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ABSTRACT 

The general theory of relativity is used to 

analyse, to the first post-Newtonian approximation, 

the stability of various spherically symmetrical 

bodies against radial perturbations. 

First, static composite bodies are investigated 

that consist of a core, composed of ideal gas and 

radiation, in which the ratio p of the gas-pressure 

to the total pressure is constant, and of an envelope 

of adiabatic gas. Numerical analysis indicates that 

the stability of such a body depends strongly on the 

position of the interface separating core from envelope, 

the body being stable for a greater range of values 

of cr (the ratio of the central pressure to the central 

rest-energy density) the closer the interface is to 

the centre. 

The ratio of the critical radius Rc (at which 

instability sets in) to the Schwarzschild radius Rs  

for various small values of p(o < p < 0.1) in the 

core, is also investigated. It is found that this 

ratio too depends strongly on the position of the 

interface, being almost independent of 0 for bodies 

in which the interface is near the centre; but the 



farther the interface is from the centre the more 

the ratio R c/ R
s 

depends on p . Also, for all 

positions of the interface, the ratio R 
c/Ra 

 increases 

as p decreases. 

In the case of radially oscillating adiabatic 

gas-spheres, a method different from those used by 

previous investigators is used to obtain a criterion 

for instability in the form 

Y-4/3  < K 9 

equality occurring for marginal stability, where y 

is the ratio of the specific heats and X is a con-

stant depending on the density distribution. Con-

flicting results due to previous investigators are 

assessed in the light of the present investigation, 

for the validity of which an independent check is 

obtained. 
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CRAPTER I 

ASTROPFIYSICAL INTRODUCTION 

The present work deals with the effects of 

general relativity on the structure and stability 

of various stellar models. Consequently, although 

it would be out of place to give a comprehensive 

account of the development of theoretical and 

observational astrophysics, it will be useful to 

give an outline of some of the advances made and 

also to state one or two principal results, since 

they will have a bearing on the following chapters. 

(I) CLAZ;SICAL THEORY OF NON—COMPOSITE STRLTIR MODELS 

In the pioneer researches on stellar structure 

a star was assumed to be a spherically symmetrical 

object in an equilibrium state in which the internal 

pressure is just sufficient to balance the gravitational 

forces. Such an equilibrium configuration was 

characterized by three parameters, namely, the mass, 

the radius, and the luminosity. Order of magnitude 

estimates were derived for the more important 
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physical variables, i.e. the central pressure, the 

average temperature, etc. (1) 
	

The ultimate object 

was to derive the march of the many physical 

variables throughout the star, and to determine the 

processes taking place therein which would account 

for the observational facts, such as the Hertzsprung-

Russell diagram and the mass-luminosity law. 

In 1870, Homer Lane introduced-into the theory 

of stellar structure the concept of quasi-static  

adiabatic changes in which the heat energy of the 

model remains unchanged. For these processes the 

equation connecting the pressure p and the density 

p is of the form 

P = KAY 	(1.1) 

where K is a constant and y is the ratio of the 

specific heats cp  /cv  . Early this century this 

concept was generalized by Emden and led to one in 

which the change in heat energy cl,(2 	is propor-

tional to the change in absolute temperature dT 

i.e. d2 = cdT . This is now known as a 22ltropic 

change, and the equation of state connecting the 

pressure p and the density p is given by 

p = 
2c —c 

cv 
2 

(1.2) 



where c is the above constant of proportionality, 

K is another constant, and c 	and cv are the 

specific heats of the material at constant pressure 

and constant volume, respectively. Equation (1.2) 

is usually written in the form 

1 1+— 
P = Kp 

where n = 1/y1 -1 , is known as the polztra-Eic 

7ith the equation of state in the form (1.3) 

the equations governing gravitational Chydrostatic) 

equilibrium, in terms of the usual polytropic 

variables 'F and 0 defined by 

1 
2 p+1 r  r= 	p= PcO

n  , where a = 

47cG Pc
E - 1 

9 
 

(1.4) 

and where pc  is the central density and r the 

diotaace from the centre of the configuration, reduce 

to the Lane 	den equation(1)  

( ado)  ,0$ 012  = 0 , 	(1.5) 

which is to be solved subject to the boundary 

conditions 

0 = 1 	19- = 0 , at 	= 0 . 	(1,6) 
dl 

This equation can be solved analytically (in term. 
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of known functions) only for the particular cases 

n=0,,l, and 5. 

(II) COMPOSITE STELLAR MODELS 

Great progress was made after nuclear physics 

was introduced into the theory of stellar structure 

in the late nineteen-thirties, when stellar energy 

was attribuad to specific nuclear reactions occurring 

in the central regions (at least) of the star. 

Without going into details, we may state that even 

typical stars on the main sequence in the Hertzsprung-

Russell diagram contain certain inhomogenities in 

the sense that the inner part, where the thermo-

nuclear transmutation of hydrogen occurs, is re-

presented by one set of equations, phereas the 

outer part(extending to the surface) is characterized 

b.,)-  another set. The inner part is called the core, 

and the outer,  part the envelone. Stars in the 

upper-main sequence derive energy from the cv.c.bon 

cycle and consist of a convective core and a radia-

tive envelope. The lighter stars, which are in the 

lower-main sequence and derive energy from the 

proton-proton chain, consist, on the other hand, 

of a radiative core and a convective envelope. 
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In a similar way, red giants are considered 

to be coaposite configurations consisting of two 

distinct parts - a degenerate he 	core of high 

density and an extensive convective envelope of 

hydrogen of low density. Between these two parts 

there occurs a radiative transition zone 	occu-

pies only a minute fraction of the mass and contains 

a hydrogen burning shell. 

White-dwarf stars are believed to consist 

mainly of degenerate matter of densities of the 

order of 106gm/cm3  and in general, as we shall see, 

can be regarded as composite. In the interior of 

these stars we may encounter either relativistic 

degeneracy, non-relativistic degeneracy, or a 

combination of both. In the first rase the electron-

pressure is connected to the density by a relation 

of the :Cora of a polytropu of index 3, whereas in 

the second case this relation is of .Win foie of a 

polytropo of index 1.5. Although a white-dllfarf 

could conceivably consist of rela:uivistic degenerate 

matter throughout, in general we expect the degenerLcy 

in the outer parts, at least, to bo non-relativistio, 

The boundary inside the star dividing the degenerate 

regions into relativistic and non-relativistic 

parts can be defined as occurring where the electron- 



pressure for both regions is identical and it has 

been found that the corresponding interfacial den-

sity is p,-1..916x106µE.(2)  Thus white dwarf-stars 

may be expected in general to consist of a core and 

an envelope, the core being a polytrope of index 3 

and the envelope a polytrope of index 1.5. 

Since an equation of state has been obtained 

which for small densities tends to the form applicable 

to non-relativistic degeneracy, and for higher 

densities goes over into the equation of state for 

relativistic degeneracy(1), it is feasible and more 

realistic to regard a white-dwarf star as a composite 

configuration rather than to assume that a single 

polytropic equation holds throughout.. In this 

thesis composite models, whether aprlicable to 

white dwarfs or not, will be analysed in terms of 

general relativity. 

(III STABILITY AND ADIABATIC RADTAT, PULSATIONS 

Turning to the question of stability, it is well 

known that considerations_involving the total energy 

of a star lead to the result that, if y (the .patic 

of the specific heats) is less than 4/3  then the 

star is unstable.. Neutral equilibs:ium occurs for 
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y = /3 , the total energy of the star in this 

case being equal to that when all the mass is dis-

persed to infinity.(3)  

For adiabatic radial pulsations (of stellar 

models) in which displacements from equilibrium 

positions are assumed to be proportional to the dis-

tances from the centre (according to Milne(4)  this 

assumption of homologous displacements cannot be far 

from the truth), the non-relativistic equation of 

motion, to the first order in the motions, is given. 

by(5)  

4GM 
S:L(ypdtv5 ) + [ ci2  + 	

_ 	
=- 0 

dr 

where 1.  is given by V = dt 
=
atL  

dr (r)eio ti 

If y = 4/3  , the frequency 0-  of these radial 

oscillations is zero, and hence, any homologous ex- 

pansion or contraction brings the model into a now 

, equilibrium configuration., For y 4  /3 9  the fre- 

eiLency of homologous radial oscillations is found to 

be imaginary and hence the model must be unstable, 

expanding or contracting at an exponentially acce1.3rated 

rate after any radial disturbance. The same results 

hold for,: a uniform configuration (n=0) as well as 

(1.7) 
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fur. a poiytrope (n/0). For y > 4/3  the star is 

stable against sruall radial disturbances 

(IV) APPLICATION OF GENERAL RELATIVITY TO STATIC MODELS 

Following this brief summary of that part of 

classical theory of stellar strv.cturo relevant to 

the work in this thesis, I shall now indica...6 how 

the above results are modifi3d when general relativity 

replaces Newtonian theory. The effects of geLaral 

relativity become significant for models in which the 

ratio of the pressure to the energy-density at the 

centre cannot he neglected, As we shall see, this 

ratio (denoted bycj ) plays an important role when 

considering the conditions for stability or instability 

of a given model. Incidentally, it should be noted 

that, since in relativity-theory mass and energy aro 

equilialent, the density function that appears in the 

gravitational field egtations must iucilvqa the density 

of the internal energy as well as the mass-densii;y. 

In 1963, in studying the stability of a suc,IPssion 

of static configurations Iben(6)  drew attention to 

the importance of the binding energy (rest-mass 

energy minus total energy) in determinins the be-

haviour of a given model. Since theca problems of 
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the stability of quasi-static configurations have 

been analysed from this point of view, Indeed, in 

1964 Tooper(7), when considering; static general-

relativistic polytropic fluid spheres, found that, 

although a negative binding energy is a necessary 

condition for instability, it is not a sufficient 

      

condition, Assuming the usual polytropic equation of 

   

state, he derived the following general-relativistic 

generalization of the Lane-Emden equation for a 

polytope of index n (for derivation see AppendixA
IT  

), 

1-2(n+l)a vrdi 

1 + a 	 -v+ 613Q1a÷1= 0 where 

On solving this equation, subject to the usual 

boundary conditions, by numerical methods (for n/0 

there seems to be no analytical solution in terms of 

known functions), Tooper found that it is possible, 

for given n, for there to be more than one cs)nfiguration 

of the same mass and radius, but with widely differeL::, 

internal structures, however, those modals with a 11-.:sh 

value of T are unstable. He also showed that f 	a 

given value of the rest-mass, it is possible for they,-' 

to be two distinct values of the total mass, the model 
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with the higher value of C being unstable. 

In 1965, so as to ensure that the speed of 

sound is always less than that of light, Tooper(8)  

considered adiabatic spherically symmetrical fluid 

spheres obeying a more truly relativistic pressure-

density relation of the form 
1 +- 2 = 	2 

P 	KPg 	Pc 	vg  c + np 

where ps  is the density of the rest-mass of the 

matter (gas). He derived a new general-relativistic 

generalization of the Lane-EMden equation that dif-

fered slightly from equation (1.8), namely 

dQ 1-2 / 
dl 	1+ 	a +- 	 +- 6 3,9n+1 9  n where — (117 <- 43- ( 1+ n.66,) . 

(1.10) 

The values of ay (now defined as p0 /pgc  c
2), at 

which instability against radial perturbations sets 

in were found by using a vartational principle due to 

Chandrasekhar(9) that will be described below. For 

n<3, Tooper showed that, regarded a functions of 

both the mass and the binding energy reach their 

first maxima for these values of cr . As CI increases, 

the binding energy eventually becomes negative. .T1- v4- 

was also found that, unlit e the case of a classcai 

model4 there are unstable relativistic configurations 

10 
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with positive binding energy, instability occurring 

for smaller values of CY as n is increased. For 

n-3, the configurations are unstable for all values of 

a , the binding energy being always negative. 
A graphical method was given by Tooper for de-

termining G and hence the internal structure of a 

configuration of specified mass and radius, but it was 

found that for a particular value of CV Do more than 

one stable configuration exists (and in some cases 

no stable configuration exists at all). 

Tooper made some applications of this work to 

degenerate stars, in particular to limiting cases of 

white-dwarfs in which the electron gas is extremely 

relativistic (corresponding to n=3 and y=4/3). 

These objects are unstable in general relativity (being 

marginally stale in Newtonian theory). On the other 

hand. white-dwarf configurations in which the pressure-

density relation is non-relativistic or moderately 

relativistic over most of the star were shown by 

Chandrasekhar and Tooper(10) to be stable provided 

that the radius of the star is many titres the 

Schwarzschild radius, the actual factor depending on 

the density distribution. 
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In Chapter 1  of the present thesis, one of the 

topics that will be dealt with concerns the stability 

of composite static spherically-symmetrical stellar 

models consisting of a core and an envelope, the core 

being a mixture of ideal gas and radiation, the 

equation of state being similar in form to the 

adiabatic equation (1.,9) with n=3 but including 

the internal energy of the radiation as well as that 

of the gas. The envelope is assumed to be composed 

of material for which the equation of state is given 

by 

1+1  
p Kp nl 

g 
pca = p co +-Al p 9 

where Al  is a constant depending on the actual 

constituents of the envelope. Expressions for the 

physical parameters ('the mass, the radius, etc.) 

wi31 be given, but the principal result obtained is 

than the binding energy (and hence the stability) 

of the configurations depends not only on the parameter 

cy but also strongly on the position of the interface 

dividing the core and the envelope, 

Although the numerical work (for various values 

of Al and n1 for which (3 0 in the core and 

f3 ,-t,  1 in the envelope) is not particularly precise 
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(especially for large G ), it serves to exhibit the 

main features of these composite models and appears 

to agree with our intuition. It is shown for these 

models that, given the position of the interface, 

instability sets in for smaller values ofd-  than 

those predicted by TOoper for the instability of 

complete (i.e. all envelope) models. It is also 

shown that the binding energy goes through a maximum 

(i.e. instability occurs) for smaller values of ci 

when the interface is closer to the surface. 

Since early in 1963, much interest has been 

shown in the properties of large spherical masses 

(of the order of 108 solar masses), following the 

suggestion of Hoyle and Fowler that star-like con-

densations of this order of mass may be possible 

sources of the large energies (up to about 1062ergs) 

required to account for the strong discrete radio 

sources (assuming that they are at cosmological 

distances). For masses of this order, general 

relativistic effects tend to be significant. Hoyle 

and Fowler assumed that a polytrope of index 3 
f 

might provide a suitable model for their investigations,:.  

In 1964, following the work of Feynman(12) and 

Iben(6)  (who were the first to point out that general 



R 	rR 

ppr2dr 
co 

prMrdr 6'7cG

0 
c 

Eb  = 

0 	 j 

Ss  2 
n 8(n41) v( 1s)3  

relativistic instabilities set in at a very early 

stage in the condensation of massive objects), 
1, ,  Fowler( 314)  using a post-Newtonian approximation 

to the first order in GM and also taking 6 to 
Re 

be zero in the post-Newtonian terms, obtained for 

the binding energy the formula 

Plar2dr 

(1.12) 

and the where R is the radius of the configuration 
=Jot 

other symbols have theirjmeanings. 

For a polytrope of index n , expression (1.12) 

may be reduced to 

2 

f 
Eb 373  (9 

Mc2  4(5-n)  R 	in R 
(1.13) 

whe=c1 Rs is the Schwarzschild radius, So is given 

by 

G  2 n + 1 ,t. 4d1  
,) 	3 

+ 10 44 n' 	-4-='' 

o 

2 	
, 

d*c ;r  
j 	,'1

i
' n+2 

J 

(1.14) 

and 	is the average value of 3  throughout the 



confizuration. It was shown by Foyle and Fowler(11) 

for massive polytropes that 5 is given by 

1/ 	1/2 ,g(n_3)/4  

= r S 3( k)4 	14 v(,) ) 

47t 	aG3  
(1.15) m  

and 13 is obtained by averaging 0 with respect to 

the distribution of mass. Regarding the binding 

energy in expression (1e13) as a function of the 

radius R Fowler(14)  showed that it goes through a 

maximum at a critical radius Re  given by 

Re 8(5-n) 
 

Rs 	3 , (1.16) 

thus showing that Rc is inversely proportional to 

T3 , which is small for massive stars --being a con-

stant of the order 10 3  for a polytrope of index 3 and 

mass about 108Mo. Fowler discussed the onset of 

instability for values of R below this critcal valae. 

In 1965, Tooper(16)  studied models of massive 

stars composed of a mixture of ideal gas and radiation 

in which f3  the ratio of the gas pressure to the 

total pressure, was assumed to be a constant throughout. 

For those models in which 0 is not small compared 

with unity the equations of equilibrium were integratea 

numerically by Tooper to give a two-parameter family 

'This expression will be discussed in Chapter 3. 
(See also Tooper(15)). 1 5- 



of 5Q1utions uepending on the values of the constants 

cr and p 	It was shown that instability sets in 

when the binding energy, as a function of 5 , has a 

maximum for a fixed value of (.3 . For small p , the 

maximum in the binding energy occurs for small cr ani 

a post-Newtonian approximation to the first order in 

GM 	is adequate to describe these models. In the 
Rc2 

case 0 « 1 , corresponding to the most massive 

objects, the equations of equilibrium have the same 

form as those for an adiabatic fluid sphere of index 

n=3, and are thus described by a one-parameter family 

of solutions (depending on a only), but these models 

are unstable since their binding energy is always 

negative. 

The method of approach used by Fowler(13214) 

which is described above, will be adopted in Chapter 4 

of tna present thesis to derive an expression for 

the critical radius R0  for composite models in 

which the core is taken to be a mixture of ideal gas 

and radiation (with constant 13)„ and the envelope an 

adiabatic fluid for which the equation of state is 

given by (1.11). An expression for the binding 

energy of these models is derived which, in the 

appropriate limit, becomes the particular formula 

16 



rbteined by Fowlsr. From the former re obtain 

an expression for the critical radius that is 

much more complicated than Fowler's relation (1.16). 

It is found that this critical radius depends not 

only on the value of p but also very strongly on 

the position of the interface dividing the core and 

the envelope..  

The numerical work (for n1=1) serves to show 

that, for a given position of the interface, the 

ratio of the critical radius Rc to the Schwarzschild 

radius Rs_ is strongly dependent on the value of p 

in the core, and also, for a given value of p , this 

ratio increases more and more rapidly the farther 

the interface is from the centre. 

(V) APPLICATION OF GENERAL RELATIVITY TO NON—STATIC 
MODELS 

The effects of general relativity on contracting 

spheres was discussed by Bondi(17)  in 1964. As a 

preliminary, he suggested that the condition for the 

neutral equilibrium of a spherically symmetrical 

configuration, which in classical tdeory is simply 

y =- 4/3  is likely to be much more complicated in 

general relativity, probably depending on the detailed 

structure of the model and cn distance from the centre, 
17 



Is i7he particular case of a uniform sphere contracting 

adiabatically, he showed that this is indeed the 

case. 

The method used by Bondi (in this particular 

case) was to consider a one-parameter family of 

uniform static spheres having the same mass M and 

gradually to deform a model through this sequence of 

configurations in such a way that the only time-dependent 

field equation is 81W.-717  T4 	7  ye- , the time-dependence 

of the other field equations being neglected (so that 

they are therefore identical with those for a static 

sphere)'. Bondi found that the value of y correspon-

ding to neutral equilibrium for such quasi-static 

spheres is in fact greater than 4/3, the actual ir'ilue 

depending on the surface potential 201 c . He also 

found that the value of y varied according to the 

position inside the configuration, being greatest at 

the centre. 

In 1964 Chandrasekhar(9)  investigated, by means 

of the time-dependent field equations of general 

relativity, static spheres subject to radial per-

turbations. In order to obtain an equation for the 

characteristic frequencies of the oscillations which 

KThe time-dependent field equations may be found in 
Chapter 2 (equations (2.6)-(2.10)). 
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ensuli, he neglected second and higher order terms 

in the motions. The perturbation increments of all 

physical quantities were assumecl to be harmonic in 

time and were expressed in terms of tb.e unperturbed 

variables and a Lagrangian displacement 5 (defined 
by V = -11  , where V is the velocity of the at per— 

turbed system). These were connected by one of the 

relations arising from the identity (Tii)0  = 0 . 

In the particular case of a uniform sphere for 

which the surface potential is small, Chandrasekhar 

integrated the equations with the aid of a 'trial 

function' 5 = e
vi2 
 where 	has its usual sig-

nificance (polytropic dimensionless radius). The 

condition for dynamical instability that he obtained 

(for such a sphere) was 

4 	12 4Pc 	2GM 
- 3 4 (14)  ----3 	) 3RC 3PC  C 

thus confirming Bondi's result that the Newtonian 

lower limit of 4/3  for the ratio of the specific heats 

y required to ensure dynamical stability is increased 

by the effects of general relativity. 

Re-writing (1.17) in the form 

19 	2GM R 	(---) 9 
14(3y-4) c2  

19 

(1.18) 

(1.17) 



Chandrasekhar concluded that if y should exceed 

the value 4/3  by only a small amount dynamical in-

stability will occur should the radius contract to 

the value Re given by 

19 	2GM 
R = 	(-77) e 	• 

14(3y-4) e 
(1.19) 

Using the first post-Newtonian approximation, 

Chandrasekhar obtained similar results for polytropic 

spheres, the numerical factor multiplying 2GM/3Re2 
1 

and ------ 
AGM ,  respectively, of the above formulae 

(3Y-4) ea  

increasing for values of the polytropic index increasing 

from n=0 (value for a uniform sphere). 

