

by

Christopher Harry Green

hathemaidics Departnent Tmperial College of Science and Technology

September 1970

Abstract.

The problem of plane Poiseuille flon with flexible walls is set up as an eigenvalue problem for the wave speed of infinitesimal disturbances and solved by use of a new variational method. This norel variational technique, developed in the present work, overcomes the dirficulty in the present problem that the eigenvalue is contained in the boundary conditions. It also ellows a completely general series of functions to be used to approximate the stream function of the problem. The eigenvalues obtained from the method are used to give stability curves, and the eigenvectors obtained are used to give stream function and Reynolds stress distributions. The computer program, developed from the variational method, is used to obtain stability results for the flexible wall problem, and, by taking a limiting case of this problem, to obtain results for the rigid wall problem. Convergence tests and comparisons with previous work, for both the flexible wall and rigid wall problems, give great confidence in the accuracy of the present method. Stability results are obtained for two flexible wall models: firstly, merobrane walls, where the effects of variations in the damping and frea wave sceed in the wall are examined, and secondly, thin plates, where the effects of flexural rigidity are examined.

Acknomledrenentso.

It is with great pleasure that I acknomledge my indebtedness to Dr. C. H. Ellen for his continued guidance and encouragement throughout the past three years.

The present work was financially supported by the Science Research Council.

Table of contents.

page
List of symbols. 7
Chapter 1. Introduction. 10
1.1. General introduction. 10
1.2. Statement of the problem. 11
1.3. Plane Poiseuille flow with rigid walls. 13
1.4. Plane Poiseuille flow with flexible walls. 15
Chapter 2. The boundary value problem. 20
2.1. Governing equations. 20
2.2. Boundary conditions. 23
2.3. Releted problens. 28
Chapter 3. The nethod of solution of the probleme. 29
3.1. Outline of the method of solution. 29
3.2. The variational formulation. 30
3.3. The iterative scheme. 36
Chapter 4. Computational aspects of the problem. 39
4.1. The different variational formulations considered. 39
4.2. The approximating series. 41
4.3. Comparison of the formulations. 43
page
4.4. Calculations for the chosen formulation. 4.5
4*5. Numerical considerations. 50
Chapter 5. Discussion of numerical results. 55
5.1. Introduction. 55
5.2. Rigid mall results. 55
5.3. Flexible wall results. 61
Chapter 6. Conclusions. 77
Appendix A. The different formulations. 88
A.1. Formulations 1 and 2. 88
A.2. Formulation 3. 91
A.3. Formulation 4. 94
Appendix B. The chosen formulation (Formulation 4). 97
B.1. Hatrix entries for Formulation 4. 97
B.2. hatrix entries for the complex conjugate adjoint of 102Formulation 4.Appendix C. A simple flow diagram for the conputer program.107
Tables. 108
Figures. 130
References.164

List of sumbol.s.

Symbols are not repeated which have merely the adidion of a tilde, bar or star (denoting dimensional, complex conjugate or adjoint terms, respectively).

X, Y
y_{c}
h
η
t
च
u,v
u^{\prime}, v^{\prime}
U
u_{0}
p
P
p'
ψ
$\phi=\phi_{r}+i \phi_{i}$
a
$c=c_{r}+i c_{i}$
$c_{p}=c_{p r}+i c_{p i}$
coordinates of the flom
the critical point
half the width of the pipe
displacement or a mall from its
unperturbed state
time
dimensional velocity
velocity components
perturbation velocity components
steady state velocity
velocity of the steady state flow at $y=0$
pressure
steady state pressure
pressure perturbation
stream function
the "y" dependence of the stream function
wave number
wave speed
physical nave speed

$c^{0}, c^{1}, c_{1}^{1}, c_{2}^{1}, c^{2}, c^{3}$	values of the mave speed used in the
	iterative scheme
λ_{0}	eigenvalue pivot
R	Reynolds number
R_{0}	critical Reynolds number
v	kinematic viscosity
ρ	density
μ	viscosity
$T_{j}, \mathrm{~m}_{j}, \mathrm{e}_{j}, \mathrm{~d}_{j}$,	
$s_{j}, c_{\circ j}, D_{j}(j=1,2)$	flexible wall peraneters
$\underset{\mathrm{I}}{\tilde{y} \tilde{y}}$	component of the stress tensor normal
	to the wall
$E_{j}(j=1,2)$	boundary condition parameters
$e, e^{0}, e_{1}^{0}, e_{2}^{0}$,	
$e^{\frac{1}{1}}, e^{1}, e^{2}, e^{3}$	values of the boundary condition parameters
	used in the iterative scheme
L	differential operator
B	boundary condition operator
H	vector operator of the variational method
$\underline{\mathrm{u}}$	vector function of the variational metnod
I	functionsl of the variational method
$a_{m}(m=1, \ldots, N)$	components of the approximating series

$$
\begin{aligned}
& B_{n m}, D_{n n}, B_{11}, B_{12}, B_{21}, \\
& B_{22}, D_{11}, D_{12}, D_{21}, D_{22} \text { matrices of the variational method } \\
& I_{j}(j=1, \ldots, 8), \\
& T_{j}(j=1,2,3,4,)
\end{aligned} \quad \begin{aligned}
& \text { integrals in the expressions for the entries } \\
&
\end{aligned}
$$

Chapter 1. Introduetion.

1.1. Generel introduction.

Calculations of skin Áriction drag on stream-lined bodies are necessarily based on the correct location of the transition region. The transition region is characterised by a besic instability of the laminar boundary layer resulting in a turbulent state downstream of this region. Although recent rork on non-linear stability has show that subcritical and supercritical instabilities are important in considering transi.tion to turbulence, there is still value in stuaying the classical linear problem. This is espeoially so when the added complication of flexible walls is included.

The problem of plane Poiseuille flow with flexible malls, considered in the present work, is a linearised stability problem in which the steady flow is purely parallel and there is an interaction between the wall vaves and the fluid raves. In the boundary layer stability problem the steady flow is only approxinately parallel, the boundary layer thiclmess increasing in the streamaise direction. The boundary layer problem therefore presents difficulties when considering the change in the nature of the problen at very low Reynolds numbers. It is advantageous to consider a purely parallel steady flow problen where the

Pormulation of the problen is valid for all Rejnolds numbers since the modification of stable boundary layers by flexible malls may be siहnificant and introduce instabilities in regions where, strictly speaking, the mathematical formulation or the problem is invelid (see Landahl (1962)).

Although Benjamin (1960) has presented excellent qualitative arguments for the beneficial design of flexible valls, it should be remembered that he considers wills which are nearly rigid or fluids which produce only a small effect on the walis, and these are probably exceptional cases. Landahl and Kaplen (1965) and Hains and Price (1962) have obtained numerical results for some intermediate cases by integrating across the flow. The method adopted herein to solve the problem is a novel variational method Which is adapted to the requirements of the present problem but mhich is generally applicable to other boundary value problems.

1.2. Statement of the problen.

The problem considered herein is of an incompressible, viscous fluid flowing dom a tro-dimensional pipe (see Rigure 1). The basic direction of flow is taken in the \tilde{x} direction, parallel to the flexible side walls situated at $\tilde{y}= \pm h$ (the tilde, \sim, denotes dimensional quantities). The basic $\hat{\text { flom }}$ is plane Poiseuille flor (which is taken as $\tilde{U}=U_{0}\left(1 \sim \tilde{y}^{2} / h^{2}\right)$). The fluid is
incompressible, two-dimensional and only infinitesimal disturbances from the basic flos aro considered. Hence a stream function for the dimensionless disturbance velocity of the form $\phi(y) \exp \{-i a(x-c t)\}$ may be chosen where t is the tine, a is the wave number (considered as real.) and c is the wave speed (considered as complex). The Reynolds number, R, of the problem is defined by

$$
\begin{aligned}
R & =\frac{\text { (maximum stream velocity) }}{\text { (holí the midth of the pipe) }} \\
& =\frac{U_{0} x h}{v}
\end{aligned}
$$

The mathematical problen consists in solving the differential equation associated with the fluid flow (the OrrmSonmerfeld equation), coupled with the boundary conditions ossociated with the flexible walls. Vie wish to examine the spectrum of c which is obtained for given values of a and R. If the imaginary part of c is less than zero we have amplification, if greater than zero we have decay. Neutral stability is found where c is purely real. We may plot curves of neutral stability in the (a,R) plane, as is customary (see Figure 2), and neutral stability curvos mill be presented for inextensible malls with various oharacteristics. We will mainly be considering stability in a temporal sense but
curves of neutral stability in the spatial sense are obtained with temporal stability results and will be presented.

1.3. Plnne Poisouille flow with risid valls.

The problem of plane Poiseuille flow with flexible walls is, in several respects, a continuation of the problem or plane Poiseuille flom with rigid walls. Hence, consideration of the rigid wall problem is important in the present problem. Also, a limiting case of the flexible wall problem may be taken and numerical results for the rigid wall problem obtained. Previous results for the rigid wall proolem will provide a good check on the accuracy of our computations.

Heisenberg (1924) was the first to consider the stability of plane Poiseuille flow with rigid malls. He did not calculate a critical Reynolds number but did conclude that the flow was unstable for large enough Reynolds numbers. (The critical Reynolds number is the smallest Reynolds number at which infinitesimal disturbances may be unstable.) Lin (1944) calculated the neutral stability curve using an asymptotic expansion and Shen (1954) calculated the curves of constant amplification by a perturbation from Jin's neutral curve. In these last results the critical Reynolds number mas found to be 5300 .

The first numerical calculations were made by Thomas (1953).

His results confirmed those of Lin, except at large values of the wave number where the asymptotic expansions would be expected to be inaccurate, and he found a critical Reynolds number of 5780. Other work has been done in this field, but of particular interest here are the papers by Lee and Reynolds (1967) and Grosch and Salwen (1968). Lee and Reynolds adopted a variational approach to the rigid wall problem. Grosch and Salmen obtained numerical results for the rigid wall problem using a basically similar technique in their study of tine dependent plane Poiscuille flow vith rigid walls. These variational, Rayleigh Ritz or Galerkin approaches, which have been widely used in structural mechanics, have only recently been applied to problems in fluid mechanics. In the normal course of calculations, these methods find a particular eigenvalue accurately and values of the other eigenvalues to varying degrees of approximation. Grosch and Salmen obtained higher cigenvalues (i.e. eigenvalues other than the most unstable in the spectrun of c). Previously, the only person to consider this problem for the rigid wall problem was Grohne (1954). Although there was disagreement in the exact results of Grohne and Grosch and Salwen, both concluded that at most one eigenvalue in the spectrum becomes unstable.
1.4. Plane Poiseuille flov with flexible malls.

Present interest in this problem stems from the experimental work of Kramer (1957, 1960). Kramer's first experiments (1957) suegested that the transition of boundary layers from laminar to turbulent flon may be delayed by introduction of artificial damping (the artificial damping being introduced by use of a flexible wall). His later experiments (1960) suggested that the addition of a flexible coating to a stream-lined body may reduce its drag.

These findings stimulated several theoretical studies examining the possibilities of stabilisation of fluid flows by flexible malls, but these all tend to refute Kramer's ideas, although suggesting other possible ways of improving stability. The main insight into the problem came from Benjemin's (1960) investigation of the troodimensional, incompressible, viscous boundary layer over a plane flexibla wall when the rall was nade slightly flexible or when the fluid proiuced a small loading on the vall. His model for the flexible mall ras an inextensible membrane and he recognised three types of wave disturbance which he denoted by classes A, B and C.

Class Λ waves may be considered as the Tollnien-Schlichting waves which occur in the rigid wall problem but now being modified
by the effects of the flexible wall. Benjamin found that this class of waves is stabilised by a stifeness controlled wall (i.e. one with an "elastic response" as described by Benjamin), the greatest stabilisation being, in the absence of other factors, when c is near but less then the free wave speed in the flexible mall. This class he found to be destabilised by damping in the wall. (Stability here is considered in terms of the critical Reynolds number. A stabilising effect is denoted by an increase in critical Reynolds number and vice versa.) Another important effect is that under suitable conditions the unstable region in the (a, R) plane may be shifted to smaller mave numbers.

Class B waves are associated with the waves which can propagate on the free flexible mall in the absence of any fluid. This class is only excited then the iluid velocity exceeds the free wave speed and it is found that damping in the mall is stabilising. Thus the damping requirements of class A and class B maves are in conflict.

Class C instability may be considered as helvin-Helmholtz instability in that it propegetes along the interface betmeen the fluid and the flexible wall, is dependent on the presence of both the fluid and the flexible wall and is largely independent of viscosity. It occurs when the wall becomes too flexible.

The previous provides a convenient classirication when
discussing the problem. Homever, in general, the interaction produces a wave spectrum whose precise origins may be difficult to recognise. Indeed, where wall and fluid are of equal importance, the various classes may appear to be merged on a single stabjitity curve as may be seen in results presented later.

Landahl (1962) investigated the same problem and gave further physical insight into the principles behind the classification of the disturbances. His explanations were further amplified by Benjanin (1963). Landahl explains that the excitation of disturbances depends on energy transfers within the complete system. For class C maves the total energy level remains virtually unchanged and instability occurs with a unidirectional transier of energy to the flexible wall, Landahl found that the amplitude of class A waves increases with a decrease in the enerar of the system. This explains the destabilising effect of wall damping on class A waves since this damping absorbs energy. Amplification of class B waves involves an increase in enerey level. Ience the stabilising effect of damping in the wall.

These ideas still hold for an inviscid fluid and are generally applicable to coupled fluid solid systems.

Kaplan (196\%) and Lendahl and Kisplan (1965) have carried out numerical calculations for the boundary layer problem. These calculations, based on a Runge-iKutta numerical integration across
the boundary layer, mere mainly calculations for class A disturbances. There has been little interest in wall instability caused by the flon apart from Landahl (1962) who gave a few tentative class B curves. These were at very low Reynolds number, however, where the Orr-Sommerfeld equation is not, strictly speaking, applicable to the boundary layer stability problem. inaplan (1964) gives a few class B curves vhich are, however, incorrect (see Landahl and Kaplan (1965)). For the class A waves, Benjamin (1964) gave three possibilities for the favourable use of a flexible wall. Firstly, an increase in critical Reynolds number. Increases in critical Reynolds number have generally been found to be small for practical walls. Seconaly, a reduction in the amplification rate of unstable disturbances. Thirdly, an increase in the group velocity of the unstable disturbances. In both of the lest two cases Kaplan has found strong effects for certain cases. The numerical results of Kavian and Iandahl and Kaplan asree with the qualitative results found theoretically by Benjamin and Landahl.

Hains and Price (1961a and b, 1962a and b) and Hains (1964) have carried out numerical calculations for the problem of plane Poiseuille flow over flexible walls using a similar numerical integration to that of Kaplan, and Landahl and Kaplan. They considered the tromimensional problem of a viscous, incompressible fluid flowing between membrane valls. Considering walls with tension only, where the only possibility is class A disturbances,
they found that as they reduced the tension from its rigid wall value of infinity, the curve first closed and then reduced to a point. For lower values of the tension the flow was completely stable. This is however an unrealistic situation since the mall would have to be so light and under such a small tension that other stiffness criteria would dominate the design.

Other work in this field has been done by Miles (1957, 1959a and
b, 1962) where the emphasis was on water wave generation by wind, Linebarger (1961) who considered the effects of compressibility, Nonweiler (1963) who obtained qualitative results for an elastic layer model of the wall, Boggs and Tokita (1962) who determined free wave speeds for various elastic layer models of the wall without considering the fluid interaction and Korotkin $(1965,1966)$ who considered a flexible wall pliant in the tangential direction.

Chapter 2. The boundary value problem.

2.1. Governing equations.

The Navier-Stokes equations for a viscous, incompressible, two -dimensional fluid are

$$
, \quad 2.1 .1
$$

where

$$
\begin{aligned}
& \tilde{v}=(\tilde{u}, \tilde{v}) \text { is the velocity, } \\
& \tilde{\operatorname{qrad}}=\left\{\frac{\partial}{\partial \tilde{x}}, \frac{\partial}{\partial \tilde{y}}\right\}, \\
& \tilde{\operatorname{qra}}{ }^{2}=\frac{\partial^{2}}{\partial \tilde{x}^{2}}+\frac{\partial^{2}}{\partial \tilde{y}^{2}}, \\
& \tilde{p}=\text { the pressure, } \\
& \rho=\text { the density, } \\
& \nu=\text { the kinematic viscosity }
\end{aligned}
$$

and the coordinates are as previously defined in Section 1.2 and Figure 1. (N.B. The tilde, r, denotes dimensional quantities.) The continuity equation is

$$
\tilde{\sim} \underset{\sim}{\operatorname{ad}} \cdot \tilde{v}=0
$$

The equations are made dimensionless with respect to U_{0}, the velocity of the steady state flo at $\tilde{y}=0, h$, half the width of the pipe, and ρ, the density of the fluid. We take the dimensionless variables
$u=\frac{\tilde{u}}{U_{0}}, v=\frac{\tilde{v}}{U_{0}}, x=\frac{\tilde{x}}{h}, y=\frac{\tilde{y}}{h}, t=\frac{\tilde{t} U_{0}}{h}$ and $p=\frac{\tilde{p}}{\rho U_{0}^{2}}$, and
substituting in Equations 2.1.1 and 2.1.2, derive the equations

$$
\begin{array}{rlr}
\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y} & =-\frac{\partial p}{\partial x}+\frac{1}{R} \operatorname{grad}^{2} u & 2.1 .3 \\
\frac{\partial v}{\partial t}+u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y} & =-\frac{\partial p}{\partial x}+\frac{1}{R} \operatorname{grad}^{2} v & 2.1 .4 \\
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y} & =0 . & 2.1 .5
\end{array}
$$

and.

We now take $(u, v)=\left(U+u^{\prime}, v^{\prime}\right)$ and $p=p+p^{\prime}$, where $U=\left(1-y^{2}\right)$ is the steady state velocity, P is the steady state pressure and u^{\prime}, v^{\prime} and p' are small disturbances from the steady state. ale take a stream function, $y=\phi(y) \exp \{-i a(x-c t)\}^{\dagger}$, for the disturbance velocities, u^{\prime} and v^{\prime}, which automatically satisfies Equation 2.1.5. Hence we obtain

$$
\left(u^{\prime}, v^{\prime}\right)=\left\{\frac{d \phi(y)}{d y} \exp \{-i a(x-c t)\}, \text { ia }(y) \exp \{-i a(x-c t)\}\right\}
$$

Substituting into Equations 2.1.3 and 2.1.4 and eliminating pressure, we obtain the Orr-Somerfeld equation
$\frac{d^{4} \phi}{d y^{4}}-2 a^{2} \frac{d^{2} \phi}{d y^{2}}+a^{4} \phi+i a R\left\{(U-c)\left\{\frac{d^{2} \phi}{d y^{2}}-a^{2} \phi\right\}-\frac{a^{2} U}{d y^{2}} \phi\right\}=0, \quad 2.1 .6$
\dagger Ye make \tilde{a} and \tilde{c} dimensionless by $a=\tilde{a} h$ and $c=\frac{\tilde{c}}{\tilde{u}_{0}}$.
where $\phi=\phi(J)$ and $U=\left(1-y^{2}\right)$.
This is the way in mhich the Orr-Sommerfeld equation is usually developed, and the computing for this problem has been performed using this equation. However, in order to obtain results for fixed physical wall paramsters, we wish to vary the Reynolds number of the flow by varying U_{0}, without altering the dimensionless parameters describing the flexible wall. In other words, we envisage a situation in which a given channel and fluid are employed, while the fluid velocity is incressed until instability occurs. 7 Fe therefore render our physical wall parameters dimensionless with respect to h, v and ρ. In order that our computational results will be meaningful physically, it is found necessary to muitiply the computational eigenvalue, c, by a factor R, to obtain a physical eigenvalue, c_{p} (i.e. $c_{p}=R . c$ is the wave speed made dimensionless for given wall and fluid properties). This is due to the fact that the previous equations have been made dimensionless using U_{0}, which is the parameter varied in order to very R. In order to compare our eigenvalues with previous mork we use c. Othervise we use c_{p}, which gives results which are more meaningful, physically, in the present mork.

Since our scheme of dimensionless variables is independent of U_{0}, and it is not proposed to consider any anisotropic mall properties in this mork, the consideration of the two-dimensional problen (as opposed to the three-dimensional problem) is justified by reference to the work of Squire (1933).

2.2. Boundary conditions.

In dimensionless terms, we have flexible malls positioned at $\mathrm{y}= \pm 1$ and a steady state flow of the form $U=\left(1-y^{2}\right)$. The flexible walls are assumed to be surfaces inextensible in the longitudinal (x) direction, with lateral motion governed by a dynamical equation which takes into account properties of mass, tension, elastic stiffness, viscous damping and flexural rigidity. Ye consider first the wall at $y=+1$. Let $\eta^{\dagger_{b e}}$ the distance of displacement of the wall from its unperturbed state, $y=+1$. Assuming that there is no slip at the wall gives

$$
\left.U(y)\right|_{y=1+\eta}+\left.\frac{d p(y)}{d y}\right|_{y=1+\eta} \exp \{-i a(x-c t)\}=0 .
$$

Hence, substituting $U=\left(1-y^{2}\right)$, gives, to first order,

$$
-2 \eta+\frac{d \phi(+1)}{d y} \exp \{-i a(x-c t)\}=0
$$

Fie now assume that the fluid stays in contact with the flexible wall and obtain

$$
\frac{\partial \eta}{\partial t}=\left.i a \phi(y)\right|_{y=1+\eta} \exp \{-i a(x-c t)\}
$$

and hence

$$
\underline{\partial \eta}=i a \hat{\rho}(+1) \exp \{-i a(x-c t)\} .
$$

at

[^0]Combining Equations 2.2 .1 and 2.2.2 Gives

$$
\frac{d \phi(+1)}{d y}-\frac{2}{c} \phi(+1)=0
$$

which is the first boundary condition, obtained from kinematic considerations. The equation of motion for normal forces on the wall at $y=+1$ is (see, for example, Timoshenko and Gere (1961))

$$
\tilde{\mathrm{T}}_{1} \frac{\partial^{2 \tilde{\eta}}}{\partial \tilde{x}^{2}}-\tilde{e}_{1} \tilde{\eta}-\tilde{\mathrm{a}}_{1} \frac{\partial \tilde{\eta}}{\partial \tilde{t}}-\tilde{s}_{1} \frac{\partial^{4} \tilde{\eta}}{\partial \tilde{x}^{\mu_{+}}}-\tilde{\mathrm{I}}_{\tilde{y} \tilde{y}}=\tilde{m}_{1} \frac{\partial^{2 \tilde{\eta}}}{\partial \tilde{t}^{2}}
$$

where

$$
\begin{aligned}
& \tilde{\mathrm{T}}_{1}=\text { the tension parameter } \\
& \tilde{\mathrm{e}}_{1}=\text { the elastic stiffness parameter, } \\
& \tilde{\mathrm{d}}_{1}=\text { the damping parameter, } \\
& \tilde{\mathrm{s}}_{1}=\text { the flexural rigiaity parameter }, \\
& \tilde{\mathrm{m}}_{1}=\text { the mass parameter }
\end{aligned}
$$

and $\quad \tilde{I}_{\tilde{y y}}=$ the component of the fluid stress tensor normal to the wall at $y=+1$. (Suffix "1" denotes parameters for the wall at $y=+1$.) The above component of the stress tensor is

$$
\tilde{I}_{y \tilde{y}}=-\tilde{p}^{\prime}+2 \mu \frac{\partial \tilde{v}^{\prime} t}{\partial \tilde{y}} \quad \text {, and hence } \tilde{\tilde{I}^{\prime}} \tilde{y}^{\prime}=-\tilde{p} \cdot-2 \mu \frac{\partial \tilde{u}^{\prime}}{\partial \tilde{x}} \quad \text { by continuity }
$$

(Here $\mu=$ viscosity and $\nu=\frac{\mu}{-}=$ kinematic viscosity.) The equation ρ
is now made dimensionless with respect to h, ρ, U_{b} and μ by putting
These expressions being evaluated at the wall $y=+1$.
$\eta=\frac{\tilde{\eta}}{h}, x=\frac{\tilde{x}}{h}, u^{\prime}=\frac{\tilde{u}^{\prime}}{\tilde{U}_{0}}, t=\frac{\tilde{t} U_{0}}{h}, T_{1}=\frac{\tilde{T}_{1} \rho h}{\mu^{2}}, e_{1}=\frac{\tilde{e}_{1} \rho h^{3}}{\mu^{2}}$,
$d_{1}=\frac{\tilde{a}_{1} h}{\mu}, p^{\prime}=\frac{\tilde{p}^{\prime}}{\rho U_{0}^{2}}, m_{1}=\frac{\tilde{m}_{1}}{\rho h}$ and $s_{1}=\frac{\tilde{s}_{1} \rho}{\mu^{2} h}$. We also use $u^{\prime}(+1)=\frac{d \phi(+1)}{d y} \exp \{-i a(x-c t)\}$ and Equations 2.2 .1 and 2.2.3, and
substitute into Equation 2.2.4 to obtain
$P^{\prime}(+1)=\phi(+1)\left\{\frac{a^{2} T_{1}}{c R^{2}}+\frac{e_{1}}{c R^{2}}+\frac{i a d_{1}}{R}+\frac{a^{4} s_{1}}{c R^{2}}-a^{2} c m_{1}+\frac{4 i a}{c R}\right\} \exp \{-i a(x-c t)\}$.
Substituting this in the x momentum equation (Equation 2.1.3), evaluated at $y=+1$, gives

$$
\frac{\mathrm{d}^{3} \phi(+1)}{\mathrm{dy}^{3}}+\frac{R}{E_{1}} \phi(+1)=0
$$

where $\quad E_{1}^{-1}=-\frac{a^{2}}{R}\left\{d_{1}+\frac{6}{c}\right\}+i\left\{\frac{a}{c R^{2}}\left\{e_{1}+a^{2} \mathrm{~T}_{1}+a^{4} s_{1}\right\}-a^{3} \mathrm{~cm}_{1}\right\}$.

