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ABSTRACT 

The thesis, which is in two parts, is concerned with two 

particular statistical models in which a change occurs at an 

unknown point. 

The first model is one for a sequence of independent 

random variables xi,x2, 	with a distributional parameter 

9 which changes from go  to el  at an unknown point in the 

sequence. The asymptotic distribution of the maximum likelihood 

estimate of the change-point is derived and discussed in detail 

for sequences of normally distributed variables with mean O. 

The asymptotic distribution of the likelihood ratio test statistic 

for testing hypotheses about the change-point is also derived. 

We also discuss the estimation of the change-point in Cumulative 

Sum schemes. The asymptotic results are compared with finite 

sample simulation results. 

In the second part of the thesis we look at a simple 

linear regression model where the slope changes at an unknown 

value of the independent variable. A procedure for calculating 

the maximum likelihood estimate of the change-point is given, 

and an asymptotic distribution of the estimate is derived which 

is a good approximation in finite samples. Inference about 

the change-point is also discussed. The results are compared 

with finite sample simulation results. 
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1. Introduction  

Given an observed sequence of independent random variables 

..., xi), say, there are available many techniques for 

detecting underlying patterns or relationships. Such patterns 

often fall into the categories of linear regression, polynomial 

regression and cyclic trends, all of which are useful descriptively 

and have simple statistical techniques associated with them. 

Common to nearly all of these, however, is an assumption that a 

single model holds for the whole range of the sample. More 

specifically it is usual to fit a model of the form 

xt = e(t) + et 	(t = 1, 2, ..., T) 

where (e
t
) is a sequence of uncorrelated error terms with 

zero mean, often normally distributed. We can often think of 

these observations as being a discrete sample from a continuous 

process x(t), so that 0(t) is a continuous function of t. 

In application, however, a single trend or mean is sometimes 

inappropriate. It may be strongly suspected from prior 

experimentation or study that the model valid near t = 1 is 

invalid in the neighbourhood of t = T. This leads us to consider 

fitting models such as 

.0 (t) + et oct  = 

xt  = e1(t) + et 

(t = 1, 2, 40**, T) 

(t = T 	I, "do, T), 	(1.1) 



where T is unknown and Lett is a sequence of uncorrelated 

zero-mean error terms. Experimental and scientific grounds 

may force us to consider (1.1) or even its generalization to 

p 	1 sub-models with mean functionseo 	..., e (0 and 

change-points T1, T2, 	Tp. Scientific literature contains 

several such cases, for example the analysis of discontinuities 

in intermolecular activation energy by Ahsanullah and Qurashi 

(1965) where the energy level apparently exhibited distinct 

jumps at specific temperatures for various liquids. 

Two simple but interesting and important special cases 

of (1.1) are 

Model A: 

xt  " o + et 

x 	"91  + et 

and the regression model, 

Model B: 

(t 	1, ••., T), 

(t a T 	1, 	T), 	(1.2) 

oct = a  + 13o(ut- v) 4.  et 	(t = 1, ..., T) 

x = a + 01(ut 	y) + et  (t = T 1, ..., T), 

(1.3) 
where u s y < u . T+1 

In both Models A and B it is usual to assume the error 

terms et to be N(0, 62). 



Model A would apply in a continuous inspection scheme 

where the purpose is to detect a change in the mean e of the 

process and, further, to estimate where the change took place. 

The emphasis of work in this field, in particular that of Page 

(1954, 1955 and 1957) on cumulative sum techniques, has been 

on testing the null hypothesis 00  = e1. Chernoff and tacks 

(1965) and Bhattacharyya and Johnson (1968) have discussed the 

same problem within a Bayesian framework. 

The regression model B is relevant in some scientific 

situations where a change in the relationship between two 

quantities X and U occurs at some threshold U = y. Often Do  or 

pi  will be zero, corresponding to a notion of inactivity or 

saturation. This situation has been analyzed in some detail by 

Hudson (1966) and recently by Feder and Sylwester (1968). 

In Part I we consider initially a generalization of 

Model A to arbitrary error distributions. We are concerned 

primarily with the estimation of T, not with the null hypothesis 

eo  = el. This has some justification in that the hypothesis 

o 
= e1 will often be replaced by a more specific hypothesis 

T = To, a test of which involves the estimate T A of T, which 

in our case is the m.l.e. (maximum likelihood estimate). 
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Since we are dealing with constant means 0 and 0
12 
 it 

is advantageous to consider general probability distributions for 

the random variables x1 	X . At first we assume 0o and 01 

to be known in order to establish a clear approach to the problem 

of the distribution of 	but later we drop the assumption and 

show that the asymptotic distribution of A T is unchanged. (All 

the theoretical results concern asymptotic distributions, that is 

distributions as T and T - T increase indefinitely). 	In 

Section 3 we discuss problems arising in the computation of the 

asymptotic distribution in the normal case, which has no explicit 

form. The remaining sections of Part I also deal with the special 

case of normally distributed random variables, including a 

discussion on the application of the results to cumulative sum 

schemes (Section 5). In Section 4 we look at the problem of 

inference about T when go and 0
1 

are known or unknown. 

In Part II of the thesis we examine the estimation of 

in Model B by maximum likelihood. A concise procedure for 

computing the 	44 is constructed in Section 9, which is 

basically a likelihood search: the procedure is similar to that 

of Hudson (1966). We find that unconstrained least squares 

estimates of y conditional on T = t provide a great deal of 

A 
information about y which is useful in finding an asymptotic 
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distribution for (Section 10). An empirical study of the 

finite sample use of this asymptotic distribution is described 

in Section 11. We then discuss the problems of inference about 

5 = (01  - 50)1a and y (Sections 12 and 13). This is followed 

by a brief look at further developments. Section 15 includes 

a detailed examination of the distribution of ratios of normal 

variates and an approximation to this distribution used in 

Section 10. 



PART I 

ESTIMATION OF THE CHANGE-POINT IN THE 

DISTRIBUTION OF A SEQUENCE OF RANDOM VARIABLES 
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2. Distribution of the m.l.e.; eo  and el  Known 

In this section we derive the m.l.e. 4 for a general p.d.f. 
f(x, 0) of the random variables 	and find its asymptotic 

distribution (that is for T and T - T indefinitely large). No 

explicit form for /4 exists, but it is conveniently defined by 

variables associated with two random walks which represent the 

log likelihood. Random walk results are then used to obtain the 

asymptotic distribution of 4 in a form suitable for computation. 

Let x1,  x2" xT  be a sequence of independent 

continuous random variables such that 

xi  has p.d.f. f(x, 00) for i = 1, ..., T 

and 	xi  has p.d.f. f(x, ei) for i = T 1, 	T, 

where eo  and 01 are known but T is unknown. 

To obtain the m.l.e. A  T from a sample (xi, 

to maximize the log likelihood 

(Go 01) 3 

) we have 

t 	 T 
L(t) = 1.(x1s 	xr100,01,0 = slog f(xj,00) + 

j=1 	
j=E log f(xj, 01) 

t41 

(2.1) 

over admissible values of t (i.e. t = 1, 2, ..., T - 1 since we 

assume that at least one observation comes from each distribution). 

A more convenient form for L(t) is obtained by defining the 

log likelihood increments 

ui  = log f(xi, 90) - log f(xi,01). 
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Then (2.1) becomes 
t 	T 

L(t) = E ui 
	E  log f(xi, el). 

Since the second term on the right hand side is independent of t, 

the m.l.e. (1‘. will be the value of t which maximizes the sequence 

of partial sums 

t 
Vt 

= E ui  
i=1 

(t = 1, 	T - 1) . 

Now the u.ls are independent, because of the independence of the 

_xi's, so that the sequence (Vt) defines two independent 

random walks, namely 

W = 	(0, 	- VT, ..., VT..k  - VT, 	V1  - VT} 

and 

W' = D, vT+1  — VT, 	vT-FIc — 
	

T-1 
V } 

or alternatively 
k 

- j7 u 	: k = 0, 1, o T—J 
MO., T-1) 

and k 
W/  = 	E uT.4-14j : k = 0, 1, 

j=o 
• • • T-T-2) . 	(2.2) 

Each random walk has independent identically distributed increments 

with negative means. Both random walks stem from the point (T,VT):W 

represents the log likelihood for integers less than T, and W' 

likewise for integers greater than T relative to the log likelihood 

of T. To maximize L(t) we must find the larger of the two random 

walk maxima. If each maximum is zero, clearly T = T. 
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We introduce the following notation: 

LetY3  .2a-uT-j4.1 and z. = uT41 	= 1, 2, ...) 

so that (2.2) becomes 

W = 	y1, Yl + Y2' • • • $ 

T-1 
E yk] 
k=1 

and 	W#  = (0, 'j, z1  z29 • • • $ 

T.'T -1 
E zkj  . 
k=1 

(2.3) 

Also, let 

S 	max[yi, y/  + y2, ..., E Yit] 
k=1 

and S' = max[z1, z1 + z2, • .o, 
r-T-1 

E zk].  k=1 

Note that these are not quite the random walk maxima, which we 

shall denote by 

M = max (0, S) 	and M#  = max (0, e). 

The finite sample distribution of 4 - T depends implicitly on 

and T - T because S and S' do, but here we shall assume both 

T and T - T to be infinitely large and derive the asymptotic 

distribution of 4. 

We can now express events involving 4 in terms of events 

involving S and S': we have seen already that 4 = T is equivalent 

to S < 0 and SI< 0. Further q = T k is equivalent to 

S' = z1 + 	+ zk > 0 and S' > S; and 
A T=T - k is equivalent 

to S = 5,1  + 	+ yk  > 0 and S > SI. (The events S = 0, S' =0 
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and S = S' have zero-probability-because the random variables are 

continuous). To simplify the analysis let 

j 
I = inf (j : S = E yi  ) , where I = 0 if S <0 

i=1 
and 

I' = inf (j : S' = E zi  ) 	where 	= 0 if S' < 0. 
i=1 

Then it follows that 

prOr = 	= pr(I = If  = 0) = pr(S < 0) pr (St  < 0) 

= a(0) a'(0) 	 (2.4) 

say, and also that 

pr(T = T k) = pr(I' = k, S' > S, S' > 0) 

and 	pr(T = T - k) = pr(I = k, S > S', S > 0). 	(2.5) 

Now define 

Dit(x)dx = pr (I = k, x 5 S < x + dx) 
(k Z1, x > 0) 

pki(x)dx = pr(I' = k, x 	< x + dx) 	(2.6) 

and 	a (x) = pr(S < x) 
(2.7) 

at(x) = pr(S' < x) • 

The use of primes here distinguishes properties of W and W' and 

does not mean derivatives. 

Then (2.5) becomes 

Pr(r = T + k) = o ( )a( )d k  x x x (2.8a) 
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T 
pr(tr‘ = T - k) = 	8k(x)al(x)dx . 	(2.8b) 

It is easy to verify by probabilistic arguments that a(,), 

a°('), Ok(.) and flilc(') satisfy integral equations: let g(') and 

g'(') be the p.d.f.'s of yi  andzj  respectively, then 

a(x) = 
5' 

a(x - y)g(y)dy 2 

6-012 

x 

a
I
(x) = J7 ai(x - y)g'(y)dy , 	(2.9) 

01(14(x)  = 4 ok(Y) g(x 
0 

- y)dy 	(k a 0, x > 0) 

and ok,l(x) = 	0k(y)ox 
0 

- y)dy 	(k Z 0, x > 0), 	(2.10) 

where we define Do  (x) = a (0) (X) and r31(x) = a/(0)e(x) with 

e(0) = 1, e(x) = 0 (x > 0). 

Now (2.9) and (2.10) do not have explicit solutions, so 

we need to find a method of calculating the integrals in (2.8a, b) 

that does not involve explicit solution for a(x), Ok(x), ai(x) 

and Olic(x). We make use of the following theorem, given by Feller 

(1966, chapter 18) and proved originally by Spitzer. 



- 17 - 

Theorem 	Let yl, y2, 	be a sequence of independent, identically 

distributed random variables with probability distribution function 
n 

G(y) and define M = max (0, E y4, n 1) and 
j'1 

I = inf 

If 

then 	E 

where 

and Re(w) 

and 

k=o 

(k:M = 	E E
j=1 

0  
E 
k=1 

I -W14  e ) 

ck(w) 

> 0. 

It follows 

e
-wx 42

(x) 

0 

c0 
E sk pr (I=k) 

a (0) 

, 
yi j 	, where I = 0 if and only if M = 0. 

	

k-1 pr 	E 	y > 0) < co, 
j=1 

m 	k 	co 1 
— c (0) k ck(w) - 	E 	k 	k exp 	E 1 

	k 

i

rk= =1 

k 

	

-wx 	, e 	pr 	E y4  < x 	dx) 	(k 
j=1 0 

from (2.11) that 

ck(w)k-  ch(°) = E(e-wM) 

1), 

(2.11) 

(2.12) 

,(2.13) 

(2.14) 

(2.15) 

expf 
k=1 

co 
s
k - 1 = 	exp i E 	ck(0) 

k=1 

- 	oo 	ck(0) 
= exp 	-E -=ct  — ft 

k=1 

Note that the Laplace transform of ok(x) is the coefficient of s
k 
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in (2.11). Corresponding to the results (2.11) - (2.15) are 

similar results for al(*), Ot(*) with 

co k 
Jr*  c‘(D) = 	e-ti3x  pr(x s E z

j 
 < x + dx) 

0 

replacing ck(co); we shall refer to these as (2.11') - (2.15'). 

Now from (2.8a) and (2.4) we have 

03 co 	 co 
2., s

k 
 pr( i-
A  = T ÷ k) = r f E sk  it(x)} a(x)dx 

k=o 	.k=o o 

co co 	k 
= E s

k 
rfht(x)dx - 	E s--01°t(x)} (1-ce(x))dx 

k=o 	k=o 

= 	Es
k 
 pr(I = k) 

k=o 

CO 

J 
0 

r 	 I 
E s

k 
 13k(x)k [1-0/(x))dx . 

k=o 

(2.16) 

A similar expression can be derived from (2.8b) for the generating 

function of pr(l.S.  = T k), (k z 0). Now the first term on the 

right hand side of (2.16) is given by (2.141). The Laplace transforms 

of the functions in the integrand of the second term are given by 

(2.11') and (2.13), so that we can rewrite the integral by using 

Parseval's relation for the integral of the product of two 

integrable functions. 



— 19 — 

Then (2.16) becomes, after a little calculation, 
03 	 CO 

k E s pr(i-A  T k) = a 	
k

/(0) exp 	E 	cift(0)} 
k=o 	 t k=1 

iw 

1 j

k  
- a (0)  s 

2v -ice 

expmf E — cilc(w) [ 1-ce(0)expl ck(w)/i dw 

k=1 	k=1 

(2.17) 

Unfortunately we have been unable to calculate the integral in 

(2.17); one difficulty is that the integrand has no poles in the 

w plane. We therefore derive a suitable method of approximating 

to the distribution of T 
A using the results prior to (2.16). 

Essentially we want an approximation which gives good numerical 

results in specific cases, and which is not excessively difficult 

to compute. 

First, we shall find it more convenient to work with 

1 - a(x) rather than a(x); 1 - a(x) is integrable and tends to 

zero, making asymptotic and numerical computation easier. So we 

rewrite (2.8a) and (2.9) as 

co 
7-- 

Pr(T
A 
 = T + k) = j 14(x)dx - j {1-a(x)}4(x)dx 

co 

= 
qk 
	

J 
(1-a(x))1311t(x)dx , 	 (2.18) 

with qk = pr(I1  = k), 
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and 

1,a(x) 
	

Is 
( u) du + 	11-a( u)ig(x-u ) du . 	(2.19) 

Now suppose that we can express the solution of (2.19) 

as an expansion in terms of exponentials, i.e. 

R 
1-a(x) = E h exp (-w x) 

r  
(x Z 0) . 	(2.20) 

Then (2.18) becomes 

R 

	

/ 	As/ 
pr(TA  =T+ k) =q 	 hr-E k(w) 	(k 0), 

	

k 	r.1 	lil  (2.21) 

where 15‘'(1)) = 

co 

J 
0 

e
-wx /, 
Yx1" (k z 0) 

is the coefficient of s
k 

in (2.111). Exact computation of (2.21) 

As/ 
is straightforward, in principle, because chic  and %k(w) 	both 

satisfy recurrence relations. Both (2.11) and (2.14') are 

equations of the type 

m 
co 	 co scfra) 
E pns

n 
= A exp E 

n=o 	mF1 

whose solution is 

1 
n+1 (a1pn 	4-  a po) 	(n 0), Pn+1 = n+l 

with pc.  = A 

2 
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Therefore ql/tt  satisfies 

1 4- . . 	cf(0) chic) 	(k 	0) 
clk+1 	k + 1 (ck+1(°)q: 

n= a/(0) , 	 (2.22) 

and 13'k(w) satisfies 

WI:a(w) viifel:1-1(w)FoU 
(3 0( 0.1) 	= a'(0). 

