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ABSTRACT

We study the classification and the production of 2" ana 17
Mesons and 5/2° Baryons within U (6,6) and U (6,6) 8X3) groups,

using the Born térm Reggeised, Absorbed and K Matrix Model.
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CHAPTER 1

Quantum Electrodynamics is not a consisftent theory -
in fact not a theory in the proper sense because its

‘equations are in-contradiction to -each other.

E. WIGNER®

1.1 High Energy Phenomenology

The situation in strong interaction physics is worse
‘than in Quantum Electrodynamics. Whereas Quantum Electro-
dynamics characterised by a coupling constant e®/Um = 1/137
makes certain low order term predictions which are truly
remarkablej, gquantised strong interaction field theory has
hardly any redeeming feature, For instance fthere exist now
more than 100 elementary particles4 and a massive amount of
data, supplied in ever copius amounts from high-energy
collisions, to be explained and correlated, As a consequence
one has to rely »n a large number of models, to extrapolate
techniques and results of non-relativistic quantum mechanics
and to obtain as much as we can from the ftheory of quantized
fields, in spite of its weak foundation, in order to explain
this great diversity of empirical factsS.

As in thls thesis we are concerned mainly with the class-
ification and production of resonances within the Global and
Supermultiplet Symme try Schemes'we shall confine our discussion
only to thuse theories of scattering in which two. particles

or quasi-particles are produced in the final state. See

fig. l-‘ll
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Fig,1.1 Production g (a) one and [b) two quasi-particles

We do this review of current techniques of high energy
collision in order to show clearly the merits and drawbacks
of'the Absorption Model and Regge Pole theory which are the
main tools we use in our'dynamical censideration. At the
same time we bring out the main experimental features of
high energy scattering. The extent to which our two main
group theoretical approaches explain these features will
then be used as a criterion to decide which approach is
better, if at all. The main facts that a model must attempt
to explain are |
(i) the magnitudes of the cross-sections,

(ii) the energy dependence of the cross-sections,-

(11i) the momentum-transfer (t, or, u) dependence of the
differential crcss-section and any structure, such
as 'dip' this dependence may exhibit., See figl.2,

(iv) the polarizations of the particles or resonances,
(v) the ratio of real to the imaginary part of the

amplitude in the forward direction.
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Fig.l.2 Representative prcduction cross-sections

(2) A large forward peak is caused by mescn exchange,Of

the order of 100 - 500 pub/st
(b) Backward peak caused by baryone exchange. Of the

order of 5 - 20 pb/st. They decrease rapidly with

increasing incident momentum,

(¢) The most frequent type in which both meson and

baryon exchanges cccur,

Fig,l.3 gag t channel meson exchange
' b) u channel Baryon exchange

The task of explaining these features 1is considerably
simplified 1f we assume that strong interactions aré inyaniant
under certain groups of transformations: in other wordé'thét
s. For instance

e &

they have to satisfy certain ccnservation law
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besore the advent of SU{3) the interaction Lagrangian for the

then linown hadrons, assuming a three point vertex, was
3 (=]

L g} N.m+g, = N .7 h.c.

strong

g32§: TFEY Efz.n+g5NKmh.c. :gSN‘]’K.E:-l-h.c..

+g7‘3 };(\+h.c.+g8'3 K.S+h.c.

with eight independent couplings. Introduction of SU(3)
reduces this to a single one6. In an analogous way apblication
of U(6) R U(6) B 0(3) places constraints on the parameters
present in Regge pole theory and consequently simplifies our
physlcal interpretation of the theory; again it does so in
field theory models which would otherwise be plagued by
arbitrary parameters., Theeenergy range of the incident
momentum in which group theoretical methods can be most simply
and fruitfully applied is the 2-12 Gev, in which range an
appreciable number of resonances are formed. It is in this
region that mogt of the 17, 3/2+, 5/9+ resonances are seen7.
Resonance formation is summarised in PFig.ld, Fig.ly2, and
Fig.Lﬁ. As can be seen from these diagrams the formations
shcew several simple features and the appropriate transiticn
amplitudes can be written fairly simply - hence their amen-
ability to group theoretical treatment. More complicated
exchanges either of states with high spins or of complex con-
figurations cannot be excluded; however the simple exchanges
of a few particles belonging %o the o, 1/2+, 17 nonet or of a

one or two Regge trajectories have been highly successful in



explaining 2 large body of dateg. In faét Jackson, Gottfried
»nd others have mode a detalled empirical investigatiocn on
the guantum numbers of the exchanged systems and have shown
that forward or backward peaking 1s caused by simple exchanges
rather than by more complicated difractive effects7’9. Their
results are based on the angular distribution cf the decay of
the resonances which’yield information on the producticn act
provided the spin and parity of the resonances have been
vstablished by independent methods. The spin population of

a resonance is usually described by a density matrix Pom
where m and m' are the magnetic quantu%{g% %ie decay
products expressed in the rest frame of the resonance., For

J = 1 wresonance decaying into twe spinless boson e.g.

o = 2n ‘the general angular distribution of the decay product

is

W(o,d) = %ﬁ (poo Cos® 0 + p., Sin® 0 - P11 Sin® 0 Cos 2¢

11

- V2 1o Sin 20 Cos f) 1.1

and for a J = 3/2 resonance going into spinless boson and

baryon of spin 1/2 the relevant expression is

W(0,9) = £ (P55 Sin® © pll(% + Cos? 0)
~ f—%) Re py ; Sin® 0 Cos 2ff

- (2-) Re p., Sin‘20 Cos #)

/% 51
1.2

Measured in suitable frames these two expressions become



-6 -

~5C0s20 and &3 (1+7C0s®0) for spin-zero exchanges. This
means that the type of exchange mechanism can be tested from
the decay dorrelation independently of the momentum transfer

distribution,

1.2 The Peripheral Model

The anguler Aistributions for the productions of reson-
ances is summerised in Fizld.2 with the forward or backward
peaking indicating small momentum transfer; they are almost
entirely confined to momentum transfers of less than 0.5 GevA
with an average value of 0.2 - 0,4, This predominance of
small momentum transfers implies that glancing collisions are
most important in these reactions. This fact can be stated
in various equivalent ways: collisiocns with large impact
parameters give rise preferentially to guasi-two body react-
ions; these collisions are dominated by high partial waves
or equaivalently that the reaction is mediated by a long-range
force corresponding to the exchange of a light parfticle;
nearby singularities in the t.channel dominate the reaction.
This strong peaking at very small values of £ and the angular
distributicns seem to be largely independent of the ftype of
exchange occuring and bearing little or no relation tc the
mass of the possible exchanged partlcle. Given the peripheral
nature of the processes a peripherel mcdel with one particle
exchange was naturally the first one tc be used for these

data. Fig.l4 shows the escential features of this model
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Fig.lh General case of peripheral interaction

where ¢ and d could be rescnances. The matrix element

has the following structure.

- a2y 1 2
Moy = Mp(e,mC) ——=— My (t,my) 1.3
m- - ¢
e
where MI and MII are vertex functions. On the mass-shell

they are the matrix elements for the following processes:

a+t e —> ¢

b+e —> d

When ¢ and d are quasi or real particles these verftex
functions at -t = m: are proportional to the counling
£

constants. Here is the momentum transfer and is gilven

ble
-t = (P,- Pa)2
_ 2 2
= m o+ om - EECEa + EPCPa cos® 1.4

For instance in this mcdel assuming a ONE--PION-EXCHANGE

(OPE) then we have for the process mP —-) pP



-8 -

ag _ . T 2 m2_ 42 - 2y (=_ 2
T MG MIp b (¢t - (mp mn) (% (mgfmn) )
p mN inc £ - m2
T
with
.2
M% = genn
4y
2
2
MII B GNnn
I 1.6

Such models have been studied by Drellll, Salzman and

a
Salzman*g and by Ferrari and Seller-i13 who introduced ad hoc

-

form factors of the type

F(t) = ‘ 0‘72 + 0128
1+ (u2-t)/4. 7302 1+ ((u2-t)/32u%)® 1.7
F(%) = exp(-At) 1.8
in order to overcome the &smessasie short comings of the
14

unadorned OPE model™ . However most processes considered

seem to need their own particular form factor irrespective of
the exchanges; further the OPE mocdel with form factors predict
the same cross-sections for MN > NN® and NNV -5 NN® contrary
to experiment. These form factors modify primarily the medium-
to-short range forces which may involve multiple scattering or
exchange of massive particles about which we knoﬁ nothing and

so sueh an arbitrary treatment with nQ;bhySiéalwihterprébétipn

is hardly justifiable. Also some of thesefoCﬁbrs require a
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three pion state with mass squared —~> 5m°m and particles

with same quantum numbers as the p» and w but with a lighter
mass ~ partiéles which are not known in nature. It was mainly
sor these reasons that this model was rejected in favour of the

Ahsorption Model.

1.3 The. Absorption Model

o fThis_model seems to be able to cope with the following
features:
(i) a particular quasi-two-body production channel only
accouhts for a small fraction of the total inelastic cross-
section on account of the many competing channels;
(ii) as‘thé¥“§£§M%§?hed peripherally only the highest partial
waves contributeN to their formation;
(iii) more compiicated reactions at small impact parameters
cannot contribute to resonance formation. This model completely
removes the lowest partial waves leaving unchanged the higher
~ones with the result that there is a reduction of the cross-
section, important modifications of the anghlar distribution
and an alteration in the decay correlations.

The form of the Absorption Mcdel we shall use is the one

a
15,16 although many others exist17’1”’19.

proposed by Sopkovitch
It has ifts origin in the low energy nuclear physics Distorted
Wave Born Approximation (DWBA) model, It will be recalled.

that there the transition amplitude Tfi 1s approximated by

the matrix element
O - _
Tpy = <A ]V1¢;>

1.9

e



- 10 -

Where ¢E and ¢: are wave functions of the system in the
final and initial state respectively, V 1is the interaction
causing the trensition. The wave functicns g™ ana g~ are
customarily approximated by the wave functionsoof an optical-
model potential whose imaginary part simulates the absorptive
effects of thermany competing channels. How elastic scattering
con bevsed Lo stwaldke.

imp3ies absorption (or vice- versa) may be seen by recalling
that the transition amplitude for non-relativistic scattering
is given by

< S, -1
() = 21+1 1 P. (Cos ©)
(©) “y—< *) L 1.10

where

and

1.12

- and the elastic and inelastic scattering given respectively by

o, = L2 (e141) |8-1)2 13
P
O = =2 (2141) (1-15)?) 1.14

X

In theAOptical Model it is assumed that Bz > az so that

S}\ = ewﬁL 1.15

‘ sies
F-om this it is clear that absorption fﬁgiéés elastic scattering.



- 11 -

In the same way one may see how absorptive effects may be
simulated by elastic scattering. In high energy scattering
the wave functions representing the particles may be assumed
fo be highly local-sed so that one may represent geometrically,
the wholzs process as happing inside two concentric circles
with radii v and u if the particles interact inside the
inner one there is 'absorption' as far as the inelastic
process }a) _>15; is concerned whereas the outer circle
represent the region in wiich this inelastic or Born exchange
occurs. M is assumed to be of the order of m"l where m
is the mass of the exchanged par<ticle whereas v represents

¥
the range of elastic scattering. See Fig. 1.5.

Fig.l.5. Range of interaction of Born fterm and elastic

scattering.

In the Born approximation the scattering amplitude which is

bgiven by
’ A [
£ ) \ T (b iK(b) _ | |
£(0) = - ‘S JO(LF) (e 1) bdb 1.16
5

where t stands for the three momentum and b the impact

parameter becomes =

2 J {t%) B(b) badb

= 2 ’
P o 1.17

O ™

% We use MK(E%W‘\'(C\) )ﬁccfz)
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where we have taken

SO0’ D
AXP)_ 1 L oipB(M)

whis being the usual Born approximation.

To reoresent the effects of absorpticn it is usually
assumed that the particle is under the influence of a complex
potential Uaa and UBB in the initial channel and finsal
shannel respectively. As p >> v the appropriate wave
fanetion is

g (z) == M7 p(a)

e

where in the WKB appr'oximation21

2
p(otkz) =¥ im ( U(b+kz')dz' 1.19
(P U oo :

The phose shift suffered is then given by

3 = -2 10,1;' ! _ 1.20
PR D S- O[iP’L(O+L{Z )dz = of)$
If we inzlude these two phase shifts suffered by this
particle we have that finallyFthe amplitude f(O) 1S oW
given by
Tpa(®) = 2p® \&17%% (5 (t0) B (0))e OBy
1.21

This result is true only under the conditions we have
assumed but bearing it in mind we posTulate, has an ansatz,
that in the PelatiQ*stic region the Born tefm is modified by
absorption which may be simulated by elestic scattering between

the particles ir. the initial and final state and is given by
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§1/2 J1/2

v
(Bmodified’aﬁ T Taa af BB
1.22

This relation is represented diagramatically in Fig. 1.6.

c a a' c! c
~ — Ao a;
b a D) t 1 '
D b d @4 a

Fig.4. Schematic representation of eg.l.22. The shaded
Llobs represent elastic scattering in the initial
and final states.

It is to be emphasised that eq.1.22 is valld under the

conditions

Pt <¢ b o<qu 1.22a

and that for the situation
P“l K<Y v
g 1.22b

Durand and Chin have shown that the appropriate modification
is

- L (g + S
modified)aﬁ 2 (Qaa Baﬁ Baﬁ BS)

(B 1.22c
The use of such a relation in the relativistic region has

not been proved at all and its justifi#cation lies mainly on

the success i1t has had in explaining a host of experimental

9,1
8,9,15,22 and in its great simplicity from the computational

data,
point of view, If is solely for this reason that we will

adopt it as one of our main tools for expleining the production
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of high spin particles. In Chapter III we shall investigate
it further and look at some of its subsequent modifications.
Although the absorption model met great success from

early on its drawbacks were socn apparently as it could not

9,24

cope with exchanges mediated by high spin particles and

could not explain the decrease of the total Croy section with
increasing lab energy. For such cases the amplitudes varied

too rapidly over any appreciable energy range and eventually

violated unitarity. It was for this reason, among others,

that the Regge Pole Model -~ our second formalism - was revived.

1.4 The Regge Pole Model

We recapitulate here some of the relevant relationships
of non-relativistic Regge Theory25 to show the form of the
amplitudes we shall eventually adopt in our subsequent applic-
ations, and the assumptions under which these will be deemed

to be true, The scattering amplitude is given in its simplest

form by _ :
' OB (B) P (~Cos ©) Background
C =\\ .
F(Cos O, E) b i ai(E) ' Integral
e .
v Sin ma, (E) 1.23
Where
T

p,(E) = - ¢ (20,(E) +1) R, (E) 1.24

with Bi(E) being the residue of the relevant pole. Introduc-
tion of space exchange potentials - exchange forces for the

relativistic region ~ modifies this to
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Sin wa. (%)
L

F (Cocs O,E) ==E Bi(E) (Fai(E)(- Cous 0) +‘rPa (E)(Cosoi>
i
{
+ BI(Cos ©, E) 1.25

Where M is the signature. In analogy with this the relevant

relativistic amplitude in the t channel will be tazken to be

Z(,,a) zzg::ﬁi(é) ~ (:%ai(g) (-Cos 0) +r(Pai(§)(Cos o{)
S

¢l

i

in T a, (8
T i
+ BI (Cos 0., 5)
1.26
Fig.lH explains our convention .
E/" \\*\\ B /;27,/K\ -\\g\i\

s- Channel Reaction £t~ Channel Reaction
- - 2 2. s — (v _\a_ 2
s = (P + Pb) = (P, + Pd) § = (F, + Pg) u(P5+Pd)

— (P 2 - 2 = _pr.Y2 _ . 2
t = (P Po) = (Pb Pd) = (P, Pb) = (PC Pd)

T(s, %) T= T (5,%)

=]
i

F\3 -5 R‘\'\sen\o}‘ics

To go to the s-channel we use the relation

] 2(s+§ - mi - m?)
Cos Ot==: ~

) - S as S



ﬁ/
and Lme Lsjuptotic 1imil™™

P (- Cos 0.) = 1e(i) (5)%(8) s s — 500
a(t) t So) ~ 1.28

it cimilarly can be shown that
BI (Cos 0,5) "0 (s~1/2) 1.29
we then have
P (%) (~ Cos 0.) +p Palt) (Cos ©.)
= k(8) (£ 18 e 2 yo(t)
0 o
1.30

= k(t) 1+ Yexp (- ima(t) | (g )a(t)
o

where © 7 is the signature of the Regge Pole. Defining the

signature factor as

%3(t) _ 1 +7 exp(~ ina(t)
Sin © a(t) 1.31

the amplitude for S-channel beoomes27

——————

T 5] = N\
(s,t) J_/_&Y_.(

L]

—

:) 5, (6) (—So)ai<t) +0 (s7V2) 5

— o

We shall assume that a(t) the trajectory of the tT
channel Regge Pole continued into the s-channel is realge;
éuoh an assumption seems to be Jjustified for bosons exchanges
Regge ftrajectories. "'We shall also assume that the residue

function ¥(t) to be real - this can be proved from general

principles of quantum field theory if oal(t) is realgs. Just
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as for the'OEE model e characteristic property of which is
the @ccurance of two coupling constant one for each vertex,
we shall assume that the one pole cénfribution can be factor-
ized tocgg. More precisely this means that the residue

function can be written
v(t) = (Known Kinematical factors) YaRc(t)‘YcRd(t) 1.33

Where YaRc(t) refers to the coupling of the Regge pole R
to the t-channel initial state ac while Yprg refers to
the coupling of R to bd. As in the OPE model the same
Regge pole coupling yaRc(t) may occur in different reactions
- and is independent of how the Regge pole couple to the other
two particles; and obviously one may use internal symmetry
sche@eé to felate‘couplings of memberé of the same multipletjo.
However it has to be emphasised that factorization is a
property of one Regge Pole contribution only and that as soon
as several trajectories exchanged there is in general no clear-
cut prediction from this principle., It should be emphasised
that this relation tacitly assumes that the t-channel ampli-
tude is dominated by bound states or resonances. Experiment-
ally in two body collisions depicted in fig. 5 the s-channel
differential cross-section is appreciable and has a peaking
for small momentum transfers only if there exist a particle or
resonance in the exchange channel. Also we shall ignore the
contributions of cuts which are proportional to

a®(t)

-y
(&) [1og(§-)] where v is a number depending on the

SO 0

nature of the branch point <%(t%).
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The amplitude depends strongly on the exchange of the
Regge trajectories a(t) on which a2ll particles have the same
guantum numbers., Experimentally there is a strong correlation
between the energy-dependence of the éross—sections we have

described in fig. 2 and the exchange quantum numbers.

Mm:n:'_’uson-jl assuming a relation on the form
X
¢ = 9, PLéb 1.34

has found that the values of n fall naturally into four

groups depending on the exchange quantum numbers:

Vacuum exchange ne.gy O

Charge or isospin exchange nf.y 2

Strangeness exchange ncy 2.5 te25
Baryon number exchange n O\ 3-4

The t-channel amplitudes may contain Kinematical branch
point, poles or even zeros at thé boundary of the pﬁysical
region at the threshold, psudo-thresholds and at ¢ = 032.
Many authors, among them Cohen-Tannoudji, Morel and Navelet,
CTMNBB, have given general prescriptions for removing these
unwanted features. These ‘regularised' amplitudes may then be

connected %o s-channel amplitudes by means of a relation of

the form

~

T, (s,t) = ' Xy Tw (8,%) 1.36
where X is the crossing matrix which is a rational function
of s and t., For T(s,t) +to be free from singularities

there must exist relations between different <t channel

X ?L‘\, s “N\nd;\\E\rxl\ h LQ\)
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regularised amplitudes. These give rise to constraint equations

at the threshold and pseudo-threshold of our amplitudesj;the

general consequences of these have been classified as follows

by Leader34:

(1) there exist relations between trajectories of different
Regge Poles with different quantum numbers valid at

the constraint points. This is known as conspiracy

(i1) the constraiht‘equations are satisfied by enforcing
conditions on different residuum functions but not on
the trajectories. This is known as evasion

(iii) the constraints are satisfied by requiring the existence
of sedquences of ﬁegge poles with the same quantum
numbers on different but related trajectories, These
trajectories are known as daughters.

Later on we shall invoke certain of these properties to
rid ourselves of unwanted éingularities.

The problem of constraints may also be viewed from a much
more general point of view at t = 055. At this point ﬁhe
scattering amplitude is invariant under the little group of the
general Poincare group belonging to Pu = 0 which is isomorphic
to the homogeneous Lorentz Group O0(3,1). The scattering
amplitude can.then be expanded into thevirreducible represent-
ations of this group and a 'Reggeization' performed by means
of a sort of Sommerfeld-Watson transform. The whole procedure
is completely analogous to the 3-Dimensional non relativistic
casc, The asympto?ic behaviour of the scattering amplitude
for s = @ at t =0 'is correspondingly dictated by the

“exhchage of Toller poles - these poles are characterised by

X SQQ CL\&A{E@T&
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the usual quantum numbers plus the following:

(1) A Lorentz quantum number M which takes the following

values

2
2.’

M=0,3 1, 2, vaee
with the half integers referring to boson and té:tgiﬁzr
to fermions,

(1i)  The Lorentz signature T, = 1 and is related to CPT.

(iii) And the complex 4 dimensional angular momentum a{t)
which gives the dominant asymptotic behaviour as sa(t).

One can also deduce that:

(i) Any Toller pole gives rise to an infinite family of
Regge poles at jn = a@-n ‘the a trajectory is the
parent one and the othergzﬁzown as the daughters.

(i1) A1l the residwm of the daughters satisfy factorization
if the parent Toller pole dues.

(iii) As one unique pole determines all the properties like
trajectories and residuum functions of all the Regge
poles in the family one has d®finite relations existing
between different Regge poles corresponding to the same
Lorentz pole. This is conspiracy. These relations are
identical to those found by CTIMN.

There is yet another source of singularities which come
this time from the signature factor. For positive signatures
this is |

f%(t) = (Sin m a(t))™! exp- 1 © a(t)
2 2 1.37

and give rise to a pole at o(t) = 0. This cannot be accepted

for t < 0. We redefine the residue function in order to get
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6
rid of thic undesired pole whiech is known as a 'Ghost'3 :

v(t) = a(t) (a(t) + 1) ¥ (t)
1.38

and it is with this new +(t) that we work, The second factor
is introduced as the residue function must vanish at a(t)
valses which are symmetric with respect to a(t) = —%.

One further point needs to be mentioned. We shall use
mostly straight line Regge trajectories although there is no
convincing theoretical argument for or against it37. They
are not straight line for Yukawa potentials38 and moreover an
infinitgtyﬁzrease of the trajectory seemsﬁ#g‘disagreement with
the basic requirements of Regge pole model and strong interac-
tion dynamics in generalBg. Exchange of particles with high
spin requires o(t) < 1 $rfrom the general fact that %%Ch&sea'e
for a one pole exchange and the fact that the differential

o wthonergy b
cross-section decreases experimentall%v However 1nsp1teh 11
the arguments one has almost a complete functional freedom for
the trajectories and an appreciable number of parameters can be
introduced into the theory to patch up the t dependenxat
fixed s. The curve fitter can consider not only additional
tﬁajec?ories but cuts, fixed polés and a certain amount of
1iberty:introdu¢ed on account of evasion and conspiracyuo.