This is the second boundary condition, obtained from dynamical considerations.

The two remaining boundary conditions are the corresponding boundary conditions obtained at the wall at $y=-1$. These are

$$
\frac{d \phi(-1)}{d y}+\frac{2}{c} \phi(-1)=0
$$

and

$$
\frac{d^{3} \phi(-1)}{d y^{3}}-\frac{R}{E_{2}} \phi(-1)=0
$$

where

$$
D_{2}^{-1}=-\frac{a^{2}}{R}\left\{d_{2}+\frac{6}{c}\right\}+i\left\{\frac{a}{c R^{2}}\left\{e_{2}+a^{2} m_{2}+a^{4} s_{2}\right\}-a^{3} c_{2}\right\} .
$$

(Suffix " 2 " denotes parameters for the mall at $y=-1$.)
These boundary conditions ooincide with those of ïsins and Price (1961a) except for the inclusions of the viscous component of the normel stress and flexural rigidity, the fact that there is no restriction to considering ϕ as symmetric and also that the problem of the two flexible walls having different physical properties mey be considered in the present work. The similarity between the present boundary conditions and those of Hains and Price facilitates comparisons or results. It should be noted that, with this scheme of dimensionless parameters, the flow may be varied by changing its velocity mithout affecting the parameters describing the flexible walls. As explained in Section 2.1, the eigenvalue, c, in these boundary conditions is the computational eigenvalue.

The parameters B_{1} and E_{2} will nom be rewritten to make them comparable with the parameters involved in other work in the field by putting

$$
c_{o j}^{2}=\frac{e_{j}+T_{j} a^{2}+s_{j} a^{4}}{m_{j} a^{2}} \quad \text { and } \quad D_{j}=\frac{a_{j}}{m_{j}}
$$

where $j=1$ or 2 depending on whether the $\pi \in l l$ is taiken at $y=+1$ or -1 . $c_{o j}$ is a dimensionless parameter representing the speed at which free waves mould propagate along the undamped flexible walls when there is no fluid in the two-dimensional pipe. Hence me obtain

$$
E_{j}^{-1}=-m_{j} D_{j} \frac{a^{2}}{R}-\frac{6 a^{2}}{c R}+i m_{j} \frac{a^{3}}{c}\left\{\frac{c o j}{R^{2}}-c^{2}\right\}
$$

A wide class of physical boundaries may be approximated by this representation. For comparison with the work by Landahl and Kaplan (1965) on the boundary layer problem, taking into account the different schemes of dimensionless variables, the following table is useful. (Here, the surfix " j " is dropped for the moment.)

Landahl and Kaplan	present mork
m	m
$\omega_{0}{ }^{2}$	e
	$\overline{m R^{2}}$
$c_{0}{ }^{2}$	T
	$\overline{m R}$
d	D
	$\overline{\mathrm{R}}$
not taken into	s
account	

In the work of Landahl and Kaplan, the parameters defining the wall properties are made dimensionless more appropriataly in terms of U_{∞} and δ. (U_{m} equals the steady velocity of the boundary layer as y tends to infinity and δ equals the boundary layer thickness, which is not constant in the x direction.) There is some difficulty in interpreting their results to obtain results for fixed physical situations unless a "tailored" wall is employed. (The term"tailorad"
is used to describe a wall whose physical properties are altered to compensate for the change in thickness of the boundary layer. Of course, the wall equation itself is not changed so that this interpretation is unsound when the boundary layer thickness changes too rapidly: a si.tuation which does not exist for the plane Poiseuille flow problen., The variety of possible schemes of dimensionless variables has lead to some coniusion in the past.
2.3. Related problems.

There are a number of problems closely related to the present problem, some of which are listed belon. They are not only related physically, but also, their solution may be tackled by the technique which will be described later.
1). The same problem as at present, with the condition of wall inextensibility in the streamisise direction relaxed. 2). The problem of plane Couette flow with flexible walls. 3). The problem of plane Poiseuille flow of a dusty gas.

These problems can be considered seperately or in any combination and involve variations in the boundary conditions and steady velocity profile.
3.1. Outline of the method of solutions

We now have to solve the boundary value problem of the Orr-Sommerfela equation (Equation 2.1.6)
$\frac{d^{4} \phi}{d y^{4}}-2 a^{2} \frac{d^{2} \phi}{d y^{2}}+a^{4} \phi+i a R\left\{(U-c)\left\{\frac{d^{2} \phi}{d y^{2}}-a^{2} \phi\right\}-\frac{d^{2} U}{d y^{2} \phi}\right\}=0$,
where $\phi=\phi(y)$ and $\mathrm{U}=\left(1-\mathrm{H}^{2}\right)$, with the boundary conditions (Equations $2.2 .3,2.2 .5,2.2 .6,2.2 .7$ and 2.2.8)

$$
\begin{aligned}
& \frac{d \phi(+1)}{d y}-\frac{2}{c} \phi(+1)=0, \\
& \frac{d^{3} \phi(+1)}{d y^{3}}+\frac{R}{E_{1}} \phi(+1)=0, \\
& \frac{d \phi(-1)}{d y}+\frac{2}{c} \phi(-1)=0 \quad \text { and } \\
& \frac{d^{3} \phi(-1)}{d^{3}}-\frac{R}{E_{2}} \phi(-1)=0,
\end{aligned}
$$

$$
z_{j}^{-1}=-m_{j} D_{j} \frac{a^{2}}{R}-\frac{6 a^{2}}{c R}+i m_{j} \frac{a^{3}}{c}\left\{\frac{c_{0 j}^{2}}{R^{2}}-c^{2}\right\}
$$

We regard this as an eigenvalue problem for c and proceed to solve it to obtain numerical values of the eigenvalue for given values of the fluid parameters and physical wall parameters. Because the boundary conditions contain c in a rather complicated way, the most common and convenient way of coping with this difficulty is to first obtain eigenvalues for fixed values of the parameters E_{I} and E_{Q}. This we do using a new variational approach. We then use these results and adopt an iteration scheme, similar to the one used by Kaplan (1964), which gives us the eigenvalues in terms of fixed physical wall paraneters. This approach to the problem provides an accurate and speedy solution from which we may easily obtain as many eigenvalues from the spectrum as we wish, within the space limitations of the computer being employed. We may also obtain the corresponding eigenvectors and hence the stream function and Reynolds stress distributions across the channel.

3.2. The variational formulation.

The variational formulation about to be presented is not peculiar to the particular problem associated with the present mork and hence will be stated in general form. In essence, we merely extend the conventional variational problem to one which includes the boundary conditions as well as the governing equation, and we will therefore develop our general formulation in parallel with the conventional variational formulation.

Suppose we have a differential equation $I \phi=0$, where I is a linear differential operator defined in the range $\left[y_{1}, y_{2}\right]$ and ϕ is some function of y. ife denote the set of boundary conditions at y_{i} and y_{2} by $\{\mathrm{B} \phi\}=0$. The adjoint operator L^{m}, together with a set of adjoint boundary condition operators $\{B=1$, is defined such that, if u is any function satisfying $\{B u\}=0$ and v is any function satisfying $\left\{B^{N} v\right\}=0$, then

$$
\left\langle v, I_{u} u\right\rangle-\left\langle L^{n} v, u\right\rangle=0 \text {, where the inner product of } a \text { and }
$$

b is defined as

$$
\langle a, b\rangle=\frac{1}{y_{2}-y_{1}} \int_{y_{1}}^{y_{2}} \overline{a b} d y \quad \text {, the star denotin } \tilde{E}
$$

an adjoint and the bar a complex conjugate. How, inserting the OrrSomerfeld equation and the flexible wall boundary conditions (see Section 3.1) for $I_{\phi}=0$ and $\{B \phi\}=0$ respectively, we obtain the corresponding adjoint differential equation and adjoint boundary conditions (aiter integration by parts). The complex conjugate, adjoint differential equation is found to be

$$
\begin{gather*}
\frac{d^{4}-\bar{\phi}^{2}}{d y^{4}}-2 a^{2} \frac{d^{2} \bar{\phi}^{2}}{d y^{2}}+a^{4-\bar{\phi}^{2} \div i a R}\left\{\frac{d^{2} \bar{\phi}^{2} \dot{d y}}{d y^{2}} \frac{d^{2}\left(y^{2} \bar{\phi}^{2}\right)}{d y^{2}}+\left(2-a^{2}+a^{2} y^{2}\right) \bar{\phi} \dot{z}\right\} \\
\\
-\operatorname{ciaR}\left\{\frac{d^{2} \overline{\phi^{2}}}{d y^{2}}-a^{2} \bar{\phi}^{2}\right\}=0,
\end{gather*}
$$

Where $\bar{\phi}{ }^{\text {r }}=\bar{\phi}(y)$ o ihe complex conjugate, adjoint boundary conditions
are found to be

$$
\begin{align*}
& \frac{d^{3} \bar{\phi} \dot{x}(+1)}{d y^{3}}-\frac{2 d^{2} \bar{\phi}^{2}(+1)}{c \cdot d y^{2}}+\left\{\frac{R}{E_{1}}+\frac{4 a^{2}}{c}\right\} \bar{\phi} \cdot x(+1)=0, \\
& \mathrm{~d} \bar{\phi} \dot{\phi}(+1) \\
& d y \\
& \frac{d^{3} \overline{\phi^{n}}(-1)}{d y^{3}}+\frac{2}{c} \frac{d^{2} \bar{\phi}^{\lambda}(-1)}{d y^{2}}-\left\{\frac{R}{E_{2}}+\frac{4 a^{2}}{c}\right\} \bar{\phi}+(-1)=0 \quad \text { and } \\
& \frac{d \bar{\phi} \overline{7}(-1)}{d y} .
\end{align*}
$$

Now we consider vectors $\underset{f}{f}(\underline{I})$ and $g(\mathbb{Z})$, both belonging to a Hilbert space and being quadratically integrable, where

$$
\begin{aligned}
& \underline{Z}=\left(\pi_{1}, \pi_{2}, \ldots, \pi_{m}\right), \\
& f^{f}(\underline{I})=\left(f_{1}(\underline{Z}), f_{2}(\text { II }), \cdots, f_{n}(\text { III }) \quad\right. \text { and } \\
& E(\text { II })=\left(g_{1}(\underline{\text { U }}), g_{2}(\underline{\text { II }}), \cdots, g_{n}(\underline{I})\right) \text {. }
\end{aligned}
$$

Corresponding to the inner product of two scalar functions, we define

$$
\begin{aligned}
\langle\underline{f}, g\rangle=\sum_{i=1}^{n} \frac{1}{S} \int_{V} \bar{f}_{i} b_{i} d V \text {, where } S=\int_{V} d V \text { and } \\
d V=d v_{1} d v_{2} \text {. . } d r r_{m} \cdot \text { we now define }
\end{aligned}
$$

We shall interpret these equations with $I \phi=0$ as the Orr-Sommerfeld equation, $\left\{B_{i} \phi\right\}=0(i=1,2,3$ and 4$)$ as the corresponding boundary conditions, $\overline{\mathrm{L}} \bar{\phi}^{\boldsymbol{\beta}}=0$ as the complex conjuzate, adjoint squation and $\left\{\bar{B}_{i}^{\prime} \bar{\phi}{ }^{-}\right\}=0(i=1,2 ; 3$ and 4$)$ as the complex conjugate, adjoint boundary conditions (see Section 3.1 and Equations 3.2 .1 and 3.2.2). The a_{i}, b_{i}, c_{i} and $d_{i}(i=1$ and 2) are determined by denanding that
$\left\langle\underline{u}^{\wedge}, \underline{H}(\underline{u})\right\rangle-\left\langle\underline{H}^{\mu}\left(\underline{u}^{\sim}\right), \underline{u}\right\rangle=0$ is satisfied, where, in our case $\phi=\phi(y)$ and $\int_{V} d V=\int_{-1}^{+1} d y$. These criteria establish the necessary
structure of the Hilbert space.
Ye nor return to the one-dimensional case. Then ϕ and ϕ^{ϕ} are solutions of their respective problems, the functional I, which is equal to $\left\langle\phi^{r}, I \phi\right\rangle$, is zero, and is stationary with respect to appropriately restricted arbitrary variations in ϕ and $\phi^{\text {f. }}$. The appropriate restrictions are that the variations must satisfy the boundary conditions of the appropriate problem. This is equivalent to saying that $I_{\phi}=0$ and $L^{\prime \prime} \phi=0$ are Euler equations of the problem under consideration.

If we now suppose that the operator L is of the form $L=P-\lambda 0$ (where λ is an eigenvalue), then we can shor that the ratio
$\frac{\left\langle\phi^{\prime}, P \phi\right\rangle}{\left\langle\phi^{n}, Q \phi\right\rangle}$ is stationary with respect to the same variations as before, when ϕ and $\phi^{\text {tr }}$ are eigenfunctions. Also, it takes on the value of the appropriate eigenvalue when ϕ and ϕ^{2} are eigenfunctions. For an error of order ε in ϕ and ϕ^{γ}, the error in λ is of order ε^{2}. Hence, reasonably close approximations to the eigenfunctions may produce more accurate estimates of λ.

The conventional variational method takes series of approximating functions f_{n} and f_{n}^{\prime} which satisfy $\left\{B_{n}\right\}=0$ and $\left\{B_{n}^{\prime} f_{n}^{\prime}\right\}=0$ respectively. iie put

$$
\phi=\sum_{n=1}^{N} a_{n} f_{n} \quad \text { and } \quad \phi^{\dot{x}}=\sum_{n=1}^{N} a_{n}^{\beta ; f_{n}^{\prime}} \text {, where } a_{n} \text { and } a_{n}^{*} \text { are }
$$

undetermined constants. Substituting these series into

$$
I=\left\langle\phi^{r},(\mathrm{P}-\lambda Q)_{\phi}\right\rangle \text {, we obtain } I=\sum_{n=1}^{N} \sum_{m=1}^{M} \overline{a_{n}} \hat{a}_{m}\left(B_{n m}-\lambda D_{n m}\right),
$$

where

The constants, a_{m} and $\overline{a_{n}}$, are now determined by requiring I to be stationary rith respect to variations in these constants. If I is stationary with respect to $\overline{a_{n}}$, we obtain

$$
\sum_{\mathbb{m}=1}^{N} a_{m}\left(B_{r m}-\lambda D_{n n}\right)=0 \quad(n=1,2, \ldots, N)
$$

If I is stationary with respect to a_{m}, we obtain

$$
\sum_{n=1}^{N} \vec{a}_{n}^{\vec{n}}\left(B_{n m}-\lambda D_{n m}\right)=0 \quad(m=1,2, \ldots, N)
$$

We therefore have a set of N homogeneous, algebraic equations for the N $a_{\text {III }}^{\prime} s$ and a seperate set of N equations for the $N \overline{a_{n}} s$. There are non-trivial solutions:if, and only if,

$$
\left|E_{n m}-\lambda D_{n m}\right|=0
$$

This determines the eigenvalues, λ, and the eigenvectors, whose components are the $a_{m}^{\prime} s$ and $a_{n}^{\hat{A}}$'s. We may truncate the series at any point and examine the convergence by incrementing N.

Fe now generalise the previous argument: when \underline{u} and \underline{u} are solutions to their respective problems, we demand that

$$
\left\langle\underline{u}^{\dagger}, \underline{H}(\underline{u})\right\rangle \quad \text { is zero and is stationary }
$$

Fith respect to variations in \underline{u} and \underline{u}^{*}. Since the boundary conditions have been included in the $H(\underline{u})$ and $H *(\underline{u} *)$, we choose the variations in \underline{u} and \underline{u}^{h} arbitrarily and continue as in the one-dimensional case. This is equivalent to substituting some approxiwating series for ϕ in the differential equation and boundary conditions and, in some suitable manner, adding up the residues and setting them equal to zero. The
best choice of an approximating series mould appear to be such that the series is complete, not too restrictive and rapidly convergent. This technique for solving an eigenvalue problem, when the boundary conditions for the problem contain the eigenvalue, is suggested by Friedman (1956). It is also suggested indirectly by Finlayson and Scriven (1966).

2.3. The iterative scheme.

We now incorporate the previous variational technique (Section 3.2) into an iterative scheme, developed by Kaplan (1964), for finding the eigenvalues (c) in terms of fixed physical wall properties. We take identical malls, with $E_{1}^{-1}=E_{Q}^{-1}=e$, and wish to find the eigenvalues for given values of a, R and the physical wall parameters. Employing a given (guessed) value of an eigenvalue ($c=c^{\circ}$) in our expression for e, as mell as a, R and the physical wall parameters, we obtain an initial value for $e\left(=e^{0}\right)$, for use in the variational part of the problem. From the resultant spectrum, we take the eigenvalue correspondire to $c^{0}\left(c^{1}\right)$ and, from c^{1}, obtain a new value of $e\left(e^{1}\right)$. The sense in which the eigenvalue chosen from the spectrum corresponds to c°, depends on the particular eigenvalue sought. Usually, me are seeking the most unstable eigenvalue for a given physical situation, and so me choose the most unstable eigenvelue from the spectrun. If the initial eigenvalue guess had been a sufficiently good guess at an eigenvalue
of the problem, we would have $e^{0}=e^{1}$ and $c^{0}=c^{1}$ (these tro conditions occuring together). Hore generally, for any given guessed eigenvalue, e^{0} and e^{1} mould differ, and the iterative scheme is developed so that we may make this difference as small as we choose in finding an eigenvalue of the problem. (We use the difference betreen e^{0} and e^{1} as our error criterion for purely numerical reasons, explained in Section 4.5.) To do this we now define $K=e^{0}-e^{1}$, and the zeros of K correspond to eigenvalues of the problem. Considering K as a Taylor series in c^{1} and truncating the Taylor series, we have, approximately,

$$
K\left(c^{1}\right)=e^{0}-e^{1}=A+B c^{1} \text {, where } A \text { and } B \text { are }
$$ constants. The value of e^{0} is calculated using the estimated eigenvalue, c°, and two values of e, e_{1}^{0} and e_{2}^{0}, lying on either side of e^{0}, and close to it, are employed in the variational part of the problems giving $c_{1}^{\frac{1}{1}}, e_{1}^{\frac{1}{1}}, c_{2}^{\frac{1}{2}}$ and $e_{2}^{\frac{1}{2}}$. This gives us

$$
\begin{aligned}
& e_{1}^{0}-e_{1}^{1}=A+B c_{1}^{1}=K\left(c_{1}^{1}\right)=K_{1} \\
& e_{2}^{0}-e_{2}^{1}=A+B c_{2}^{1}=K\left(c_{2}^{1}\right)=K_{2}
\end{aligned} \quad \text { and } \quad \text {, }
$$

We therefore obtain

$$
A=\frac{K_{R} c_{1}^{\frac{1}{1}-K_{1} c_{2}^{1}}}{c_{1}^{1}-c_{2}^{1}} \quad \text { and } \quad B=\frac{K_{1}-K_{2}}{c_{1}^{1}-c_{2}^{1}}
$$

The next estimate of the eigenvalue of the problem, c^{2}, is given by
$A+B c^{2}=0$, i.e. $\quad c^{2}=-\frac{A}{B}=\frac{K_{1} c_{2}^{1}-K_{2} c_{1}^{1}}{K_{1}-K_{Q}}$

Proceeding as before, we may use c^{2} to calculate a value of $e\left(e^{2}\right)$, and hence obtain an eigenvalue c^{3} and then a value e^{3}. In assessing the proximity of c^{2} to an eigenvalue of the problem, we compare e^{2} and e^{3}. This is the basis of the iterative scheme for the case where ve have identical walls. For different walls, we may adopt a similar iterative technique, but in this case the iterative technique vould be based on changes in c, since e would take different values for each wall. Although it is possible to devise more sophisticated iterative schemes, the one outlined above is particularly straightforward and appears to present no difficulties with convergence in the numerical computations.

Chapter 4. Computational aspects of the problem.

4.1. The different variational formulations considered.

If the problem is set up using the general variational technique described (Section 3.2), it is found that there is a certain freedom in the representation of the problem. This can be explained by the fact that the technique involves substitution of an approximating series in the differential equation and boundary conditions, followed by a suitable combining of the resultant residues. The different representations of the problem which are possible, correspond to weighting the boundary conditions in different ways.