In 1965, Kaplan and Lupanov(18)so investigated the 

effects of general relativity on the stability of 

radially oscillating .polytropic splpres. They used a 

simple method (originally devised by Kaplan) for the 

analysis of the field equations in the case of not 

too dense configurations. The method involving re-

writing the relativistic equations of hydrostatic 

equilibrium, namely(6,19) 

GMr 
— ra  

1+-2,7) h  ) 
eM

P 	
r 	dM 

= 4/crap 
(1 

2am 	7E5-  
---E) 
:oca 

(1.20) 
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in tae form 

dM 1p 	GM
T p [1 47cr2p 

p c 	
koi,-/J, 

dr 	r" 	
n 	

dr 
, (1e21) 

and then replacing the function ga(r) by a particular 

numerical constant, namely 4. (This approximation 

is in fact exact throughout a uniform sphere and at 

the centre of any polytrope.. In general, however, 

gn(r) / 4 for a polytrope when r / 0 , e.g. if n=3„ 

we find that 2.5 r g3(r) r 5.5). Using the approxi-

mation gacrY 4 , the gravitational constant G was 

replaced by G' = G[1-1-4pc/p e  , j 	from which Kaplan c  

and Lupanov obtained the following formulae for the 

mass and the radius of the polytropic mode1,1- 

3 ,  
M[12+17j la 	3/2 p 

 

a  
4K I 	

C 244° ) 

0.÷ 	

_ 

7 s 
) c2  

("1.22) 

and 	
K  1/2  

R =- [V] 	() 
(1 n) /2n 

Pc 
4K /n 1/2  

) 
C 2  

(1.23) 
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wherA Q and 	are the usnal classical poly- 

tropic variables.. On putting c formally infinite, 

equations (1.19) and (1.20) reduce to the usual 

classical formulae, namely 

3/ 3/a (3-0/2n M 47EUVI 6g) Pc  • 

R 	*1/2 pou_m0/2n ..c  

)s 

From equation (1.22) Kaplan and Lupanov found that 

the mass of a model of given central density initially 

increases with increasing central density and then 

decreases, and that the values of the central pressure_ 

and central density (15c  and Fire,  respectively) for 

which the mess has its maximum value are related by 

the equation 

and 

1 
Kp n c, ---- 

4n 	
75c_a2 

4'15, 
i.e. Y 4 /3 -- 

3(3'cc2  
• 

(1.24) 

Using a perturbation method, the per'Jurbations being 

harmonic ia time, Kaplan and Lupanov obtained an 

equation of motion from which, when integrated with 

the aid of a further approximation, yielded a condition 



i.e. - 4t3 <" 4 Pa 
3 Pac2 

which for a uniform sphere gives 

41/ 	2G-11 - 3 < 
3Rc- 

(1.25) 

(1.26) 

for: dynamical instability in the for: 
lin  

pc .11 4n C 2 Pee  

On comparing condition (1.26) with equation (1.24)0  

it is easily seen that the descending branch of M(pc) 

is uastable„ marginal stability occurring when the 

mass goes through its maximum value. 

Comparing the above results with those obtained 

by Chandrasekhar, it is seen that the factor (I4) 19 

appearing in the inequality (1.17) derived by 

Chandrasekhar for the condition of dynamical in-

stability of a uniform sphere is not present in the 

corresponding inequality (1.26) obtained by Kaplan 

and Lupanov for the same type of sphere. Also, for 

polytropes (73.0), instead of Chandrasekhar's result 

that the factor replacing (lb in (1.17) and (1.16) 

increases for increasim; values of the polytropic 

index n, Kaplan and Lupanov found that inequality 

(1.26) holds for all values of n.  (Their result 
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depends of courses  on their method of approximation). 

One object of this thesis is to investigate these 

discrepancies (see Chapter 5:k0 

In Clgster2 of the present thesis, the problem 

of the stability of slowly oscillating spherically-

symmetrical adiabatic fluid spheres will be considered 
To6cm 

on the basis of the time-dependent fieldj,of general . 

relativity.. Unlike the work of Kaplan and Lupanov(18) 

and Chandrasekhar(9), it has not been found necessary 

to introduce perturbations and the technique used 

here involves fewer assumptions. Using the two re-

lations obtained from the vanishing of the covariant 

derivative of the energy-momentum taasor i.e. (T.
1
j) 	= U, 

the equatiols of motion of polytropes in radial 

motion will be derived in the post-Newtonian approxi- 

mation, and to the first order in the motions, in the 

form 
GM pr qy t A.:(ypdiv ) +- (1-y) 	r +- 4,1c 	

j 
54 
 (r) 

pc r2 	C2 

V -A. 	4.GM o o 
+ ee 	

+ 4KGR(2-1-y) 

r
3r + (9+y)G2Mr

2 
2
r
4 c" 

+ 2C1+y) 	GMri  
pc r3j • 

(L27) 

where a prime denotes differentiation with respect to 
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(r) is defined by V = h( 5(r)eicrt), and. a" 

is the frequency of the oscillations. A similar 

equation is also derived for a uniform sphere. In 

the classical limit each of the equations of motion 

reduces to the corresponding equation in Newtonian 

theory derived by Rosseland(5). On integrating (1.27) 

and the correspondlng equation for a uniform sphere, 

conditions for dynamical instability will be obtained:- 

(i) 4/3  4/3  PO 
pee 

(Uniform sphere) 

('1.28) 

P, 
(ii) y - 4/3  r 2.25 	. 	(Polytrope of index 3) 

Poe 	(1.29) 

The corresponding results obtained by Chandraseinar(9)  

involve an additional factor of 19/14 in the right 

hand side of (1.28) and about 2.63 in place of 2.25 

in formula (1.29), whereas Kaplan and Lupanov(18) 

give the same factor 4/3  in both fo.vmulae. 

For the case of a uniform sphere, it will be 

shown that the mass, as a function of the central 

density, has a maximum at the value of Pc.,  2 at ipcc 

which instability sets in, confirming the result 

obtainel by Kaplan and Lupanov(18). In the case 

25- 



c±. a poly-trope with index n slightly less than 3, 

expression (1,28> will be checked by means of the 

first post-Newtonian approximation to the relativistic 

values of the polytropic variables 	0, and v(9, 

defined in AppendiXI*9  and it will also be shown 

that dynamical instability sets in if the radius 

contracts to the value Rc given by 

0.96 R = —47- Rs  . 
y- 3 

(1.30) 
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CHAPTER 2 

MATHEMATICAL INTRODUCTION 

I. EINSTEIN'S FIELD EQUATIONS 

The derivation of Einstein's law of gravitation 

may be found in almost any treatise on general 

relativity(1,2) and so it is only necessary to give 

a very simple outline of the basic results. 

In the absence of matter and energy, Einstein 

chose for his law of gravitation 

RI3a. = 0 
	

(2.1) 

where 0 is the Riemann-Christoffel tensor. This 

law is, of course, independent of any particular 

coordinate syrtem and thus we may take for the 

coordinate sys:;em (xl,x2,x3,x4) anal the line 

element in the form 

ds2  = gareixadxf3 	(2.2) 

where ds 	the separation of two even+-s whose 

coordinate separation is (dxl,dx2,dx3,dx4), and 

gap is the metric tensor. 

In the presence of matter and energy, the law 



of gravitation takes a different form, and involves 

the use of the energy-momentum tensor TP  , this a 

tensor expresses the energy content and the state 

of motion of the medium at the point considered. 

In formulating the law of gravitation in the presence 

of matter and energy, appeal was made to Newtonian 

mechanics in the presence of a weak static gravi-

tational field since in the first approximation the 

field equations must reduce to Poisson's equatIon. 

Considerations of this type led Einstein to state 

his law 

p Ra - a,R =- -KTP  

the constant K being given by 

axG 

04 

(2.3) 

(2.4) 

where G is the constant of gravitation and c is 

the v3locity of light in free space. Obviously, 

when the energy-momentum tensor vanishes the law (2.3) 

reduces to that for empty space-time 

Although no general solution of Einstein's 

field equations is known, we can nevertheless mdko 

certain logical assumptions concerning the form of 

the solutions which correspond to the physical problem 
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considered. In particular, since spherically 

symmetrical configurations are considered throughout 

the present work, coordinates can be chosen in such 

a way that the line-element for the system will 

exhibit spherical symmetry. 

Without loss of generality it can be shown(1) 

that for space-like coordinates (r,4;,frf) and time-

like coordinate ct, the line-element for a spheri-

cally symmetrical configuration reduces to the form 

ds2  = -eXdr2 	r2(d9+sin249de) 	c2evdt20  (2.5) 

where X = N.(r,t), v = v(r,t) are functions of 

r and t only. Using these coordinates, the 

components of the energy-momentum tensor which do 

not vanish are found to be(1) 

l 1R  = 
7T- 	1 - 1 	2g 1 	e-X(212-- + 	, (2.6) 

r  r2  r2  

-8-7EG 2 -87EG 1 2 	3 1 3 

—4- 	= -4— T 3
3 =. R22 - mg, R=R 

3  - 	R 
G. c.  

et-X(10 ... 	 t2 	/ t 	t 	-V 1"  1..% 1°  
= 2 	4 	" -TY + 

1  

T.T.kv  -% ))-e e 4 4 
( 2. 7) 

-8.xG T4 4 = R4 	2 
4 - lg4 

4R -e - X'X(  -/F  r) 
	

2

9  (2.8) 
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D 1 1 1, 
c4 '4 - j"4 - 04 = e-A  

T14 . R  4 	1 1-1-n 	
• 

-V 
7 
A 

c 1 	2g1 = -e   

where a prime denotes differentiation with respect 

to the radial coordinate r, and a dot differentiation 

with respect to t. These field equations are not 

all independent, since the covariant derivative of 

	

0 	0 

	

Ra 	- 2g R vanishes identically, and so 

(T2)0  = 0 . 	(2.11) 

In the case of a perfect fluid, which is defined 

as a mechanical medium incapable of exerting trans-

verse stresses, the components of the energy-momentum 

tensor with respect to the actual coordinate system 

that is being used may be put in the form 

5 dx 
Tg = (p+pc2)-1- -- gap 	(2.12) 

where p is the proper macroscopic pressure of the 

fluid (arising from all causes), p is the proper 

macroscopic density, being the sum of the rest-mass 

density and the mass-density equivalent of the 

internal energy, and , dx-0  are the components of the as 

macroscopi,1 velocity of the fluid. 

3 2- 



II. SCHWARZSCHILD ELTERIOR SOLUTION 

In accordance with the spherically symmetrical 

nature of the field surrounding auy spherical dis-

tribution of matter and energy, the solution required 

will be a solution of the equations (2.6)-(2.3.0). 

Furthermore, since we require that the energy-momentum 

tensor vanishes in the free space surrounding the 

matter, T5  = 0 outside the distribution of matter 

and energy, and this assumption forms the basis of 

Birkhoff's theorem(1'3), which states that spherical 

symmetry alone is a sufficient condition for a static 

solution of the field equations in the empty space-time 

surrounding a sphere of material. This solution was 

first given by Schwarzschild(4)  in 1916 and is known 

as the Schwarzschild exterior solution. It may be 

written in the form 

2:4M ds 	)- _(1_2GM. /dr2-ra(d02+sin249d0)+02 	2 

rc2 	 rcs 

(2.13) 

where M is the total mass of the system. From the 

form of this metric, it is evident that the sphere 

2GM Rs 	constitutes a place where the field is 

singular; for the rate of a clock on this sphere is 

obviously zero. The radius Rs is usually called 
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the Schwarzsohild limit, appropriate to the mass M. 

This singularity in the metric has been studied 

intensively by many authors,(526,7) and there has 

been much speculation as to whether it has any physical 

significance. This question need not concern us 

here since in 1959 Buchdahl(6) was able to show quite 

generally that, for configurations in which the density 

does not increase outwards, the coordinate radius R 

of the sphere of matter and energy is necessarily 

restricted by the inequality 

R > 9/8Rs 
	(2.14) 

equality holding only for constant density with 

ev = 0 at the centre of the configuration. 

III. THE STATIC (TIME-INDEPENDENT) FIELD EQUATICIE, 

Unlike the external solution the internal solu-

tions for static and non-static systems differ, 

being dependent on the pressure and density and on 

how they vary with time t. Vie shall consider static 

systems first. 

Using a co-moving coordinate system (at rest 

with respect to the fluid), the components of the 

energy-momentum tensor (2.12) can be written, 
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Ti1 = T2
2 = T3

3 = -p (2.15) 

and the metric reduces to the form 

dsa  = -eAdr2-r2(d492+sina0die).4-evdt2 	(2.16) 

where X = X(r)p v = v(r) are functions of r only. 

The time-independent field equations reduce to 

87cG 	-X v. 	1 	1 
( 	 • ) 	 .111.10m 0 	 (2.17) 

r2 	r2  

(2,18) 

glcgR 	-X X' 	1 	1 e (-- - --) + 	(2.19) 
r2' r 

Also, from equation (2.11) for the covariant derivative 

of the energy-momentum tensor, the only component 

which does not vanish identically is the (r,r) COM-

ponent and this reduces to 

dp 
fir' 	)2 

= -(pi-pc 1.1   (2,.20) 

As already stated, the above field equationa are 

not all independent, and indeed equation (2.20) 

may be obtained by setting (2.17) and (2.18) equal 

to each other and using (2.19)(1). Thus in what 

follows, we shall drop equation (2.18) and use only 

equations (2.17), (2.19) and (2.20). 

3 5- 

8/zE). - 	4%1 11 14y:1.2 	V'-M)  
c 	

$ 
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Any solution must catisfy certain conditions 

in order to have physical significance:- 

(i) The pressure and density are finite 
everywhere. 

(ii) Outside a finite region of radius R space-
time is empty. 

(iii) At the outer boundary of the system (r=R) 
the pressure must vanish. 

(iv) At the outer boundary the solution must 
be continuous with the usual Schwarzschild 
exterior metric (2.13). 

Equation (2.19) may be integrated immediately by 

writing it in the form 

8'jtGp  ra = 1-(re-X)' , 
ca 

whence 
rfr  87cG [re--] = r 	pr2dr 9 

	

0 	0 
 

% o 

and consequently 

-X 	2G e 	= 1 — t 4xr2pdr 	(2.21) 
rc2  

o 
Defining the mass inside the radius r (arising from 

all causes) as measured by an external observer to 

be Mr  , so that 	
rr 

Jo 
 4xpradr , 	(2.22) 
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equation (2.21) may be written as 

-% = 1 - 2GM 
	

(2.23) 
re 

As already stated, equations (2.17), (2.19) 

and (2.20) are three independent equations in four 

unknowns 1.,v,p and p, and thus in order to solve 

them completely it is necessary to introduce a fur-

ther condition. This usually takes the form of an 

equation of state p = p(p) connecting the pl-essure 

p with the density p 	'However, other approaches 

have been used (5'8'9)  which either supplement or 

replace the equation of state but will not be con-

sidered in this work. 

IV. THE EQUATION OF STATE 

(i) The simplest condition that can be imposed 

on ithe distribution of the density of the configuration 

is that p is constant throughout (i.e., that the 

system is a uniform sphere). This condition enables 

us to integrate the field equations analytically, 

and we obtain what is known as the Schwarzschild 

interior solution. It will suffice here merely to 

state the results obtained. If the pres3ure vanishes 

at a coordinate radius R we have 

3? 



o = constant, 0 < r, < R 

p = 0, r > R. 

Also, 

14~r 

a 
rca 

2GM 1  
and 

rca 

4 
3ltPr3 

1 (1 2GM r)2] 

R6 	rca 

1 
(1.2GM)a 

Rea 

2GMr e—X = 1 — 

2 

2GM 1 3(1...2GM)2 (1 r)2 

Rc2 

In order that the pressure be positive everywhere 

we must have 

R > 9- 8 
2G --- 
c 

equality holding for a configuration in which ev = 0 

at the contra, and is in complete agreement with 

Buchdahl's result (2.14). 

(ii) Another important equation of state is 

the polytropic equation according to which the 

pressure and density are connected by a power law 

of the form 

1+— 1 
P = KP (2.24) 



where K and n are positive constants. The 

constant n is known as the polytropic index and 

is usually assumed to have some c.efinite value in 

a given problem. The constant K , on the other 

hand, has usually been calculated from the thermal 

characteristics of a given fluid sphere, bat it can 

also be evaluated given the mass and radius of the 

sphere and the ratio of the central pressure to 

the central density(10). In the equation of state, 

p is the total pressure arising from the pressure 

of the gas and radiation, and p is the total density 

arising from all causes, including the internal 

energy. A particular case of the polytropic equation 

of state is ;he classical adiabatic relation 

P = KPr 	(2.25) 

whero y is the ratio of the principal specific 

heats cP/cv . 

Although, as is well known, the polytropic 

equation of state (2.24) has been of fundamental 

importance in the study of stellar structure, for 

configurations in which the central density is 

extremely high the velocity of sound at the centre 

can exceed. the velocity of light (in free space) 
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for all values of n(10) 

(iii) A relativistic equation of state pro- 

posed by Tooper(11)  for a perfect gas undergoing an 

adiabatic process is given by 

1 1+- 
P = KPg 	9 pc np 9 PgC 

where pg  is the density of the rest-mass of the 

gas, and n _ =- 	• The velocity of sound for this 

equation of state, unlike that for the polytrrTic 

equation of state, is always less than that of Li.ghv 

provided that the index n > 1 . 

(iv) Another equation of state which will be 

used frequently in this thesis is that for a mixture 

of perfect gas isotropic radiation at a temperature T. 

The total pressure may be expressed as 

P = P g r 

where 

Pg  = (AppgT and pr  = aT4  s  

are the pressures of the gas and radiation res-

pectively. Here pg  is the gas density, k is 

Boltzmann's constant, µ is the molecular weight, 

and H is the mass of a proton. if p is the 

+0 

(2.26) 



2 p c 
Y-1  

4/3  
2  4. _11.. K(o)p  

total density, i.e. the sum of the densities of 

the rest-mass of the gas, the energy content of the 

microscopic kinetic energy of the gas, and the energy 

of the radiation, it immediately follows that 

Pc 2 	2 lg.  
P c 	-1" 

	
313r 

where y is the radio of the specific heats of 

the gas. Now, if we define 0 as the ratio of 

the gas pressure to the total pressure we have 

Pg 	pp and pr  = (1- 3)1D 

and consequently 

-- 	
1 

)p g 	3 T (1-0)p - -eT4  (2.2?) 

If 0 is constant, elimination of T between the 

above equations gives 

p = K(ff)p 
4/
" 	where K(0) 

and so the equation of state in parametric foam. 

becomes(12) 

P = IC( 13)P 
4
/3  , pc 

+ 3(1-0)K(13)Pg
4/ 
 9 (2.28) 

giving the total energy-density pct  in terms of 

1  
r ( k" a • 1- (-15.-  
"1:17  



the pressure p . 

For variable 	a similar treatment was 

given by MilneA3). From equatior (2.27) we get 

k 4—s  134-s 
3-5 = 1212 

-0 P 	1 	p
g 
4-s

T
-s 

9 where s is 
-3a 

a constant, and Milne assumed that (3 varies 

with temperature through the star according to the 

law 

1-5 	1-•6c  T  s 
"7"" 0 c 

(2.29) 

where the subscript c denotes central values. 

Hence, on Milne's assumption, 

	

4-s 	k 4-s  1-6 
J111  —427 1 

	

P = Kp 3:i 	where K- 	la 	s 
Pc 	Tc  

and thus in parametric form the equation of state 

becomes 

1+- 

	

1 	1+1 - 

	

n 	 a 
P 	KPg 	P PC2  = PgC2 	KPg  n  3(1-0)4g 	, 

(2.30) 

where n = 3-s . When s=0 equation (2.30) 

obviously reduces to (2.28). It is seen that if 

p is a small constant throughout the configuration, 



equation (2.28) reduces to the form of equation 

(2.26) with n=3 , whereas if $ is approximately 

unity equation (2.30) reduces to (2.26). 

V. THE GENERAL RELATIVISTIC FORM OF THE LANE-RmDEN 
EQUATION 

In order to avoid unnecessary repetition, the 

equation of state will be taken in the general form 

14-1  

P '. KP g 	V 

where the appropriate values of the constants A 

and n will be chosen to correspond to the particular 

equation of state under consideration. 

At this point it is convenient to follow 

Tooper(11'12) and introduce a new variable 9 = a(r) 

related to the gas density pg  at a given point in 

the configuration and the central gas-density p, 
5c 

by the formula 

P 	P 
g g

nn 
c 

(2.32) 

the value of n being the same as the appearing 

in equation (2.31). In terms of this new variable, 

the pressure is given by 

1+1  
P Kp 	n Qn+1 

ge  

+3 
(2.33) 

n pca  = peg  + Ap ,(2-31) 



From equation (2.32) it is seen that 4 takes 

the value unity at the centre of the configuration, 
i.e. 9(0) = 1 . Also from equation (2.33), if 
the pressure vanishes at the surface 2 = R , then 

G(R) = 0 . From (2.33) the central pressure is 
1 

given by pc  =- Kp 	n , and so we may write (2.33) 
ge  

in the equivalent form 

P Pc4P.4-1 
	

(2.34) 

With these expressions for the pressure and density 

in terms of G , equation (2.20) may he written 

pc(n+i)nn 12 dr 
1 ipc8n+1  40 Gnc2+Ar,  0114-11kdr  gc ec ' ' 

(2.35) 

Introducing a parameter or defined by 

Kpg n 1/n. 

;T j-- 	 -- c.  
p
g 
CS 
c 	

e 

equation (2.35) becomes 

(2.36) 

2-Cr n+1 )d 
	

[14-(1+A):-.1.0]-1-1-; — 0 	 (2.37) 

On integrating this equation and letting v 

take the valtle v(0) at the centre, we get 
-,2(n+1) 

ev = ev(0) 11+(l+A)  
11-1-(11-A)049) 

4.4 
	 (2.38) 



Since the internal solution of the field equations 

must be continuous with the external solution, 

the value of v at the surface pf the configuration 

v = v(R) must be identical with that obtained from 

equation (2.13), and so 

2(n+1)  
ev(R) _2GM 	1 - 	ev(0)[1+-(1+A) I +A  

Re°  

Hence, equation (2.38) for 	in terms of the 

variable 8 becomes 
-2(n+1)  

ev' = [1+(l+A)(749] 1+A 	(1 	2GM ) 

Rc°  
• (2.39) 

We now have expressions for the density, the 

pressure, and el' in terms of the variaole 8 . 

The express'.on for eX  in terms of 0 can be 

written down immediately using equations (2.22) 

and (2.23), and hence 

e -X  = 1 - 
2GM

r 
re5  

t 	T1 

where Mr = 41,cp I 4PD.+AGa dr 6 
o 

In order to determine the above quantities as 

functions of the radius r , we need an ec:uation 

connecting 8 with r . To obtain this we make use 

of the remaining field equation (2.17) and substil,ute 

for dv and e 	from equations (2.37) and (2.23). 



We get 

(n+1  dO  2GMr  GM 41tGpcr202+1  CY)  
A7 (1-) + r  2 	2 

1+(l+A)CT O 	rc 	re 	c4 
- 0 , 

(2.40) 

where, from equation (2.22), we have 

- 41cpra  = 41cp r2On(14-A0c7) dr 	gc  

 

(2.41) 

We now introduce the dimensionless variables 

and v( 3 ) defined by 
3 

 

and 

where 

r = 	 (2.42) 

Mr  = 4/cp, 0,31r( ), 	 ( 2.43) 
'bc 	1 

r  ( n+ 1) a c2  (2.44) 
gc 

and therefore has the dimensions of length. In terms 

of these variables, equations (2.40) and (2.41) become 

1-2( n+1) a -v-( ) 	2 d.9  

1.+(1+A) a .9  
+ 	) ,s30-11.+1 = 0 9  

(2.45) 

and 	9d-tr( 3 ) = 524971( 1+A 0-  9) . 	 (2-46) 

These are the desired equations connecting Q (and 

its derivatives) with the (dimensionless) radius 

variable 	and together will be referred to as 
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the general-relativistic generalization of the 

Lane -Emden equation of index n, since in the classical 

limit, given by a 	0 and pg 	p , these 

equations reduce to 

, - 
	(2.47) 

which is just the Lane-Emden equation for a polytrope 

of index n. 