11.6)66):1, 0.0 + c 	 (k Z 0) 

(2.23) 

To derive the expansion (2.20) in practice, we first solve 

a discretized, finite version of (2.19) for numerical values of 

1 - a(x). That is we take a finite set of x values, 

0 = xo < x1 < 	< xn, say, with xi4.1  - xi  = d, and rewrite 

(2.19) as 

co 

) r g(u)du +d E ei  11-01(xi)}g(xj - xi) 	(j = 0, 1, 	n) 
i0 xj  

(2.24) 

where ei = 1 (1 5 i < n) and ei = 1/2  (i = 0, n). Then (2.24) is 

a matrix equation of the form (I B) g = 11, whose solution is 

the values 1 - a(xj) (j = 0, 1, ..., n). The accuracy of the 

solution of (2.19) increases as d decreases and as xn 
increases; 

both d and xn should be varied to obtain a reasonably stable 

solution. Having got numerical values of 1 - a(x), we can in 

general fit a finite number of terms of (2.20) by least squares; 

in special cases a detailed examination of the values of 1 - a(x) 
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may reveal the dominant exponential terms without resort to the 

least squares method. It is also possible that an asymptotic 

study of 1 - a(x) will reveal useful information. Rather than 

discuss the generalities of this approximation problem here, we 

study the particular case of the normal distribution at length 

in Section 3, where we obtain numerical results for the asymptotic 

distribution of T 
A 
. 

We end this section by making some general remarks about 

the distribution of T A . First, the condition for (2.11) to hold 

implies that the moments of I 
A 

T are finite only if 

E k
1 pr( E y > 0) < op 

k=1 	j=1 

and similarly for (zj). In terms of f(x,0) this condition is 

-1 	
k f(Xj, A1) 

E k 	pr 	. > 1 1 Xj  has p.d.f. f(x,00) < co 
k=1 	j=1 f(XjoI 

(2.25) 

and similarly with 00  and el  interchanged. Roughly speaking this 

means that whether or not the moments of T 
A T exist depends on 

the power of the likelihood ratio test to distinguish between 

the alternatives° = o and e = Al 
in samples from one population. 

For T A to be symmetrically distributed about T it is 

necessarYandsufficientthatYandz.have the same distribution. 
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This implies that 

prtf(X,e0) s y f(X,01)1 0 = 91) = pr[f(X,01) s y f(X,00)10 = 00) 

(2.26) 

for all y z 0. It is easy to verify that (2.26) holds when 

f(x,0) is symmetric and e is a location parameter only, or if 

any one-one continuous transformation of X has such a distribution. 

For example, it holds for normal and log normal distributions with 

as the mean of the normal distribution, but not for the 

exponential density e exp(- ex). 

3. Distribution of the m.l.e. in the Normal Case  

In this section we study the distribution of T when 00  and 

Al 
are the mean values of a sequence of normally distributed 

random variables. First we assume 0o 
and Al  to be known, and 

derive a method for computing the asymptotic distribution of T 
A 
. 

Then we show that the asymptotic distribution is unchanged when 

0o and 01 
are unknown. 

3.1. 0o 
and 0

1 
 known 

Let the observations (x1, 	xT) have the probability 

density function 

f(xse) = exp[-(x - 0)2/(2o2)] 
a„127 
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and assume that 0o, 1 and c2 
 are known. Then following the 

results of Section 2, we see first that the log likelihood 

increments ui are given by 

ui = (xi - 1/2(e0  + el)) 	- e1)/02  . 

Define A = 101  - 001/(20, then it follows that the increments 

yi  and zi  of the random walks W and W' are N(-2A2, 4A2). Clearly 

the distribution of T A is unchanged if yi  and zi  are rescaled to 

have unit variance, so we can take these increments as being 

N(-A, 1) without loss of generality. Since yi  and zi  have the 

same distribution, T A will be symmetrically distributed about T. 

We need then consider the distribution of 
A 
T only for T 

A 
2 T. 

To emphasize the dependence of the distribution on A, we 

denote a(*), 01(C.), ... by cy(-,A), 0k(-,A), ...; this is 

particularly important when we come to Section 5. We can omit 

the now redundant prime superfix used in Section 2. The equations 

defining the distribution of T in this case are, from (2.18), 

(2.4),(2.19), (2.22), (2.23) and (2.15) respectively, 

co 

pr(T = T ± k) = qh(6) - 	{l-a(u,A)) pk(u,p)du 	(k z 1) 

0 

pr(T = T) = (y(O,A))2  , 	 (3.1) 
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co 

+ A) + 11(1-a(14A))y(x-0+A)do, 

0 

(3.2) 

) 	1 	k  A,  
= k+1 

j
E 5'‘w'Al1 

 
ck4-1-j 6.7,A) 	(k 	1) 

=0  

Vw,A) = u(0,A) , 	 (3.3) 

k 
= 1 E qj(A)ck+1-j(0,A) 	(k 1) clk+1(A) 	k+1 j=o 

go(A) 	= a(0,A) 	 (3.4) 

01(0,A) 	= expi-(0,A)} 	(3.5) 
n=1 n n  

and 	ck(w'A) = exp(kAw + kkuP) c:§(-(w + A),4k) 	1) 	(3.6) 

In this particular case we can get some useful information 

about 1 - a(x,A) by examining the asymptotic behaviour. It is 

possible to show that 1 - ce(x,A)rva
A
e n
i
x , for large x. 

Supposing this to be true and substituting in (3.2), we get 

co 

a
A
e-bA x  ry 1 -(xf-A) + aA f' e be cp(x-u+A)du. 	(3.7) 

The expression for the integral here is valid for large x since 

the sass of the kernel p(x u + A) is heavily concentrated 

about u = x + A. Now 13(y) satisfies the asymptotic relation 

1 - 	(x+A) 	x  (1 - p (x A -106)3, 



- 26 - 

so that (3.7) becomes 

-b x 	x a
A  e 
	e 	+ y (x+A-bA)

{a
A
exp(kb2A  AbA 

 ) 1} . 

This implies that bA = 2A, and we then deduce that 

1-a(x)/1) = c(x,4)e-2Ax 

say, where c(x,A) has a finite limit as x -•co, 

(3.8) 

To evaluate the probabilities (3.1) by the method discussed 

in Section 2 we need to express 1 - a(x,A) in terms of exponentials 

of the form e wx; (3.8) represents the first step in this direction. 

We need next to examine c(x,A) for finite x, and this we do by 

computing numerical values. 

Following the outline in Section 2 for numerical solution 

of 1 - ce(x,A), we truncate the integral in (3.2) at xn and 

approximate the integral by Simpson's Rule using interval width 

d, say. Note that the truncation forces 1 - ce(x,A) to be zero 

for x > x , leading to error in the computed values of 1 - a(x,A). 

The discrete version of (3.2), corresponding to (2.24), is then 

1.-cy(jd)p) = 	+ A) + d E ek  {1-cy(kd,P)}cp{(j-k)ecii-0'} 
k=o 

(j = 0, 1, 	n), (3.9) 

where *(y) = 1 -4(y), eo  = en  = 0.5 and e/  = 	= en-1 = 1.0. 

A more accurate solution is obtained if we substitute 

1-v(x,A) = c(.,A)e-?Ax  , x > xn  , 
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in (3.2), especially if xn  is large enough for the asymptotic 

form of 1 - cy(x,A) to be valid for x a xn. Doing this, the 

equation (3.9) then holds with 

“jd + A) = 1 4(jd + A) + c(co,A)e-2JciA[1- (j-n)d+An. 

The value of c(03,A) is unknown, but we can take a trial value, 

then see how well the solution matches up, and hence obtain a 

better value. Specifically we assume that c(xn,A) is close to 

c(co,A), so that a comparison between the trial value of c(m,A) 

and the computed value of c(xn,A) determines a second approximation; 

this procedure can be iterated until the agreement between 

c(cosA) and c(xn,A) is satisfactory. As an illustration, 

consider the case A = 1.0; for this and other cases when 

A 0.5 we have used the values d = 0.1 and n = 100 in (3.9). 

The numerical solutions of 1 - ot(x,A) for trial values c(00,A) = 0 

and c(03,A) = 1 are given in Table 3.1 in terms of c(x,A). 

Notice that in both cases c(x„A) becomes stable around x = 5, 

but then moves off towards the assigned value of c(00,A). From 

these two solutions we might take the next trial value of 

c(m,A) as 0.34, say. Iterating further, we quickly obtain the 

solution given in the final column of Table 3.1 with c(co,A) = 0.32037. 

This solution is very stable and clearly represents the best 

solution to (3.9). 
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x c(ms1) = 0 1 0.32037 

0 0.19946 0.29509 0.19939 

1 .30588 .37371 .30586 

2 .32396 .38415 .32403 

3 .31991 .36609 .31991 

4 .32039 .36452 .32035 

6 .32035 .36429 .32036 

8 .31848 .36799 .32037 

10 .25638 .49121 .32037 

>10 .00000 1.00000 .32037 

Table 3.1 Numerical values of c(x,A) from (3.9) 

using different trial values of c(02,A) in the 

case A = 1.0 

The next stage in getting a suitable expression for 

1 - a(x,A) is to ezphan the behaviour of c(x, A) before it 

settles on the asymptotic value c(03, A), in this case for xs4. Let 

c*(x,A) = c(x,A) - c(0),A), 	 (3.10) 

and write the integral equation (3.2) as an integral equation for 

c*(x,A). Then we have 
CO 

c*(x,A) = **(x,A) 	e(u,A),(x_u_odu, 	(3.11) 
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by virtue of (3.8), where 

1,,,*(x,6) = e2AX [1_6(x+A)) — c(c.,A){1 	 (3.12) 

The numerical solution of (3.11) is carried out in the same way 

as for (3.9), that is by truncation and discretization; truncation 

now has negligible effect because c*(x,A) approaches zero rapidly. 

The same values of d and n are used. A detailed study of the 

numerical solution of (3.11) led Gentleman, in unpublished work, 

to an expression for c*(x,A) which matches numerical values 

within their estimated accuracy, namely 

c*(x,A) = $*(x,A) + .Nt cp(x - µ
A
); 	(3.13) 

the values of yk,  and pA  can be determined graphically. The 

last term in (3.13) is typically quite small, but not negligible. 

However if we are to approximate to (3.13) with exponentials 

e 
N 
 Tx, we must omit this term to avoid considerable difficulty. 

This would lead to the expression 

1-or(x,A) 1,  1 -§(x4t) + c(00,A)iki(x-A)e-2Ax. 
	

(3.14) 

A comparison of the numerical values derived by solving (3.9) 

and numerical values of (3.14) is given in Table 3.2 for the 

case A = 1.0. Now in order to represent 1 - a(x,A) in terms of 

exponentials using (3.14), we must represent (y) in terms of 

exponentials for y in a region including y = 0. In fact this 

is difficult and requires a large number of terms for a satis-

factory approximation. In the present context we can get as 
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much accuracy by working directly with c*(x,p) itself. 

x 
1.nor(x,1.0) 
from (3.9) 

1,v(x,1.0) 
from (3.14) 

1-10/(x,1.0) 
from (3.15) 

0 0.1994 0.2095 0.1988 

0.2 .1520 .1606 .1556 

0.4 .1134 .1202 .1152 

0.6 .0825 .0881 .0825 

0.8 .0590 .0632 .0579 

1.0 .0414 .0/1i4 .0400 

1.5 .0161 .0172 .0154 

2.0 .00593 .00628 .00578 

3.0 .00079 .00082 .00079 

4.0 .00011 .00011 .00011 

Table 3.2 Comparison of approximations (3.14) and 

(3.15) with values of 1-c(x,1.0) derived from (3.9) 

For the values of A which are of interest here (between 

0.5 and 1.5), c*(x,p) is very small when x is greater than 

about 1.5. We therefore consider fitting exponential terms to 

numerical values of c*(x,p) for x < 1.5. Fitting a single term 

a(A) exP(-w(A)x) we use values of c*(x,p) at x = 0(0.2)1.4. 
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If these are denoted by y1, ..., y8, then the fitted value 

of w(A) is given by 

e-0.2w(A) = 
7 	/ 7  
E Y.Y. 1/ E Y2i 1=1 " 	i=1 

and a(A) is determined by least squares regression of y on 

e-w(A)x. The resulting approximation to 1 - a(x,A) is, by 

virtue of (3.8) and (3.10), 

c(co,A) exp(-2Ax) + a(A) exp[-(2p + w(A)lx] 

= hl(A) exp(-wl(p)x) + h2(A) exp (-w2(A)x), (3.10 
say. An illustration of the accuracy of (3.141 is given in 

Table 3.2 for the case A = 1.0, when a(A) = -0.1216 and 

w(A) = 1.601. Note that the error compares favourably with 

that of (3.14-), being 5% or less relative to the actual value 

of 1 - ce(x,A). To see how this will affect the probabilities 

(3.1), note that by (2.8a, b) we can write 

CO 

pr(T = T ± k) = JF a(X,A) Pic(X,A)dX 

the error in ce(x,A) is 0.3 per cent or less, and hence the error 

in these probabilities using (3.14) will be 0.3 per cent or less. 

The same magnitude of error applies for all the values of A 

considered here. Thus the approximation (3.16) is good enough 

A for us to use in calculating the asymptotic distribution of T 
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given by (3.1). Substituting from (3.14) in (3.1) we get 

2 
pr(T = T ± k; A) A qk(A) - E hi(A) jc:bwi(A), A) (k• 1) 

i=1 
and' 

= T;A) = ta(0,A)32  ; 

the latter, from (2.4), involves no approximation. It is then 

a simple matter to calculate the asymptotic distribution of /,‘r 

using (3.3) - (3.6). Numerical values of the distribution are 

given in Table 3.3 for the cases A = 0.5(0.1)1.5. The 

notation used is 

p(k,A) = pr(T = T 	k; A) 	(k = 0, 1, ...) 

and 	F(k,A) = 
k 
E P(k,A) = pr(T

A  
s T f k; A) 

—co 

(k = 0, 1, ...). 

Entries in the table have estimated accuracy within 0.2 per cent 

of the values given. 

For values of A greater than 1.5 the asymptotic 

distribution of T A will clearly be heavily concentrated at T. 

Extrapolation from Table 3.3 for p(0,p), P(1,A) and p(2,A) 

should be satisfactory for practical purposes. 



k 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

12 

14 

16 

18 

20 
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A = 0.5 t;,. = 0.6 b. = 0.7 

p(k,t;,.) P(k,ll) p(k,t;,.) P(l"t;,.) p(1,,~) 

0.2802 0.6401 0.3600 0.6800 0.4376 

.1139 .7540 .1241 .8041 .1280 

.0668 .8208 .0657 .8698 .0609 

.0441 .8650 .0398 .9096 .0337 

.0310 .8959 .0259 .9355 .0202 

.0226 .9185 .0176 .9531 .0126 

.0169 .9354 .0123 .9653 .0082 

.0129 .9[,·84 .0088 .9741 .OO5'~ 

.0100 .9584 .0064 .9805 .0037 

.0079 .9663 .0047 .9852 .0025 

.0062 .9725 .0035 .9887 .0017 

.0040 .9815 .0020 .9933 

.0026 .9874 .0012 .9959 

.0018 .9913 

.0012 .9939 

.0008 .9958 

Table 3.3 Asymptotic distribution of ~ in the 

Normal case for A = 0.5(0.1)1.5 

P(k,J).) 

0.7188 

.8468 

.9077 

.9414 

.9615 

.9742 

.9823 

.9878 

.9914 

.9939 

.9957 
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k 

A=0.8 

P(k,A) 	P(k,A) 

A = 0.9 

P(k,A) 	P(k,A) 

A = 1.0 

P(k,A) 	P(k,A) 

0 0.5110 0.7555 0.5790 	0.7895 0.6409 	0.8204 

1 .1266 .8821 .1212 	.9107 .1130 	.9334 

2 .0539 .9360 .0459 	.9566 .0378 	.9713 

3 .0271 .9631 .0208 	.9774 .0153 	.9866 

4 .0148 .9779 .0103 	.9877 .0068 	.9934 

5 .0085 .9863 .0054 	.9931 .0032 	.9966 

6 .0051 .9914 .0029 	.9960 

7 .0031 .9945 

8 .0019 .9964 

= 1.1 A = 1.2 A = 1.3 

k P(k,A) P(k,A) P(k,A) 	P(k,A) p(k,A) 	P(k,A) 

0 0.6963 0.8481 0.7458 	0.8726 0.7881 	0.8940 

1 .1030 .9511 .0920 	.9646 .0807 	.9748 

2 .0303 .9813 .0235 	.9882 .0179 	.9926 

3 .0109 .9922 .0074 	.9956 .0049 	.9976 

4 .0043 .9965 

Table 3.3 (continued) Asymptotic distribution of 

in the Normal case for A 0.5f0.1)1.5 
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A = 1.4 	A = 1.5 

k P(k$6) P(k,6) P(k,A) P(k,A) 

0 0.8251 0.9126 0.8568 0.9284 

1 .0697 .9823 .0594 .9877 

2 .0132 .9955 .0096 .9973 

Table 3.3 (continued) Asymptotic distribution of 4 

in the Normal case for A = 0.5(0.1)1.5 
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Table 3.4 gives a few values of p(0,A) for A between 1.5 and 

3.0. 