The problem ras first set up as in Appendix A.1, with no preconceived ideas as to possible difficulties. Due to the complicated nature of the boundary conditions and differential equation, it was found that the latitude in choosing the formulation was small. In the second and third positions of the vector $\overline{\bar{u}}$, we find terms from the problem (ϕ), mixed mith terms from the adjoint problem ($\phi^{\dot{p}}$). Consider the problen reduced to the form of a matrix to be solved, and consider the (m, n) position of this matrix. In our general approach, the $\bar{u}^{\text {a }}$ is associated vith the m, and the $\underline{H}(\underline{u})$ is associated with the n. It can be seen that there is difficulty in deciding whether to associate the mixed ϕ terms (in $\overline{\vec{u}}{ }^{\wedge}$) with the m or the n . The problem was done both ways, and these rere called Formulations 1 and 2.

To overcome the difficulty of these mixed terms, the problem was reformulated, as in Appendix A.2, and this was called Formulation 3. It can be seen that the problem of mixed terms still occurs, but this time in the adjoint problem.

As will be seen, the adjoint problem will be required in finding the stream function and Reynolds stress distributions of the problem, and so, to remove these mixed terms altogether, Formulation $4+$ was calculated. Previously, we defined $\underline{H}(\underline{\underline{u}}), \underline{H} \underline{H}^{\prime}, \underline{u}$ and \underline{u}^{*} with a dimension of five (corresponding to the differential equation and the four boundary conditions). For Formulation 4, we redefine these as
(N.B. The last two terms in the vectors $\underline{H}(\underline{\sim})$ and $\overline{\underline{H}}(\underline{\underline{u}}$) are the first pair of boundary conditions repeated.) The $a_{i}, b_{i}, c_{i}, d_{i}, e_{i}$ and $f_{j}(i=1$ and 2) are found as before. Nothine nem is involved in this enlarging the dimensions of the vectors. We are, in effect, adding up the differential equation residue and the boundary condition residues
in a different way. Formulation 4 is given in Appendix A. 3 and, with this formulation, we eliminate the previous difficulty from both the problem under consideration and its adjoint.

4.2. The approximating series.

Te choose trigononetric functions for the approximating functions for both ϕ and ϕ. These form a complete set and have no inherent disadvantages. Because of the more general formulation of the problem, these approximating functions do not have to satisfy the boundary conditions.

For the rigid wall problem, a variety of test functions have been employed. Lee and Reynolds (1967) solve the problem of plane Poiseuille flow by a variational method, using polynomial approximating functions which satisfy the rigid wall boundary conditions. Dolph and Levis (1958), in their approach to the same problea, adopt approximating functions, ϕ_{n}, Which are eigenfunctions of the boundary value problem

$$
\frac{d^{l_{t}} \phi_{n}}{d y^{4}}-2 a^{2} \frac{d^{2} \phi_{n}}{d y^{2}}+a^{4} \phi_{n}=\lambda_{n}\left\{a^{2} \phi_{n}-\frac{d^{2} \phi_{n}}{d y^{2}}\right\}
$$

with $\phi_{n}(\pm 1)=\frac{d \phi_{n}}{d y}(\pm 1)=0$, where λ_{n} is the eigenvalue and $\phi_{n}=\phi_{n}(y)$.
Grosch and Salwen (1968), in their paper on steady and time dependent
plane Poiseuille flow, adopted similar functions to Dolph and Leris. In both of these latter papers, the approximating functions were a combination of hyperbolic and trigonometric functions. Chebyshev polynomials have also been used to solve related stability problems

For this analysis, a half range Fourier series was chosen as the approximating series, i.e. $\cos (n \pi y / 2)(n=0,1,2, \ldots)$ and $\sin (n \pi y / 2)(n=0,1,2, \ldots)$. We may truncate the series, and the order of the terms in the truncated series is unimportant. In certain circumstances, it may be advantageous to take a different number of cosine terms to sine terms, in order to shorten the numerical work without affecting the accuracy of the results. In the case of symnetric disturbances, only the even cosine series is required.

It should be noted that the functions corresponding to a full range Fourier series for the interval, i.e. $\cos (n \pi y)(n=0,1$, 2, ...) and $\sin (n \pi y)(n=0,1,2, \ldots$. . $)$, are too restrictive. This may be seen by substituting into the previous formulations, when it is found that dependence on the wall parameters, F_{1} and E_{2}, reduces to dependence on $\left(E_{1}^{-1}-E_{2}^{-1}\right)$ and $\left(E_{1}^{-1}+E_{2}^{-1}\right)$ with the half range Fourier series, and $\left(B_{2}^{-1}-E_{2}^{-1}\right)$ with the full range Fourier series. Hence, when $E_{1}=E_{2}$ (i.e. the malls have the same properties), all dependence on the walls vanishes with the full range Fourier series; an unsatisfactory situation, which shows the inadequacy of this approximating series.

It would appear that a reasonable number of terms of the chosen series is suitable for approximating the stream function near the critical point ($y=y_{c}$, where $U\left(y_{c}\right)=1-y_{c}^{2}=c_{r}$ and $c=c_{r}+i c_{i}$) and the wall, where rapid changes might be'expected (as for the stream function distribution given by Thomas (1953) for rigid mall, plane Poiseuille flow at $a=1$ and $R=10000$). This was not used as a criterion to establish our approximating series, but does give us reason to believe that our chosen series will converge rapidly. In fact, our series was chosen as generally as possible. Comparisons of stream functions will be given later (see Section 5.2).

4.3. Comparison of the formulations.

Since there is variability in the formulation of the approximete solution, it is of some interest to examine the effects that jifferent formulations may have on the results. Therefore, using these approximating functions, the matrices corresponding to the different formulations were set up (as described later, in Section 4.4). The eigenvalues of these matrices were computed, and comparisons made between the different formulations. For symmetric disturbances only, a cosine series is necessary, and convergence of the most unstable eigenvalue was examined for $E_{1}=E_{2}=10^{-4}$ at $a=1$ and $R=1600$ and 2500. As will be seen, this value of E_{1} and E_{2} corresponds to effectively rigid walls. Results for the difierent formulations are given in Tables 1 and 2, and these results are further discussed

in Section 5.2.

It can be seen that, apart from Formulation 2, there is very little difference in the convergence of the different formulations. It should be expected that any formulation which satisfies the criteria initially stated will converge to the correct result. We mould hope to pick a formulation which converged reasonably quickly. Because of the complicated nature of the differential equation and boundary conditions, we have, in fact, very little latitude in choosing the formulations. The result is that, for the main part, the different forgulations converge, in the eigenvalues, with equal speed. Formulation 4 is the one chosen, since it allows the adjoint problem to be calculated without the complication previously mentioned. Apart from providing a good check on the arithmetic, the solution of the adjoint problem proves to be the most satisfactory for calculating the stream function and Reynolds stress distributions (this point will be discussed in Section 4.5).

It can be seen from the definitions of Φ_{1} and E_{2}, that rigid walls correspond to $\left|s_{2}\right|$ and $\left|E_{0}\right|$ tending to zero. Calculations, typically as given in Table 3 (and further discussed in Section 5.2) for Formulation 4 (the chosen formulation), show that a sufficiently small value of E_{1} and E_{2} to simulate a rigia rall (or to make the ratio of wall to fluid resistance very large) is 10^{-4}. The arguments of E_{1} and E_{2} are seen to be unimportent in this respect.

4.4. Calculations for the chosen formulation.

For the reasons given in Section 4.3, Formulation 4 is chosen. We return now to set up the approximate solution, using Formulation 4 as given in Appendix A.3. (The principles are the same for setting up the approximate solution using any of the other formulations.)

Continuing with Formulation 4 therefore, we have

$$
\begin{aligned}
& I=\left\langle\underline{u}^{*}, \underline{I}(\underline{u})\right\rangle=\int_{-1}^{+1} \ddot{\phi}^{*}\left\{\frac{d^{4} \phi}{d y^{4}}-2 a^{2} \frac{d^{2} \phi}{d y^{2}}+a^{4} \phi+\operatorname{iaR}\left\{\left(1-y^{2}\right)\left\{\frac{d^{2} \phi}{d y^{2}}-a^{2} \dot{\varphi}\right\}\right.\right. \\
& +2 \phi\}] \partial y \\
& +2 \phi(+1)\left\{-i \varepsilon R \bar{\phi} \dot{\phi}(+1)+\frac{1}{2} \frac{d^{3} \bar{\phi}^{*}(+1)}{d y^{3}}+\frac{R}{2 \Sigma_{1}} \bar{\phi}^{*}(+1)\right\} \\
& +2 \phi(-1)\left\{-i a R \bar{\phi}(-1)-\frac{1}{2} \frac{d^{3}-\mu(-1)}{d y^{3}}+\frac{R}{2 \Phi_{0}} \bar{\phi}^{j}(-1)\right\} \\
& +\left\{\frac{E_{1} d^{3} \phi(+1)}{R} \frac{y^{3}}{d y^{3}}+\phi(+1)\right]\left\{-\frac{R}{E_{1}} \bar{\phi}^{2 x}(+1)\right\} \\
& +\left\{\frac{\mathrm{E}_{2} \mathrm{~d}^{3} \phi(-1)}{\mathrm{R}} \frac{\mathrm{dy}}{}{ }^{3}-\phi(-1)\right\}\left\{\frac{\mathrm{R}}{\mathrm{~F}_{2}} \bar{\phi}(-1)\right\} \\
& -c\left\{\int_{-1}^{+1} \bar{\phi}^{i \pi}\left\{\operatorname{iaR}\left\{\frac{d^{2} \phi}{d y^{2}}-a^{2} \phi\right\}\right\} d y\right.
\end{aligned}
$$

$$
\left.-\frac{d \phi}{d y}(-1)\left\{-i a R \bar{\phi}^{\rightsquigarrow}(-1)-\frac{1}{2} \frac{d^{3} \bar{\phi}^{3}(-1)}{d y^{3}}+\frac{R}{2 \bar{\phi}_{2}} \bar{\phi}^{t}(-1)\right\}\right\},
$$

where $\phi=\phi(y)$ and $\bar{\phi}^{*}=\bar{\phi}^{x}(y)$ in the integral terms. For our approximating series (see Section 4.2), we substitute

$$
\begin{aligned}
& \phi(y)=\sum_{m=0}^{N-1} a_{m} \cos (m \pi y / 2)+\sum_{m=N}^{I N+H-1} a_{m} \sin \left((m-N) m_{y} / 2\right) \quad \text { and } \\
& \bar{\phi}^{\dot{n}}(G)=\sum_{n=0}^{N-1} \bar{a}_{n}^{\dot{\alpha}} \cos (n \pi y / 2)+\sum_{n=N}^{N+\dot{N}-1} \bar{a}_{n}^{\dot{\mu}} \sin \left((n-N)_{\pi y} / 2\right) \cdot
\end{aligned}
$$

Since the series have been truncated, we will get identical results for any order of the functions in the approximating series, so me order then as above. Ir we initially suostitite

$$
\phi(y)=\sum_{m=0}^{N+!-1} a_{m} g_{m}(y) \quad \text { and } \quad \bar{\phi} \vec{x}(y)=\sum_{n=0}^{M+!-1} \bar{a}_{n^{n}}^{n} n(y)
$$

in <un, $\underline{H}(\underline{u})\rangle$, we obtain

$$
I=\left\langle\underline{u}^{\dot{*}}, \underline{H}(\underline{u})\right\rangle=\sum_{n=0}^{N+\infty-1} \sum_{m=0}^{N+N-1} \bar{a}_{n}^{\dot{k}} a_{n}\left(\left(B_{n m}\right)-c\left(D_{n m}\right)\right),
$$

where

$$
\begin{aligned}
& B_{n M}=\int_{-1}^{+4} f_{n}\left\{\frac{d^{4} g_{m}}{d y^{4}}-2 a^{2} \frac{d^{2} g_{m}}{d y^{2}}+a^{4} g_{m}+i a R\left\{\left(1-y^{2}\right)\left\{\frac{d^{2} g_{m}}{d y^{2}}-e^{2} g_{n}\right\}\right.\right. \\
& \left.+2 \varepsilon_{m i}\right\} d y \\
& +2 g_{m}(+1)\left\{-i a R f_{n}(+1)+\frac{1}{2} \frac{d^{3} f_{n}(+1)}{d y^{3}}+\frac{R}{2 E_{1}} f_{n}(+1)\right\} \\
& +2 g_{m}(-1)\left\{-i a B f_{n}(-1)-\frac{1}{2} \frac{d^{3} f_{n}(-1)}{d y^{3}}+\frac{R}{2 S_{2}} f_{n}(-1)\right\} \\
& +\left\{\frac{E_{1} d^{3} E_{m}(+1)}{R y^{3}}+g_{m}(+1)\right\}\left\{-\frac{R}{E_{1}} f_{n}(+1)\right\} \\
& +\left\{\begin{array}{l}
E_{2} d^{3} g_{\mathrm{ta}}(-1) \\
R d y^{3}
\end{array}-g_{m}(-1)\right\}\left\{\begin{array}{l}
R \\
E_{2} \\
f_{n}(-1)
\end{array}\right\} \\
& D_{n m}=\int_{-1}^{+1} f_{n}\left\{\operatorname{iaR}\left\{\frac{d^{2} E_{m}}{d y^{2}}-a^{2} \varepsilon_{n}\right\}\right\} d y \\
& +\frac{d g_{m}(+1)}{d y}\left\{-i a R f_{n}(+1)+\frac{1}{2} \frac{d^{3} f_{n}(+1)}{d y^{3}}+\frac{R}{2 E_{1}} f_{n}(+1)\right\} \\
& -\frac{d E_{m}(-1)}{d y}\left\{-i a R f_{n}(-1)-\frac{1}{2} \frac{d^{3} f_{n}(-1)}{d y^{3}}+\frac{R}{2 F_{n}} f_{n}(-1)\right\}
\end{aligned}
$$

Nom, if we substitute the trigonometric functions for f_{n} and g_{n},
as defined, it can be seen that the matrices ($B_{n m}$) and ($D_{n m}$) may be partitioned in the following manner

$$
\begin{aligned}
& \left(B_{n m}\right)=\left[\begin{array}{c:c}
\left(B_{11}(p, q)\right) & \left(B_{12}(p, q)\right) \\
\hdashline\left(B_{21}(p, q)\right) & \left(B_{22}(p, q)\right)
\end{array}\right] \\
& \left(D_{n m}\right)=\left[\begin{array}{lll}
\left(D_{11}(p, q)\right) & \left(D_{12}(p, q)\right) \\
- & -1 & -1
\end{array}\right] .
\end{aligned}
$$

and

Here, $\left(B_{11}(p, q)\right)$ and $\left(D_{11}(p, q)\right)$ correspond to $f_{p}(y)=\cos (p a y / 2)$ $(\mathrm{p}=0,1, \ldots, N-1)$ and $\mathrm{g}_{\mathrm{q}}(\mathrm{y})=\cos (q \pi y / 2)(\mathrm{q}=0,1, \ldots, \ldots 1)$, $\left(B_{12}(p, q)\right)$ and $\left(D_{12}(p, q)\right)$ correspond to $f_{p}(y)=\cos (p r y / 2)$ $(p=0,1, \ldots, N-1)$ and $g_{q}(y)=\sin (q \pi y / 2) \quad(q=0,1, \ldots, H-1)$, ($B_{21}(p, q)$) and ($\left.D_{21}(p, q)\right)$ correspond to $f_{p}(y)=\sin (p \pi y / 2)$ $(p=0,1, \ldots, 1-1)$ and $g_{q}(y)=\cos (q \pi y / 2) \quad(q=0,1, \ldots, N-1)$ and $\left(B_{22}(p, q)\right)$ and $\left(D_{22}(p, q)\right)$ correspond to $f_{p}(y)=\sin (p r y / 2)$ $(p=0,1, \ldots, \ldots-1)$ and $g_{q}(y)=\sin (q \pi y / 2) \quad(q=0,1, \ldots, N-1)$. The size of the matrices ($B_{n m}$) and ($D_{n \pi}$) is ($M+N, N+N$), and the sizes of the smaller matrices are given by the maxima of the indices p and q. The entries for $\left(B_{n m}\right)$ and ($D_{n m}$), after substitution of the approximating series, are given in Appendix B.1. It can be seen that the rows $n=N$ and columns $m=N$ of $\left(B_{n m}\right)$ and ($D_{n m}$, corresponding to
$\sin (0)$ (ie. zero), are identically zero. In the computations, these rows and column are omitted.

Now we demand that the functional, I, is stationary with respect to variations in \underline{u} and $\underline{\underline{w}}^{\text {s }}$ (ie. with respect to variations in a_{m} and $\left.\overline{a_{n}}\right)$. Applying this, we obtain that

$$
\begin{array}{r}
\frac{\partial I}{\partial a_{n}^{-\alpha}}=0 \text { leads to } \sum_{m=0}^{N+N-1} a_{m}\left(\left(B_{n n}\right)-c\left(D_{n m}\right)\right)=0 \\
(n=0,1, \ldots, H+\cdots-1)
\end{array}
$$

and

$$
\frac{\partial I}{\partial a_{m}}=0 \text { leads to } \quad \sum_{n=0}^{N+i m-1} \bar{a}_{n}^{n}\left(\left(B_{n m}\right)-c\left(D_{n m}\right)\right)=0
$$

$$
(\mathrm{m}=0,1, \ldots, \mathrm{~N}+\mathrm{i}-1) .
$$

 linear equations for the ($\mathrm{N}+\mathrm{n}$) $\overline{\mathrm{a}}_{\mathrm{n}}$'s. He get nontrivial solutions if, and only if,

$$
\left|\left(B_{n m}\right)-c\left(D_{n m}\right)\right|=0, \quad \text { L.4.4 }
$$

which defines our eigenvalues c.
As we shall be continuing with Formulation 4, the other formulations are not given. The matrices for the adjoint of our problem, using Formulation 4, were also calculated. The procedure was the same as that employed above, and the resulting entries of the matrices are given in Appendix B.2. For the adjoint problem, the functional taken is $I=\left\langle\underline{u}, H^{*}\left(\underline{u}^{*}\right)\right\rangle$, instead of $I=\left\langle\underline{u}^{*}, \underline{H}(\underline{u})\right\rangle$. (Actually, we have

1.5. Numerical considerations.

To obtain numerical results, we must determine the eigenvalues (c) of the characteristic equation (Equation 4.4.1)

$$
\left|\left(B_{n m}\right)-c\left(D_{n m}\right)\right|=0,
$$

the entries of the matrices (E_{nm}) and (D_{nn}) in this characteristic equation being given in Appendix B.1. Standard numerical eigenvalue procedures are normally based on ($D_{n \pi}$) being a unit matrix. It is therefore necessary, having computed the entries of (s_{nm}) and (D_{nm}), to multiply the characteristic equation by the inverse of (D_{nm}) $\left(\left(D_{n m}\right)^{-1}\right)$. This gives us

$$
\left|\left(\left(D_{n m}\right)^{-1}\left(B_{n m}\right)\right)-c(I)\right|=0,
$$

where (I) is the unit matrix. In order to obtain accurate inverses of the matrices involved, a double precision matrix inversion routine was used. The eigenvalue routine, which also found the eigenvectors, was a FOPTRAN coded program; Share number SDA 344 f. Another routine, Share number SDA 3099, which only evaluated the eigenvelues, was also adapted for use with the program.

Checks may be kept on the accuracy of the inversion and eigenvalue routines. The number of eigenvalues obtained, and their accuracy, is determined by the number of terms used in the approximating series. We consider only symmetric disturbances, employing an approximating series of cosines only, and find that a thirty term approximating
series gives us the most unstable eigenvalue with sufficient accuracy. We gauge our accuracy by comparison with previous rigid wall mork, and by incrementing our approximating series until the resultant stability curves and stream function ond Reynolds stress distributions become insensitive to further increase. Be obtain results accurate to four decinal places, and results showing the accuracy of the present computations are described in Chapter 5. The complete spectrum of eigenvalues and eigenvectors is obtained from this part of the program.

The necessary stability curves may be obtained from the eigenvalues. then difficulty was encountered in obtaining accurate results for the eigenvalues, it was found that use of an eigenvalue pivot was very beneficial. Lee and Reynolds (1967) employed such a technique in their study of the rigid wall problem. :Then eigenvalue routines find the eigenvalue of largest modulus first (and most accurately), the characteristic equation, $|(B)-c(D)|=0$, can be rewritten as

$$
\left|(D)-\frac{1}{\left(c-\lambda_{0}\right)}\left(B-\lambda_{0} D\right)\right|=0
$$

The eigenvalue pivot, λ_{0}, may be chosen as complex (all the matrices involved are complex and non-symetric) and is chosen fairly close to the desired ejgenvalue c. In our case, $\lambda_{0}=.2$ produced adequate results for the rigid wall problem. The eigenvalue routine is used to find the eigenvalues of $\left(\left(B-\lambda_{0} D\right)^{-1}(D)\right)$, after which, the effects of the pivot are removed to give the correct eigenvalues.

From the eigenvectors, the components of which are simply the coefricients in the approximating series for $\phi(y)$, the streail function and Reynolds stress distributions may be obtained by substitution. The stream function distributions, hence obtained, are unique apart frrom an arbitrary multiplying factor. This (complex) factor is used to normalise the stream functions such that $\phi_{r}(0)=1$ and $\phi_{i}(0)=0$, where the strean function $=\phi(y)=\phi_{r}(y)+i \phi_{i}(y)$. The Reynolds stress distributions are obtained by substituting the normalised stream runction distributions into the expression

$$
2\left\{\phi_{r}(y){\frac{d \phi_{j}}{d y}}^{(y)}-\phi_{i}(y) \frac{d \varphi_{r}}{d y}(y)\right\}
$$

(see, for example, Stuart (1963)). This expression represents the correct Reynolds stress for the problem, when multiplied by $\left\{-\frac{\rho_{a}}{4}\right\}$.

The results are normalised in this manner to facilitate comparisons with previous results for the rigid wall problem.

Although the direct formulation gave accurate eigenvalue resul.ts, when the stream function and Reynolds stress distributions mere sought it was found that the resultant distributions did not converge well with increnentation of the approxinsting series, did not give good agreement with previous rigid wall results and did not setisiy the relevant boundary conditions. However, when the transpose of the direct formulation was used to find the adjoint stream runction and Reynolds stress distributions, good results were obtained (mhen
judged by the previous oriteria). Then the adjoint formulation mas used, it gave poor results for the adjoint distributions, but good results for the distributions of the problem under consideration (obtained by transposing the matrices in the adjoint formulation). These inaccuracies rould appear to be due to numerical ill-coraitioning. Lee and Reynolas (1964) appear to heve had the same trouble, although, using their approach to the rigid mall problem, they obtained good results for the problem and poor results for the adjoint problem. For the present results, the transpose of the adjoint formulation was used to obtain results for the problem, and the transpose of the direct formulation was used to obtain results for the adjoint problen.

