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Abstract.  

The problem of plane Poiseuille flow with flexible walls is set 

up as an eigenvalue problem for the wave speed of infinitesimal 

disturbances and solved by use of a new variational method. This novel 

variational technique, developed in the present work, overcomes the 

difficulty in the present problem that the eigenvalue is contained in 

the boundary conditions. It also allows a completely general series 

of functions to be used to approximate the stream function of the 

problem. The eigenvalues obtained from the method are used to give 

stability curves, and the eigenvectors obtained are used to give stream 

function and Reynolds stress distributions. The computer program, 

developed from the variational method, is used to obtain stability 

results for the flexible wall problem, and, by taking a limiting case 

of this problem, to obtain results for the rigid wall problem. 

Convergence tests and comparisons with previous work, for both the 

flexible wall and rigid wall problems, give great confidence in the 

accuracy of the present method. Stability results are obtained for 

two flexible wall models: firstly, membrane walls, where the effects 

of variations in the damping and free wave speed in the wall are 

examined, and secondly, thin plates, where the effects of flexural 

rigidity are examined. 
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List of symbols.  

Symbols are not repeated which have merely the addition of a 

tilde, bar or star (denoting dimensional, complex conjugate or adjoint 

terms, respectively). 

y 	coordinates of the flow 

yo 	the critical point 

h half the width of the pipe 

displacement of a wall from its 

unperturbed state 

t time 

dimensional velocity 

u,v 	velocity components 

u 	v' 	perturbation velocity components 

U steady state velocity 

Uo 	velocity of the steady state flow at y = 0 

p 	 pressure 

P steady state pressure 

p' 	pressure perturbation 

stream function 

= ¢r + i0i 	the "y" dependence of the stream function 

a 	 wave number 

c = or + ici 	wave speed 

c 	= c
pr  + io PI  

. 	physical wave speed 
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0 1 1 i 	3 C 3  C C1 3  C23 0 p c 	values of the wave speed used in the 

iterative scheme 

X° 	eigenvalue pivot 

R 	 Reynolds number 

Ito 
	critical Reynolds number 

kinematic viscosity 

density 

viscosity 

Tj, mj, ej)  dj, 

s., co.,
j  

 D (j=1,2) 	flexible wall parameters 

YY 	
component of the stress tensor normal 

to the wall 

Ej  (j=1,2) 	boundary condition parameters 

e, a°, ul, u2, 
t t 3 3 el, e2)  e e 	values of the boundary condition parameters 

used in the iterative scheme 

L 	 differential operator 

B 	 boundary condition operator 

vector operator of the variational method 

vector function of the variational method 

I 	 functional of the variational method 

a
m (m=1, . . . 	N) 

	
components of the approximating series 
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Chapter 1. Introduction. 

1.1. General introduction. 

Calculations of skin friction drag on stream-lined bodies are 

necessarily based on the correct location of the transition re-

gion. The transition region is characterised by a basic instabili-

ty of the laminar boundary layer resulting in a turbulent state 

downstream of this region. Although recent work on non-linear 

stability has shown that subcritical and supercritical 

instabilities are important in considering transition to 

turbulence, there is still value in studying the classical linear 

problem. This is especially so when the added complication of 

flexible walls is included. 

The problem of plane Poiseuille flow with flexible walls, 

considered in the present work, is a linearised stability problem 

in which the steady flow is purely parallel and there is an 

interaction between the wall waves and the fluid waves. In the 

boundary layer stability problem the steady flow is only 

approximately parallel, the boundary layer thickness increasing 

in the stream-wise direction. The boundary layer problem therefore 

presents difficulties when considering the change in the nature of 

the problem at very low Reynolds numbers. It is advantageous to 

consider a purely parallel steady flow problem where the 
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formulation of the problem is valid for all Reynolds numbers since 

the modification of stable boundary layers by flexible walls may 

be significant and introduce instabilities in regions where, 

strictly speaking, the mathematical formulation of the problem is 

invalid (see Landahl (1962)). 

Although Benjamin (1960) has presented excellent qualitative 

arguments for the beneficial design of flexible walls, it should 

be remembered that he considers mills which are nearly rigid or 

fluids which produce only a small effect on the walls, and these 

are probably exceptional cases. Landahl and Kaplan (1965) and 

Hairs and Price (1962) have obtained numerical results for some 

intermediate cases by integrating across the flow. The method 

adopted herein to solve the problem is a novel variational method 

which is adapted to the requirements of the present problem but 

which is generally applicable to other boundary value problems. 

1.2. Statement of the problem. 

The problem considered herein is of an incompressible, 

viscous fluid flowing down a two-dimensional pipe (see Figure 1). 

The basic direction of flow is taken in the x direction, parallel 

to the flexible side walls situated at y = -±h (the tilde, 

denotes dimensional quantities). The basic flow is plane Poiseuille 

flow (which is taken as U = 110(1-Y2/h2)). The fluid is 
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incompressible, two-dimensional and only infinitesimal disturb-

ances from the basic flow are considered. Hence a stream function 

for the dimensionless disturbance velocity of the form 

0(y)expi-ia(x-ct)1 may be chosen where t is the time, a is the 

wave number (considered as real) and c is the wave speed (con-

sidered as complex). The Reynolds number, R, of the problem is 

defined by 

R ✓ (maximum stream velocity)x(half the width of the pipe)  

(the kinematic viscosity).  

Uo xh  

The mathematical problem consists in solving the differential 

equation associated with the fluid flow (the Orr-Sommerfeld 

equation), coupled with the boundary conditions associated with 

the flexible walls. We wish to examine the spectrum of c which is 

obtained for given values of a and R. If the imaginary part of c 

is less than zero we have amplification, if greater than zero we 

have decay. Neutral stability is found where c is purely real. 