A 1.75 2.00 2.25 2.50 2.75 3.00 

P(0,A) 0.9160 0.9531 0.9751 0.9875 0.9940 0.9973 

Table 3.4 Values of p(0,A) for A = 1.75(0.25)3.00 

For very large A, 1 -01(0,A) is very close to 1 - lip(A), as can 

be deduced from the integral equation (3.2); agreement to 

four figures is achieved for A a 2.75. Consequently we have 

the asymptotic expression 

P(0,A) 	q(A)32. 

For values of A less than 0.5 it is difficult to handle 

the numerical computation involved. We have not satisfactorily 

explored the limiting distribution of T as A -. 0. 

Note that the asymptotic distribution of 
A T remains the 

same when 02  is unknown. For then the likelihood of 

(xi, 	XT) maximized over 02  conditional on T 
A 
= t is 

proportional to 

c t 
E (xi  

t i=1 

T 
- 0 )2 	E (x. - 
° 	i=t41 1  

-1/2T 

T 
= 2  E 66.  

t i=1 

t - 0)2  - 
a2E u

i 1 i=1 I 
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A
t 

so that T is still the value of t which maximizes E u. over 
i=1 

t = 1, 	T - 1. 

3.2 0o 
and 0

1 
 unknown 

In many situations the two means 00  and 01  will be 

unknown. Here we show, without formal proof, that the asymptotic 

distribution of Section 3.1 remains valid. To do so we again 

use the random walk representation of the log likelihood, and the 

argument of Section 2. 

Assume, then, that (x1, x2, ..., Ay is a sequence of 

independent normally distributed random variables whose mean is 

eo 
for the first T variables and e

1 
for the remainder; far 

convenience we let the variance 02  be 1. Then the log 

likelihood of the sample corresponding to (2.1) is 

T 	T 
L(x, 	x

T
leose12T) = —k {E (xi- 0 )P- 	(r 0 Y1 

1=1 	 i= 1 i 1 

(3.16) 

Now the m.l.e.'s for e
o 
and 0

1 
conditional on T = t are 

t  got = t E x.1  = 
J=1 J 

xt  

and eit 
1 T 

= T-t E X. = 	, say. 
j=t+1 

(3.17) 
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Hence the log likelihood (3.16) maximized over 00  and 01  

conditional on T = t is 

t 
L(t) _ -1 	 -x`)2 + E (x 

k i=1 	t 	i=t41 

( T 
= 	- 	t(T-t) - )2 E (r 	575t T

)2  - 	(  

(t = 1, 2, ..., T-1), 

using the defiU 	 Ations (3.17). Therefore T is the value of t 

which maximises , U2
t 
 say, where 

t 	T ''t 't  
(t = 1, ..., T-1). 	(3.18) 

It is not difficult to see that the same is true when o Is 

unknown. Note that T A is the value of t giving the most 

significant difference between estimates of 00  and 01. 

Now suppose 0 > el' then (7t - 7*) is positive with 

probability tending to one as both t and T - t increase 

indefinitely, so that we can take Ut  as asymptotically equivalent 

to U2  in order to find the asymptotic distribution of T 
A 
. 

Strictly speaking we should consider only values of t and T - t 

such that both tend to infinity as T and T T do, but this 

would cause no difficulty. The sequence (Ut) is an auto-

correlated sequence with known but complicated covariance matrix 
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and mean. However from (3.18) we deduce the following auto-

regressive representation 

U
t1 

= a
t+1 

U
t 	

b
t+1 ("t4.1 - 	(t = 1, ..., T-1), 

where 
(t-1)(T-t+1)  

at 	
t(T-t) 

) k  
and b

t 
= t(T-t) 

k (3.19) 

This relation is close to that defining a random walk, since 

at
^el. We shall show that (3.19) does represent a random walk 

with a negligible superimposed deterministic function. Let 

T = XT and consider T and T T large. Then we have 

at 	1 -  1-2X  
2X(1-X)T 

and bt (X(1-0T1-1/2 ; 

here we assume that t - T is 0(T). We also have 

E(;) = X00  + (1-x) e1 

- 
varCy = T 1  

and 

E(UT) = (x(1-x)T1
k
(e0 - e1) 

(3.20) 

(3.21) 

(3.22) 

var(Ut
) = 1 for all t 

Consider the increment UT+1 - UT' which by (3.19) and 

(3.20) can be written 



U U = 
T+1 T 
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-  (1-2x)  U 	(Xt+1 
 - 

2X(1—X)T T  {x(1•-lt)Till  

+ e , 

where var(e) = o(T-2). 

Substituting UT  = E(U ) 1 and 37,r  = EN) g and using (3.18) 

and (3.19) we get 

1x.„0. X90 (1..1°91 ".(kial) (90 J. 134 + 
1 

e + T1
1  g U — U 

T 	
(X(1-0111/2  

= Zi  e+ 	§1, 	(3.23) 

say, where E(e) = 0(T 1), E(11)= E(e) = 0, var(e) = o(T-2), 

var(q1) = 0(T72) and var(e) = 0(T-2), and z1  is 

N 0 	1 	1  r 	(0 - e ) 

  

2(x(1-x)T)k ' 	x(1-x)T 

  

       

Similarly we find that 

k 
U - U = 	E zi  + kke 	11/ 4. g/) 	

(k = 1, 2, ...), 
T ;lc 	T 	

j=1 j  
(3.24) 

where zl, z2, ... are identically and independently distributed. 

Rescaling by a factor (X(1-X)T)2  we see that (3.24) defines a 

random walk whose increments are N(-A,1) with a superimposed 

linear term whose coefficient has variance 0(T
-1
). A similar 

representation exists for U 
T—K  
, - U

T 
 (k = 1, 2, ...), and we 

deduce that the asymptotic distribution of 1:\r is determined by 

the random walks alone. That is, the results of Section 3.1 
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A 
hold. Note that the distribution of T does not depend on X, 

the reason being that only observations 'near' T influence T A . 

In general it should be possible to prove similar results 

for arbitrary distributions f(x,O), presumably under conditions 

on the asymptotic behaviour of Dot  and Olt; for example, (2.26) 

is probably a necessary condition. 

Since the moments of T 
A 
are 0(1), i.e. the distribution 

does not spread out as T increases indefinitely, it follows 

that the m.l.e.'s /(o and 11 are asymptotically normally 

distributed and unbiased, with variances (XT)-1  and t(1-X)T)-1  

respectively. However it is clear that in finite samples 

A A 
o - 1 will have a positive bias (assuming 00  > 01), since 

A 

is determined by finding the most significant difference 

Olt. This is important in making inference about T when of 

00  and 01 are unknown (Section 4). In principle we can get an 

asymptotic expression for the bias, since by (3.17), (3.18) and 

the random walk representation of Ut  we have 

8 - 	= A - el = (37 - 7*) + (x(1-x)Trie 0 	01. + 0(T-1), T 	T 

where M*  = max(M, MI) is the overall maximum of W and WI. 

Hence 

Ed 	 1) = (80 01) 	[X(1-0T)-1E(M*) o(T-1). 
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The distribution of M*  depends only on ce(x,A), so that a 

numerical evaluation of E(M*) is possible; there is no explicit 

formula for E(M*), although it is bounded by E(M) and 2E(M), and 

from (2.13) and (3.6) 

E(M) = E k2 	) 
k=1 

(-&'k) - A E k () (-AA) . 	(3.25) 
k=1 

Some comment on the magnitude of the bias in go 0 A 1 is 

given in Section 6. 

4. Inference about T in the Normal Case 

In most situations we not only want to estimate T, but 

also to make inference about T in the form of a confidence 

interval or a test of significance. For convenience suppose that 

we want to test Ho : T = To with either a one- or two-sided 

alternative. If 0
o and 01 are known, we can use the distribution 

of T A 	 A 
derived in Section 3.1 and calculate the significance of T 

computed from 	XT. The likelihood ratio test, however, 

is at least as efficient asymptotically and easier to apply. 

It may be more efficient, because T A is not asymptotically 

sufficient: only the observations themselves are sufficient 

and the likelihood ratio test uses all the information. 
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Consider the two-sided test of H: with alternative 

H1 : T r To. 
Then, using the notation of Section 2, the log 

likelihood ratio test statistic log A2, say, is given by 

A 	T0  
I01# - 	u. - E log A2  '....TCr0) 	J 	j=1 

= max(M,MI). 	 (4.1) 

We reject H
* 
when log A

2 
> 2, say, where 2 is determined from 

the required test size. The asymptotic distribution of log A2  

under H*  is, then, 

pr(log A2  s x) = pr(M s x)pr(M' s x) = a(x)a l(x) 	(4.2) 

by the independence of M and M'. This distribution is easier 

to calculate than that of A T in general. In the normal case (4.1) 

becomes 
A 	T

o 	80 81 Go—  ei 	T 	0O+ 81 ) 
log A2 E fx. 	x E ( . 

	

a2  (i=1" 	
2 	i=1 

i 2  

and with the notation of Section 3 the distribution (4.2) 

becomes 

pr(log A2  = 0) 
	

fig( 0 ,A)12  

pr(log A2  S x) 
	

(OE CIA  
2 	 • 

	 (4.3) 

For the one-sided test of H* with alternative H*
2 
 T > T

o
, 

the log likelihood ratio test statistic is 



To 
log A, = max E u. 

1 
	E ui  

i=1 	i=1 

80-  el Jt 	 + 8, 
max 	E (1  ,xi 	02  ") 
t'r j=1.  

To 	
o+ el ).} 

E (xi 	2 j=1 

= M/ 

Then corresponding to (4.3) we have the null distributions 

pr(log Al  = 0) = ce(0, A) 

pr(log Al  s x) = 	, A) • 	(4.4) 

Values of the null distributions (4.3) and (4.4) are given in 

Table 4.1 for the cases A = 0.5 and 1.0 as an illustration. 

Here 

P1(x,A) = pr(log Al  s x; A) 

and 	P
2(x,A) = pr(log A2 s x; A) 
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x P1(x,0.5) P
2(x'0'5)  P1(x'1'0)  P2' 	' (x 1 0) 

0.4 0.6522 0.4254 0.8480 0.7191 

0.8 .7543 .5689 .8868 .7863 

1.2 .8316 .6916 .9175 .8418 

1.6 .8866 .7860 .9410 .8855 

2.0 .9240 .8538 .9586 .9189 

2.4 .9492 .9009 .9714 .9436 

2.8 .9659 .9330 .9805 .9613 

3.2 .9772 .9549 .9868 .9738 

3.6 .9847 .9696 .9911 .9823 

4.0 .9897 .9796 .9941 .9882 

4.4 .9931 .9863 .9960 .9921 

4.8 .9954 .9908 .9974 .9947 

Table 4.1 Asymptotic null distributions of the one- 

and two-sided log likelihood ratio test statistics; 

A = 0.5 and 1.0 

The values were calculated from the numerical solution of a(x,A) 

described in Section 3.1. Note that the distributions depend 

on A. Quantiles of the distributions can be obtained by inverse 

interpolation from extended versions of Table 4.1. This we 

have done for the 95%, 987. and 997. quantiles for A ranging from 
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0.5 to 1.5. 	The results are given in Table 4.2 to three significant 

figures. 	Here 	pr(log Ai  S ii,p) = P 	(i = 1,2). 
l o0 

 
/1,95 /1,98 	21,99 22,952,98 22,99 

0.5 2.42 3.32 	4.02 3.09 	4.02 4.72 

0.6 2.32 3.21 	3.91 2.98 	3.91 4.60 

0.7 2.20 3.10 	3.80 2.88 	3.79 4.48 

0.8 2.08 2.99 	3.69 2.77 	3.69 4.37 

0.9 1.94 2.88 	3.58 2.66 	3.58 4.27 

1,0 1.79 2.76 	3.47 2.53 	3.48 4.17 

1.1 1.62 2.63 	3.35 2.38 	3.37 4.06 

1.2 1.41 2.48 	3.23 2.22 	3.25 3.95 

1.3 1.18 2.33 	3.11 2.04 	3.10 3.84 

1.4 0.92 2.13 	2.97 1.82 	2.94 3.71 

1.5 0.62 1.89 	2.78 1.59 	2.74 3.56 

Table 4.2 One- and two-sided 95, 98 and 99 per cent 

quantiles for the log likelihood ratio test; A = 0.5(0.1)1.5 

When 0
o 

and 9
1 
 are unknown, the log likelihood ratio 

(4.1) becomes 

	

log A2  = (IP 	U2  )/(2e). 

	

T 	0 

By arguments similar to those of Section 3.2 it is not difficult 

to see that log A2  still has the asymptotic distribution (4.3), 
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A since 9o 
and e A 

I 
are consistent. That is 

log A2  = (U + UT  )(U4, - U )/(2a2) UT 

A, E(U ) (U 	U 
To 	TO  

(To 
 (T-To)( 	el.  )(IT - U

To T 	02  / 

( e - e ) 
t,„/  0 	max 

(M1, 142) 
a 

where M1 
and M

2 
are the maxima of two independent random walks 

with independent N(-A,1) increments, and so have distribution 

function a(x,A). The corresponding result holds for 

log Al  = (max 112t  -'U2T 	(2a2) . 
tTo 

Now with 9o 
and 9

1 
unknown, we have to test Ho with A 

as a nuisance parameter. The m.l.e. 
A  A is given by 

A 
A = 1/41  - 9ol/(2a), 

and is asymptotically normally distirbuted N(A, al), where 

= 	 
A 	4T(T-T) 

this follows from the asymptotic normality of e 
A 
o and 9 

A 1. What 

we want is a function corresponding to P2(x,A) for A unknown. The 

problem has a certain resemblance to that of testing a hypothetical 
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normal mean µ
0 
 when the variance 012  is unknown. 

We can obtain bounds for P
2
(x,A) by deriving upper and 

lower confidence limits for A. If 0(u s) = I - f2,, the 

100(1 - W. confidence limits for A are A A ± upaA, where 

02  = 	T 	under H*. Then we have 
4T0(T-To) 	

o 
 

P2(x,A) a (1 - k5) P2(x, 	tleA) 

and 

P2(x,p) s (1 - 1/25) 1,2(x/P + tv) + 1/25. 	(4.5) 

These bounds are not sharp. For example when A = 1.0, T
o 
= 50, 

A 
T = 100 and A = 1.1, the bounds for P2(3,A) using 5 = 0.05 

differ by approximately 0.04 where the true value is 0.97. 

A One possible approach is to estimate P
2
(x,A) using A. It 

is easy to show that an unbiased estimate of P2  (x,P) to order 

02
A 
 (i.e. order T-1) is 

P
2
(x,/A) - 3/c2  13"(1d) 

A 2 (4.6) 

where 11(x,A) is the second derivative with respect to A. This 

estimate should have a distribution closer to the uniform 

distribution on (0,1) than P2(x,b. This notion of uniformity 

stems from the Neyman-Pearson theory of hypothesis testing and is 

a property we want our analogue of P2(x,A) to have. One source 

of difficulty in obtaining a solution analogous to the Student t 

distribution is that the only sufficient statistics here are the 
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observations themselves. The general problem of inference in the 

presence of nuisance parameters is a difficult one and needs 

further investigation. 

5. Cumulative Sum Techniques  

A standard practical method for detecting a change in the 

mean value 8 of a sequence of observed random variables 

(xi, 	xT) is the Cusum (cumulative sum) technique 

developed by Page (1957). In this section we derive the asymptotic 

distribution of the Cusum estimate cf the change-point T. We make 

use of the results of Section 3. A direct comparison of the Cusum 

estimate and the m.l.e. is given. 

First we outline the Cusum testing procedure for fixed 

sample size T. It is assumed that the initial mean value 00  is 

known and that the x
i 

are independent and normally distributed 

with known variance a2. For simplicity, we consider the one-sided 

test for an increase in mean 8. The procedure is to plot the 

cumulative sums 

St 

t 

= 	E (x. - e 	8a) 	(t = 1, 2, 	T) 	(5.1) 
j=1 	° 

and to reject the hypothesis of constant mean if 

S
T 

- min S
t 

> h , 
t<T 

(5.2) 

where both 8 and h are chosen to give the test required size and 
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required power under a specific alternative 9 > Oos  say, which 

are determined by the experimenter. Then the estimate of the 

change-point T is the index of the Cusum minimum, that is 

A, = inf(t : S
t 

	Sk, k = 1, 	Tl . 

