iinto a
one-dimensional array and the crosscorrelation - é?ijﬁ“*) between both is
computed. The position of a maximum value of this function obtained with
respect to the moveout origin reveals the shift between autocorrelation
moveouts from colum i to j. To gi;e an example, each column of the
computed autocorrelation‘matrix of figure 9.5 was stored into one array
and @ij (T*) was computed. Some functions q)ij (%) are shown in figure S.6.
They reveal the shift of the autocorrelations from column to column in a
very distinct way. It was generally found that the resolution obtained in
this case was better than the resolution already cbtained with the auto-
correlation matrix, in particular when signals changed their form from
trace to trace. The outcome of results depends however, very much on the
band width and moveouts of signals and may strongly vary from case to case.
It is ultimately only an extensive application of the described technique

on actual traces which will show its practical value.
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CHAPTER X

CONCLUSIONS

1. Discrete two-dimensional filters can be formulated as

discrete multichannel filters.

2. Under the assumption that signals and noise are uncorrel-
ated, a least squares criterion for multichannel filters can be chosen which

gives different weights to errors caused by signals or noise.

3. Continuous multichannel normal equations can be solved
with the discrete normal equations if all correlation functions are band

limited. Approximate continuous solutions are obtained.

4. A general purpose stacking filter can be designed which
may be used as a
(a) two-dimensional velocity filter
(b) three-dimensional velocity filter
(c) polarisation. filter

(a) differential normal moveout filter

5. Symmetries of the stacking filter depend on the choice of
a time window

(a) Time windows which are symmetric on each trace
specify phase-free components.

(b) Centro-symmetric time windows specify centro-
symmetric stacking filters

(¢) Symmetric time windows specify symmetric
stacking filters

(d) If design parameters of a window are the same
on two different traces, the compﬁted stacking
filtér components are also the same for these

traces
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(e} Stacking filters vhose time windows may be
obtained from each other by rearranging the
traces have identical filter components for

corresponding traces

6. Optimum multichannel velocity filters are included in the

class of filters discussed in this thesis.

7. The two-dimensional Fourier transform of a stacking filter
has to be interpreted in a way which differs from the interpretation of a

two-dimensional convolution filter.

8. The concept of the defined transfer function of a stacking
filter is of great use for the characterisation of filters due to the
following reasons:

(a) It provides an appropriate means of describing
the N input one output channel relation of a
stacking filter.

(b) It explains the characteristics of the two or
three-dimensional Fourier transform of multichannel
stacking filters;

(c) For signals With constant moveout it can be obtained
from the two- or three-dimensional Fourier transform

along straight lines corresponding to the moveout.

9. The phase properties of a stacking filter transfer function
for constant moveout signals depend on thé symmetries of the stacking
filter components.

(a) Symmetric and centro-symmetric filters have phase-
free transfer functions for signal§ with constant
moveout.

(b) Trace symmetric stacking filters have a phase-

free transfer function for zero-moveout signals.
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10. Characteristics of centro-symmetric muitichannel velocity
filters are superior over the ones of symmetric filters because
(a) less overlapping of pass with pass or reject
with pass regions is possible;
(b) additional design regions have a negative
influence on other fegions.

Both filter types have zero phase transfer functions for constant moveout

signals.

11, Reject regions with a large weighting factor tpush!

pass regions in the frequency wave number domain into regions with fewer

restrictions.

12. Polarisation filtefs can be designed for arbitrary
detector positions.
(a) Characteristics for a certain direction depénd
strongly on the shape of the array.
(b) Features are similar to two-dimensional

velocity filters.

13. Transfer characteristics of stacking filters for certain
families of differential normal moveout signals can be obtalned

with special transforms.

14. Some differential normal moveout filters can be exactly
characterised with certain transforms.
(a) Pass and reject regions.are generally
well approximated.
(b) Characteristics in unspecified regions are
difficult to predict.
(c) Filters are generally very selective in

unspecified regions.
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15. Constant moveout signals falling into a curved pass
region or differential normal moveout signals falling into a velocity filter
pass region are génerally’passed without distortion in their amplitude
spectra. - For optimum rejection the moveout of filtered signals should

however match the moveout of the signals used in the filter design.