However it cannot be over emphasised tha% 33@ of the AOUMué
virtues &3 of the Regge Pole model is its e&a«:\w‘-’i—'\@b‘b}y At best
it only affords a convenient parametrization of fthe scattering
amplitude and provides a convenient framework for the phenomen-

ological discussion of the data. Having no theoretical backing

for the relativistic regions it is nothing more than that in
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spite of jits great aesthetical appeal.
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CHAPTER I1

Attempts to find groups which would englobe both the
Poincaré Gzoup @ and Internal Symmetry groups have not
peen successful at all. The great diificulties faced by
such an endeavour have been summzrised as follows by

Feidman and Matthews: 41, 42

=)  The Michel -~ O'Raifertaigh Theorem which states that
any symmetry group which contains @SE Su(3) demands a
—omentum four vector with more than four components.43’44
b) .If we combine the four relativistic spino; indices
with those of SU(3) it is found that iﬁvariance requires
the particle multiplets to be infinite dimensional.
c) If these infinite-dimensional multiplets are degenerate
then the requirements of causality forbid Fermi Statistics
completely irrespective of spin. 41
Given this pathological situation it is to be
~ondered why one should continue to use symmetry groups at
311.' The answer is that we use them in%pite of these
difficulties, for we have no alternativé approach at~§§iﬂﬁW§Q$t

for tackling the actual dynamical problems of scattering

experiments such as 2re listed at the beéinning of Chapter I.
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Other approaches sunl as'those;of current algebra?5 in
shich scheme one postulates the commutation rules which
1i01d when tHe current are given their simplet forms have
been successful on a diffefent plane. The most remarkable
waccess of this approach has been the Adler-Weisberg 46sum
i-.le which gives the absolute value of the ratio between
zziaf-vector and vector - counling constants of
Leta decay in terms of pion-nucleon total cross-section.
Similarly one may obtain other kind of such useful
relationship but no help on the dynamical plane.47

2.1 The Quark Model

The other main approach is the Quark Model,48 the
most attractive feature of which is that it predicts in a
very direct way relations between certain properties of
nuclebns and mesons. The basic assumption is one of
additivity stating that some particular property of a hadron
or a meson is a sum of terms belonging to the quarks and
antiquarks composing that particle - all such applications
are based on properties of bound quarks and are quite
independent of what a quark would be if free &f or the
mechanism binding them together.49 Mathematically.formulated

the additivity principle is as follows:
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/ - For the process A + 3 —> A' + B!

1Rk | 2.1
3 A g) <A BlTiJJ AB>

<A'B'| TIAB> = 6(P; + Pl - P, - P

Where the operator Ti“ acts on the iig quark of A and the JE§
J
wuark of B but leaves the other quarks unaffected; in this
model a further assumption is made:
et N A'A, . .B'B
KA'B {Tij[AB> = <Qu QB,ITiinA Qp>fy {t)fj (-t)
2.2

Here <Qi, Qg,jTle Qg> describes the collision of
quarks in the initial spin and SU(3; states QX Q% to final
spin and statec Qﬁ Qg . It is tacitly assumed that A A!
end B B' have the same quarks composition. The form factors

AA! BB!
£ and T represent the overlap between quark. wave
function(A, A')and (B, B')respectively. As a consequence
the elastic scattering of hadrons are given as linear super-

position of basic scattering of quarks and antiquarks..

Denoting he \mm&m"\x <lement «s&
A+B —> A+ B by(AB)

and QT N
QT la; Q> = (@ Q)

we have

(PP) = A(Q, Qp) + #(a Q) + (Q,Q,)

(K'p) = 2(a Q) + (@Q) +2(§,8) + (&5 a))

i

+
(n'P) E(Qan) + (Qan) 2.3
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Where the mesons an? protons are made up of (uarks and
ai:ti~-rfuarks
: and so on
D Up n 2.4
S . . cross—Seetion tn bhe
From thesas one then obtains relationships foghforward

lirectiony§ which can be compared to experiment by applying

the Optical Theorem:
o, (PP) - o (NP)

1

ct(K+P) - GE(K+N)

1

6, (K'P) = 0. (KP) = o, (n'P) - 0. (rn"P) + o, (K'N)-0,_(XN)

t t t t T t 2.5
In deriving these relationships the quarkk amplitudes

were not assumed invariant under SU(3, or any other groﬁp.

If we invoke the former we regain the Johnson-Treiman

relation:

il

[0, (K"P) - 0, (K7®)] = o (n"P) - afn™)

= o (K'N) - o (KN) 2.6
_ invariance under larger groups, except possibly SU(G)W -
which aré discussed later - which classifies meson and bargons
in different multiplets do not.give such simple relationships.
The result of eq. 2.5 and 2.6 agree fairly well with
experiment.

At high energies ( 7, G, and (G, (,) become identical

so that
CAB|TIABY = i (t)f (t)f (t) | 2
glz . 7
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i

~1ch looks identiéal to eq. 2 for the 2egge Pole HModel.
The great merit of this model is that it predicts a great
degree of universality for high energy difraction of all
hadrons, as is suggested by present day measurements and
their extrapolations. A more direct and more general
.onsequence of the implications of equations 2.1 and 2.2
for s —>oc and t small is that the quantum numbers in the
Ehese — u )
of the ¢ § system with positive and negative

) )

signatures. These are in fact precisely what we find for

t channel are

meson nucleon reactions where nonets are exchanged. In
consequence one may view this model as providing a dynamical
basis for the exchange of Regge trajectories; it also
accounts for the universality of the trajectories and their
relation to particles. The basic ideas of this model can be
extended to inelastic high energy scattering at small momentum
transfers under certain plapsible assumptions for the
behaviour of the form factors. WMost of the predictions are
again in fair agreement with experiment. The weak point is
that we have no justification whatsoever for the dynamical
assumptions méde so long as we know nothing about quarkﬁ
forces 39 which by all indications seem to be characterized

by a.coupling constant of the order of faQ/4n=26 which is one

order of magnitude above the universal coupling fgnn/4n=e,5 3
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firther it should be rememberednwe just do not know how to
solve the problem of bound states in which the binding'energy
1s of the ordef of the mass of the bound particles."And
although we shall be assuming throughout this thesis that
hadron are made up of Quarks this will be done more because
Yt is a convenient group thereoretical concept thaﬁ??elief
in the model we have just outlined; for the same reason we

shall not discuss evidence for or against the existence of

quarks.48

2.2, The Mixing of Internal and Space - Time Symmetries

U (6) BU (6) X Ofgg)and its subgroup will be the main
tool we shall be using;51 we shall not be regarding it as a
strict invariance group but rather use it as a symmetry group
for three-point functions adding the dynamical assumption that
the unitarity relations for these vertex functions is
dominated by given two body intermediate states. In this
way it is possible to obtain useful, results albeit in very
restricted sense, from these dynamical groups. In Chapter 3
unitarity will be enforced in an ad hoc way by assuming
absorption of low order partial wave amplitudes.

We now exéﬁine in detail how unitarity and other basic
precepts of particle physics like crossing ar violated in

the framework of these dynamical group and see to what extent
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our limited use of their applicability is justified. Im
doing so we shall use both highly sophisticated mathematical
- arguments és well as down to earthlexamples. There is a
danger in the lattér approach in the sense that too naive

an approach, although leading to the correct conclusions,

- ight mask the real issue. For instances it has been
claimed that adding angular momentum to the Pauli Spin
matrices in the construction of the generators of U{6;

lead to overtly manifest ridiculous situations.52 If we
concentrate on the one ’\x.t\.uhlm}\3 of the Gell -~ Mann_ generator

of SUB) we would obtain the following generator of U (6)

1¢00
I,=\0 +ir ’ & 0.-10
12 _6"1;"

which is an operator which does not act on the A quark but
acts with opposite sign on p's and n's. Thus the orbital
part effects a spatial separation of p's and n's, and—to an
increasing extent with distance from the origin. If for
instance we consider two particles in initial state of a
sctattering experiment the effect of such an operation
would be to@ separate then beyond the range of the inter-
action force; or equally it would separate a bound quark-
antiquark systam composing a meson without any expenditure

of ene§§. This argument is certainly wrong. For would this
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cerator not act on the 'Egg%;h' of interaction force too?
One cannot use this argument without investigating more
thoroughly this effect. On the other hand it can be claimed
that this description is not manifestly covariant in the
sense that for am observer in the rest system of a bound
s2ate the particles would be together whereas for anotkcr
.eessivalent observer they would be arbitrarily separated.
consequently this set of operators cannot be accepted - for
this latter reasoniggd not for the fqrmer one. With this in
mind we now proceed to give an account of the rigorous_
theorem forbidding mixing of the Inhomogenous Lorentz Group
(ILG) with any internal symmetry group.53

They then will be illustrated by simple examples.

In any such symmetry, besides obtaining a dynamical
group interaction formalism, one would.like to have the
possibility of obtaining a mass‘formula for particles
belonging to tﬁe same representations. Denote such a

symmetry group by G. Then the algebra of G would be the

direct sum of an internal symmetry algebrank U and that of

the(y i.e.

¢ = UeWp 2.9
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This leads immediately to the conclusion that the particles
pelonging to the same irreducible reqpresentation of

would have the same mass. As a minimum requirement for mass
spliting we would like the elements Ux of U not to commute

with the translation elements of the algebra of W3 , l.e.

[V, B, 1 0 2.10

That this would indeed give us mas-splitting can be seen as
follows.54 Consider a group which contains SU{3; and time
translations as non-commutative subgroups, ignoring homo-
geneous Lorentz invariance L for the time being. The
elemeﬁts for time-translation can be represented by the
Hamiltonian H, which we also assume has the eight baryoms

as eigenvectors with their observed masses:

- MiA>

il

HIN> = MiN> -, H N>
2.11

]

HISS mls> H|Z> = M,:[ES
The mass splitting Opérator in this scheme would then

be
L = H+a¥+b [J2 - ¥3/4] 2.12

~where J is the isospin generator.,
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Then from
’ [T, (A, - A)IS> = ©
> 237y S M -
[L, -215'\6 - i7\7)] !/\> =0 | 2.13

we find th=zt a and be give the Gell-iiann mass formula

except that it is &n exact relation for this representation.

For comparison sake we mention that the usual Kass breaking

_perator of SU(3, is

_' My'ff-'T\% + T% + Tfj + Tgf

where ¥ = (0,0,0,) isb;\&'ector labelling the I.R. representa-
tions and the T's are scalar operators such that Al = AI3 =

AY = 0; keeping the first two terms only we have

(o

and from this we obtain an approximate relation for the

Mu\ = M, + MY+ M2[J(J+1) - Ye/l,t]

v/

masses of the ba;"yons.

So in our scheme we would like the elements of (J;‘ not to
. commute with the PLL 's but we would still like them to do so
with those oﬁ&ij?’ this last requirment just means that the
quantum numbers associated with unitary symmetry do not
change when.one performs a homogeneous orents transormation.

The elements of the algebra (P obey the following commutation

relations: 23

{SQ Y\C Gk‘l\‘r\ |
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x [Jm’-, JM] = i[gw\ Juc + o JM - g,u.h e = Eyo JMI
2,14
[Pu’ Jaﬁ] = [gau P - 815 Pa] 2.15
g\\
[Pu, 1 = 0 , 2.16
™ | 2.17

If we denote the elements of U by Ui with i = 1, 2,
3,.+..n the 10 elements of IHL can be denoted by Un+4

to Unt 10 with the following identification56

P, = U, ) 1<1<4h
J.n = - -

12 Un+5 ’ -Jlj Un+6 ’ J14 Un+7
J23 = U 2 Joy = Un+9 2,18

The algebra of the full symmetry group G will then be

determined by

[UJ, Ui'] = C(?:K U& 2.19

where the structure constants satisfy

X i
CJ‘K - T CKJ 2.20

P S P S

C1s Cox * Cys k1 2.21
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The requirement that che elements of . commute with

+a0se of U immediately implies

Cl =0 for J< N, K>N+k

The restriction G IJ@G) implies that for iln, j2> n + 4

P s _ . .
n+1<K<n-+4, st Ci g Qo that the Jacobi identity

sliaces to P _S
CIS CIK = 0
Continuing on the same line of thoughtk, using relations
2.14 - 2.16 we arrive at the conclusion that

cI - 0 for K<V, J> N+1 all I
KJ Vs Y2 ' 2.22

. 0
But this means that G =U & Y’ , in other words if we
demand

- - [ug, Jnv] = 0 for all I 2.93

i.e. commutation of the Unitary Symmetry elements with those
ofhL we automatically obtain

Then any unitary representation of G will be infinite
Jdimensional, being the product of those of U and‘? and we
shall_have infinite towers of particles with complete mass
degeneracy - precisely the sort of thing we wanted to avoid.

What happens if we wéaken the condition of eq. 2.23 and
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Geragad

(U3, er] £ O 2.25

except for one value of i and identify this operator, with
~=w, the charge operator? IMichel and Sudarshah57 have shown

tJ

that McGlinn's theorem still follows. This problem has been
44, 58

tackled in a much more gcneral way by O'Raifeartaigh
wa> does not assume that G is the direct sum of U andV but

rather has investigated the way in which both can be imbedded
"z a Lie Algebra G assuming only that this is of finite order.

. . 9 . .
Then using Levi's Theorem > which states that any Lie

algebra G can be written as

G = F6&S3 ' ', . 2,26

where F is a seﬁimsimple subalgebra of G and S is an invariant
solvable subalgeLra 60 of G he obtains the result that:

either (aj L CF and P CS

OR (b) P{1S =0
It will be recallea that Q’,ﬂL and P are the algebras of
the Inhomogeneous, the Homogeneous and translation of the
Poincare group respectively. The relevance of this theorem
i3 that it tells us how we can classify the ways in whiclqu

can be imbedded in the larger Algebra G. This classification
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. wade vy dividing the case (a; into the following three
cases

(1) s =P (ii)r C .5 where S is abelian (iii}. P ¢~ 8
‘but S not abelian
Case (b) may be reduced to (iv) P.(\ S
Cf&aiéeartaigh then proceeds to show that case (i), up to a
c=4ifinition leads to G =<? ® U which is just the McGlinh
‘heorem; case {ii; cannot be reduced to a direct sum in this
-3y but has the disadvantage of introducing a translation
algebra of more than four dimensions -~ this point will be
Aiscussed later on as it has some similarities with U(6,6;
= U(6y R U(6); case (iii; is unphysical as physicists do
not know how to interpret non-Abelian algebras - case (iv;
is equivalent to imbedding ? in a simple algebra. It would
seem that >f all the ways in which we can imbed ¥ and U in
G, the direct sum one is the only physically attractive one
with consequences already discussed. The case of G being
of infinite ordef has been discussed by Jordan 61 but the
final conclusions are not so bright either. His argument
is further continued to show how forlorn is our gcal of
obtaining a scheme which will describe mass-splitting.

Without attempting to define exactly what is a multiplet
¢t Yeost ore con osk guch am o\sjqc". ko hove Ehe
%dh&g ¢ harecteristics:
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() partlcleé belonging to the same physical 'grouping'’
shruld be represented by state vectors belonging to the
same I,R. of the gobal algebra G

(b) each such state vector should be an eigenvector of PuPu

and

‘¢) gi P being an observable should be Hermivian. Then the
following theorem precludes any mass-splitting among pai-ticles
velonging to the same-multiplet.

Let G ZDP and let » be a Hilbert Space on which the
irreducible representations of G operate. If on W; P®= %‘Pu
has a discrete eigenvalue m* and P? is Harmitian then the
=»igenspace >ﬁm,belonging to WPC%'P is closed. As H is
irreducible this means )ft:%ﬁﬁ. The mass operator then has
either a continuous séectrum or a spectrum consisting of one
point. A continuous spectrum cannot constitute a multiplet
and if we do have a multiplet thenvit has only one mass.

In order to circumvent these formidable obstacles Salam

et al?Patis and W. Ruhl introduced the auxiliary Group approggh.

In thls scheme the Lagrangians one writes down are 'index
invariant' in the ¥sense of SU(2) or. SU(3>(§§E:E%§§§EE7

the former formalism an Isopin invariant vertex for NNM can

be written as follows:
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Starting with

P —a - —
Na == (n} - N = (P, n) 2.27.

—_
which transform under I sping r satations throuéha_;

:T/o. Oxat —a =a', -il/2.0,a
as Na —> (et /2. O>a Na' R Tl (e it/ )a'
X a
\.1_
" and
0O e + .
’ ‘nb = (T[ /— 2 'Tto 20.28
a T - /_/2

N
which transcrm as

T/, 73 \a ' 157270 \b
( e“i /2. )a ,n:b ( e . )b'

D
) W > a ! 2.29
we can write the I spin invariant vertex as
_ =8, b _ Su o/ =, .t =, -
L = gqp N 7, N = gNNn[(PP-nn)n./;/§4Pnn +nPr” ]

Such a Lagrangian is then invariant under rotatioﬁ in
the Isospin space as the exponential factors of such a
transormation cancel out in pairs. The difficulty with
Poincaré invariancé, on the other hand, is that the
transformations depend explicitly on the momenta of the
particles at the veftexvand we do not have simple cancellation.
We camnot construct, consequently, scalar invariants by a
naive%saturatioﬁ of indices as is done for Unitary Symmetries.

‘How this arises and how one usually goes round this can be
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5 follows.
By means of a Lorentz boost L one obtains a state with

rour-vector P“ from one with four-vector Ku which are

riefined as follows:

¥ = (o, 0, 0, m) 3 M= (P, w= (g+ma)l/2 )
] 2.31
() k¥ = B
2.32
L () = R(R) B(2 )R (p)
2.33

B is the boost from rest to momentum p in the z direction

and is given by ,
1 0 O 0 \ -
Bg (,12) - 0 1 0 0
0O O Cosh 0 Sinh ©
o) 0 Sinh © Cosh © 2,3
‘0 J‘; ! '3
Sinh© = P/m and Cosh©0 = P/ m 2.35

R(P) is the rotation about a vector in the x-y plane
normal to P which carries the Z axis into the direction P.
We then have for state wvector transformations

{38 x 1
[ o> = [mw ()12 UILE I|[x"o> .35

where ‘@& = (J , JB) is the spin label.
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Th:. normalisation faztor being chosen to give
[w (@) w () 1Y% <! o' [P o> =05, 02(E-E")w(?)

and therefore the following orthogonality relation

, h _ > 1 2.38
<PG|Po> = &, 5 8 (B-P")
The set of statesi ]P;c%constitute the mass m spin J

representation of ILG. Amongst themselves they transform as

follows:

3. U[A] | Po> [ m/w(g)]l/2 U[AL(P)] IKo> S

= [ m/w(_li)Jl/z UlL(A g)]U[L‘l(,\g) L(P)1/Ko>

il

Lo P)/w(P)]l/25 D1 L7 (AR) L(R)] [Ro">
2.39
L"l(/\P)/\L(P) is the generator of 'Wigner .Ratation' which

iy
takes K" of e.g. 2.31 via};r and (/'\P)p' back to K"

The analogue of eq. 2.39 for ordinary rotations is angular

momentum or Isopin space is

. E
U [R] ]|JJ, > =,: DY [R] |J J' > 2.40
3 17%— [R] | ;

[We ha‘Ve not considered translation in the above as

y
this can be easily done by multipying 1PG> by a phase factor

Note

exp ( -\P.a) correspondlng to xp'—-—>Xp‘+a ]. Remaek however that
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:".2 Wigner roation dependc not only on the parameters va

which specify the general Lorentz transformaticas:

y (B) 5, + w, (P) with Oy = Bua Y 2.41
1 e 5 K
., U A a = - -~
LU [A,a] exp i(s g a” B)) E
and ) = -~
Lo L 2,42

but also on the momentum value P of the operator being
transformed. The invariants of Quantum Field theory are
usually written in terms of the creation and annihilation

operators

*o(p a)| [P o> and a (P G)i o = 0.

where{ > is the vaccum state. Under a pure Lorentz

transformation which takes PY to (/\P)u the qreation operator

transforms according to

+ -1 wAp) -1
v [f\] 2’ (Po)U " [A] /m(P) 2 g SILTTARAL(R)] a* (AP, ,0)

2.4

And again the Wigner rotation depends on the momenta.
In order to construct invariants in the usual way one

needs to decouple the spinbr index from the momentum. This
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is done by means of an aw.iliary group which contains the
ho.mogeneous Lorentz grovp as a subgroup. As this latter
group will play a role in our subsequent discussion we state
a few facts about its representations. The irreducible

representations are specified by two numbers K61 C

where
1 qLa s _ 2 2
5 lexoc> - -K)iKOC>
(k2 + C2- 1) [K° ©>
and 2.45 -
‘a 1 B .op 5. _ ! -
> F upe T IF|R e = ax[k C>
= i1iX C|K C>
- o 9 2,46

From these it is also seen that (-K.,-c) also specify
an equivalent representation, although by convention we
restrict ourselves to representations having sz 0O . For

both finite and infinite representations

K = O,

3 eevsveeoe

N
.
s
.

i

2.47

The component of a representation are labelled by G= JJy

which can be either integer o: half integer satisfying

-J< J, < J 2,48
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We taen have two claszizes of representations

(12 ) Finite dimensional Non-Unitary Representations

|c|] =Ko +mn 2.49
where n is a positive integer and J has the finite range
> K < J & |el-1 2,50

(22) Infinite Dimensional representations

In this case either \

) ¢ is pure imaginary

1 3
and KO = ,‘-2 » -12
2.51
or K, =o, C real and within the range Y
0< C <1 .
w
2.52

In both of these cases J has no wupper limit and runs
over an infinite range of integer or half-integer values.
For both cases the representations are specified by

K, C»> 2.53

o

and individual components by

K, C 3 J3>' 2.54

The Parity Operator R satisfies the following set of

relations with generators of linear transformation of both of
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the above rcepresentation spaces

[ R, Pi ]+ = 0

5 [R, P, 1. = 0O

g . [ RJ Ki ] = 0
[ R, Ji ] = 0

' 32 = 1

RIK C 3 JJ_ > = + K -C 3 J J_.>
-J IO s 3 __l o k4 3
Where _
Ki = Jdo; = =I5
and
" - Iio= S ik

for the generators to{“’defined by egs. 2.14-2.17
The symbols []+ and [] denote anti-commutations and
commutation relations respectively.