Note that if the mean is known to change to 9:, so that the 

Cusum is used only to estimate T, then we should choose 

8 = (0: - 90)/(2a) and hence have T = T by the definition of the 

m.l.e. T A in Section 3. In general, however, the magnitude of the 

change is unknown, and T is asymptotically less efficient than 
, 	

T. 

We show this by deriving the asymptotic distributions of both T 

and T 
A 

s  assuming both T and T T to be indefinitely large. 

Let the actual increase in mean be from 0o 
to 01. Then 

the sequence S1, S2, ..., ST  defined by (5.1) is equivalent to the 

sequence -V1, -V2, 	-VT  with Vt  as defined in Section 2. The 

Cusum estimate is the index of the maximum of Did, and we can 

apply the results of Sections 2 and 3. In this case it is easy 

toseethattheincrements. Yj 	
3 

and z. of the two associated random 

walks W and W i  are respectively N(-8a, a2) and N(00  - 01  + 8a, a2). 

Then it follows without difficulty that the asymptotic distribution 

P(k; 8, A) = pr (T = ¶ k; 6, A) 

is given by 
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00.  

P(k; 6, A) = qk(2A-8) - I 1-a(u,8)30k
(u, 26-6)du (k z 1) 

P(0; 8, 6) = a(0,6) a(0,26-6) 

CO 

P(-k; 8, A) = qk(6) - 	11-a(u, 26-8))0k(u,6)du 	(k Z 1) . (5.3) 

The notation here is that of Section 3.1; in particular 

6 = (01  - 00)/(2a). Numerical calculation of the distribution 

(5.3) is done by the same method as in Section 3.1, that is using 

the two-term approximation to 1 a(x,6)  and the Laplace transforms 

/k(w,A). It is not difficult to see from (5.3) that T is biased. 

In fact both the bias and the variance increase as IA - 61 

Increases. We can explain this as follows: a change e in the 

value of 8 is equivalent to rotating (So  = 0, S1, ..., ST3 about 

the origin (0,0) through an angle tan 1(e). Now if A were known, 

the best choice of 8 for estimating T is 8 = A which gives the 

unbiased m.l.e. T A . Not to choose 8 = A, or a consistent estimate 

of A when A is unknown, leads to a loss of efficiency and 

introduces a bias as a result of the rotation away from the 

optimum position. This is what happens when el  is unknown. 

The question we have to answer is: how well does T  compare 

A with T in efficiency, in possible bias and in simplicity of use? 
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A 
If the distributional difference between T and T is small, it may 

be that the Cusum estimate is to be preferred because of its 

simplicity. To find the m.l.e. T when el  is unknown, we note 

first that the log likelihood of T is (3.16) with 01T  = X 

replacing 01. It follows that T is the value of t which maximizes 

z2  = t(7*t  - 0)2 
	

(t = 1, 2, ..., T - 1); 

cf. (3.18). For 81  > 00, T A is asymptotically equivalent to the 

value of t which maximizes Zt, which we can write as 

,. 	T 
= t— Zt 	2 	E 	(x. - 80). 

j=T-t+l J 
(5.4) 

The connection between T and T A is seen by noticing from (5.1) 

and (5.4) that 

zt 	= (ST • ST-t + toa)t
- 1/2 
	

(5.5) 

This implies that -/I\- can be obtained directly from the Cusum plot 

by superimposing the family of parabolas 

y = - Ate  + toa 	> 0) 	 (5.6) 

on the plot with origin at (T, ST), and adjusting A until only one 

Cusum point lies below the curve (5.6). The index of that point 

is A 
 T. The use of parabolic curves in Cusum procedures was 

proposed by Barnard (1959). Likelihood ratio tests of the 

constant mean hypothesis correspond to selecting particular 
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values of A in (5.6) and rejecting if a Cusum point falls below 

the curve. 

From (5.4) it is easy to show that the asymptotic 

distribution of T A is the same as when eo and 01 are known. The 

argument follows closely that of Section 3.2 and we omit the 

details here. In particular, A T is asymptotically unbiased. 

However, in finite samples we might expect T A to be biased because 

of the indeterminacy of el. It might be possible to derive the 

finite sample distribution of T by considering the properties of 

a random walk with a parabolic boundary, but we have not been able 

to do this. 

To illustrate the difference between T and A T for vae.ous 

values of 8 and A, we have calculated the asymptotic distribution 

of l'from (5.3) for the cases A = 1.0, 8 = 0.5(0.1)1.0. Table 5.1 

gives the asymptotic bias and variance for each case, and 

Figure 5.1 is a plot of the cumulative distribution of 1:'for 

8 = 0.5, 0.7 and 1.0. Note that 8 = 1.0 corresponds to the m.l.e. 

distribution; note also that 

var(1 6, 	= var(1 2A-6, A) 

and 	- T; 5, 6) = -E(;#  T; 2A-8, A). 
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8 	0.5 	0.6 	0.7 	0.8 	0.9 	1.0 

Ecr-T;6,1.0) 	-1.70 -1.07 -0.68 -0.40 -0.19 0.00 

var(T;8,1.0) 12.00 5.99 3.43 2.24 1.71 1.56 

Table 5.1 Asymptotic bias and variance of 1:'for the cases 

A = 1.0, 6 = 0.5(0.1)1.0 

It is clear from these numerical results that l'can be very 

inferior to T A even for small differences between 8 and A. One 

practical interpretation of the results is that if the mean 

change is larger (smaller) than was anticipated, then the 

estimate of the change-point will tend to be too small (too 

large). 

So far we have assumed that the Cusum procedure is used 

for fixed sample size testing. But often the procedure is used 

as a method of sequential control for a process tr
t
). Then the 

Cusum (5.1) is plotted until for some T (5.2) is satisfied. The 

criterion for choosing 8 and h is then average sample number 

before a decision is reached rather than power; the average 

sample numbers for mean values e and e: determine the values of 
8 and h. In this situation T will be a random variable, but the 

effect of the stopping rule (5.2) on the likelihood of the sample 
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is independent of T, so that the m.l.e. remains unaltered. Now 

T - T becomes a random variable whose distribution depends on A 

and 8, and whose mean value is chosen to be large when no change 

occurs and small when the change in mean is to eo. It is not 

clear what effect this will have on the distributions of I;rand T. 

The first reaction is to suppose that the asymptotic distributions 

will not be reasonable approximations in this situation; but if 

the asymptotic distributions are concentrated on the integers 

less than E(T16,A) then they should be adequate approximations. 

We have not looked at the theoretical aspect of this in any 

detail. The empirical results for fixed sample size described 

in Section 6 indicate how large T - T must be for asymptotic 

results to give reasonable agreement. 

The corresponding test for a decrease in mean is to 

and to reject the hypothesis of constant mean if 

S S
T 
/ - max S/ < -h. 

t<T t  

Then .:ris the index of the Cusum maximum, and the distribution 

(5.3) applies. The two-sided test combines both one-sided tests, 

and it can be shown that rejection in both tests simultaneously 



- 57 - 

is impossible. The probability of rejection in favour of the 

wrong one-sided alternative will usually be negligible, so that 

the asymptotic distribution of 1'.  (a maximum or minimum point) 

will again be (5.3). 

A Cusum procedure is also defined when both 0
o 
and 0

1 

are unknown. The Cusums (5.1) are then replaced by 

t 
So  = ST  = 0, 	St  = S (x4  - 7x7T) 	(t = 1, 	T - 1), 

j=1 
(5.7) 

with decision rules as before. The asymptotic distribution of 

T can be derived by following the arguments of Section 3, and 

is given by (5.3) with the substitution 8 = 2(1-X)6, where 

T = XT. Note that when X / 1/2  more weight ir given to observations 
on one side of the change-point:. This is because the mean slope 

of S
t is different on each side of t = T due to the end 

^, 	^, 
conditions So = ST = 0; this makes T biased. To compare T with the 

m.l.e., we note that the m.1. estimating statistics Ut  of (3.18) 

can be expressed as 

= j7 T ) U
t 	L t(T-t) f St (t =1 

by the definition (5.7). Hence T A can be obtained from theCusum 

plot by superimposing curves 

y =Ar T 1 
it 1770-5 

and varying A until one point lies outside the curve, whose index 
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A 	 A 	"s, 

is T. The distributional comparisons of T and T for the case 0
o 

known apply here. 

6. 	Monte Carlo Results  

To see how uell the asymptotic results of Sections 3, 4 

and 5 work in finite sample situations, we carried out an extensive 

Aw A 

	

simulation study of 	the distributions of T 
A 

T, , 	A and log A2. 

In this section we give a summary of the conclusions from this 

study. 

For each set of values of T, T and A we generated 500 

samples of observations on an electronic computer, using pseudo 

random normal deviates for the error terms R
i 

in the model 

	

= 80 	ei 
	(i = 1, ..., T) 

	

ei 	e 	(i = T 	1, 	T) 

It is of particular interest to see how the finite sample 

A distributions of T A , A and log A2 
vary according as 0o and/or gl  

are known or unknown. To eliminate "between samples" error 

when making comparisons of this type we calculated the empirical 

distributions under the three assumptions (a) 00, el  both unknown, 

(b) 0
o 
known, 0

1 
unknown, (c) go and 0

1 
both known, in the same 

A samples; A is redundant under assumption (c). Also in the same 

samples we derived the empirical distributions of r, the Cusum 

estimate, for several values of 8. 
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Before looking at specific results, we remark that in 

general the agreement between empirical and asymptotic results 

seems to depend critically on the value of 

= A  VT(T-T) Do 

when both 00  and 01  are unknown, and on DI  = 0:7-when only 01  

is unknown. Note that small values of Do 
and D

1 
will arise in 

cases where we would have difficulty in determining the presence 

of two means rather than one. Intuitively we would expect the 

asymptotic properties of T 
A 
and log A

2 
to be good approximations 

only if the two means are easily distinguished. It appears 

from the empl-Acal results described here that if Do  (or D1) 

is greater than 3 then a case is well-defined, that is the 

asymptotic distributions agree well enough for practical use. 

The cases described here are A r.  0.5 and 1.0, T = 50, 100 and 200, 

and various T not necessarily equal to iT. To illustrate the 

general remarks made in the last paragraph, Table 6.1 was 

compiled for some of the cases studied. This table gives the 

empirical means and variances of T A 	
A 

and A, and the corresponding 

asymptotic variances, for four cases where A = 0.5. 
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Empirical Asymptotic Empirical Asymptotic 

Ee‘r) var(T) var(4) E(p) yar(p) yar(p) 

T=50, T=15 

(a) D0=1.6 20.30 83.62 24.10 .564 .0544 .0238 

(b) D1=3.0 14.84 19.53 24.10 .501 .0095 .0072 

(c)  15.02 23.16 24.10 

T=50, T=25 

(a) Do=1.8 25.46 41.65 24.10 .593 .037 .020 

(b) 1=2.5 24.79 31.36 24.10 .514 .015 .010 

(c) 25.37 25.49 24.10 

T=100, T=25 

(a) o=2.2 25.37 60.52 24.10 .560 .0185 .0133 

(b) D1=4.3 25.26 25.01 24.10 .512 .0035 .0033 

(c)  25.29 21.62 24.10 

T=200, ¶=50 

(a) Do=3.06 50.36 31.13 24.10 .509 .0065 .0067 

(b) D1=6.13 49.97 26.34 24.10 .496 .0018 .0017 

(c)  49.50 24.30 24.10 - - - 

Table 6.1 Comparison of empirical and asymptotic 

A moments of T A and A, A = 0.5. (a) 00, el  unknown; 

(b) eo known, 01  unkaown; (c) 00, 01 known. 
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The respective values of Do  and Di  are given in the table. Similar 

comparisons hold in cases where p = 1.0. Note that when A is 

known the mean and variance of T A agree with the asymptotic values 

even in the worst case, namely T = 50, T = 15, A = 0.5. In 

general the asymptotic distribution of T 
A 

agrees well with the 

empirical distribution for known A provided that T 
A 

lies between 

1 and T with high probability. These remarks do not depend on T 

being equal to T. 

Examination of the empirical distributions of 1,i- confirms 

the above remarks. Figures 6.1 and 6.2 are plots of cumulative 

empirical distributions against the corresponding cumulative 

asymptotic distribution for the case T = 50, T = 15, A = 0.5 with 

0o and 01 
known and unknown, respectively. (We shall refer to 

these and similar plots as percentage plots). Clearly the 

asymptotic distribution of T A is not a good approximation in the 

situation where A is unknown. The chi square values in the 

usual goodness-of-fit tests for these two examples are respectively 

20.8 and 86.1; the 95 percentage point of the null distribution 

is 31.4. Behaviour in a well-defined case is illustrated by the 

percentage plots in Figures 6.3 and 6.4. They indicate good 

agreement with the asymptotic distribution irrespective of whether 

or not A is known. In these and other well-defined cases the 

finite sample distributions are not noticeably affected by non-

centrality of T. 
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The empirical distributions of log A2  agree well with the 

asymptotic distribution derived in Section 4. When Do  or Di  is 

greater than 3 the agreement is good over the whole distribution. 

The non-centrality of T has no visible effect. Figure 6.5 for the 

case T = 100, T = 25, A = 1.0 is a typical example of a percentage 

plot of empirical against asymptotic distributions in a well-

defined case. For smaller values of Do 
and D

1, 
the agreement with 

the asymptotic distribution is still quite good for cumulative 

probabilities greater than 0.90, which is the region of interest 

in significance tests, but not for smaller probabilities; this 

is true for Do 
or D1 

as low as 2. When A is known the agreement 

is good even in the case T = 50, T = 15, A = 0.5. Figures 6.6 

and 6.7 are percentage plots for the cases T = 50, T = 15, A = 0.5, 

A known and unknown. 

Looking at the empirical distributions of IP, it is clear 

that the asymptotic normal distribution is a good approximation 

when Do or D1 
is greater than 3, except for the small positive 

bias mentioned in Section 3.2 and illustrated in Table 6.1. In 

practice the bias is probably negligible in most well-defined 

cases, but it might be worth examining the asymptotic form of the 

bias for marginally well-defined cases. Figure 6.8 is a normal 

plot of the empirical distribution of iA\  in the well-defined 

case T = 200, T = 50, A = 0.5, and Figure 6.9 a corresponding 
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plot for the ill-defined case T = 50, T = 25, A = 0.5. In the 

latter case the bad fit is due to both significant bias and 

excessive spread. 

The general conclusions we draw from the above discussion 

are, first, that when A is unknown the asymptotic results should 

be good approximations if Do  or D1  is greater than 3; it is 

A important that A should be distributed close to the asymptotic 

normal distribution because methods of inference about T involve 

A A as the estimate of a nuisance parameter. Second, when A is 

known the asymptotic distribution of log A2  may be used in the 

tails for quite small samples, say those for which Do  is as low 

as 1.5. Third, the asymptotic distribution of 1,? is valid wheal A 

is known provided T A lies between 1 and T with high probability. 

The empirical analysis of the distribution of the Cusum 

estimate 7fi confirms that there is good agreement between the 

finite sample distribution and the asymptotic distribution when 

the asymptotic distribution is concentrated in the interval 

(1,T). Figure 6.10 is a typical percentage plot of the two 

cumulative distributions, using the same simulated samples as in 

Figures 6.3 and 6.4 
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7. Further Developments  

In the preceding sections we have discussed the m.l.e. T 
A 

and its asymptotic distribution in the normal case, also the 

properties of the likelihood ratio test. Empirical results show 

that in Apil samples the asymptotic distributions can be poor 

approximations, particularly when Go  and 01  are unknown. Exact 

finite sample results, however, appear very difficult to obtain. 

For going back to (3.18), the distribution of T A involves the 

probabilities 

pr(U2k > j 
U2
, 	

1 5 j / k 5 T - 1; T,A) (k = 1, 	T - 1), 

where U = (U1, ..., UT-1) has a multivariate normal distribution 

withilm-zeromeallandc"ariancematrixUaijfl given by 

a 	= 1/(T - 1/) 	Li  = min(i,j), j f  = max(i,j). ij j
#(T ji) 

The only method for calculating the relevant multivariate integrals 

is simulation. Even with exact results about T 
A , inference would 

be difficult because of the non-normality of A 
A  in small samples. 

On a more hopeful note, the results of Section 2 apply to 

distributions other than the normal distribution discussed in 

Section 3, for example the exponential distribution. Nor are 

the results restricted to problems with one density f(x,8), for 

it is not difficult to see that the arguments of Section 2 go 
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through for the general model 

	

xi  has p.d.f. fo(x) 
	(i = 1, ..., T) 

	

has p.d.f. fl(x) 
	

(i = T + 1, ..., T). 