We define a 'complete'  configuration as one 

that is non-composite in the sense that a single 

equation of state holds throughout. For such a con-

figuration, equations (2.45) and (2.46) are to be 

solved subject to the boundary conditions 

8(0) = 1 , 1,(0) = 0 . 	(2.48) 

Since 	) = CC 3), it follows from (2.45) that 

Sig 	0 asl-->-  0 . 	(2.49) dl 

The surface of the sphere is taken as the smallest 

positive value to!' S for which 

4)(  s) 6  

Consequently, the radius R of the configuration 

is given by 

R = a. 	1 
	 (2.51) 

4-7 

(2.50) 



and the total mass M by 

M - 474) e3v)( Is) • gc  
(2.52) 

Also,(11,12) the distributions of the density 

and pressure are given, respectively, by;- 

and. 

Pet  = P (1+2-(1) 
gc 

n C14-Ac 01 
P = Pct  Traci) 

P6  - 	 

P = P rc2Gro-a. 
6 

(2.55) 

(2.54) 

(2.55) 

(2.56) 

Finally, the speed of sound in the model is 

V . /(g...2% . ,-. in+1  . 	0-  0  
s A/ 'cl.p• 	'''/ n 	A(n+1)0-0 1 + 1-2  

(2.57) 

4.8 
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CHAPTER 3 

STABILITY OF 

COMPOSITE MODELS 

(I) INTRODUCTION 

In this chapter, we shall examine spherical 

models with a core and an envelope, the core being 

a mixture of ideal gas and radiation for which 3, 

the ratio of the gas pressure to the total pressure, 

is taken to be a small constant. The envelope is a 

shell of adiabatic gas. 

(i) Core 	The equation of state for the core is 

given by (2.28). As mentioned in Chapter 1 (sec, 

pages nandi), an equation of state of this form 

(with pr-o) is expected to hold throughout massive 

stars and white-dwarfs in which the electron-gas 

is extremely relativistic. 

(ii) Envelope 	The equation of state in the envelop.,: 

is taken to be of the general form (2.31), with n < 3 

In general, the parameter A depends on the Constitution 

of the material concerned, and in particular if we 

put A= n is thd equation of state in the envelope, 

we obtain the equation (2.26) derived by Tooper for 



1 ( 
P r‘i 	-4-)4 	(v' 

H —aG3  
P 0(n-3)/4 

• 

an adiabatic fluid(1). 

The distance from the centre at which the 

equation of state (2.28) must be replaced by (2.31) 

will be called the interfacial radius (Df.) Clearly, 

the envelope as such would not exist if we were to 

assume that f3 is the same constant throughout the 

configuration, for in this case the index n in 

equation (2.31) would be equal to 3, and A would 

be given by A = (13/i,-1)+3(1—(3) . However, except 

possibly in the case of extremely massive objects 

(>108M0), 0 is unlikely to be constant throughout 

the model. In fact, as mentioned in Chapter 1 (page15) 

(2) 	
for 

Fowler and Hoyle 	have shown thatt ipolytropes in which 

0 is small, it will depend on the polytropic variable 

0 according to the relation 

(3.1) 

where the symbols have their customary meanings. 

It follows that if 0 is small, then only for a 

polytrope of index 3 is p a constant throughout 

the model, being in fact given by 
1 

'4 3  
() • 

51 

("3.2) 



The assumption that 0 is si.all means that the 

object concerned must be massive e.g. if M =.106M©  

then 0 is of the order of 10-3. 

An alternative way to obtain equation (3.1) is 

to use equation (2.29) and the corresponding expression 

for the total mass, as derived by Milne(3)„ namely 

M [Sn÷1)(k )4 1 1-° 
4wG3  '/111. a 	

]a 
v(  Is)  • Pc  

It follows that, taking n < 3 , 

04  _ 301t1)3 	
aG 

k ,,4 1 ,V(  .1s;‘2  
1-0 	4n 	µ111 	 3 k M 	• (3.4) 

In the particular case of a massive sphere for 

which we may expect 0 to be small this equation 

reduces to the form (3.1). For n < 3 , it follows 

	

thet near the surface (where 	0) the right hand 

side of (3.4) is very large, which of counie means 

that D is close to unity.;  and hence the radiation 

pressure becomes small compared with the gas pressure. 

The equation of state may then be taken as that for 

an adiabEstic sphere (2.26), since 0=1 at the surfme. 

Indeed, in a recent paper by Tooper(4)  in which he 

considered massive configurations composed of a mixture 

.5" 2. 

9 

(303) 



P = K((3)P g  
4/3  

of :.deal gas and radiation with the assumption that 

the temperature gradient is equal to adiabatic  

temperature gradient, Tooper showed that p is 

approximately constant except in a thin layer near 

= the surface, and also for these models 	P   0 at ar 

the cent:-..e as well as at the surface, provided 

r > 	(This result may be obtained from equation (3.4)). 

(11)  wAfrAcTERA5TiC EPLYMONS 	CaREAtiNbiNWELOPE 
(i) Core 

In the core, which is assumed to be characterized 

by the equation of state for a mixture of ideal gas 

and radiation in which the ratio p of the gas 

pressure to the total pressure is a small constant, 

we have 

pc = p6 
	Y-1  
c2 + --wa(5)p

6

4/7. 	
-P)K(0)p

g
4/3  

(3.5) 

where the constant K( (3) is given 

3 	k 4 	1.7A 
K(0) — 	4  µ a p 

(3,6) 

This equation of state is a particular case of 

equation (2.31) in which 	, and in which A Ls 

a constant given by 

55 



The symbol A used corresponds to 
Toaper(5). 

14 

-3Y
)  A = 	3(1-0) =.3 + g Y 

P
- 	 1 

Although the parameters, variables, and the 

equations of equilibrium have been stated in 

Chapter 2 for general A and n , it js convenient 

to re-state them here for the above equation of 

state.. Thus, if CI' is defined by 

Pc 	K( 	
1

22 0 3 
P c2  c2  gc gf)  

(3.8) 

then, in terms of the variables , G and v(1) , 

the denstty of rest-mass of the gas and the total 

pressure are 3iven by 

n3 13 = 	2 

6  gc 
(309) 

and 

4/5 4  

P 	P Q
4 

K(0)P 	0 . 	(3.10) a 	ga  

The radius r and the mass inside radius r can 

be expressed as 

a  

and 	Mr  = 41tp Ov(i) 
ge  

where 	a2  = dTa 
077 

5Da  

Mal) 

(`3.12) 

(3.13) 

(f-1) used by 



Also, the equations of hydrostatic equilibrium 

become 

as 	 v(3)  + 	 30.4 = o 

(3014) 

and (iv 	X3 (1+A 	 (3,15) 

and are to be solved subject to the usual boundary 

conditions 

Q(0) = 1 , v(0) =• 0 . 	0  as 	0) . 

(3.16) 

The solutions are relativistic generalizations of 

the usual Lane-Emden solutions but, unlike the case 

of compllete models, the surface, the total mass, 

the radius, etc., can ()Lay be defined when the equation 

of state (3.5) }olds throughout.. We can, however, 

define the interfacial values (denoted by subscript i ) 

of these quantities. 

At the interface, (where the envelope joins 

onto the core) the radius ri  is given by 

1-80-v( )/s  

1+ ( 1+A) cro 

(3.17) 

and the pressure and density of the rest-mass of 



the gas by 

and. 

P 	P 
gi 	go 

a. 
1

3 

4 	4/7 4  
pi 	pc 	=- IC(13)Pcr 1-14)i 

Hence, the total energy-denaity at the interface is 

given by 

V 
i.. 	

" / 
Pica 	

4/ I  Q3  nal- J K(0)P 	304..+3( 	13)P
gc 

-14); =p c+APirlPse- 	
c g g 

(3.20) 

and the mass inside this interface is 

M. = 41cp 0.3v( j.) 	 (3.21) 
ga 

("ii) Envelope 

For the envelope, we shall take the equation of 

state to be (2.31) with a general u = n1  < 	, and 

with A replaced by Al  , To avoid confusion with 

the corresponding quantities in the core, the variables 

, 9 and v( ) in the envelope will be replaced 

n,6,v1(11) respectively, and the envelope values of 

the parameters Or t n,m will be indicated by the sub- 

script 1. 

By analogy with the analysis for the core, it 

is convenient to introduce a new variable 0 definai 

16 



by 

ni  
P = P 	$ 
g gc 

(3.22) 

where the value p, is identical with that in 
4*'c 

equation (3.9). We also define 
K p 1/n I go  1 

(3,,23') 
cz 

and write 
1 

1+ // n1n1+1 
P = KlPga 	9 	(3.24) 

and 	 r = m71 . 	 (3.25) 

For the mass inside radius r , we have 

where 

Mr 4wpg m13  vi(1) 

(n1+1)(riC  ccl 2 
= ge  

(3..26) 

(3.27) 

The eqrtations of hydrostatic equilibrium for the 

envelope become 

1-2(n1+-1)61v1(11)/TI 
1+0.4, AI) 0'l9(  

d9! 	 n +1 
11
z 	

+ .7101) 41-  011 P3/ 1 rx,- 0 , 

(3,28) 
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and. 
dv 

0 1 
71T1 = nno (i+Alalid) . (3.29) 

Although in general, the required solutions of the 

differential equations (3.28) and (3..29) will not, 

in this case, be the usual generalizations of the 

Lane—Emden solutions, since they do not extend to 

the centre, and hence need not be subject to the usual 

boundary conditions there — except,. of course, in the 

limiting case when there 	no distinction between 

envelope and core, we can, nevertheless, readily 

define the total mass, the radius, etc., of the model.: 

The outer surface is taken to be that radius r=R 

where the pressure vanishes.. In other words, the 

surface corresponds to the smallest positive value 

is  for which 

Alla) = 0  

and its radius is given by 

R = mins  

Similarly the total mass will be given by 

M = 4wpgca13vl(r19) . 

(3.30) 

(3.33-) 

(3.32) 

5S 



n,+1 
Pi  = K1  p 	(3.34) gc  

be, respectively, 

At the interface, the value ri  of the radius 

will be 

ri = a1  1.1  P 
	 ( 3.33) 

and the interfacial values of the pressure, rest-mass 

density of the gas, and the total energy density will 

n 
P 	= P 	y 	 ( 3 35) 
gi 	ge  

and 

pica  = 

(3.36) 

We may also express the mass inside the interfacial 

radius ri  by 

(3.37) 

(III) INTERFACTAT,  BOUNDARY CONDITIONS 

Since the pressure and the density ar3 to be con-

tinuous everywhere, and in particular at the interface, 

the values of these quantities, given by equations (319) 

and (3.20) must be identical, respectively, with those 

• 

59 



given by (3.34) and (3.36). Thus, for the continuity 

of the pressure 

4
/3  

, I
n1 

Si 	
g 
lrgLl  

. 

(3.38) 

Also, from the definitions of CY and cr 1  given 

by equations (3..8) and (3.23), we have 

1  "L K1p
gc  

1/  - 
K.. 	nl 

K(0) ge 

L/3 
• (3.39) 

L/3 

 

 

K(P)p go 

   

Hence, from equation (3.38) we obtain 

4/3  
L —1 

gi 	/11,1 /5 
CY 	1,1,1/ Pg 

n1 
gi1 

(3.4O 

which becomes, on using the definitions of 49 and 

0 9  

4  Qi 	(3.41) 
CT 	ni:F1  

From equations (3.20) and (3.36), for the continuity 

of the density, it follows that 

60 



2  PO = 	== p,
5 
 c2  + Alpi 	(3.42) 
11_ 

Hence, 

ni  
p
ge1 
0.3c2 + Ap.1 pg

a 1 c
2 
+ A1Pi 

and. so  

Q• 3  = ff. 	A [ —Ajpi  

	

l 	Ps 
c-..
0
2 

and consequently, from equat ton (3.19), 

	

.3 = oin1 * DI 
 1 	i4 
	

(3.43) 

From equation (3.43) it follows that in the classical 

limit (a --> 0), equation ("3.41) becomes 

1 
3- 

0-1 	
111 

---- ..,.._ 	 (3.44) 
CT 	"4-7 	113. 	• 1 

Since, at the interface, the respective values. 

of r and M given by equations (3..17) and (3.33), 

and ('3.21) and (3.37), must be identical, it follows 

that 

and 

. = a f 	Gird 9 	( 3.1-5) 

M. == 4xpg 	) = 47cp
gc

cti3vi(rii) , 
c. 	i 
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and hence 

ov( 	) = 
	03.46) 

From the definitions of a and a1.  , equations 

(3.45) and (3.46) become, respectively, 

ct, 	
, 1/2 

1 	i 	111± 17°T 	i 

(3.47) 
and 3/2  

a 	v() - r  4  Cr  	1 	.17( vi(ni) L(n1+1)C1 "` 
G1 

(3.48) 

Thus, for given values of j 	and cr , the interfacial 

values nidi, v1(n1) and also Cri  can be determined. 

These values provide the necessary (interfacial) 

boundary conditicns to be satisfied in solving 

°citations (3.28) and (3.29). 

The method of solution involved can be summarized 

as follows. The equations of hydrostatic,coluilibrium 

for the core (3.14) and (3.15) are solved for par- 

ticular values of 0 . Thong, given a value S. of 
a. 

(and thus given Gi  and v( 	)), the boundary 

conditions to be imposed upon the equat.lon of equilibrium 

for the envelope (3.28) and (3.29), are 

152. 

•Y• 



(i) n/ 	0.3  + 

8.4  

of 

1 --17-17 1 

(A,41)CV,9i4  

CT, 

4 cr  
(nil-1)a]. 

2_ 

I  4 Cr  113/a v( L(n (iv) v (n ) 1-1-4ci Ji 
Numterical results are given in Table I at the end. 

of this chapter (pages 102. -if) 5'1 

(IV) PHYSICAL PARAMETERS 

(i) Mass and Radius 

Assuming that the equations (3.28) and (3.29) 

have been solved subject to the above mentioned. 

boundary conditions, than, as already stated in 

equations (3.31) and (3.32,, the total mass and radius 

are 

M = 41a) m, 3 k gc 	( s
) 
 

R mins . 

(3.49) 
(3050) 

From these two quantities a mass-radius rolation may 

be derived, thus 

M = 4.7cp 	-- 	v (11 
g n 	1  
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and using equation (3.27) fo:: ca  we obtain 

Rs/R 2GM 
Re 

2( n1+,1) G 1( 'rid 
(3.51) 

   

for the ratio of the Schwarzschild radius to the 

coordinate radius. 

(ii) Components of the Metric Tensor 

For the envelope, equation (2.20) may be reduced 

to (cf. equation (2.37)), 

a 01( ni+-1)dhl  +- [ 1+( 1+ Ai) Cr1iJ = 0 

and integrating this equation, with respect to r, 

between the limits r=r and r=P we obtain, 

-2( ni+3 ) 

°Y
.  6v(RY[l+-('l+Al) Old] 	

1+A1 

which becomes, since there is continuity with the 

Schwarzschild exterior solution, 
-2(n1+1) 

-771T- 
[14-(1.+A1  ) G. 1  e] 

6. 

  
2GIVI 
Rc 

(3„,52' 

Similarly for the core, equation (2.20) gives, 

6 4- 



8/1  + A 
-2(n11,1) 

1+A1  t(i) 
- 

2GM _v(o)11-1-(14.A)( 

Re

7  I 
-12.+0.+A)cr,Gi 	e 

(3.54) 

v(ri• ) 
e 	= [14411-A2) 

and so 
( air÷ 1) 

1 8/1+ A 
11-Al 	2GM 1+(1+A) (38i  

( 
2 .-17-71+A)(5 l 

Re 
(3.55) 

8C/tE  

and on integrating with respect 

limits 	r=0 	and 	r=r , 

ev , 	ev(o) 

ldv 0 

between the 

8/i+A  

9 

dQ 	
L 
ri+-(1*A)CTQJTE= 

to 	r , 

r 
i 	(1+A) C' 

(f (1+A)CfQ 

where v(o) is the value of v at the centre. But, 

unlike the case of a complete model, for which the 

constant of integration was determined by inserting 

surface values into (3.53), we appeal instead to the 

continuity of v across the interface. Thus, using 

("3.52) and (3.53), we have 

(3.53) 

0'( o )  . [1+(1+A1)(710i) 

Consequently, in the core we have, 
-2(n1+1) 	

8  /1 A 

ev 	[1+(14-A ) 	ff. j 1 
1-FA. rIA-10 	r.11ff 

1+( l+A) Q 

Gi  

' R 
1-

e 
 (foe) - 1,  

(3.56) 



find than 
ev(R) 0-X(R) (1_2E)  

Re2  
66 

1-2( 11÷1) olviois) 
Ala 	

(3.€q 

and in the envelope, 

-2(1111-1) 

ev  = [14(1*A1)C71R(] 	41-2
Rc  

- (3.57) 

From these equations it is seen that ev  < 1 for all 

valuers of 1 	and 0Y.(°)  1.3cA minimum value, 

i.e. ev(o) 1  < ev  < 1 for all 3 

From equation (2.23) for e-X  we have, 

2GM 
= L 

re 

which boccmes, for the core, 

e 	= 1 - 86V(S)  (3.58) 

and for the envelope, 

 

-X e 	= 14-2021+1) 	1(i). 	(3.59) 

The transformation equations (from the envelope variables 

to the core variables) (3.47) and (3.48) ensure the 

continuity of e 	across the interface. Also it is 

clear that e > 1 for every value of 1. , equality 

occurring at the centre of the configuration. Inserting 

surface values into equations (3.57) and (3.59) we 



(V) GRAVITATIONAL ENERGY 

(i) Total Energy 

In accordance with the equivalence of matter 
1:1;e-"r:IfirPfailv.) , /le kid eneag 	64:11y3 

and energy in thqinternal energy, Is Mc2, where 

id is the total mass of the body. (It may be de-

termined, in principle, by measuring the force exer-

ted on a unit mass at a largo distance from the system 

and then using Newton's inverse square law of gra-

vitational attraction). Thus, 

E = Mc2  = 	41cpc2r2dr , 	(3.61) 

0 

where R is the coordinate radius of the body and 

pc2  is the total energy-density. 

(ii) Proper Energy 

The proper energy Bo  of a body is defined as 

the integral of the total energy-density taken over 

elements of proper volume e7Y2r2  sinGdrd.edi . For a 

distribution of matte= and energy of coordinate radius 

R, this energy is given by 

R 

E = 	4Kc2e / r2dr 	(3.62 o 	p ) 

o 

67 



Physically, we may interpret this quantity as the 

total energy exclusive of gravitational potential 

energy. For, on expanding the right hand side of 
GMr  

equation (3.62) to the first order in a 	it 
re 

follows that(6) 

f-R ,..-"R 
2GM , 	GM 

pc2[1 + ---'27-]r2dr = E + r 

rea 

 rdM 

r 	g 

o 	 J 0 

E f'a 4n 0-- 

(3.63) 

and the second term on the right hand side is just 

the work that would have to be done on the system to 

disperse the total matter and energy to infinity 

against gravitational forces. In fact we define the 

gravitational potential energy SI by 

E = Eo + 
	

(3.64) 

In terms of the core and envelope variables (,434,v(j )) 

and (1154,v,(n)) we obtain for the total energy E of 

the system, using equations (3.5), (3.11), (3.25), (3.32), 

(3.58), (3.59), 

E = 47cpg Ca_3 
 
V1s C 2 
	

(3.65) 
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X/2 

Eog 
= Mo

g
c2 = 	41tp c2e 	r2dr 9 

Jo 

(3.67) 

and for the proper energy E0  of the system, 

Eo = 41Ep o
2 3 

gc 
493J2[1+AcY.9]d  

1/2  
0 o 	[ 1-81:1-1- 	1 

4.7cp c2al  3 
gc 

where A = 	.  

n, s .LT12[14.A1criendl  

1/2 9 

lii 
 [1 

 2(n1+1)Cr1v1(1) 

(3.66) 

(iii) Binding Energy 

The energy of all the constituent particles of 

the gas dispersed to infinity with zero internal 

energy is given by 

where Mo , the rest-mass of the gas can, at least 
g 

in principle, be calculated by counting the constituent 

particles and multiplying by the appropriate rest-mass. 
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In terms of the core and envelope variables, equation 

(3.67) becomes 

E° = 41cp e3c2 
gc. 

93  ad  
8d. v(  ) ll2 

O 3 

 

• iticpg a1302  -1-1)v (7-00-1/2  • 
) 11i [1 

(3.68) 

We define the binding energy Eb  as the difference 

between the energy of the unboUnd particles dispersed 

to infinity with zero internal energy and the total 

energy of the bound system. Hence, 

Eb = Eo 	E 

or using (3.61) and (3.67) 

IR  

b = 	-M)c2  =-1 itizo c2eX/2r2dr -IR  47cpc2r2dr 
g 	

g 

• 0  JO (3.69) 

In terms of the dimensionless variables 't „8,v("J), 

naf,v1(r1), equation (3.69) for the binding energy, 

on using (3.68), becomea 

70 

9572n2dn 



- 
[1-2(n1  +1)v1  (1-1)45 1/2.1 pri 

(3.70) 

ells 

1-1-1(pgL3C 2 

'lii 

n, 
'712dri 	 

Eb  = 47cpgc
m3c 03  as  

[ 1-86 v( )/)
1/2  

o 

It is not apparent from inspection of equation (3.69) 

whether the binding energy is a positive or a negative 

quantity. For, although the gas density pg  is 

smaller than the total density, the factor eX  is, 

in general, greater than unity. Consequently, the 

sign of the binding energy can only be ascertained 

by detailed calculation. 

It was pointed out in Chapter 1 that the binding 

energy plays a fundamental role in determining the 

stability (or instability) of a given configuration, 

but before we consider this question we shall analyse 

in detail the functional dependence of Eb  on the 

central density and the position of the interface. 

We begin by noting that, in the particular case 

when the intexface is at the outer surf ice, so that 

there is uo envelope, equation (3.70) becomes 

2 Is 	3 dc  
3(Eb) 	=_ 	G c2 	44- 	d 3  Ap

gc 0 [1.•.86.ECILI]1/a 

71 

-mc2, (3.71) 



= 4np
g

m3cs 
c 

 

• o 
' 
r s- 

0 -nadn  
-a3  

2(n1+1)61v ) 

-Ss 
03 S d, 

8 dv(S )3 1/2 

fo.  