The generators of the Wigner rotation form a set of

2.55
2.56
2,57
2.58

2.59

2.60

2.61

2.62

unitary operators as their net effect is to trmifoxe. oy e

g0, 0, O, 1 % = /M, ov amany, themselves = in fact they

constitute the little group spin rotation set. This group

of transformation involve the generators K% of pure Lorentz
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tremeformat’ons or boosts. Whatever auxiliary group we
considzi must include these generators. Ve denote the

representation states for this group - to be specified as we

go on - by
By definiticn < a|fP= 5@5 and a><al =1
and -1
<ol ULLT2( B) L(P)][ma'> = Dyrgrr-l(ap) 1(p)]
= <mo e'id'(np)ei ~Fel P[mc‘>
y s 1 .
’ = <mc7'e—'l€ '(ﬁP)i ar<al el‘\'klﬁ>
<plet 'P|y> <yimo's 2.63
The auxiliary Operator is defined as
n, () = <ale”®F g ¢pinos a(po) .
= UG(P) a(P,G) 2.6“’

The role of the ‘Generalised Spinor' appearing in eq;
2.64 can be easily seen if we take the auxiliary group to be
the Homogeneous Lorentz group or SL(2,C) and we take !G >
to be either the dotted or undotted representations of HL
which in the notation of eq. 2.53 can be labelled

{Koc>=!.1_ + 5 2.65

The components can be specified by a label taking values t%
and the relations between these and the physical state of

the representations of the little group aliows us to write

<0L]mlo’> = Sg with 0, a = 1,2 2.66
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If we want *» include eigenvalues of R, the parity operator
in all this)we have to take a combination of dotted and

ed .
ndotted spinors combinaked., For J = 1/2 we recuperate the

L]

usual Dirac Spinors and the above relation becomes

<apmos = 5% with @,0 = 1,.0s0.,4 2.67

It should be noted at this point that as we are dealing

with finite (non unitary) dimensional representations of

HL <<x§ Kihs > is not Hermitian. In fact it is anti-

)
Hermitian as can be demostrated as follows:

For J = 1/2 and the irreducible representations denoted

Ehe
by (5, 0) and (0,%) which correspond to dotted and undotted

case we have

: B
= o & -
, < q!KiirS > = 5 ("i)a a, B = 1,2 2. 68
o - -_ .j__. ) & » [ ] }
- < G{Kil.ﬁ.) = 5 (Gi)é 9 B = 1,2 2. 69
Ao . . - »
—Asd for Dirac reducible representation (%, o; ® (0,%)
we have o B B , . -
<0’lKi|B> = 'é' (UOi)G Cy B=1,oooo)'!'
2.70
where

IR g
w = 5 Lo vpl 2,71
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All three are manifestly anti-Hermitian. For Unitary
infinite dimensional irreducible representations of LG the
corresponding < cd Kiis > are Hermitian.

From eq. 2.70 we see that

-

<af et ‘kl6> [ exp ( - iSi %1 ) ]2

2
b
- ol _ s . Ia i B
[ Cos h 5 i Pi 0oy Sin h,gl ]a
[ F oam ]1/2 [ 1 - 10, By 1P
2 PO + m a 2.72
And so for the Spinor we have
le, o
Ua<P) = [ exp(- u—i——gl) ]5 <6'm o>
P i P
= 1/2 T o0i"1 15
[ (=) ] [ 1i- RV lg <Blmo> 5 oo

And under a Lorentz transformationDGn the auxiliary
- operators- become

ol (B ] = <a ze“ie'PJm <8 fno> UIA] a(?0) uTtAT

= <ale™ | p> <Blmo> (2 P)]QR“ ST (RP) x

X L(P)] a(Pc')

. et
= <ale ™ F|goep|mos<mo [U[L L (APIAL(R) ]| mo'> x
xa(Po'

= <a‘e"i€'P|B><6|U[L"104P)AL(P)]~y>(y|mo'>

- <ale~i€'Pg, ag( P)

-,

n

B* ' »
S P
v a ( ) 2,74
In eqs 2,74 the Spinop indices have replaced o=(J,J )’

the spin labels,
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We see then that the spinor<£gba$,undergoes a pure
matrix transformation under lorentz transformation,
independent of the momentum p — hence the reason for
introducing the auxiliary group.

The duel operator to Aa (P) is

~ Aa(P) = a+(Pc) <mo |B> <B]ei P]a> 2.75

7

and

a -1 p -1
, VMR U] = aTRR) (5T 2.76

so that A%(P) A, (P) is a scaler, just as for Unitary
Symmetries.
For unitary representations | o>
G (P) = AT (P 2,78
but for mon-unitary | a> the relation between A and Aa
depends on.the particular representations. For thé Dirac

(3-0) @ (0, %) representation.

o +
. s A%e) = (ag(R) )" (v,)p | 579

and, as we shall see later, in general we need to define

a matrix such that
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A% (p) = (aeNT M@
B ["B

. 2,80
We also need the following auxiliary operator for the
o
constructioné%oincaré invariants:
B (P) = <a|e'i€P§B> <B mo> b (P,0)
Lo ~ 9 2.81
- (va () )9 vt (p,0)
where
i Ons €
= Oi%-i 3] ;
P, = C - T —t———————
., V. (P,0) = [ exp( 5 ) 1, <8imo> 2.82
no .
Bd'(P) is a creation operator which transforms

.. Eq.2,76 v |
likéahnazr Lorentz transformations. The matrix B of eq.2.81
is defined by the following relationships

<ng| Ul THAPWL(P) Tlmo'> == <mo'|B™XU [ ] B|mo> _
- 2.83

(see footnote 65)
L

From which we can construct the usual fields i

Yl = &) jwa@)e‘m + u By(R)eF)o(r )8 (2on?) Y
| 2,84
63 .

Weinberg has shown that . for particles of spin j we must

use the representations (j, o) or (o, j) for the @>;in order

”y
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to obtain the right connection between spin and statistics.
That is:

for j an integer and A =

g we have

W L, Yh =0 (=20 g8

and for j one half an odd integer

_t.
: (Y,0 L Wely) 1, = o (x-y)2 <0, o

He further demonstrates that these causality relations

lead to crossing symmetry and CTP invariance,

2.3 The Auxiliary Group Approach

'The.appfoach of Salam in his original péper was td exploit
‘the fact that Lorentz transformations on the suffix o cng
independent of momentum and and so to extend the auxiliary
group to contain internal symmetry groups and (P as subgroups.
For his global symmetry group he took U (2,2; B SU (3) or
U (6,6, also commonly called'E(IZ). The Tuark fields in
this formalism are k))A = pg, Vith a=1,2, 3and a = 0,. 3

and transform as

~ul o s b
Vo = 1e +t5’(5 uYu“éuSYuYB o () Wab 2.87
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As can be seen from this equation the Unitary Symmetry

iIrliecs :ioy a fairly straighforward role so we can ignore it

in the following. The aux111a§¥y group now is U{2,2) o4

It leaves Z2 + Z"2 - Z2 - Za ¢ invariant. It will therefore
also leave +Yo , where are the usual Dirac Spinirs,
invariant. The infinitesimal generators of this group are

ol s T = 1 ,40000e0s.16 and in its basic representation they

are 4 x 4 matrices which are such that

r 1 ry B
<ol B > = = (T
. ,' e 2 (M) q 2.88
where
T N
. ™ = 1L ivg YY, s Yy Yy o5 Oy -
- i nhpo
" LCT+ S P P 2,90
a
In order to ensure that the relations betweenl\Hermitian
. 'ks
conjugate operator and dual for U(2,2) are of the type given

N
by eqs. 2.78, 2.79, these l_‘ 's satisfy:

- Yo M7y, =17 2.91

*\ C§ = Tl\e Qo\n?\ex %\e\cx o\ N\m\)us
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Just as before we can introduce the relevant auxiliary

operators:

Aa(P) = <a|eiEP!B> <Blmo> a(P,o) 2,92

wiere now | a> is a representation of U(2,2;; as this latter
group contains the Lorentz group LG as a subgroup under a

pure Lorentz transformations we have

U [A] Ay(P) UTH [AT = <] e™F|B> ag( P)
N 2,93
= 8 AB(P)
But under a general ihdex transformation of U(2,2)
we have: - -
. ]
- A (P) > <ale le> ag( ®) 2.94
8
= T, AB(P)
b
The dua%\A (P) is A% (P) and this transforms as
Q
2,95

“a%e) — aPor) ()]

Actually as in the basic representation (AE) (Yo)g
transforms as the dual, it is this operatos which will be

used -henceforth for comstruction of invariants. Auxiliary
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ope:ators representing higher spin particles can be conétructed
from the product of these basic fields. Such a field might $or
example be ¢B (%), constructed from products of A (P) AP{P‘

and will be given in terms of

p
AP (p) = (UR)®), a(P.ed.. 2.96
where
7 (U(P)s)g = <aB|e"i kla‘ﬁ') <a'ﬁ'!ms>
1 |
= (exp {-i iqoi/é)z <a’B'jms> (exp(i iooi/ezg,
| - 2,97
From these we can define the field ¢B(x) as
| ! Cm
) = Gt | (21 ERER(R) &TPF)0 (2 )5 (P2m?)a’p
2,98
This procedure may be continued to still higher spin
fieldsAsuch as\vzﬁ and its dual”}?ﬁ. . These, under
eq. 2,94 , transforms as
5] - ) B’ -1 15) 2‘99
and
af -1\a ~18 | a B' 5'
P) ~—> T T
S We @) (T g (TG0 ™) 2.100

- It may further be shown that these fields obey
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Bazgmann-Wignerogquations
N :. P . B - 2.101
¢a (1{)+m)p = 0
(12 + m)B’ 0
T g (})aﬁ'v - 2.102

In this original paper Salam62 did not consder the whole
set of generators of U(2,2; but took 6: "E: Gﬁ,s 0 13 €g.2.87.
For this subgroup of U(2,2) one can then define and anti-
symmetric matrix (C™ \aB such that (C™ )\P tranéforms as
L#*Yo . Then (C™ f%l kv is an invariant just 11ke<+)gj

[The QJ 's are Dirac Field here].

Furthermore
-~ A~ ‘ Y - T
T _('G:C;,, =w (P 0 2 103
whergg W=+ 1 for £‘=Khsxﬁy 2.104
v---lfor{‘]sj b, 1 2.105
-'ThisvmatfiX’(C"l)aﬁ‘ (C -1, ‘&xplays the role of a metric

for this subgroup of U(2,2) and is extensively used for the

construction of ‘high-rank -spinors. For example -a Second rank

- -
o e
4 e AL 4L,

symmetric ‘spinor ‘must have the form-

Lt n¢?'g:w~ N s KLY, SCTE! o PUNRICER RPN e S St
I L T BT
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and likewise the general antisymmetric spinor has the form

S SO O N RIS s lap 2.107

and a fully symmetric spinor of rank 3 has the form

-~ v v

M - 1 2,108
Papy = P O Dpy * 3 Yo (o, ®)ay

with Qb and onbeying certain subsidiary conditions. We
~shall be using such relationships extensively later on.
From‘these'fields then one can construpt invariant
 Lagréngian by index saturatibn; for instance in Salam's
approach the Baryon - Baryon 4 Meson vertex is given by

ey . A'BC

~ o | 2.109
L = \Y (g )y K“)ABC 9!%

which is invariant under indeX transformation just'as the
Lagrangian represeﬁting the charge independence of very
high energy hadron collisions is invariant.

This pfocedure can be also extended to unitary
representations, i.e. to infinite dimensionai ones,

Wé now investigate ﬁnder what circumstances. this
requirement’of'index invariance is consistent‘ﬁigﬁytﬁe

unitary of the S Matrix which states that

AR j?::,<flsli> 2 _ 1 2.110
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this may be expressed in terms cf the. transition matrix T as

follows for states characterised by initial p and final p’

11 - atem)ste - p1) 1 [wea(em)tet(epdrty = 1 20111
2,111
which gives
2.112

(em) st - BY) _(en)l*zzs4 (P.;PIQ<P-_]T+]n> <n|T|P'>

=1 (em) 6t -p') <p!T - Y Bty

where summation over n is understocd.

As usual the states | m> can:ée expressed as an outer
product of Fock creatioﬁ operators on the vacuum and
consequently on the L.H.S. it is sufficient to consider
the .contribution of a single particle in the sum. If.T
is index invariant the.whole .expression on L.H.S5 must be.
invariant. _Thi§fme§ng ;haprsiqgig{gértié}e‘coqtributions
‘of:the form g |

' :ta U, (P)® (UB(P)S)+ (FF)Z ty | 2.113

must be 1nvar1ant.
See eq. (2-95, 2.91; for meaning of ( U (P) r—’ ) 5 we
ta q;qt}\e‘f‘
have lumpedhall operators in t.v,ppderJan index trans-

formation only these operators are affected and this term
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goes; formally into
e 2.114

> gylygt t
5 s U fﬂ+ St

2

Whi:h means that we must have

I ST gl 2.115
In virtue of egs. 2.73 this may be written as
<a|e‘iekls>éelMc> <Moly> <ygei€k+;a> <[ ™ |a> 2116

- 53 2,116

We have two cases: Unitary and Non-Unitary representat10n§

of U (2, 2)

(a) For non-unitary representations we see from eq.

that

. | <ale’l€k|5> = - <a}e~l§klﬁ>+ 2.117
which may alternati&ely be exp?essed as

3.  Kk=-£K 2.118
If we write |

3  H(P) = i€k _ yt 2.119
eq. 2.116 may be written in operator form as

2P0 H(R) oH(®) T=1 2.120

Where O=1 Mo > <oM | , is projection operator 2,121

 and | 0° =1 ; | 2.122
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Using these last relationships we then get that

M =ru® 1-2

for all p, which is impossible.

This treatment may be made more»trassparent by the
following two down-~to-~earth examples.

Any Lagrangan of the form

Q(Yu 5, * M)‘\‘J + L
with equal time commutation relations
[, (x) ,qf;(m = 5 (X7- §)

need to be invariant under say U (4; which is a
subgroup of U (2, 2).

The commutation relations are invariant under
transfbrﬁétibns‘with7unita%j matrices

P VA

but in order that such a gfoﬁp;bé‘a symmentry of the group

2.123

2.124

2.125

2,126

the quadratlc part of the dagranglan should also be 1nvar1ant,

thls means that
_U_|. ¢U =HG o +XU =xl

with U+ _ ﬁ"l

this: may be wrltten o

Ty, 8- [U¥,1_o

2.127

2.128
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o
There is only“?on-trivial non-+vanishing solution

U o= 1 2.129

‘ \.\\\\ms =0

Suppose we start our quest for a relativistic theory with
the representations of the‘U6) group of spin invariance. As
this 1s a non-relativistic formalism the quark wave functions
are specified by momenta Tfﬂi 0 and a spinor\\})A where A = aa
and a represents the unitary éymmetry indices with values 1,
2, 3 whereas o .is the spin indices with value 1, 2, All Dirac

states can be obtalned by boosting up particles ét rest, in

other words by boosting up the spinors of the form

N o |
(°> (x 2,130

There @ and™ are two-spinors, Once we do this we can ask -
under what conditions the S matrix 2lements be spin independent

in the ordinary sense i.e. be invariant’under U(6) (The spin parto |

of

g—> ¢g' = (L+1ic.0) & _ 2.131;
Where E_> are the Pauli spin matrices; That such a scheme 1is
not Lorentz invariant can be immediately seeh as we start by
boosting two-spinors %f:;i;‘g laboratory frame and this makes

- See g 3139 _

the laboratory a preferred system. In any case the futility of
such a scheme may be more clearly demostrated by writing the
transition amplitude for any process in this scheme, If for
instance we choose ® N scattering then from Chew-Low-Nambu-~

Goldberger we know that the general Lorentz invariant parity

conserving nsitionm is

T = A(s,t) TU + B(s,t) U (K+K')uyu U
2,132



where Kand XK' &cre the initial and fir:: state momenta of the
nucleon and | & \
|
U = + m I g.K @
| E+m l

2.133

and represents the boost of g . Expanding T we have

T

Il

K1 K
A(s,t) ¥ * (- 2 9L )¢
: E'lm E + m

O'.K' g.K )¢
E'+m E+m

!

B(s,t) (k! +k ) o* (1+

+ Bls,t)f o (F+ ) LK &K o (kix') g
E+m  E+m
2,134

To meet U(2) spin~independence these should be no o's
between the @'s., However this means

Als,t) = ‘B(s,t) = 0 2,135

We can salvage the above approach if we demand spin-

independence only in the C.M. frame for which

K> =K = 0 2,136
Then we have
R N S CR ) ol
(E+m)(E'+m) 2.137

However there are three objections to choosing the C.M.
frame? |
(a) Crossing Symmetry is violated as the C.M, system is not
a crossing invariant concept?&

(b) Locality is not satisfied, If we consider two particles,

one at rest, the other moving ai very high speed and
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outside their interaction range,'then in C,M, frame both
are moving very fast and so the velocity of one affects
the internal dynamics of the other - thus this symmetry
formalism cannot be regarded as a good candidate especially
if we demand local causality.geéi)?aS
(¢) This approach make the C.M, a preferred system,
This then means that index invariance for the S matrix
elements is not consistent with unitarity for finite dimensional
representdtions of the suzilisry gﬁoup.

For Unitary infinite dimensional representations the pos-

ition is completely different.
For such representations we have
K = X 2,138

H(P) -i€.k 2,1%9
B (P) =

il
(]

| 2.140
making H(P) unitary.

An equation'2.120 then becomes

H(P) O H (P) =1 . ‘2, 1&1 s
which +is obviously true from the relationship - <a|M07+e 6~:\ ~

Wthh glves . )
° =1 2,142 -

ThlS means that index invariance is thus consistent with -
the unitarlty of the S matrix provided we take infinite dimens-
ional representations for the auxiliary group.

Forvfihite dimenéionalvrepresentation the usual connection

between spin, statistics and commutation relations exist -as has
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63 , _
bee shown by Weinberg. However for infinite dimensional represen-

67

tations we have

o (), Ya ()= [<aiu(p) 0 H'(2)] > o~ 1P(x-y)

¥ <alEE) T HE @) B> TV (2n)F0(p,)5(P2on?)

2.143
where - - o i o
0 = B}Mo> <mo|B~ o 14l
and O rvefers to antiparticles.,
If we Write‘.
: +, '
P(p) = H(p) O H (p) : : 2.145&
CB(p) = Hp)OHY(P) 2.145b
‘we then see we need to haVe
ro + :
P(p) = P(-p) for " [Y (%), Ye(¥)I_ =0 , (x-y)%<o
2,146
and
P(p) = -P(-p) for [ 1,=0
_ o ‘ : . 2.147

As P(p) and fﬁ(p)  are'projéction operators eq. 2.146 can

be satisfied but not eq., 2.147.
_ the.

The cdnSéquenoes'of the introduotion”ofhauxiliary group.
approach can now be summarised by the following ®m theorems
, 6f Matthews~Feldman:41»

Theorem 1,

Invariance of the S matrix with respect to the index trans-
formations of the auxiliary group is incompatible with its unitary
_v,unless all auxiliary operators are unitary representations of .the
aﬁxiliary group and there is a one-to-one correspondence between

the components of the auxiliary infinite dimensional represent-
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ations ‘and the states of the corresponding physical multiplets,

Theorem 2,

A local field constructed from those auxiliary operators
satisfying Theorem 1 cannot satisfy anti-commutation relation,
These authors have also considered multimass fields which

ére characterised by creation and annihilation operators of the

form
a(m$ 3 U Sz) >, =0 2,148
+ :
a (mS 3 US> = |m8 ;US>
’ 317 T 1T 2,149
\Uecloy

where m,SSS23 have their usual meaning and U is a four

Tabal; These fields are the most general free field which trans-

forms locally under Lorentz transformations. Such fields are

linear combination of the annihilation and creation operators

-~ defined in eqs. 2,14-12,142 - for particles belonging to an

infinite tower of irreducible multiplets of @ . The requirements

of causal commutations and anti-commutations can be satisfied

simply if one assume Bose statistics for the particles in the

towers for both integer and half-odd integer spin. Generalised

Fermi fields can still be constructed from such an approach but

they do not enaﬁle one to construct an index invariant S mabrix

satisfying Unitarity and the correct statistics, The theorems

quoted then also apply to these geﬁeraliséd fields,

It seems then thak there is little we can do about these

restrioﬁi?e and powerful theqrems; There is no way of going round
tkwfor such is their generality., All the same one cannot deny the

utilitarian aspect of the approach of Salam and others, Such

a fact has been exploited before, The foremost example is the

SO(4) symmetry of the relativistic and no\relativisticlétom which
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accounts for the degeneracy of levels with the same principal
Quantum number but different angular momentum.68 The success

of such an approach cann?t be denied but ther~ the problem of
relativistic covariance ﬁ;é more acute, Another example is the
generalised spin of Wigner which has been quite successful in
Atomic Physics; The history of the theory of hydrogen atom demos-
trates that progress is possible withouﬁ developing a formal-
ism that resolves the apparent contradictibns between spin sym-
metries and relativistic covariance. However it may be argued
that in all such approaches we were dealing with a coupling
constant %;~; i%? which is small.

The Hadrom physics where not even a shadow of a theory
exist we have to grasp at any recipe which presents itself, The
formalism of Salam offers us é framework, not only gggg\the pos-
sibility -of predicting as yel undiscovered resonances but more
important a dynamical mechanism for a variety of decay or collis-
ion processeS - it allows the calculation of a complete set of
vertex functions, for every .energy and momentum transfer.
Agreement with experiment will be our only criteri®n of accept-
ability. But whetliar they égree poorly or not the transition

ol Twe Lormalism have o\l Ehe feabuves scablrrin amphibudeg

amplitudesthould have and therefore they have a much better

chance than the predictions of Unitary Symmetry alcne,



- 65 -

CHAPTER TIII

3.1 Critical Survey of the Absorption Model

A cursory glance at experimental data on 7N and KN
scattering in the 1 - 15 Gev region69 réveals the existence of
a high number of cbannels, a substantial portion of which show
the formation of oﬁe or two resonances in the final state.

For instance n+P, at 4,0, Gev has the following distribution:

Main Reactions (The figuresindicate cross-section in mb)

(1) =P 6.42 6) w'ntnTP 3,09

(2) #'=P 2.7 (7) = nTnnP  3.43%

(3) atntn  1.44 | (8) atntnTe™n 0,93

(4) 7TP(mn°) m >2 3,04 (9) wiatatnP(mn®) m >2 1.27

(5) nn'nt(mn®) m >1 1.78 (10) nn T nt e (mn®) m>1 0,70

and reaction 2 itself has the following features Pp+ (0.35),.‘.
Nt (0.3), KtaT (0.2), Pnte® (1.55), nn'mt (1.35)
,While for reaction 6 we have Nt gt (1.1), N}E'&"p'o (0.6),
N¥TEO (0,1), NEO ot (0’25), }Pn+p° (0.65), Pn+p° (no
resonance ) (0,3), PAI (0.1), PAg (0.25), Prtntn” (0.4).

The other chahnels tbo show similar distributions.

The predominance of small momentum transfer indicatek that
'"large impact parameter collisions"(’8 are most important in
these feactions; alSo the one particle exchange gives a
natural explanation to the decay correlations. An analogous
situation is also met in low energy Physiecs, especially as
regards-the former featurejand there Butler7o suggested elimin-

ating from the interaction region in configuration space, a
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sphere with a radius of the order of the sum of radii of the
colliding particles and to calculate the contribution from the
rest of/ggifiguration by the plane wave Born approximation. In
this crude fashion he eliminated the low partial waves which
dominate the reaction cross section and which in most cases
violate the Unitarity bound. In this way he obtained the nec-
essary collimation of the differential cross section - but if
this picture is true there should be considerable effects
caused by the shadow of the absorption region., It was for this
reason that Sopkovichl5’71 suggested that a modified absorption
model tTo account for the peripheral nature of high energy

collisions, The simplest form of this model is, as we have

already quoted, given by
_ , _ J \1/2 . md
<A0Ad/TJ/AaAb> = (ANA/SANPIZ A n /BTN >

ENCRWVC/ RSt 3.1

Where BJ are the partial wave Born helicity amplitudes
for the reactionband’ Si are the partial wave heliclty ampli-
tudes for elastic scéttering in the initial and final channels,
(L = initial, final).