It should also be possible to extend the theory of Section 2 to 

discrete distributions, for example the case of binary data. 

The asymptotic results we have obtained for 

to the problem of testing the hypothesis 

A 
T are relevant 

z (j = 1, ..., T) 

(j = T 	1, 	T) 

against 

Hreg :.=ce + ou. t e. 	(j = 1, ..., T), 

where uj  is an independent variable (possibly uj  = j) and the. ej  

are independent N(0,02) error terms. The hypotheses H1  and Hreg 

are separate in the sense of Coxt s (1961) definition. 

A different aspect is the testing of the hypothesis of 

homogeneity Ho  : 00  = el, i.e. no change-point. Apart from the 

work by Page (1954, 1955, 1957), there have recently been several 

published accounts of related work by Chernoff and Zacks (1964), 

who use a Bayesian framework, and Bhattacharyya and Johnson (1968). 

The discussion of Section 5 would be relevant to the likelihood 

ratio test of H
o
, for by the definition of the random walks W and W'  
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in (2.2), the log likelihood ratio for testing Ho  against the 

presence of a change-point is 	E  ui. We have not looked at the 
i=1 

A properties of T in the null case. 
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PART II 

ESTIMATION OF THE CHANGE-POINT 

IN TWO-PHASE REGRESSION 
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8. Previous Results  

In this second part of the thesis we look at Model B of the 

introduction, given in (1.3 ). It is more convenient to express 

the model in the form 

(t = 1, ..., T) 
Xt 

= a
o 
 + p

o
u
t 
 + e

t  

x 	= al + Dlut + et 	(t = 'r 	1,..., T) 3 
	 (8.1) 

where ao  + Roy = al  + Dly and u
T 
 5 y < uTA-1 . The independent 

variables are ordered u
1 

< u
2 
< ... < u T , and the error terms 

e
t 
are independently distributed N(0, a2). 

The parameters ao, Do, al, Di  and y are unknown, and so also 

is T. Our object is to estimate y, the abcissa of intersection of 

the two regression lines of (8.1), and to make inference about y. 

Statements about T are derived from statements about y, so that 

estimation of T is not discussed explicitly. 

Quandt (1958) suggested the following method for locating fie, 

the m.l.e. (maximum likelihood estimate) of T. Take any trial 

value t for T and fit the two linear regression equations of (8.1) 

by least squares, ignoring the constraint ut  5 y < 

Calculate the value of the likelihood maximised over ao
, 5o, al and 

81 given t. Repeat this for all values of t in the range 

2, ..., T-2. The value of t giving the overall maximum is then T. 

For the more restricted case of our model, introduction of the 

A 
	constraint on y would involve much more calculation; the procedure 
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for finding 'i-  would be nearly as complicated as that for finding 

i (Section 9). Quandt does not analyze the distributional 

properties of T, the majority of his work being concerned with 

tests of the null hypothesis (0/0, Do) = (al' pi). He has not gone 

further with estimating T (or y) in subsequent work. 

Sprent (1961) considers estimation of y when T is known, 

which might be the case if the ut's are very dispersed and/or 

some prior knowledge is available. An important assumption is 

made, which we also make in following sections, namely that the 

two line model (8.1) provides an adequate description of the data. 

The error variance 02  is unknown in general. Sprent takes a trial 

value yo  in the known interval [uT, u ) and fits the least T+1 

squares two line model constrained to intersect at u = yo. This 

iS done by minimizing the Lagrange expression 

E 	(x. - a0  - 0 u.)2  + 	(x. - a - F.!
1
u)2  

i=1 	i=T+1 

+ 2A «1  - a()  + 	30).13  

where X is the Lagrange multiplier. 

Now the residual sum of squares S2(y
0
), say, is distributed 

as for24.3  under the hypothesis y = y
0
. However, we could fit two 

unconstrained regression lines and obtain a residual sum of 

squares S2  distributed as 	
4 

02x2  whatever value y takes. Therefore 
'11- 

the statistic 
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F(yo) = S2  (yo)- S2  
	 X 	- 4) 

S2  

will have the F distribution with 1 and T - 4 degrees of freedom 

under the hypothesis y = yo. A confidence region for y is then 

defined by the values of y satisfying 

F(y) s F1,T-4(g) 

where 
F1,T-4 

(0 is the upper 100§7o point of the F distribution. 

This region can alternatively be derived by the use of Fieller's 

Theorem in the following way. 

The random variable 

A A («1- «O) 
YO°1 - PO)  

is, under the hypothesis y = yo, normally distributed with mean 

zero and variance o2 V(yo) with V(yo) known. Here, 	anct 
are 

Di  smixt the unconstrained least squares estimates. 

The confidence region for y is, then, the set of values of 

y satisfying 

- 6)o)  + 41-  /r\'0).1-r2 	KT-4(r) 	v(Y) 
	
0 

where KT-4(0  is the two-sided 1006. point of Student's t-distribution, 

and S-2  = S2/(T-4). A little calculation shows that 

v(,) = T  
,y)2 + 
	T.,.  

al* _ y)2  
TT'"T 	 c- 

uu,T 	uu,T 
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t 	1 
where 71 = E u

i 	
r= T-t E t ti=1 ' i=tI

ui  

uu,t = E (ui -)2 
i=1 
T 

and 	Cuu,t 
= E (ui  - rp2  
i=t+l 

(8.2) 

Because T is known we are interested solely in the intersection of 

the confidence interval and [u T4.1).. 	The point 	estimate 

of y is 

c = (a0  - c)/(61 

No indication is given as to the procedure to be adopted 

when T is unknown, although it is fairly clear that one would 

calculate 

min 	S2  (y) 	(t = 2, ..., T-2) 

A 
and take the estimate y to be the value of y giving the overall 

minimum. No analysis of the distribution of y is attempted. 

Sprent's results are generalized by Robison (1964), who 

extends the model (8.1 ) to two polynomial regression curves. 

For the two-line special case the results are the same, T being 

assumed known throughout. It is, however, pointed out that fy... 

may not fall inside ('uT, ura). If this should happen, Robison 

suggests that a 10V. confidence interval for Y should be 

constructed and g increased until there is an intersection with 

[uT, ura). The revised estimate of y is this intersection, 
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that is either u or u
T+1  • Such an estimate seems uuestionable 

in derivation and usefulness. It would Le better to say either 

(a) the assumption "T is known" was wrong, or (b) select as 

the estimate whichever of uT  and 
uT4-1 

 is closer to y. 

A recent paper by Hudson (1966) on point estimation of 

y drops the assumption that T is known and gives a clear step-by-

step estimation procedure. The derivation of the procedure is 

similar to our own, given in the next section, and we shall refer 

to Hudson's work there. Hudson does not consider the problem of 

finding the distribution of c; he suggests that "approximate 

likelihood regions" would be satisfactory for inference. Several 

numerical illustrations of the estimation procet-ure are given. 

Aspects not dealt with in the work summarized above are 

(i) the distribution properties of the m.l.e. 

(ii) the information (if any) obtained when starting 

with an incorrect value of T and getting a point 

estimate outside [1.2
T
,) 

(iii) tests for the null hypothesis (ao, (to) = 

and power functions of such tests. 

(a 	R ) 1 2  '1 

We are concerned in this thesis with (i) and (ii). We 

shall assume that evidence exists for the two-line model (8.1). 

The object is to estimate y by maximum likelihood and to examine 

the distribution of the estimate. It will turn out that (ii) 
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plays an important role in our discussion. 

On the subject of testing (:10, 00) = (al, pi), there has 

recently appeared some work by Brown and Durbin (1968) based on 

residuals examination. Some discussion based on an empirical 

investigation is given in Section 13. 

9. Maximum Likelihood Estimation of y 

We assume that the data (u., x.) (i = 1, 	T) are 
1. 	1 

described by (8.1), with all parameters unknown except for a2. 

First consider estimation of y by an analysis of residuals from 

two regression lines in the following way. Select a trial value 

of y, yo  say, in some interval [ut, uta), and transform the 

independent variable to V = u yo. Then fit by the method of 

A 	A A 
least squares the two lines a 

A 
 + Dov and a + 01V for non-positive 

and positive values of V respectively. Next define the set of 

differences dl, d2, 	by 

d
s 

= a 	A A - a - 0
1 

V
s 	

(s = 1, ..., t) 

and
d 	- 	V 	(s = t + 1, 	T) . 
s x  - s 	Do s 

These quantities are like residuals, except that they are differences 

between observations following one model and the estimated values 

following another model. Assuming that 01  Do, the mean value 

of these differences should increase as !V! increases, since the 
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vertical distance between two lines increases as one moves away 

from the intersection. Therefore a linear combination of di, 	dT  

will give a test for the null hypothesis Di  = Do. More importantly, 

the linear combination will, in the mean, increase in magnitude 

as yo  approaches the true value of y; this is because the 

difference 
Al 
 - 	 increases in mean as y

o 
tends to the true value. Co.  

Since the differences d. increase in mean as (VA increases', an 

obvious choice for the linear combination of d1 	dT  is 
T 
E 	+ WV / dS  for some A, B. The trial value yo can be s=1 
varied to achieve the maximum of this linear combination. In 

fact it is easy to see that the combination is a linear 

combination of sufficient statistics conditional on T = t, and 

is, further, proportional to (9
1 
 - go) for all A, B. 	Here 

Di  and 1330 are constrained least squares estimates conditional on 

T = t. Transforming back to the independent variable u, the 
T 

combination Ed is explicitly a function of y and C. As one 
1 
s 	 o 

 
would expect, because of the sufficiency referred to, the same 

combination of d1, 
	

d
T 
 arises in the maximum likelihood 

estimation of y. 

It is important to emphasize that (u , x ) is the last 
T T 

sample point which belongs to the regression E(x) = a
o 
+ f3  u and 

that the intersection of the two lines is between u = u and 

u = u
T+1 

 . That is we do not consider situations exemplified by 

Figure 9.0, where y < u . 
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U U 
T T+1  

Figure 9.0. 	Discontinuous change in regression model. 

The likelihood of the sample S = 	xl), 	(uT, xT)) 

is, by (8.1), 

x 

L(S; ao, Oco, CY1 2 R1, y, T, a) 

T 
2 	r 

=
1  

expil  - — E (xi  - 	- 
2702  ' 202  i=1  

T 
u.)2- 1 	

E1 	1 	j.  
(X. - a', - rluir o 1 	2 a2  i = T+ 	j. 

(9.1) 

where (al  - a ) 	y(:11  - no) = 0 and u s y < uT4.1. We regard the 

ut's as fixed quantit!s., • 

Conditionally on T = t, we can maximize the likelihood over 

ao, po, al and 01 subject to the linear constraint on them, and 
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obtain a function L
t(y), say, which is the marginal likelihood 

function of y for ut  5 y < ut.o. Doing the same thing for all 

admissible values of t, i.e. t = 2, 3, ..., T-2, we obtain a 

sequence of such functions which are pieces of the marginal 

likelihood function of y. That is, if L(y) is the marginal 

likelihood function of y then 

L(y) = Lt(y), uts y < ut.o. 	(t = 2, 3, ..., T-2). 

It is important to note that Lt(y) is mathematically defined for 

all y, but because of the restriction u 5 y < u, 1, here it has 

a statistical interpretation only for ut  5 y < ut-F1. We can write 

Lt(y) in the form 	T  

	

Lt(y) = (2T*2-) 2 exp ( 
	

.., S2  (y) 9 

	

L 	St (y)) 

s2(y) is the residual sum of squares for two regression lines 

constrained to meet at u = y. The formula for S2(y) is given by 

Sprent (1961). If 02  is unknown, then 

T 

 

2rrS2  ( ,} 2-  
T  

L (y) = 
t 

Now under the null hypothesis pl  = no we  get the corresponding w  

maximised likelihood 

T  
= 1 	2 	- 1 S2  L 	 ) 

0 	2rrc 	
exp ( 

2 	2e 0  

when 02  is known, or 

, say, 
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T  

=(- Lo 	21-rTS2  \ L  

when eis unknown. 

Since S2  is independent of y, the m.l.e. y will be the 

value of y which maximises L(y)/L0, i.e. the value of y which 

maximises S2  - S2  (y), taking ut s y < ut+1 
and letting t run 

from 2, 3, ..., T-2. This is true for 02  known or unknown; we 

assume from now on that 02  is known. 

Let the difference S2  - St (y) be denoted by Z2(y), then we 

deducE, from Sprent (1961, p. 638) that 

(y) = (At- BtY)2  

 

(9.2) 

   

 

Cuu,T (Ct - 2Dty + Et
?) 

 

where 

c* 	- c* 	) D At 	= Cux,t uu,t 	tioc,t c uu,t - 	t  - 't 	t 

+ 	t* (a*
t 
 u.

t t  
)03* c

ux,t + tu c*x,t )  T  

B
t 	

tt* 	
- Oa - ri*) c 	

• 
- 7*) c Tt 	tuu,T 	t 	t 

tt* 
Ct = C

uu,t uu,t 
C* 	(1-12  C* 	C 	) T t uu,t t uu,t 

tt*  Dt (a + c ) T t uu,t 	t UUst 2  

and 
Et 	

= t
T  
t*  (c 

uu,t 	u + C*u,t  ) . 	(9.3 ) 
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These involve the sample moments conditional on t, 

1 t _ 	
X'
* 	1 T 

L t 
= - X., - = 

t Xt 	3. 	T-t E Xi  s 
i=1 	i=t+1 

t 
= uix - eff 

Cur t 	 t t i1 

C* 	= 	r U,11 - (T-t) Ax't 	i 	t t 
i=t+1 

and t* = T-t. 

The other expressions Cuu t , uu t - 
 t and t

were defined in (8.2) 
, 	,  

Since At 
and Bt 

are defined'in terms of means and cross- 

products, we can simplify their expression by introducing the 

following definitions. 

Local maximum likelihood estimates  

Let .yt  be the value of at which Lt(y) reaches its 

(unique) maximum. Then conditional on T = t, yt  is the m.l.e. of 

y not constrained to lie in [ut' 
u
t4.1

). The corresponding estimates 

of ao 
50, al and91  are the standard least squares estimates 

aC /C 

	

pot 	ux,t uu,t 

".•• 

	

o t 	= 7 - - t •ot t  

91t 	c* ux,t/c*  uu,t 

It =  
t  - lt ut (9.4) 

The relation between these and i7; is 

yt  
aot alt  =. 
Alt  - of 

(9.5) 
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All of these estimates will be referred to as local 	The 

overall m.l.e's, which maximize (9.1 ), will be denoted by 
A A ist A A. A 
Uo, 80, al, 	y and T and satisfy the relations 

st 
A A 

= 	— al  
T3 o 1 

and u 5  uq+1 

Substituting in (9.3) from (9.4) and (9.5) we get 

At  = (ii"ot  - al t)(Ct  - Dt  Sft) 

and 
	

Bt = (Sot 161t)(Dt - Et Ct)  ' 

SO that (9.2) becomes 

et  (y) = (Sit - :t)2  Ct  - Dt(c; + y) + ETtylr.2  

uu,T (Ct 2D y + Et  Y2) 

(t = 2, 3, ..., T - 2) 	(9.6) 

We shall study Zt(y) in some detail in order to obtain useful 
4"b 

results about Y and the sequence iytI . The function Zt(y) is 

the most convenient form equivalent to I.(y); Hudson (1966) 

worked with S2(y) and leaned more toward geometrical proof of the 

same results. 

First, the likelihood 1,(y) is continuous. By inspection 

of (9.6) it is clear that continuity holds for ut < y < ut41 and 

for all t. It remains to show that Z(u
t1

) = Zt1(ut+1
)  

= 2, ..., T - 3). We deduce that this is so after some lengthy 



To prove this, first define 

ht(y) = Ct DtY  
Dt  - Ety 

(t = 2, ..., T 	2) 
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calculation has shown that 

A
t 
- B

t 
ut+1 = A

t+1 
 - B

t+1 
u
t+1 

and 

C
t 	

2D u 	+ E u2 	= C
t+1 

- 2D u 	+ E u2 
t t41 	t t+1 	t+1 t+1 	t+1 tfl 	(9.7) 

Secondly, Lt(y) has the following property: 

If t  5 srt 	t irk  then t(y) decreases as ly - 'N'rt i increases 

provided that r]
:t 

5 y 5 
	 (9.8) 

A geometrical proof of this, in terms of s7(y), by ,NcLaren (1965) 

was used by Hudson (1966). We give below an analytic proof which 

results in a relaxation of the constraint on y (or 

Let the minimum of Zt(y) occur at y = 8 . Then from 

(9.6) we see that 8t  is unique aad given by 

C - D 
St 	t t t 

Dt - Etry-t 

(t = 2, ..., T-2). 	(9.9) 

Incidentally Lt  (8t) = Lo. Now if ot  < 7t, then Zt(y) decreases 

as ly - crt: increases, so long as y a 8t; if 8t  > 	then Zt(y) 

decreases as ly - Ytl  increases, so long as y 5 8t. We can now 

rephrase (9.8): 

If 11 5
rt 
5 UZ then 8t 

5 li
t 

or 8 	-k u . St 	t 	
(9.10) 
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which has derivative 

ht(y) = (Ct Et - DI)  
(D

t 
 - E

t 
 y)2  

whenever this exists. 