The variational part of the solution is incorporated into the iterative scheme (which is set up as described in Section 3.3), as shown in the simple flowdiagram given in Appendix C. Accuracy may be controlled by the choice of the eigenvalue guess $\left(0^{\circ}\right)$, hoit close to e^{0} we choose the values e_{1}^{0} and e_{2}^{0} and the number of iterations periormed. We take $e_{1}^{0}=e^{0}+p e^{0}$ and $e_{2}^{0}=e^{0}-p e^{0}$, where p is a swall constant ($0<\mathrm{p} \ll 1$), which depends on the estinated sensitivity to changes in e of the eigenvalue sought and the accuracy of the eigenvalue guess. We may choose a different value of p for each iteration periormed in a partioular eigenvalue search. In the computer program, a typical value of p for the first iteration was .01, decreasing by . 0025 with each successive iteration. Each iteration involved three uses of the variational part of the solution. It was unusual to take more than
three iterations, and, with a good eigenvalue guess, convergence could be obtained with one iteration. If the program exceeded four iterations, then it was better to start the program again mith a nen eigenvalue guess, and so a limit of four iterations mas kept for each eigenvalue search. We juage convergence by examining the changes in e, since this, generally, changes more rapidly than c. In the present work, satisfactory convergence of the eigenvalues was obtained when the tro values of e compared (e^{2} and e^{3}), differed by less then . 1%. This gave us the eigenvalues accurate to four decimal places.

The computations were programed in FORTRAN for the CDC 6600 computer, and all the resulits presented herein were obtained on this computer. Some initial mork was performed on an IBl: 7094 computer. It was only found necessary to employ the eigenvalue pivoting technique when working on the IBM 7094 computer. On the CDC 6600 computer, it took approximately 11 seconds to obtain a spectrum of thirty eigenvalues in terms of rixed values of the parameters E_{1} and E_{2}. The times taken in the present work are roughly equivalent to those taken in previous computations, taking into eccount the improvements in computer storage and speed.

Chapter 5. Discussion of numerical results.

5.1. Introauction.

The numerical results obtained from the computer progran, set up as desoribed previously, are presented in figures and tables at the end of the thesis. These results, consisting partly of checks on accuracy, and partly of solutions to representetive flexible wall situations, will be described and discussed in the present chapter. The notation used in the figures and tables is defined in the relevant part of the thesis, and further given at the beginning of the thesis.
5.2. Risid mall results.

In Tables 1 and 2, the most unstable eigenvalue, c, is given for the different formulations considered, showing the convergence of c with increases in the number of terms in the approximating series (at a value $a=1$ and values $R=1600$ and 2500). The chosen values of E_{1} and \bar{E}_{2} simulate rigid $7 a l l s$, and convergence to the results given by Thomas (1953), for the chosen formulation (Fomalation 4), is obtained with sixteen and eighteen tern series respectively. Lee and Reynolds (1964, 1967) use an approximating series especially suited to their variational solution of the rigid wall problem, and they obtain convergence to Thomas's results at $(a, R)=(1,1600)$ (table 1) with
an eleven term series. In their first paper (1954), higher eigenvalues are given at $(a, R)=(1,100)$, and these agree well with present results. Apart from the Tollmien-Schlichting modes, numbers of spurious modes occurred in the present eigenvalue spectrums, these spurious modes being non-convergent with increases in the number of terns in the approximating series. Unfortunately, Lee and Reynolds did not give a neutral stability curve in their results, and so comparisons with the present rigid wall neutral stability curve are impossible. It should be remembered that the approximating series in the present mork has been chosen as generally as possible. Prom these tables, it may elso be seen that the real part of c, c_{r}, converged more rapidly than the imaginary part, c_{i}. This is a feature of all the present results. Table 3. gives the most unstable eigenvalue at (a, R) $=(1,2500)$, using a twenty cosine series, shoring hor suitable values of E_{1} and E_{2} may be chosen to simulate rigid walls. Tables 1, 2 and 3 are further discussed in Section 4.3.

Table 4 gives values of the imaginary part of the most unstable eigenvalue, c_{i}, for different values of the fluid parameters (a, R), using a thirty cosine series. Curves of c_{i} versus 2 s for fixed values of a, are plotted in Figure 3. As described in Section 1.2, neutral stability is found where $c_{i}=0$ (in the temporal sense). Points on the rigid wall neutral stability curve are determined by plotting curves of c_{i} versus R for fixed a, and then findins the values of R at which $c_{i}=0$. In this way, values of the fluid parameters, (a, R), defining the neutral stability curves for both the rigid wall and
flexible wall problems, were determined. (In cases where portions of the neutral stability curve lie parallel to the R axis, it is more accurate to determine these portions of the neutral stability curve by using curves of c_{i} versus a for fixed $R_{.}$) Points on the constant amplification curves are found where c_{i} takes a constant value. Points on the rigid wall neutral stability and constant amplirication curves, using a thirty cosine series, are given in Table 5. Points on the rigia wall neutral stability ourve, using a twenty cosine series, are given in Table 7. The neutral stability and constant amplification curves are plotted in Figure 4. In Figure 5, convergence of the present work and comparisons with previous results are shorm. Values of the real part of the most unstable eigenvalue, c_{r}, using a thirty cosine series, are given in Table 6, and these values are used to plot the curves in Figure 6. The neutral stability curve of c_{r} versus R (i.e. the spatial neutral stability curve) is obtained from the se curves by finding the values of c_{r} corresponding to the values of a and R lying on the temporal neutral stability curve. Points on the spatial neutral stability curves, for twenty and thirty cosine series, are given in Table 8, end the curves are plotted in Figure 7. For both the temporal and spatial stability curves, results are given accurate to three decimal places.

All of the previous curves are very smooth, and give good agreement with previous work. The curves in Figure show hom good the exact agreement is, comparing the present with previous work. The earlier,
asymptotic: curve, obtained by Shen (1954), agrees well with the low a part of the present curve, but at higher values of a, a fairly large discrepancy may be seen, as would be expected considering the limitations of the asymptotic analysis. The neutral stability curve of Grosch and Salwen (1968), which is obtained computationally by using a similer technique to the present, but for rigid walls, gives excellent agreement with the present curve. It is believed that Grosch and Salisen employed a thirty term series in obtaining their curve. The present curve, obtained using a thirty cosine series, is insensitive to further increase in the number of terms used in the, approxinating series. Comparisons with the curve obtained by using a twenty cosine series, show that the latter curve gives a very similar critical Reynolds number and reasonable egreement for small values of a, but that, at larger values of a, the discrepancy beoones more marked, and the latter stability curve falls too lom. Convergence of the spatial neutral stability curve is shown in Figure 7, and the same convergence trends may be noted as in the temporal neutral stability curve (Figure $\chi^{\text {) }}$. In this case, however, the convergence is more rapid, since, as already pointed out, c_{r} converges more rapidly than c_{i}. Rigid wall stream function and Reynolds stress distributions will now be presented. In Tables $9(\mathrm{a}), 10(\mathrm{~b})$ and $12(\mathrm{a})$, points are given, and in Figures 8, 9 and 10, the corresponding graphs plotted, for the rigid wall distributions at $a=1$ and $R=100,1600$ and 10000 , using a thirty cosine series. It should be noted that, as stated in

Section 4.5, the stream function, $\phi(y)$, is normalised such that $\phi_{r}(0)=1$ and $\phi_{i}(0)=0$, and also that the Peynolds stress plotted is equal to the correct Reynolds stress divided by a factor $(-\rho a / 4)$. This means that a positive sign for the plotted Reynolds stress implies conversion of energy from the mean flow into the disturbance. The rigid wall boundary conditions are

$$
\phi(+1)=0 \text { and } \frac{d \phi(+1)}{d y}=0 \text {, and it may }
$$

be observed that the stream functions satisfy these conditions to high accuracy. The Reynolds stresses are zero at the wall, as required, and have a peak (at which the Reynolas stress is positive) near the critical point, $y=y_{c}$ (where $\left.U\left(y_{c}\right)=\left(1-y_{c}^{2}\right)=c_{r}\right)$. This latter fact would be expected, since, for the rigid wall problem, the oritical point is close to the wall and the jump in the value of the Reynolds stress, expected at the critical point, is quickly brougint to zero by the viscous forces at the wall. In Tables $9(b), 10(a), 11(a)$ and $11(b)$, points are given, and, in Figures 11, 12, 13, 14 and 15, the corresponding Eraphs are plotted, by means of which we exemine the distributions for convergence at values of $(a, R)=(1,1600)$, using ten and twenty cosine series, and $(a, R)=(1,64,00)$, using tirenty and thirty cosine series. It can be seen that the real parts of the strean functions have already converged with the smaller numbers of terms in the series, while the imaginary parts of the stream functions and the Reynolds stresses have almost converged, although the increases in the numbers of terms in
the series produce slight alterations of the curves. As pointed out earlier, the variational approach would be expected to give the eigenvalues more accurately than the eigenvectors. It may be observed in these convergence results that, the higher the value of R used, the larger the number of terms required in the approximating series, for given accuracy. Figures 16, 17 and 18 show comparisons of present results with those of Lee and Reynolds at $(a, R) a(1,1600)$, and with those of Thomas at $(a, R)=(1,10000)$. At $(a, R)=(1,1600)$, a ten cosine series is employed for the present results, to give a direct comparison with Iree and Reynolds, and at $(a, R)=(1,10000)$, a thirty cosine series was used, although no direct comparison can be made with Thomas from the point of view of the number of terms used in the approximeting series. In both cases, the comparisons are very favourable. In lable 12(b), pojnts are given, and in Figure 19, the correspondinz grapins plotted, for the stream function and Reynolds stress distributions for the adjoint rigid wall problem at $(a, R)=(1,100)$, using a thirty cosine series. These are very smooth and agree exactly with curves given by Lee and Reynolds. As mentioned in Section 4.5, the transpose of the direct formulation is used to obtain the adjoint strean function and Reynolds stress distributions. The eigenvalues of the problem are obtained usjing the direct formulation, and their accuracy is releted to the accuracy of these distributions. The adjoint results are therefore included to show the accuracy of these distributions.

At this stage it is possible to conclude that the problem set up generally to solve the flexible mall problem is capable of giving excellent results for the rigid wall situation. As there is no particuler bias in the modes towards rigid or non-rigid walls, we may now anticipate, vith some optimism, equally satisfactory results in the flexible wall case.
5.3. Flexible vall results.

There are a number of results available from the publications of Hains and Price (1961a and b, 1962a and b) which mey be used to cheok the present calculations. The simplest calculations are for fixed values of E_{1} and E_{2}, corresponding to rather artificial flexible walls, since the physical wall parameters will vary along the stability curves (due to the a, R and c dependence in the derinitions of \sum_{2} and E_{2}). Stability curves were calculated for a value of $E_{1}^{-1}=Z_{2}^{-1}=-10$, and we first exaraine the convergence of the present curres at this value. Points on the stability curves, obtained using thirty and tyenty cosine series respectively, are given in Tables 13 and $11_{\text {f }}$. In Figure 20, we compare the neutral stability curves obtained with twenty and thirty cosine series. It can be seen that, at small a, the curves have already converged with a trenty cosine series. Along the high a portions of the curves, there is a small difference when the number of terms in the approximating series is increased, the largest difierence being
about 4%. There is insignificant change for more than thirty terms in the approximating series. In Figure 21, it can be seen that the spatial stability curves have already converged with a twenty cosine series (as pointed out in Section 5.2, more rapid convergence may be expected with spatial stability than with tenporal stability curves). Also in Figures 20 and 21, we compare the present stability curves with those of Hains and Price, for this value of E_{1} and E_{8}. Good agreement is obtained in both comparisons, the largest discrepancy between the present neutral stability curve for a thirty cosine series and the neutral stability curve of Hains and Price being about 2%.

It is possible to examine the effect of omitting the viscous component of the nomal stress (Hains and Price, and Landahi and Xaplan. (1965) omit this term in their respective celculations). This omission is equivalent to subtracting a factor ($-4 a^{2} / \mathrm{cR}$) from the expression for $E_{j}^{-1}(j=1,2)$ (see Section 2.2), and the largest modification of $\mathrm{E}_{\mathrm{j}}{ }^{-1}$ is expected when the smallest value of damping is used. In the present results, the smallest value of damping used vas $D=250$, and, with this value of damping, omission of tho above term caused an increase of about 1% in the critical Reynolds number of the class A node. Changes mould generally be expected to be smaller than this, and, with a tension of $.5 \times 10^{9}$ for the case of iall s with tension only, an increase in critical Reynolds number of about $.2 \%$ wes experienced.

For certain flexible wall situations, it is possible to transform, quite readily, the neutral stability curve for rigid mall, plane

Poiseuille flow into neutral stability curves for the flexible wall problem, by use of the asymptotic analysis developed by $\operatorname{Lin}(1945$, 1955). The basis of such a transformation lies in the analysis of Benjamin (1960) for the qualitative behaviour of the stability curves for the rlexible wall, boundary layer problem. For the present problem of flexible wall, plane Poiseuille flow, we take that analysis a stage further to establish a precise form for the transformation of the Tollmien-Schlichting stability curve for a rigid wall to that for a membrane wall with no structural damping. We start with the characteristic equation in the usual form and notation (see Benjamin (1960), where $\lambda=0$, and Landahl (1962)):

$$
u+i v+\alpha=\frac{y(z)}{1+\lambda(1-y(z))}
$$

where, in our notation (see Section 2.2), for a membrane without structural damping,

$$
\alpha=-\frac{\frac{d U}{d y}(-1)_{c}}{m a^{2}\left\{\frac{c_{0}^{2}}{R^{2}}-c^{2}\right\}}
$$

and (from Lin (1955), pages 37, 38 and 4,0)

$$
v=-\pi c \frac{d U(-1)}{d y} \frac{\frac{d^{2} U\left(y_{c}\right)}{d y^{2}}}{\left\{\frac{d U\left(y_{c}\right)}{d y}\right\}^{3}}\left(1+0\left(c^{3}\right)\right)
$$

$$
\lambda=\frac{\left(y_{c}+1\right)}{c} \frac{d U(-1)}{d y}-1 \quad, \mathcal{J}(z) \text { is the modified Tietjens function }
$$

and $z=\left\{a R \frac{d U\left(y_{c}\right)}{d y}\right\}^{\frac{1}{3}}\left(y_{c}+1\right)$. These terms are given, and will be
used, to the order of accuracy employed in the calculations of the rigid wall stability curve ($\operatorname{Lin}(194+5)$), which is known to be quite
 z alone, z is a function of $a R$ and c alone and a is real, the parameters a_{0}, R_{0} and $c, d e f i n i n g$ the rigid wall, neutral stability curve (corresponding to $a=0$), may be used to obtain the parameters a, R and c, defining the flexible wall, neutral stability curves, by keeping c and Z constant and only changing u through a (see Benjamin (1960)), i.e. $u(a, c)+a=u\left(a_{0}, c\right)$ and $z(a, R, c)=z\left(a_{0}, R_{0}, a\right)$. (N.B. co is the free wave speed in the undamped membrane walls and not the value of c on the rigid wall, neutral stability curve.) Hence we obtain

$$
\frac{\frac{d U(-1)}{d y} c}{a^{2} \int_{-1}^{0}(U-c)^{2} d y}+a=\frac{\frac{d U(-1)}{d y} c}{a_{0}^{2} \int_{-1}^{0}(U-c)^{2} d y}
$$

and $a_{0} R_{0}=a R$. Hence, on substituting for U and α, and performing the integration, we obtain

$$
\frac{1}{a^{2}}\left\{\rho(c)^{-1}-\left\{m\left\{\frac{c_{0}^{2}}{R^{2}}-c^{2}\right\}\right\}^{-1}\right\}=\frac{1}{a_{0}} f^{2}(c)^{-1}
$$

and $a R=a_{0} R_{0}$, where $f(c)=\left\{\frac{8}{15}-\frac{4}{3} c+c^{2}\right\}$. As Hains and

Price (1961b, 1962b) have calculated stability curves for membranes under tension only, it is of interest to examine that case in more detail. Hence, substituting $m c_{o}{ }^{2}=T$ and $m=0$ in the above two equations and eliminating R, we obtain

$$
a^{2}=a_{0}^{2}\left\{\frac{1}{2} \pm\left\{\frac{1}{4}-\frac{\mathrm{R}_{0}^{2}}{\mathrm{~T}} \mathrm{r}(\mathrm{c})\right\} \frac{1}{2}\right\}
$$

The two roots of this equation imply that each point on the rigid wall curve has a double image in the transformed plane. It nay further be deduced that the neutral stability curve would be expected to close, since, for sufficiently large R_{0}, a becomes complex, contradicting our initial assumption that a is real. The neutral stability curves, obtained by Mains and Price for membranes under tension only, do, in fact, close. The neutral stability curve given by Lin (1945), for rind wall, plane Poiseuille flow, is used in the above transformation to give a neutral stability curve for the case when $T=.5 \times 10^{9}$. (Accurate points on the flexible wall curve are found by using the table of rigid

Wall points given by Lin, more approximate points being obtained by using Lin's curve to give the rigid wall points.) This curve is compared with the neutral stability curve obtained from the present program and also that of Hains and Price, for this value of T. The curves are conpared in Figure 22 (the points for the present curve and the asymptotic curve being given in table 15). It may be seen that agreement is good along the low R portions of the curves, while there is a marked discrepancy between the curve of Hains and Price and the other two curves along the high R portions. The curve for the present work is not completed, since the program is unsuited to examine stability at the lon values of a and high values of R involved. Since, for the asymptotic analysis, that part of the rigid wall stability curve needed in the transformation is known to be quite accurate, and since the same order of accuracy is employed in the transformation, we would expect the flexible wall stability curve to be of the same accuracy. It is therefore unexpected to find the Hains and Price results in such disagreement with the asymptotic theory and our calculations.

From Equation 5.3.3, we may further deduce that, at the value of T for which

$$
\frac{1}{4}-\frac{R_{0}^{2}}{T} f(c)=0 \quad \text { when } R_{0} \text { is the rigid wall }
$$

critical Reynolds number ($R_{o_{0}}$), the region of instability shrinks to a point, and, for T less than this value, there is no transformed stability curve. Inserting the values given by $\operatorname{Lin}(1945)$ for ao, x_{0}
and c, corresponding to the rigid wall critical Reynolds number, we find that the asymptotic theory predicts the curves closing to a point for $T=2.8 \times 10^{7}$. This value of T is less than half that obtained by Hains and Price ($T=6.65 \times 10^{7}$). Further, the point at which the curves disappear is given as $(a, R)=(.74,7500)$ by the asymptotic theory and as $(a, R)=(.85,821,0)$ by Hains and Frice. The present progran was used to search the neighbourhood of these points. Again, the asymptotic theory was found to be more accurate. These results show that, for limited physical wall situations, where there is obviously no class B instability, the asymptotic theory can give very good stability results. They also cast doubt on the accuracy of the computations of Hains and Price.

We now examine a more general wall situation: the general effects of variations in free wave speed, c_{0}, and damping, D, in the walls, for representative values of these parameters. First, we examine the effect of changing co (or tension, for a membrane), keeping other properties constant. The mass paraneter, m, for all these curves, is fixed at a representative value of unity. A value of c_{0}, suitable to simulate a rigid vall, was found to be $c_{0}=10^{5}$, stability curves being insensitive to further increase in this parameter. Stability curves were found for values of co chosen to represent malls departing from rigidity down to a value $c_{0}=3000$. For a free, damped membrane, the wave speed, $c_{p}\left(c_{p}=R x c\right.$, see Section 2.1), is given by the expression

$$
c_{p}=\frac{i D}{2 a} \pm\left[c_{o}^{2}-\frac{D^{2}}{4 a^{2}}\right]^{\frac{1}{2}}
$$

and underdamped waves exist provided the damping ratio, $\frac{D}{2 a c_{0}}$, is less than unity. The value of damping chosen for the present results was $D=1000$, and, for wave numbers in the range associated with the critical Reynolds numbers, the present values of co give underdamped waves in the membrane, the situation closest to critical damping ($D / 2 \mathrm{aco}=1$) occuring when $c_{0}=3000$ (for this value of c_{0}, a must be less than $1 / 6$ before the waves are overdamped; larger values of D, causing waves to be overdamped at higher a, are of less interest since the damping would then begin to swamp the effect of variations in c_{o}). The parameters chosen for the present model are qualitatively similar to those chosen by Kaplan (1964) and Landahl and Kaplan (1965), for the boundary layer problem. (Taking into account the different schemes of dimensionless variables, their values of D ranged from 20 to 3000 , and their values of co ranged from 1000 to 3000 , while mas fixed at unity.) In the present work, stability results were found for co $=3000,5000,10000$ and 10^{5}. The points on the stability curves are given in Tables 16,18 and 20. The neutral stability curves are compared in Figure 23. In this figure, it can be seen that, for the values $c_{0}=3000$ and 5000 , the neutral stability curves have two (joined) parts exhibiting different natures. These two parts will be referred to as the lower part and the
upper part (from their position in the a versus R diagram). The neutral stability curve for $c_{0}=10000$ also exhibited this characteristic, although its upper part was at a Reynolas number of roughly 15000. Curves for large values of co, close to the rigid wall curve (as typified by the curve at co = 10000), have lower parts whose behaviour is predicted by Benjamin (1960) in his description of the class A mode. However, as co decreases further away from its rigid wall value, the damping starts to have a greater influence and the lomer parts of the neutral stability curves become more unstable (in the sense of critical Reynolds nuraber). Spatial stability curves are given in Figure 24, and it can be seen that, in the vicinity of the critical Reynolds number, the walls are stiffness controlled, and hence (damped) free wave speeds are always larger than wave speeds associated with neutral stability curves. At significantly lower values of co, the ralls would become inertia controlled in the vicinity of the critical Reynolds number and this, combined with the damping effect, would cause an even faster shift to the left.

The upper parts of the neutral stability curves become steadily more unstable as the flexibility of the walls is increased (i.e. co decreases). The class B mode of unstable disturbance (Benjanin (1960)), corresponding to unstable waves in the flexible walls, would be expected when the wave speed, $c_{p r}$, is near the free wave speed in the flexible valls. It may be seen from Figure 24 that, as we move from the lower parts to the upper parts of the neutral stability curves, $c_{p r}$ is steadily increasing, supporting the classification of the upper parts
of the curves as class B disturbances. Another marked difference between the lower parts and the upper parts of the neutral stability curves, is the different rate of amplification experienced when crossing the stability boundaries of these two parts. This property is illustrated in Figure 25, where a constant amplification curve is shown, calculated for $c_{0}=5000$, representing a constant rate of amplification of $c_{p i}=-2.5$ (points for this curve are given in Table 19). At $a=.925$ on the lower part of the curve, it took an increase in R of roughly 400 to achieve this amplification rate, while at all points on the upner part of the curve, the amplification rate was so rapid as to make distinction from the neutral curve impossible. In general, amplification rates increased by a factor of between 10 and 100 when moving from the lower to the upper parts of the stability curves. The above difference between the magnitudes of the amplification rates, experienced when crossing the two parts of the neutral stability curves, is typified by a rapid change of slope in curves of $c_{p i}$ versus R at fixed a, this rapid chanธe occuring in the neighbourhood of $c_{p i}=0$. An illustration of this behaviour is shom in figure 26, where curves of $c_{p i}$ versus R for fixed a are plotted at $c_{0}=3000$ (points on those curves are given in Table 17). The curve at $a=1.05$ shows the changes in $c_{p i}$ when crossing the upper part, and the curve at $a=.95$ shows the changes in $c_{p i}$ when orossing the lower part of the neutral stability curve. Results for other neutral stability curves are similar. Another important aspect, shown here, is that the region in which the amplification rate increases rapidly, lies not only
behind the upper part but also behind the lower part of the neutral stability curve. Since the class B mode of disturbance is essentially a resonance effect at values of $c_{p r}$ near c_{0}, it might be expected that a rapid amplification rate was experienced across a class B stability boundary. The critical Reynolds number may be associated with either the lomer or the upper parts of a neutral stability curve (for the flexible wall parameters $\left(m, D, c_{0}\right)=(1,250,5000)$, the upper part of the neutral stability curve exhibited a critical Reynolds number marginally smaller than that of the lower part). It would appear that, in order to obtain reduction of the amplification rates, inhibition of the upper parts of the stability curves would be far more important than inhibition of the lower parts. Kaplan (1964) gave a class B stability boundary for the boundary layer over a membrane wall, although he later reported an error in this result (Landahl and Kaplan (1965)). He found this stability curve in a similar region of the (a, R) plane to the region in which the upper parts of the present curves are found. He did not, homever, find a large difference in amplification rate betreen class A and class B modes, his results showing that the amplirication rates mere of the same magnituite for both modes.