The latter functilons are obtained from spinless diffraction
analysis of elastic scattering; parametrised in terms of a
Gaussian model of radius R(s)  and opacilty C(s)72 they are

<xix2/s§/xlx2> =1 $'Ci(Syesz(,J(j%l?/ﬁi(s)gKa)n iy

Where K is the magnitude of the three momentum in the centre-
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of -mass frame. The Optical Theorem gives the folliowing

ebuen
relation ef C(s) and R(s)

o(s) = o, o o (s)/2nR?(s) 3.3

From plausibility afguments.and for consistency C(s)
has tc lie between 0.8 aﬁd 1.0; once we have fixed the vélue
of C - we shall'take it tb'be 1.0 throughout - we can
determine the value of R(s) from experimental results on
elastic scattering. This is true for the initial state elastic

_ _ there are
scattering but not for the final one, where having particles
like f£oN*'" on which no elastic dates exist, we cannot estimate
the value of R Modest variatiohs of the strength and range
of the fihal-state interaction do not lead to significant
changes In the differential cross-section as we shall see;
Jackson et al have aiso shown that they hard%g f§§dg§i changes
in the spin density matrix. Th¥y factor Saa is positive,
real and small for low partial waves and incfeases monotonic-
ally towards unity for high partial waves. How far is it |
FOWA v , o\laing

realistic? There are three wesk objections to~$his—simplified
assuwapbion . ,
usege: (i) our assumption that only the helicity-nonflip
elastic amplitudes are essential (ii) our assumption that the
elastic scattering is pure imaginary73’75 (see footnote T4)
(iii) the range of peripherél Born exchange is not always
smaller than the range of forges in the entrance and exit
channel75. |

Whaf about the validity domain of the absorbed Born model
itéelf now? The one—pf% exchange theory with absorptioh is in

remarkably good agreement with experimental data for reactions
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like TP —> pP, @P —> pN¥, XKP — K*N, PP - FI® ete.
which are all mediated through a =n. Furthermore there are

no counter examples of two-body hadronic processes in which
Wwhich disagres

one~pion exchange is allowed and pe—reascnableagreement with
observed data7’9’7l. Why this is so may perhaps be illustrated

by a simple example77. If we consider the process a+b > c+d,
where all the particles have equal masses and are spinless the

partial wave expansion may be written

2 =t
g (s,t) =:§§321;1) T.(s) P, (Cos 0) + E (gl%l) 7, (s)P, (Cos 0)
J=L 1=0 '
3ol
where
L = P/2m>>1 3.5

The first term on the R.H.S. expresses the contribution
of the pion and the second term that of particles heavier fthan
the pion i.e. exchanges with particles of masses > emn. The

pion partial wave contribution is given by

+1
1 M2 P.(Cos @) d (Cos 0)
:Born ) (E—) €18 L 3.6
-1 me - t
)
Which using eq.3.5
oM 1
= I B8y Ko (55) 3.7

Where Ko denotes the modified Bessel fﬁnction.

Then

g (s,t) '=}_;_(2;+1>' 2 e, K (3,) P, (Cos 0)
+:E:j§%il) T.P. (Cos ©)
%

3.8
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From the Unitary rel8tion for the partial wave ampiitudes:

2 I+ T —}_(wm)*( o)

5.9
we see that T, £ 1 so that we may write
1=L ' )
> (214'1) T (COS 0) < N 2%'0*1 . __5_ 12
T @ 41?0 3.10

if we consider forward scattering we may transform the summation

of the other contribution to g(s,t) to an integral:

w
Z(EI+I)K (__1_) o2 j; 1K (._,F) dl O\ ng X aX K (X)
%

1
-1 12
=3 L
3.11
Finally we have
2 .
g (s,t) oo L12 M81% 4+ 1 12
¥ P2 3.12

The second term on the R.H,S., must be small compared to the
SRR

first one for us to 'absorb' it; this means that

M2
TP E18, 2 7 3.13
which is well satisfled in the few Gev region - hence the
success of the Absorption model for exchange reactions dominated
by one pion.
What are the disadvantages of thils model itself? Basically
it comes from the fact that it is a hybrid model combining

pctential theory and field theory. F:. introducing absor.tion
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we are giving the hadror a structure which we do not take inté
account afterwards in our use of the Born term78. If we
assume that the hadrons are made up of Quarks we could presum-
ably assume that some of these entities play the role of
spectators and so provide absorption and that the Born term
accounts for the strong interaction. Although this would still
be a hyvrid model it has a'physical appeal and is completely
analogous to the description of Hadron-Nuclei reactions; but
N 't negative veal axig

so long as one uses left-hand singularities only the introduc-
tion of absorption is artificial.

Also them are two main reasons against the presence of

R
absorption, The first one is that a form-factor for the

+

v
reaction P+P => N 'n determined at 0,970, where only one

inelastic channel is practically open (d&k- = 40nb,<§\ = 20@&
Uan = 1§?i accounts very well for the reaction at higher
energies although other inelastic channels take now a consider-
able share of the total cross-section. The second one is based
on a unitarity—anaigticity argument and ﬁ% be illustrated by
the process #nN —> pN and let % ﬁg be its amplitudes.

Denote by ﬁlﬂ and ¢2£ respectively the elastic partial wave
amplitudes for nN )pN scattering and let (Oln)z and (Qen)z
be the amplitudes for other final states n which can be

reached from these initial states. Then Unitarity gives us the

following relationships:

s 12 _ 1l g2 NN to 32
Py - Pul|” =% % +>~;;— (©40)3 3.14

e 1. s ,.
:FE Zoy - .gzi‘z =5 % *Z‘ (0% 3.15
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ST E
Ify = B0+ F Pyt elzg_ﬁﬁin Pon)y ;
3.1

Assuming that

-1) 3J=1,2

NOf

4 (exp 216

Pyy 13, 3.17

Then the equations 3.14 - 3,16 are satisfied provided

‘ﬁgga < 1. Both the Form-factor and the absorption fcrmalism
make sure that this is so. The sum g% eqs., 3.14 - 3,16 being
the sum of a large number of complex quantities, each small in
number, may be equated to zero - this is called the random
phase approximation Q{PA)and Wwill be used latér, Then we have

that ;
T

A8

1119y )
|

This means that the only restriction on ﬁz is on its phase;

=
m -
}-'4‘

at high energies the a's are near zero. For the Born term
Imﬁg = O yandyas a first approximationkpay then be accepted.
The main conclusion is that this unitarity relation does not
give rise to:Feduction$ of the modulus of the Born term and

s0 contradict the idea that there must be absorption £p;;
cempetfﬁtéa—of other channels, Unitarity gives rise to absorp-
tion for the elaétic channels igzghthe presence of the squared
moduli and foroesthe phase shifts to become complex but this
is not so for the inelastic case, However this argument holds
true for the 1-5 Gev region and at higher energies one must
take account of other channels wich cannot be simply lumped
off to zero in the Random Phase Approximation (RPA),

From the experimental point of view the energy dependence
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of the modcl and its predictions for high spin exchanges afe

its main failures, Form factors both in s and t have

been introduced but these suffer from indeterminancy of param-
eters. Dar ef al71 have suggested modifying the model by'tkﬁ
inclusion of an energy dependent factor in the Born term partial

wave amplitude:

J, ¢ J A
<Achd‘T3(s,t)|AaAb> = o (5)<A Ay B (s) {"a"b .

Where
oJ(s) - _tot (s) 1 ‘}TWJIZ

o, (s) ;?i“x <xchd]B(s,t)|AaAb> 2 3.20

Her'e.‘r\J is the phase shift for elastic seattering an&jz%
represents the maximum set of final inelastic channels for
which one can defiﬁe consistently helicity Born amplitudes.
It has been very successful but as it rests on shaky foundations
we shall not adopt it.

It should also be remembered that for high energy the
optical radius 1s of the order of 1 fermi (fm) over a wide#
| ;1 = 2fm and 'm;l

conditions of egs. 1.22 - 1,22d are not satisfied.

energy range while m = %fm. Thus the

The other alternative which attempts to take into account
the effect of Unitary and the many inelastic channek is the

K matrix approach.

3,2 The K Matrix Approach79

In this approach one starts from the relationship

g = L1+ ipK'
1 - iPK' 3.21&
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T = K' - ipK' 3.21b

where p's are density-of~state factors.
This guarantees that S is unitary if X is symmetric
and real; this condition is automaticéliy satisiai=2 if we
take K' = Born term, » , |
If we define K' = (p)l/eK(p)l/2 we get a simpler formal
relation
T = X - iKT 3.22a
or
T Ko Koy (o) K, o
Ba Bot BY “1+iK ‘yy' y'a 3.22b
The_fi;gt term represents the Born term and the second
one unitarity corrections, The entire philosophy of this K
matrix approcach is to estimate this correction. WatsonBO for
instance approximates it by two contributions. Using the RPA

principle one may say that of all terms of the form

1
| _ 1 K 4= T
S Ry (Tax vy = Tpyr 2 E' (g3’ "v'a” Ty
Y Y

the largest will be given by when y' =B and y = o respect-
ively. By setting ' =B and vy = a we obtain the following

Inserting these

two correction terms: iTBBKBa and iKBaTaa'

in eq. 3.22 we have
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T = K

B + K T',_»)

. - - (m X .
Ba = 1 ‘Tpp ¥pa * ¥pp

B

it

o = 1 (Tag Ppa * Bag Tpp!

1
PO

((1 - 2iTqg) By, + Bgy (1— 21 T,.))

1 :
= 5 (Sﬁﬁ Bg, * By Saa) | 3.23

If Saa = S65 i.e. if the elastic corrections are equal
in the initial and final states we then ESEQ;Zia%e eq. 1.22.
This derivation it should be observed, makes no mention of
absorption and is derived solely on the assumption that the
total number of states with three or more uncorrelated particles
is very large and that their matrix elements are all smallgg’g;.

This argument has been carried further by Dietz and Pilkuhﬁﬁ'
who start their approach from eq.jezﬂ(;l the following the first
and second subscripts refer to the number of particles in the

initial state and second state respectively.) If we expand

this equation in a formal way we obtain relationships of the

form
Top = 2Ky +1py Koy Tpy + 1p5 Kpg Tps + wiiiieesi
3.24
- g 4 ip! BPTTREE
T32 = 2 K32+ lp3 K52 T22 + 1p3 K32 T32 + esvecevaae
= (1 - iK) (2 + 1ip T22) |
3.25

T(;K\“% V= 3K KT
If we substitute the last relationship in eq. 3.24 we get

. - 2 K B 22

22
(K +By,,) 3.26
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where
Bow = 1K (1-1K_)tx
22 2
> 53 32 3,07
TIE can b shown -
;\TEE will satisfy unitarit: Hedvi-ed Inm 322 is positive. We

assume that all the K's except those for two particles reaction
are satistgically .r independent and are given by a distribution

function P

b (K, ) = —t— exp (:—K}-'i)

ij o
Ten 2 3.28
cne then obtains that (Seeﬁ]\
2 - . ~D
EN;;,:' Kia‘ = 0 > - 1)Y= 3.2%a

Zl\rij Kk S %.20b
\m\'_{'\mﬂ

From this one can show thatQ\ng = ib, Taeen

22 (14 )24K®
‘ N 3.30

b .can be determined from elastic scattering.

The damping-of this amplitude is due to two particles
effects and three particle channels. |

In this derivation assuming the number of channels N = 200
Lhe Qut"\orsc\e\d\»ce : 0, - \\ . jc .
eme makes errors of the order of 107/0 sw The ARYY Gx 1At o1 o{sk{j

Following on these lines and using the methods of Van

83

'Hove82, Fincham et al®” have suggested an approach which does

not contain any parameter and in which one only uses the
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elastic scattering of the initial state only. Usually in
pract’:al applications of eq. 1.22 some room for ranoeuvre is
always avallable as the final state elastic scattering is
usually unknown. In this method the channel space is divided
into the experimentally important tWo-body and quasi-two-body
channels and the background set of all other channels - we
denote the formquLatin letters and the latter by Greek ones.
Also Operators which have elements only between significant

channels will be denoted by a bar, The Unitarity equation now

reads:
:E;:§bc Sca + :E:;Sby Sya = 5ba
™ Y ' 3.31
Denoting by F the second sum or overlap term on tlLe
L.H.S, this may be rewritten formally as
T ot
S S = i- 1D 3,32
Now we write
§ = GI 3.33
with
+
and
. L+ ik 3,340

1 -1
Where X is Hermitian.

According to the R.P.A,, 2= TbyTYa for a # b can be
Y

neglected compared to 2 TayTya'

This means that G is a diagonal matrix and can bé shown
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to be a complex multiple of the unit matrix. So we can write

G 1+ iK

5 =
1 - iI_{. 3-35

Eliminating the real and imaginary parts of G between the

diagonal and off diagonals elements of eq. 3.33 we obtain

_ i ((1+1K)/(1-3K). ,( 3 1o
“oa ((1+iﬁ)/(1-iﬁ))zz aa 9 S=t-aT 3.36

One obvious advantage here is that the unknown final-
state elastic scattering is not included explicitly in the
equation., We can take 'Kba to be the Born term; however
there is an arbitrarihess in the choice of the diagonal elements
of K. We chocse tﬁe simplest case: Kaa = 0 which corresponds
to an entirely imaginary amplitude in a two-channel model. For

a two-charinel model with K11 = K22 =0 eq. 3.36 becomes
J J T 1 Koy o 1 800 .
T - B.S s OIS S oy ;‘—_ %
11 1_E£g? J 3.37

K\’A‘—f %B\}

If we let Sii = Sff in eq. 1.22 we then see that the factor

in the denominator will give extra absorption, This will

result in differential cross-section which is reduced in mag-
Chowce o Bing

nitude and has a greater h i

adequate for an A, (Spin 2) exchange in the process

TP = T n,
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3.3 Orbital. Global and Regge trajectory Resonance Classifications

There are, in principle, three approaches on the question
of classification of higher resonances into multiplets of
symmetry groups: the 'Orbital', 'Global' and 'Regge’ eas?a.
Here we discuss the first two only, leaving discussion of the
third one for the last chapter. ’

In the Orbital framework one believes all particles, both
meson and baryons, are made up of Quar-AntiQuark and three
Quarks systems riipectively. The spin of all quarks 5:
and antiquarks Sa couple to a total quark spin S. These
may or may not have an orbital excitation L; in case they
have this angular momentum is then coupled to S to give the
total angular momentum J which is the spin of the physical
particle: L + S = J., The resonances so generated will have
the same internal quanmn%?gbﬁie basic particles but may have
different spins and .parities. In the language of SU(3) this
would mean that one needs nothing more than octets, nonets,
decuplets. Radial excitation, SU(3) breaking, L - S splitt-
ing have been introduced in this model but we shall ignore
these and keep to the simple basic one.

The resulting multiplets would then have parity

(Parity of Q @ system) (-1)8, charge conjugation number
)L+S

1l

P
C‘= (-1 . The evidence for this scheme is overwhelming84.
All the presently known mesons are naturally classified
according to it. Further all natural pdrity mesons, according
to this model must have normal change conjugation C = P:

experimentally we do not have a single established meson which

violates this rule. This model however conflicts with the
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Regge one which classifies particles on parent and daughters
trajectories. All the odd daughters of all naturai parity
trajectories as well as many other daughter states are not
allowed by the quark model: To get out of this difficultyGell-
Mann and Zweig have suggested we should classify mesons accord-
ing to U(6) B U(6) E 0(3,1) as the existence of duaghters
originates from the 0(3,1) group. This however introduces an
additional quantum giving more families of particies which so
far have not been found. Overall this scheme has been extremely
successful from the experimental point of viewjalso the wave
functions have a simple form in this scheme as we shall see
further on.

In the Global scheme the resonances are built up by
addition of more quark and antiquark all_pilea up in :an overall
S state. The more Q and § we add the higher are the spins
and internal symmetry quantum numbers so the resonances may
belong {8}, {10}, {27} ete. of SU(3) or equivalently to
the (35}, {56}, (405}, (700} etc. of SU(6). The fact that
most of these high number.multiplets are empty and that no
esoteric particles (i.e. those with high Isotopic~hypercharge
numbers) exist counts heavily against this model.. Also the
wave functions in this approach are Jjust too long and complicated.-
It should be mentioned, however, that the discovery of a single
¢soteric particle with, say I =1, Y = 2, which is allowed
in peripheral collision of Kaons or Pions on nucleons would
be a fatal blow to the Supermultiplet scheme but quite a
success for the Global one.

It is convenlient to subdivide the exotic states into two

kinds; the first have values of isospin, hypercharge and baryon
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numbers not found in the quark-anticuark (QQ) and three
quark systems (QQQ). The second kind are non-strange mesons
which do not appear in the Q - @ system; namely J¥C _ o~
and natural parity P = (--1)L states, with odd CP, abnormal
conjugation.

One reason for missing exotic states of tne second kind
is the suppression of their coupling to two pseudoscalor
mesons, Conservation of angular momentum, parity and charge
conjugation forbid nm,KK, and ’r)n couplings for all exotic
states of the.second kind, and ©® couplings for all even J
exotic states. SU(3) forbids the Mn coupling for exotic

: =
states of the second kind which are in SU(3) octetsBJ. This

means thenigiotic states of the second kind would not be
produced by pseudoscalar exchange or decay into two psudoscalar
mesons. There are SU(6)w selection rule386 which forbid- the
decay of exotic states into common two body channels and this
may perhaps explain why they may have been missed experiment-
»ally.’ Other theoretical arguments suggest the existence of |
exotiec boson states coupled td baryons only and not to mesons,
and‘observable as baryon-anti baryon resonances. Experiment—
a11y87 there seems to be sbme evidence for positive strangeness
- baryon resonances %nd exotic t-channel exchanges at low energies
but suech evidences é;e not stfong. .Furthermore, one must
remember that analysis of peripheral reactions indigate that
objects appearing i as s-channel resonances are aléo exchanged
in t or u channels; and what is particularly striking is
the absence of a forward or backward peak 1n those cases when

the exchanged particle would have to have quantum numbers

whlch do not correspond to known resonances - a fact which has
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been fruitfuliy exploitex by the exyponent of the Reggs Theory.
The absence of these exotic states has also been quite
successfully exploited in the applications of super convergence

and finite energy sum rules. Sum rules 8 of the form

5(1 \lNa('t)+n+l

A-N a(t)+n+1

N .

2 S Ve AV, £) @ = fplN,t) =
3.38

where fn(N,t) represehts an integral over a contour at high
energy |Is} = N of the asymptotic limit of Regge ahplitude,
are assumed to be dominated by reSOnances89; one alsc assumes
the non-resonant backgrouhd to the left is balanced by the
Pomeranchuk contribution to the right hand side and that these
two contributions can be subtracted from‘the sum rule, This
leaves only resonances on the left hand side and only Regge
trajectories other than the Pomeranchuk on the right. The
absence of exotic states is introduced into this sum rule by
setting the left and right hand sides of this equation equal
to zero for channels having e s and t channel exotic
resonances respectively.

This remark may be illustrated by locking at the particular
case of mnn scattering whére I =2 1is exoticgo. A sum rule
with I = 2 in the s-channel has zero on the left hand side
and contributions on the right hand side from I = 0O and
I = 1 exchanges but not I = 2 exchange. The contributions
of isoscalar and isovector exchanges must therefore cancel one
another unless each of them vanishes identically, Since this
cancellation must hold as a function of the energy N which

can be varied in the sum rule, the isoscalar and isovector must
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cancel one anuther unless each of thim vanishes identically.
For mn, Kt ahd KK scattering this would then imply the
exisﬁence of nopets with the standard mixing anglesgo’gl.

The requirements of the absence of exotic states also leads
téf%é%ﬁ@in masses and coupling constants on Regge trajectories
and in certain cases implies the degeneracy of trajectories,
for instance that of the f° and the A, %,

Th& application of this approach is not without its
difficulties, an example of which 1is encountered in baryén
anti baryon scatter'ing93 whiéh requires contributions from
exotic resonances. Also in those reactions which are mediated
mainly by pseudoscalar exchanges applications of the F.E.S.R.
of_eq. 3.38 requires the degeneracy of isoscalar and isovector
trajectories but there is no isoscalar degenerate with tae
piongqa It has also been argued that some of observed low
I - Y, JP = g— may possesstthe group structure of the (27}
of 8U(%) or correspondingly of the {700} of SU(6); the
group structure was tested by analysis of their decay widthsgB.
Overall then we can say that although.the evidence is strongly
in favour of the Supermultiplet scheme it is not conclusively
so; at the currently avallable accelator energies the issue

96,97

annhot be decided

3.4  Production of_‘JP.:,2+ and 17 Mesons

 The'transition'amplitudes for such processes may be written

51

in either the Kinetilc SUpermultiplet formalism or else in

62

the Global Symmetry one -, The Dimensions of the representa-

tions which will accommodate these spin 2" and 17 mesons
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o

are 4212 and 5940 in U(6,6) theor:. the corresponliing &8U{6)
representations are 189 and¥405 respectively. The wave functions
which describe these mesons can then be extracted from:
(a) For the 4212 |
(A B) . . . .
( P) which is completely antisymmetric

in lower and upper indices respectively.

7

(b) For the 5940
\%Q {A B}KP) Completely symmetric in lower and

upper indices respectively.