Using the definitions of Ct, Dt  and Et it is easy to see that 

tt* 	 tt*  
C E - DR = — C 	C* 	C 	+ C* + — (u - u 
t t 	t 	T 	uu,t uu,t 	uu,t 	uu,t 	t 	t 

so that h
t 
(y) is everywhere increasing except at the point of 

discontinuity yt  = Dt  
E
t 

	

Clearly ht  (yt  -) = m and ht  (yt 	= - 00. 

By definition 

y
t 

= OF C* 	+1-2* t  C 	)/(C 	+ C* ) 
t uu,t 	uu,t uu,t uu,t 

and hence 17t < yt 
< IT* . 

We have now to establish that 

ht(U) > Ti*  and ht(   t  
e) < U

7t 
, 

for then 

-* tit s y s Tr*  implies h
t
(y) < Ti

t 
or ht(y) > ut 

which is (9.10) with y written instead of 3c. 

A little calculation gives 

	

ht ) = t+ TC*  uu,t 	> 17* t 
tt*OL 

t
LT) 
t 

> 0, 



TCuu,t
-* 	TC* s y

t 
s ut 

+ 	uu t 

tt*Cii*  - 	 tt*(q - ut) 

or 

(ii) If ut 
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TC 
and h (7*) = 	uu,t  

t t 	t 	tt*(ler - 	) 
< 	, 

t 	t 

the required result. In fact this shows that (9.8) may be re-

written either 

(i) 	If lit  5 7t  5 ut then Lt(y) decreases as ly - 

increases for 

- 
TC

uu , t 	s 	TC* y 5 ri* 	uu t 
t 	tt*(u*tr 	 tta* - t) 	 *C t 	 )  

(9.11) 

then Lt  (y) decreases as iy -
rt
1 increases for 11t  5 y s t . (9.12) 

The more useful form for our present purpose is (9.12). 

^ 
We now set out some useful results about y. 

A 
First, ut < y <ut+1 implies u < cr < u t 	t 	t+1 

since 	Lt(yt) Lt(y) for y # yt  and no other local maximum of 

L
t(y) exists. 

-* 	TC*  Second, if 	u
t 
+ 	• uu,t 

 

t > ut+l , 

 

tt*( a* - t) t  

 

then Lt(ut)< L t (ut+1 ) by virtue of (9.12). 

t Third, if Tit  - 	TCuu 	5 N 
A, 
t 
< u

t  
tt*( a* - t) t  

then 	Lt(ut
) > Lt  ( ,ut.+1) 

(9.13) 
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again by virtue of (9.12). The last two results indicate which of 

ut and utI 
could possibly be y, thus eliminating unnecessary 

calculation of both Lt
(u

t
) and L

t
(u

t
4
i
). 

We can now set down the procedure for calculating y 
A 
from 

the data t(ul, xi), ..., (uT, x,r) 1 . It is the same as that 

derived independently by Hudson (1966) with the slight improvement 

gained by using (9.12) instead of (9.8). 

A 
Procedure for finding y 

To facilitate the use of the estimation procedure we set it 

out in a logical step-by-step form which might easily be 

translated into a computer program. 

The following symbols are employed throughout: 

M 	the maximum over s and y of all previous admissible 

values of Z2(y) 

G 	the value of y at which M was attained 

I 	the interval enclosing G - i.e. u/  s G < 

By previous admissible values of 22(y) we mean, when 

examining Vt(y), the set es(y); us  s y < us+1, 2 s s s t - 1 

The procedure is, then, 

no ".• 	0,1 	oke 	 A, 

	

calculate ao-, R 	1312  and hence y2  z -o2' cY122  

if u2  s 7'2  < u3, set M = 21(%), G = 72, I = 2 

and go to step B (0 

A (i) 

A (ii) 
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A (iii) if rail  - 	TCuu,2 	5 AY; < u2, set M = Z22(u2), G = u2, 
2(T-2)(r1-112) 

I = 2 and go to B (i) 

A (iv) if u s y < u + 	TC* 
uu,2 	, set M = Z22(u3), G = u  3, 

3 	2 	2 2(T-2)(14-1T2) 

I = 3 and go to B (i) 

A (v) 
TC
uu,2 	4.' 	TC*  

uu,2  if 72 < 312 	 or y2  > ii2e + 
2(T-2)(5-172) 	2(T-2)(q-U2) 

set M = max Ir.  222(u2), Z22(u3)1 , 

u2 if M Z22(u2) 
	

2 if M = 22(u2)  

G = 

u3  if M = Z22(u3) 
	

3 if N = Z2(u3) 
 

and go to B (i) 

B 	set t = t + 1 and go to END if t = T - 1, otherwise 

calculate ( j = 0, 1) and 7; jt 

B (ii) calculate e ) = (ilt- ict)2(Ct- 2Djt  + Et ~fit)t  t 
Cuu,T 

B (iii) if Z2t(yt  ) s M go to B (i) 

.... 
B (iv) if ut 5 yt < ut41 set M = e ('T), G = T 1 = t t 	t' 

and go to B (i) 

B (v) if 7 	
TCuu,T 	.7  < ut 	tt*(rtL ut) 	t 	t 

calculate 22(u t); ); then if e
t 
 (u 

t
) s M go to B (i), if t  

Z2t(ut) > M set M = Z2
t 
 (u 

t
), G = ut, I = t and go to B (i) 
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B (vi) 	if u 	s 
t+l t 	t 

TC*  
uu,t  

tt*( t- DI) 

calculate Z2t(u
t+1 

 ); 	
t 

then if Z2(ut+1  ) s M go to B (1), 

if Z2t(u
t+1  ) > M set M = Z2t(ut+1'  ) G = ut4.1' I = t + 1 

and go to B (i) 

if 7't  is anywhere else calculate both et(ud and 21( ,ut4.1); 

then if max {Z1(ut), Vt(ut4.1)1 s M go to B (i); 

if not set M = max {Z2t(ut), Z2t(ut+1).} ' 

(ut,t) if M = Z2t  (ut  ) 

(ut+1't+1) 	if M = Z2t(u ) t+1 

arid go to B (i). 

(G,I) 

B (vii) 

END The search for the likelihood maximum is complete: the 

m.l.e.'s are y = G and -I? = I. 

One small point to note is that if G = ut+1  as a result of 

calculations in B (vi) or B (vii), the calculation of Z2t  (u ) +1 t+1 

is unnecessary in the next cycle B (i) - B (vii) since 

Z2t (ut+1 
 ) = Z2

t+1 (ut+.1. ). 

Usually we also wish to 

addition to y 
A 
. Although this 

A 
determine ao, al, So and 0, in 

is not included in the above 

procedure, the necessary steps can be incorporated with little 
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difficulty. If u
I 

< G < u
I4.1

at the END stage, 

(j = 0, 1). 
A 1*,  A 

r.a 	n = Zji  
jI and   

If G = u
I, a constrained least squares fit is necessary. Running 

A A  A 
m.l.e.'s of a, a

l
, p

o 
and 

A1  could be used, analogous to G for y. 

For large samples the calculation involved in using this 

prtcedure could be considerable. If the approximate position of 

Y can be determined prior to the calculation (e.g. graphically), 

some. reduction in the number of values of t examined might be 

acEieved. However if (Bi  - po)/a is small such prior location 

could be difficult. 

It is intuitively reasonable that there is more information 

in each lc than we have used sl far, since successive values are 

A ".• 
very much dependent on one another. For example, if y = 	 then 

AO 	 A 

t+1 should be close to y, more so the larger t and T - t become. 

To illustrate what we mean we look at two examples, in both of 

which the m.l. estimation procedure is used. In each case a sample 

of points from the model (8.1) was generated using pseudo random 

normal deviates for the errors and having ut  = t, i.e. equally 

spaced observations. 

Example 1  

Sample size T = 20,, with pi  - 00  = a and y = 10.5. A plot 

of the data is given in Figure 9.1, and in Figure 9.2 we have a 

plot of e(y), over t and y, at intervals 0.25. From the data 
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plot it is clear that 8 s cs 12, so that a complete likelihood 

A 
search is unnecessarily lengthy. The value of y is 9.5 although 

from Figure 9.2 it is apparent that any value of y between 8.5 

and 10.0 would come close to maximising the log likelihood; a 

confidence region for y would therefore probably be quite large 

(cf. Section 13). 

To see what information is contained in the local estimates 

Ay* 
y
t 

we have plotted y 
Al  
t 
against t in Figure 9.3. The two diagonal 

lines on the graph correspond to y 
A# 

t 
= u

t 
and y 

Ay  
t 
= u

t+1 
as 

indicated. An outstanding feature of the graph is the tendency 

A# 
for yt  to be larger than u

t 
when y > u

t
, and similarly for y

t 
to 

be smaller than u .1.1 when y A < ut+1
. The principal exceptions are 

A.• 

Y8 
 and y9, either of which could be taken as y so close are the 

corresponding log likelihood values. The other exceptions are 

Awo 	Ay 

18 
y 	

' 

	

i7  and v 	and here we notice that in the scatter diagram 
'  

(Figure 9.1) a second change-point y' is indicated, although the 

log likelihood is relatively small in that neighbourhood. A 

further point of interest in Figure 9.3 is that in the neighbourhood 

^ 
of u = 9 the local estimates 	fluctuate near y; the inter-

dependence between successive 'irt's would account for this, and 

might be expected to have a stronger effect in larger samples. 
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Example 2  

In this second example we take a larger sample size T = 50, 

with Di  - Do  = 0.4a and y = 25. Figures 9.4, 9.5 and 9.6 give the 

scatter diagram of the generated data, the log likelihood plot and 

the plot of ...7t  versus t, respectively. The log likelihood is 

smoother than in Example 1 as we would expect with a larger sample. 

This smoothness is reflected in the plot of Tt  against t, where 

A/ the y
t 
s fluctuate close to y. Note that our remarks about the 

information contained in 7t  are well substantiated, i.e. 

yt  > ut  when y > u
t 
and .:44; < ut41  when < 

ut+1.  

The conclusions that we draw from these and other examples are 

(i) as T increases the likelihood becomes smoother 

(ii) as T increases the yt  s fluctuate less around y, but not 

relatively less in terms of 10 

(iii) the statements "41.-t > tit implies y > ut
" and "7" < u

t
4
1 Y 

implies y < ut+i" hold with more regularity as T increases, or 

rather as t and T t both increase. 

From previous remarks it is clear that (i), (ii) and (iii) are 

intimately connected. 

Conclusion (iii) has a direct application in the search for 

A 
y. For large T and T - T, a procedure converging on y from a 

trial value could be set up: 



Zlciwv)(3 •Lzt "ava":12  47.6 awnvi 

05 	547 	0+ 	-5£ 	or 
en 

57 	OZ 	51 	01 
• 

• 0 	

01 • 

• 

• • oZ 

0, 
4 

rY 

• 
• • 

• 

• 
• 

• 
• • 

OS 

09 



2.; 1 

I 
I 

I 
20 i 

I 
IS I 

I 
. . 

-, ., 
f 

. 
o 

. . . 

, .. ", . '. I' I. 

,.' '., . .. ' '., 
0.·· .... I .. 

I 
I· . 

o 

'0 . . 

F'IGfUR-E'. 9.5 L-0j It/<#.,l~f.\ood. 

pLot fa.. E>(o.."'rte. 1. 

. . . . 

. . . . . 

f 

• 

( 

'O~!------~-------'~"------~----~------~------~----~=-------------~~----~ o 5 10 IS' .2.0 2S 30 31S +0 ~s 50 

. ~: 

";.' 

. ..... , . 

. ,~ . 

..... 
1 : 

~:,' 

0: 
liS; 

I"·· 



OT SI CI Sr 

rovirox3  ?AY $1.1  1-"/.14 	Imei 11.6  2V"I  

s4, 	o4, 	5£ • 

• 

• 

5 Of 

51 

of 

ST 

Se 

047 



- 105 - 

Select an initial value t = t
o 
(not near 1 or T to avoid 

possible end effects) and calculate S.rt  . If u
t 
 s t < u

t +1 
o o 	o 

calculate, et(ut), et  (ut41) and et(%) for t = t o  -1,  to'  t0+1. 

A Then let y be the point at which Z2(y) achieves its maximum in 

where y and t range over the appropriate values. [uto-1' 
u
t +11' o  

If, however, ct  is not in [ut ut41)  it will be in some interval 
0 

 

[u
tl
, u

t1 
4
1
)
' 
say; so calculate y

tl
. Repeat the process 

described for Irt  until a local estimate 1.1:t  is in the interval 
o 

k  

[u
tks  utk+1

). Finally calculate d , et(ut), Z2t(ut+1  ) and Z2t(7)t  

for t = tk-1, tk, tk+1 and let Y be the point at which the 

maximum of these values occurs. 

This would be only the outline for a working procedure. 

We shall not discuss the efficiency of this or more sophisticated 

"convergent" procedures. However, it is worth remarking that in 

Example 2 with to  anywhere between 5 and 45 (with the exception 

of 7 and 12), the above procedure converges in not more than 

A 6 steps to y: usually 4 or less steps are needed. 

We look next at another use of conclusion (iii), that of 

approximating the distribution of y. 
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10. Approximating to the Distribution of the m.l.e.  

Feder and SyllAester (1968) have shown in some unpublished 

work that y is asymptotically normally distributed, but the 

empirical study described in Section 11 suggests that the normal 

distribution is inadequate as a finite sample approximation. 

However the asymptotic normality of y does indicate a degree of 

asymptotic smoothness of L(y) that is useful in the following 

discussion which concerns alternative asymptotic results for the 

distribution of y. The central result establishes a connection 

between y and the yt s. 

A 
Now y is difficult to work with because it has no explicit 

definition. But the asymptotic normality of cindicates that 

y = u
s with zero probability (at least asymptotically), hence the 

statement 

Yt  > ut  implies 	> ut  (t < to) 
	

(10.1) 

is equivalent to 

'")6(#  > ut 
implies q> ut 	(t < t

o
) 

by the definition of Y. We show that (10.1) holds with high 

probability. Without loss of generality we assume that 01  > Do, 

also that the ut's are equally spaced. 

Since the numerator and denominator of log L(y) are 

continuous by (9.7), we see from (9.6) that 
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{Ct  - Dt  (Nit  + ut+1) + Et  ?t,ft  ut+11 ??.,t  

fc 	D 	+ u t+1 	t+1 t+1 	t+1) + E t+1 't+1 ut+j Ic+1 

(10.2) 

where 

also 

AO 

T(IS °OS 
(s = 2, 3, ..., T - 2) ; 

Ct  - 2D
t  u 	+ E u2+1  = C

t41 
- 2Dt+1 u 	+ E 	u2  t41 t t 	t4-1 t+1 t+1 

(10.3) 

Combining (10.2) and (10.3) we then have 

{Qt 	(Dt Et ut+1)(ut+1 	St 

= igt (Dt+1 Et+1 ut+1)(ut+1 Yc+1)  (10.4) 

whereQt Ct = 	- 2Dt  ut+1 + Et 11Z+1.  

Now when the ut's are equally spaced, as we assume, simple 

calculation shows that both Dt Et ut+1 and D 	- Et+1 ut+1 . are 

negative or positive according as t < T-3 or t > T+1, respectively. 
2 	2 

Also Qt > 0 for all t. 

Then for t < T-1--2-. , we have by (10.4) that 

pr(.7t...1  > ut  I fti/t 
 = ut 

+ e ) 

= pr 7't-1 
{ 	

< 1 + e(Et  ut - Dt) 

Evaluating Ct, Dt  and Et  for the case u
t = t, we find that 

(10.5) becomes 

Ot 	 Qt-1 
} (10.5) 
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pr(7t_
1 
 > ut % = ut  + e)evpr rt-1 < 1 + 

13t 

3(t*  -  
2tt* 

£3 

and hence 

pr(Crt_i  > ut
I 

.14.sit  = ut  + e) 

,.....- pr(Gt  > 0) pr 4r .- 
St-1 - i t 1  ÷ 3(t;t-et) e > 0}, 

since 51  > 50. Now the mean and variance of 5t are 0(1) and 

0(T 3), and the mean and variance of 

(10.6) 

3(t*  I t)  e] 
2tt* 

are 0(T-1) and 0(T-5), so that (10.6) gives 

Pr(Ct-1 > utrit = ut e) 1 -C-°(T 3/2)} 

for all e > 0 and t < T-1 , by the normality of At and 5t...1. 
2 

Since the distribution of ';'rt  is continuous and bounded at ut 

it is easy to deduce that 

prOt_i  > ut1.7t  > ut)'ut)'.'1 -a)(-0(T3/2
) 	(10.7) .}. 