There is a strong suggestion in the nature of the present results that, in the terminology of Benjamin, the two parts of the curves represent class A and class B instabilities. This is a situation not unlike that indicated elsewhere, although other results show two seperate neutral stability curves for class A and class B instabilities: in the
present case the curves have merged to form a continuous stability curve.

We now investigate the effect of damping variation, with other properties remaining constant. The mass is again kept at unity, and a moderate value for the free wave speed, $c_{0}=5000$, is chosen, at which to make comparison. Results for these values, with a value for damping of $D=1000$, have been given above. A reduced value of the damping, $D=250$, giving a lightly damped wall, is chosen, at which to make comparison with these above curves. For the lower value of the damping, the stability results were taken to a very high value of a, in order to examine nore fully the behaviour of the upper part of the curve, and points on this curve are given in Table 21 ((a) and (b)). Figures 27 and 28 show the stability curves in the usual (a, k) region, and, in Figure 27, the partitioning effect of the neutral stability curve is again encountered. It can be seen that, the decrease in damping has stabilised the lomer part of the stability curve, while destaoilising the upper part. These alterations are again in line with the predictions of Benjamin (1960), classifying the lower and upper parts of the curves as classes A and B respectively. In Figures 29 and 30, the upper parts of the stability curves, at $\left(m, D, c_{0}\right)=(1,250.5000)$, are plotted more fully. The classical asymptotic analysis would be completely inadequate at these high values of wave number. In Figure 29, the upper part of the neutral stability curve is seen to exhibit a critical Reynolds number (slightly lower than that of the lower part), and, for even
higher values of a, the curve becomes somewhat wavy. This waviness is due to the accuracy of the results dropping of \mathfrak{x} at the high value of a involved. A few points calculated for the stability curve with a thirty-five term series, instead of the usual thirty, showed that this waviness may be smoothed out. An interesting fact, noted from Figure 30, is that $c_{p r}$ reaches an almost constant value on the upper part of the neutral stability curve, this constant value being slightly less than the value of c_{o} being used. This would again lead to the conclusion that the upper part of the stability curve should be classified as a cless B mode.

Further insight into the nature of the different parts of the stability curves may be gained by examining the spatial distribution of the disturbance between the walls. Stream function and Reynolàs stress distributions were found at values of $\left(m, D, c_{0}\right)=(1,1000,5000)$ for the flexible wall paraneters, and at different points on the corresponaing stability curve. The first set of distributions (Table 22) were taken at a point on the front of the lower part, the second (Table 23) at a point on the back of the lower part and the third (Table 24) at a point on the upper part of the neutral stability curve. The real parts of the strean functions are compared in Figure 31, the imaginary parts of the stream runctions in Figure 32 and the Reynolds stresses in rigure 33. A further check on the accuracy of the calculations may be made by investigating hov closely the computed stream function distributions
satisfy the boundary condition, $\frac{d \phi(+1)}{d y}-\frac{2}{c} \phi(+1)=0$ (see Section
2.2). By substituting the values of $\phi_{r}(+1), \phi_{i}(+1)$ and c into this boundary condition, we may predict the values which the gradients of the stream functions would be expected to take at the wall. These predicted gradients are shown alongside the strean function distributions in Figures 31 and 32, and a detailed examination of the stream functions at the wall shows that they change rapidly near the wall to produce the predicted gradients with high accuracy. The Reynolds stresses are zero (or almost zero) at the wall, A marked difference may be noticed between the three sets of distributions, and this is particularly noticeable and relevant in the Reynolds stress distributions. All of these Reynolds stresses indicate a conversion of energy from the mean flow to the disturbance. The rirst distribution is very similar to that obtained at neutral stability for a rigid mall, being virtually zero nearly up to the critical point $\left(y=y_{c}\right)$, where a rapid increase takes place, this increase being brought to zero at the wall. A double peak is just noticeable in this curve. The other tro distributions broaden out, and the double peak becomes more obvious, the iirst peak occuring near the critical point and the second (larger) very close to the wall. This second peak becomes more pronounced in the third curve. Reynolis stresses for other values of the flexible wall parameters exhibit similar behaviour. This behaviour confirms earlier statements by Benjamin (1960) and Landahl (196) about the decrease in the
thickness of the viscous wall layer caused by wall compliance. The viscous and critical layers overlap at neutral stability in the rigid wall problem, ceusing the maximum Reynolds stress to occur at (or near) the critical point. However, when the thickness of the wall layer decreases, the jump in the Reynolds stress oocurs at $y=y_{c}$ (as predicted by inviscid theory). The sharp peak in the Reynolds stress near the wall may be explained in terms of the rapidly oscillating and decaying wall layer (Lin (1955)). Kaplan (1964) gives Reynolds stresses for class A and B modes exhibiting similar behaviour to that of the first and third curves in the present work. Again, the classification of the lower and upper parts of the neutral stability curves as class A and B modes appears justified.

The effect of variation in free wave speed (c_{0}) with a, may be obtained, in principle, by a cross plotting of constant co neutral stability curves. However, unless the variation of c_{0} with a is very large, the present stability curves (Figure 23) are too midely spaced (in terms of c_{o}) to be useful in this way. Nevertheless, the general behaviour nay be predicted, and this is illustrated for the case of thin plates. In this case, $c o$ increases with a, and, for thin plate neutral stability curves roughly coincident at $a=.9$ with the nembrane neutral stability curve for (m, D, c_{0}) $=(1,1000,5000$), we would expect the upper parts of the neutral stability curves to be stabilised, while the lower parts are destabilised. (By "stabilised", we mean that, for the same value of a, the thin plate curve is found at higher values
of R than those at which the membrane curve for $\left(m, D, c_{0}\right)=(1,1000,5000)$ is found, and vice versa for "destabilised".) Results were found for tro such thin plates, the first at $\left(m, D, c_{0}\right)=\left(1,1000,\left(4,000^{2}+10^{7} a^{2}\right)^{\frac{1}{2}}\right)$ (Table 25(a)) and the second, a plate with no mid-plane tension, at $\left(m, D, c_{0}\right)=\left(1,1000,\left(3 \times 10^{7} a^{2}\right)^{\frac{1}{2}}\right)(T a b l e 25(b))$. The resultant curves are compared with those for a membrane at (m, D, c_{0}) $=(1,1000,5000)$ in 1 igures 34 and 35, and the predicted behaviour is seen to be confirmed. Flexural rigidity may thus be seen to be benefigial in promoting stability by moving the regions of high amplification rate (associated rith the upper parts of the neutral stability curves) to higher values of R.

Chapter 6. Conclusions.

The results presented in the previous chapter, and conclusions dram from them, support a general classification of the lower parts of the neutral stability curves as class A, and the upper parts as class B. Although the classification of possible disturbances into classes A, B and C is very convenient, the present mork demonstrates that, in practical situations, this exact classification may cease to be of importance since unstable disturbances may represent mergers of behaviour typical of all three modes. For example, it might be argued that the upper parts of the neutral stability curves are class C (or Kelvin-Helmholtz) modes, since they become more unstable with increased flexibility of the wall, are associated with regions of large amplification rate, and c_{p} is alnost insensitive to changes in R along the corresponding high a portions of the spatial stability curves (see Figure 30). In fact, Kaplan (1904) reported, Fithout details, unstable class C modes in the region in which he presented stability curves for other modes.

With regard to class A waves, it was established in Section 5.3 that a sinple transíormation existed to convert the rigid wall, neutral stability curve into the tension-only membrane stability curves. It was also established that the results of this transformation rere more accurate than previously computed stabjlity curves. It therefore seems
worthwhile to return to this analysis and examine it for more general situations. The fundamental idea (both for the boundary layer and plane Poiseuille flow problems) is that if the right hand side of Equation 5.3.1 is kept constant, then the net left hand side result must also be constant, i.e. $u_{0}+i v_{0}=u+i v+\alpha \quad$ or, in real and imaginary parts, $u_{0}=u+\alpha_{r} \quad$ and $\quad v_{0}=v+\alpha_{i}$, where the subscript "o" denotes conditions on the rigid wall. These tro equations may be thought of as defining values of (a, d) in terms of (a_{0}, d (for figid wall) of the right hand side then determining the new R_{0}. Unfortunately, the functional dependence on a and c is often so complicated that explicit forms for these variables are not possible, and the only course open is a nunerical evaluation of the above equations; the problem fells into this category if $\alpha_{i} \neq 0$. Hence, all deductions that can be made readily are for surfaces with no structural dissipation. When $\alpha_{i}=0$, v is unchanged, which, because of its approximate form, requires c to be unchanged. Hence, $u_{0}=u+a_{r}$ reduces to an equation for a, which, for undamped nembrane walls enclosing plane Poiseuille flow, has the form given by Equation 5.3.2:

$$
\frac{1}{a}\left[f(c)^{-1}-\left\{m\left\{\frac{c_{0}^{2}}{R^{2}}-c^{2}\right\}\right\}^{-1}\right\}=\frac{1}{a_{0}} f^{2}(c)^{-1}
$$

where $f(c)=\left\{\frac{8}{15}-\frac{4}{3} c+c^{2}\right\}$. (N.B. c_{0} is the free wave speed
in the undamped membrane walls and should not be identified with ($\mathrm{a}_{0}, \mathrm{R}_{\mathrm{o}}$).) Therefore, the complete transformation becomes

$$
\frac{a^{2}}{a_{0}^{2}}=\frac{R_{0}^{2}}{2 c_{0}^{2}} 2\left[c^{2}+\frac{c_{0}^{2}}{{R_{0}}^{2}}\right\} \pm \frac{R_{0}^{2}}{2 c_{0}^{2}}\left\{\left[c^{2}-\frac{c_{0}^{2}}{R_{0}{ }^{2}}\right\}^{2}-\frac{4 c_{0}^{2} f^{2}(c)}{m R_{0}{ }^{2}}\right\}^{\frac{1}{2}}
$$

and $R=\frac{a_{0}}{a} R_{0}$. Dependine upon the membrane properties, c_{0} and m, and also upon the fact that R_{0} may not be less than the critical Reynolds number of the rigid wall stability curve, it can be seen that the discriminant, $\quad\left\{\left\{c^{2}-\frac{c_{0}^{2}}{R_{0}^{2}}\right\}^{2}-\frac{4 c_{0}^{2} f(c)}{m R_{0}^{2}}\right\}$, may, or may
not, be negative. Unlike the transformation for inertialess membranes, the discriminant must become positive for sufficiently large R_{O}, although, in a certain closed range of R_{0}, the discriminant may be negative. If, for example, m and co are so large that the discriminant is almays positive, there will be a doumle inage of all rigid wall points but no closed loop. Again, if the discriminant is negative at the critical rigid wall Reynolds number (R_{0}), no closed loop exists, but, on the other hand, if the discriminant goes negitive after R_{0} (say at R_{1}), that part of the rigid wall, neutral stability curve up to R_{1}, will map into a closed loop in the transformed (a, R) plane. When the discriminant becomes positive again, the mapping gives stability curves which eventually extend into regions where the asymptotic theory
breaks down. There is no reason to suppose, in this general discussion, that the various regions of instability would not, in sone cases, overlap. Nevertheless, it can be stated that the closed stability loop is not a unique product of the inertialess wall situation (although a wall with a purely inertial response, $c_{0}=0$, cannot exhibit such behaviour). For all these curves, c is less than .3 , and the class B curves, which would be expected in these cases, cannot be generated by such a transformation. (N.B. All the stability curves obtained from the present program have upper parts which exhibit values of c greater than 3 (sometimes markedly greater).)

The same observations may be made in the Blasius boundary layer situation, when the appropriate definitions of u and v are used and alterations in the scheme of dimensionless variables are taken into account. Considering a membrane under tension only, and making the tension dinensionless in the same manner as Hains (1965), we have

$$
a=-\frac{d U(m)}{d y} \frac{c R}{T a^{2}} \text {, where } \frac{d U(m)}{d y} \text { is the steady state velocity }
$$

gradient cvaluated at the mall, and T is the wall tension made dimensionless with the free-stream flow velocity. When u is taken for the Blasius boundary layer in the form

$$
u=\frac{d U(w)}{d y} \frac{c}{a(1-c)^{2}} \quad(\operatorname{Lin}(1955)), \text { a transformation }
$$

equivalent to those obtained for plane Poiseuille flow may be derived,

$$
\text { i.e. }\left[\begin{array}{l}
a \\
- \\
a_{0}
\end{array}\right\}^{3}-\left[\begin{array}{l}
a \\
- \\
a_{0}
\end{array}\right\}^{2}+\frac{R_{0}}{a_{0} T}(1-c)^{2}=0 \quad \text { and } R=\frac{a_{0}}{a} R_{0} \text {. }
$$

This transformation predicts that the rigid wall neutral stability curve is again transformed into closed loops which disappear at $(a, R)=(1.1,2900)$ when $\mathrm{T}=2800$, whereas Hains (1965), in his calculations for this problem, obtained closed loops disappearing at $(a, R)=(1.0,4000)$ when $\mathrm{A}=4025$. Hains (1965) has commented that, if the tension were made dimensionless by using the boundary layer thickness instead of the free-strean velocity, the curves would probsbly not close. Such a prediction is not born out by this analysis, since making the tension dimensionless in this manner merely changes the form of a to $\quad-\frac{d U(w)}{d y} \frac{R^{2}}{\mathrm{Ta}^{2}}$ and the resulting transformation still
predicts the closure of the stability curves.
The low wave number region always causes some difinculty for the boundary layer situation because the dominant term in the perturbation pressure is the inviscid pressure (as expected when the boundary layer thickness becomes insignificant on a wave length scale) and the stability is then governed by the classical Kelvin-Helnholtz analysis. A pure membrane loses its stifiness for large wave lengths (because of the very small suriace curvature) and is unstable when coupled to an inviscid
flow. This has lead to considerable discussion (Benjarnin (1960), Landahl(1962)) and the employment of "local" stiffness terms in the membrane formulation (Landahl (1962), Kaplan (1961)). Such a difficulty does not arise for plane Poiseuille flow since the coupling of the membranes to the flon does not necessarily cause instability in this case. To shoit this, the leading term from the asymptotic expression for the pressure must be derived (by use of the results of lin (1955)) and then inserted into the membrane equation (see Section 2.2), giving

$$
c^{2}(1+m)-c\left[\frac{4}{3}+i \frac{D_{m}}{a R}\right]+\left\{\frac{8}{15}-m \frac{c_{0}^{2}}{R^{2}}\right]=0
$$

This equation is equivalent to that used by Landahl (1962) to study the role of damping in the boundary layer problem, and it predicts instability to occur, for $D \neq 0$, when

$$
(1+m)\left[\frac{8}{15}-m \frac{c_{0}^{2}}{R^{2}}\right]>0 \quad \text { or } \quad R>\left\{\frac{15}{8} m c_{0}^{2}\right\}^{\frac{1}{2}}
$$

and, for $D=0$, mhen

$$
(1+m)\left\{\frac{8}{15}-m \frac{c_{0}^{2}}{R^{2}}\right\}>\frac{L_{1}}{9} \quad \text { or } \quad R>\left\{\frac{1}{m c_{0}} 2\left[\frac{8}{15}-\frac{4}{9(1+m)}\right]\right\}^{-\frac{1}{2}} \cdot
$$

It can be seen therefore, that, as a tends to zero, the stability boundaries in the (a, R) plane become parallel to the a axis, eventually intercepting the R axis, and also that the effect of damping is
destabilising. Inserting in these formulae the values of m and c_{0} considered in the present calculations, we obtain the following values at which the R axis is intercepted

	$c_{0}(m=1)$	$R(D \neq 0)$
3000	$4+110$	$R(D=0)$
5000	6850	5370
10^{4}	13700	8950
10^{5}	137000	17900
		179000

A major point which can be made is that the asymntotic curves, for very small a, are at greater Reynolds numbers than the critical Reynolds numbers of the respective flexible wall curves, and hence R_{c} is still determined by the computed portions of the curves. Computations performed to check the stability boundarjes preãicted by this asymptotic analysis were inconclusive, because the program is not well suited for examining small a conảitions.

It should, perhaps, be added that this argument is of limited practical interest, since the parameters describing the flexible walls would not be expected to hold in any real physical situation on a length scale where details of the overall wall support conditions become important. Further, when the wave length becones much greater than the width of the pipe, the physical limitations on the length of the pipe would introduce the important effects of the ends.

Another region of interest in the present stability problem is that of lon Reynolds number. Iandahl (196 \quad) has found regions of class B instability here, and Nonweiler (1963), using a similar approach to Benjamin's to obtain qualitative information on the stability of the boundary layer over various flexible walls, has obtained results for a membrane, similar in nature to those of Landahl (i.e. he predicted regions of class B instability at lon R). (Lock (1954), using an asymptotic analysis to study the flow in the laminar boundary layer between parallel streams, also givas neutral stability curves at very low R.) All these results, based on the asymptotic analysis, assume that ar is large. From the aprearance of these curves, it may be more informative to investigate small R solutions in order to see if the wall waves can be excited by very small fluid velocities. Such an approach may be sumarized as follows. If we assume that the wall damping is zero, and expand the wave speed, c_{p} (the physical rave specd is used since it has not been made dimensionless with the fluid velocity), in terms of R, and then of m^{-1}, in order to study the most unstable class B disturbances at small R and small departures from wall rigidity, ve obtain

$$
c_{p}=\left(c_{11}+c_{12} / m+O\left(1 / m^{2}\right)\right)+R\left(c_{21}+c_{22} / m+O\left(1 / m^{2}\right)\right)+O\left(R^{2}\right)
$$

In this series, $c_{11}=c_{0}$ (purely real), and, letting m tend to inrinity, we see that the remaining terms independent of $m\left(c_{21}, c_{31}\right.$, . . . Etc. $)$ must be zero since m tending to infinity corresponds to a free $\hat{i} l$ exible
wall. At $R=O$ (zero flow velocity) there is no energy supply to feed a wall disturbance, and so the imaginary part of c_{12} must be positive, indicating stability. It may be seen that, for large values of m (corresponding to class B modes, since m is made dimensionless with the fluid density, ρ), there must be a region of stability for low enough R (K , strictily speaking, much less than unity). This result may be derived analytically.

As regards possible favourable effects on flow stability as a result of using flexible walls, we may see in the present results that increases in R_{c} are possible, although not large, and that the regions of high anplification rate, associated with the upper parts of the neutral stability curves, may be noved to higher leynolds number by a suitable choice of surface flexural rigidity. Nowever, we must echo the conclusions of previous papers, that the ne:r modes of instability introduced by the wall flexibility produce a generally more complex situation, where no substantial improvement in stability appears to be possible.

The conputer progran has been used to study the present stability problem for symetric strean function distributions between two identical walls. For the rigid wall problem, symmetric stream functions have been demonstrated to be the most unstable, and no change is anticipated in this respect, when tho flexible walls are introduced. It is possible that dissimilar walls could improve stability, and the present progran has been set up to cope with this situation. However, no radical improvements in stability would be expected, and no computations have
been performed for this oase.
ive may finaliy remark on the approach employed in the present work. This has proved very satisfactory, and no complications are envisaged in applications of this method to other problens. Indeed, given the computing facilities, a general system of prograns, with the same status as that of Landahl's programs (1966), could be constructed. With further computing soope, the present method of solution could be modiffied to solve directly for the eigenvalues. Hoting that c occurs quadratically in the present problem (see Sections 2.2 and 4.4), the retention of c in explicit form when setting up the matrix equations would have generated a matrix equation of the form

$$
\left((A) c^{2}+(B) c+(D)\right) \leq=0 \text {, where }(A),(B) \text { and }(C) \text { are matrices }
$$

of the same order as those used in the present method, c is the eigenvalue and \underline{x} the eigenvector. This may be converted to standard form by suostituting (I) $C_{\underline{X}}=(I)_{X_{1}}$, where (I) is the unit matrix and X_{1} a vector, and solving the above as tro simultaneous equations to give

$$
\left\{\left[\begin{array}{c:c}
(0) & :(I) \\
\hdashline(A)^{-1}(D) & (A)^{-1}(B)
\end{array}\right]+c\left[\begin{array}{c:c}
(I) & (0) \\
\hdashline(0) & (I)
\end{array}\right]\left[\begin{array}{l}
\underline{x} \\
x
\end{array}\right]=0\right.
$$

In this standard form, the matrices are of twice the order of those involved in the present method. The great advantage is that this mould
provide directly the complete spectrum of eigenvalues of the physical problem, and rould eliminate the need for an iterative scheme, as used in the present solution.

Appendix A. The different formulations.
A.1. Formulations 1 and 2.

The operator (II), for Formulations 1 and 2, is given by

$$
\begin{aligned}
& \underline{H}(\underline{u})=\left[\begin{array}{l}
\frac{d^{4} \phi}{d y^{4}}-2 a^{2} \frac{d^{2} \phi}{d y^{2}}+a^{4} \phi+i a R\left\{\left(1-y^{2}\right)\left\{\frac{d^{2} \phi}{d y^{2}}-a^{2} \phi\right\}+2 \phi\right\} \\
2 \phi(+1) \\
2 \phi(-1) \\
\frac{E_{2}}{R} \frac{d^{3} \phi(+1)}{d y^{3}}+\phi(+1) \\
\frac{E_{2} d^{3} \phi(-1)}{R} \frac{d y^{3}}{}
\end{array}\right] \\
& -c\left[\begin{array}{l}
i a ?\left\{\frac{d^{2} \phi}{d y^{2}}-a^{2} \phi\right\} \\
\frac{d \phi(+1)}{d y} \\
-\frac{d \phi(-1)}{d y} \\
0
\end{array}\right]
\end{aligned}
$$

$$
\text { where } \underline{u}=\left[\begin{array}{l}
2 \phi \\
-i a \ell(+1)+\frac{d \phi(+1)}{d y}\left[-a^{2}+\frac{1}{2 \phi(+1)} \cdot \frac{d^{2} \phi(+1)}{d y^{2}}\right] \\
i a R \phi(-1)+\frac{d \phi(-1)}{d y}\left[-a^{2}+\frac{1}{2 \phi(-1)} \cdot \frac{d^{2} \phi(-1)}{d y^{2}}\right] \\
-\frac{1}{2} \cdot \frac{d \phi(+1)}{d y} \\
-\frac{1}{2} \cdot \frac{d \phi(-1)}{d y}
\end{array}\right]
$$

and $\phi=\phi(y)$ in the first entries of the vectors.
The complex conjugate adjoint operator (II币), for Formulations 1 and 2 , is given by
where

$$
\begin{aligned}
& -\frac{1}{2} \frac{d^{3} \bar{\phi} \cdots(-1)}{d y^{3}}-\left\{i a z-\frac{R}{2 \mathbb{E}_{2}}\right\} \bar{\phi} \div(-1)-\frac{d \bar{\phi} *(-1)}{d y}\left\{-a^{2}+\frac{d^{2} \phi(-1)}{d y^{2}} \cdot \frac{1}{2 \phi(-1)}\right\} \\
& -\frac{R}{E_{1}} \bar{\phi}^{*}(+1) \\
& \begin{array}{l}
\mathrm{R} \bar{\phi} \dot{\mu}(-1) \\
\mathrm{E}_{\mathrm{L}}
\end{array}
\end{aligned}
$$

and $\bar{\phi}^{*}=\bar{\phi}$ 色 (y) in the first entries of the vectors.
A.2. Formulation 3.