Here A,B,... = 0a,Bb;..s, Wwhere a,B,..., are the
U(2,2) indices and range from O to 3 while a,b,..., are
the Unitary Symmetry inaices and teke values 1,2,3.
Of these two representations we can choose either one,
as there are no convincing arguements for eliminating the
other. Using their SU(2,2) ® SU(B) decompositiohs, which are
given below we can extract those parts which describe a 2"
and . 1+ particle:
(1) su(2,2) ® sU(3) decomposition98 of the 4212 \S
4212 = (84,8) @ (84,1) @ (45,10) @ (%5,10) @ (i5,8) @ (%5,8)
& (20,27) @ (20,8) © (20,1) @ (15,27) @ (15,10) @ (15,10)
® 3 x (15,8) & (15,1) © (1,27) @-(1;8) @ (1,1)

3.39

Here the first numbers of the brackets refer to the

su(2,2) multiplets whereas the second ones refer to those -
of BU(%),

(ii) For the 5940 decomposition into SU(2,2) B SU(3)

multiplets we have
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5040 = (8%,27) @ (84,27) @ (84,1) @ (45,&0) [0}
(¥5,10) @ (45,8) o (%5,8) & (20,8) © (20,1)

® (15,27) & (15,10) 6 (15,10) @ 3 x (15,8)

@ (15,1) ® (1,27) & (1,27) & (1,8) @ (1,1)
3.40

Their decompositons lock much more familiar in terms of

their SU(3) ® SU(2) decompositions which are respectively:

189 = (8,5) @ (1,5) @ (10,3) @ (10,3) @ 2 x (8,3)
e (27,1) @ (8,1) & (1,1)
3.0
and
o5 = (27,5) @ (8,5) @ (1,5) ® (27,3) @ (10,3)
o (10,3) © 2 x (8,3) & (27,1) @ (8,1) @ (1,1)
3,42

" And it should be recalled that these representations make their
appearance in the follaving way in the SU(6) x SU(6): decomp-

osition of 8U(6,6)

h212 = (15,15) @ (15,15) @ (6,6) @ (6,6) @ (35,35)
e (1,1)'6 (84,5) @ (&,5%).0 (B,6) o (5,84)
o (35;15 @.61,35) o (1é9,15A@_(1,1895.
3.43
5040 = (21,21) @ (21,21) @L(G,G)aQ (5,6) @ (35,35)

o (1,1) @ (120,8) @ (6,T20) @ (i20,6) & (
(6,120) @ (35,1) © (1,35) @ (405;1)

& (1,405) ‘ 344
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Such a decomposition comes from the fact that under
sU(6) ® SU(6) the bvasic spinors K%JA and KJJA reduce in

the following way
= (6,1), @ (1,6)
\*/A + - 3.45a

Y

(8,1), ® (1,5)_

I

3.45b

where the appendeﬁiéigns Indicate the value taken by v, in
the respective Subspaces. This decomposition becomes more
familiar if we remember that in the Pauli representation.of

‘the Dirac matrices which are

: . \ .
1 o\ ¢; § 0 | o i 1
Yo = .'...'i‘..‘.'..\’ Yi =..ono§¢00.0 2 Y5—ootoe§¢¢c-o
o i -1 / o § o 1 8 o
' 3.46

one can separate the Dirac spinor ky into Lx)

Bearing these decompositions in mind we can then extract
those parts of the wavefunctions which describe Spin 2, 1 and
O particles; after application of the Bargmann-Wigner equation

the wave functions belonging to the 4212 are given as follows:

(A B) -1 ‘ apy{a b}
((c D)( ) =5 iy (WwPH)YCl g [5 ¢ v5(v P-M) ] iw d](.P)
(a b)
+ i§[~%m (y.P+M) Y5C]Y6[§§>C'lvu(Y.P-M)]aBY¢ a3 (P)
: ab
o+ %5 [21 (YzP+M)Y5C] v5 2& C—lY {Y.P- M)]“ﬁv e ds,(P)
(a b}
+ (Y P+ M)Y C] '~% v, (vs P~-M)](’LB 2 (e d\‘P)

3.47
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where (P%-3)g _(P) = 0 - (P2-M2)V (P) = (P2-4%) (P) =

and ‘PuﬁuV(P) = Puvﬁ(P) =

The ’Y\ describes O particles, Vu describes 11 ones whereas
¢

.y describes the 2%, 17 and 0" jointly. It may be decomposed

further into

3 , 1
ﬁuv(P) =~S{uV](P) + Auv(P) t 5 guvﬁ

where the S, A and # deseribe 2, 1% and 0 particles respect-
ively.
The corresponding Unitary Spin decomposition is

symbolically given by

{ab} n(27){ab] 1 52 n(B)S + permutations]

Nfeay = '{ca) * 755
1 asb | .ab
+ = (82 By + 5 5 ) n(1) 3.48
b] 1 b] 1 b b
V%id} T s U(;lo){id} + ;/%[62 Ug(8) &EU\
b b
SME ~ &V (‘3\}
3.49
o] - €Y G 9O} + 2 (6207 - B2
3.50
The U(6,6) invariant coupling of %4212 with two 143
mesons is unique and is given by
L .o plonles) 85 (2) 7 () 351

. <
St e 9.409 [ev definitions ok #h(\% ote
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Since however strict U(6,6) forbids the decays ot 5 070"
and 2 - 170" we have to introduce symmetry breaking through

the use of the momentum-spuridn of the type

Pg - (Py)a 5a 81 v o KrowecWer ddts 3.52

in order to accommodate such vertices in the theory. Onece

we do this we have two Lagrangians involving two couplings

L

t

6,aSatABl(2,) gE(2,)R(a) - AE(a)ED () 3.5%

A ]

l -

L

2 = Gpagapet o] (2,)22(p)oE (a) 3.530

Unfortunately we do not know how to relate these couplings
and this would introduce parameters into our theory - precisely
, " wanbed ko ouoid by,
the sort of situation we have 1ntroduc@q;dynomial groups to
eliminate, Furthermore the.introduction of spurions is dubious.,

99 has used such

It should however be mentioned that Delbourgo
an approach to study the decdy of the f°, in which case only
one of the Laganglans is needed, Although such a procedure
may be used for certain decays it cannot however be used
_consistently for production reactions when both Lagrangians
have to be used; For these reasons then we prefer the Kinetic
-Supermultiplet formalism which as we shall see is much simpler_
din its philosophy in addition o being on flrmer ground from
the experimental point of viewau. |

| In this P wave Quarkwanﬁquark model these entities
are so ﬁighfcly bound that they forrjn,__to.a‘ll intents and

-purpose?}a single objeect, as is imblied by its group structure
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U(6,6) @ 0(3). This means that these mesons are desecribed

by a 143 component object belonging to U(6,6) and moreover
they possess an independent four-vector character which
represents fheir P wave behaviour. More explicitly they are
represented by ¢éu(P;:{F%;; Unitary symmetry part of this is
completely similar to that of the #A which has been deseribed
62 83

by Salem “ et al and used by others Suppressing these\LhEWﬁ;S@d
indices then7these mesons are described by ﬂgﬁ(g) which obey

the following conditions:

B' ' |
(vp)5 g.u (P) =M ¢gu.(P) 3.54a
(Yoot #,  (P) =M g . (P) | 3. 54b
/
and Pu ﬂgu = 0 ' 3«55

The field q)gu(f) can then be expanded in terms of the

Dirac matrices as follows

Bau(B) = [S1(P) + vy (P) + F o, 7L (P)

+ IWS %5‘1’) + Yo 5 (P)Ig(THE

| 3,56
The constraints of egs. 3.53 - 3.54 then give us the

following relations among the components of the wave function:
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S = 0

u .

P, ¢§u5 = -im1¢ﬁ5
P = i

v Zus im f,u5
P, Tgy = -im Bov

3.57
(a1l these relations follow immedlately from the Bargman -

Wigner eq.)
We also have the following condition, which is somet :mes

refered to as the divergenc-less conditiong

I

PAyP) = B, T,o(P) = B 4 -(P) = P Zous(P) =0
3.58
Using.these félafions the wave function simplifies to
A M+P i 3. $ o
o (B) = [ 5Grh) v, (P) + (TE) YeB,5(P) 1 [T
3.59

Here the first term describes a ot particle whereas the
second term represents a 1* particle. The parity 1s obtained

from the relation

P

(Parity of Quark X - Anti-Quark K) (--l)L

(-1) (-1)b =1

= +

3.60
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For the production of these mesons the U(6,6) 0(3)

Lageengian is given by

. A . . W
L(PsP) = G g (Py) 195 (P )ota) - #5(a)gR (P )] & |
3.61
and corresponds to the vertex shown in Fig. 3,1

P, O

1

v

Fig, 5+1 Meson Resonance Production .Bex\\\i\f\bhs 0&5‘3"\%\5 ""%332

This Lagrangian must conserve parity and charge conjugation;
that 1t does so may be shown as follows, The basic U(6,6)
quarks from which it is made trahsform as

J
- J: J 1 J Bepdyb
6 Vo = 1(ed + € Y5 * vy -+ enslYy s * 5 ey uv) (T), wﬁb

which contains the parity transformation P : Lg ~> y,P. And
to see that charge conjugation is preserved we only have to
remember that the charge conjugation antisymmetrical matrix.

CaB’ which is defined by

C-l ‘;'C = u ’g w = + for §1=5u,5hv
W= - for R = l: Y53 Yu_- Yt)‘

af _ =B

acts as a lowering operator and (C~1)a5 as a raising operator

one and that under charge conjugation
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¥ —> C 7o . 3,63

o ' - ao  §
P
¢2 —> * Caa!<(C-1)BB' ggl ' - 3.64

., The scalar expression given by eq. 3,68 1s then trivially seen
to be C invariant.

This Lagranglan may be written formally as
L = @ 3.65
¢ (I + Iy8,)

where ¢5 and ﬁﬁ are the pseudoscalor(and vector fields
corresponding to the 07 and 1™ nonets. In this sectlion these
will be the only mediators of our Yukawa exchanges., The
U(6,6) Q 0(3) prediction for those parts of the pseudoscalar
and vector currents relevant to the interaction of the 2%

meson nonet with the 07 and 1~ mesons are (neglecting SU(3)

. dices
A285) (L syndods defgred e Bq 3T
1'_~ 5L | ' A
Jg = ‘yf ( + “ + g”mw) [7 A(PB) ¢5(Pl) Iy P% Py
3.66
1_8L _ 4,1 1 1 | p B po
W 75 WS MW MLE fweey 1T T3 X
x (B, (Py) 8 (2) 1,
3.67
For the production of the l+ the relevant current is
A
Foaa g (2) g
i L S A 3 1 ]F 3.68
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4 ; 2 4 Y 2
A — [ (Ms - Mw,s -8 )Pg + (M8 - MM W - Ml)Pg ]

3,69

The corresponding expressions for the bottom vertices

which are symbolically represented in Fig.3.,2a are given, by

qa(07,17) ta(07,17)
' (4 75% . +
(1/2) B, | (/2) B, (1/2%)p, | B,(3/2")
- + + o+ +
Fig, 3.2a % (07,17) % and % (07)2 Vertices

ek

L2 2my, P2 : -
JS = Gg(l + -"g) 1;;2_ [N(P4)9Y5N(Pa) JD.;.%F

. 3.70
, 1 - | .
AR g Te R o [ﬁ’(Pu)N{PgaF + A+ Em
(P, )k 7]
xﬁmwmyL&] )
3.71

In the case the bottom vertex involves the formation of

a resonance the current is
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~ A
_ oMoy P =

| 3.72
The masses appearing in these expfessions are taken ad
hoe to be the average of the octet, nonent or decuplet to which
the particles belong: S = 417 Mev, average of the 07, MOD=1[.1MeV
MV = 850, average of the 1~, MW = 549 Mev, average of both
0 and 1°, M = 1375 Mev, average of the 27, M, = 124k, the
average of tHe 1T. These last two nonets not being tao familiar

as the others are shown in Fig.

K%(1420) - g%o | K*(1320)

A® AI(lOBO)
E D

0 & B

-

Fige 33, The ot ang 1t NonetSst

The relations expressed by eqs, 3.69 - 3,71 which are

derived from the original U(6,6) Lagrangian of Salam62

L(P,P,) = \qﬂA1Bc(Pu)¢ﬁ'(9)\}%BC(P2) | . 3.73

may obviously be regarded as being oObtained from u@®,6) B(3)
with L =0, P, and 7, oOf eq. 3.70 are the conventional
morms for the 'electric' and 'magnetie' interactions and

- divided by 2m and 4m® respectively they are the coefficients
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of the Sach form factors. As far as the algebraic work is

concerned it is more convenient to rewrite Jﬁ in terms of

P
m and Yu as follows

o | _ .
J n{-ml(QE) -E"ﬁ(Pu)N(Pe) } + M, (a®) | N{ 4)yﬁN(P2)h’D + %F

W 2m : .
L dg L .
3.74
and this will be the form we shall be working with,
R 3.75
M, = [1-q2/4n?] B, ’

The transition amplitudes for the production of these

mesons may then be'symbdiically written as

; i : m

m2 -t I
1 j

3.76
where the summation over 1i° and J represent the number of
allowed exchanges of O and 1~ particles respectively. The
masses in the propagators are taken to be that of the physical
particle exchanged. More explicitly the amplitude for the
production of a 2+ via the exchange of a vector for example

will be

e, G
12 1 1 o pB pp
Pl,®) = —5—= ( w5 - weow - MW"')EP«QBVPB 1 Py

x 8,20y [ - et W g pp o p ) N<P4>N(P>

\ e -t

+ F, N(p, )y N(E,) ]

3'77
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where
o= 4o - 201 + i)
3.78a
P. P
i) = 2 1+ 2m 1 + _g_;_ﬂ.
2 3( MV) ( m2 ) 3.78b

The contribution coming from the second term of the
propagator will be zero as N(f-m) = (fg-m)n(Pg) = 0, Similarly

one writes the other terms. The moments appearing in these

expressions are diagramatically shown in Fig. and are
given by
- o - -~ = i ] r 7
1 : E2 E}. _ E4
P.=| KSin®| 41 P K S1n0 |3 P, =|-0 |} P, =
K Cos Q -K Cos0 | e | —Q §‘79

which are thelr forms in the Centre of Mass frame; Q and K
are the 3-momenta of the particles after ah before collision

(see footnote 100).

N
(00 AT3(5)

N\
- >
AN
Yik\l’l“l)
| \
Py (Ay) \

Fig.3 3 Four Momenta and helicities in the C.,M. frame,

The only expressionswe need to know are the components
of the wave functions #& (P3) and ¢(P3) for the various
values of the helicity amplitude, They may be directly computed

as follows, starting from the fact thet ‘the Spin One wave
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function are simply given bylol

Y. o= /3 Cos © Y, .= % /5 &P sino
1,0 E% d 1,%1 gﬁ' 3.80
in the rest frame of the particle. If we represent the 4

dimensional coordinate system by
.

~

n
QO OK

A 13

C<=

)|
OO0

.o

N

Il
OoOHOO

s

ct

il
HOOO

3.81
then the wave functions of eq. 3.79 may be written, on a unit

sphere, as

. . S 1
g, I8, =+1; P.= (m0) ] =% (etiy) 2L _ -1 (i(i)
/2 /2 ﬁ‘- Q
. 0 | 3.82
—0: P o _ . _| o
g,08, =03 P=(mo) =2 =| ;
d—o-
3483
Then by means of the following Lorentz booS’clo2
)
L = v
(z) 1 0 0 0 \
0 1 0 o |
E P
0 0 o o
P E
0 0 = =
3,84
" we obtain the wave functions for a particle of Spin 1,
helicity A = +1,0 moment along the z axis and energy E:

gp‘ [A, P= (E,O0,0,P) ] = L:’ gﬁ[ As P = m,0,0,0 1]
3.85

The two wave functions of eq. 3.82 do not change under

this boost but that of eq. 3.83% now becomes



. 0
; 0
gu [}\: P= (m,0,0,P)] = %/m

/m |
J 3.86

]

Should one wish to obtain the wave functions at an angle

© to the z axis one only has to apply the rotation R(Q,0,0)

tb this wave function:lol _ 3
. Cos © 0 Sin © 0
R(0,0,0)= = o . I 0 0
-Sin © 0 Cos © 0
L 0 ° 0 1 R 3.87

The wave functions for a spin 2 particle can be easily

obtained by Suitable combinations of spin one wave functionszlo3

Qh”t s =fi?, P= (mo) 1 = ¢a ($=£1) g (sail) 3.88

¢hvts = 41, P =(m,0)] =~7% fﬂh($=o)’¢>($=il) 0A¢ (s=¥1) X

xﬁu &0)39

¢@ltém=;bgw£é(m,0)]=_;% iﬁﬁ(s=l)¢v(s=_)9¢h(8=-1)¢y(S=ly

28 (s=0) #), (s=0) ]
3.90

All the wave functions of the R.H.S. are rest-frame ones. To
obtain the wave function for spin 2 with momentum P along the

7 z axis we must Lorentz boost each index individually e.g.

." /

gh»,['3=2: P = (mJO:Q;P)]Y= t'L(P) ]S‘gé[ssgs Pz(m,O)] ‘E

[ up) 1° g, [s=2, P=(n,0)]

3.91
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It should be emphasized that on the R,H.S. of this equation

we have an outer matrix multiplication and not an ordinary one,

and is done as follows:104 ‘ J—

a a a..B a
A 8 B= 11 12 B B = 11 12

4y 2op | a)oB  asy

B
B

In a similar way one obtains the spin % and g wave

functions, Denoting the Dirac Spin % wave functions by

W, = va% L= n ey

3.91a
where
N= 1 '{2m(E-Hn)]“1/2 s (X "(o) and (k "(0 3.91b
then the g wave function may be formally written as-
‘ gyf*ifg'> = \2: 2> \Vj: . 3.92
5455 = Lyjsses\Us 6
|2+2> - _/§[!2ai? Wr o (2,215, 1 3.93
54l 2 [l2,55Vs = o
st 52 o [2,z>Ygpe |20, ] 3.4

Below we 1ist the explicit forms of the wave functions

for different helicity stateé:

Spin 1
il/"/e: ¢2 = i/"/gs ¢2 = ¢0v= 0

>
I
I+
[
_
=
i

A=0t # =0,  §, =0, g, =

|
&
g
-
o]

!
&
X
3



=+1: 4 _ = . .E _ _ 1iE - . P _
A= 41 P15 = - 5 > ’523““5‘5’ o =% 55 Zoo =

’”11=¢22=¢12=¢33=¢30=¢oo=°
A _ J, _ J _ (2, EZ

2
P30 = (/I6)ER/M?, g = (2/46) B ;
Pro = W5 =Fos =P = Fpp = O
Spin 3/2
A=+ 3/2: ¢ =+-:-L—-w+, 14 =§L—1ﬁ+, Vo =% =0,

—— P T T2T2tm V3= |
TR -+ 1 I Yy - _2 E, .
A—‘:_tB/?- V=t ez, wg-@_w, V3= - v

2 P
WO=-‘EEW+
Spin 5/2

= . 1 , i 1
NEE 52 Ny =5V Yo = s, Voo = - 5 V4,

Vi3 = Vos = Vs = Y50 = Vg, Vop =Ygz = 0
N=4 32 gy =k gy oy =Ly, N S

X3/ 1= 127 o "F e Yo oz T

' i E_ ‘ - 1 _E L P

2”13'—"",51-“1[/_},:-1&23—" @mWis 71/10——"-1/_5_m\"'j;,

i P
WEO—”EEV/;':: 1[/33—-1l’3o—1[/00=0



1 -1 1 E
A=+1/28 Y. = - =Ut+ , Y - S Y, Yo = A e 2 e
11 Ao — 22 J10 ~ 13 —yjom +
2 E® — 1 P i P
Vo = — ==Y+ , Yo.n = + —=— = Y Yo = o i 2
23 STOm — 10 Jio m + 7’ 20 Jom +
2 PE 2 P?
Vog = === 2= Y+ , Yoy = —— —7VY+ , ¥ 0
30 Y10 m? 00 0 m® 12

We now have everything needed to evaluate our amplitudes
except the coupling constant, For 2+ production the basic

couplings from which all the others are obtained by U(6,6) is
2

—é%ﬁ . This obtained from105

2

bl .1, M 42 G |
[-S-(m'f"g‘"'m)] = —E%E : 3.95a

and

| Gy .1 ,Q°
‘—‘ = ‘%%“EG'MT 3.95b

where Q is the three momenta of the vector meson in the rest

frame of the decay 27 ~> 17 07, M is the mass of the A, and

I' is the width for the decay. [I' was tkaen to be equal to
. ENNg

0.28 Gev. The basic U(6,6) coupling —7— for the bottom

vertex is obtained from

Enﬁ (1 + gg) gg = 1%4:9 3.9

For the case of the 1t production the basic coupling was

derived from the relationship

G2
N L N 3.97
Iy 3 m2
4 2 gilpn \ Gilpn
M. S2MY . | 3.98

1



In writing down the couplings'we have to take into account
mixing between the eightth member c¢f the octet and the singlet;
If W is the former and @ the latter then the respective

physical particles will be given by

Wy = Sin O] W> +%,—3005{ >
=Y sino -
ﬂphy -5 Sin 0 @ - Cos| w>

The D type Lagrangian involving 'mixed' particles will

be of the form

4 3 .
Tr[MA; M+ MM N

where we sum over 1 from O to 8., As A, =1 this trace can

be written as
6 b — i - -
2 Te[MA, M+ HMMA IM + Te(M M+ M M)
C =1 ‘ '
It is the last term which involves mixing. It should be noted
that for F type Lagrangian this last term is zero. The F°

for example will be giveri, for a mixing angle © = 300, by

) 1 (.0 ¥3 i

where F° and the F* are the 1220 Mev and 1500 Mev 27

mesons respectively., The couplin will then be

1 31
g : ' = 58 : + v — & -
nEOg” 2 "nteOn” 2 NI 3

Fer‘the'Lagrahgians we have written down we have the

following general types ofvcouplings
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2" 5> 1707 F type

2" 5> 070" D type

1 > 070" P type
o

1t s 1 D type

Assuming a mixing angle of 100, 40° and 300 respectively
for the 07, 1~ and 2% the various couplings of interest are

given in terms of the basic ones as follows:

2+ Production Vertex 1

B6nn = gA2p1|: ; gAeﬂﬂ = 1.286 ; ngonK = 1.0 ;

1 .

= e

g g g =g i 8 "
Kk /2 PoPT T TxFgrx AP K%K = V2 Eajpn

g = g s £ - = 00964
K%k V5 PoPT K* "MK
+ .
For 1 Production
g 2

= .2 . I
K*wK = /3 gAlp'ﬂ s Bypx = /5 gAlpn_

Vertex 2
g = 0,214 eymy  for F type
= 0,984 Byny  for D type
i
gNﬁN = y= 5NWN both for F and D type
1
ngN = 7% BTN both for F an? D type
1
ENuN = 7% NN both for F and D type

NN = Bynn
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The amplitudes are decomposed in the helicity formalism

of Jacob and Wiok106

<P3A3;94A4!TlPlA1,P2A2> = ﬂxu(s,t) 3.99
4 =S J J 3.100
¢ku(s,t) = Zﬁ (2J+1) T (s) dku(t)
where .
A= hz - Al, o= hu = AB .
Then making use of the orthogonality of the dgu(o)
functions
‘ dhu(Cos e) dhu(Cos 0) = [2/(23+1) 18 ;14 3.101
-1
we obtain the partial wave helicity amplitudes
+1 .
™(s) = & @(s,t)al (Cos 0) da(Cos 0)
5 1 » AL 3.102
Once this partial wave amplitudé hds been modified
adﬁording to the prescription of eg. 3.1
T (s) = (5)V2 n(s) ($)M/2 3.1
_the unitarised amplitude may be written in the form
" A e {5 " J olo
¢xu(s,t)-5bidj2¢+l) T (s) dku(COS Q) 34103

The diu(CosO) functions may be written in terms of

Legendre polynomials, In terms of the Jacobi dN polynomials

they assume the formlo7
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, 1/2 AHL AL
J oA E(T-A)E 4T 1 gl
dku (Cos 0) = [ ST G .] (Cos§O) (Sin§O) x.