It is easy to see from the definition of y that 
A00 	 ok, 

pr(y > ut) 	pr(y > ut'  't .,
-1 

)e > ut, t-2 > ut-1' ..., y2  > u
3
) 

= pr(rt  > ut) pr(.\%/;_i  > utrt  > ut) 

pr(r2  > u3 I ',/r3  > u4, 	yt  > ut) 	(10.8) 
A/ 

The possible inequality in (10.8) is due to the fact that ''imay be 

larger than ut even though us 5 Ys 
< u f1 for some s < t; the 

"40  

t-1 	6t 

• • • 
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probability of such an event will decrease as T#03, and we shall 

ignore it for the purposes of getting our approximation. Now 

looking at the conditional probabilities in (10.8), it is 

intuitively clear that the more complicated of these satisfy 

inequalities like 

A/ 
pr (7 > u 	> u 

1 	s42 	
"pr(7,> u 

s 	a+11 Vs+ 	' ;4-2> us+2) 	G411 sq-1- 
u 
 s-1-2)* 

since the imposition of extra conditioning events (such as 

Ar 
ys42  > us+2  here) restricts the sample space in favour of the 

events > usfl. This argument would be difficult to verify 

formally. But accepting its validity we deduce from (10.7) and 

(10.8) that 

pr(q> ut)"'pr(1 t > ut  )1:1 -6f10(T3
/2).ilt  1 

^v. pr(q't  > ut), 	(t < T-1) . 
2 

Note that we cannot prove the reverse statement "((%> u
t 

implies Zt  > ut  with high probability" without proving difficult 

results about asymptotic smoothness of L(y). This smoothness may, 

however, be inferred by examining the log likelihood 

log L = - k E {xi  - a - po(ui  - 	- 1/2  E ffci,  - a - yui  - 
i=1 	 i=T+1 

where 02  = 1 for convenience. 

For uT  < y < ura  we have 

3(log L) = - po  E {xi  - a - Ro(ui-  + pi  7.] 	
1 	- f31(ui- y),} 

i=1 	i=T+1 

(10.10) 

(10.9) 
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But log L is not differentiable with respect to y at y = uT: the 

difference between the right- and left-hand derivatives at y = uT  

is (pi  - 00)(xT  - a), so that the kink in slope of the log 

likelihood is of order 1 — relative to the slope. We infer that 

the log likelihood, and hence L(y), are asymptotically smooth in 

the obvious sense. 

Corresponding to (10.9) is a similar expression for t > 
T2+1 ' 

derived in the same way from (10.4), namely 

pr(Y < ut)A/pr(rt_i  < ut), (t > T2
+1 

Both (10.9) and (10.11) will be taken as our approximation to the 

distribution of y. It remains to account for the missing values 

1 1 - of t: so far we have covered t < T2 — and t > T+ — . Consider the 
2 

1 symmetric case, T even and y = T+ . Then it is clear that 
2 

bs/ pr(AT_r  < kT-r) = pr( T.1.1.  > T+r) 

by symmetry. Therefore, corresponding to-(10.11) with t = .11 + 1 

we should use (10.9) with t = 2 - 1, since cwill have a 

symmetric distribution. Lastly, when T is odd, either of (10.9) 

and (10.11) may be used for t = VT + 1): asymptotically they are 

equivalent. 

We denote our approximation by G1(-), 	which by the 

above discussion is given by 
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pr(Ztt  < ut) 
T+1 

t5 2— 

G1(ut) 

C pr(c't_i  < u
t
) t > T2+1 

(10.12) 

To get a continuous version G1(w) of (10.12) valid for all w an 

interpolation is necessary. For example 

	

(w - u) 	(ut4  - G 	= 	 1 	(ut+1- ut
) Pr(Ct+1 < w)  (ut+1 - ut  Pr(

C't < w)  

(uts w s ut41), 

which reduces to (10.12) for w = u and w = 
ut+1.  

An alternative to G1 ( • ) can be derived from the fact 

that the asymptotic smoothness of L(y) implies asymptotic 

equivalence of ..., 	741, 	. Without giving a 

more formal argument we deduce that 

pr(fy* < w).-%eG2(w) = pr(SIT  < w) . 	(10.13) 

This, incidentally, leads to the asymptotic normality of Y. We 

shall discuss this briefly later in this section. 

It is reasonable to assume, under mild conditions on the u
t
's
' 

that (10.12) holds for general u
t

Is but with modification to the 

1 	+1 dichotomy t s T+  and t > T • To avoid this difficulty we 
2 	2 

assume in what follows that the u
tI s are equally spaced. 
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Now (10.12) represents only the first stage of our 

approximation. In principle the probabilities pr(irt  < w) can 

be calculated explicitly using the bivariate normal distribution 

(see Section 15), but in practice such calculation is often difficult 

and usually laborious. We use a standard method of approximating 

the distribution of a ratio of normal variates to approximate the 

probabilities pr(S,"'t  < w). 

By definitionYt 	 = = (&ot &1t)/(fCt - Tot)  (t 	
2, ..., T - 2); 

 

we shall assume, without' loss of generality, that $1  > $0  so that 

the denominator is positive with probability tending to one as 

t ,t' -w 	Both numerator and denominator are normally distributed 

with non-zero means, so that Yt  has a "generalized" Cauchy 

distribution. We use the approximation 

Pr(.7't < w) 	Pr-P'ot 	< w(S1t Sot) 3. 
	

(10.14) 

A detailed discussion of this approximation is held over to Section 15 

to avoid loss of continuity in the present section. 

First we have to calculate the means, variances and 

correlation coefficient appearing in the distribution of art. Both 

Ar 
numerator and denominator of y

t 
are unbiased for t = T but not 

otherwise. Suppose t < T, then clearly 

E(ce
ot
) = a

o 
and E(Sot) = 90. 
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A little calculation shows that 

wilt) = al + (00 - 01)  't 
and 

E(Rit) = 01  + (00  - 01) Ot, 	(t < T), 	(10.15) 

where 

e
t 

and Ot  

1 f 
= 	E 	t T  (U 	y) - t*U* 0t  

i=t41 

= 	E (ui  - 1-140(ui.- y)/C:u,t  . 
i=t+1 

(10.16) 

When t > Ts E(alt) = al  and Egrit) .01. 
A further calculation shows that 

E(a;t)  = ceo - (50 - Di)  't 

and 	E(itt) = 00  - (00  - 01) Ot, 	(t > T), 	(10.17) 

1 .5' t  where et 	E (u - y) - emt0 t t
i=T+1 

t 
and 	0t 	E (ui  - rit)(ui  - y)/Cuut i=T+1 	,  

If we define 0
T  = 0 

= 0, we can write 
T 

(10.18) 

E(eiot  -1;t)= ao  - al  + (01  - 50) t 

= (Di - P'0) (y + et) 
	

(10.19) 

and E(rit 	= (°1 	°0)(1 	0t)' 
	(t = 2, 3, ..., T - 2), 

(10.20) 

with et, Ot  given by (10.16) and (10.18) for t < T and t > T 

respectively. 



and at(a,p) = nov(or
Af 	

ai ot 	t 60t)  

A, =) 
cuu,t Cuu,t 

(t = 2, 3, ..., T.- 2).... 	(10.21) 

g• 
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For the variances and correlation coefficient we use the 

standard expressions for covariance matrices in least squares 

regression, namely 

oovG , lr 8r 1( ) 	Vt ot sot' it,  -it 

0 

where 
t 

tCuu,t Vt 	cr2(-E u 
i1 	1=1 

t 

0 

Vt 

and 

t*c* uu,t Vt  = 
T 	T 
E u2  -E 

i=t+1 i  i=t+1ui  

T 
-E U. 	t  
i=t+1 1  

Then ,2(a) = var(cx - 	) = ot 	lt 
cr2( 

C  
+ tUP 

uu,t  
tCuu,t 

C* 	+ t*U*3  + uu,t  
t*C*  UU,t 

dl(D) = var(61t  %t) 	a2( c 1 C*
1  

uu,t 	uu,t 
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Employing the definitions of Ct, Dt  and Et in (9.3), (10.21) 

becomes 

e(a) = 	a2T 	Ct 
tt* cuu,t C uu,t 

al(0) = 	62 T  

ttC 	C*  
uu,t uu,t 

Et 

and a
t
(Y,D) = 	a2T 	Dt 

ttC 	C*  
uu,t uu,t 

whence 	Pt 
	Dt 

iCt  Et  

is the coefficient of correlation between a no 
ot - lt and Bit sot' 

Now define also 

(Et  w2 - 2Dt  w+ Ct) T (10.22) E2t  (w) = 
tt*Cuu,t C:u,t 

the variance of (Sr t 	lt 	e 	s - 2r ) w: - It sot)' O  

Then (10.14) becomes 

pr(cit  < 	•(13 (Nit w et  + W0t) /Et  (W).} 	(10.23) 

where f3 = (D, - 130)/a. 
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The quantity 2(w) has the alternative representation 

El(w)  = 	+ — 1* + CU - w)2  + 	t  alk  ,-, 02  
t t 	C

uu,t 	C* uu,t 

which is easier for calculation; cf. V ( • ) in (8.2) 

Together with (10.23), (10.12) and (10.13) give approximations 

to the distribution of y which are easy to calculate. The accuracy 

of both approximations is studied in detail in Section 11. 

We mentioned earlier that G2(w) in fact tends to the 

asymptotic normal distribution derived by Feder and Syiwester (1968). 

This follows from (10.23) and the definition G2(w) = pr(' < w) 

by letting uT  = 0 for convenience and noting that 

E2(w) 4 (1  +10 ° + 011) + 	(1  ) w = 0(T-). T  
'T T 1*  

Then since 0 = 0 = 0, (10.23) gives 

pr (Y < w)-‘4{1349) (w - y)1 
	

(10.24) 

We can proceed to this result directly from the joint 

likelihood of a, 80, pl  and y by evaluating the required derivatives 

and assuming Y u . Then the asymptotic covariance matrix j 

is given by 



TOT - 	i*(a*- y) 

E(U4." 02 	0 
j=1 

T 
E (u - y)2  

j=T+1 

• a- 

-1 
-T00- T*131  

-$ T(u - y) 
T 

-hT*(a4; 

(32
1  'Po 

T  

T 

a2  

cov(M)",  1 I °*- 
Th+—

UU,T 
} (u- Y) +• 

Cuu,T 
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It follows that 

A 	2 
var 1,6)",  EC----  , 	var (01)-vEe7-- 

110,T 	 uu,T 

and 01) iv  1 vttr 	
r72 

E (u, 
i=1 + i=T+1  

E 	(u4- y)2  

T C
uu,T 

TC* UUs T 

ti 
2 
(1+1 ) 	0(1) + 0(1*) f3 T T*  

for equally spaced ut's. We emphasise that these calculations 

assume the stated asymptotic normality: no proof is offered here. 
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11. An Empirical Study of the Model  

To study the distribution of qempirically, and hence 

make comparisons with the approximations of Section 10, we 

generated realizations of the model (8.1) for varying 0,y and 

T. For each combination of 3,y and T we took 500 realizations. 

The error terms z
t 

of the model were simulated in a standard 

way, using pseudo random numbers and a power series approximation 

to the inverse of the normal probability integral. 

In the summary of results presented here we take three 

values of T, namely 25, 50 and 100, with two values of y in 

each case ands = 0.2 (0.2) 1.0. As well as analyzing the 

empirical distributions of <,, we also calculated E(R), var 

and corr (R,c) empirically. Examination of these is useful in 

deciding which combinations of 0, y and T give "well-defined" 

situations, by which we mean situations where inference about 

0, and y is straightforward. In this analysis the explicit 

definition of "well-defined" is that F has a bias of less than 

57., the variance of 13  is stable (independent of 5), and the 

distribution of ; is well contained in the interval (1, T). We 

shall see later that the well-defined cases possess a useful 

property concerning the log likelihood ratio test of hypotheses 

about y (Section 13). 
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y
A 

The empiriCal moments:of 0 and  are contained in Table 11.1, 

in which the well-defined cases are marked with an asterisk. For 

example in the case T = 25, 0 = 0.2 and y = 8.5 we see that the 
A 

mean of 5 is approximately 20, and the size of the variance implies 

that 5 cannot be determined with any useful precision. Also the 

spread of the distribution of ;is large enough to make inference 

about y difficult even for known 0. 

9 

mean 

A of y 

variance 

A of y 

correlation 

,A A; corrt0,y) 

mean 

A of 

variance 

of  5A 

25 8.5 0.2 11.23 49.13 -0.13 0.405 1.09 

0.4 9.30 20.91 - .22 .651 0.459 

0.6 8.79 5.98 - .46 .678 .107 

0.8 8.65 2.54 - .61 .844 .059 

1.0* 8.56 1.28 - .58 1.026 .034 

12.5 0.2 12.80 38.68 - .07 0.427 .790 

0.4 12.43 12.46 - .08 .542 .174 

0.6 12.43 4.38 .04 .642 .025 

0.8* 12.54 1.70 - .15 .803 .014 

1.0* 12.54 0.94 - .10 1.013 .014 

Table 11.1 Empirical moments of 0 and iN) based on 500 

realizations of model (8.1) in each case. 
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mean variance correlation mean variance 

	

A 	A y T 	Y 	5 	of y 	of 	corr(M) 	of 14 	of iq 

50 15.5 0.2 16.55 37.98 +0.01 0.257 0.056 

0.4* 15.64 3.79 - .69 .408 .0047 

0.6* 15.48 1.41 - .62 .604 .0041 

0.8* 15.54 0.80 - .67 .803 .0045 

1.0* 15.50 0.47 - .59 1.000 .0042 

25.5 0.2 25.25 20.19 - .01 0.226 .0152 

0.4* 25.52 2.98 - .04 .404 .0014 

0.6* 25.56 1.24 + .01 .600 .0016 

0.8* 25.53 0.52 - .09 .803 .0015 

1.0* 25.51 0.36 + .01 1.002 .0015 

100 25.5 0.2* 25.59 9.10 - .71 0.204 .0011 

0.4* 25.52 1.54 - .67 .402 .0009 

0.6* 25.48 0.67 - .67 .602 .0009 

0.8* 25.52 0.38 - .70 .800 .0008 

1.0* 25.50 0.26 - .68 1.000 .0009 

50.5 0.2* 50.40 4.82 + .04 0.201 .0002 

0.4* 50.42 1.07 + .10 .400 .0002 

0.6* 50.50 0.51 + .08 .601 .0002 

0.8* 50.49 0.25 - .01 .800 .0002 

1.0* 50.51 0.17 - .01 1.000 .0002 

Table 11.1 (continued) Empirical moments of and ./k) based 

on 500 realizations of model (8.1) in each case. 
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Examination of the cases asterisked in Table 11.1 suggests a rough 

method for determining whether or not a particular case is 

BT(T - T) 
well- 

defined, namely to calculate 	which is greater than 

about 5 for well-defined cases. 

To illustrate the comparisons between the empirical 

distribution of c'and the approximations G1(-) and G2(-) we 

drew several normal plots as in Figures 11.1 to 11.6. These are 

all for well-defined cases. From these we conclude that G1(•) 

is a good approximation except when T or T - T is less than 10. 

The approximation G2(*) is under-dispersed even when T = 100. 

The evident non-linearity of these plots indicates the non-

normality of Yin finite samples, although for T = 100 the 

discrepancy is apparently quite small. 

All the calculations of G1
(.) and G

2
(0 used the 

approximation (10.23). The error involved was negligible. 

It is worth noting here that in the null case (130  = 01)  

the distribution of qis apparently uniform over its range. We 

have not investigated this theoretically, although it would not 

appear to be a difficult problem. Figure 11.7 is a histogram 

for T in the null case when T = 50. 
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12. Distribution of S. 
Although y is the parameter of primary interest in our 

discussion, in most practical applications one would wish also 

to make inference about S. For any t we know that "fi
t 
is normally 

distributed, and the asymptotic normality discussed in Section 10 

shows that li*•-•-•tT,T. This is a useful result, but it is not always 

a good approximation. For the well-defined cases of the previous 

section, the empirical distribution of is very close to the 

asymptotic normal distribution. But clearly in other cases I; 

has a non-negligible bias and inflated variance; see, e.g., the 

case T = 50, y = 25.5, $ = 0.2 in Table 11.1. The normal plots 

of the emoirical distribution of f3 in such cases illustrate 

clear non-normality. Figures 12.1 and 12.2 are typical examples 

of well-defined and ill-defined cases, respectively. We remark 

that in the null case the non-normality is even more marked. 