The operator (H), for Formulation 3, is given by

$$
\underline{H}(\underline{u})=\left[\begin{array}{l}
\frac{d^{4} \phi}{d y^{4}}-2 a^{2} \frac{d^{2} \phi}{d y^{2}}+i a R\left\{\left(1-y^{2}\right)\left\{\frac{d^{2} \phi}{d y^{2}}-a^{2} \phi\right\}+2 \phi\right\} \\
2 \phi(\not-1) \\
2 \phi(-1) \\
\frac{E_{1}}{R} \frac{d^{3} \phi(+1)}{d y^{3}}+\phi(+1) \\
\frac{E_{2}}{R} \frac{d^{3} \phi(-1)}{d y^{3}}+\phi(-1)
\end{array}\right]
$$

$$
-c\left[\begin{array}{l}
i a R\left\{\frac{d^{2} \phi}{d y^{2}}-a^{2} \phi\right. \\
\frac{d \phi(+1)}{d y} \\
-\frac{d \phi(-1)}{d y} \\
0
\end{array}\right]
$$

Where $\underline{u}=\left[\begin{array}{l}2 \phi \\ 1 \\ 1 \\ -\frac{1}{2} \frac{d \phi(+1)}{d y} \\ -\frac{1}{2} \frac{d \phi(-1)}{d y}\end{array}\right]$
and $\phi=\phi(y)$ in the first entries of the vectors.
The complex conjugate adjoint operator ($\underline{\underline{H}}^{\text {r }}$), for Formulation 3, is given by

and $\overline{\phi^{2}}=\bar{\phi}=(\mathrm{y})$ in the first entries of the vectors.
1.3. Formulation 4 .

The operator (H), for Formulation 4 , is given by
where

$$
\underline{u}=\left[\begin{array}{l}
2 \phi \\
-i a \operatorname{R} \phi(+1) \\
i a \operatorname{lo}(-1) \\
-\frac{1}{2} \frac{d \phi(+1)}{2 d y} \\
-\frac{1 d \phi(-1)}{2 d y} \\
-\frac{d^{2} \phi(+1)}{d y^{2}}+\left(2 a^{2}+i a R\right) \phi(+1) \\
\frac{d^{2} \phi(-1)}{d y y^{2}}
\end{array}\right.
$$

and $\phi=\phi(y)$ in the first entries of the vectors.
The complex conjugate adjoint operator ($\vec{H}^{\boldsymbol{h}}$), for Formulation l_{t},
is given by
96

		- c	
where	$\underline{\underline{w}^{3}}=$		$\begin{aligned} & (+1)+\left\{\frac{R}{2 E_{1}}-i a R\right\} \bar{\phi}^{x x}(+1) \\ & \frac{\phi^{*}}{3}(-1)+\left[\frac{R}{2 E_{2}}-i a R\right\} \bar{\phi}^{*}(-1) \\ & (+1) \end{aligned}$ -1)

and $\bar{\phi}=\bar{\phi}=\bar{\gamma}(y)$ in the first entries of the vectors.

Appendix B_{0} The chosen formulation (Formulation 4.).
B.1. Matrix entries for Formulation 4 .

The (p, q) positions in the matrices for Formulation 4 are given by

$$
\begin{aligned}
& B_{11}(p, q)=\left\{\frac{p^{3} \pi^{3}}{16}\left(1-(-1)^{p}\right)(-1)^{\frac{p-1}{2}}-\operatorname{iaR}\left(1+(-1)^{p}\right)(-1)^{\frac{p}{2}}\right\}\left\{\left(1+(-1)^{q}\right)(-1)^{\frac{q}{2}}\right\} \\
& -\left\{\left(1+(-1)^{p}\right)(-1)^{\frac{p}{2}}\right]\left\{\frac{q^{3} \pi^{3}}{16}\left(1-(-1)^{q}\right)(-1)^{\frac{q-1}{2}}\right\} \\
& +\left\{\left[\frac{q^{2} \pi^{2}}{4}+a^{2}\right\}^{2}+i a R\left\{2-\frac{q^{2} \pi^{2}}{4_{4}}-a^{2}\right\}\right] I_{4} \\
& +\left\{\operatorname{iar}\left\{\frac{q^{2} \pi^{2}}{4}+a^{2}\right\}\right\} I_{1} \\
& D_{11}(p, q)=-\left\{\frac{p^{3} \pi^{3}}{16}\left(1-(-1)^{p}\right)(-1)^{\frac{p-1}{2}}-i a R\left(1+(-1)^{\frac{p}{2}}\right\}\left\{\frac{q \pi}{4}\left(1-(-1)^{q}\right)(-1)^{\frac{q-1}{2}}\right\}\right. \\
& -\left\{\frac{q \pi R}{16}\left\{\begin{array}{l}
1 \\
E_{1}
\end{array}+\frac{1}{E_{2}}\right]\left(1+(-1)^{p}\right)\left(1-(-1)^{q}(-1)^{\frac{p+q-1}{2}}\right\}\right. \\
& -\left\{\operatorname{jai}\left\{\frac{q^{2} \pi^{2}}{4}+a^{2}\right\}\right] I_{4} \\
& B_{12}(p, q)=\left\{\left\{\frac{q^{2} \pi^{2}}{4}+a^{2}\right\}^{2}+i a R\left\{2-\frac{q^{2} \pi^{2}}{4}-a^{2}\right\}\right\} I_{5} \\
& +\left\{\operatorname{iaR}\left\{\frac{q^{2} \pi^{2}}{4}+a^{2}\right\}\right\} I_{6},
\end{aligned}
$$

$$
\begin{aligned}
& \left.D_{12}(p, q)=\left\{\frac{q \pi}{16}\left\{\frac{1}{-}-\frac{1}{E_{1}}\right]_{E_{2}}\right\}\left(1+(-1)^{p}\right)\left(1+(-1)^{q}\right)(-1)^{\frac{p+q}{2}}\right] \\
& -\left\{\operatorname{iaR}\left\{\frac{q^{2} \pi^{2}}{4}+a^{2}\right\}\right\} I_{5} \\
& B_{21}(p, q)=\left\{\left\{\frac{q^{2} \pi^{2}}{4}+a^{2}\right\}^{2}+i a R\left\{2-\frac{q^{2} \pi^{2}}{4}-a^{2}\right\}\right\} I_{7} \\
& +\left\{i a R\left\{\frac{q^{2} \pi^{2}}{4}+a^{2}\right\}\right] I_{8} \\
& D_{21}(p, q)=-\left\{\frac{q \pi R}{16}\left\{\begin{array}{l}
1 \\
-\frac{1}{E_{1}}
\end{array}\right\}\left(1-(-1)^{p}\right)\left(1-(-1)^{q}\right)(-1)^{\frac{p+q-2}{2}}\right\} \\
& -\left\{\operatorname{iaR}\left[\frac{q^{2} \pi^{2}}{4}+a^{2}\right]\right\} I_{7} \\
& B_{22}(p, q)=\left\{-\frac{p^{3 \pi}}{16}\left(1+(-1)^{p}\right)(-1)^{\frac{p}{2}}-\operatorname{iaR(1-(-1)^{p})(-1)^{\frac {p-1}{2}}\} \{ (1-(-1)^{q})(-1)^{\frac {q-1}{2}}\} ,~(1)}\right. \\
& +\left(1-(-1)^{p}\right)(-1)^{\frac{p-1}{2}}\left\{\frac{q^{3} \pi^{3}}{16}\left(1+(-1)^{q}\right)(-1)^{\frac{q}{2}}\right\} \\
& +\left\{\left\{\frac{q^{2} \pi^{2}}{4}+a^{2}\right\}^{2}+i a R\left\{2-\frac{q^{2} \pi^{2}}{4}-a^{2}\right\}\right] I_{3} \\
& +\left\{\operatorname{iaR}\left\{\frac{a^{2} \pi^{2}}{I_{4}}+a^{2}\right\}\right] I_{2}
\end{aligned}
$$

$$
\begin{aligned}
& p_{22}(p, q)=\left\{-\frac{p^{3} \pi^{3}}{.16}\left(1+(-1)^{p}\right)(-1)^{\frac{p}{2}}-\operatorname{iaR}\left(1-(-1)^{p}\right)(-1)^{\frac{p-1}{2}}\right\} \\
& \text { - }\left\{\frac{q \pi}{4}\left(1+(-1)^{q}\right)(-1)^{\frac{q}{2}}\right\} \\
& +\left\{\frac{q \pi R}{16}\left\{\frac{1}{E_{1}}+\frac{1}{E_{Q}}\right\}\left(1-(-1)^{p}\right)\left(1+(-1)^{q}\right)(-1)^{\frac{p+q-1}{2}}\right\} \\
& -\left\{\operatorname{iaR}\left\{\frac{q^{2} \pi^{2}}{4}+a^{2}\right\}\right\} I_{3} \\
& I_{1}=\int_{-1}^{+1} y^{2} \cos (p \pi y / 2) \cos (q \pi y / 2) d y \\
& =\frac{1}{(p+q)_{\pi}}\left\{1-\frac{8}{(p+q)^{2} \pi^{2}}\right\}\left(1-(-1)^{p+q}\right)(-1)^{\frac{p+q-1}{2}} \\
& \frac{1}{(p-q) \pi}\left\{1-\frac{8}{(p-q)^{2} \pi^{2}}\right\}\left(1-(-1)^{p-q}\right)(-1)^{\frac{p-q-1}{2}} \\
& +\frac{4}{(p+q)^{2} \pi^{2}}\left(1+(-1)^{p+q}\right)(-1)^{\frac{p+q}{2}}+\frac{4}{(p-q)^{2} \pi^{2}}\left(1+(-1)^{p-q}\right)(-1)^{\frac{p-q}{2}} \\
& =\frac{1}{3}+\frac{2(-1)^{q}}{q^{2} \pi^{2}} \quad \text { for } n=q \neq 0 \text {, } \\
& =\frac{2}{3} \quad \text { for } p=q=0 \text {, } \\
& \text { for } p \neq q \text {, }
\end{aligned}
$$

$$
\begin{aligned}
& 100 \\
& I_{2}=\int_{-1}^{+1} y^{2} \sin (p \pi y / 2) \sin (q \pi y / 2) d y \\
& =-\frac{1}{(p+q) \pi}\left\{1-\frac{8}{(p+q)^{2} r^{2}}\right\}\left(1-(-1)^{p+q}\right)(-1)^{\frac{p+q-1}{2}} \\
& +\frac{1}{(p-q) \pi}\left\{1-\frac{8}{(p-q)^{2} \pi^{2}}\right\}\left(1-(-1)^{p-q}\right)(-1)^{\frac{p-q-1}{2}} \\
& -\frac{4}{(p+q)^{2} \pi^{2}}\left(1+(-1)^{p+q}\right)(-1)^{\frac{p+q}{2}}+\frac{4}{(p-q)^{2} \pi^{2}}\left(1+(-1)^{p-q}\right)(-1)^{\frac{p-q}{2}} \\
& =\frac{1}{3}-\frac{2(-1)^{q}}{q^{2} \pi^{2}} \quad \text { for } p=q \neq 0 \text {, } \\
& =0 \quad \text { for } p=q=0 \text {, } \\
& I_{3}=\int_{-1}^{+1} \sin (p \pi y / 2) \sin (q \pi y / 2) d y \\
& =\frac{1}{(p-q)_{\pi}}\left(1-(-1)^{p-q}\right)(-1)^{\frac{p-q-1}{2}}-\frac{1}{(p+q) \pi}\left(1-(-1)^{p+q}\right)(-1)^{\frac{p+0-1}{2}} \\
& \text { for } p \neq q \text {, } \\
& =1 \quad \text { dor } p=q \neq 0 \text {, } \\
& =0 \quad \text { for } \mathrm{p}=\mathrm{Q}=0 \text {, }
\end{aligned}
$$

$$
\begin{aligned}
I_{4} & =\int_{-1}^{+1} \cos (p r y / 2) \cos (q \pi y / 2) d y \\
& =\frac{1}{(p+q) \pi}\left(1-(-1)^{p+q}\right)(-1)^{\frac{p+q-1}{2}}+\frac{1}{(p-q) \pi}\left(1-(-1)^{p-q}\right)(-1)^{\frac{p-q-1}{2}} \\
& =1 \quad \text { for } p=q \neq 0, \\
& =2 \quad \text { for } p=q=0, \\
I_{5} & =\int_{-1}^{+1} \cos (p \pi y / 2) \sin (q \pi y / 2) d y=0, \\
I_{6} & =\int_{-1}^{+1} y^{2} \cos (p r y / 2) \sin (q \pi y / 2) \mathrm{dy}=0, \\
I_{7} & =\int_{-1}^{+1} \sin (p \pi y / 2) \cos (q \pi y / 2) d y=0 \\
I_{8} & =\int_{-1}^{+1} y^{2} \sin (p \pi y / 2) \cos (q \pi y / 2) d y=0
\end{aligned}
$$

B.2. Matrix entries for the complex conjugate adjoint of Formulation 4 .

The (p, q) positions in the matrices for the complex conjugate adjoint of Formulation 4 are given by

$$
\begin{aligned}
& B_{11}(p, q)=\frac{p \pi}{8}\left\{\frac{q^{2} \pi^{2}}{2}+4 \mathrm{a}^{2}\right\}\left(1-(-1)^{p}\right)\left(1+(-1)^{q}\right)(-1)^{\frac{p+q-1}{2}} \\
& -\left\{\frac{p^{2} \pi^{2}}{4}\left(1+(-1)^{p}\right)(-1)^{\frac{p}{2}}+2 a^{2}\left(1+(-1)^{p}\right)(-1)^{\frac{p}{2}}\right\}\left\{\frac{q \pi}{4}\left(1-(-1)^{q}\right)(--1)^{0-1}\right. \\
& +\left\{\left\{\frac{q^{2} \pi^{2}}{4}+a^{2}\right\}^{2}-\operatorname{iaR}\left\{\frac{q^{2} \pi^{2}}{4}+a^{2}\right\}\right\} I_{4} \\
& +\left\{\operatorname{jaR}\left\{\frac{q^{2} \pi^{2}}{4}+a^{2}\right\}\right\} I_{1}+\{2 \pi q i a R\} T_{1} \\
& D_{11}(p, q)=\operatorname{iaR} \frac{q \pi}{4}\left(1+(-1)^{p}\right)\left(1-(-1)^{q}\right)(-1)^{\frac{p+q-1}{2}} \\
& +\frac{p q^{3} \pi^{4}}{64}\left(1-(-1)^{p}\right)\left(1-(-1)^{q}\right)(-1)^{\frac{p+q}{2}} \\
& -\frac{p r R}{16}\left\{\begin{array}{l}
1 \\
- \\
E_{1}
\end{array}+\frac{1}{E_{2}}\right\}\left(1-(-1)^{p}\right)\left(1+(-1)^{q}\right)(-1)^{\frac{p+q-1}{2}} \\
& -\operatorname{iar}\left\{\frac{q^{2} \pi^{2}}{4}+a^{2}\right] I_{4}
\end{aligned}
$$

$$
\begin{aligned}
& B_{12}(p, q)=\left\{\left\{\frac{q^{2} \pi^{2}}{4}+a^{2}\right\}^{2}-i a R\left\{\frac{q^{2} \pi^{2}}{4}+a^{2}\right\}\right\} I_{5} \\
& +i a R\left\{\frac{q^{2} \pi^{2}}{4_{4}}+a^{2}\right\} I_{6}-\{2 q \pi i a R\} I_{3} \\
& D_{12}(p, q)=\div \frac{p r R}{16}\left\{\begin{array}{l}
1 \\
-\frac{1}{\mathbb{P}_{1}}-\mathbb{E}_{2}
\end{array}\right\}\left(1-(-1)^{p}\right)\left(1-(-1)^{q}(-1)^{\frac{p+q}{2}}\right. \\
& -\operatorname{iaR}\left\{\frac{q^{2} \pi^{2}}{4}+a^{2}\right\} I_{5}, \\
& B_{21}(p, q)=\left\{\left\{\frac{q^{2} \pi^{2}}{4}+a^{2}\right\}^{2}-i a R\left\{\frac{q^{2} \pi^{2}}{4}+n^{2}\right\}\right\} I_{7} \\
& +\operatorname{iaR}\left\{\frac{q^{2} \pi^{2}}{4}+a^{2}\right\} I_{8}+\{2 q \pi i a R\} T_{4}, \\
& D_{21}(p, q)=\frac{p \pi R}{16}\left\{\begin{array}{ll}
1 & -1 \\
-B_{1} & -
\end{array}\right]\left(1+(-1)^{p}\right)\left(1+(-1)^{q}\right)(-1)^{\frac{p+q}{2}} \\
& -\operatorname{iaR}\left\{\frac{q^{2} \pi^{2}}{4}+a^{2}\right\} I_{7} \quad,
\end{aligned}
$$

$$
\begin{aligned}
& 104 \\
& B_{22}(p, q)=-\frac{p \pi}{4}\left\{\frac{q^{2} \pi^{2}}{4}+2 a^{2}\right\}\left(1+(-i)^{p}\right)\left(1-(-1)^{q}\right)(-1)^{\frac{p+q-1}{2}} \\
& \div \frac{q \pi}{4}\left[\frac{p^{2} \pi^{2}}{4}+2 a^{2}\right]\left(1-(-1)^{p}\right)\left(1+(-1)^{q}\right)(-1)^{\frac{p+q-1}{2}} \\
& +\left\{\left\{\frac{q^{2} \pi^{2}}{4}+a^{2}\right\}^{2}-\operatorname{iaR}\left\{\frac{q^{2} \pi^{2}}{4}+a^{2}\right]\right\} I_{3} \\
& +i a R\left\{\frac{q^{2} \pi^{2}}{4_{4}}+a^{2}\right\} I_{2}-\{2 \pi q i a R\} T_{2} \\
& \mathrm{D}_{22}(\mathrm{p}, q)=-\operatorname{iaR} \frac{q \pi}{4}\left(1-(-1)^{p}\right)\left(1+(-1)^{q}\right)(-1)^{\frac{p+q-1}{2}} \\
& -\frac{\mathrm{pq}^{3} \pi^{l_{+}}}{64}\left(1+(-1)^{p}\right)\left(1+(-1)^{q}\right)(-1)^{\frac{p+q}{2}} \\
& \left.\left.+\frac{\operatorname{p\pi r}}{16}\left\{\begin{array}{l}
1 \\
- \\
E_{1}
\end{array}\right] \frac{1}{E_{2}}\right\}\right\}\left(1+(-1)^{p}\right)\left(1-(-1)^{q}\right)(-1)^{\frac{p+c-1}{2}} \\
& -\operatorname{iaR}\left\{\frac{q^{2} \pi^{2}}{4}+a^{2}\right\} I_{3}
\end{aligned}
$$

Where the integrals from I_{1} up to I_{8} are given in Appendix B. 1 and the integrals from T_{1} up to T_{4} are given by

$$
\begin{aligned}
& T_{1}=\int_{-1}^{+1} y \cos (p \pi y / 2) \sin (q \pi y / 2) d y \\
& =-\frac{1}{(p+q) \pi}\left(1+(-1)^{p+q}\right)(-1)^{\frac{p+q}{2}}+\frac{2}{(p+q)^{2} \pi^{2}}\left(1-(-1)^{p+q}\right)(-1)^{\frac{p+q-1}{2}} \\
& +\frac{1}{(p-q) \pi}\left(1+(-1)^{p-q}\right)(-1)^{\frac{p-q}{2}}-\frac{2}{(p-q)^{2} \pi^{2}}\left(1-(-1)^{p-q}\right)(-1)^{\frac{p-q-1}{2}} \\
& \begin{array}{ll}
=\frac{(-1)^{q-1}}{q \pi} & \text { for } p \neq q, \\
\text { for } p=q \neq 0,
\end{array} \\
& =0 \quad \text { for } p=q=0 \text {, } \\
& T_{2}=\int_{-1}^{+1} y \sin (p \pi y / 2) \cos (q \pi y / 2) d y \\
& =-\frac{1}{(p+q) \pi}\left(1+(-1)^{p+q}\right)(-1)^{\frac{p+q}{2}}+\frac{2}{(p+q)^{2} \pi^{2}}\left(1-(-1)^{p+q}\right)(-1)^{\frac{p+q-1}{2}} \\
& -\frac{1}{(p-q) \pi}\left(1+(-1)^{p-q}\right)(-1)^{\frac{p-q}{2}}+\frac{2}{(p-q)^{2} \pi^{2}}\left(1-(-1)^{p-q}\right)(-1)^{\frac{p-o-1}{2}} \\
& =\frac{(-1)^{q-1}}{q \pi} \quad \text { for } p=q \neq 0 \text {, } \\
& =0 \quad \text { for } p=q=0 \text {, } \\
& T_{3}=\int_{-1}^{+1} y \cos (p r y / 2) \cos (q \pi y / 2) d y=0 \quad \text { and }
\end{aligned}
$$

$$
T_{4}=\int_{-1}^{+1} y \sin (p \pi y / 2) \sin (q \pi y / 2) d y=0
$$

Appendix C. A simple flow diagram for the computer prorram.

Number of cosine terms in series.	Formulation 1.		Formulation 2.		Formulation 3.		Formulation 4.		Formulation 4. (Adjoint problem.)
	Real part.	Imaginary part.	Real part.	Imaginary part.	Real part.	Imaginary part.	Roal part.	Imaginary part.	Roal Imaginary part. part.
8	. 3186,	. 0292	. 34,55,	. 0163	. 3187,	. 0292	. 3187,	. 0292	. $3187, .0292$
10	. 3231 ,	. 0247	. 3364 ,	. 0184	. 3230,	. 0246	. 3230,	. 0245	. $3230, .0248$
12	. 3234,	. 0256	. 3234 ,	. 0269	. 3228,	. 0241	. 3227,	. 0241	. $3235, .0258$
14	. 3231,	. 0261	. 3231 ,	. 0267	. 3231 ,	. 0261	. 3231,	. 0261	. $3231, .0261$
16	. 3231 ,	. 0262	. 3232,	. 0264	. 3231 ,	. 0262	. 3231 ,	. 0262	. $3231, .0262$
18	. 3231,	. 0262	. 3231 ,	. 0262	. 3231 ,	. 0262	. 3231 ,	. 0262	. $3231, .0262$
20	. 3231 ,	. 0262	. 3232 ,	. 0263	. 3231 ,	. 0262	. 3231,	. 0262	. $3231, .0262$

Table 1. Convergence of the most unstablo eigenvalue, using the different formulations at $a=1, R=1600$ and $E_{1}=E_{2}=10^{-4}$. (For this case, Thomas obtained an eigenvalue $0=.3231+.0262 i$ and Lee and Reynolds, using an eleven term series, obtained an eigenvalue $o=.3231+.0262 i$.