4wp
g
c2 

o 
 

%IV 

where m is the total mass of this model. In the 

expression, (1%) 	is just the binding energy of 
s 

the complete model the lig:uation of state throughout 

being given by (3.5). The total mass m is thus 

given by 

m = 41tp
gc
G3v( 	) 
	(3.72) 

For the difference in the binding energies of the 

composite model and the complete model we find, using 

equations (3.70), (3.71) and (3.72), 

2  -Mc2  41tp G3C2 42-id  -111q) 0,5C 24( 

8t7V(1 1] /2 	g  
nc 	

c 
• o 

and hen_:e v  using (3.49), 

• 



+ 47tp
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G31 d 1 —47tp m  e2a 
°pc 

ni g 12d1  
2(n, +1.)0iva(-0)V2 

[1.— 	 3 

Eb—( Eb  ) 

8  
= 4itp

go
a.3c 2v( 	 1tp a 3v is) a) 	4 g

e 1 1(  

(3.73) 

In this equation we see that, corresponding to 

each term that refers to the composite configuration, 

there is a term (in the core variables) that applies 

to the complete configuration (with a change in sign). 

Thus the result of any transformation of a composite 

configuration term can immediately be written down in 

terms of a similar transformation of the corresponding 

complete configuration term with the appropriate change 

of variables 

we have 

41cp 	c2a,3 
gc, 

= 4wp 

(and sign). 	And%so, using equation (3.29), 

r1S_ 

6 liedn 

if6) 

2(n +1)CY v (n)1/2  
[1— 	1 	1 1 	] 

'ii  

cal  g, 

1 

dv1  
Is  

-dir  
2( la1-F1) av1( '01  /2_ 

[1- 
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Is_ dvI 	1 	— 1 1, ay, 47Cpc, eal 
77T *°C 	 2( ni+l) ivik 	

1 

	  /2-( 1+ Al  aif) 
ii 

which becomes, after simple manipulation, 

T1 

LI-mpg c2a 
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ni  
"L2 1  

go  
1  	

1°4) 	3E-71(11d-Irl( Ali 1 201+1) t5 1v1( TO 1/2  

is 
dv
1 1 

02°13 MT 
°Be 	2( n1+ l) aivi( 1-1) -112  

Tli 

c2cci  
I°0 

AICTIff lidn 

 

1 2( ni+-1) iv1( 	2. 
]1/ (11-Ala 19;0 ri 

(3.74) 

Using this equation and the corresponding equation for 

the complutemodel terms_ together with the interfacial 

boundary condition (3,45), equation (3.73) for the 

74 



Eb(1)-(Eb)(1)  = 41cp c 
s 	ga  

33  
c63441 y dv 

difference in the binding energies becomes 

   

Eb  -(Eb  ) 	= 47cp c 
s 	ge 

dv11_  1  -1 dvi 
- 
2(al  

4- 	 
+i) ivic -/2 

(1 

,  dry 

  

a31 	dv [ 1  

Ji  
1-2N1/2 -3.1 a. 

Tls 1  
Is 	d i d 	i .4 Al  C 	

+a3
3 	414:74? i . 	_.,) _a.  3 	1_fi  dvl  /dr)  di  

1

) 
f   2( ni'-1) a iyi(i) 1/2 	 80v( ) 

 li., 

ni  [3.- 	3 	( 3.+Ai  a iL6) 	4.  
51 

[1- 4  I (1-1-100)! n .4. 

(3.15) 

On expanding, we find that, in the classical 

limit, 

(3.76) 
7 



the superscript 1 denoting classical values. This 

formula gives (in the classical limit), the excess 

in the binding energy of a composite model over that 

of the complete (no envelope) model with the same 

central density, the internal energy being included 

in the pass density. 

To evaluate this expression we consider the 

quantity Ini(ns) defined by 

nay, dv„ 
I_ (TO = (n1:1-1)I -if, -at dil — 
"1 ° 

Using equation (3.29) in the classical limit, 

dv, = 	2 
n, 

2 i• e•• IT IQ 1 	we have 

1-
-
,„ 

ay.]. 	na n1+1 
= Al 	712th) • 

~i 	 71i 

and on integrating by parts. we find that 

71i 

76 

ens: dv 

Al 
	717T dl) 	(3.77) 



3 	..J 	Y. dv a. + 

3.L, 4  1 
3 3i . 	( 3.80) 

- a3CT 
v1 dv1,1„, 

" 

Using the generalization of the Lane-Emden equation 

(3528) in 4e classical limit we obtain 

(3.78) 

wbere we have used the condition that AN) = 0 at 
the surfacei. Hence equation (3.:77) becomes, on using 

(3-78), 

= aft- 
A 	- v dv1 	A1 ni:141 

TIT dr/  + T • 

(3..79) 

Using this formula, together with a similar formula 
in terms of the core variables, in equation (3.,76) 

we obtain 

E (1)x()(1) 41ta ea :1, 	
ifi ) 

u 	
s. ga 	1 	

( n 	x 
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From the interfacial boundary conditions (3.41) 

and (3.45) it follows that 

I11:1-1) 	v1 dvl 
1 1 	3 (3-Al) 	7 inTdi 

a 4-1.A1i A 
+ a 3,-. 

VLi : . P i 	k7r - 3) 1 	
5_,11  

(3.81) 

If the interface is at the centre of the con-

figuration, equation (3.81) gives 

(3-AA) v- dv 
4wpg 	1 3(n71-1) 3  -1 

ao 

II 
...a3cti(3_,A._I N

s• dv j ) 	aid 

o 
and tuis is just the difference in binding energies 

of two comlete models, one being a configuration 

for which the equation of state is given by (2.31) 

and the other being a configuration whose equation 

of state is given by (3.5). If ( e1/4/0 , then from 

(3.7) it follows that A", 3 and hence the equation 

7 8 

	

(1)-(Eb) (1) 
	4  

Bb  
..)13 

- 	4  ( 3 AO 	I Alld 

a 

(Eb)(1)—(Bia)T 

(3.82) 



of state of the core is approximately identical in 

the form with that of an adiabatic fluid of index 3. 
Consequently, 

(Ep(1) = 0 , 
(3083, 

Ss 
in accordance with the usual classical result(1). 

Thus for an adiabatic fluid sphere of index n1 9 we. 
1 have Al r— = — = n1  and (3,83) becomes 

v1 v1 
o 

	

E  (1) 	 (3-111)11s  
cl:n b 	- 	11..xPg C2 CI  1C413(1114-1)  3 

(3.84) 

Hence, in terms of the mass inside coordinate radius r, 

we have 

0  
and this becomes on using (3.63) and (3.64), 

7,  (1) — ni73 a  
b • 3 (3.85) 

which is just the usual expression for the binding 

energy (in the classical limit) in terms of the 

79 

(1) 	3—n1 IR  GM dMr  
— - —3—  

Eb   



gravitaGionni poten*inl energy-(1,6) 

If a ^JO in the core (so that (3.83) holds), 

it follows from equation (3.81) that 

11 
i S v dv B  (1) _ ,, 	3 a ,1 (111+1̀)( 7, 	'1 	1,1, - ,-i-icp 6 G C , ---...,-A b 	ge 	1 1 	i 	5 	 ri dr ''''" 11  

n1 	› 
+1 A 	1 	ni ,.341 
	% _ (...3 -,/ ..is  1 . 4,- 

.11 -  ( 3 . 86 ) 

In particular, if the envelope corresponds to that 

of an adiabatic fluid of laded nl  so that Al  = 1 - 113 , 

equation (3.86) gives the following expression for 

the (classical) binding energy of a complete model 

.a 

Eb
(1) = Lw , G iaa3ca i--3-(3-n1) 	

V1 dv1 

n n 
1 	15"- — 1) . (3.87) 

In terms of the dimensionless envelope variables 

(ii,I,v1(ri)) equation (I,7) of Appendix I becomes 

1 	s.vi(n) 

	

 	4 	 al b dr 

	

v (11 )2 	vl(r1)
2 

G(4np G13)3( 	1  
ga 	al7ls 	a171i 

8 0 



which may be written, 

5-ni 
la 

 vi  dvi  

3 	n dT) v1 ( a. n. )16a.. 

 

 

v1(718)2  
[ 	 

(3.88) 

Consequently., equation (3.87) for the binding energy 

(in the classical limit) of a composite model in 

which the equation of state in the core is such that 

equation (3.83) holds, the equation of state for the 

envelope being that of an adiabatic fluid of index 

n1 becomes 

3c2Jni  (1) 	Li-itp a, a.., —b 	gc (3.89) 

where 

(n11-1)(3-111) 1171(1X  vl(ni)2  
< 

2(n1-3) 	3  

5-n1  Pi ryi  

We may consider Jni  as a 'measure' of the classical 

binding energy (of the composite model) as a funfttiou 

of the ?osition of the interface, given the central 
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rest-rloulb.r ana the central pressure.R  The graph 

of Jri  (for various indices n1  ) as a function 

of the position of the interface is shown in Fig.l. 

For a given index n1  of the envelope, we see 

that the binding energy decreases as the position 

of the interface lies farther from the centre. In 

Newtonian theory the condition for marginal stability 

of an adiabatic fluid is y 4/3  (which corresponds 

to a polytrope of index n=-3 ) and the condition 

for instability is y < 4/3  (or n1  > 3 ).(3)  The 

condition for instability is equivalent to Eb  < 0 

In other words in Newtonian theory, a negative binding 

energy is a necessary and sufficient condition for 

the instability of an adiabatic fluid sphere, and the 

higher the binding energy the more stable the model.}  

This follows from the fact that the binding energy is 

the amount of energy required to disperse the constituent 

particles of the system to infinity against gravity.. 

Thus a system with zero binding energy corresponds 

to marginal stability, and a tightly bound system has 

3iIn passing, we see from equations (3.68) and (3.70) 

that Jni  appears in the post-Newtonian term for the 

difference in the internal proper energies of the 

models, i.e..  
-(E_ ) =.49cp c2[0,13v1(ns)-m3v( 	))+47cp ea1 1  36 Jn, 

ug us 	ge 	,s.  gc  
tAs mentioned in Chapter 1, this is not so in general 
relativity. 	42. 
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r
ns  

I dv1 
13(111+1)(31j 	dn (Ft)-(Ed s. 

11 

a high binaLaz ,0113:5;70 H.rom Fig.]. we see that, for 

a given index n1  in the envelope, a model for 

which the interface is nearer the centre is more 

stable than a similar model (same central pressure 

and density) with the interface farther from the 

centre. 

When the post-Newtonian terms are taken into 

consideration, instabilities can occur even when the 

binding energy is positive.(1'7)  The effect of an 

envelope on the magnitude of the binding energy will 

now be considered from the standpoint of general 

relativity. Equation (3..75) becomes, in tha post-

Newtonian approximation, 

,ns 

+a 3  I 2(n121-1)2ci
2 

J 

2 	 Is v dv1 3 dv ,17 dni-a. Ao a-0[44- -1.0"0]d1 
112  dn 	3 
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3Ar; 111,9d 
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(Eb) -(Ea) 	=49tp c2m 3  Jill 3 1114-1  
s.  ge  1 Ifni 	

+(n1+1)( 1) 

71 
,cs 

/ 	

7) c  
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ni 	ji ni 	

I 

i (3.91) 
from which we obtainK  

n1+1 n1  +1 
2 

4 It 	n1+22 3( n, +1) 	2111+1 
X (d. . ni+1)-n1. 71 3. 	— 2: a- 4di-3(n1+1) 

rii 

vi
1 	2 , 	

1  2.9 . 4'4 1.1-f. d•-••••4"' 	-4 
n +2_ 

i al 	47cp
ge
ea 

	1  ...51.  ‘dri 

16 	/a 

1  1 07  i4d."'S -12/ 5 	l?' 

A 
This may be writUn in the form 

3815 

(3.92) 

	

(E -(E ) 	---.41cp CT m 3m2Jn.(1)  b 	la 	gc  1 1 	• 

3 2 2 n1:I-1 n1+-1 	3 nira  -47cp a Cr c 1---4. ' 71.v (1.)+( 1 +1)1.-‘6. 

	

ge l 	 2 i ili I ii 

`The derivation of formula (3.92) will be found in 
Appendix II. 



fli 

g r114-1  4 1 	(n1+1 thrt- 3( 

Ss 
+41cp

gc 
a.3C52c )2(4.4,f 2v(..)+4 .14  3€1 • 5+ 61.  97* 4d. 

where 

ni 

(3.94) 

It is easily verified. that in the classical limit 
equation (3.93) reduces to equation (3.89). 

Using the interfacial boundary conditions (3.43), 
(3.44), (3.45) and (3.46), equations (3.93) and (3.94) 
yield 

2"

2 

EID- 0 (B:47EPge7.201a2Jni(1)-41tpg  im13o1202(n1-3)/ii
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1+1) 	fif2n1+1 	 , n +2 14dni.3(n14, 	,1 	1 
,11 s 

-41CPgc 3-012c `C 	 - 	2d71 

lii 

I IS  .7 

+47cp cs.i52c2  )16 	(471 

Si  

1 49 	2  dfl p (3.95) 



where 
7ls 

Jni(1).=(n +1)( 3_1) 	lna zcidn 
	

7 n +1 
	(n --)d + ( 	7f6 1 

do 	 ni i • 
-ni 

(3.96) 

This is the desired expression for the difference in 

the binding energies of (1) a composite model for 

which the equation of state in the core corresponds to 

that for a fluid sphere whose equation of state is 

(3.5) with A=3 , and for which the equation of state 

in the envelope is that for an adiabatic fluid of 

index n1 ; and (2) a complete model for wh:1,ch the 

equation of state throughout is the same as that of 

the core in (1). 

Before giving any numerical results, we shall check 

the above against that obtained by Fowler(?)  for a 

complete model consisting of a mixture of ideal gas 

and radiation in which the ratio of the gas pressure 

to the total pressure is extremely small. Clearly, 

from equations (3.95) and (3.96), when either (i) the 

interface extends to the surface, or (ii) n1=3, it 

follows that Eb—(Ep =0, as expected. When the 

interface extends to the centre, i.e.  

e :7 



we have, for the difference between the binding 

energies of two complete models, one being a sphere 
1 

with equation of state of the form p----Kips 
 1+
MI and 

the other an adiabatic sphere of index 3, 

Eb-(2b) 	= 4143 	3ol  c2311 (1) g me   

3 
 

	

Ps n 1 	n1+2 
47cpg 1

. ,
r:71.2 	:01 1) 	1_+  14 	

s
dn + 3(111+1) 	i2d1-1 1  

1 	1.. 
2 I +47cp a3C2c2 i6 	 49 +- 12 	5 	( 3.97) 

go. 
o • 

A massive sphere in which 0".#0 corresponds to one 

with equation of state (3.5), A (defined in equa-Jion 

(3.7),)being equal to 3 and hence the classical binding 

energy is zero. Since the third term in equation (3.97) 

does not depend on nl  , we should expect that the 

first and second terms correspond to Eb  and the 

third to (Ed 	, viz. 

    

=41tp a3,a2C 
ge 
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(3.98) 
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Now, Fowler's expression for the total energy 

E of a fluid sphere with Vy0 

JR 	R 
E  . 8/0. ,rm dr  + 6,7cG2 	„sm gds 

c2 	
L4 	= 	 t.) Mir  ,..L.J. p 

C 	c2 
o 	o 

(3.99) 

which becomes on introducing -WI° dimensionless 

variables defined in equations (3.8), (3.9), (3.10), 

(3.11), and (3.12), 
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Hence, to the first post-Newtonian approximation, 
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Now 
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and, to the order of approximation considered, 

and thus 

1283 , 

Consequently, 

Ss 
44,1,2A941 	.1 	2d  

cif `d< 

0 	o 	o 	o 
and hence 

js 

Q   )( 

4 dQ- 2d  3,1 	
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(1) 3 . 7 	Oryd1; - 	fQ. --- d . (3.101) 0  

J 

4d0- -"  

Using this result, equation (3.100) can be rewritten 

in the form 

Lifs- 	 s 
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1 o7 4„.,  1 .c3eg&I.,  0.5 
 

Is 

3 2 E = 4.7cp a.C1 02  6 
ge 

Is 	Js 
7 4 3 4d0 (4.c 
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which becomes, on integrating the last integral by 

parts, 
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which is identical with equation (3.98), the re-

quired result. Thus, as expected, equation (3.102) 

represents the negative binding energy -(Eb) 	of 

the complete configuration considered.. 

Using this result, we can readily obtain the 

binding energy of the composite model under consideration. 

For, from equations (3.95) and (3.102), the binding 

energy of this model is given by 

Eb = 4Ap 	56 a2J11.(1)-47ca a1 1  1; 2c2(n32-3)1i5efil31+a  gc _ _ 	-ga  

a a I 	 a. 	2 

is  
+1  4 	 f n,+2 

-4/tPgca  ai. l, 	c 12cn1÷  ) 

n 

9f. 1 dii-3(n1+1) 0' 	n d'n 

ni  

-47cp mIi 202 	7  1.6.  .1 
go  

o 

014d + 12 fr d $ 	(3.103) ,95  I 

o 

I 	 Ji 

which may be conveniently written in the form 

Eb 	(1) 	 - 	- 
4/cp, c. 
	' 
a-1301e 

b  

9 

(3.104) 



Using ,IlLpxooriion (3-32) for the total mass M and 

equation (3.41), we finally obtain the following 

useful formile for the binding energy of the com-

posite model considered, 

	

4 	3-n1 

	

Eb 	cr 	 (din 	(1) 	n, 

	

M C 	v 2 

	

	
[Jni  -vcc)  

) 1- I(T) a. 	i 	 1 

(3.,105) 

(VI) NUMERICAL RESULTS 

In solving the equations of equilibrium for 

various positions of the interface and various values 

of nl  , we shall here assume that p , the ratio of 

the gas pressure to the total pressure, is extremely 

small in the core. From consideration of the graphs 

given by Tooper(1)  for the binding energy of complete 

models, the maximum binding energy of a composite 

configuration as a function of the parameter 0" may be 

expected to occur for small values of CT , and so we 

solve numerically (with the aid of the trapezoidal rule) 

the equations of hydrostatic equilibrium ('3.28) and 

C3.29), assuming that CJ «1 , for various positions 

	

of the interface 	, subject to the boundary con- 

ditions_(3.43). (3.47) and (3.48). The surface 

KVarious non-zero values of la will be considered in 

Chapter 

91 



value ns  for which gkns) = 0 is determined 

subject to the approximation And < 10-5  . Althoud.? 

this approximate method is rather rough, the results 

obtained give a general picture of the models under 

consideration, and seem to be intuitively reasonable. 

A selection of the values obtained in this way for 

1,i and v1(n) fet various 	is given in Table I. 

Fig.2 shows graphs of the post-Newtonian term H  
Jai 

in the formula (3.104) fo:.,  the dimensionless binding 

energy as a function of 	IS see that, for a given 

n1.5.j—In1 
decreases as 

	
increases, which means that 

this term has a greater effect on the binding energy 

of the composite model the nearer the interface is 

to the centre..  

On page SI above, Jni  was defined as the clas-

sical 'measure' of the binding energy, since this 

quantity indicates the change in the classical binding 

energy given the central rest-density and central 

pressure, for various values of n1  and various posi-

tions of the interface.. In the same way, from equaticn 

(3.104), we may define 	.(1)-CY11:11 	as the 

relativistic  'measure' of the binding energy.. Since 

decreases rapidly as. 1 increases 	<- 2 i N- 

9 
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and tapers off for larger values of 	, and since 

nl 	
for n1 > n2  for a given value of S.  

it appears that, for small values of S , 
J,. 
91
(1)..er  

i 	wl 1 

decreases with increasing nt  as in the classical case, 

whereas for larger values of 	it is not possible 

toraaketusinferermesiruwthevalueof Jni(1)
-°111P 

is. more sensitive to the value of 0-1  . But we can 

say that for large al  , and 	io  2.5 (which implies 

tTni  small), this keasurd of the binding energy is 

negative. 

In Fig.3 and Fig.4 the binding energy per unit 

mass is displayed as a function of the parameter Q 

for various positions of the interface (S ) n1  being 

1 in Fig.3 and nl  being 2 in Fig.4. We see that for 

a given nl  in the envelope, the binding energy de- 

credses with increasing 	for the range of values 

considered. In other words-, for a given value of nl  , 

the nearer the interface is to the centre the larger 

the binding, energy. The above conclusions concerning 

the so-called 'measure' of the binding energy can be 

extended to the actual binding energy, and indeed for 

> 2.5 (at least for n1=1) the value of the binding 

energy is sensitive to the value of <7  si even for 

9. 5 
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small values of this parameter. 

For complete models, using Chandrasekhar's 

variational principle(8), Tooper(4P5s4)  has_ shown 

that instability sets in at the first peak of the 

binding energy aa a function of C7. If the same were 

true for composite models, it would mean that in Fig.3 

instability would occur at the value of 	for which 

the binding energy is a maximum for a given model, 

and the model is unstable for larger values of 47 9 

even though the binding energy is positive. 
a 

The total energy offfluid sphere exclusive of the 

rest-mass energy when infinitely dispersed from its_ 

equilibrium state is equal in magnitude but opposite 

in sign to the binding energy, and this allows us to 

give a simple explanation of the onset of instability 

at the maximum of the binding energy regarded as a 

function of Ci. Suppose Crm  is the value of G at 

which the binding energy is a maximum or at which the 

internal energy required for hydrostatic equilibrium 

is a minimum. Then, if we consider the adiabatic ex-

pansion of a model for which cr ><5
m , the binding 

energy would be increased; in other words, the 

equilibrium energy required after expansion mould be 

less than that required before the expansion, and 



so further Gxplamslon woula ensue.. On the other hand, 

for a model for which a m the opposite is true: 

after expansion more internal energy would be re-

quired to maintain equilibrium, but since this is 

not forthcoming (it being assumed that there is no 

energy generation in the core) the expansion stops. 

Consider next adiabatia contraction. In a configuration 

for which Cr >am  , the binding energy would be re-

duced and hence the energy required for hydrostatic 

equilibrium would be increased; since this energy 

is not maci.e available in the adiabatic contraction, 

further collapse_ must ensue. Again, for a configura-

tion for which a <0m , the opposite would be the case. 

Following contraction, less internal energy would be 

required to maintain equilibrium, and since this ex—

cess energy cannot be emitted contraction stops. Thua 

we see that a m  the value of CT corresponding to 

maximum binding energy, may be regarded as, the cri- 

tical value of 	at which instability sets in.. 

From Fig03 and Fig.4, we can also see how the 

position of the interface affects stability. For a 

given iaL  in the envelope, as. 	increases, 

(i.e. as the model consists of more and more core) 
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the MaXiMnm in tiro binding energy as a function of 

C7 moves to the left of the diagram, i.e. occurs 

for smaller values of G. Moreover, for large 

values of g 	(i.e. 	close to S ), the binding 

energy is always negative. For ni=3 (or equiva- 

lently • 	), the classical binding energy is 
i a 

zero, as can be seen from equations (3.89) and (3.90) 

or (3,96) and (3.104)9  and the post-Newtonian terms 

are negative. Thus, in tais case, the binding energy 

is always negative, and these objects are unstable 

over the full range of values. of (1 	But even in, the 

case of small "C ,.the models can become unstable, 

for sufficiently large values of cry even when the 

binding energy is positive. 