J=A -
Q
x BT (Cos 0)
3,104
3 :
Poo(Cos Q) = PJ(Cos 0)
3.105

The other relevant Jacobi Polynomials may be written as
linear combinations of Legendre polynomials by making use of

these two recurrence relations:

% (2 + a T B+ 2n) (x+ 1) ?25+1‘(X)

= (n 4+ 1) Pg'gl (x) + (1 + B+ n) Pg’B(x)

%.106
1 : _
5 (2+a+p+ on) (x - 1) P2+1,B(X)
+1 ' '
= (n + 1) ng (x) - (1 + o+ n) Pg’ﬁ(x)
| 3,107
The derivation is simplified if we use the property
J _(_ay T IR VP B .108

There 20 and 12 amplitudes respectively for 2+ and 1+ produc-

tions but by means of eq. 3.12» these numbers are halved.
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3.5 .Production of 5/2+_Baryon‘

This Baryon is usually regarded as the first excited
state of the proton and in the Kinetiec Supermultiplet scheme '
it is clssified in an SU(6) octet characterised by (56,1}L=2)z
The reason why we choose the above multiplet and not the
(56,15;1=1) one is that the latter, if we write L=a(t}=ay(t)-3 .,
o being the Regge trajectory, will not be the first recurrence
of the basic particle if we take into conslideration the signat-
ure rule\ I=2 198 Specifically the 5/2% octet and the 7/2%
decimelt are the first recurrences of the 1/2" oetet and 3/0%
decimeft conﬁained in the (56,1;L=0) whereas the remaining
multiplets of the (56,1;L=1) lie on a Regge trajectory that
becomes nonsense at L=0,

The wave funection describing this particle is given in
the terminology of Salam byL+JABC,uv(P) on which we impose the
following constraints so that it describes a 5/2+ particle

amongst others

() = Y (P) |

(+)ABC;uV HPABC,vu 3,109
1Y _ . :

g %BC,IJ.’)’A(P) = 0 , 6[“’"’ s The metvric . 3,110
by _

P\ amo,up () =0 3,111

The wavefunction is completely symmetric in A,B,C and obeys

the generalised Bargmann-Wigner equation introduced by Salam et
al62,66,109

o N
(b - WE Y gy (B) =0 sz
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We then can decompose it as follows

Y ey @) = {_Wp")aa Dy oy (B) + A5 (5,00 (2,0, (P) -

—r—

PADg yuy (F) ):]abc

+.[;(XQ¢M)YSC(%§HQ(P))a spe + cyelic permutation
of ang‘+ cenescsse
2113
where the D's and ky's are generalised Rarilta-Schwinger wave-
functions describing the 7/2+ decimet and the 5/2+ octeﬁ.reSp—
ectively; the dots stand for the remaining multiplets contained
in the (56,1;1=2).
On the other hand the simplest object describing a 5/2+
' resonance correctly i.e. with the righf parity, Baryon number 1,
charge e etc is(qfigCDE (P) in the Global formalism., Its
U(6,6) decomposition is
1281281281 281 28T2RTZY

= 56,056 © 4 x 37065 © 5 x 625700 ® 6 x 876096 ® 5 x 880880 ©

324324 © 10 x 5720 @ 30 x 35100 € 10 x 16016 @ 46332 @

4 x 308308 ® 5 x 520520 ® 6 x 731808 @ 5 x 737100 @ 4 x 741312

© 272272 © 20 x 220 @ 40 x 576 © 20 x 364

)
‘ 3,114
Picking the parts describing a 5/2 spin particle from

a
this will be long and tediousAtask and the Lagrangian involving
them will be almost impossible to manipulate. So in the name of

simplicity we have to reject this scheme,

an
The U(6,6) BO(3) interaction Logragipa for the vertex

containing this particle is
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~—»f 'BCDuy A
L (P,P;) = 6 (P.) #,i{a) (p,) Ty
3 1 T30 TA aBc 1 2
M 3.115
Corresponding to the vertex shown in Fig. 3.2b
1/2% (P,) 5/2" ()
1 ‘3
™~ —~ ~ —
el } 2
o
0™ (a)
Fig, 3.2 Vertex with resonance formation
This may be written formally as
1 1
L =6 J + J

The only current we will need will be Jg as we consider

a 0 exchange only

3

A= oo et R et

5
(see pp 93 equ. 3-72) | 3.117

7 The transition amplitude will be given as before by the
first term of eq. 3.75.G,, the U(6,6) coupling for NN_ is given
as before and we make the simple assumption that Gl is equal to
it, As we have no way at preseht o} relating couplings of part-
icles belonging to the multiplets (56,1;L) for different values
of L this assumption is not unreasonable. (Sce Sect.AS, OGAPP'A- )
It should be noted that aga%n owlng to parity conservation

1S
the number of independent helicity is halved to 24, See eq.3.125,

3,56 Exchange of >* Meson

a
In this section we look at the exchange ofAspin 2 particle

in the reaction m® P ———Df]n.
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P(P,) 2, (P,)

o

Fig. 3.3 Exchange of a Spin-2 particle.

’ —werkunzv
The U(6,6) B 0(3) Lagrangian debcribing the togﬁis the

éne given by eqi 3.60 with slight altérations of the arguments:

L - o) flo [f’”ﬁ@a)ﬂ]é’fl’l) N (sz' (0,
- S

| 3.118
The current involved in the vertex 1 is obtained by

functional differentiation of L and is given by

7T 2;4 ) %gl (-:—LMW-”%-”"E%W) [¢5(P3)¢5(P1£‘ PﬁP1+P3)9
wy . 5

3.119

The Lagranglan involving vertex 2 is given by

. 1 P +P
L (22) = YA (2)) 8, (@ ppe (By) (2 . t)o
3,120

and the current obtained by functional differentiation

32, = g—%: [(P2+P4)}\ F, [ N(py)N(R,) 1+ FE[N(P4)Y>\N(P2)]j |
s | F
P
X (Eg'ﬁ““ﬁ_)s
34121

where F1 and F2 are glven by egs. 3.772 and 3,77b.
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The transition amplitude for this reaction is then given

by
P
g (s,t) = gt BVoA 42
[TR" M2t oA
- 3.122
whene Puvéh the spin 2 propagator is given by
1l 4 2
Fivor =3 (duc don * 9 Yo 3 dck)
. 3.123
and
v = By - Y W /W
3.124

As we haVe mentioned before it would be rash to expect
the Absorptive peripheral model to be able to cope with a spin
2 exchange when we know it already falls for spin 1 exchanges.,
So we shall not modify the partial wave Born term as prescribed

by eq. 3.1 1i.e, not by

- _
(s) = N2 sy (7)1 3.1
but rather by that of eq. 3.37
J' J -1 J
™ (s) = BY i, 8Y
. n(ndy> ii
1-1/4(B%) 3,57

where S,, represents elastic scattering in the initial state.
For this reaction there are four helicity amplitudes

which can be written formally as <A3A4/T/h1h2> where Al= A3= 0

and A2= A4= ii/2. However from the following relationship,which

comes from Parity invariance, we can reducelﬂ%he number of ihdep-

endent amplitudes from 4 to 2: |

Aghy/T/A > 7‘:3“2( )S B )M <}\3-7\ /T/-hy-hy>
3.125
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Here the W|'s are the basic parities of particles and s thelr

Spins
pgr:%ies. Written explicitly these two amplitudes, are, in the

Born approximation of eq. 3.122, as follows

"B, <o +/T/0+> 3,126

B, = <o +/T/0-> 3,127

As modified by the .prescription of eq. 3.3783 they

become
J . J LI i
(Tif)' = [B++ Xr T B X+-] [ (S 1)+ _' 3.128
J J J 1 |
(T, )" = ‘:B+- Xy ++ X, J [(Sll ++J 3.129

2
x7 [1- %-(3?] | 3.130

It is these modified partial waves which are then used

in eq. 3.103 to obtain our absorbed amplitudes, Our normalizat-

ion is such that the differential cross section for ukpolarised

particles in the initial state is given byllo

—
o = @ 1)(232 1) *5-3-4-,1-/%/2

Q

3.131
where the summation is over the independent helicity amplitudes,

The density matrix elements will only be plot:ied for those which

appear in the decay o* > 07 0" ang 27 —> 17 0™ . They

are obtained fromlll

PAL 'y <';\ ?\4/1‘/7\ A_S<A ?\A/T/?\ ;\ ox
s 3,132
1

2y 3,/ 3.133

where N
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2
This density matrix is (2§3+1) but the elements have the

following properties:

propevty
i) Travelessmess: T (p) =1
t
1i) Parity: Pom' = (-1)™™ P-m-m’
111) Hermiticity: prl™ = pry

mm?

5.7 Comparison With Experiment and Conclusions

i) The results for the case PP(n°)N(5/2)P is amazing.
This relatively simple model successfully describes the
formation of the 5/2+ resonance, We have no normalisation
factor and no parameter eithert: the differential cross-
section is well accounted for both in shape and in absol-
ute value, for the region of validity of the peripheral

model,

i1) Againlthis approach'successfully describes the formation
of the f° and the foNx++ double resonance., These- three
above productions)it should be remembered are mediated by O~

particles.

iii) The results for n+P(n,p)Ag P , K'P(n,Q,p,ﬁ,w)kﬁmi’v
KP(n™,P7)k%° , =& , w'P(p)A, , m'P(w,p)BP,
and K P(p,w) Ki'P , where the exchanged particles are
indicated in the brackets, are bad. The contribution
coming from the 0~ particles are in agreement with exper-
imental data but the contribution of the 1~ exchanges are
two to three ordars of magnitu;;iggﬁgthey also have the
wrong ¢ depehdence but this behaviour seems to improve

with increasing lab momentum,., This is in contrast to the

results of the earlier U(6,6) application8112 where the
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vector.constributions were found, to be smaller than those
of the pseudoscalar ones and SO)thereone had good agreem-
ent for a wide variety of procésses. The spin density for
some of the processes are given with the 07 and 1~ contrib-
utions shown separately. Forth/coming experimental results
will no doubt indicate which are the dominant contribut-
ions, However this will not count in favour of U(6,6)R0(3)

eL Mmatic—
The present failure would sym, overall, to be symptotic™
of the absorbed peripheral model's inability to prevent

the well-known wrong vector particles t dependence.

The modification of the usual peripheral model as express-
ed by eq., 3.37 does not work for the spin 2 exchange. This

k
model doegfpredict either the shape or the absolute value

: ‘ Yt
of the differential cegss—section.As there are only two

partial waves here we have included them to show how they

are modified by .Absorption.
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CHAPTER TV

4,1 Introduction

As we have already pointed out the Regge Pole Model is the
other main alternative to the Absorption Model for the descrip-

tion of High Energy datd, Although' it has enjoyed considerable
success in explaining the characteristic features of meson-baryon
charge exchange processes, an unfoftunate feature of the present
status of the theory is that its quantitative fits to the exper-
imental data are plagued by an embarrasingly large number of
phenomenological parameters., The compilations of R,J,N.Phillips

118 " of Paramelers
et al illustrate the wide divergencgnfrom author to author. -

o]

ne
The use of SU(3) symmetry, assumption/exchange degeracy reduces

some of the parameters but a certain number survive: quantities;
like D/F ratios for varyihg degrees of spin~flip in the vertices,
the relative magnitudés of the vertex couplings, the possibility
of different exponential damping factors in each of these and a
choice .of various kinds of dip mechanism at nonsense points.
As before the mechanism which cuts down the number of parameters
is the use of orbitally excited supermultiplet theories of the
U(6)8 U(6) type. By the manner in which spin in such theories is
combined with unitary spin and owing to the operation of a U(6)w
generalised helicity conserﬁation at a 3-point vertex)these
theories, as we have shown, predict satisfactorily the nature
and relative magnitudes of couplings. A ' © ! .
The formalism to write such couplings was first made

119

by Freund and Arnold who applied their work to near forward

scattering. Howev~r the properiy Reggeized version of this was
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given only by Salam and his co—workers}zo they goﬁzmuﬂ1deeper
into the question, discussing among others the criteria for
assigning the positive parity mesons to one multiplet and not

to another.

4,2 Reggeised Symmetry Schemes

Reggeisation is conventionally performed through a partial
wave expansion of the S matrix., This expansion can be understood
elther as a consequence of the rotation invariance of the S matrix
or alternatively as a mathematical expansion in terms of an
appropriately chosen set of functions. In the ordinary Regge
Analysis the role of the two approaches blend themsclves and
there is a one-to-one correspondence between the two. This can
be illustrated easily as follows., Let as consider a two particles
state in the CME, XPl P,>; it has only 3 independent compqnénts,z
which we may denote by Hg; O, 4. Making use of the invariance “
of T we can write

_ LI | RN
'<P1P2)T[P3P4> = 5(P-P'} <P0Rq}T1POR q>

-,

=izl'.<'1=oa"q P_lm><P,1m\T{P_1'h> <1'm' Pg>
mi m .

: 1 1 .
j?zz,,,»DOm (R) Dpvg (I)8iq¢ By <POL(T1P01>'

- L @) P (cos 0) | 4.1
)

From the mathematical point of view however we could say
that the amplitud= being square integrable it can be expanded in

[
terms:;epresentation functions of the rotatimm group:

R(8,,0.8,) = Toi T Dl (8,,0.6,) k.22
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Where
J _S ig.m _if,m b 4
frmt = ) Fe” 1" e™”2 dmm.(o) d Cos © d¢ agd 2 4,2b
For scalar scattering f;m' =d . d__ so this decomposition

m'o “mo
reduces to the former. However this analogy 1is far from being so

simple °‘for higher symmetries so we shall adopt the mathematical
approach, drawing op the invariance of the S matrix for our choice
of complete sets of functions.

The rotation symmetr?SOf the S matrix we shall be invoking
are given below; they are based on the following:
a) Particles at rest group themselves into (2J4+1) components

multiplets of su(e)J

b) Three point functions with a11 particles confined to the

0-3 plane show helicity conservation:

<A{T(E |A Ay> = By xl ]; , () 4.3

2 12
e) Four point functions witr all particles confined collinear-

1y (forward scatt ‘ring) show net helicity conservation

Ahd TE) A A, = 5A3—A2,A1 . Tkjkh’klk2(E) .

We can extract the angular dependence of T(E,8) —— the
amplitude for scattering with the final particles rotated through
an angle © out of the O-jlplane —— by a purely mathematical
proeedufe which consist in expanding this fuhction in a complete .

-

set of orthonormal, square integrable functions as follows:

T™E,Q) = nZ Tn(E)fn(o) 4.5

Beaping b) and e) in mind it pays to chesse the set dih(o)

of the rotation functions, so that we have

A Aai_a“,o,,x Ay> =B (25+1) T9(E) ‘di#(O) 4.6
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. the
One may tie in all/three conditions by assuming that TJ(E)

exhibits poles ih the expansion parameter J according to

J J
<A Ayl THA A2> += ST 5 1 G ds i, (0) @ X
3y 1 £ A3~A4’A A3A4 ATA *1*2
E2 2
J
X 6}\,}\1_}\2

4.7

Replacing the summation by the Sommerfeld-Watson integral

we can then obtain the usual Regge amplitude:

lim .
Coso*i e, <x3h4{T(E,o){x1A2>

) 5 'y, G a% 1 (- 0) ¢ = X
v Oao-n LAt Do, 9 AN
AN 3R 34 sTomars) 172
S VN

4.8

For the higher symmetries too the notion of helicity plays
an important role and is variously known as W spin or generalised
helicity., For the group U(6,6) of Chapter III this group is

ypi &

matrix for collinear processes confined to the O0-3 plane, The

generated by (1,Y3: Yoo and these leave invariant the T

W group is defined as that part of}?gstsymmetry which is left
invariant by a particular Lorentz transformation_Joj, which
includes only one component of spin, J12' Since the Lorentz
transformation e"iaJOB can be used to boost a reséfigto motion
along the 3 axis one can see that W symmetry leaves the 3-compon-
ent of momentum invariant, Two partiele; states, which form the
basic entities of quantum scattering, with vanishing total momen-

tum and with relative momentum directed along the 3-axils can be

classified into W represeatations. These states constitute a

@(90—8 equ . 2.87 ‘{'d\ldﬂ—’l" of T;' b}
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manifold which is invariant under the W group.
In complete analogy with the familiar situation we have
Jjust outlined, on generalizing we would like to have the follow-
ing criteriat
a') Physical particles group themselves in U(6) & U(6)
multiplets

b') Three point functions exhibit W-spin conservation

WT(E) | W W,> = <gw{w Wy T W, (E) 4,9
W %o

Where <% W W.W.> denotes the U(6)W Clebsch-Gordon coefficients

w2' to DW.

1 2
which coupled D 18D

As in general we have more than
one-independent coupling)we have to include the parameter‘& to
distinguish among them.
c') Collinear scattering processes also exhibit W conservation:
W
<W w4t T\wW W = > <W w4 i‘g‘w> Tgs,(E) <-\gw}wlw2>
4,10

a') Non-collinear four point functions show conservation of

coplanar symmetry U(3) ® U(3) which has no ‘analogue for

the smaller rest symmetry SU(2)J

If now we wish to expand our amplitude we choose a complete

set of suitable d%w,(O) functions defined as follows

w, {T(E,0 w = : W, $8'w! '
< 43 )Iw > Nfs?wfgw‘ <y RN dww (0) =x
x ng (E) <'gwiw > 11

i

as we have 12 such choices the one we shall eventually adopt

N stands a relevant Casimir invariant of U(6) B U(6);

will be discussed later on. Since we are eliminating a single

angle O, the completness notion - irequires that we : .sum over a
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one-parameter family of U(6) B U(6) representations DN, These

functions are well defined if they are nondegenerate in their
U(6)w content. In other words if we have a complete set of
basic vectors which can be unambigously labelled 1NW> then the

funetions

ay. (0) = aw%i®%2 > 4,12
are well defined. Different choices of N'S and W'S will give
completely different Reggeisétion schemes, For example if we
choose N to be the Quark Number, which is defined as half :the
sum of Quarks and antiQuarks, we may characterize the represent-
ations oY by U(6) ® (6) tensors ¢Bl""BNzﬁ/ﬁB , where B

a.‘.'
1°°°*N+{/2B

denotes the Baryon number and N takes the values 2B, 2Bn
2 2

3 B+2,...,3 one may then show that -any square integrable functio
2
defined over the interval 0<O <%t and satisfying the appropriate

boundary conditions at © = o,% may be expanded interms of. the .

N
At (0). These remarks may be futher clarified if we consider

the 0(4) groupy its generalized helicity group is 0(3) while 0(2)
plays the role of the coplanar group. Imposing the condi%ions a'
to d' we encounter only flipless amplitudes Tgygt(0) which can
then be expanded as follows

_ :E: jo jo :
Where the d(0) are the complete set of 'rotation' functions for
o(4). For 0(4) the. expansion theorem reads:

(B,0) = 2T ®) @y y W (o)

T t
Npy Noo N 5 a2V 3

b1k
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Assuming we have found the appropriate quantum number N
which we wish to Reggeise and we have settled the ambiguities
of W spin labelling we may then proceed as before: we assume

T(E,Q) is meromorphic in the E plane
N
_ t
<W W“T(E O) W, W,> = N%Wg% < wul‘s W' Gg WW, X

3
(O) N ‘
X W W Gswwlwg <SW}W1W2>
E2--mN ,
4,15

(G's are GouFLlh%‘-[onS"’nm‘{’S)
and then pass to the Regge amplitude in completely analogy to

eq. 4.8,
1im i W, 1T(E,0) }w.w, >
Cos O —a»wo >k ’ 12
a
QD <U,] S Gs.w.w w, Quu(®) () GS Wy <SH W W,
Sinna(E)
4,16

Where a(Mﬁ) -~ N is the master trajectory function and represents
for examplé, the complexification of Quark number.

As before we have two choices of Symmetry scheme, the
super Mﬁltiplet or the Global one, With the latter it happens
that an irreducible representation of the rest symmetry will
contain some W representations more than once, and this will
lead to labelling problems; it will be necessary to introduce
extraneous operators into the system in order to obtain a oomplé%e

set of quantum numbers with which to label the states. These oper-

ators will generally not commute with J03 otherwise they

would belong to the W algebra and so for example will not

be conserved 1n forward scattering where W spin is conserved,
This may be illustrated as follows for the groups SU(6,6) and
SL(6,c). We tabulate the generators of the group itself together
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with those of the rest symmetry from which it arose and then

those of the W group.

1) su6,e) + I, g, J&,, J% , 1=1,2,....8 .\>(
© o su(6): Tap, T Ty @:D=1,2,3
SU(3) B SU(3) BUQ): I, 37, I,
1) SU(6,6): I, Jiy, JﬁS,J&B’ J% » Iy Ji, gt
su(6) B SU(6) BU(L): J,,, J;b’ Tugr o0 g5, ot
sU(6): 127 Jie, S J;S’ 7

The rest symmetry SU(6) requires 20 labels, Five of these
are provided by the SU(6). In the W chain 11 are provided by

SU(3)8SU(3) B U(1) and its suﬁgroups. It is necessary to sup-

these ; _
plement/with % coﬁ}ructs Hl“"H4 in order to fill out the W chain,

| The SU(6,6)rest symmetry requires 41 labels. The Casimir operat-
ors give 5+5+1 = 11 of these, The W chain yields 20 1eéving
another 10 to be made up. Choosing suitable labels is not an
easy task but once it has been done we can then proceed to
calculate our generalised dJ functions. The groups we shall be

dealing with in our analytic continuation will be:

Relativistic Crossed Charnel
Symme try Rest Symmetry W Symmetry Symie try’ §
So{v,1) S0(v) SUW-1) So(v-1,1)
sL(2v,c)  Su(2v) . SU(V)ESU(Y)RU(1) SUu(v,y)
Su(V,V) Su(V)®rsu (y)au(1) SU(y) SL(Y,C)®0(1,1)

The rotation function d%w{ﬁ) associated with the groups
is a sum of derivatives of a basic function dgl’ which appears
<

in superscalar scattering with the exchangqba multiplet labelled

s :
with the gquantum number N, ThisAanalogous to the statement that
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the dgh,(O) in three dimensions canbe expressed as sums of deriv-
atives of PJ(O). Let G denote the multiplet symmetry at rest,

Gw the generalised helicity subgroup, G the embedding covariant
group, and N the label of class representation; then the functions

are as follows:121

(a) TFor G=U(V) & UP), Gy~ uwy) , G- U(I/) V)
See footnote 127

V(o) o CIJ\‘T/QV (Cos ©)

(b) For G= U(2y), Gy uY) 8 ), g= SL(2v,C)

a¥ (0) oo d”'"l/e (Cos 0)

fl

(¢) For G=U(V), G= U(W-1), G= U(v,1)

a¥ (6) = (Cos)N

(d) For G

li

o), G, = 0W-1), G = 0(y,1)
a¥ (o) cl}l/ev (Cos 0)

C§ (Cos ©) stand for the Gegenbauler polynomials,
These general remarks may be clarified by looking at the
Reggeisation of 0(6) ™ SU(4), The set of one particle states

at rest may be labelled \Am Pm q, oa>3; these labels form the

so called Gelfand pattern122

m

P q
m m ‘i

St
e
s

defined relative to the chain of subgroups

0(6) D0(5) _ ok = o) D ofz)
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In a2 six dimensional space Xq9 Xns x3 correspord to the
physical dimensions and Xy x5 x6 to internal isospin coordinates.
We can label the representations of the members of the chain with

Casimir invariants as follows:

GROUP COORDINATES AFFECTED LABELS
0(6) Xy Xy X3 Xy Xg Xg My B 9
o(5) X, X Xy Xg Xg a b
o(4) X Xy Xg Xg P q
0(3)- Xy X Xg ' I

The parameters which enter into the labelling of an irred-

ucible representation of 0(6) satisfy the inequalities

Ap2 a2 B >'b> q

a> P2 b2>-q

P> IT> g

I>I,> ~1I
__5._..

They are all integers or half-integers; the dimensionality

of the representation is

.1
-——“—2-1?1— [(Pm+qm +1) (Pm-— qm + l) (Am’Pm'*‘l) (Am—qM+2) X
X (qm+Am+2) (Am+Pm+3)}
In this pattern we could associate Am and Pm' with third
components of spin and isospin respectively. Some typical repres-
entations corresponding to (xm Pm qif with their (2s+1, 2I+1)

content are
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15 = (110) = (13) (31) (33)
64 = (210) = (13), (31), (33)%, (15), (51), (35), (53)

20 = (Z22)x (22), (44)

With these we can now construct two particles states to

give eventually our scattering amplitudes:

<ab{T(0, E)fab'>

A P q AP m%m

_ .t
= Orxd Omr Oppr © ;:;__:T (E)Jab(Pq)a pt(0)
CRA"“LTQQ b?~QﬁM- .339, Jdoo ) 4‘17
subject to the following restriction

A > a> P > b a

m= "= "m= "< m

A2 a'> P> b'> q ‘ - ;

meo T - n 4,18

so that Pm and q, cover a finite range while Am varies from max
(a, a') to +QO©

We now complexify Am for example:

| it S Aumqm )\umq
<abT(9)}atn'> =211 Sd?\m S | ' (E)dab(Pq)a 1 ()
‘Sinnhm qum

+ pole contributions .19
- Sea eou, (.23

Disregarding the signature complications, the contribution

of a pole at A= a(t) would be
P aq aP g
<aplp " Matpt> g T o, (0)
ST ab(Pq)a’d'*™ dec aqper .04 4,20

The trajectory Am = a(t) would then tie together a sequence
aP q
m=m

of 0(6) representations D with

‘ a = ao+l, ao+2,-uooa
The high energy behaviour of the amplitude should be domin-~

ated by the Am with the largest value of Re Am and they would be
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of the form
<ablTfa'b'>t\><ab|Bqum'a'b'> (Cos o)km—le—Pl-‘qm-q!
4.21

From this viewpoint one sees that the dominant pole is no
longer classified by the I value of its trajectory but rather
by the new quantum numbers P _, qm . Such a trajectory gives
rise to supermultiplets generallyﬁgggggéggl values as well as
Spin values, when it passes through integer values of Am . The
formalism in a sense Reggeises both spin and isospin, treating
them both on an equal footing. However physical unitarity must
act as a breaker of this exact 0(6) symmetry)for the S matrix
is a submatrix operating within the 0123 subspace and diagonal
within 456, .