16. The allowance for chatter in the design depresses the
transfer characteristics for high frequencies. For small chatter values
t_ a moving average filter B(f) = sinc (tcf) applied to the output trace

achieves the same purpose as the incorporation of chatter in the design.

17. Suboptimum filters can be derived from optimum filters

in various ways.

18. Increasing the weighting factor g and y) improves the

signal to noise ratio, but leads to greater signal distortion.

19. The scaling effect is helpful for the filter design.

(a) With this effect the computation time
can be tremendously reduced.

(b) Various scaled filter versions can be
obtained from a computed filter;

(c) Broadeniﬁg a time window by scaling the
components results in a high frequency loss
of the scaled filter.

(d) TFor narrowing the time window by scaling, the
stacking filter components have to be
antialiased.

(e) The effect gives a deep insight.into the
characteristics and performance of filters

with scaled fegions.

20. Autocorrelations of signals and noise can be included

into the filter design. Differential normal moveouts and autocorrelations
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can often be estimated with the correlation technique.

SUGGESTIONS FOR FURTHER RESEARCH

The studies made so far have opened the venue of subsequent

and further investigations, in particular on the following topics:

1. The necessity of obtaining more characteristics of
polarisation filters for various detector positions. These could
be tabulated in a form convenient to find optimum characteristics

as a function of detector positions.

2. A comparative study of the given three-dimensional

velocity and polarisation filters with other known filters.

3. In the process of the present investigation another
design of a three-dimensional filter evolved, the description of
which is given in Appendix 1V. Further studies on this subject

could be carried out.

4, Three-dimensional filters could be designed in the
time domain, where plane wave normal vectors fall
(a) within an inverted cone

(b) on the surface of an inverted cone.

5. Further characteristics of differential normal moveout

filters.

6. The application of the given filters and the correlation

technique on actual seismograms.
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APPENDIX 1

The integral (4.1.15) can be reduced to expressions containing

sines, cosines and integrals of the form

All three types of functions are standard programs in the computer.

Generally any integral of the form

sﬁsinc2 (af) sinc (bf) cos (qef) df
may be expressed as

{

1 Pl(f) F2(f)
b 2 3 T 5] d4f
8T a b (b+c¢)f (b -¢)f
‘where
Fl(f) = singf-(2a-(b+c)) + 2 sin f(b+e) - sin £M(2a+(b+c))
F2(f) = sin®f-(2a-(b-¢c)) + 2 sin FA(b-c) - sin fr(2a+(b-c))
The integral
gsinsAf daf
f

can be further simplified to give

g31n Af af = -1 sin Af _ é.ljcos Af + Agéln Af af
f
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APPENDIX II

OPTIMUM FILTER FOR VARYING BAND WIDTH OF THE INPUT SIGNALS

In the design of the general purpose stacking filter in
section 4.1 1t was shown how to provide for uncertainties in the arrival
~ times, chatter and variable gain of the input traces.

The basic idea of design consisted in the proper computation
of expectation values of the power and crosspower spectra for the stacking.
filter normal equations.

The following expressions were initially obtained for the.

expectations of the power and crosspower spectra.

E {@ii(f)g
E {@ij(f).{

4% 20ifT.
E %@j(f)} = @s s( £ )Sinc(tcf)sinc (Atjf) L

It would have been also possible to allow for varying band width of the

~
@S sCE) (II.1)
= o 2niti.f
Q§s S( £ Einc (tcf)sincCTajf)e

(II1.2)

(II.3)

input signals.
In the sequel it is shown, how to obtain corresponding expressions for
(II.1) to (II.3) in the case such variations are permitted.

For the following discussion it is therefore assumed that

the input signals can be expressed as

si(t) =s €'(t) *E(t—o(i) (II.4)

1

where the Fourier transform of the aperiodic function S€ (t) is given
i

as S{ (f) = rec(f/?i)/€i,and the power spectrum of the-stationary process
s ‘ .