The application of an envelope to a core (for 

which n1-3 ) hes. the effect of increasing the binding 

energy and produces a peak in the graph representing 

it as a function of C. The smaller the interfacial 

radius, the higher is this peak and the larger the 

value of Cr m  at which it occurs. For a given ]; 
X. 

we find that, the smaller the value of n1  the 

larger the value of C3 m  at which the peak in the 

binding energy occurs. 
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Frum tE.e nhovo QoLvAdoi.a:,ionS We can draw the 

following general conclusions,. Given a core con-

sisting of matter and radiation in which p , the 

ratio of the gas pressure to the total pressure, is 

an extremely small constant (such a core may be re-

garded as a classical polytrope of index la---3) and an 

envelope fitted onto this core subject to the usual 

interfacial continuity conditions, the envelope being 

an adiabatic spherical shell of index n1. < 3 , m 

conclude that the envelope has a significant in-

fluence on the stability of the whole system in the 

sense that, the smaller the interfacial radius, the 

greater the range of central density compatible with 
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TABLE I continued 

n 1_  -1.5 

a. Qi v(Si) 	mi(ni) 1  4  vi(n)  
1.5 0.72 0.63 1.31 0.5a 
1.5 
1.5 
1.5 

2...0 0.56 	1.05 	1.39 0.34 
2.0 
2.0 
24 

2.5 0«46 1.40 1.32 0«21. 
2.5 
2,5 
2.5 

3.0 0«36 1.66 1.2. 0.13 
3.0 
3.0 
3.0 

n=.--2 L 

0.0 1.0 1.o o.o 	0.0 lo 
0«0 
0.0 
0.0 

0.42 1.5 
2.0 
360 
3.9 

0.46 
0.34 
0.13 
0.001 

0.55 
0.96 
1.64 
1.8 

0.34 1.6 0«3 0.42_ 
2«0 0.22 0.65 
3.0 0.11 1.0 
4.1 0.006 1.2 

0.2 1.5 0.2 0.24 
2.0 0.15 0.53 
5.0 0.08 0.53 
4«4.  0.005 0.68 

0.10 2.0 0.08 0.17 
3.0 0.05 0)27 
4.0 0.02: 0.35 
5.2 0.001 0.38 

0.0 1.0 0,85 0,27 
2.0 0052 1.30 
3«0 0.24 2.16 
4.35 0.0 2.41 
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TABLE I continued 

=2. 

of NrCi) vi(10 56.  vi( T1) 

0.5 0.96 0.04 0.5 0.94 0.04 1.0 0.8 0.3 
0.5 2.0 0.5 1.2 
0.5 3..0 0.25 2.1 
0.5 4.3 0.003 2.4 

1.0 0.85 0.25 0.99 0.8 0.24 2.0 0.5 1.2 
1.0 3.0 0.23 2.0 
1.0 4.0. 0.06 2.2 
1.0 4.48 0.006 2.27 

1.5 0.721 0.65 1.25 0.61 0.36 2.0 0.42 0.9 
1.5 3.0 0.23 1.5 
1.5 4.0 0.09 1.86 
1.5 4..9. 0.001 1.9 

2.0 0.58 1.05 1.34 0.44 0.52. 2.0 0.5 0.6 
2.0 3.0 0.2 1.0 
2.. 0 4.0 0.1 1.5 
2.0 5.7 0.002.1.44 

Z.5 0.46 1.40 1.30 0.31 0.21 3.0 0.17 0,60 
2.5 4.0 0.1 0.80 
2.5 5.0 0.06 0.98 
2.5 7.1 0.001 1.05 

3.0 0.36 1.66 1.2.. 0.21 0.122 5.0 0.12. 0.3 
3.0 5.0 0.06 0.6. 
3.0 7.0 0.02 0.78 
3.0 9..04 0.003 0.81 
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CHAPTER 

THE CRITICAL RADIUS FOR 
COMPOSITE MODELS 

(I) INTRODUCTION 

In this chapter we shall determine, for various 

values of 0 (ratio of the gas pressure to total 

pressure), in the core and for different positions 

of the interface, the critical radius Re  at which 

instability sets in. We shall again base our analysis 

on the binding energy of the model, but it will now 

be considered as a function of R , the total radius 

of the configuration, instead of E3 , the ratio of the 

central pressure to the central energy-density. 

As before, we assume that the core is a mixture 

of ideal gas and radiation, and so the parameters, 

dimensionless variables and the equations of hydro-

static equilibrium are given by (3.7), (3.8), (3.9), 

(3.10), (3.11), (3.12)4 (3.13), (3.14) and (3.15). 

Also, the envelope is again taken to be an adiabatic 

shell of index n1. and so is characterized by the 

equations (2.31), (3.22), (3.23), (3.25), (3.26), 

(3.28) and (3.29) with Al  = ni  . Thus the equation 

of state of the core is given in parametric form by 

107 



the equations 

Pct 
. p 02 4.  P1 	3(1-0p, 

4 w  
p = K(0)Pg i

/
9 P- 	g 

(4.1) 

where 
1 

K(5) = ( 	

/3 

[ 	] 

\14-  1-13 a i 	9 	(4.2) TT4 7-4-0   

and where 5 is_ now assumed to be a constant greater 

than zero. In the envelope the equation of state is 

given by equation (2.26) o:r.' (2.31) with A1  =n, 
	and. 

so in parametric form we have, 

P = K(R)Ps 
 -*1 All 	(4.3) 

where the energy-density is given by 

pct = p cz 	nip 
	

(4.4) 

(II) BINDING ENERGY 

As before, the interfacial boundary conditions 

are given by equations (3.43), ('3.47) and (3.48), and 
the total binding energy is defined by equation (3.69), 

namely 

Eb = E -Mc2  , og 
	(4.5) 

where 1c2  is the total energy of the system, and 



is given by 
0_ 

Eo 	
1./.a 

(4.6) 6 
= 	4/cogee1.2dr 

o. 
Thus, in terms of the envelope and the core we have, 

,ri.  

E0  =4% 	[pc2- 

Substituting for a /a  from 
= 1-2GM 

rirc2 
 , we have, 

nio -m- 

	

g 
_m_

7‘ 	
radr-4n 	3(1-(3)pX1 	r2dr 

rt 	-1 f/ 2GM a 
re - 	 re 1r-1 

J 

RR 
„ 	2GM, -1/2. _ 	2GM_ -1/2_ 

	

+4% 	po,(1--:) 	edr-41t n1  p(1 --:-') 	r2dr . 
re 	 re2  

m,1 	(4.8) 

Consequently, the binding energy fo.c the configuration 

becomes, from equations (4.5) and (4.8) in the post- 

rc 	roc,
-F 	P 	

GM 
Eb=4/t 	p C 2( 1+-- .- + 3,-.2 	)r2dr-4R 	[ -13 

1 
 1 3(1--a)  p xi+

re 
r ir 

	

3i  14- 	 y-  

R 
3(1-43)pja%"-

/0- 
32.2dr4-4/E [pct-nip]e r-dr. 

(4.7) Ti  

equation (21), 41- i a 4 

Newtonian approximation, 

OM 	G2M 2  
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and. so  

R 
Jr GM, 

Ela  = ry-T=dV - 

0 I 

tri 

0 

AR 	 R 

11  
re2 	r c 

G2M'
I'
2 
 2 

2 4  )r dr-4w n1p(14----)r2dr 
GM1. GM, 

+4% 	po2(14----±- 4- 
re2  

ri 	 r. 1 R  

-4%I pc2r2dr 

o 

GM 	GM 

7.7:1
4 	

, 
-3(1.,$)1p(14---4)dV - 	n1  p(1.4---t)dV re 

n . 
G2M 2  

+6% p  r  1 
2 
dr . 

c 
o (4.9) 

(14 CLASSICAL TERM 

Since we will be considering models for which 	, 

although no longer negligible, is not greater than 

about 0.1 in the core, we will make the approximation 

0=0 in the post-Newtonian terms (involving the 

factor Via), which will therefore ba identical with the 
c  

post-Newtonian terms for the binding energy given by 

equation (3.103). With this consideration in mind, 

and to fac.litate numerical integration, the formula 

(4.9) for Eb  will be considered first of all in the 

classical limit. Denoting the classical binding 

energy by Eb(1) , it follows that 
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- 	- 	[y131 	3(1 -0)]pdV - (1) GM 
Eb 

 

0 

r1 	R 

n1pdV 

•••• p. V. 1  

(4.10) 

Since 0 is assumed to be a constant and also from 

equation (2.20) we find that 

R 

Eb(1)  
GM 	r4 A + 3(1-0)][pV10-4-1: + 3(1-13)] r- J. 

ri  
GMr  

Vp-77dr [111PV; n 
ri  

GM 
Vp---dr p 

r2 

and since V =( 

R Gm  
Eb(1) 1 

,se-1 rdV-[ 	+ 3(1 -0)]piVi  4,72-1 + 3(1-0)] 
0 

r. 
GMr dV 

X p r 3  
) 0 

11 

 R 

to rr An- f GM 

r. 
(4.11) 

Thus 

Eb
(1)  

r. 	R  

Ot3(Y1) i 
	

al 	GMr il3Y 4...] 	p-1Edv + (1- 70 	a-E-dIr 

0 ri  

+ 3(1-0)-n1]piVi  (4.12) 

11!  



The s000nd integral in (1,.72) has already been 

determined in Appendix I and is given by (1.7), 

namely 

5-n 	M2 L. 112  Pi 
1) 757) + (n1-1-1)0 -(n1+1)piVi, 

(4.13) 

whereni  is defined by, (cf. equation (1.1) of 

Appendix I) 

R GM dM 	GM 
E -ni 	r r - dV r 9 r  p  

ri 	ri  

and dV is an element of volume. The first integral 

in equation (4.12) is evaluated in Appendix III and 

is_given by 

ri  
1 	GPMr 	1 GM.2  2p. -r dV = 75. r.  - 1M. * 2p.V. 

Pi 	3. a. 
(4.15) 

Defining w and iV , respectively, by 

3 	3?15 w 	pi 	and 'V 	
213, 

where p(ri) , the 
-5(ri) , 
	

4v(I)  

average density of the core, is defined, by 

(4.14) 

Mi 



Pi 
GM 2  41 4
4 ri  

GM.2  
piVi 	h. 

and hence 

and also 

it rollowo from (t-1) that, in tho classical limit, 

= G c 	
1 

Pi 	3• 
2(L) 

pi 	Pe 

	

where CT 
= P, 

-/Pcc 3 	prom equations (3.12) and (3.13) 

it follows that 

c2 	
1/3 

--I—  wP(ri) 
Pc /3  

(4.16) 

G 02 
Mi  = 4icpaa..3v( 	)  and e - icGpc  

and hence equation (4.16) becomes, 

Pi  ac2 4%pca3v(1) 

Pi 	Pc  /3 	
4/3wri51 3

1 	

/ 

and so 

pi 
Pi 

GM. 
= 
ri  (4.17) 

Also, from equation (4.17) we obtain 

GMi  .,. 	Gh. 	GMi it  mi  3 1. , pi  = -04 p . = -CO tv • CO 3-17) ( r . ) --,--- -CO if ----
3 2 r. 	i 	• 	i i 	rl 	ri 	47cri 
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n
1'
+1) 

+  2 
Pi 
-M.] 

Pi I 

On substituting (0E.13) and (4.15) in equation 

("0.12), we obtain 

	

M.2 	2p.M. (1) _ 0 3y-4 	71-1G_l_ 	11 
'b 	' 3( -1) 'L.2  ri pi 

n1\  6 r1, 	
r  ) 

GM2  , f, 
3 5-nI  2(  R 

0  3y-4 	
(n1+1) 4.  6p. 	. 	(1 n1) 6 	p.V. -E -1-+3(1 -(3) -ni  ]p• V v  ]plT v  3(y-1) 	1V1 	3 5 -121 	2 i i y-1 

and. so  

I 3-- p  1  E (1) _ 3Pi Mi(n1+1)( n  
b 	pi 	5-n • 	/(1 	1 ) 	;-4 	 i. 	 1,---1) 14-7a- 

1 ''-n31 

- 
fl 

3\ 

 
-
a 
 3(Y-1) 

5-2n-1 

	

5-n 
	 GM

ri 
 2 

+ f 
l_a)  56 

n 
	GMR2 

	

i 	 1 

n1 
' -n 

3

i 
4- +0 3Y 	1 	4' 2p.V.-(1--- 3  )- 	(n- [3-n1+ 	]piVi  . 

Hence 

	

3(21+1)  M. pimi  .3.y._4 	 2 	5  n  1-T)-P3(y-1) n1+1 1ST  5-n1 	Pi 

J(1- ---- 1 	3y-4  5-1111  3  Gli2  4-  A 3r -4% zp)-(3 3(y-1) 	n1 _ r - i 	ilf: 
2 '6( ) 

+(1-.h7703-1  '2W 	i 	PlVi (4.20) 

This equation may be re-written in the form 
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(1)=  F 

{ 	

n
1 ra  3y-4 	 _,____ 5-ni f3(121+1) MiPi 	3  GMis  1 

(1--2 )-' 3( Ir''' 1  ) 

2 	
1 5..  Di 	

pi 
	5-n1 ri 

+k  r 	 1N  3 	GM°  
1 

6(3-n1) 	 (3-n1) M.P. a. Li 0 3X-41-•V + 0 3y-4[2p.V.-  -4  5-n1 	y-1 jVi i 	y-1 	1 1 	2 	pi  

(4.21) 

Using equations (4.22) and (4.24) in equation (4.26), 
we obtain 

(1), 	n 	3,-4 	 GM.2 
} 	 E 	 (a._ 

7 	3t1-1) -"2— (
n1+.1)(4 

1 
5
3
-111 

	

, n1N  3  GM2 	
r 	

P y-1 Jw  1 
§(3-n1 ) 	3y-4 	1 . GM.2  . 4  4/-17-  +,-L.- 3 /5-nL  R 	L -n1 	 1 

GM.2  3-121  GMi2  

	

+0 3y-4[2w441  a_ 	co*-----] ..T-1 	rt 	2 	ri  (4.22) 

On defining a new quantity q as the ratio of 

the interfacial radius to the total radius R , i.e. 

ni  
q = -R-- • (4.23) 

equation (4.22) becomes, 

rTh (1)- 
- [(1.1 

) p 3 r

y
4
- 1) 5 

-n11ri-n i+1•  01)-11+(1-  a )(M ) 2 q 

  

2( 3_131  ) 	5-n1) j  (.0441.+ p  2(5-111)w44 

(3-n )(5-n) 
(.41 3  GM, is  3Y-4 	1 	1  . (4.24) 3(Y-1) 	a  5-n1 



Denoting the Sohwaxzechild radius Rs  by 

2GM Rs = 	9 
ca 

we obtain 

GM].  .2 1 R5  i  M2c2 

ri  = 2. 	Mri  

and so equation (4.24) for the classical binding 

energy of the composite model (per core mass Iv vi) 

gives 

E  (1) 

Mica  2 5-n1) 
f  
L 
 ra 
" 3(y-1) 

5  21 (1q)][1-(n1+1)44] 

ni m  
)(117 )2q-E 2(3-ni.)- f-',;(r-:—:14  ) (5-131.) ]o.)14-* 

-5(Y-1) 	
1e--f  	(3-n1)(5-n1) 	(t ) 

M4 R 	
•

, 

q  
Formula (4.25) allows us to write down, almost 

immediately, the classical binding energies of two 

important complete models, the former, studied by 

Fowler(1) a mixture of gas and radiation with p<41 

forming a polytrope of index 3, and the latter, 
studied. by Tooper(2), an adiabatic gas. sphere of 

index n 1 
(1) Fowler's model can be obtained from the 

.116 
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above work by letting the interface extend to the 

surface, so that Mi  -* M . Consequently, (4.25) 

gives 

m  (1) 
'1) 	3  
Mc2 	2(5-ni) 

34  5-n1 
3(Y-1) 2- 

Rs 
9  

and hence 

E (1)  b 	- 
Mc2  

4  Rs (4.26) 

   

which is identical with Fowler's expression for the 

binding energy of a massive star if the ratio of 

the specific heats y is equal to 5/3  .(1)  

(2) Tooper's model can be obtained from the 

above work by letting the interface shrink to the 

centre, so that Mi  -* 0 . Hence, 

Eb(1)  = lim [to 	-4 5-n1 	1- 3- 111 ) —2-- - ()][1-(nii-l)tircol 

42(3-1a1)-P 	(5-13.1)]w4* 

4-(1 111)(12cil 3 	Mi  
se  

1112 Rcle.  -M-  qR 

and hence_ 

(1) 1im 
M1  

n1)BARs 
5=E17 % 

( 
1-3 R 
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p 3r4  3 y-1) 	-(4  

} 

(5-ni)(3-ni) 



and so 

Eb
(1) 3-n1 GM2  

5=711 R  
(4.27) 

which is identical with that obtained by Tooper 

for an adiabatic sphere of index nl .(2) 

(IV) CRITICAL RADIUS 

The above results can be regarded as useful 

checks on the validity of the more general formula 

(:4.25) for the binding energy of our composite model. 

From the relativistic point of view, this classical 

expression can be regarded as the first term in a 

power series in the dimensionless parameter 

RalgR = 
2GM, (ciRe the post-Newtonian terms being 

given by the corresponding terms in equation (3.103), 

since p although not zero is being taken sufficiently 

small to be replaced by zero in the post-Newtonian 

terms. Thus the ratio of the binding an3rgy Eb  of 

the composite model to the mass of its core is given, 

in the first post-Newtonian approximation, by a 

formula of the type 

	

Eb 	Eb
(1) 	R 2 

n  c12(1/7)(d) 

	

. 	M. c2  MC 	M 11C 
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IS 
where the actual form of 	will be determined n1 
later. Before evaluating 	we deduce from (4.28) 

)111. 
that the binding energy has. a maximum at a critical 
radius Rcr given by 

5-n1 0- 	3r 	-4  2(5 -ni) 	3 y-h-1) 2 3 n1 ) ][ 1-(n +1)CLII ]i-(1- m 	
2 
 q 

(5-ni) 4 	_4 (5-ni)(5-i) 
-{ 2( 3-ni)-ff 	

) 	)(0 0-0 y-1) 	a 
m  R a  

+alr eq.)  zw.  . 5 ' 1 	1 q R 
i.e. by 

c = 4(5-nl  
s. y -4  

3(Y-1) 
5 
 2
i 

3 —".L.)][1-(133.+1)*w] 

q42(3-n1_ 	y )-03Y-4(5-n1)]*w4 1 

33 y-1) 	2_ 	04/(4 a ) • *0 	1-4 	(3-111)(5 -ni) 	1/11'  

(4.29) 

The quantity in curly brackets in the denominator of 

(4.29), regarded as a function of 0 and position at 

the interface will be denoted by Gal(0,3i),. It 

is tabulate0. in Table II for n1=1 . It is seen 

that G.2  (0,f.1) no longer proportional co 5 as in 0 
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7etLi- -47tio 5 2C2{ 
gC 

49 5  s 2d S I 9  ( 4. 3 0 ) 
.) 0 

the corresponding expression in the case of the 

model studied by Fowler(3), depends strongly on the 

position of the interface and (for a given 0 de-

creases with increasing values of 7 . Also it is 

seen that Gl(, i3O) increases steadily with increasing 

PI • 

(V) POST-NEWTONIAN TERM 

We shall now evaluate the quantity IS 	defined nI 
in equation (4.28) by considering the post-Newtonian 

terms of equation (3.>103) for the binding energy of 

the composite model discussed in Chapter 3. The post-

Newtonian terms, denoted by Eb(2)  , in equation (3.103) 

are given by 

(2) = 	m 
-") 	"Pg 1. -̀'1 s" a - "i Pi 

ns  
2n ÷1 	•ns  ni+2 

14,d71+3(ni.+1) (  n2d,n -4ap, 	C5i2c2  a.  ni+1) 

where ai n,6,1i8, etc., have been defined in Section II 

of Chapter 3.. Using these definitions we see that 

R 	2G.4itp a13771(1s) 
s 2GM 	ga 

lr = Re = 	a 
1. a n s 
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and henco, on using equation (3.27) for al  , 

2 
47tpg (n1).0 

vI(ns)  _ 2(n1+1)Civils)  s-  2G, 	  
ns  ns  4'xG.pg c2

C  
Oanaequently, 

	

Rs. 	n_ 

	

(2 	 
v1(n )24(n ,+1)2  

(4.31) 

Also 

Dpi  = 4npg a2v1(ni  c   41tp a3v( 	) . 
gc 	oi, (4.32) 

Hence, from equations (4.31) and (4.32) it follows 

that 

ri 2 2 	R 2 Mi  

	

47cp a, 012 c2  - 	f, 	s 
. 	2(41) go  -1- 	vl"i! v1ens)24 n1+1)2  

(4.33) 

Thus equation (4.30) becomes, on using equations 

(4.31) and (4.33), 

Eb
(2) 	Ti / 	-7) a2 

	i 	 n1+2 R 2 
_.

i  
--.- 	 k,ll 

_ 2 
	54i 	(-ID 

Mc 
7  

Nrieni.)Nri(is)24(ni+1)2 
11.  

a- 

n 
ns  

2n +1 n4 	
- di +2 	Tied11.6 

a  

	

viOli)vapis)2 8 	n +41 ' 

i 	 +2  

12.1 



S
n 	 AL 
1 	4( n1-1,1)2vi(1a) 2 	I- 	1_ 

n,-1-2 
(11 

—  Bs 
	 (*E — a  )3( s 

)V1( nd 2  2(n1_ +1)* I 	L 

But, from equation (4.2S), we obtain 

(9 M Rs_ 2 
111 (17)  n1. 	 L . 2 1LC 

and. so  

(4.34) 

= 
ni  

E  (2) R  
_ b 	2  

Mc Rs' 

(a) 
.R 2  
R . Mic s  

Nr1( ) 
v,(ns5' 

(4.35) 

Hence, from equation (4.34), it follows that S11 can be 1  

expressed as 

 

2n1+1  s14d1+2 	PS  L n2all  -Bs. n +2 

-4 

  

2 

+- 	
3

s 
8( ni+l)vi  

  

  

  

  

  

   

   

a 
3 	na 

 

2(n1+1)2 	v (n 9)
5 

A i 	i 
G7-S4d1. +21 0-532d4: ) 

 

4.. 
(4.36) 
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ns  
2n +1 

n dn + 

When the interfaue extends to the centre, the 

model becomes a complete model characterized by the 

equation of state ('4.3) and (4.4), and ' 	reduces 
1 

to 

s
311: 

ni  8(3.1+1)vi(na  

niira  

, 	712dri 

(4.37) 

This expression is almost identical with that obtained 

by Fowler(3).. In the notation used here equation (6) 

of Fowler's paper becomes 

ns 	11  2n1+1. 	n +2 	1 
3 

 ' 4  °) (4.38) 	-4  

5 	 
ni. 	8(n1+1).  vi(1-1,) 	

n4d, 	10 	Ff 1 radn  
" n1+2 

which, except when ni=3 9 differs from our expression 

(4.3?) by the factor 10/(n1+2) in place of 2 in front 

of the second integral..  