Number of cosine terms in series.	Formulation 1. Real Imaginary part. part.	Formulation 2. Real Imaginary part. part.	Formulation 3. Real Imaginary part. part.	Formulation 4. Real Imaginary part. part.	Formulation 4. (Adjoint problem.) Real Imaginary part. part.
8	.2870, . 0051	. $3324, .0089$.2873, .0055	.2873, . 0055	. 2873, . 0055
10	.2955,.0138	. $3331, .0062$.2954, . 0139	.2954, . 0139	.2955, . 0139
12	. $3014, .014 .5$. 3006, . 0169	. $2994, .0147$. $2994, .0147$. $3014, .0145$
14	. $3016, .0143$. 3003, . 0152	. $3015, .0143$	$.3015, .0143$. $3015, .0143$
16	. 3013, . 0141	. 3010, . 0149	. $3013, .0141$. 3013, .0141	. $3013, .0141$
18	. 3012, .0142	. $3007, .0135$. $3012, .0142$. 3012, .0142	. 3012, . 0142
20	. $3011, .0142$. $3008, .014 .0$. $3012, .0142$. $3012, .0142$.3012, .0142

Table 2. Convergence of the most unstable eigenvalue, using the different formulations at $a=1, R=2500$ and $E_{1}=F_{2}=10^{-4}$. (For this case, Thomas obtained an eigenvalue $0=.3011+.01421$ and Lae and Reynolds, using a twelve terin series, obtained an eigenvalue $0=.3010+.0143$ i.)

$$
\mathrm{E}_{1}^{-1}=\mathrm{E}_{2}^{-1} \quad \text { Eigenvalue. } \quad \mathrm{E}_{1}^{-1}=\mathrm{E}_{2}^{-1} \quad \text { Eigenvalue. }
$$

Real Imaginary Real Imaginary part. part. part. part.

$$
10^{2}, 0 \quad .3013, .0148 \quad-10^{2}, 0 \quad .3010, .0135
$$

$$
0,10^{2} \cdot 3018, .0140
$$

$$
10^{2}, 10^{2} \quad .3016, .0144
$$

$$
10^{3}, \quad 0 \quad .3012, .0142
$$

$$
0,10^{3} \cdot .3012, .0142
$$

$$
10^{3}, 10^{3} \quad .3012, .0142
$$

$$
10^{4}, \quad 0 \quad .3012, .0142
$$

$$
0,10^{4} \quad .3012, .0142
$$

$$
10^{4}, 10^{4} \quad \cdot 3012, .0142
$$

$$
10^{5}, 0 \quad .3012, .0142
$$

$$
0,10^{5} .3012, .0142
$$

$$
10^{5}, 10^{5} \cdot 3012, .0142
$$

Real Imaginary Real Imaginary part. part. part. part.
$0,-10^{2} \quad .3005, .0143$
$-10^{2},-10^{2} \quad .3007, .0139$
$-10^{3} ; 0 \quad .3011, .0141$
$0,-10^{3} \quad .3011, .0142$
$-10^{3},-10^{3} \quad .3011, .014,1$
$-10^{4}, \quad 0 \quad .3012, .0142$
$0,-10^{4} \quad .3011, .0142$
$-10^{4},-10^{4} \quad .3012, .0142$
$-10^{5}, 0 \quad .3012, .0142$
$0,-10^{5} \quad .3011, .0142$
$-10^{5},-10^{5} \quad .3011, .0142$

Table 3. Calculations to determine the values of E_{1} and E_{2} at which the walls are, effectively, rigid. For the above results we use a twenty cosine series and tabulate the most unstable eigenvalue at $a=1$ and $R=2500$.

a	R	1000	2000	3000	4.000	5000	6000	7000	8000	9000	10000
	.000	.0638	.0388	.0260	.0181	.0127	.0087	.0057	.0033	.0014	-.0002
.850	.0578	.0329	.0207	.0133	.0035	.0049	.0023	.0002	-.0013	-.0026	
.900	.0521	.0278	.0163	.0096	.0052	.0022	-.0001	-.0017	-.0030	-.0040	
.950	.0469	.0234	.0128	.0068	.0030	.0004	-.0014	-.0027	-.0037	-.0044	
1.000	.0421	.0198	.0102	.0050	.0018	-.0003	-.0017	-.0027	-.0033	-.0037	
1.025	.0400	.0184	.0092	.0014	.0015	-.0003	-.0015	-.0023	-.0028	-.0031	
1.050	.0380	.0171	.0085	.0041	.0014	-.0001	-.0011	-.0017	-.0020	-.0022	
1.075	.0363	.0161	.0080	.0039	.0017	.0003	-.0005	-.0009	-.0010	-.0010	
1.100	.0346	.0153	.0077	.00140	.0020	.0009	.0004	.0002	.0002	.0003	

T'oble 4. The tmacinary part of the most unstable eiconvalue of the risid wall problem, for different values of the fluid parameters (a, R), obtained using a thirty cosine series.

	$c_{i}=$. 002	$c_{i}=$. 001	$c_{i}=$. 000	$c_{i}=-$		$c_{i}=-$. 002
a	R	R	R	R	R	R	R.	R	R	2
. 800	8650		9250		9850					
. 850	7100		7600		8150		8850		9600	
. 900	6050		6500		6950		7550		8250	
. 950	5350		5750		6200		6700		7400	
1.000	4900		5350		5850		6400		7300	
1.025	4750		5200		5800		6500		7500	
1.050	4700		5200		5900		6850		9000	
1.075	4800		5500		6350					
1.100	5000		5800							
R	a	a	a	a	a	a	a	a	a	ε
5000	. 988	1.100								
6000	. 905		. 930	1.105	. 970	1.060				
7000	. 855		.875		.895	1.093	.930	1.055		
8000	. 820		.835		. 855	1.095	. 880	1.070	. 910	1.040
9000			.805		. 825	1.094	. 845	1.075	. 865	1.050
10000						1.094	. 815	1.075	. 830	1.055

Table 5. Points on the rigid wall neutral stability end constant amplification curves, obtained using a thirty cosine series.

a	R 1000	2000	3000	4000	5000	6000	7.000	8000	9000	10000
. 800	. $306{ }_{4}$. 2772	. 2606	. $21+90$. 24.00	. 2328	. 2268	. 2216	. 2171	.2131
. 850	. 3170	. 2868	. 2693	.2571	. 22477	. 21401	. 2339	. 2285	. 2239	. 2198
.900	. 3272	. 2957	. 2775	.2647	.254 .9	. 24.71	.2406	. 2351	.2303	. 2261
. 950	. 3370	. 3042	. 2851	. 2718	.2617	. 2537	.2470	. 2413	. 2364	. 2320
1.000	- 3463	. 3121	. 2923	. 2785	.2681	. 2598	. 2529	.2471	.2420	.2375
1.025	. 3508	.3159	.2957	. 2818	.2712	. 2627	. 2558	. $24+98$. 2447	. 24.01
1.050	. 3551	.3195	. 2990	.284 .8	. 2742	. 2656	.2585	. 2524	. 24.72	$.24+26$
1.075	-3593	. 3231	. 3023	. 2879	.2770	. 2683	.2610	.2549	.2496	- 2449
1.100	.3634	. 3265	.3054	. 2907	.2796	.2708	.2635	. 2572	.2518	.22470

Table 6. The real part of the most unstable eigenvalue of the rigid wall problem, for different values of the fluid parameters (a, R), obtained using a thirty cosine seriss.

a	R	R	R	a	a
.85	8600		6000	.980	1.040
.90	7350		7000	.910	1.058
.95	6300		8000	.870	1.04 .8
1.00	5800		9000	.838	1.030
1.05	6500	7800	10000	.818	1.015

Table 7. Points on the rigid wall neutral stebility curve, obtained using a twenty cosine series.

20		cosine series.	30 cosine series.		
R	c_{r}	c_{r}	r_{r}	c_{r}	c_{r}
8600	.226		9850	.213	
7350	.239		8150	.228	
6300	.253		6950	.24 .1	
5800	.262		6200	.252	
6500	.263		5850	.261	
7800		$.25 y_{4}$	5800	.263	
6000	.258	.265	5900	.266	
7000	.24 .2	.260	6350	.266	
8000	.231	.253	6000	.256	.267
9000	.222	.246	7000	.240	.262
10000	.215	.239	8000	.229	.257
			9000	.221	.250
			10000		.246

Table 8. Points on the spatial neutral stability curves, obtained using trenty and thirty cosine series for the rigid wall problem.

y	Stream function.		Reynolds stress.	y	Strean function.		Reynolảs stress.
	Real part.	Imagina part.			Real part.	Imagina part.	
. ∞	1.0000	. 0000	. 0000	. 0	1.0000	. 0000	. 0000
. 05	. 9960	-. 0021	-. 1666	. 05	.997L	-. 0001	-. $008{ }_{4}$
. 10	. 9841	-. 0082	-. 3231	. 10	. 9899	-. 0004	-. 0181
. 15	. 9640	-. 0181	-. 4597	. 15	. 9775	-. 0010	-. 0302
. 20	. 9353	-. 0309	-. 5674	. 20	. 9603	-. 0020	-. 02448
. 25	. 8978	-. 0459	-. 6388	. 25	. 9381	-. 0033	-. 0600
. 30	. 8513	-. 0618	-. 6689	. 30	. 9106	-. 0050	-. 0722
. 35	. 7958	-. 0773	-.6564	. 35	. 3773	-. 0069	-. 0795
. 40	. 7318	-. 0909	-. 6045	. 40	. 8381	-. 0089	-. 0853
. 45	. 6602	-. 1012	-. 5206	. 45	. 7932	-. 0111	-. 0982
. 50	. 5825	-. 1070	-. 4164	. 50	. 7422	-. 0139	-. 1257
. 55	. 5007	-. 1073	-. 3057	. 55	. 634.6	-. 0177	-. 1634
. 60	. 41772	-. 1019	-. 2022	. 60	. 6188	-. 0225	-. 1901
. 65	. 3348	-. 0911	-. 1170	. 65	. 5430	-. 0273	-. 1767
. 70	. 2564	-. 0758	-. 0561	. 70	.456i4	-. 0296	-. 1094
. 75	. 1846	-. 0579	-. 0198	. 75	. 3607	-. 0265	-. 0107
. 80	. 1220	-. 0395	-. 0032	. 80	. 2508	-. 0167	. 0662
. 85	. 0706	-. 0229	. 0012	. 85	.1064	-. 0029	. 0786
. 90	. 0322	-. 0100	. 0008	. 90	. 0815	. 0074	. 0393
. 95	. 0083	-. 0024	. 0001	. 95	. 0229	. 0066	. 0052
1.00	. 0000	. 0000	. 0000	1.00	. 0005	. 0002	. 0000
	(a)			(b)			

Table 9. Stream function and Reynolds stress distrioutions obtained for the rigid wall problem at
(a) $(a, R)=(1,100)$ using a thirty cosine scries, and
(b) $(a, 2)=(1,1600)$ using a ten cosine series.

y	Stream function.		Reynolds stress.	y	Stream function.		Reynolds stress.
	Real part.	Imaginary part.			Real part.	Imaginary part.	
. 00	1.0000	. 0000	. 0000	. 00	1.0000	. 0000	. 0000
. 05	. 9976	-. 0001	-. 0111	. 05	. 9976	-. 0001	-. 0114
. 10	. 9902	-. 0006	-. 0230	. 10	. 9902	-. 0006	-. 0229
. 15	. 9780	-. 0013	-. 0348	. 15	. 9780	-. 0013	-.0346
. 20	. 9607	-. 0023	-.0462	. 20	. 9607	-. 0023	-. 04.64
. 25	. 9383	-. 0036	-. 0584	. 25	. 9382	-. 0036	-. 0586
. 30	. 9105	-. 0052	-. 0714	. 30	. 9105	-. 0052	-. 0712
. 35	. 8774.	-. 0072	-. 084	. 35	. 8774	-. 0072	-. 0840
. 40	. 8385	-. 0094	-. 0969	. 40	. 8385	-. 0094	-. 0972
. 45	. 7936	-. 0120	-. 1121	. 45	. 7936	-. 0120	-. 1121
. 50	. 77425	-. 0151	-. 1332	. 50	. 7425	-. 0151	-. 1330
. 55	-6846	-. 0189	-. 1625	. 55	. 6846	-. 0189	-. 1627
. 60	. 6187	-. 0236	-. 1916	. 60	. 5187	-. 0236	-. 1917
. 65	- $54+32$	-. 0286	-. 1911	. 65	. 54.32	-. 0286	-. 1909
. 70	. 4566	-. 0316	-. 1310	. 70	. 4566	-. 0316	-. 1310
. 75	. 3605	-. 0290	-. 0252	. 75	. 3605	-. 0290	-. 0253
. 80	. 2601	-. 0190	. 0624	. 80	. 2601	-. 0190	. 0625
+85	. 1642	-..0045	. 0780	. 85	.1642	-. 0045	. 0780
. 90	. 0821	. 0064	.0384	. 90	. 0821	. 0064	. 0384
. 95	. 0230	. 0061	. 0050	. 95	. 0230	. 0061	. 0050
1.00	. 0000	. 0000	. 0000	1.00	. 0000	. 0000	. 0000
(a)				(b)			

Table 10. Strean function and Peynolds stress distributions obtained for the rigid wall problem at
(a) $(a, R)=(1,1600)$ using a twenty cosine series, and
(b) $(a, R)=(1,1600)$ using a thirty cosine series.

| y | Stream function. Reynolds | y | Stream function. | Reynolds |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| stress. | | | | |

Table 11. Strear function and Reynolds stress distributions obtained for the rigid wall problen at
(a) $(a, R)=(1,64,00)$ using a twenty cosine series, and
(b) $(a, R)=(1,6400)$ using a thirty cosine series.

Table 12. Stream function and Reynolds stress distributions
(a) obtained for the rigid mall problem at $(a, R)=(1,10000)$ using a thirty cosine series, and
(b) obtained for the adjoint rigid rall problem at

$$
(a, R)=(1,100) \text { using a thirty cosine series. }
$$

R	ε	c_{r}	a	R	c_{r}
3000	1.268	.326	.80	7250	$.224_{4}$
3500	1.288	.319	.85	5750	.240
4000	1.293	.313	.90	4750	.256
4500	1.293	.306	.95	4000	.271
5000	1.288	.303	1.00	3450	$.284_{4}$
5500	1.285	.297	1.05	3100	.296
6000	1.278	.292	1.10	2800	.308
6500	1.270	.288	1.15	2650	.318
7500	1.258	.281	1.20	2700	.323
8000	1.253	.276	1.25	2850	. .327

Table 13. Points on the stability curves, calculated for $\mathcal{Z}_{1}^{-1}=$ $\mathrm{E}_{2}^{-1}=-10$, using a thirty cosine series.

R	a	c_{r}	a	R	c_{r}
3500	1.290	.321	.80	7400	.223
4000	1.300	.315	.85	5800	.240
4500	1.300	.309	.90	4750	.256
5000	1.293	$.304_{4}$.95	4000	.271
5500	1.283	.298	1.00	3500	.284
6000	1.270	.294	1.05	3100	.297
6500	1.258	.289	1.10	2750	.308
7000	1.240	.285	1.15	2650	.316
7500	1.220	.280	1.20	2650	.325
8000	1.205	.275	1.25	2750	.329

Table 14. Points on the stability curves, calculated for $E_{1}^{-1}=$ $\mathrm{E}_{2}^{-1}=-10$, using a twenty cosine series.

a	R	a	R	a	R
. 109	42500	.713	12700	. 38	32500
. 146	41500	. 917	6170	. 51	24700
. 184	40000	1.003	54.10	. 62	17400
. 379	32500	1.034	5350	. 97	17000
. 4.83	27000	1.075	5750	. 83	24.700
. 595	20000	1.079	5970	. 70	30100
. 723	12500	1.088	6680	. 51	36500
. 800	9280	1.077	9520		
. 850	7900	. 235	38300		
. 900	684.0	. 131	43200		
. 950	6170	. 122	1,44.00		
1.000	5820	.124	$4+700$		
1.050	6040	.137	414800		
1.081	7500	. 14.4	$11_{4} 700$		
1.068	10000	. 164	$4 \nu_{1} 300$		
1.042	12500	. $24+1$	42600		
. 930	20000				
.790	27000				
. 648	32500				
. 370	140000				
. 302	41500				
. 258	42500				
. 200	14.000				
(a)		(b)		(c)	

Table 15. Points on the neutral stability curve for a membrane with tension only. The value of the tension is $.5 \times 10^{9}$ and the three tables correspond to
(a) the present work,
(b) accurate points for the asymptotic iransformation and
(c) approximate points for the asymptotic transformation.

a	R	c_{r}	c_{pr}	a	R	c_{r}	c_{pr}
.800	3680	.293	1080	.998	4200	.335	14.10
.825	3650	.297	1080	1.000	4450	.346	1540
.850	3630	.301	1090	1.013	4790	.375	1800
.875	3600	.305	1100	1.025	4860	.388	1880
.900	3600	.303	1110	1.050	4900	.398	1950
.925	3620	.312	1130	1.075	4910	.417	2050
.950	3650	.315	1150	1.100	4910	.428	2100
.975	3775	.321	1210	1.125	4.920	.4 .33	2150
.988	3880	.324	1260			.	

Table 16. Points on the flexible wall stability curves, calculated for $\left(m, D, c_{0}\right)=(1,1000,3000)$ using a thirty cosine series (i.e. damped membrane curves).
(a)
(b)

R	c_{i}	${ }^{\mathrm{c}} \mathrm{pi}$	R	c_{i}	${ }^{\mathrm{c}} \mathrm{pi}$
3000	. 0060	18.0	3000	. 0060	18.0
3300	. 0030	9.9	3250	. 004.5	45.6
3500	.0012	4.2	3500	. $001{ }^{2}$	14.7
3800	-.0013	-4.9	3750	. 0041	15.4
4,000	-. 0028	-11.2	4000	. 0046	13.4
1,200	-.004.3	-18.1	4200	. 0056	23.5
1,400	-. 0059	-26.0	44.00	. 0075	33.0
4500	-. 0070	-31.5	4.550	. 0095	43.2
${ }_{1} 600$	-. 0085	-39.2	1.600	. 0104	47.9
4800	-. 0139	-66.7	4650	. 0113	52.6
5000	-. 0270	-135.0	4700	. 0121	56.9
Table 17. Points on the curves of $c_{p i}$ versus			4750	. 0126	59.9
			4.800	. 0116	55.7
flexible walls with ($\left.a, D_{0} \mathrm{c}_{0}\right)=(1,1000,3000)$			${ }_{4} 850$. 0072	34.9
using a thirty cosine series (i,e, dismped			44900	.0000	00.0
membrane curves).			4950	-. 0079	-39.1
			5000	-. 015	-77.0

a	R	c_{r}	$c_{p r}$	2	R	c_{r}	${ }^{\text {c }}$ p
.600	6560	. 247	1620	. 840	8000	.333	2660
.650	6320	. 252	1610	. 839	8100	. 341	2760
. 700	6060	. 258	1560	. 843	8200	. 354	2,00
. 750	5800	. 263	1530	. 850	8250	. 362	2990
. 800	5560	. 269	1500	. 875	8300	. 382	3170
. 825	5450	. 273	14.90	. 900	8300	. 397	3300
. 850	5380	. 274	1470	. 925	8285	. 4.409	3390
. 875	5270	. 277	1460	. 950	8265	. 420	3470
. 900	5270	. 281	1480	. 975	8250	. 430	3550
. 925	5350	. 284	1520	1.000	8220	. 439	3610
. 934	5500	. 286	1570	1.025	8195	. 418	3670
. 934	6000	. 290	1740	1.050	8170	. 457	374.0
. 917	6500	. 2914	1910	1.075	$81!0$. 4.65	3790
. 892	7000	. 300	2100	1.100	8110	. 4.73	3830
. 863	7500	. 310	2330	1.125	8085	. 480	3890

Table 18. Points on the flexible wall stability curves, calculated for (m, D, c_{0}) $=(1,1000,5000$) using a thirty cosine series (i.e. damped membrane curves).

a	R	a	R	a	R
.800	5630	.924	6000	.839	8000
.850	54.70	.911	6500	.900	8300
.900	54.70	.889	7000	1.000	8220
.910	5500	.862	7500	1.100	8110
.925	5750				

Table 19. Points on the constant amplirication curve for $c_{p i}=-2.5$, calculated for a flexible wall with (m, D, c_{0}) $=(1,1000,5000)$ using a thirty cosine series (i.e. a damped nemberane curve).

a	R	${ }^{\text {c }}$	${ }^{\text {c }} \mathrm{pr}$	a	R	${ }^{c}$	${ }^{\text {c pr }}$
. 800	7880	. 237	1870	. 800	9850	.213	2100
. 850	7030	. 24.5	1720	. 825	9000	.221	1990
. 900	64.00	. 253	1620	. 850	8150	. 228	1860
. 950	6000	. 262	1570	. 855	8000	. 229	1830
. 975	5940	. 264	1570	.895	7000	. 24.0	1680
1:000	6050	. 267	1620	. 900	6950	. 24.1	1670
1.022	6500	. 268	17140	. 950	6200	. 252	1560
1.023	7000	. 265	1850	. 970	6000	.256	1540
1.018	7500	. 264	1980	1.000	5850	.261	1530
1.011	8000	. 261	2090	1.025	5800	.263	1540
. 999	8500	. 259	2200	1.050	5900	. 266	1570
. 987	9000	. 259	2330	1.060	6000	.267	1600
				1.075	6350	. 266	1690
				1.093	7000	. 262	1830
				1.095	8000	. 257	2050
				1.094	9000	. 250	2250

(a)
(b)

Table 20. Points on the flexible mall stabilitij curves, cslculated for $(\Omega)\left(n, \rrbracket, c_{0}\right)=\left(1,1000,10^{4}\right)$ ana (b) $\left(m, D, c_{0}\right)=$ $\left(1,1000,10^{5}\right)$, using a thirty cosine series (i.e. dampeà membrane curves).