The model we hdve just presented was based on the rest
symmetry 0(6); it would be more realistic to consider a rest
symmetry of the form U(6) BU(6) which would lead to a relativis-
tic symmetry U(6,6). In connection with the Reggeisation of this

120 have proved the following theorem:

, An
Generalized partial-wave expansions of invariant S matrix
”n

group Salam et al

into U(Y) ® U(V) components provide at most aV -fold infinity
of Casimir operators which can be continued into the complex

plane. The remaining y Casimir operators possess fixed finite
ranges, fixed by the W spin Casimir operators of incoming and
outgolng states.

On Reggelisation we have to proceed to the crossed channel
where the little group is GL(-')),C)%23 The unitary representations
are characterized by at most ¥ continous Casimir Operators Pyis
with i = 1,2,... VV , spanning an infinite range - e;:;(pi< o0

In the Gelfand and Naﬂmarklga classification there are Len series
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of irreducible representations: one nondegeherate and nine
degenerate ones which differ from each other physically in their
degree of degeneracy. If the multiplicities are perfectly general,
~then only the nondegenerate series of representations of GL(Y,C)
must be considered for Which'all‘v continuous Casimir operators
are independent. However if the multiplicities are fixed at
certain low values we need to consider as well more degenerate
classes oOf representationsy From the mathematical point of view
all classes should presumably be included in the crossed-~channel
expansion, with meromorphy assumptions for the amplitude giving
rise to ten distingt classes of Regge poles. The most degenerate
serieé?%gsthe Reggeization of just the quark number whereas for
other series not only the guark number but also other Casimir
operators are Reggeised. Therefexist no criteria for choosing
anyone of tﬁeﬁ} . wWe know nothihglabout the asymptotic behaviour
of shese,functlons sc that‘we cannot;lhvoke maphematical simplic-
ity either. | | '_ | |

~ The 51mplest pos51ble case, belonglng to the most degener~
ate series, to Reggeize 1s the Quark number. ThlS class of
U(6) M U(6) states. is characterlsed by a single Casimir:label'

N and there is no degeneracy of wvstates.

 N= 0 1 2
(W,wy) = (1,1), , G, 6) . (21 2T),ee.. B=o
(W, W) = (56,1) , (128, 5) ) (252 5)yeen. B =1

One makes use of the multispinorlal representatlon of

U(6) L2 u(6) particle flelds
(B "”N)
: P) 4 (lP Ty o esesw 3 3
g(p) . #CP) .m R 3“"AN)

for mesons

(Bis Bavom v D )
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(A Ah) (B,ByenverBy)
qj . 2 3 (P): K‘}Uﬁ*l 2A3A )(P),,,.., (A;:: 2«0«9;, \H.B)(P)

for Baryons

to evaluate our relevant dﬁw, functions, For elastic scattering
the amplitude is _
2 i N
GN(’q_! !q‘! ) ‘Cl/QU( t
(2m) 2 (7% - m2)

) 4 22
which may be continued analytically to give the Reggeised

amplitude

_ (qui op®) p(p?) c1/2Y (a.q")

Sin ma(p?) “a(p?)

(see L 4. 1‘) 4f23

The Beggelsation technique here consists in making the

replacement

+

T}
Gﬁf y s X (o, )y (a,t)(1+ "ma) C“
P . MN _ Sin no

oy 9 4,23
I%T (6) are Gegenbaner polynomials. (‘Fw i Hon o?" ¥'s See >
Cep- .32

The ordinary J plane trajectory reduction of the general-

ised N-plane trajectory can be obtained from the series

CG‘/Q?ZO) - a, P, (0) 4,24

Y =. oo-bktl r'(r+1/2 )f‘(aﬂ/g -r) X
’B(Qﬁ/e))zjig::: f’(r+1)f’(a—r+1)

x (a-2r) [ (ker-1/2) [V (ak-1)
r"(k-r+l) [ (a-k-r+3/2) .25




- 148 -

The Regge N trajectories are as shown in Fig, 4.1

N
O
S
N;
b
-
C
'}oujr
Fig 4.1

- (a) Quark number Regge plot
(v) SU(G) meson decomposition of (a)

(c) SU(6) Baryon decomposition of (a)

From the U(6) and U(2) ® U(3), content of the U(6)ZU(6)
we can interpret more clearly the meaning of the physical content

of the trajectories:

(6,6) = 1@35 | 4,26
(21,2T) = 18356 405 | 4,27
and
35 = (1,3)e(8,3+1) | 4.28
405 = (1,5)9(8,5+3)0(10+18,3) @¢(27,5+3+1)@(1,1)@
(8,5+1) 4,29

&

Label T 15 spim omot T uwiboy Spur



- 149 -

From these decompositions we can trace out geiisrations
n=0,1,2,.... Of parallel J trajectories for each ¥, These will
have the following properties (i) From external couplings all
negative J residues must vanish (ii) for sufficiently large i
external couplings must ensure that all residues occuring below
a critical mass should vanish e,g. with the 27 fold no particles
wiéh masses M2 should materialize (iii) the number of members
in suceeding n generations of trajectories increases.

The basic consequences we can draw from this scheme are:

i) We have an infinity of trajectories whose characteristic
are interrelated; thus one wili have a single master
formula m = m(N)

1i5 Residue functions of different J boles are related,

111) One wiil be automaticéily Summiﬁé over the contributions
from all J trajectories by proceeding directly with the
generalised dgw. functions belonging to the supermultiplet
group,

As can be seen this scheme doeé not resolve the difficultﬁes
assoclated with the Global symmetry schemes whereas, one suspects,
that its advantages might also be present in the Supermultiplet

scheme,

4,3 Reggeised Supermultiplets And Applications

The rest symmetry for this scheme is SU(6)EOL(3), Even -
“though the physical ideas behind theltwo types of models A and B
are different the techniques for applying Regge ideas to the high-
energy behaviour of scattering amplicudes arve verysimilar., Tn |

this model it is the orbital quantum number L which will be

Reggeised.

(¥) A s The global mrcel owdd Bl Supes sty et~
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Unlike our previous application we now work in the M-
o‘ri Salam et al (120)
function approachhusing a multispinor formalismj; tvhis approach
has the merits of exhibiting manirfest covariance, of allowing
crossing to be performed with ease, of automatically incorpor-

ating the threshold and other mass-dependent Kinematie factors,

Our Kinematics too will be ‘different and is described in Fig L,2

(/% 4/3p+g’_
my i M
§ P .
Mg i my
Tg— + q —g~ + g

Fig 4.2 Kinematics

Fhe
The multispinors which will appear inALagrangians are:
@ A (B ""BNg ror (6,63N) particles
B (Bl" ae .Bn
(Bysgsaby) - | . .
{{!(A%C) (qg"‘“aN) for (56,13N) particles

These are subject to the constraints we have already met;
see egs. 3.53-3.54
The two Lagrangians we shall need are:

for the (6,63 1%1/2P+q (6’6;O%§/%F-q (6,6}N)P vertex

(%) ‘
1 A D ' + c . A
L = F:ﬁ':r g B (@-/Q}P"'Q) gc (Q—/Z'}P"Q‘ {u-q [h]_0<6B 2__5 - 6D _E:)___E) +
BqA 5qc
' - c A
hio (Bp 8o+ B S
5q, 8a,

(%) },(/ is The woass ca([ (e @xclmaugeoQ fjbﬂH—vaée -, See ege,
3n§2'%&!6&yf“;4£é'o? C]E ke .
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)} T fzi (P,q)

ancd for the (55:150%1/ém_q (56";0%1/9P+q(6’6;ﬁ) vertex

5
—B
6q 6a, Bag \

.30

” L - i T8P) (1 /2p+q) U(gep) E1/2PHa)
(G, By + o, # 6ap) éﬁ% (P,a) 4,312

where we have usgéd %hé ébbreviation
% A B
(P Q) = "aeee aq, 4 g (P)
N 1 q}_qu'_Le . IJ.N B A 'J.lc LN -u-N l"ojlb

The superseripts + on the couplings h for the meson couplings
of eq 4.30 refer to the even and odd values of the meson. Bose
statisties tells us that h+= o when N is odd and h™ = N is(éven) .

. X + +
The meson multispinors describing 2 , 1 mesons are now

decomposed as we have suppresed Unitary spin indices-:

Bun(®) = Buy) +‘l; Baupp FAZR + 1/3 Gg, () 4 5

which correspond to an 0(2,1) decomposition,
It is always possible to express the covariant M functions
(120) : -
in the form M = ﬁ.,;T.,.U}NWhere T for example .may be
'B? A A'y . '
T = Da(a) Dni(a) Dy (Ps aa') 4,33
‘where the D's stands for various differentialgy whose order is

governed by the external exeitation numbers and

(*\ M 13 mass o(— exchange ocliele
m 15 mass 05 (h (out) FoIny (?q)ll-;d%
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\ . N+ N+ 2 2
The first few derivatives we shall need ares

, (q.q)  ((u+P)q' (M-P))A
Ba, P2 .M | L2 : 4,352

o
b

B
>

N(g'.q')N a' (-a; 4(2_-31‘ Pu.)

ﬁqu‘ N PE-MZ M2 . 4.35}3
2

_5% AN' - N(g.q)1 g (-au +(P.q'P,)

6q  6q B - M2

9,°% 4.36

g t .

52 = )Y er)B  m-p)R,
S Oy o) B A

Theése éerivatﬁﬂeccuplings and éhe methocs of differentiat-

125

~
ion we have just outlined were developed by Zemach 2

and Scadﬁ%g?

Reggeisation consistsin the replacement

CR A 3 (g.q')? 4.382
P2_M3 Sin w(a-1)
N —3 a-1 4,38y

(See eq. 4.23b also)

This is just the conventional Reggelsation which gives
poles at"nonsense values of N (¢ = 0,1,2,00¢0.). Gell-Mann has
suggested that to avoid these poles one should have a ghost/%)
eliminating mechanism, Representing natural and uvnnatural parity
exchange by n and u respectively Ne-theh make the following

replacements for natural parity

1 1 = - e ['a-a)

2 i -
P - Sin m(a,-1) n h.39a

L4

(%] sea equ. (.37, (.38,
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N —> o -1 4 .39
~and for unnatural parity
- -
1 N 1 = - r1(1+au)l(““u)
PZ.M? Sin my | T 1,390
N Z—> a %394

The Gell-Mann ghost-eliminating mechanism is introduced
by dividinéj{j(an) and by rkl+an) for the natural and unnatural
parity exchanges reSpedtively£

The argument so far does not introduce the signature factor
~at all, In what follows, whenever we write Gt, we shall assume
fgfzﬁﬂ-ﬁasigﬁiggre projections(i/ﬁ(lfeinN) are to be included.

The émplitude which describes the production of 2+,l+ and

O+ is then

v = 0P (1/2prq )y (<1/2Psa)dR (1/2B0q VB (1/2P-a").

(Mu)NFL (“Gl-—@;q 1.

BqB
+
5 h ct A' - c! .
(=2 ¢ Py (S, 5 - 5 )} + hq (623, _B x
5q. B DT D'—-—'gv 11'\'B -7
v 6g ',y 8q A1 6 "o
A C A
At 5 :
X Bt '
B —gT )}} AN 4,40

Bqg
Upon Reggeisation & la Gell-Mann we obtain the @n amplit-
‘ude, from which one has to pick the parts describing th=e produc-
fion of 2+, 1+and ot particles; obviously we also have to decom-
pose 4P ana Upep into octet and decuplet pieces. In writing it

we have used the abbreviation
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(F )A = 2M (p "'?)A , P = Gamma Fuanction

The Reggeised amplitude written fully is then

ACD .
- 0 T Pt R g o
- |
[ 1p glf)ﬂ (1- e+m-)[“(1 a-) (¢5,¢)i (g.a/uM)® -1

+ 260290 (1se1™) [Taoa,) (8.0, <g.g'/m«>°‘+‘ﬂ

+ (1%) gheD T,a ‘[T Upep 9, (/M) | i

[ %B&%) (1+ei“°‘ )r—(l-a Y a,1) (25,8, )1 (Qoq /i) %2

v

+ e} (1-elmn | 1-a)(a - “1) (8.9, 8 <9. a' /uk)®- 2]

+ (1+---)ﬁACD(F+ {q/,Y;\}Y5r Ti/eu')p. BCDq;L

[ %Bgc)n(l_em_)l (1-5__)@5,%\,”);1, (g-'/ub)%"L

109 (et )Fu 0,) B9y L (g M) ']

+ ligy) TP (|’+ (@' )vg [L T/20)) Upepa, (u/M)

‘. | El;)(l+eim ) F(l-a ) (a 1)(¢5’¢?\u)1 (g.q" M) %+~
+ Bl 1-e"0) [Mi-a_ Ma_-1)(85.8, L )g (g.g'/uM)a—"e]

M ACD B '
+ () T (L g [y Vag 9



o
16{19) (1o a-a )(¢5,¢A u)D <g.gf/uuia_*l
+ _agl?)(l+eln5+){—kl-a ) (8.9, u)F(_q .a /uM) Ty
v (1hgy) A, v )A Unop %(u/ﬂ)
{ %—ﬁ%}j) (1+eim"+)r('l?—a+) (c;.+~l) (;65,93,\,“)% (gg'/uk) %"

16(1§) (1-1™ ﬁ'"(l-a ) (a _1)(¢5,¢A u)1 (g’ /) jl

S
This formidable expression may be made- more physically:
transparent if we pick out the various parts¢bf interest and
write the differential crossS- -section in the folloW1ng way®s
+ +
For 07 3 —> ot L
'gg=awx~((2+g{+m)J (l+¢g+m) )
P P .
y 2, Bty P (-E+ )
2 At 2
Sping ) 4 b
where
& = 1 1 1 1 :
= B 252 2 ) 2 TS
e P og +1)(28:+1) - - 10x(0.1 16
2 Mz (esgr1)(esyrn) < 97_3) e
fxm
S Pt = G Gt Ot Gant T3 I INtpt #ita
- 444 b
dNL- 'g}\u'*'(" P+Q)(“ P+Q/) Ny

+ ' +
For 07 &. ——> g
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gg = o Tr{(g +d + m)un(-g + 4+ m)ﬁk,u,]
x (£E€,,., € Py Por (= Byt *+ (=5 + a')(-2+a")})
2 ~Aop ~—A'n'o'p! "0 o' {7 Epp! 2 —2
i
4 45
The currenthAu appearing in these expressions are
go=% Py +15 a €k?\qu'{cq+D )
MR AT E& %k PY5——-—-9—-— Vi
2um 4.46
where for the sake of computation we can write
ol '
Ay=aq +agq | 4,472
= b'g! 4
Bu b q * b a, ete. 4 ,*7p
In more detailg these are
3 t .
Ay=-3¢ ".Z;Z)D + % r *
A,
10 S a—l ~-inpB 1 ~ina 3
[qnﬁ \—‘(1 a) ( { 5(1-e"") (8 ¢ WEts (e ) (85,8, )
. ‘ B . - |
+ gy @)sH(2-0) (%E)G'E[%<1+e-%“a) (8.8, ) e (1-e"17)
x <¢5’%)”]
+“"‘J' (1'4 )(1t )D+_2_F
uwm )_l_mE 3 X
M .10 7 ;
x wﬁw (1~a><m;) "o (g 5P lpt 3T W)
+ g ()M (2-0) (G ¥ PR (e ™) (B0 )prp(1-eTT) (B8, )

4,48
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B = -5 (1—=—)py,2 [ ]

H 2 Ym? D+3F - ] 4,49

) -

1 m

C == (1+)

hoE o %‘F’D{ N 4,50
1.t | i |

b, =35 (1—=—),.2

Lo 27 g2 Dis 4,51

The Squayz brackets in the last three expressions stand
for the first €erm in the sa.uz. brackets of eq., 4.48. The part-
icles written on top of the field operators are those assoclated
witn the trajectories i.e. these terms will represent the contrib
utionsféf these particles when they are exchanged.

In deriving these expressions we have already removed

Kinematic singularities which make their appearance whenever

spins are involved. Typical expressions are products of the form
(1 +53) (1 + £5) B(e)
Which is not an analytic function of t, near t = o, There are
two mechanism for removing thede singularitiesz the first is
evasion, which means that B(t) must have a compénsating}zérc;'
the second is the addition of conspiring trajectories. As we
pointed out in Chapter Iﬁbller has proposed an elegantsﬁégigiaiim
of this problem; however an alternative solution is to:introdﬁce
conspiring trajectories following Gribov. This is the solution
ggg;-suited to the multispinor formalism for hadrons as it springs
from the"doublingz first introduced by Gribov, which finds a
natural explanation in terms of quarks within a multispinor frame-
w%rk. We then have to add to the amplitudes extra terms with the

" sign of M reversed. For this amplitude we (typicalkg/meet the o

combination
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Taking a(0) = a'(0), B(0) = B'(0), the M =V¥% singularity
dissapears, The whole procedure boils down to the following pres-
cription

- &
T = 2(T + T

effective conspirator) T o4.52

There is no reliable theory to take account of massLSplitt-
ing between members of a supermultiplet, so the only course open
at present is to take the positions-of the trajectories as empir-
ical inputs, |

Before we proceed to consider the applications of this

model we must discuss the role of the Reggeised plon%28

This
particle-haS'stubbornly resisted attempts at Reggeisation. One
of the reasonsis that the contribution of picn exchange in NN

collisions is given by

g2 - U’U U
tem (el
n .
Now summation over the nucleon spins gives a factor t for each -
— 00 o“’hﬂ"‘@
UYSU so the cross~section is given byCJ fo K
do _ = ot 2 4.53
At o2y (£2-m)
R
and for a Reggeised pion one obtains
2
-ina “}
99 . E__ ghee| malte _ (8) A
Y 2Kk®s. Sin ma @ ; 4,54

[ —
—

G is the nucleoi.-nucl=on-pion coupliag. This >ross~section is

zero in the forward direction in,dﬁ#ect cor.tradiction with
impl
experiment§% £eebs which sugé%st that plon exchange 1s respons-

ible for the forward peaking of the differential cross-section,



- 159 -

To reconcile theory with -experiment conspiracy and evasion

. ’\a, -
have been put forward.129 These explﬁpions however have met Wk
some sefbacks quite aside from the rather artificial chafacter

b wiglely ) 130
of the flts as exemplified Py the wilddy varying residues, ob ~

{anect by Slfferent authors. 129

For instance it has been shown by Le Béilac that conspiracies

predict dips in the forward directiong for reactions such as

wN(m)pA, KN(m)KA , mi(n)FOA
whereas eiperimentally no such dips are obsérVéd. It has also
been‘suggested that one should interpret the pionlas a JO+= 1 ’
Toller pole and using conspiracy to obtain a non-vanishing

131 ' , 15° R
In the present formalism Delbourgo, regarding

contribution.
tﬂe pion as a fermion-antiférmion composite, and using symmetry
bréaking)has obtained an amplitude which apparently has the

fight behavicur but .the whole schemevhas beenrviolently cerit-
1cised128and so we shall not use it, Anothgr scheme which has

been successfully exploited by Moriarty 133et al is to 'absorb!-
the Reggeised‘amplitude. As can be seeh from eq. 4,52 the amplit-

ude & is given by

g & te‘

Gt

- m2

=l+ T
£—m=

The first term is an s wave contributicn which is removed

by absorption corrections giving

m2

# (absorbed) f\gv T

m———— .

tem®
¥

 Given these ~ifficulties we cannot ther study all the

reactions which were considered in Chapier III; only those not
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involving the exchange of a 0™ particle will be considered. These
aret
7w Bfo )ALP, TP (p )A;P, X7P(w,p,A,)K "(1320)P, ﬂ*Pfim,plBlP

wheré the exchanged particles are indicated in the brackets, The
couplings for each of these exchanges ha¥fbeen given in Chapter
ITII. Ve assume,as.zﬁ is customary;that-the residues are Jjust
numbers and that all the trajectories are linear, a = a0-+ alt.
We fix.z%he value of the constant a, by making our line go
thfough the mass of the particle it represents.aWe then have
-the'following'sets of parameters, The;parameters which are
allowed to vary are lebelled by X éﬁalthe:figures after them
Show thé range of values between whith they were constfé{ﬁed.
(1) For the A, trajectory
£1.0

By = Xl . 0.7 $ Xl
a, = 2.0 « l.745$al |
B =X, —oo < X, < o
(ii) For the RHO trajectory )
| - @, .0
a; = Xy SR 8£X3§l
a, = 1.0 - 0.582 +a,
(iii) For the OMEGA trajectory
= ' 0, 2,0
a = Xg 1<K <2
CY,O = l.O - 0.6153{&1
(iv) For the A, trajectory
= | 0,1<X.<2.0
oy X7 1< 7_2

B =Xg Q7 <Xg< @0
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(v) For the PHI trajectory =
a, =X 0. <2.0
17 % | 1S
B =X
10 ~ B0 <Xlo< > )

We then see that overall we have 10 parameters, half of

1R

which are severly constrained between narrow ranges, In perfor-

134

ming the CHI square minimisation the search was mééé;ét

intervals of 0.1 for the residues)and 0,01 for the 516pes.

4.4 Comparison with Experiments and Conclusions

The results; as can be seen from the figures are not-
exactly brilliant, For 58 experimental data points the minimised
CHI square, was 2500, -The value of %> charaq._t»;gr:;_is'e:s_ the good-
ness of the fit, Ideally with data)free from é§§t§m§pic error
and a perfect theory the expected value is the numbér of data
points less the number of adjusted parameters. However)when
the quoted accura@y of data becomes less than the systematie
errors of experiment, the value of ™2 socars, And thisfprecisely
what is happening here. The number of data . is low and the errors
én theériarge. 8o that, although the %2 1s very large, one cannot
immediately conclude that the results are poor. With the errors
we have)no theory with a smooth energy variation can give an
,fte%ge%ae'eﬁ fit,

The final results for the trajectories and the residues
were as follows:

for the A, the slope was 0,88 and the residue was 50.3 respec-

2
tively: for the p they were 0.8 and 1.02 respesctivelyy for w

they were 151.1; for the A, they were 0.8 and 1.0 respectivelys

1
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for the ¢ 0,9 and 1,0 respectively; the slope and the residues
are in units of (Gev/c'}"2 and (Gev/cz)_l respectively. The slopes

acct
have the generally d values, As for the residues, we cannot

compare them directly with values of R.J.N Phillips et allg’135

or with thos of K.Moriarty et a1133; the reason being that .the
former has too many parameters‘-for instance he has 18 paramet-
ers for KN scattering- so that comparison is meaninglessj the

st .
2% which means there are four

latter uses a slope a=a, ta,e
parameters for each non-linear trajector@g#. However we can
compare the relative values of the p and A2 residues: from SU3

the ratio of the process n"P(p)non/ﬁ"P(Ae)ﬂn, where the exchanged
trajectories are indicated in bracket, is (5573)2=3 whereas we
get 2500, The only explanation we can put forward for this huge
discrepancy is that we had a very poor statisties at our dispbsal;
the total number of points for all the processes was a meagre 58
with the errors Jn them being large. Again when we assumed

exchange degeneracy i.e. s B =BA ete, our“!? was ~ 8,300;

P
values of the slopes were ap A =0, 9:& =0 3, A =0, 7‘a¢~0 .1 all are
in units of (Gev/e)™°. The residues were B BA =4568,=81; 1 =13
B¢=7 3 2ll are in units of (Gev/e)~ %Given the large %XZ one cannot

attach much significance to these values.