The reason for this slight difference can be 

readily explained. In Fowler's model the energy 

density is given by 

pct 
	

3(1—P/2)P 

whereas in the present work it is given by 

Pct = p c2  + Alp , 

where our pg  corresponds to his 
	and A1

=n
1 

12.3 

• 



for an adiabatic fluid sphere. Fowler's model was 

composed of a mixture of gas and radiation (with p 

taken to be zero in the post-Newtonian terms), whereas 

the corresponding model here is an adiabatic fluid 

sphere. When A1=3 , there is complete agreement in 

the post-Newtonian terms.  

When the interface extends to the surface, 

equation (4.36) reduces to 	
44  

2 is 
.  3  )5(..i. 	,47.0 

	

.e

3 	
2

d1 +2 4;51 d p 

2(ni!-1) vi(ns);)  al 0-1. 

which becomes, on using equations (3.47) and (3W), 

	

2  
.)s

s 
 7 4d' +2 	a 

	

5 	32 17(1s)3 	.1 di +a  

o 

which (apart from the difference in notation) is 

identical with the particular case of Fowler's formula 

('4.38) for a complete polytrope. of index 3 as expected. 

Using this result together with equation (4.29) when 

the interface is at the centre, and taking Y=-5/3  
we obtain Fowler's result(3), namely 

Ro  
(4.4C) 
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ri:om tha 

together with 

definition 

(4.31), we 

1-- 
of i 	in equation (3.104), -ni  

have. 

B  (1) Eb 	b - 
Mic3

MI° 
. 2 • 

and hence, from equation (4.32) 

E (1).  
n1 1  b 	b - 

Mi.c3  Mic2  4(ni+1.)2v1(ris)2vi(rii  

R 
( 	• 

( 4.41) 

Comparing this 

R 
s  S 	1 1\   

and. hence 

expression with (40,28) we find that 

kllaz 	Ra  2 

(10 
4( ni+1)Viens)V1(11i) 

I n11.6.3  
nl 	4(ni+1)2vi(ria) 5  • (4.42) 

On using the results of Table I together with the 

values of Fin  obtained. in Chapter 3, equation (4.42) 
- 1 

permits easy calculation of S ill  for various positions 
1 

of the interface. 

(VI) NUMERICAL RESULTS 

Using the values obtained from (4.42) in 

equation (4.29), we can obtain the ratio of the 
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critical radians to -ad Schwarzschild radius. Graphs 

for this ratio for n1=1 as a function of p and 

(dimensionless interfacial radius) are shown in Fig.5. 

It is seen that this ratio depends strongly on the 

position of the interface and on the value of p in 

the cors. For a particular value of 0 , the ratio 

increases steadily for small value of 	and then 

more rapidly as 	increases. For small values of 

(i.e. when the interface is close to the centre and 

hence the structure of the core only slightly affects 

the model as, a whole) it is seen that the critical, radius 

is almost independent of p in the core, as expected.. 

For larger values of 	it is seen, that the critical 

radius depends more strongly on the value of p , and it 

appears that for such values of 'Si  and for some values 
arr-t,  

of p guar there 	no stable configurations at all. 
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TABLE II 

SUMMARY OF VALUES THE DENOMINATOR OF EQUATION (4.29) 
FOR VARIOUS V;  AND 0. 

0) 

p=ox p-0,0025 p-oep05 p=40.1. 

0.9 9.13 9.28 9.43 9.23 

1.2 2.80 2.89 2.97 3.15 

1.5 1.24 1.30 1.36 1.47 

1.8 0.67 0.71 0.75 0.84 

2.1 0.41. 0.45 0.48 0.55 

2.7 0.17 0.20 0.23 0.29 

3.0 0.12 0.14 0.17 0.22 

J2 
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CHAPTER. 5 

THE STABILITY OF PULSATING 

ADIABATIC ,SPHERES 

I. BASIC EQUATIONS 

In this chapter conditions for the stability of 

slowly oscillating adiabatic fluid spheres. in 

General Relativity will be investigated. 

Since we shall consider spherically symmetrical 

systems with oscillations taking place in the radial 

direction, we can take for the metric 

ds2  =:-eXdr2-r2(dQ2-1-sin2,0de)+c2avdt2  , 	(5,1) 

where 	= X(r1t), v = v(r,t) are functions of r and 

t only. The field equations associated with this 

metric are given by (2.6) to (2.10), and for conven-

ience will again be stated here.. Thus we have 

-87tG T  1 	e-X(1. av + 1 
1 	r 9 (5.2) 

-89tG 	a 	-87cG 	3 - 	a2v 	av ax 	irav24_2, 	aw.,N  —a— Ta ,T 2 	ar ar • T'ar,  '2 r Tr" ax-6.  3 	ar 

-e v 

	

—v,1 a2x 	1(A1\2 

	

ate 	4 •  + — at' 
1 ax aK 
—4 at at'' 

(5.3) 
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-87cG  4 	-A 1 a% 
4 T 	- -e (n ar--- - 

-8,7tG T4
717  +8 —N. 1 aN 

-Ft y 

-87tG T  4' _ 	1 a?. 
---47 1 - Ir * 

1 
r2  

, 

where Ta  denotes the energymomentum tensor and is 

taken in the form 

Ta  = (p*pc2)011 - g Pp y 
	 (5.?) 

where p is the pressure, p the density (arising 

from all causes), and 

dx13  
ds ;5.8) 

is the contravariant four-velocity. 

As. stated in Chapter 2, the field equations 

(5.2) to (5.6) are not all independent, but are con-

nected by the identity 

(T2)0 	 (5.9) 

With the metric in the form (5.1), equation (5.9) 

for the covariant derivative of the energy-momentum 

tensor reduces to two relations(1)  

,-11  1 aT11-
4 

	

'4 	1 	1  ax (T -T 	* T 111 2-(X+v) + 	= 0 at 	ar_ 	2 4 	1 at 	4 2. ar_ 	r  (5.10) 
2 3 ! 



and 

4 	

2.r• TI1 
1- 

sat 
111 	8

an 	T. -1 at
T1 	1 m  4 2,_/,

"
_.+ \ 4_ . 	k 11

4  %
. 1-1- .PI

ar. 4
_ _g 
r`  
fil
1 	0 . "  

Neglecting all quantities of the second and 

higher orders in the motions, we obtain from the 

metric ('5.-1) 

u1 e  ais  V 
G-- C. 9  

-v 
4 e  °/2-  u 

0 0,1 v /a -c ' 

u4 = ce 
0/a  

(5.12) — 

where V =, dr/dt , and the subscripts zero denote 

quantities that would describe the system if it were 

in equilibrium. Then, to the same_ order as. equations.  

(5.12). the components of the, energy-momentum tensor 

(5.-7) become 

and 

a 	 a T4
4 = pc , Ti 	T2_ = T53 -- -P 9 (5.13) 

o Ti  =-(pi-pca)u1u
4 	o-v V(p+P--), T41 = ("p-i-pc2)V • 

c  
(5.14) 

With the components of the energy-momentum tensor 

given by equations (5.13) and (5.14), the field 

The aiglI at p,  differs. from that of Chandrasekhar 

because of his expression for T . Tai  
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and 
0, 0vcp,p__)  A2 

an (31[(P+23)4:6(h+v)+kpi-po 
C 2  

O 

equations_ C5.2)-(5.6) become 

87cGp  _ 1 N  1 
c4 	6- 1/4"i-da + 	r2 2  

(5.15) 

8nqp 	lax av 	i(av 2 	1 av,  ax 
a are 	4 ar.  an 2"T'ar.) 	ar 	az))  a4  

	

..e—v(12f1.+ liax)2 Lax av) 	(5.a6) a at2 2P-67  

8tGp  = a-X(1, al ...1., 4, 1 	(5.17) 
C.2 	Nr an r 21 r2 

V 

t 
81EGK  .4  _2_)v  _.,., -e-X.1 

at ' 	 (5.18) 
2 	2 	E 
0 	0. 

(5-19) 

Also equations ('5.10) and (5.11) may be written, on 
using equations (5.13) and (5.14), 

a r.21 
atLv—  J + iiiT(pc2+1?)V] +-kpc2+01.1.-+ (p+pc2)V[WX+04]=0, 

(5.20) 

8-G(  p+--)V 	1 ax ---k p,--)v —e 2 	n at 02 

(5.21) 

Equation (5.17) may be integrated immediately, 
and on defining 

Mn_ 	4w 	pr_2dr. , 	(5.22) 

J33 



wa obtain 

2GM 
a 	L 

	

rc2 
	(5.23) 

To the order of approximation required far ensuring 

that equations ('5.20) and (5.21) are correct in the 

first post-Newtonian approximation, equation (5.15) 

gives, using equation (5.23)9  

2GM 
O V 	

2 
- 87cgpreX  + 	. 4G2 	 • an 04 r2a2 	

w 

Equation (5.18) may be written as 

8wG,,, 	%, Al ran 	 • at 	02 a' 

On rewriting equation (5.21) in the form 

(5.25) 

- e v  0,, R )\av %RID+ 2.--67E  
-v , (p+pa2)AL.v ava  o om p+R;)  

X - 
2e: a v 

or13 	4-  
42_NaV eXo7v0v(0.2•_)aX = 

c zrca m az 73-f 0 , (5.26) 

r 
v and substituting for a  -- from equations (5.24Y and 

a 
(5.25)9  we. obtain 

-v a 	r 	N 	
(1)-1-pc2){—a+ 	 

r  2GM 	4G2M 2 ▪ 81tGpe r T a 	ov  
4 r-a. 	c: r3c2 

G
-v 	X -v 

	 a GIT _/ 7,
''
".._.) ---€1, 	°V(ptP 	)reX7 	cV(p1+2e 	v-*V 

	

a2 	C4
3 

 
NP 

+aft ° °(01,-P  )3,1tr  - 0 • 
c.2  

'34 

(5,24) 



liono, in the first post-Newtonian approxitation, 

eX ove-4-P-N12: aeat, 
2GMr,  

r2  

2GMr  4G2Mr2  87cGp  
3 0 P  r2 e0p 

	

r 	02 Pr  

7‘. -v 	• 
4,2e1 as- 

0 v  0.,-,4_21 v 0  
c2 
in. • (5.27) 

X0-90 On dividing throughout by (0-v-7)e 	and differen- 
e 

tiating with raspeat to t we obtain 

dV av 	d. ( d9  va9) 2Q o ho 
d-f -67 	cam, I1 

	211 4.  GlIn  
r2 

02  

2°M 
 2 a r  112d 

rye 2 	C2 	1  

 

f(p+ ...).E a 
c2 at 	at oD 

Q2  

L 3 + 	 p+2 -) 
P± ea  

   

which may be_ written in the form 

di; dt —vav ) ar 
dV 	 v00, 1 	d av 	. 	ap 
at" 	- 2e 	

22 d( 	) 
at 0.20_ dt ar. 	ar dt  

02  
2GM, 

r5  

6G2M r 	47c0. Ea r
_ 7 	dt PV)] 71-    

d 1 +a at 
P  C2- 

-T at r -7c  Car 

3 47  



Hence, in. the 

-Vd2v,  
dt2  

dV av 
dt at 

_first post-Newtonian approximatOn, 

2a
V X° 1 (12)  ar 

C2 	02  

	

 	41G (pV+Dat)] 
2GM=V 6G2Mr2V 	d 

rc2 +  

(p 
	

) a(p+.5) 	p
2  

2 (1 ( l_ )[dV _ rg]  
+-2-  
c2 	

; 

a (P-015) 
c 

4GMr  G  dMr 
rc2 r2 dt 

(5.2S) 

II. EQUATIONS OF CONTINUITY AND EQUATION OF STATE 

At this.point it is necessary to derive the 

equations of continuity and to introduce the equetion 

of state which will be used extensively in obtaining 

the equation of motion required. Thus, from equations 

(5.15) and (5.17) we, obtain 

8/cG (7L+vi) 	% r(p+pcs  ) 
c' 

. (5.29) 

Using equation (5.29) in equation (5.20), we deduce 

that 

XitG 	24102
.7.‘.

I"( 	) [I- re ---V + V(02-) r 2 02 c 	a 	C2  
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and hence 

.P.S. 4. a [( p4IL)vj 	= o . 	(5.30) at an. e2 	C2 

Since we are considering motions in a purely radial 

direction, equation (5.30) may be written as 

+ div[(c+.27)V] = 0 . 	(5.31) 

Also 

= ft  I. vig  =.41(i0.2_dv]  _ iw(p+23) 	g  

and consequently 

aE . 4 	 v2a _ 2v(n+2_) ITU 
dt 	P•ca ar c2 ar 	ar r " e 	ar 

Hence, 

d (p4—)div V - 	a P 
ar  C2 	C2   

• (5.32) 

The above equations reduce to the usual continuity 

relations.C2)  in the classical limit. 

Assuming an equation of state of the form 

P 	 (50 33) 

where y is the ratio of the specific heats and 

K is constant, we obtain 

• 
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Thus, using equation (5.32) • . - • 

(0-2--)div V + 
P 	02 

V 2.2 

c
2 ar 

• (5.34) 

     

Similarly,, 

at 
X-2  div(p+)V 

a2  
(5.35) 

Now 
_id A.R\ 	a (51p,, 	av a2
d-o 	= a 31 	— an-  ar. 

1.1XE((0,27)div  v 2L1E)] av 
a 	p 	c2 ar 	ar ar' 0Q 

(5.36) 

also from equations [(5.31) and (5.,M] and [(5.32) 

and (5.34)3, 

a, D = 414.X22)diV[(0-27)V] 
c. 	 PC 

(5.37) 

and 

dr 	 n____, 
dt“,---2-) = —(p+27)(11"2)div v — 1r2(11AP   AR . 

a 	a 	pc 	2 ar c 	pc 	- 

(5.38) 

III. THE EQUATION OF MOTION 

Using the relations (5.37) and (5.08), wa easily 

obtain 

d Y) a V( 	 =- 0( V2 ) 
0 

dt 	2 at 	
2 

• c 
 (5.39) 
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d 	1 	r _ l _p2Nr 
dt`

r 
 p+p/ 	c  I'ddtV Vat, 

= 0(17-2) , 0.40) 

and. 
1 

‘r  
(n.1.111 Vg) 

21  dt 
(0-27) 

c- 

.A(0-2—) = d2V  V  
	c2 	dt2  

(5.41) 

which, on substitution into equation (5.28) give 

_vd29 dV av 
dt at ate dt dt 

d2v _ v(30 1 	_102)  .4. pi 

	

dt 2_ pTE)  dt ar 	a . 	2  
d 1 

 

	

a 	 0 
2GMJ 6GaM:V _  	4 G 	.rdpN  

	

4 ...;° 	4  1 ( Pvs dt 1  r5 	r. 0, 	C 

	

v,  X 1 4GM31 G dMr 
7 
	(5.42) 

• 
a o 1+—. + 2e 	-- 7.6-  rc2 r 

On using equations ('5.36) and (5.38), equation (5.42) 

becomes 

d2V V da y,  1 dV dv. 
dt2 
	

dt2 — 2 dt dt 

an' ( 	
[(0..R._ 	I

C2 

)(1, P ydivv + 
n+2—)2 	 2 	P r c2  

alg(04 
c 

which may be written as 

-1r412 p  “0-2-02)clivva- 22 )) a 	c2 3. 
+ a V 1.3...1 x 1 

' a r ar ' ----- 

iL(,4\.al2GMg 6GAMpT 
02-pcoianJ 	r5 	r a 4 2 

4GM 
2 

G 	 
dM 

rc r2  6'6 
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ev
-X  o 

(0'23) 

2GM" 	6G2M 2  
X If  4- 	V 4 2 r C 

-61' 
a (..30LvIR) 

pc2 a' 

d2V + V d2v .4_ 1 dV 	.e 
v
o o ji[IP(0-.2-)divV) 

dt2 	7  dt2 	'U. 	( 0-2-)  r P 	a2  
ca  

ar ar 

On substituting for If and 	from equations (5.34) 

and (5.27), equation (5,43) becomes_ in the first post-

Newtonian approximatioh, (of., equation (IV..5)) 

ava 1o,d2v V d2v 	1 dV a , 	ir a , . ,,, 
... 

k--- + -5 --- + ."---- -1) = -615.ykypuivvij 
dt 2 	dt  2 2 dt at 

pea 	r  2 	c2 	ar 	-----t7 	+Y) -i -
2  y) 	 fr 

[ 4 Git  

r.5 	

G2M.„ 

c., r 
{ 

4, ci- ...p._ GMr. + 4A-Gpry  av + 	+ (9 

GM 
r 	

4GM 
V- 1.1.----12  G 

dM r 
 41 2  -7  

1 [ 	1  

To obtain the rate of change of the mass inside 

C1--2 ` 14. 	3I)  G 
 dlan e. 

p at! 	rc2  r2 t  
(5.43) 

4.1162Erl+y) 
c2 pc r 	re r 

(5.44' 

= 0. 

(liTP) 	-; 
[Cp-1-2-z)divV+ V Or' 
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 Pc' 
)

'   
c
2 Or' 

+2 	r 
 e ° 

3 

radius 3/ , we return to equation (5.22), 

tMr j.-- 41v / pr2dr ., 

a 

i.e. 

The derivation of this equation may be found in 

Appendix Itr. 



Frennol, 

aMr 	a M 
at 	at 	ar $ 

and consequently, 

dMr 7aT.4i 	aatradr. + V 4wpr2  
a 

(5.45) 

On using equation (5.31)' in (5.45), 

r-, 
rt cp-a—)V]+.4,2 	p)V 1y r2rdr+41tpr2V 

a' 
a 

and on integrating by parts it follows that 

dM
r. + 4,1 cp- a ii-27)V2rdr-43 (22 

c 31' ' o- 

+ 4iEpr2V 

and Llama, 

dM 	2 
at = --,,_v  C5.46) 

c 

This result is identical with that obtained by Bondi(3? 

for the case when there is no loss of radiation across 

any shell of radius r during the pulsation. It may' 

be noted that in the Newtanian limit, the mass inside 

radius r is_ constant in time, in accordance with 



classical theory.,(2)  In the post-Newtonian approxi-

mation, as_ well as  in the Newtonian limit, the total 

mas.sof the model is a constant, i.e. there is_ no 

mass lost to the surrounding space, which is consistent 

with our assumption of an adiabatic sphere-. 

Using equation (5.46), the equation of motion (5.44) 

becomea 

eva:-XacdaV + V d2V + l dV av 
dt2 	2 dta 	 d.t at.  

[ -I- ( lt•nr)--P...-- MI;  ÷ LiaGpry,  a v 

paa  r2 	c2 	YE 

+ 	 3-- ÷ (9+r) 
rGMr 

33_ 	er4 	c2 \ a+y 
G2M 2 	' 

	

r 	4/cGlarn  +  	+ 2(1+y)-&- --= V = 0. 
pc r 

, GM, 
2 3 

(5.47) 

This is the equation of motion for the small 

oscillations of an adiabatic fluid sphere, correct to 

order --- and to first order in the mations. This 
C2 

equation may be compared with that obtained by Kaplan 

and Lupanov(4) and also that obtained by 0handrasekhar,(1) 

but unlike their methods of derivation it has_ not been 

necessary in the present analysis to introduce per- 

turbations with time dependence eic7 t  (the same for 

AT er
rp 	 ypdivV)j 
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dV av 
c17 3i 

Hence, if 

are 

all physical quantities). 
d2 

It is easily shown that V--- and 
dt2  

of order V2  , and so may be neglected. 

we put 

v = — 
2 
where 	S(r)eia  at  

dV 	 * 
S 	that V = 	-S(r)eiCt  ;,a-f  = (i.a)2S(r)e.1  t; 

d2V (icy.)3j(r..)eiat 

dt2 
 

(5.48) 

then equation (5.47) gives 

GM 
*-11-,(Tpdiv'S) 2 	Apr4w 	vr)  

pc2 r 	C 
 

v -4. 4GM 

[ 	

G2M 2  
1_ 0.-20  0 04. 	ri   i 9+y)  2  y i  Li-icGp(2+10+2c1+,,N.....2_ GMr iSt,,,,,v_ ii  

r3 ‘ 	 I, / a 	3 	.-..,- , 
c Z+  c2 	 pC r 

(5.49) 

where the prime symbol denotes differentiation with 

respect to r. 

For a uniform sphere, i.e. p = p(t) , we obtain, 

in a similar manner, 

A ar _L(ypdivt GMr 
) pct r2 	C2  

  

9 

v,o -Xo+  4GMr. G  2e:   { 
r5  

G2M 2  

+(9+Y) 2  
C r. 