124

a	R	c_{r}	c_{pr}	a	R	c_{r}	${ }^{\text {c }} \mathrm{pr}$
.600	7140	.263	1880	.675	8500	. 4.23	3600
. 625	7025	. 264	1860	.690	84.70	. 433	3660
. 650	6900	. 266	1840	. 700	84.40	. 4.38	3700
. 675	6760	. 267	1810	. 725	8380	.451	3780
. 700	6670	. 269	1790	. 750	8320	. 4.64	3560
. 725	6540	. 271	1770	. 800	8190	. 486	3980
. 750	64.00	. 273	1750	. 850	8070	. 504	$4: 070$
. 775	6300	. 273	1720	.900	7840	. 523	4.160
. 800	6250	. 276	1730	. 950	7820	- 54, 1	4230
. 810	6500	. 282	1830	1.000	7700	. 557	4290
. 800	6775	. 285	1930	1.050	7590	. 572	$4+340$
. 783	7000	. 287	2010	1.100	7490	. 585	4380
.750	7390	. 293	2170	1.150	7390	. 597	$212+20$
. 738	7500	.294	2200	1.250	7200	. 621	$14+70$
. 725	7630	. 298	2270	1.350	704.0	. $61+1$	4510
.700	7880	. 304	2390	1.450	6900	. 659	4550
. 686	8000	. 309	24,70	1.550	6770	.674	4570
. 675	8090	. 313	2530	1.650	6650	. 689	4590
. 660	8230	. 320	2630	1.750	6570	. 701	4610
. 650	8320	. 326	2710	1.850	6!:80	. 712	4620
.638	84.00	. 335	2810	1.950	6410	. 724	14640
. 628	8500	. 349	2970	2.050	6350	.731	4540
. 625	$851+5$. 360	3080	2.150	6300	. 738	4550
. 625	8555	. 362	3100	2.250	6250	. 745	4660
. 650	8540	. 407	3480	2.350	62.20	. 751	4670
. 665	8510	. 422	3590	2.450	6200	.755	4680

Table 21 (a). Points on the stability curves for damped membrane malls, calculated for $\left(m, D, c_{0}\right)=(1,250,5000)$ using a thirty cosine series.

a	R_{1}	c_{r}	$c_{p r}$	a	R	c_{r}	$c_{p r}$
2.550	6190	.756	4680	3.480	7200	.662	4770
2.650	6190	.758	4690	3.520	7300	.654	4780
2.750	6210	.757	4700	3.540	7400	.646	4780
2.850	6260	.752	4710	3.560	7500	.638	4780
2.950	6340	.744	4.720	3.600	7600	.630	4790
3.050	6460	.732	4720	3.660	7700	.623	4800
3.120	6600	.718	4730	3.730	7800	.615	1800
3.180	6750	.703	474.0	3.790	7900	.608	4800
3.260	6900	.689	4750	3.830	8000	.601	4810
3.34 .0	7000	.680	4760	3.830	8100	.594	4810
3.420	7100	.671	4760	3.810	8200	.588	4820

Table $21(\mathrm{~b})$. Points on the stability curves for demped membrane falls, calculated for $\left(m, D, C_{0}\right)=(1,250,5000)$ usine a thirty cosine series.

y	Stream function.		Reynolds stress.	J	Stream function,		Reynolins stress.
	Real part.	Imagina part.			Real. part.	Imaginary part.	
. 000	1.0000	. 0000	. 0000	. 800°	. 2796	. 0016	. 0620
. 050	. 9975	. 0000	. 0000	. 810	. 2581	. 0027	. 0746
. 100	. 9901	. 0000	. 0001	. 820	. 2362	. 0040	. 0860
. 150	. 9778	. 0000	-. 0001	. 830	. 21440	. 0056	. 0955
. 200	. 9603	. 0000	. 0000	. 840	. 1920	. 0073	. 1027
. 250	. 9378	. 0000	-. 0001	. 850	. 1692	. 0092	. 1071
- 300	. 9100	. 0000	-. 0001	. 860	. 1466	. 011 ?	. 1087
. 350	. 8768	. 0000	-. 0001	. 870	. 1240	. 0131	. 1076
. 400	. 8381	. 0000	-. 00003	. 880	. 1015	. 0150	. 1043
. 450	. 7935	. 0000	-. 0003	. 890	. 0791	. 0167	. 0995
. 500	. 74.29	. 0000	-. 0006	. 900	. 0569	. 0481	. 0938
. 525	. 7152	. 0000	-.0008	. 910	. 0350	. 0191	. 0883
. 550	. 6858	-. 0001	-. 0008	. 920	. 0136	. 0195	. 0838
. 575	. 6548	-. 0001	-. 0010	. 930	-. 0073	. 0195	. 0810
. 600	. 6219	-.0001	-..0016	. 940	-. 0275	. 0188	. 0801
. 625	. 5873	-. 0001	-. 0032	. 950	-. 0467	. 0174	. 0807
. 650	. 5507	-. 0002	-..0062	. 960	-.0648	. 0155	. 0816
. 675	. 5120	-. 0004	-. 0101	. 970	-. 0812	. 0132	. 0798
. 700	. 4771	-. 0006	-. 0124	. 980	-. 0968	. 0108	. 0708
. 725	. 4275	-. 0009	-. 0090	. 990	-. 1081	. 0090	. 0474
. 750	. 3812	-. 0009	. 0048	1.000	-. 1178	. 0036	. 0000
. 775	. 3318	-. 0002	. 0300				

Table 22. Points on the stream function and Reynolds stress distributions, calculated at $(a, 2)=(.9,5270)$ for damped nembranes with (m, D, ∞_{0}) $=(1,1000,5000$) using a thirty cosine series. The relevant eigenvalue is $c=.281$.

y	Stream function.		Roynolds stress.	y	Stream function.		Reynolds stress.
	Real part.	Iraagin part.			Real part.	Inagina part.	
. 000	1.0000	. 0000	. 0000	. 800	. 2196	.0006	. 0456
. 050	. 9973	. 0000	. 0000	. 810	. 1958	. 0017	. 0593
. 100	. 9892	. 0000	. 0001	. 820	. 1715	. 0032	. 0725
. 150	. 9757	. 0000	-. 0001	. 830	. 14.58	. 0050	. 0842
. 200	. 9566	. 0000	. 0001	. 840	. 1216	. 0072	. 0940
. 250	. 9320	. 0000	. 0000	. 850	. 0961	. 0097	. 1015
. 300	. 9017	. 0000	. 0000	. 860	. 0702	. 0126	. 1066
. 350	. 8656	. 0000	. 0000	. 870	. 04.41	. 0156	. 1097
. 400	. 8231.	. 0000	-. 0002	. 820	. 0178	. 0188	. 1111
. 450	. 7750	. 0000	-. 0001	. 890	-. 0088	. 0221	. 1119
. 500	. 7200	. 0000	-. 00005	. 900	-. 0355	. 0253	. 1131
. 525	. 6900	. 0000	-. 0006	. 910	-. 0623	.0284	. 1158
. 550	. 6582	. 0000	-. 0006	. 920	-. 0892	. 0312	. 1211
. 575	. 6246	. 0000	-. 0007	. 930	-. 1161	. 0337	. 1299
. 600	. 5892	-. 0001	-.0009	. 940	-. 1429	. 0356	. 1424
. 625	. 5517	-.0001	-. 0018	. 950	-. 1693	. 0370	. 1575
. 650	. 5123	-. 0001	-. 0041	. 960	-. 1952	. 0377	. 1719
. 675	. 4707	-. 0003	-. 0086	. 970	-. 2201	. 0381	. 1787
. 700	. 4267	-. 0006	-.014,0	. 980	-. 2437	. 0382	. 1663
. 725	. 3800	-. 0010	-. 0160	. 990	-. 2654	. 0386	. 1158
. 750	. 3301	-. 0013	-. 0081	1.000	-. 2850	. 0402	. 0001
. 775	. 2767	-. 0010	. 0134				

Table 23. Points on the stream function and Reynolds stress distributions, calculated at $(a, 2)=(.863,7500)$ for camped membranes with (n, D, ∞_{0}) $=(1,1000,5000$) using a thirty cosine series. The relevant eigenvalue is $0=.310$.

Y	Stream	function.	Reynolds stress.	y	Stream	nction.	3eynolds stress.
	Real part.	Imaginary part.			Real part.	Imaginery part.	
. 000	1.0000	. 0000	. 0000	. 800	. 0725	. 0171	.1556
. 050	. 9969	.0000	. 0002	. 810	. 04450	.0216	. 1623
.100	. 9874	. 0000	. 0007	. 820	. 0174	. 0267	. 1657
. 150	. 9717	. 0000	. 0003	. 830	-. 0103	. 0321	. 1665
.200	. 9495	. 0001	.0013	. 84.0	-. 0381	. 0380	. 1653
. 250	. 9209	. 0001	. 0014	. 850	-. 0659	. 0441	. 1629
. 300	. 8855	. 0001	.0018	. 860	-. 0938	. 0506	. 1602
. 350	. 84.33	. 0002	. 0021	. 870	-. 1218	.0572	.1578
. 4.00	. 7941	.0002	. 0022	. 880	-. 14.99	. 0639	. 1566
. 4.50	. 7375	.0003	. 0025	. 890	-. 1763	. 0708	. 1570
. 500	. 6731	. 0004	. 0025	. 900	-. 2068	. 0777	. 1599
. 525	.6379	. 00014	. 0027	. 910	-. 2355	. 084.6	. 1663
. 550	. 6006	. 0004	. 0029	. 920	-. 2648	.0914	. 1772
. 575	. 5611	.0004	. 0023	. 930	-. 294.2	. 0981	. 1938
. 600	. 5194	. 0004	-. 0005	. 94.0	-. 3239	. 1045	. 2165
. 625	.4752	.0003	-. 0062	. 950	-. 3538	. 1107	- 24.42
. 650	. 4284 .	. 0000	-. 0127	. 960	-. 3837	.1164	. 2722
. 675	. 3784	-. 0004	-. 0140	. 970	-. 4.133	. 1216	. 2894
. 700	. $321+8$	-. 0006	-. 0012	. 980	-. 4121	. 1267	. 2758
. 725	. 2672	. 0000	. 0309	. 990	-. 4698	. 1318	. 1975
. 750	. $205{ }^{+}$.0026	. 0774	1.000	-. 4957	.1379	.0038
. 775	. 1402	. 0081	. 1240				

Table 24. Points on the stream function and Reynolds stress distributions, calculated at $(a, R)=(.9,8300)$ for damped rembranes $\overline{\text { Hith }}$ $\left(m, D, c_{o}\right)=(1,1000,5000)$ using a thirty cosine series. The relevant eigenvalue is $c=.397$.

a	R	${ }^{\text {cr }}$	${ }^{\text {c }} \mathrm{pr}$	a	R	c_{r}	${ }^{\text {c }} \mathrm{pr}$
. 800	5330	.272	1450	. 800	5050	. 276	1390
. 825	5280	. 274	1450	. 825	5070	.276	1400
. 850	5225	. 276	14,4.0	. 850	5120	.279	1430
. 875	5200	. 279	1450	. 875	5140	. 281	1450
. 900	5210	. 281	14.60	.900	5220	. 281	1470
. 925	5300	. 284	1510	. 925	5400	. 284	1530
. 934	5500	. 287	1580	.938	5750	. 286	1640
. 933	6000	. 290	174.0	. 936	6000	. 288	1730
. 914	6500	. 295	1920	. 925	6330	. 290	1840
. 887	7000	. 304	2130	.917	6500	. 294	1910
. 858	7500	. 322	24.20	. 888	7000	. 305	2130
. 853	7625	. 330	2520	. 856	7300	. 321	2340
. 850	7750	. 339	2630	. 861	74.00	. 328	24.30
. 852	7875	. 351	2760	. 858	7500	. 337	2530
. 865	8000	. 368	294,0	. 858	7600	. 345	2620
. 875	8058	. 379	3050	. 863	7750	. 358	2770
. 900	8143	. 394	3210	. 875	7940	. 376	2990
. 925	8210	. 409	3360	. 900	8180	.397	3250
. 950	8270	. 419	34.70	. 925	8390	. 410	3440
. 975	8330	. 4.30	3580	. 950	8600	. 424	3650
1.000	8380	. 41.1	3690	. 975	8800	.435	3830
1.025	8430	. 451	3800	1.000	9000	- 417	4020
1.050	8490	- 1260	3910	1.025	9190	. 4.57	1,210
1.075	8540	. 468	4000	1.050	9370	. 469	44.00
1.100°	8590	. 479	4120	1.075	9550	. 479	14580
				1.100	9720	. 489	4760
(a)				(b)			

Table 25. Points on the stability curves for thin plates, calculated for $(a)\left(m, D, c_{0}\right)=\left(1,1000,\left(1,000^{2}+10^{7} a^{2}\right)^{\frac{3}{2}}\right)$ and
(b) $\left(m, D, c_{0}\right)=\left(1,1000,\left(3 \times 10^{7}{ }^{2}\right)^{\frac{1}{2}}\right)$, usine a thirty cosine series.

Figure 1. The coordinate system for plane Poiseulle flow with f'lexible malls.

the critical Reynolds number

Figure 2a A typical neutral stability curve.

Figure 3. Curves of c_{i} versus R,at fixed values of a, obtained for the rigid wall problem using a thirty cosine series.

Figure 4. The neutral stability and constent amplification curves for the rigid wall problem, obtained using a thirty cosine series.

Figure 5. Convergence of the present rigid wall neutral stability curve and comparisons with previous neutral stability curves.

Figure 6. Curves of c_{r} versus R, at fjxed values of a, obtained for the rigid wall problem using a thirty cosine series.

Figure 7. Convergence of the spatial neutral stability curve for the rigid wall problem.

Figure 8. Comparison of the real parts of the rigid mall stream function àistributions, obtainsà using a thirty cosine series.

Figure 9. Comparison of the imaginary parts of the rigid mall strean function distributions, obtsined using a thirty cosine series.

Figure 10. Comparison of the rigid well Reynolds stress distributions, obtained using a thirty cosine series.

Figure 11. Convergence of the real parts of the rigid wall stream function distributions.

Figure 12. Convergence of the imaginary part of the rigid wail strecm function distribution $\mathrm{gt}(3,2)=(1,1600)$.

Figure 13. Convergence of the imaginary port of the rigid mall stream function distribution et $(\Omega, i)=(1,64,00)$.

Reynolds
stress.

Figure 14. Convergence of the rigia mall Reynolds stress distribution at $(a, R)=(1,1600)$.

Figure 15. Convergence of the rigid wall Reynolds stress distribution at $(a, R)=(1,64,00)$.

rigure 16. Comparisons of the real parts of the present rigid wall stream function distributions with previous work.

Figure 17. Comparisons of the imaginary parts of the present rigit wall stream function aistributions with previous wors.

Reynolds
stress.

Figure 18. Comparisons of the present rigia mall Reynolds atress distributions with previous worl.

Figure 19. The adjoint rigid wall distributions at $(a, R)=(1,100)$, obtained using a thirty cosine series.
-

Figure 20. Convergence of the present neutral stability curve and conparison with that of Hains and Price, for values of $\mathrm{E}_{1}^{-1}=\mathrm{E}_{2}^{-1}=-10$.

Figure 21. Convergence of the present spatial stability curve and comparison with that of Hains and Yrice, for values of $E_{1}{ }^{-1}=E_{2}^{-1}=-10$.

Higure 22. Comparison of neutral stability curves for a membrane with tension only. The value of the tension is . 5×10^{9}.

Figure 23. iVeutral stability curves celculated for danped membrane walls with $(n, D)=(1,1000)$ ana (a) $c_{0}=3000,(b) c_{0}=5000$, (c) $c_{0}=10^{+}$and (d) $c_{0}=10^{5}$, using a thirty cosine series.

Figure 24. Spatial stability curves calculated for damped menorane walls with $(\mathrm{m}, \mathrm{D})=(1,1050)$ and $(\mathrm{a}) \mathrm{c}_{0}=3000$, (b) $\mathrm{c}_{0}=5000$, (c) $c_{0}=10^{4}$ and (d) $c_{0}=10^{5}$, using a thirty cosine series.

Higure 25. Constant amplification curves caiculeted for a damped meabrane with $\left(m, i, c_{0}\right)=(1,1000,5000)$ using a thirty cosine series.

 calculated for a damped membrane iith $\left(m, D, c_{0}\right)=(1,1000,3000)$ using a thirty cosine series.

Figure 27. Neutral stability curves calculated for damped nembrane walls using a thirty cosine series.

Figure 28. Spatial stability curves calculated for danped membrene walls using a thirty cosine series.

Figure 29. The wore complete neutral stability curve calculated \hat{i} or the damped nembranes mith $\left(m, D, \infty_{0}\right)=(1,250,5000)$ using a thirty cosine series.

Figure 30. The more conplete spatial stability curve calculated for the damped menbranes with $\left(m, D, c_{0}\right)=(1,250,5000)$ usiñ a thirty cosine sories.

Figure 31. The real parts of the strean function distributions, calculate for danped membranes mith $\left(m, D, c_{c}\right)=(1,1000,5000)$ usins a thirty cosine series.

Fizure 32. The imaginary parts of the strean Iunction distributions, calculated for damed membanes ioth $\left(m, 1, \infty_{0}\right)=(1,1000,5003)$ using a thirty cosine series.

Figure 33. The Reynolds stress distributions, celculated for demped neabranes rith $\left(m, D, \infty_{0}\right)=(1,1000,5000)$ using a thirty cosine series.

rigure 34. Neutrel stability curves for thin plate malls, celculatea. using a thirty cosine series.

Figure 35. Spatial stability curves for thin plate walls, calculated using a thirty cosine scriss.

References.

Benjamin, T. B. (1960). Bffects of̂ a flexible boundary on hydrodynanic stability. J. IMuid kech. , 2, 513-532.

Benjamin, T. B. (1963). The threcfold classification of unstable disturbances in flexible surfaces bounding inviscia flo:7s. J. Muia Hech. , 16, 435-1,50.

Benjamin, I' B. (1964). Huid flow mith flexible boundaries. Proc. of $11^{\text {th }}$ International Congress of Appl. Hech. , Germany, 109-128. Boggs, F. W. , and Tokita, N. (1962). Theoretical study of compliant coatings to achieve drag reduction on undermater vericles. U. S. Rubber Co., "ayne, N. J. , Tech. Rep. .

Dolph, C. L. , and Lemis, D. C. (1958). On the application of infinite systems of orjinary differential equetions to perturbations in plane Poiseuille flom. Guart. Jppl. Vath., 16, 97-110.

Finleyson, $\overline{3}, ~$. , and Scriver, i. 3. (1966). The method of meighted residuals - a review. Appl. Vech. Rev. , 19, 735-748.

Friedman, D. (1956). Principles and techniques of applied mathematics. Wiley.

Grohne, D. (1954). On the spectrum on natural oscillations of trodimensional laminar flows. Tech. Bomor. Nat. Adv. Comm. Sero., no. 1417 .

Grosch, C. E. , and Salwen, H. (1968). The stability of steady and time-dependent plane Poiseuille filoif. J. Fluid Eech., 迄, 177-205 Hains, F. D. (1964). Additionel modes oî instability for Poiseuille flow over flexible walls. ALAA J. , 2, 1147-1148.

Hains, F. D. (1965). Prelininary results on boundary layer stability on a flexible plate. ILA J., $2,775-776$.
Hains, F. D. , and Price, J. F. (1961a). Stability of plane Poiseuille flow between flexible walls. Boeing Scientiric Res. Labs., Hight Sciences Tab. Rep., no. 37.

Hains, F. D., and Price, J. F. (1961b). Further remarks on the stability of plane Poiseuille flow betreen flexible wails. Boeing Scientific Res. Labs., Flight Sciences Lad. Rep. , no. 53.

Hains, F. D. , and Price, J. F. (1962a). Stability of plane Foiseuille flori between flexible walls. Proc. $4^{\text {th }}$ iat. Congr. Appl. Eech. , 2, 1263-1263.

Hains, F. D. , and Price, J. ․ (19620). Eñect of a flexible vall on the stability of Poiseuilie flow. Phys. Fluius, 5, 365. Heisenberg, 7. (1924). "Üer Stabilitat und Turjulenz von Flussizkeitsstromen. Ann. Zhys. , 士yz. , 7le, 577-627. Kaplan, R. B. (1962). The stability oir laminar incompressible boundary layers in the presence of compliant bounaries. N. I. T. , Aeroelastic and Structures Res. Lad., ASiJ - in 116-1.

Korotkin, A. I. (1965). Stability of plane Poiseuille flom in the presence of elastic boundaries. P. K. 1. , 29. 1122-1127.

Korotkin, A. I. (1966). Stability of the laminar boundary layer in an incompressible rluid on an elastic surface. Izv. Akan. Nauk. SSSR Mekhan. Zhidk. i Gaza, 3, 39-4,

Kramer, li. 0. (1957). Boundery layer stabilisation by distributed damping. Je iero. Scie, 24, 459.

Kramer, M. 0. (1960). Readers' form. J. iero/Space Sci. , 27, 68. Landohl, H. 1. (1962). On the stability of a laminar incompressiole boundary layer over a flexible surface. J. Fluid Hech., 13, 609-632.

Iandahl, M. T. (1966). A tine-shared program system for the solution of the stability problem for parallel flows over rigid or rlexible surfaces. $\mathrm{K} . \mathrm{I} . \mathrm{T}$, , Aeroelestic and Structures Res. Lab., ASRL - TR 115 - 4 .

Landahl, i. T., and Kaplan, 2. E. (1965). The eriect of compliant walls on bouncary layer stability ana transition. AGARDogreph, 97, 363-394.

Lee, L. H. , and Rejnolds, ii. C. (1964). A variational netiod for investigating the stability or parallel inoms. Stanrord liniv. , Calif. , hech. Engng. Dept. , Tech. Rep. no. Fi.. - 1.

Lee, L. H. , and Reynolds, ï. C. (1967). On the approximate and numerical solution of Orr-Somerfeld problems. Cuert. J. iech. Appl. iath., 20, 1-22.

Lin, C. C. (194 4). On the stability or tro-dimensional parallel flows. Proc. Nat. Mcad. Sci., Wash., 30, 316-323.
Lin, C. C. (1945). On the stability of tio-dimensional parallel flows. Pts. I, II, III. Quart. Appl. Nath. , 3, 117-142, 218-234, 277-301.

Lin, C. C. (1955). The theory of hydrodynamic stability. Cambridge University Press.

Linebarger, J. H. (1961). On the stability oî a laminar boundary layer over a flexible surface in a compressible fluid. S. H. Thesis, Dept. of hero. and Astro. , I. I. T. .

Lock, R. C. (1954). Hydrodynamic stability of the flow in the laminar boundary layer between parallel streans. Proc. Cambridge Fhil. Soc., 50, 105-124.

Miles, J.\%. (1957). On the generation of suriace waves by shear flows. J. Fluid :rech. , 3, 105-204.

Kiles, J. T. (1959a). On the generation oin suriace waves by shear flows. Pt. 2. J. Fluid Nech. , 5, 550-582.

Hiles, J.W. (1959b). On the generation of surface naves by shear flows. Pt. 3. Kelvin-Felnholtz instaoility. J. Fluid Rech. , 6, 583-590. Hiles, J. T. (1962). On the generation of suriace weves by shear flows. Ft. 4. J. Fluid Mech. , 13, 4.33-14.8.

Nonailer, T. (1963). Qualitative solution of the stability equation for a boundary layer in contact with various forms or̂ flezible suriace. A. R. C. , C. P. 622.

Shen, S. Ir. (1954). Galculated amplified oscillations in plane Foiseuilae and Blasius Ilous. J. iaron. Sci. , 21, 62-64.

Squire, H. B. (1933). On the stabiaity of three-dimensional disturbances of viscous flow between parallel malis. Proc. Roy. Soc., A 400206. 621-628.

Stuart, J. T. (1963). Hydrodynamic stability. In "Laminar Boundary Layers" (I. Rosenhead, ed.). Clarendon Press, Grionà.

Timoshenko, S. P., and Gere, J. :2. (1961). Theory of elastic stability. HeGraw-Hill.

Thomas, L. H. (1953). The stability of plane Poiseuille ilon. Fhys. Rev., 91. 780-783.

[^0]: h