ﬂl
The theory does not solve the problem of Reggelsed pion— one
Ancthev
of its main drawback]y The-only way to incorporate plon exchange

is to absorb the Reggeised amplitude:139
T = Togge + )72 T (6)Y7
The Absorbed Reggeised amplitudes overcomes some of the
difficulties of , Regge pole approachlao —such as exchange of 0~
particles — and also overcomes the difficulties of the Absorp-
tion model such as wrong energy dependence and the problem of

the exchange of high spin particles,
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J' = -1 J¥
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The scattering amplitude for 7N scattering may be written

formally as

F=D4+41i A
where -+'
A = kO
In

D7(k) = D* (o) + LK
M(L - /4% M) (w - 1/2 M)Z

2 1 ot F et
+ K op) R S g4
2n? A AE
o e
D7(k) = 2L _ o+ L p 2o (w! )dw!
w?- 1/4 M2 on o1 P

Here k and w = ¥Y1+k® are the momentum and energy of the
pion i M = 6.72 is the nucleon mass; f2 = 0,081; D+(o)=o.
The superscripts denote combinations of isotopic % and g
states in niPw— niP scattering. The contribution from
the Dispersion integral is found to be important in such a
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VN N |
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+ 411;. +
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potentials, e.g. a Yukawa one, the resultant Regge trajec-

tory is such that

a(t) —> %‘— N——;‘- as t —= -~ o
where N is a positive integer. The leading trajectory
behaves as ~

a(t)
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-1 as t —a - 0
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n=1
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APPENDTIX A

Evaluation of One~ Particle-Exchange Graphs.

Section A,1

In the computation of these amplitudes we chose the

Pauli represgntation of the ¥ matr}ces:

Cpitey L o %y
.Y - ..'.:.... Y — .‘-:..:‘.... .
(¢] O :"'1 ’ -G>: O
_ _ (0 1
g = VoY Yp¥3 = (1 ()
where
0 -i

— (© 1y - _ _¢1 ©
o= b =G §) o5 = {5 1)

‘ As we have pointed out in Chapter III, e.g. €q. 3.99,
These amplitudes may be written formally as
<P3 AB’ Py A4/ T/ Py Ay Py AD
= <A3/Al> Ap/Ay>
This result follows directly from eq. 3.76 and essent-

ially it means that we can evaluate the vertices appearing

in these diagrams independently of each other . See figs. 3.1

-and 3,2. .
3 ‘ () LLBTC J:
The bottom vertex, <h2/x4>, in the case ®kis involves

pseudo~-scalar exchange is given explicity by 3.70 of Pp. 92.

<x2/xu> = Ni(P4)iY5N(P2)

il

» E, +m ; B +m,
my (Ol 1y mX Tty 1€ 2. 0) K]
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Evaluation of the above expression and those similar to
it-is considerably simplified if we write the y matrices

appearing in them as the outer product of two 22 x 2 matrice

410 1 0y . 0 1 0
o - (0 _1) K (O 1) 4 ¥5 - (1 O) n ( 1)
Then using the identity

- ' more
(amB)(C®D) = (A C) B (B D) several ‘times we have nothing me

than the multiplication of 2 x- 2 matrices to deal with.

N4 and N, are normalizatioh factors given by equation

2
3.9160
The net result is:
N‘(P A=t )YN(P, A mt) -  1 [BQ-’?AK] '(cl)
YMYTIINGE s fpB T = = 17 8,
P . _ . _ _ 1 - 1 .
where A = E)+m, ; B =E +m, ; C = (E1+m1)(E +m3) 3 D = AxB
— L] — O L3 ]-/Q . —

See also footnote 100,

al"'—

a A
For the exchange of vector particle we need the follow

expressions which appear ine eq. .74

WPy 3h, =+ )N (P sA =+) = —= (D-QK)(Cl |

i ESAN ~LaAt> A D172 + —Sl)

N(P,;+) N(P.' = 1 °1
pitIY, gyf) = 'D"172 (DiQK) (-S:{

N(P, 3+)v.N(P,j+) = — (D+QK)(01)

_ i 1N\ T ol72 V- | -S4

' -3
W(P)5+) 1, N(Py54+) = 5%72 (BKfAQ)(_Ci)
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— . 1 "Cl
N(P4}+)Y3N(P2;t) = o172 (BK+AQ) ( Sl)

The only other term we need to know for the bottom
+

vertex is the one involving the formation of a g resonance

A - 3.1
Py Exh(Pa)Nka(Pa). The values of DA?(Pa) for A:~t§ s *5

are listed on page 99.

Using these we then have

<§/ﬁ>=;“-§-}£§(m)(l)

for instance;
its value for the other helicity amplitudes are listed at

the end of section AJ.

Seetion A.2

For the production of 2+ particles one needs to evalua
B, (P5) #(2,) P P} and €. 3 Pppgp3 7, (;)#(p,) whicn
correspohd to the 21070~ and 2%170” vertices respectivel
See eqs. 3.66 and 3,67, The momenta are given by eq. 3.78
and the various values of the 2% wavefunction corresponding
to A3'= +2, ;1,0 are 1istea on page 99, Evaluation of these
terms is fai#ly straightforward and then to obtain the ten
independent bmplitudes we only have to multiply these by the

relevant expressions of the bottom vertex. Their values are

given at the end of Section A,4. Then the amplitudes are:
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AL symbols vefam Theiv meaning unless and antif, thejare

T‘G’,daflh eol «
- . -~
For 0~ exchange: <k3A4/T/A1A2>

¢l = 8Q6. T+ V,PP, VC = <%3=0/A1=0><h4=+/he=+>

@, = SQ6. T,. V,PM, VC = <0/0><+/->

1° 2
@5 = K. SN, CC. V,PP.VC = <1/05<+/+>
g, = K. SN, CC. V_PM, VC = <1/0><+/->
@ = K. SN. CC. V,MP, VC = <1/0>¢<-/+>
s = K. SN. CC. VMM, VC, = <1/0>¢-/-)
@, = CCl. V,PP. VC = <2/05<+/+>
By = CCL. V,PM. VC = <2/0><+/->
.¢9 = CCl. V,MP, VC = <2/05<~/+>
#,o= CC1l. VMM, VC = <2/05<-/->

where

Ve = G1G2/(t - W2) » W, = mass of the 0 particle and G, ,
m
G2 are the couplings at the two vertices their explicit for

being given on Pp. 102,

1.0
VOPP = - 5:_L72(QB - KA) C,

1.0 /~s
VEPM = - =25 (QP+KA)S
9 5i72 1
VgMP = ;igé(QP+KA)Sl
D

' 1,0
VaMM = =2, (QB - KA) C
3! Si72 1
se6 = 1/6%/2

T

1 §§~ (2(E;Q)* - (M;K.Sin ©)% + 2.0(E,Cos 0)% -

>

)'I'OE:LE uQ..K.COS O)

3

CC = (ElQ - E_X Cos o)/M3

3
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ccf. = 0.5.(K.Sin Q)2
SN = Sino0s ¢5= 5O

For 1~ exchange ( with The previous uo{;a{ion)

The helicity amplitudes are; as—befeome,

g, = 26R6. VC. FS2, K. SN, CCE.2Qp. S,/M3

2
g, = 28a6. VC. FS2. K. SN. CCE.2QM, Co /M5

~ CC. VC(FS1. K. SN, ESM, DM, C. + FSE.(E3.K.Sin o .

¢3= 2
| (QP.02 - DP.s1 )) + 2, CC. QP. sl)/é.
g, = cc. VC.(FSl. K. ESM, DP, S, + FSE(EB, K. Sin ©
(aMm, 5, + DM, cl) - 2, CC. QM. cl)/e.
¢5 = - CC, VC, K. SN, Sl(F81. ESM, DP + FS2, EE(QM + DM)/2.

¢6 = CC, VC, K, SN, CQ(FSI. ESM, DM - FSE.EB(QP - DP)/2.

vC, K. SN, (K, SN, FS1, ESM, DM, C

N&
il

o + Fse(Ej. K. SN

(@P, ¢, - DP. S,) + 2. CC. QP. §,)/2.0

¢8 = VC, K, SN, (XK. SN, FS1, ESM, DP., S, + FSE(E3K. SN,

1
(QM, S, + DM. 01) - 2. CC, QM. C,1/2.0
¢9 = V¢, (X, SN)Z.‘SI (Fs1, ESM, DP - FS2,. EB(QM + DM) /2.0

¢10= Ve, (K. SN)Z, CE(FSI. ESM, DM - FS2, E3(QP - DP)/2.0

- 2 aMo

FS1 = 1.0 + t/(2MV, MO) - 2(1. + Sp)
5 (5 2MO. 2 2
FS2 = g* (1.0 + ) (1.0 + 2, MO® - £)/MO

ESM = EE(K;,CS +Q + E, + EA) + CC
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DP =D + Q.K

DM =D - Q.K

QP F QB + K., A

QM = @B -~ KA

.De,fﬁ'\iﬁon,s og. Mo ancd MY on Pp- q3.

Section A,3

For the production of 1  particles we only have to
evaluate the expression Pg ¢A(P3) as shown by eqg. 3.68. The

six independent amplitudes are

<0/0%<+/+>

It

g, = CC. (V2PP + FSPM), VC

@, = CC. (V2PM + FSPP), VC = <0/0><+/->
¢3 = CC, (V2PP + FSPM), VC = <1/b><+/4$
¢4 = CC, (V2PM + FSPP)VC = <1/0><+/->
¢5 = éc. (VoMP + FSPP), VC = <1/0%<~/+>
Bp = CC. (V2MM + FSPM). VC = <1/0><-/~>
where

FSE = By + Ey

FSK = K. SN

FSQK = K, Cos @ + @
2
P1 El(E2 +Ey) +T% £ K. Q
— 2
P2 = EE(EE + Eu) + Q. K¢ Cos 0 + Q
FSP & (P, + PE)F81/D1/2

FSPP = FSP, DP, Sl

1
CC = (Ej’ Ky Cos O - M}' El Q,.)/M3

FSPM ='FSP, DM, C
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KSN2 = -~ =75
2
VMM = FS2, (FSE, DP, Cl + FSK, QP. Sl + FSQK. QP.Cl)/Dl/2

V2PP - FS2. (FSK, DP. S. + FSQK. QP. C. - FSE, DP, sl)/ZDl/2

1 1
V2PM = FS2 (FSE. DM, C, - FSK. QM. C, + FSQK, QM. sl)'/bl/2
VeMP -~ FS2(FSK.QP. S - FSE. DM, S - FSQK. Qli, Sl)Dl/2

Section A4

For the production of the double resonance FONX++ in
+ oNx++ . .
the process t P —> F the 20 independent amplitudes

are as follows:

<x3A4/ /A Ap> = <x5/x1><x4/12>
g, = V10, V22FPP, VC = <0/O5<E/+>
g, = V10, V22PM, VC =  <0/0><Z/->
# = V10, V23PP, VC = <o/o><g/+>
g, = V10, V22 PM, VC = <0/05<2/->
$s = V11, V22PP, VC = <1/05¢5/+>
P = V11, V22PM, VC = <1/O><%/->
g, = V1l. V22MP, VC = <1/05< i/ +>
g = V11, V22MM, VC =  <1/0><-3/->
gy = V1l. V23PP, VC = <1/05¢2 /+>
#o= V1l. V23PM, VC - = <1/0><§/->
g .= Vil. V23MP, VC = <1/o><_g/4>
g o= Vil. V23MM, VC = <1/O><-g/->
B15= V2. V22PP. VC = <2/05<5/+>
g.,= Vi2. V23PM, VC = <2/05<%/->
fi5= ViR, VRIMP. VC = <2/0><-g/+>

g = V12, V23MM, VC = <2/0><_%/->




i

where

cCc = 20(Q.

V10

V1l

i

via

i

V23PP
V23PM
V23MP
V23MM
V22PP
V22oPM

v22MpP

V22MM

via,

viz,

= 5Q6.

K.SN.(E.1Q - E

= V12, V23MP, VC

V23PM, VC

V23MM, VC

E2 -

(2 QaEi - (MBK. SN)2 + 4 E
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= V12, V3PP, VC = <2/0><2/+>

<2/0><2/->
<2/o><_§/+>
<2/b><-§/_>

]

it

i

Eq.K.cs)/M4

2
3.ElQ)/M3

3.K. Cos O)/M3

(K, 8SN,)2/2.0

I

if

K. SN. DM, cl/(eD)l/2

K, SN. DP. sl/(zn)l/2
K. SN. DP. Sl/(ED)1/2

-K. SN. DM. cl/(zn)l/2

(-K.
(+X.

-(K.

- (K.

See also end

Section A,5

And finally for the production of the

1/2

SN. DP, S, -~ 2,0, CC, DM, Cl)/(éD)

1
SN. DM, C, - OC. DP, sl)/(6D)1/2

SN. DM. C, - CC. DP. 81)/(6D)1/2

SN, DP. 8, + CC. DM, Cl)/(6D)1/2

of Section A,2,

5F he
in the react{g

o}

P+ P —> 5 + P the 24 independent helicity amplitudes are

given below, These expressions are obtained from egs. 3.117,

3.70 and multiplying them together as indicated by the first

e
term of eq. 3,76, Written explicitly the transition amplitud

is
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sSQ10, Sc. QM, ((RHO, FP, SN) - (FM, K, SN, C2, CC))

11, 1/
@2/

= 5Q10, SC, QP. (RHO, FP, 82 - FM, K. SN2, CC)

1,1., 1,1
(‘2"/-2->< —5/—§>
-SQ10, Sc, QP., (RHO, FM, SN) + FP, K. SN, S2, CC)

1,1 1,4
&/ PP

= SQ10, SC, QM. (RHO, FM, C2 + FP, K. SSN2, CC)

1,1.,1,1
<§/-§><§/-§>
SQ10. SC, QP.(RHO, FM. C2 + FP. K. SN2. CC)
1, 1 1, 1
G/ B
~-3Q10, SC. Q@M (RHO, FP, SN - FM, K. SN, C2, .CC)
1,1, 1,1
G/ -5><5/-5
SQ5. SC QM. K. SN, (K. SN2, FP, 0.25 + C2. FM, CC)

DfLs el /L
<2/é><2/é>

= 3Q5, SC, QP, K, SN2 (X.S2, FP. 0.25 + CC, FM,)

3 .1, 1
/555>

= 5Q5, SC. QM. K. SN2 (X, C2, FM, 0,25 - CC, FP)

Sy, 1/1
<5/5>< 2/2?

= 3Q5. SC. QP, K, SN(K.SN2, FM, 0.25 - S2, FP, CC)

2rdye L1/ L
/<3P

= 8Q5. SC. QP, K, SN2, (X, S2, FP, 0,25 + CC, FM)

2/ -E5¢k /L
<s/ 2><2/2>
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-8Q5, SC. QM. K. SN2 (K, S2. FP. 0.25 + CC, FM)

Sr g1/ 1
<5/-5> <5/ -5

SQ5. SC. QP. K. SN (K., SN2. FM, 0,25 - S2, CC. FP)

S lse 1/,
<2/ 2><.2/+-2~>

‘SQ5¢ SC. Q,Mc K- SNEO (Kt CE. FM. 0525 Ld CC. FP)

S/ v 1/ 1
<3/ -5><5/3>
0,25, SC, QM. K2, SN2, FM, C2
LY PR
<2/2><2/é>
0.25. S.C. QP, K2, SN2, SN, FM,
S/dlsels 1
<2/2><2/.2>
-0,25, SC, QM, K2, SN2, SN, FP
S/l 1/1
<5/53><~5/5> )
-0,25, SC, QP, S2, K%, SN2, FP
5,1, 171
<§/2><'2/ 5>
0i25.8C, QP, K%, SN2. SN. FM
5/ 1sc1/1
<5/-5><5/5>
-0.,25.8C., QM. K®, SN2, C2. FM
S5/ 1.1/ 1
</ 5>/ -5 |
-0,25, 8C. QP, K*, SN2, FP. S2
5/ lye 1/1
<2/ 2>< 2/2> |
0.25, SC.QM. K2, SN2, SN, FP

5/ 1y 1/ 1
<g/-5><-5/-5>
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where '
salo = %“Eb— SQ5 = VE
C2=14+Cs0 , S2=1-2Cos 0
SN2 = Sin® 0 , CS2 = Cos? ©

cC

(Ela Q. - EB.K.CS)M

RHO = QEEK, CS - Q2E1+K2 Sin® /2,0 - E31K, CS2
QEEK = 4.Q.Q.E3. El. K/(E.O.MB.ME)
Q2El = Qz.Ei/Mz
E31K = E%. K2 /M2
FM = (E1 + Ml) Q - (E3 +M3) K

FP w (El + Ml) Q f (E3 + M)X

See also end of Section A.2.

2+ Reggéized Differential Cross-Section

Section A.6

do ar 2t°% 2
% ol A®[- ;Z;é (1-t/4p2)]

1y (aX gryraes - t/32)]
+ (A.q')(A%.q )[;;;E (1 - t/3u%)

2 't 7 2 2
+ B%x Z» [SE(ZZE - };5) - 4m®(1 - t/4pB) (1 + t/3m2)]

+ (B.a)(B%.a) [ - 2 (1 - t/m2))
Sm :

+ (B.g")(B%.q") S - [252 + t 4+ 1202 (1 - t/4m?)
' 3mPue

(1 - /%))
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+ [(B.a')(B%.q) + (B.a) (BX.q") (B%.q")] (—E—)

3m*p®

+ (A ERBATIEE (1 - /)

m-p

+ [(h.q") (B%.q")+(B.a’) (%] (7225 (1 - t/3u2))
m

+ 02(—— (1 - ~——) t.S2Bu}

m= 4m2

+(C.q‘)(C*.q'){-£~ﬂ-(1 - t/4m2) S2Bu)
2U. m |

+ [(B.C®) + (B%.0)]

{-2t S2Bu)

+ [(B.a")(*.a') + (B*.a")(C.q")] (Bf— s2Bu)
L m

. 2 - + 28 2
el G B+ 28 pme(1 - o/m®)] )
+ (Doa) (0%.q) (=)

>m
+ D)0 =2 £ - & -t e
M7

-+

+

+ FZ{:;§}75 [ (S2-4p2n?

+ 2m u3(1-t/11m2)]]

[(D.q') (0%.q)+(D.q) (D%.q")] (- 223

1[A,D*.D.A%](-

3pREm®

4" (1 - t/8u2))

1[(Aaa") (P.a") " (A%, H-2E-(1 - £} (-1)

m-i

(F.Q)(Fi-Q)[‘%gE
m?p

miL u

(1 - t/4m®)S2Bu}

S2Bu ]

m? ) (1-t/4p2
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+ (Fa") (FX.q"){ 5;5}1; {S2-3m2p2 (1-t/4p2) .52Bu }
m=p

+ [(Fag") (F.q)+ (Fr.q") (Faq) I(- i 5eBu)
m-iL

* S (40 t
+ i[-B.D" - D.B*] [m ('3— - I--L;)]

+1[(B.q") (D%.q)-(B%.q") (D.a)] (524
1L~m

+ 1[(B.q) (0*.q")- (B*.q) (D.q")] 4t3 ]
| 3
+ 10(B.a") (0*.q")- (B.a") (0-a") =25 (10 - )
3mu

+ [(0.a) (Fa)+ (0%.a) (Fo0)] (—223

Sm-p
+ [(D.q") (FE.q")+(D%.q") (F.q')] {—&Seg (8%-2m*n® (1-t/4y
| 3m2p .
x (1-t/3°)))

+ [(D.a) (Fa ")+ (0%q) ()] (S8 (Eotns(1-6/07) ))

+ [(D.a") (Frq)+(0%.a") (Faa)] (5o (- - nP(1-5)))
ZmPn - bm?

+ [(D.F%)+(F.0%)] (=25 soBu)
mep

+ 1[B.FX + F.B¥] {-§3.823u}
m

+ 1[(B.q) (FX.q)-(B%.q) (F.q)] (=8 (1 - t/m2)3
‘ 3um
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2
:-% [%* mPp2 (1-t/502
mL

(1-t/4u2)]

+ 1[(B.a") (F*.q" )= (B .q" ) (F.q")]

+ 1[(B.q) (F*.q")-(B*.q) (F.q")] L——-(1+t/2u ))

+ 1[(B.q" ) (F¥.q)=(B%.a/) (F.a)] ( : 5. (1-3t/41))
m W

1+ Reggeized Differential Cross-Section

Section A,7

a—cCBE[—g—z { (S2+p26(1-t/412) ) 6 (1+6/4u® ) ~252+-132p2 (1-t/4p2
+ llt(l-t/llma)(l-t/lm )]

+ [(Bua')(c*.q" )+ (Cua’ ) (BE.q )](‘Ei"(Z"" - (1-t/4n2))
u

s [(B.q)(c*.q)+(B*.q)(c.q>1ti-£L;-(1-t/uu2)1
mp

[(B.a)(c*.a")+(B.a") (€%.q)+(C.q) (BX.q" )+ (C.q) (BX.q) ]

-+

+

(C.q) (C*.Q) {m-* (1-t/4m®))

(Coq") (Coq ) EULEAIE) |y somyy
4m u

+

3
+ [(C.a)(€*q")+(C.a") ((F.0) 1125y (1))
8m
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+ [(B.q")(B%.q")] (2

m2p?

+ [(B.q) (B.q) 1[- 2E(1-t/M2)]

[(B.a) (B .q" )+(B%.q) (B.a" ) 1500~

+

+ D2 Ez (1 - H%z)
+ [(0.a) (0%.0)] (28

+ (D.q')(D*.q')(&é (1 - t/Bm2))

2
+ i[B.D® - D.B*] (=S&

}
2mp.3

+ 1[(B.a ) (0%.q") - (BX.a")(D.q")] {ifg s}

+ F2[- 2 (1 - t/4n2) S2Bul
v
FX v A ll‘t \
+ (F.q) (Faq){— S2Bu)
m-
+ i[BﬁF—B;Fx] (- 533 S2Bu}
m

+ 10(8.a) (F.a)-(F.a) (B.a)] (22 (1 - t/40?))

+ 1[(8%.q) (F.q")-(B.a) (F*.q")] B35

m.

[(D.q) (F*.q)+(F.q) (D*.q)] —§§§—

m-y

+
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+ [(0.0) (F.a")+0%.a) (Faa")] (3 (1 -t/402))
+ 1[(8.0") (0*.0)-(B%.q*) (0.a) 1 (D)

The values of A, B, C, D, F are given by eqs. 4.47a,

4,470, 4,48 to 4,51,

S2Bu = §8%- m2(1 - - Ju2(1 - %)
Ly TR
It should be emphasised that in these two expressions
not all the terms contribute to all the different processes
7

depending on the trajectories being exchanged,6 some of the

A's, B's, etc. are zero,
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