   

kicGp(27t-y)anyl  GM 
a2 pc.2 r 

o. 
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In tuu Diasts.icl limit equations (5.49) and 

(5.50) each reduce to the well,-known equation of 

motion, given by Rosseland,Ca)  for the oscillations 
of an adiabatic sphere, 

4GM I d, rpaiv ) +- 	2  + 753) = 0 4, (5.51) 

(IV) THE HOMOGENEOUS SPHERE 

We shall first obtain, the condition for dynamical-

instability in the case of a homogeneous sphere of 

constant density p and constant ratio of specific. 

heats y 	Following Chandrasekhan,(1) we shall write. 

as 

2 22— Y2  = 	where m2 = alt
2
Gp a  

(5.52) 

Thus, from the Schwarzschild interior solution 

discussed in Section IV of Chapter II, we obtain 

2 Y—Ys p= nc 
v 	3Ys7Y 9  

X 1 e = 	and e))1  = k3Ya—Y)2  
yz 

(5.53) 

R2  z where ya  = 	, and R is the radius of the 2 
model. Hence., on integration with respect to n, 

equation (5.5C) becomes 
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P 	a pd.iv )1-,o 

0) 

yGM 	 Y a d 1, 	A 
-ram 4- A

:
..--2Cq 	02anPC3y.s7y)7-1(1N-- 

[ r. pc 
o 

+ a 1 l  4cu  
f_1(337' -Y)dT1 	491(5Ya 

 ~GIdTr Asa 	—3r ) y /7,,, 	 r5 a v 	a .;-y,  

ns 
47cG(2y4--), 	2. -Ys 

J 	Pc 	3-3T y) del 
pc2 	r 	

3 
7s7Y a 

G2M 	n'sd 3 3 
3 + 	p( 9+Y) 	c 2 3- --rn -(35rs—Y)d'n 40 (5.5k) 

r 
47c 

0 

where n 	 and °((r) = i(53ra--Y) 

To the first post-Newtonian order of approximation, 

on putting 

y=-cos.® and 	= sinG 9 

where 4- • n-1 —R we find that a 

ria 

0 r(37'..*Ys)dr = : 9 

a) 

ins 

J
o) Ti5( a--y)dn- 

(5.55) 

(5.56) 

1 1- 5- 



0 

i 4 Y-Ya 	-y)jdri -- Mw 3Y ;---Y 171 2- - 	
n

a  
(5.57) 

if na a. Y2(3Ya7Y) 

49  2 	19. 	4 s. 
-- 4 ÷ 2.48 s, 9 (5.58) 

0(337s-Y)cirl 749s  - 48 w- a  1 2 	4 

wo 
and 

5a 

14 a. ' 	- -A-.1  • 
9  

r.-- -A-Cpdivl >dr = _ .. ./.9.1 r Q s 

(5.59) 

(5.60) 

Using these results in equation (5.54), we obtain 
4' 

.ly_s_t r ,.., 2 ... S ] 4.  
4 a L 	12 

9 

0..4  2 2GM _ 2.23-  GM 
a  R3 	24 	

4cvv. [ yGM 1 (2+-2y) G-1‘1102ala  4 
pc2R3 c2 	R3 16 a P  

+ 4i (9+Y)   41.t... Q  4 cr3 tp 
R-lc2 s -4-  = 

which simplifies tc 

26 2[1:44.92 + 2G [ (4-3y)s+9 2[14-2] = 0 , 
R3 	s, 8 6 

and hence 

R3  
G 

2 .4r  .. ..t..:R 	(4_3y)  4. (fir 
_ 4)02  =. 0  . 

.1, 4 Ej - 

(5.61) 

0 s, 

2 1 	4 pa ]-,09a  2,Q  a2 + 	1_,24)  4-, 
48 s ' 

yGM 	. 41tyl { 	R5pc2  + 	ea  , alTi, 	2  



The condition .for dynaminal instability is 

6"2  < 0 , and hence 

('4-3y) 4c-4)Gs2  > 0 

i.e. 

( y--7 
  

k 	)49s 
z
. 

aonaeauently 

Y  3 	
ln 4 - 
	

2 
	

(5.62) 

From the definition of 8s we have, for small Qs' 

0
S.

2 	R2  .11.EinGp 9 
2C2 

 

and from equations. ("5.52) and (5.53), 
R2  1-(l--81tpG)1/2  

pc  = pcC2 
	

0  / 
2  

3( R — 

2

-81CpG) / 

30 
which gives, to the order of approximation considered, 

R2  (--787cpG) 
Pa 	2 3c 	1 2 

a 	4 s 
pa

t 

Hence, the condition for instability (5.62) becomes 

44 Pa 
- 3 < 9 

paa 
2 (5„63) 

marginal stability occurring when (Jr= 0 , i.e. when 
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Y - 
it in 	L. Pc 
7 7s - 3 

P c2  a 

(5.64) 

It will be noted that in the classical limit 

expressions (5.63) and (56.64) reduce to the usual 

classical conditions imposed on the ratio of the specific 

heats for instability and marginal stability, respectively. 

In. the post-Navotonian approximation, the sphere is 

unstable for values of 4  3 4 Pc smaller than (3 +  
Pee 

and will expand or contract at ar exponentially accelerated. 

rate. From equation ('5.61), when y is. close to Ai , 

a is given approximately by; 

4p, cr 2  ---43/41G  
Pee 

(5.62) 

Consequently, in the case of a uniform sphere, the 

Newtonian lower limit 	, for the ratio of the specific 
heats y ensuring dynamical stability, is increased 

when general relativistic effects are taken Into account, 

and will be significant even for configurations in 

which the ratio of the central pressure to density is 

small, pro-vide& that y is_ close to if. 

Before proceeding to investigate the stability 

of more general models_ (`non-uniform density), it will 

first be shown that, in the case of a uniform sphere, 

instability occurs at a maximum of the mars. regarded 
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as a filb,c,-binr of PC C  , 2 /vc  

Consider a uniform sphere in hydrostatic 

equilibrium, Applying equations (2.36), (2.44) and 

(2.52) applied to such a sphere (n=0), we obtain 

where.  

Hence, 

M ----- 14-xpet3V( 	) 

pa 	Kp 'Y.-a- z 	 0 	. G =, 	mon••••••....1...d. 	. 
4%Gpa2 	47cGpc 

3/2_ 
41tpe( KPL7ItG  ) 	v( Ss) 9  

and therefore 

M = 1 1/2  (G) 	Pc 	v( s) 
(47c) I 

(5.65) 

where 77(.1 ), 	and G satisfy the generalization of 

the Lane-Emden equation given by (2.45) and (2.46), 

with n=0, namely 
Y-1  

2pa 
5 2 CI4,e -I- 	V ( 	) 

(5.67) 

On integrating (5.67), we obtain 

4 9 

where 

Kparl  
1+— 

C 2  
dv . 2 

Ha 
 

+ 	'c 39=0, 
c  j 

(5..66) 



v( : s) (5.68) 

The solution of the generalized Lane Emden 

equation has been given by Tooper(5)  and in the present 

notation becomea 

Y- 
1 	Kp  y-1 1/2 	Kp  y-1 

Kp Y-.1 	(1+---11'• )(12/3 	c 	-(1--- 	) 
a 8 2 	c2 J 	C2 

Kp 
	

3Kp 	 ..n. y-1 	y-1. 	,p 	2 
y-L 1/2  

3( 14-2  )4 1+

0
2 

) ( 1-'73  e"2  ) 
c2  

Hence, at the surface (Q=0) , it follows that 

2 

S 

L ap Y-  

2  

) 
C
2 

342.-1-  2 
) 

(5.69) 

Thus, equation (5.68) may be written as: 
2Kp Y-1  

53/2_ 	c.  
[ 	C2  v(  

342-1'  
1+-31- 

3/a  

and hence, to the order of approximation considered, 

v( 6
3/a 

/a) 	Lap,Y-1 3/2  
3(1+ 	) 

c2  

• (5.70) 
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Consequeutijr, rormula (5.65) for the total mass 
becomes 

3y-4 

	

3/2. 	2 
6

2/5  
ivi AG, . 1.-.-..--. (IS.) 1/2_ G 	4Kp Y-1- 3/a  3 	

9 (5.71) 

	

(470 ' 	(1+ 	a  ) 
c2  

which ia identical with that obtained by Kaplan and 

Lupanov(4)  in the case of a uniform sphere. 
dM By equating FIT; to zero, we can obtain the 

value ot PC  for which the mtss has its, maximum value. 
Thus, 

31:1  4Kp Y-1 5k 3Y-4 	4Kp Y-11A,4Kp Y.2(c-1:` 
dM 	0  3y-

2 
 4, 	2 (1c 	c.  ) _pa  2 	c ye 	c 

717c; 	02 	C 	C2 

Y-1  
and so (3Y-4)(11 	

4Kp 	-7 ) 3.4(y-1)p,y-1  0 
c' 	" 9 

and hence, 

4Kp Y-I  
3Y-4 	2 [(3Y-4)-3(Y-1)] = 0  

Oonaoquently, 
4Kpc:y-1  

3Y-4 
a 

which, from the equation of state, may be written in 

the form 

3y-4 14-Pc  . 
pac2  

(5.7a 
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But from equation (5.64) we see that equation 

(5.72)' is just the condition for the onset of dynamical 

instability. Hence, it follows that marginal instability 

occurs when the mass., regarded as a function of pa  , 
Ond of 

is a maximum.. Also, for values of y /the ratio of 

central-pressure to density such that inequality (5.63) 
dM holds, we. conclude that the descending branch (-,--- < 0) upa  

of M is unstable, a result which is in complete agree-

ment with that obtained by Kaplan and Lupanov.(4) 

On re-writing the condition (5.62) for dynamical 

instability in the form 

4 1 EipGR2  
5r 	3c2 	P  

and using the formula for the total mass, 

3 M 

we obtain 

4 , 1 2GM 
Y 	3  ° Re, 

1 Consequently, 	R < 7'7-77 • (Y-3) 

and. hence 

R 1  
R—  < 51,-4 

where Rs is the Schwarzschi1d radius. Thus 

(5.73) 

2GM 
z • 



lnatability wI11 occur if the ratio of the actual 

radius of the configuration to the Schwarsschild 

radius falls below 1/(3y-4) 

V. NON-UNIFORM SPHERES 

Turning now to the problem of stability of non- 

uniform adiabatic spheres, attention will be concentrated 

on these with a density distribution similar to that 

in a polytrope of index 3, with the object of elucidating 

the discrepancy between the results obtained by 

Chandrasekhar(1)  on the one hand and Kaplan and Lupanov(4)  

on the other, for this particular type of sphere... 

It is known that in the classical limit the solu- 

tion of equation (5.49) corresponding to marginal sta- 

bility la proportional to , where 	is defined by 

equation
. 	(1) 

( 	ilprndix Vr 

Consequently, on putting 5  . 	in the equation of 

motion C5.49), we should obtain the condition for 

marginal_ stability in the post-Newtonian approximation. 

Fence, writing (5.49) in the form 

(pdivl )+ [(1-y)-2- 	+ 
. a r 	

GM 
Y a 	r 	47EGypr  p  .1(r)  

pc 2 r2 	C2 

4GBA 	2Y 2  
+ ( 9+y )

G

2 	

+ ala( airy )+ 2(  1+y)--ni. 
GM

p ( r) 	o 
cr 	az pc r 

(5.74) 
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4-41 	4 d'C 	 G2

2  
-1-( 91 '0-1 c 

0 

Is 
+ 4wG(2+7.), ppl  

S 
Mr2  

P 
0 

G Mr -F 2( l+y) 71 

0 
.) = 0 

• 

(5.76) 

Whceo, 

11 = CL 'S a2 = Pc 
xGp0  3  

• (5.7 

Integration with respect to / yields 

( 	_,P1Vir 4 	-F /1-1tGyts [fpdiv 	 PPr 
c 2 	r2 3 	02 

0 	 0 

By straightforward integration we obtain in the 

first post-Newtonian approximation, 

la [Xpdiv't 
m 	0 

= 31EGypc2  f 

PM  (1-y)a, 	rdt = Li-,JEG( 1-y) papa  9 
C2 r J 	C_2 

C5..7?) 

(5.78) 

Jo 

	

la 	 is- 
14-itGy 	pprly cll =- 41cyl- 

n  

2
--e 	G7  

s 	
d 1, 	( 5,79) a  

0 
0  Ism 	 P P 

a( 1+y)— 	--17) d . 13-(14.7.) 7cG...R.S. 

	

1 	 , 	( 5, 80) 
2 	3- 	5 

	

c 	0 	 c 2  
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P 

2 	
la 2   

91-T)1 j 	09+y) 167tG-9--9. 	 .93cd49.zd  v 1 

	

2  r 	 02  

0, 	 o 	(5.81) 

PpYn 41t a2 f 	p 	pd t: =- Li-7EG( 
Q.4 	) 	- e • 

(5.82) 

and s  
)a 

Mr  
4G 3p 2 16 PcPc; 	 PcPc 	

3 
i 

=4-KGrre 	 4. 32nG— 4( (7.1) 2A1 
ca 	 u3  

o 

--167EG P-9.;--p  1 1.4)7d 	9 
Q2 3 

(5.83) 0 

where subscript c denotes central values, and .9-  is 

defined (Appendix V) by 

	

A = p.05 • 	(5.84) 

Hence, using equations. (5.??)-(5..83), equation (5.76) 

becc,mes 

2 	P  Pc 	
Is 

	

P P 	r" 

	

a 	(1 	2 16 PaPc -3)tGyp +.--1KG( i-y-)---e-' --1-4-1tGy----1 6,-• d1+47LGp
c 5 

7cG--= c 	c 2 

	

0 2 	 e 0 
IS- 	 ls- 

P,Po. 	 Pr, Pr, -4.321EG"-' --:-. /Q3(7,-9) 2d1 -167c -G—"--z-f1Q7c11 
C 2 --i 	' 	cz 

0 	 0 	fa 
+(9+Y) 16„Gn-.,‘„,,...N.d. c  2 	) ‘ d' 	.5 

P Pc  /a 	 PaPn 	0 
+41cG( 23- y - 

02 ----. G7IT
J 5 +12(14-r)ItG--- 2 - 0 . 	(5.85) 
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l'Is 	Is 

I 
079.1+ 2....-,1§ 44)5C1 14 c  - 0 . 717: 

0 

(4-3y) 4415  * 

From equation (5.35) it is immediately seen, 
on neglecting the post-Newtonian terms, that the 

condition for marginal stability is 

Y 4/3  , 

which is the usual classical result. We shall now 

take y — 4/3  in the post-Newtonian terms of equation 

(5.85), because the, error involved in the value of Y 9 

being itself of order 1/62  , will lead to errors of 

order 1/C4  in these term" and so can be neglected to 

the order of approximation to which we are working. 
Hence, 

Is 
971d/ 4 

16 21. 1 .1,13,
'

01,Q 	40f 
3 	)-7  .1) d  5 T o79.1 

(4-3Y) 	
Pa 

poc 

Is 

—16 	IG7d1 A,  

o 
and so 

6 
15 

(5.86) 

On taking approximate numerical values. of the 

intesrals in (5.86) via obtain 
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4-3T + [0.2 + 1.27 + 	- 0 
pcc 

i.e. 	4-3y -1- 6..76 	
P,

-  0 
pac  

and hence the condition for marginal stability may 

be written as 

Pe  
= 2.25---- 

pC
ce (5.87) 

Thus as in the case of a uniform sphere, we deduce 

that for the type of non-uniform spheres here considered 

the Newtonian lower limit of 4/5  for the value cf 

compatible with dynamical stability is increased by 

the effects of general relativity. This result was 

also found by Chandrasekhar but he obtained a numerical 

factor 2.63 on the right hand side of equation (5.87), 

whereas Kaplan and Lupanov obtained 1.35ti.,e., 4/5). 

The numerical discrepancy between ('5.87) and the 

corresponding result obtained by Kaplan and Lupanov 

can be traced to their method of approximation (Gee 

Chapter I, pp...Z.0). It has not been possible to pin-

point the reeson for difference be+weep. equation (5.87) 

and the corresponding result in Chandre.sekh.ar's. work. 

Therefore, to decide the point an independent check an 

the validity of equation (5.87) will now be given. 

1C7 



It has already been shown (see pp. 151 and 152 of

Chapter 5) for a uniform sphere that the graph of the 

mass M as a function of the ratio of the central 

pressure to the density consists of two branches; 
dM ascending (dM 	0) and descending ( /apc  < 0) 9 

instability occurring at the maximum value of M . 

Kaplan and Lupanov(4)  showed that this result is also 

approximately true for the type of non-uniform sphere 

considered above. Also, for spheres in which the equation 

of stata is of the form ('2.26) Tooper(6)  has shown 

that for general n instability occurs when the mass 

regarded as a function of PC/p° 2 
attains its_ maximum 

/  

value. 

With -chose general considerations in mind, we now 

proceed to justify our result (5.87) above. 

To the first post-Newtonian approximation, the 

relativistic generalization of the Lane-Emden equation 

is (see Appendix V) 

1-8 (Tv/  . 12 	c 
* v *6'1304 = 0 , 	(5.88) 

Pa/pac  2 =- Kic10-2 9 	 (5.89) 

where 
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from which we obtain 

_2d8 - ; c304 
clJ  

1+0-8-86(1 IQ) 

Hence, the surface value of v( ) 

-C1242)  s v( ) 
JJJ 
	 1-8(5( 14) s  

and the mass M may be written as 

is given by 

(5.90) 

C5.91) 

M = 41cpca.3v(1s) 
	

(5.92) 

where_ 

C2a  = a  

Consequently, from equation (5..9l), we obtain 
3/2  

-4/cPaCCr a2 	( 244)s  

and, from (5.95), 

Pc a 
3-/a 	. 17.8c( tufs  

(5.93) 

giving the mass as a function of pc  since 

and (1 'Vs  are functions of pc  
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On equating Ac to zero, we obtain the value 

of pa  for which the mass. is a maximums. Thus, from 

equation (5,„93) 

did - 	[(3 TP; 

3y-4 
2 	TR)stpc  2 .1.1 .49.1)si 

8Kp Y-1  

C. 

C 8Cy KpS" 
y-a 	y-1_ 

=1)— 	(-CI) 
Tr, 

— 
d. 
-- - 

dG
) - ](''S2 sl 02 	3 d s 62 	dpc 	s 	

42.1 
sv -1-1 	 e 

('5.911 ) 

,e d.49 Classically, 	( —)s = 0 and hence to the first 
dp
d 

 c  5d-t.  

order in l/c2 equation (5.9k) becomes 

av Y1 

74C111 )s Pc dpc1/4 5 is 
d („42d8N 	3y-4 ''Pc 	dO 	dO 

2 02 (1-C1 )9(12CVS 

4,Y-1  
4.43(Y-1)--7‘4  eai)s( 241)5 = 0  

Consequently, 

8Kp 
LI' 	L 
Y 1  an  

) 31.-4 41-  P dcls [loge.C2") (3 Y-1-\ 
- Pc 	4:73 s 	2 	c  I 2 	c 

	s 

Kpr.Y 1-  
4-8((-1) C 2 

	
-- (t- CIG) = 0 . 	(5095) 

Assuming now in accordance with the work of 

previoua investigators, that marginal iastability does.  
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indeed occur at the maximum of the masa (as a function 

of pc), and that the condition of marginal stabjaity 

is of the form 

CD 	cKp 
4 r— I, /- 	a  -C C' 	a 	(5.90 

PCC 	0,2 

where C is a numerical constant, it will be shown, 

by inserting ('5.96) in (5.95) that, for the particular 

type of sphere in question, C is approximately 2.25, 

in agreement with equation (5.87). 

Substituting (5.96) in equation (5.95), we, obtain 
(42d0)  

3116  + p -S1-[log(1211 8  )] 	8/50.  -',11-1  = o 
dpa 

(5.97) 

Using the tables for the classical Lane-Emden 

functions4  

242)  1  8  - 0.2326 
s 

Hence, to the first order in 1/c2  , (5.97) yields 

pJ:41.0gclE 2M) ] 4-  
=pa 	.1 I a 

and therefore 

u—o..78o31 = o 

Kp 
acis-1;;[log(-8 ak +- 	_C-0. 	—,i= 7803] 

ca` 	
=- 0 • 

161 



On integrating this expression we obtain 

2c1,9 	3 	a 
log(S

1) = A-LA 0-0.7803]; , a a 	2 	Y--1- 	
(5.98) 

where A is a constant of integration. To the first 

post-Newtonian approximation, it therefore follows 

that 

(1cIs  = A exp [4'3/ C-2.3410]Cd. 	(5.99) 

To determine A , we note that, when 6 =0 , 

2S1-9-) dl s takes the classical value, namely 

(124 s 
= -2.018a j  

t 

and so equation (5.99) can be replaced by 

((.1  21(2)  a  = 2.0182_ exp 	C-2.3410]Cd. 
(5.100) 

Using Appendix VI, it follows that 

(-124ts  = 2.018a-3.5.44a 
	(5.101) 

to the first post-Newtonian approximation. 

Hence, equation ('5.100) gives 

  

L-2.3410] I 2.0182-15. 	= 2.0182 

   

and consequently, 

16 2 



D-2.341 = 7.-6512 , 
2, 

giving 

G =- 2.22 	 (5.102) 

in reasonably good agreement with the value 2.25 of 

the constant C in equation (5.87), 

Finally we note that, on using equations_ (V.15), 

(V.16) and (V.5) with n=3 , we obtain to order 1/02  9 

=_ GM 	"` 
41cGp, 	v( 

a' 9 	 (5.103) 
Rea 	Ca  

where 

itGpc 2 

and hence 

GM 

Rca Poe  

v( 
	 • 

a 

(5.104) 

(5.105) 

Consequentlys, 

GM 	14-Pc 
2 b"7:373b-S 9  Re pac 

and. therefore 

2GM  	 = 2,34-- • 
Reg 	Pc02  

16 3' 



Substituting (5.105) in (5,87), we obtain 

4 /4. .2,1 r2G1/1  
Y

' —2734 .
Rc
2, 

which gives 

R (16  R 

/5=  
(5.106) 

and conclude that instability occurs if the mass 

contracts to a radius given by (5.106).. 
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Appendix I 

Derivation of the Gravitational. Potential_  
Energy in the Envelope of a Composite Model. 

We calculate the gravitational potential 

energy (in the classical 	of the outer 

part of the model (the envelope) between the inter- 

face r=ri  and the surface r=R 	Thus, 

R 
rdMr l M2 Mil 	1 	Mr2 

-Fr) G 2 dr  - 
r 	

.
' 

ri 	 ri  

Defining Sr  by 

dSrr 
dr 	Ito 

we obtain 
R 

2  M. M2 	) 2 dr 
1  dSrlFrar  

R 	r - 
ri  

and hence, 
_ R 1 S

r  (tM r ' a 
1 	1 =. 

2  M.2 	1 ,M- 
2 • R 	) 	

GM 	
2 R 	-S.M. rl  
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GM where we have used the formula SR = - --, and 
where subscript i , as before, denotes interfacial 

values. Consequently, 

.2  1 M. 
1C M 

2hji 
R 
SOMr 

ri  

(1.2) 2 	. 

 

In the classical limit, 

d(k) t  GMr lam= (n1+1)NTip 
dSr 

2  tr.  p dr - 1E7 

and so, on integrating, we have 

-Sr  +SR  = (n1  +1)P +1).R  

Hence, 

GM -Sr  =-(n1 	p  +1)2. + 1r 

and thus, 

,Pi GM ( 21+-1-)— Pi 

(I.3) 

(1.4) 

Consequently, on using equations (La), (1.3) and 

(I.4)„ we obtain 
R 

1/ '.1-"*' R 2 1 + 	+-kn +11.  
R 

n 2 R 
GM.3  1 L 	Pi 

- 	
1 MMi I, 	p.dm  1 G ( 

Sri  
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and so 
R 1  GM42 	Pi 1 GM2  1  411  . --ez---L--1--  + ' 	+ -xfn +1)--.M. + (n1+1) 2 . 	7 .R 	 - 1 	pi pdV , 

r• 

(I.5) 

whet 	dV = 4nr2dr . 

Also, 
R 	R 

i 
M d1/1 

ni  = G 	-3"r r- - r3dr , 

R 
= -47{ pr3j 4-41t. 3 

ri  
pr2dr . 