£(t) is rec(f).

It is assumed that the band widths of the input signals are independent of

each other and vary randomly over the ensemble of all possible input signals
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in a manner such that each channel has the following ensemble probability

density function for the band width:

py ()= %b rec (f-%——) ; (atb¢} (I1.5)
As desired cutput the following trace is taken: so(t) =sa(t) %E(E) .
sa(t) has the average band width of the input signals, so that its
Fourier transform is Sa(f) = rec(f/a)/a .

By taking one special realization of the inpuf signals in
form of (II.4) one would have obtained the following expectation values

for the power and crosspower spectra of the general purpose stacking filter.

SR -

@ o . QItitijf
E{ ij(:E)‘i :@s < (f)sinc (tcf)SJ.nc(’t'ijf)e ‘ (IT1.7)
$1 %3
nift
E {@j(f)§ :@s < (f)sinc (tcf)sinc(dtjf)e J (11.8)
a {
J
where
5 : .
@s s_ (f)=rec(f/€.)/€. (11.9)
BRES £ 7%
: sgis{j(f)=rec(f/{i)rec(f/ fj)/{i{j (11.10)
@s < (f)=rec(f/a)rec(f/fj)/afj (11.11)

a “é.
E
By making use of the probability density funtion  (II.5) the expressions

(11.9) to (II.11) in formulae (II.6) to (II.8) have to be replaced by

the following ensemble averages.
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Determination of the power spectra

00
(£)] = T(£) = (£/e.)p,(6.) =5 de,
oS go R g

1

2.2 if If, ¢ab

2

T =45 (%f } aib) i %quké%b
0 T if §i9.<|f|<_%

2

Determination of the crosspower spectra of the input traces

o0

2
E§@ s .(f)} Tc(f)= [ g-l-r'ec(f/f) pq(g’)d?‘]
§17¢3 _C;?
B2 wez) o ldom
1@ =5 )2 w(5R) =< e P
0 £ ol <3

(11.12)

(11.13)

Determination of the crosspower spectra between input and desired output

- 0 .
Efi;asfg(f)i =To(f) =j;-rec(f/a) g’rec(fﬁf) pu(f) d?

- 00
S if |f|<9—:—13
a 2

a
0 S iF 2 <|fl<’§

(I1.14)
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The functions which especlally favour band width deviations from

trace to trace therefore are

E (f)z = T(F) ' (T1.15)
{©‘i
o . 2witijf
E{Eizj(f)i = Tc(f) sinc (tcf) 31ncUT§jf) e (II.16)
2nive. £
E{@ (f)} = To(Ff) sinc(t.f) sinc(at.f) e J (11.17)
j © J

All power and crosspower spectra of signals and correlated noise have to
be multiplied by certain tapering functions if varying band width from trace

to trace 1s permitted.
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APPENDIX 111

STACKING FILTER TRANSFER FUNCTION

In case of an even number 2 N of traces, the stacking filter

components may be labelled as

( A (F)yens A (£), A(E), A, (E),..
2 2

then the corresponding functions of section 6.2 become

2(2N—l)

2
fO(.(t") = S N—l) aj (t“)"‘SlnC(‘t“—Oij)
E 2

2 2 —2Trifo<j
Fc)('(f) = -__(2N_1Aj(f)e
Eha VI
(2N—l
F(£,T) = Z N1 Aj(f)e'“lfj"'
= &
m (2N—l)
2 o
F(£,k) —Ng i o1y 2s(De 2ui(F1-K3)

Ly b3 + -1

(6.2.1 A)

(6.2.5 A)

(6.2.6 A)

(6.2.8 A)
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APPENDIX 1V

DESIGN OF A GEN=ZRAL THREE-DIMENSIONAL MULTICHANNEL VELOCITY FILTER

The two-dimensional recording array of figure 5.1.3.1 is used
for the following considerations. Each detector location is sufficiently
described by the two variables i,j (i =1,.5N 3 j=l,..,Ny). The NXxNy

recorded traces may be assumed to have the form

xij(t) = s(t ’°‘ij) + r(t —xij) + nij(t),(1=l,..,NX;]=l,.,Ny) (1v.1)