For completeness we note briefly that the sample correlations 

between S and y in Table 11.1 increase as' l4.1 increases. A 

further investigation shows a clear relationship between the 

correlation and the ratio T 
 , independent of fl and T. However 

there seems little merit in pursuing the point further. 
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13. Inference about y 

When = (01  - 00)/a is known, there is in principle no 

difficulty about performing significance tests of hypotheses 

about y using the distribution function approximation G1(.). 

When 0 is unknown, however, we encounter the same problem as in 

Section 4 of Part I, namely inference with nuisance parameters. 

The remarks of that section apply here; again the nuisance 

parameter is estimated by a statistic which is asymptotically 

normally distributed with known mean and variance dependent on 

T (we assume the case to be well-defined). The significant 

correlation between 6' and q, mentioned in Section 12, must of 

course be taken into account. 

The continuity of L(y), and the discussion of asymptotic 

normality in Section 10, indicate a method of avoiding the 

nuisance parameter difficulty. Under the conditions for 

asymptotic normality of (A 

test statistic 

I% 	" 
130 2 l' 1 2  Y)2 t

he log likelihood ratio 

X = - 2 logr(V
} L (7) 

is asymptotically distributed as xi, the distribution being 

central chi square under the hypothesis if::: y = yo. For a 

discussion of this result see Kendall and Stuart (1961, chapter 24). 

The test based on A is asymptotically consistent and asymptotically 

more stringent than any other test of H. By the definitions in 
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Section 9 we have 

x  . 1 { 
072 	Z2,7  (1) - Z2T  (y 0 0 

A 
where u

T 
5 yo 

< u
T.

.1.
1 

and 	y 5 < 1. 0 	0  

(13.1) 

This may be used to carry out a significance test of H*  without 

any knowledge of 5. Methods based on G1(•) and may have 

certain advantages, but without further study it is difficult to 

be precise on this point. The important question to answer here 

is: when is the 	distribution a valid approximation to the 

distribution of (13.1)? For the empirical study of Section 11 

we also examined the empirical distributions of (13.1) and 

found the use of the chi square approximation to be accurate in 

the well-defined cases. Figures 13.1, 13.2 and 13.3 illustrate 

the comparison between empirical and chi square distributions by 

percentage plots; (that is by plotting cumulative empirical 

frequency up to x against pr(xl 5 x)). Figure 13.1, for an ill-

defined case, shows how over-dispersed is the distribution of A 

relative to that of XI. In Figure 13.2 the comparison in the 

upper tail (probabilities greater than 0.9) is good, as it is for 

all the well-defined cases. As the sample size T increases, so 

the fit improves over the whole range: the.plot in Figure 13.3 

I 
	is linear for cumulative probabilities greater than 0.20. Since 

the upper tail of the distribution is of most importance, we 
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conclude that the chi square approximation is good for well-

defined cases. 

(Further empirical study showed the accuracy of this 

approximation to be independent of 5 and 1, except in so far 
as these determine whether or not a case is well-defined.) 

In any particular example the 1.r. test using (13.1) is 

simple to use. The values Z2  (y ) and (c) are calculated 
To o 
	T 

during the derivation of qset out in Section 9; Llhe value of 

X is then referred to tables. In Example 2 of Section 9, where 

T = 50, y = 25 and D = 0.4, the 95% confidence interval using 

the chi square distribution is (23.5, 32.8), which can be read 

off from Figure 9.5 by solving 

2 logkL(c)/Lo} - 3.84 = 2 log{ L(y)/Lol. . 

This compares favourably with the distance between upper and 

lower 231% points of the actual distribution of c when 5 is 

known, which is approximately 7.5. 

In the null case 00  = Di) we found that the empirical 

distribution of Z2,4), the log likelihood ratio test statistic 
" 

for testing Ho: Do  = Di, is very close to the chi square 

distribution with 3 degrees of freedom; Figure 13.4 gives a 

typical percentage plot, for the case T = 25. The explanation 

of this has not been found, although it is clearly an important 

result in testing H. The statistic a.(c) is automatically 

^ 
computed in the procedure for calculating y. 
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14. Further Developments  

The empirical investigation of Section 11 shows that the 

approximation Gi(') is good for well-defined cases. For unknown 

3 the likelihood ratio test statistic is the principal instrument 

for testing hypotheses of the form y = yo. Further investigation 

of inference about y will include some study of significance 

testing in thee -presence of a nuisance parameter, which we 

discussed briefly -in-Section 4. The problem needs closer 

examination for ill-defined cases; as with the problem in Part I, 

theoretical results in ill-defined cases (equivalently small 

sample cases in general) seem difficult to obtain. 

The results we have obtained concerning 'rk.iand the log 

likelihood L(y) 
	

are'relevant 	to the problem of 

testing the hypothesis 

a + Do(ui  - y) 	ei  (i = 1, 	T) 

= a + 01(ui  - 	+ ei  (i = T 	1, ..., T) 

against the quadratic alternative 

H 	x
i 
 = a + bui  + 2  CU4-  e 	(i = 1, ..., T). 

These hypotheses are separate in the sense of Cox (1961) who 

mentioned this problem. Also relevant to this is the work on 

residual examination by Brown and Durbin (1968). 
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Another possible extension of our work is to the estimation 

of planar intersections, that is to take a multiple regression • 

model of the form 

p 
xt  = a

o
+ 010ult  + E jujt  + et  

j=2 

xt  = al + 
0
11
U
1t 

E 0.11 	e j=2 	jt 	t 

(t = 	r) 

(t = T 	1, 	T), 

where ao +131oY = 
a
l+ 1311Y and ulT  5 y < u1,T+1. Again the et  

are N(0, 02), independent, and the independent variable ult  

increases with t. The difficulty with this generalization is 

that estimation of 010,011  and y is never independent of estimation 

of 0
2' ..., 0p. (The independence would, of course, guarantee 

that the results of Sections 9 and 10 hold). The cause of the 

difficulty lies in the fact that when T is unknown, no design of 

U = ((u
jt)) is possible to achieve the necessary orthogonality. 

It should, however, be possible to attack the problem in 

the same way as Section 9. A generalization of Sprent's (1961) 

results would be necessary for this. 

Two further problems that might be studied are 

(i) multiple intersection, that is k-phase regression systems 

(see Hudson, 1966); 

(ii) shifted intersection , that is removing the restriction 

u 5 y < 117+1. 



means. In fact the latter studied the ratio Z - 	 (our b + Y
2 

notation), where 	and Y
2 are independent standard normal 

variables. The connection between Z and W is said (incorrectly) 

to be that "It suffices to study [2]; translations and changes 

of scale will provide the general ratio [W]". This assumes there 

The distribution of W in the case 81 = e2 = 0 was 

discussed by Geary (1930). Fieller (1932), and more recently 

Marsaglia (1965) considered the general problem with non-zero 
a + Y

1 
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As to the problem of testing Ho: 00  = 01, which we 

mentioned very briefly in Section 13, it would be worth 

investigating formally the empirically-derived result about the 

log likelihood ratio 21,(y) being distributed approximately as a 

X3 variate. 

15. Generalised Cauchy Distribution  

Let Xi and Xi have a bivariate normal distribution with 

means 812 variances al (i = 1, 2) and correlation coefficient 

p, and let W = X1/X2. In Section 10 we were concerned with the 

case X1 = 	X2 = .151t 50t  and W = yt. Here we examine, 

in a general setting, the standard approximation to the distribution 

of W based on assuming X2  > 0; see (10.14). First we derive the 

exact distribution of W. 
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to be four parameters, whereas there are five (01, 022 al, aS and 

p). In fact Z has no great advantage over W anyway, since the 

distributions of both involve the bivariate normal distribution. 

If the bivariate normal density of (Xi, x2) is cp(x, y), 

and the density of W is f(w), then 

f(w) a 	lyi cp(yw,y)dy 

Substituting for cp(x, y) and carrying out a simple integration 

gives 

f (w) 
- j(20ala2a3(w) [ 1/(14111)1 	[7/(1-pt01 

b(w)d(w)  

• 4)11 -p2)  

TIC
1
a
2
a2(0 

exp{-  	(15.1) 

2(1-p2) 

where 

a (w) - 
ala2  

b(w) = elw  
p(01 + 02w) + 02 

a1a2 	aS 

c 	el _ 2p9192 	(32 + 2 
02 	6162 aa 

and 	d(w) = exp b2  (w)/a2  (w) 	c 
2(1-p2  ) (15.2) 

This result was obtained by Fieller (1932). 
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To obtain the cumulative distribution function F(w) we 

introduce the familiar notation 

1 L(h, k; p) = —3.37-7-.2rc  exp{- 2(1-
1  
p2) (x2  - 2pxy + y2)1 dxdy, 

Then 

) = 	
2 

	

101 - 02w 	
- 

	

02 	
a2w 

- Pal F(w 	L 

	

cricr2atv" 	775271T4  

 

 

/102w - 01 	92  • a2w  - Pal + L 
crla2a(w) 9  a2 7270j 

(15.3) 

As 
02 92w - 90 
a2 	

F(w)-A1  0-777 7737 	• 
1 2 

This may be seen another 

way, for if X2 were positive with probability one, then 

e2w 	-  01  F(w7 = pr( - wX2 s 0) = r  
L ala2ami 

This suggests that, if 0 < a2  << 02, a good approximation to F(w) 

is 

F*( w) 

which has derivative 

f*(w)  = 	b(w)d(w)  
,A2r)ala2a3(w) (15.4) 

Now 	F(w) = pr(X1  - wX2  s 0, X2  > 0) + pr (X, - wX
2 

 0, X
2 < 0) 

= pr(X1  - wX2  s 	+ pr(X2  < 0) - 2pr(X1  - wX2  s 0, X2  < 0) 

F*(w) + pr(X2  < 0).E1-2pr(Xl- wX2  s 01X2  < 0)). (15.5) 
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and hence 

IF(w) - F*(01 s pr(X2  < 0) (15.6) 

This bound is attained at w = + co, for by (15.5) or the definition 

of F*(w) we have 

 

L  
a2 J 

 

1;  

(12 

 

F*(- and 	F*(+ ) = 1 (15.7) 

    

the c.d.f. F(w) is proper. If 02 were negative, we would use 

pr(X1  wX2  Z 0) as the approximation. In either case F*.+F 

uniformly as a2-11.0. 

Note from (15.4) that the approximate density f (w) is 

negative when b(w) < 0, i.e. for w in the region 

or 

w < *142 
w > - '1142 (15.8) 

where * T1 = P9151'2 - B2a1 and *2 = Pe2c71c72- 011' 

Further, when b(w) > 0 it is easy to show that f(w) > f*(w). 

For by (15.1) and (15.4) we have 

f(w) = 
f*(w) fa(w),b1(Vv2 )1-  

b (w)  
a(04(1-p2) 

2,j(1-p2)a(w) 	b(w)  Z 

b(w) 	IL a(w),J(1-0 

The result follows on using the inequality 010(-u) < w(u)/u for 

u > 0. Therefore F(w) - F*(w) is monotonically increasing from 



{'(wa2- pal  )u ("2-  el ) j 
or/(1-p2 ) du, 
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f 	) at w = -co to 
/1/4  a2 

2 

cr2 
at w = +00. 

By (15.5) we have 

or T,  F(w) 	F*(w) ÷ pr(X2 < 0) - 2 	cp(x,y)dxdy, 
J —co —co 

where 

(15.9) 

cp(x,y) = 	1 	X 
2Traicr2,1(1-p2 ) 

Lr   (x_01)2 	2p(x-ei) (y-02)4.  (y-02)2  t] 
exp 

	

2(l-p2) L 	
_ 	 

(7152 	cy2 2 

The double integral in (15.9) is easily reduced to 
-02 o wy r a2  

I cp(x,y)dxdy = j 	
2
cp(u) 

-m -03 	-00 
(15.10) 

where cp(u) = (27) s  exp(-ku2). 

Hence the point at which F(w) = F*(w) is the value of w 

satisfying 

	

-02 	-0 2 

	

a2 

 

	a 2 
cp(u)du = 2 i cp(u) 

.../ 
-co 	-co 

(wa2- oo-i )u + (we - 8 ) 1  2 	1 	du . 
ari(1-132)  

(15.11) 
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The simplest case is when *2  = 0, the solution being w = pal/a2; 

this is also the only time when f*(w) > 0 for all w. In 

general it is easy to show that the solution wo of (15.11) 

satisfies 

Pal 
IN
To 

< 	if *2  < 0 
a2 

Pal and 	wo > 	if V2  > 0. 	(15.12) 
a2 

Since IF(w) F*(w)j only attains its bound at w = + m, 

we would like to obtain sharper bounds on the difference for 

finite w. Integration by parts in (15.10) gives 

0 -02 
a2 

o(x,y)dxdy = f 92\ 	Pale2- e291  
k. a2/ 	61a2 j(1-p2 ) j 

 

-92 

t
i 
 c72 

(wa2-  P71)  
(371.77 

e(mu
2 
 pa.)u + (w02- 01))L 

(u)cp  - 	 2 ) 
ulq‘j. P  

du 

•CD 

and since 82 > 0 we may use the inequality 
	

(u) 5 cp(u)/(-u), 



where I
o 

= 
-- 2 

Pa192 - a201  
a1a2,/(1-p2) j 

( 

a2 
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giving 

0 wy 

Io s 	
Jr- 

cp(x,y)dxdy 5 I0  + I1(w) 	< pal/a2) 

0 wy 
and 	Io + I1(0 5 
	cp(x,y)dxdy 5 I0 	> pal/a2)) 

(15.13) 

and 	I1  (w) 
Pal-  '472 1402- 91 	-- b(w) 

= 0777.7cp aicr2a(w) a(w).j(1-p2) 

Therefore, by (15.9), the difference F(w) - F*(w) has the 

following bounds: 

J 5 F(w) - F*(w) 5 J + K(w) (
w> Pa1 /a2)  

J+ K(w) 5 F(w) 	F*(w) 5 J 	Pal/a2) 
	

(15.14) 

*2  

1 	(114/(1- pa) 

and 

where 
—- 

J 
= 	

a2 ) 1  

and 	K(w) = 
2(wa7- pal)c w92- 91  1 

a1 	
eP 1,  

2 	la2a (w)i 
b(w)  

t a(w),/(1-p2) 

(15.15) 

When w = pal/a2, F(w) - F*(w) = J. 
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Together with (15.6), (15.14) gives improved bounds on the 

difference F(w) - F*(w). Also the solution to (15.11), bounded 

in (15.12), indicates where F(w) overtakes F*(w). 

To see more clearly the implication of these results, 

consider first the simple example of a single linear regression 

Yt = 
 
' out 	t 	(t = 1, 	T) 

where e . 'T are independent N(0, 1) and Xi  = (1% X2  = 

are the m.l.e.'s of ce, 0. In particular let u = 0, 0 = 0.2 and 

T = 10. Table 15.1 contains exact values of F(w), F*(w), the 

overall bound in (15.6) and the bounds of (15.14) for seven values 

of w. 

w F(w) Pk(w) 
overall 
bound 

bounds from (15.14) 
lower 	upper 

-15.0 0.05940 0.09403 0.03464 -0.03464 -0.03462 

-10.0 .08994 .12458 03464 - .03464 - .03462 

- 5.0 .16740 .20203 .03464 - .03464 - .03462 

0.0 .46536 .50000 .03464 - .03464 - .03462 

5.0 .96445 .99908 .03464 - .03463 .03462 

10.0 .96568 .99967 .03464 - .03462 - .03352  

15.0 .96838 .99698 .03464 - .03462 - .02495 

Table 15.1 Comparison of F(w), F*(w) and bounds on their 

difference for ce = 0, 0 = 0.2, T = 10. 
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In this example the difference F(w) - F*(w) is 

approximately constant over a wide range, in fact in all but the 

extreme tails. The closeness of the lower and upper bounds 

confirms this. The maximum of F*(w) is at w = 7.0, after which 

F*(w) decreases albeit slowly. The practical significance of 

the results is that if the overall bound is less than 0.05, say, 

the exact probability F(w) may be approximated accurately by 

F*(w) + pr(X
2 

< 0). These remarks are, of course, not necessarily 

true outside the regression context. One use of these precise 

bounds is in checking computed values of F(w), which involves 

bivariate integrals; computation of F*(w) and the bounds is less 

liable to error. The method used for computing values of F(w) 

was an iterative two-variate Simpson's Rule. 

For the double regression relationship, similar results 

hold. In the examples illustrated by normal plots in Section 11, 

the overall bound is very small indeed. For example in Figure 11.1, 

where the approximation is probably least accurate, the difference 

between exact and approximate values of G1(13) is less than 

(-9), which is negligible. 
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