Hence rR 

' 3Pivi 	31 	pdV . 	(I.6) 
j r 

Using (1.6) in (I.5) we have 

2  5-3121 	
1 	R 

M2  Try  = G(---- 	) + (n +1) 
-  ri  

This is the desired formula for the gravitational 

potential energy of the envelope. It may be noted that, 

in the parti.lular case when the interface is at the 
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centre of the model, 

 

GM2  
Tr (1.8) 

 

which is the usual expression for the gravitational 

potential energy of an adiabatic fluid sphere (or a 

polytrope) of index ni  . (Chapter 3, refs.6 and 7). 
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Appendix II 

Derivation of Formula (3.92) for Eb-(Eb)li a  

In the first post-Newtonian approximation, 

equation ('3.91) for the difference in the binding 

energies E/0-(E)ts  is 

ria V1 dv 
E  -(Eb )'  a 4/cp

gc
02  m15(n14.1) O1 	di

1 
dn 

i 	"is  
v 2 dv, 

al3 	n14-1) 2  Cr12  nz dr) 

Hence, 

4wp c2  
gc 

V dVA.‘ 
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dvi  
we use equation 0.4, 	7FT  _=112111(1+-Aiale) to 

ns vI dv1,1,, 	na dvi  
I
n 
 = (a1+11 n --dirl-"- 	-6T/di , 

Ili 	li 

+47cpgc
c2(n1.+1)2612a,1 	,172-  di dry 

ns dv, 	li 	v1 

i

-al3A1612 	-d:-.64.95[  "14-1) 61 1-1 - Ala191] der)  

- AO Q jdli 

We note that, apart from a change of sign, the above 

expression is symmetrical in the core and envelope 

variables and parameters, provided that in the core 

n1 is replaced by 3. Thus, in the folloring, we need 

only consider only the envelope variables, with the 

knowledge that the corresponding expressions for the 

core can immediately be written down. 

In the expression 

2  
dv 

--240-21 v
- 	dv 
dl 	-a--,E0[4a Y- 

3  

obtain 
ns 

	

	na 	ns n dv, 111+-1,,2,-Ier.+r A. 2' / 1 	 rdn 
a --n  Qun =-- 	" '" kr1 1 

n,+1 ns Al(n1+1) ns n J ldp, A 	nsip1+2 2A r-' --34-11?/ L 	-' 	3 	1130 	1A.1 io 	11 tin, 
ni 	71 • 1 
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and hence 

ls  

A
4 _ dv, .....A,, =_ .... 

d'n ''''''' I 	
±1-r J 

1 Wi 	Tii -I  

n1+1 3,  Al(n1+1) s  

3 	

II 
Ti29:  1  2d0 
II 	01 3.715)di 
n 

71i 	 71i 
la n  

2i + 	A1 91-1 , — 1  C51. 	 2  dal 

3.23 
From the equation of hydrostatic equilibrium () 

we obtain, to the first order in al , 

v1C71) = -71224 - 2 al( ni+ 1)113* 2  ---401 ( Ai+ 1 )141(1) --gi3ffni÷lp  

from which it follows that 

j ;la vi  clli 	
la 

, 
"n1+-1) Tc d'nj-d-n = ('n1÷1)  

ni  Ili 
n. 

. (n1+1)f 

Jni . 

v1in1 2, 7TP 71 

n 	
ns n1  +1 , 	.c‘ 	, J. 	 .„..,2 ccri÷  AI( ni+i)Cy 

a  
TI 

la n
'  
, 

d.  n2. 20 	, 
= -(n1171)
) 	

-717r-(11 
4  
ri)d71-(n1-1-1)2(71 

ls n, d  J.12 3 d0,2 
n (ye  cin 

Ds n1+1 
-(A1:1-1)(n3+1)C 	

_ 
--17-1°v1(1)d71-0(n 

172. 

- 2n1 +1 dn 

1 95 	

11  

ii 

ii 

X
J  



+1 
+-A1( n1+1)  Cif gc 	a  v1(11)dri . 

D
ili 

( 	3) 

Hence, 
Tla.„221 	 118  

I =-- 
3 

Al 
a. j 

al+2 3 n1+1 
 + # n +1) ( 	- 1) 	(1-)2S  dri-a1A.12  

1 2 la n1+-1 

r) " arn r 	n304)2d11-0-1(n1  +1)(A1  +1) --n2v1  (i)di T1  
11a 	ni 

n-  an +1 	 ry 1+l  712 
-01(nri-lf 	1 II4dre-A1“1 +1)01j 

	
ri 	vldn . Cfb19 

li 	 IP I 
Using this result in equation (11.1), and confining 

attention to terms depending only on T) , via obtain 

LEb  -(Eb) 
15] 

14-itp g
n1+1

+.(n14-.1)( —A31  -1) 

  

712(10.12.10d1  

 

  

--2(n1+-1)-a0' 

-04,xpg 0 20.2012  

 

dgf [+(n1+1)117, AleJdri 11s  
n 	 n 	

2 
, 	d 2 	1 	11 a  d11-2( ni+ 1)1 	'T rci-1.2 dri-i-( n1+ 1) ( Ai+1) 

no 	ni 	

" 

n "s n. +1 1 Oath  

	

X 	c1.7) , 
• '1 
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---2  (n1  +1 

la 	ls  
gf
2n
1
+ 
 n4 

• 

(II.5) 

"21114(q-62d714n1,-  dr ) 

ls  
ta l  +1 4 	n +1 1 ,314,_ w 	dr-A1(n1+1) " 	" 

to the first post-Newtonian approximation, which 

reduces to 

	

A 	n +1 
2 3 1 5 

1 
Eto-(%) s) 7-'24-7cP6  a 	Cii[Tli gfi 

-3 71 	a 

A, 	is ni  
, 

	

i, n 1.1  2 	_1i 

	

031+1)(1-11 	(n uTi)dn 10  4, 	2ua 

4 Tli 

[

(1122+1)(A1+-1 '0( 	n -Effidr 
ns n1+I 3dg( 5 2 2 

141-1 Pg 	*51 
11i 

Considering now the post-Newtonian terms in 

equation (11.5), we find that to the first order in 
1 

	

	3.21 2 
/0 	equation (411) becomes 

d adfd n  ace!, 1 

and hence, 

d24 = 

dr2  
dgf 

-71(aTi) • 
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Consequently, 

ns 
ir+1 ,w  , n  

ni  

If_ 	114[(n1+1)6- al dd (u71) a  

ni 
+11+1154171  

dn2  

n +1 4 	n = 11_, 
4 TTIJni- 

becomes 

)f  Tis 

 - 
ni 

n1+1
7 Lt
Ii 

 ydIN 

'1s_ n1+1
714di + 

Is 
n 

Ali 

n1+1ni4(4 
ni sp1+1 

	'i  

171i 
Therefore, using (II.6) the post-NQIutonian terms in 

expression ("II.5) become 

B=0:11+1)CA1:+1) d
n1+1 3zrd1.-2r  1k,_Li +l)  s-cd,n "q62, 

"n 
ns i 

2n 1 d 	7'11*4an 
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and he 
n s  

n 	= - n- 
	Jill 4 dd. 2  



and since 

(121*1)(n 

n1+2 
n- 

(II.8) 

n.70(- 1 n1+  
lls 

3( A142)(31+1)  2 31 +2 dr, 

n1+1," n1+1 4 dgf 3(33 
—27i 71 (dr? 	2 

n, +1 „ 
+(ni+1)1.,  Ai+ 2) 9.[ 

111  

• 

it follows that 

(AL÷2)(nr1-1) 	ni 
+1) 	Il+ 1   91 2 1 1 Th- 	 , 	

( 3. 	ka711 	1+2) 
\ ene 93,, `11- 2" 

2 

la 	2n, ÷- _1 	3-( A142)  ( 31-6-j-1  

	

3( ni+1) 	r1  4,c 	(-n1+2)'  
Ali 	 71i 	(IL?) d  

Using equation (11.7) in (11.5) we obtain 

aa 	Al 7  n1+1 	
Al 

( Eb-{ Eb)  al =Lk/EP g è  	 + 1(n  +1)( -1) -6  

J

r1712 2d9 ' 
x 	----i (TI dTi)d1 

ni  

1...  3, 2 	n1+1 1, n1+-1_ LI,ditc 	 
+-41tpg,..a.i  ui c2 -72-Pi 	Ili k Eli ) . 

Ils 	a. 
3( ni+i) 	4 2n1+1 

-  	'0 2 
717. 
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Since we are taking the equation of state to be that 

of an adiabatic fluid we take 1=n1_ and A=3 and 

hence equation (II.1) reduces to 

Bb-(Eb)ter4/cfpgce  
[ 	n +1. 	n., 1  nl, 3„e.  1 +011+1) (i.l., ..... N 

1 i --iii Pi 

ns n 
112  oc141 3 

• • 
a1-301 1 491  

	

3irt n 	1  	,,,.14  r_c_ lks 
n+1 n+1 

-1,41tp al vi  , -- ,1 1 " \,. 
go 	2 	1_  

. 	Tia  

n 1 
3( ni+ 1 ) 

na 
 an +1. ii. 	-va 

	

2 	rd 1  11-d1-3021-.1-1) 1121 dl 

ni 	Tii 

Ss,  

	

-47cp,sc. 020-02  2ia. 1 2. LLS. 4(5-1-9-) i.  -4  1  1. 38 .,.. 	8714dS -12 5121'1  
fi 

.(ii...9) 
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Appendix III 

Derivation of Formula (4.15) for the Gravitational 
Potential Energy in zhe Core. 

We calculate, in the classical limit, the 

gravitational potential energyJac  of the cora. 

Since 

f il  

r.i PMr 
	

r. 
M 	dM 

	

7cle 	G 	--r— dV ------ G 

o 	 o 

r r 

it follows that 
r. 

M.2 	e 1 	2 

2
1 -r 

17 

i 	

] 

= 2  ra 

and hence on defining Sr  by 

dS 	GM r 
ffiF = r2 

	

we obtain 	I 
ri  

M 2 	dS . 

	

a 	r 	r m d 2-  . 	car' r ri  

Consequently, 

1 GM.' 
.441-0 - ri  

r, 

- S dM r r 
a 

7 8 



In the classical limit, 

dS 	GM r _ 	r 	1.1p _ ii  d  r  P 
-- 	r3 

.... 
- 	Ti d=r 	d.r` p i ' 

and so, on integrating betvveen r andri  . 	we 

obtain 
r mi 	. 

 - 
[---Sr] L [ l] 

r 	P r  9 

and hence, 

4p4  
S =-S. r 	1 	p. 1 

On substituting for Sr  in (III.2) we obtain 

42 	1 	2p4 	I. 1 n  
G-=- + =S.M - 4S .M. - --=M. + 2 	..tdM 
2 r- 21 i-- 3- 1 P 2-1) r 1 	1 

0 

and hen3e„ 

11.2  
_r1 
--;1 4c 	2ri  . 

ri  

24)111. + 	pdV . 
P • 

0 

From ("III.1) we see that 

72j- , 7 
-47c Agr-idr 

0 

in the classical limit, and thus 

mi 
=--3piVi  + 5 pdV . 

0 
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From equations ( 1II.4) and ( III. 5) we deduce 

that 
GM. 2 
	

2p. 

Lc 	7. Yr 
	pi  mi -"" 

and hence that 
GpMrdV , GM, 2  2p4  _Ln 

3-"be =- 	 r 	r, 	4- 2PiVi
o  

	• 
( III.6 
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Appendix IV 

Derivation of Formula (5.44) for the Equation of 
Motion 

The equation of motion (5.43) is 

d2V 4_ V d2v 1 dV av e  
dt2 	dt2 2 IT' 71  P+P/c2  

)div vi aP r Pic2  

-a  
v -A 1 o o a (..x.E.v1).,ay . 	i rr..4.- ,odi v V 121 	pc 	ape  0 a 

	

P+P/02 rpo2 art n a r 4 kl-1 P/O''l V +-2 al" 	---"5-113  
C 

(P+10/e2)2  

r 	r e. 	c 	
)414,25 	

dM 	v -X 
) 

re r-  2 - MIT • 

	

G 	r p  oo.o.  2GM 	6G2M 2V ' 
IT- 	r 	13-0-2 (V 

— 	4 2 

(IV.1) 

On substitutiag fordt   and 11 from equations (5.34) 

and (5.22), we obtain 

v-XA  
d2V 	V d2v. 1. dIT 	6  	CAIR(p+p/c2)divV] 
;1-Ti 	-2'17 H  P+P/c2 -JE  P 

YF  
2V) ]C 	

) 
rV av 	(

GMr f-011r2 4w41.-)Z6-71) 
(li 

/c2)°I 	r2 2 

	

.5C  2 	02 

L4 + V 0.÷  rp.)eva-lo eMr2 	a o [2GM 
12-4 

pc2 	r4 	V 
6C2Mr2V 

	

r3 	r4  a 

4G 	dM dM v' --X ve77"a4xGprtypr, -e. 

	

	 V at 
ca   

	

CTIAP+13/ 	
=„4  0 o 

a a dt ar a2  rc r 

181 

—[(p+p/c2)(g + 



v o-% 
 	--7—v(_a_2) 2 	1.3-p. 
(P+Pic2) pc2  ar 	p2c2 ar ar 

YID  aV 
pct ar. ar 

Ja1.142 	. 0 
pc2  are 

ar ar 

and on using equation (5.27) again we obtain 
v,-4„ 

d2V 	lv  d2v l dV av 	e `" " 	a  C(p+p2)divv1 
de 4-  2  de + 2 dt at — (p+pics) ar p 	/c  

GM v -X GU 2G2M 2  .......E)e  0,  ofAf 	r 44,KGpr] 
r2 	r2  r'30 2 	c2  

av vo-7,.a _Gm, 2.01Er2 + itagER1 
ar + --e 	[--- + 

02 J 

	

r2 	r3C2  

AY4.—Ule 	
GMr e v -A 2.GM V 6G2M 2V — —i-P 

	

o o. 	n  + 	r  _ 41tGri x  
pce'ar r ' 	r2 	r3 	c2 r4 	c2 

[17. ry(ii 4--  i)] 

V •"71. 	 r12•Rir 2 
a 0- o 	yV G2Mn2p: IR  - '''''n 	jal. ay' ,,GlAr y.yv  itp .... r5„...._,/3.. 	

2 ar " r2 pct  r4 c2  r4 pc 	pc 2  are  

14. ---E C  av0-0  dM2 " 0 
4GM X 
2 2 	-MT , 

	

rc 	1. 

where, since there is spherical symmetry, we have 

taken 

a 	.g,,„ div = (51- -+ r) 

After some algebraic rearrangement of terms we 

obtain 

1e2 

av 2V V 
ar r c2 



v -X e  o o 
	 t' 
( P+P/e2) ar L  P 

F  X2( p+p/c2)divV) 

v 47cGprye o-Xo av  
ce 	ar.  

e al 	/1„..(1, 
o--7,o -7 +(8d-Y)G 

	
+ 	

, 	
3r

2GM 
	Tp  -Va v- 	a 	--Z 7 	1-"'=(1+2y)1 	.--k-' 	+ 

2 2 X a r- 	c r 	c 	pc r 	P c 

[ 	
1 

- -- 2r  + —TT  - 

	

r2 	-' 
r P 

arl 
...e 

GMr  ' p 2GMrp GM 

+ 1 
[ 4. 4GM r 	 e  o o m 

rc r2a   
G  v -X dM 

-are - 
and hence 

	

X -ve(d2V lv  day 	1 dV 212.)  	 [Lerpdivv)] 
cit2 	2  dt2 	dt at (P+P/c2) ar- 

+ 1(1-2r).-E- GHE 47tGPry  av 
pee r2 	c2 	Or 

+ 75
GM
E + (94-0

G2M
n 112a(11-20 

[ j„),..R.  GM - m GM' v  

d2V 1,ev 
dt2 	dt2  

4  ldV av 
2at 

0 

021.4 	c2 	2 -3 pc_ r 	pc2  r2  

YPe 
2 ar a (d.f.v1T) 

2 
P I

L1 GM 	M 
1+ 	r  G 

d 
	r--  0 

re 2 r2 dt _. 
(IV.2) 

Since. 

--L(p diVV) = 	--L(divV) 	divV 
2 ar C2 ar. 	2 ar  

and so on substituting for aP/ar from equation (5.27), 
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-11. 	( d - 	a Ivy) 	-(pdivV) 
C2 ar 	C2 ar 

2G2Mr2  

	

4-0-1 2VN  r GMr 	GM 
ar r 

	

	 2 	C2 r2  rc22 	I'C 
 

(IV.3) 

Consequently, to the first order, in 1/o2  9  

fay , VNria_ GMri  (ay 
' Fli c2 	J 

(IV. 4) 

Hence, on using (Ir.4) in equation (IV.2) we obtain 

A —V' 	2 
0 	0, d V 	1 d2v 	1 dV a v 	_...r1 a e_ 	k--- + ...,iV 	2 dt at' - at2  a 	

pjilepdivv).] 
at2  

.4. (1_y,)
_2_ GMr + ii-Itqprl  aV 

[ pe r20 2 	ar 

14GMn 4 	G2Mr2  4 4%qP(1,4-y) 4 2(1+)-P 	 GlAdV 
ca —7— + (94 Y)c.=L. 	'PC2 r 

4GM=, G  dMr.  

2 EC 	• ro r 
(1v.5) 
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e  a ar 2 
a  (divV) = 	2C2 a 

pdivV) 
P 	
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Appendix V 

Summary of Useful Formulae for Relativistic Poljtropes 

(after. Tooper) 

For fluid spheres with equation of state of 

the form 
1 1+7 

P = KP " 2 (V.1) 

where K and n are constants and po p denote 

pressure and density, respectively, if we introduce 

the variable 0 defined by 

P = Pc9. $ 	(V.2) 

we obtain, 

p 	paen+1 Y Kpa  non+1 	(V.3) 

In terms of 8 , equation (2.20) becomes 

2-(7 )(n+14-2 =—(1÷0.  0)a- , 	 (V.4) 

where 
1 

cr=  Kpan 	pa  
C2 Peae 

From equations (2.22) and (2.23) we have 

(V.5) 
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and. 

Mr 41cp jr eradr 9 (V. 7) 

0 

2GMr , 	7  
re2  

(V.6) 

and hence from equation (V.4) we obtain, on using 

equation (2.17);  

CF(n+1)  ,219. 2GMI, 	GMr  4IcGp0r
n+1 

1+00- -"dr(1 	2) 	2 re 	re 	0 
=- 0. (V.8) 

On introducing dimensionless variables t and 

v(1) deZined by 

r =- a 1 ; 	(V.9) 

and 	Mr = 4.7cpa3v() 
	

(V.10) 

where 

a2 _ r(n+1)ae  
L41EGpc 9 (V.11) 

equations (V.8) and (V.7) become 

zd8 	1-2..(n+1)C5 v()/.-s 
Li-a8  v() a  3-n+1 = 0 

(V.12) 

and 

9 ( V . 1 3 ) 



respectively. These equations, which constitute 

the general-relativistic generalization of the 

classical Lane-Emden equation, are to be solved 
subject to the boundary conditions, 

0(0) = 1, v(0) = 0 . 	(V.14) 

The boundary of the sphere is given by the 

smallest positive value 4 a of 
	

for for which 

e( 	=0 

And from equations (V.9) and (V.10), it follows 
that the mass and radius are given by 

7 
M 47CpaCVV() a (V.,15) 

and. 

R =- a 	. 	(V.16) 

1 g7 



Appendix VI 

Derivation of Formula (5.101) 

We shall derive equation (5.101) using 

equation (5.92) in the first post-Newtonian approxi- 

mation.. 

Writing G GM+ 0(2)  , v = v(1) 	v(2)  , 

(VI.1) 

where superscripts (1) and ,(2) denote the classical 

and the post-Newtonian terms respectively, G(1)  and 

v(1) satisfy the usual Lane-Emden eQuations, 

2d4)(1) , v(1) . v(1)  0 	= 28(1)3, (VI.2) 

and the equation satisfied by (2) and v 	is 

2  8v(1) 	v(2) + - 349(1)4  = 0 . (VI.3) 

If 
 1

is the first zero of 0 , and 	(1)  is. the 
a 	 %Js 

first zero ofG (1) then 

)= 0, 
a- 

Gm( 4  ( 1))  
s 

= 0 (VI,4) 

where 

(1) +61(2) . 	 (71. 5) 
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follows that 

Hence, 

0(1)( 	) 	0(1)(  s (1)+0- 	(2))  ev ,g(1)( 4 (1) 

0-1:2)(4c), 

and so 
) 
*Ss  ( 

	

(a-P 
clO 

eY'Ss( 	f  (1)  (31(  )( 	)r4 	 B 

Consequently, using  using (7I.2), 

si  

(2)v(1)(1 (1 
- ry  
1(1)4' 
s 	(VI.6) 

Similarl  y, 

8(2)( d ) 	42( j(1))i, 	( 2)(  d4)(  ) 
(1) s 	

a 
is  9  

s  (VI.7) 

Thus, from equations (VI.4), (VI.6), and. (VI.7), it 

(a),(1)( 1(1))  

o = ®( 	) 	490-)cf )4- 	2.)( s ) 
•)s. 	Js 	(1)

S. 

+ 	e(2)(/ (1)) 
a 
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From equation ( VI• 3) 	e see that, in the 
classical limit, 

v(2)(1 ) ,v 	.0i2d.49( 2)
)1(1)  ...8v(1)( 	 (1))2 s   

(1) 

(VI. 9) 

(VI.2) and (VI. f3) give 

v(if ) 	2-d8(1) 
3s (d.1 ),c  + V2)-(ss) J a asa(1),,(2)(1 (1

)1 
 

eV 	(1)2(d.0(1)N
(101+ 	 •  2 	2 

s 	4s 	 v(1)(/ (1)s) 	
av( ) (S 

s 	(vi.1.0)  

and. hence, 
et(2)( 	(1))  I (1)2  

s
(2) 	v(1( 	1(15) 	• 

(VI.8) 

Since v.(1)( 	v(1)( (1)) 	equations. (VL1), 

Hence, using (VI.0, we obtain. 

,,(2) 
Nr(1 )='-q 24

2(1)
) (

1 
){1±a-26: 	I (1) 

0 	SI S 	V )(1) 

-t- 
w 2d.+9(2) 8(v(1)( )2 ]  

cr 3 .17:c 
Is 	.1s(1) 

11) 
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From equation (5.91), 

(-.0244) 	= v(0( >El -815(1 gd.),e (1) • 
S 	Ss  

(VI.12) 

Consequently, from equations. (VI.11) and (VI.12), 

,ezd49)  

3  

.2d0(1)  
3 	)/ (i)-a -21Q,(24 1242)  1,3 (1) • 

   

(VI.13) 

On using the table of the post-Newtonian functions 

for a polytrope of index 3 given by Chandrasekhar(1), 

equation (VI.13) becomes 

ds 	= 2.,018a 	15.11/i0-  . 

(VI.14) 
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