Signals and noise are supposed to be uncorrelated and(Xij,éZ;j are the
various delays. The aim is to filter all arriving plane waves in a specified
wedge, not only poiarized waves. The filtered output should then optimally
approximate the signal s(t). - A1l planes falling into the wedge of
figure 5.1.3.1 can be expressed as: =z = -aix —%.y

where aa.andtxz may be the following random variables

dl=T;+£§014Q

= I~
Ky = Ly +d’i§/2 + ?

with the probability density functions

1 N
) = — recf—= (1v.2)
F1 q 4Tx © @k)
p,(§) = L reof-L (1v.3)
drcgf dLy

The relative arrivals of plane wave signals at the points (i,j) become
- . Yl o .
X 5 (’t;{+4’;/2+qz)1 + (Ly+d(.y/2 +$)3
AN
Crosscorrelating a signal on trace (i,j) with another one on trace (i,j)
leads to crosscorrelation functions

= THord -0,
(Psij’ sga\(rt) . (Pss (T 0(1] 0<1])
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By making use of the abbreviations

A A
e an = (T i R~ +AT s
Lij"ij (LX+AT;§/2)(1 i) + (Lyi-dLy/Q)Cj j)

A

'72='ll(3‘:—i)

Al -~
{=f(j'j)
one may express the crosspower spectrum between two signals as
~ Qni’rij,gﬁf znif’,‘zf 2vi§f
@S..S’."}(f) = @ss(f)e e ©
iiti)

(1v.y)

The expectation values for these expressions become with (1V.2) and (1V.3).

~ 2TiT L ,2af  w@ ominf 00 2ﬂi%f .
E{@s..seé(f)} -'-@SS(f)e 4 -SooPl(’YZ)e d')’z _gofz(f)e df

(1v.5)

>~ 20i7T,. . ,44F
- 1]
E{@S. Sa\‘.‘(f)i - @Ss(f)e

"13 sincwtxc'i‘-i)f)sincmycﬁ—j)f) (1V.6)

=

AN 1 ’{i
P ) = |11 Pl( )

1 [ %
" T3 P2 \lﬁ“—jl)

L)
N
~~
u\fh)
~
!

In a similar way one gets for the crosspower spectra between the desired

output signal s(t) and the various input signals

o 27i7T, .
E {(pss. .(f)} - @ss(f)e ’

J sinc (@t if) sinc (A’C'yjf) (1v.7)
ij

. o~ - o~ . ~ .

with sy = (G +4T,/2) 1+ (’ry +ALy/2)3

If again all signals are chosen to be broad band, the corresponding
expressions for (4.2.1), (4.2.2) and (4.2.3) become

E i@s sao(f)l = rec(f)
ij 1]

(1v.8)
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2WiTi.,i¢ . A
B{@S e )} = rec(e 1 Hginoat (3-1)f)sinctat (5-1)F) (v.9)
13°13 Y
2Ui€i.
E{gjss (f)} = rec(f)e ] sinc(aT if) sinc@ﬁT&jf) (1v.10)
i

These components are sufficient to specify normal equations where various

pass and reject regions are allowed in the design (see section 4.2)

Instead of referring to each input trace with the indices
(i,j) it is possible to label the traces with one index from 1 to NxNy by
counting traces in x-direction in one row after the other. This is done
below. For reasons of simplicity the computed power and crosspower spectra

(1v.8) to (1V.10) are renumbered in the corresponding way.

If Rij(f) (1=l,..,NxNy; 3=l,..,NxNy) and Gj(f), (j=l,.,NXNy) are
the general terms for the power and crosspower spectra of the renumbered

components one may write the normal equations as

i

A (f) R,.(f) = 6,(£), (j=1,..,N.N)
=1 1 1] J

2y

Ai(f),(i=l,.,NXNy) are the filter components of the general
multichannel velocity filter. These solutions may be obtained in the same

vway as the solutions of (4.2.4).
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