We may plot curves of neutral stability in the (a,R) plane, as is 

customary (see Figure 2), and neutral stability curves will be 

presented for inextensible walls with various characteristics. 

We will mainly be considering stability in a temporal sense but 
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curves of neutral stability in the spatial sense are obtained with 

temporal stability results and will be presented. 

1.3. Plane Poiseuille flow with sit,. id walls.  

The problem of plane Poiseuille flow with flexible walls is, 

in several respects, a continuation of the problem of plane 

Poiseuille flow with rigid walls. Hence, consideration of the 

rigid wall problem is important in the present problem. Also, a 

limiting case of the flexible wall problem maybe taken and 

numerical results for the rigid wall problem obtained. Previous 

results for the rigid wall problem will provide a good check on 

the accuracy of our computations. 

Heisenberg (1924.) was the first to consider the stability of 

plane Poiseuille flow with rigid walls. He did not calculate a 

critical Reynolds number but did conclude that the flow was 

unstable for large enough Reynolds numbers. ( The critical 

Reynolds number is the smallest Reynolds number at which infinit-

esimal disturbances may be unstable. ) Lin (1944) calculated the 

neutral stability curve using an asymptotic expansion and Shen 

(1954) calculated the curves of constant amplification by a 

perturbation from Lin's neutral curve. In these last results the 

critical Reynolds number was found to be 5300. 

The first numerical calculations were made by Thomas (1953). 



His results confirmed those of Lin, except at large values of the 

wave number where the asymptotic expansions would be expected to be 

inaccurate, and he found a critical Reynolds number of 5780. Other 

work has been done in this field, but of partigplar interest here 

are the papers by Lee and Reynolds (1967) and Grosch and Salwen 

(1968). Lee and Reynolds adopted a variational approach to the 

rigid wall problem. Grosch and Salwen obtained numerical results 

for the rigid wall problem using a basically similar technique in 

their study of time dependent plane Poiseuille flow with rigid 

walls. These variational, Rayleigh Ritz or Galerkin approaches, 

which have been widely used in structural mechanics, have only 

recently been applied to problems in fluid mechanics. In the 

normal course of calculations, these methods find a particular 

eigenvalue accurately and values of the other eigenvalues to 

varying degrees of approximation. Grosch and Salwen obtained 

higher eigenvalues (i.e. eigenvalues other than the most unstable 

in the spectrum of c). Previously, the only person to consider 

this problem for the rigid wall problem was Grohne (1954). 

Although there was disagreement in the exact results of Grohne 

and Grosch and Salwen, both concluded that at most one eigenvalue 

in the spectrum becomes unstable. 
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1.4.  Plane Poiseuille flow with flexible walls.  

Present interest in this problem stems from the experimental 

work of Kramer (1957, 1960). Kramers first experiments (1957) 

suggested that the transition of boundary layers from laminar to 

turbulent flow may be delayed by introduction of artificial 

damping (the artificial damping being introduced by use of a 

flexible wall). His later experiments (1960) suggested that the 

addition of a flexible coating to a stream-lined body may reduce 

its drag. 

These findings stimulated several theoretical studies 

examining the possibilities of stabilisation of fluid flows by 

flexible wallsIbut these all tend to refute Kramer's ideas, 

although suggesting other possible ways of improving stability. 

The main insight into the problem came from Benjamin's (1960) 

investigation of the two-dimensional, incompressible, viscous 

boundary layer'over a plane flexible wall when the wall was made 

slightly flexible or when the fluid produced a small loading on 

the wall. His model for the flexible wall was an inextensible 

membrane and he recognised three types of wave disturbance which 

he denoted by classes A, B and C. 

Class A waves may be considered as the Tollmien-Schlichting 

waves which occur in the rigid wall problem but now being modified 
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by the effects of the flexible wall. Benjamin found that this class 

of waves is stabilised by a stiffness controlled wall (i.e. one 

with an "elastic response" as described by Benjamin), the greatest 

stabilisation being, in the absence of other factors, when c is 

near but less than the free wave speed in the flexible wall. This 

class he found to be destabilised by damping in the well. 

( Stability here is considered in terms of the critical Reynolds 

number. A stabilising effect is denoted by an increase in critical 

Reynolds number and vice versa. ) Another important effect is that 

under suitable conditions the unstable region in the (a, R) plane 

may be shifted to smaller wave numbers. 

Class B waves are associated with the waves which can prop-

agate on the free flexible wall in the absence of any fluid. This 

class is only excited when the fluid velocity exceeds the free 

wave speed and it is found that damping in the wall is stabilising. 

Thus the damping requirements of class A and class B waves are in 

conflict. 

Class C instability may be considered as Kelvin-Helmholtz 

instability in that it propagates along the interface between the 

fluid and the flexible wall, is dependent on the presence of both 

the fluid and the flexible wall and is largely independent of 

viscosity. It occurs when the wall becomes too flexible. 

The previous provides a convenient classification when 
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discussing the problem. However, in general, the interaction 

produces a wave spectrum whose precise origins may be difficult 

to recognise. Indeed, where wall and fluid are of equal importance, 

the various classes may appear to be merged on a single stability 

curve as may be seen in results presented later. 

Landahl (1962) investigated the same problem and gave further 

physical insight into the principles behind the classification of 

the disturbances. His explanations were further amplified by 

Benjamin (1963). Landahl explains that the excitation of 

disturbances depends on energy transfers within the complete 

system. For class C waves the total energy level remains virtually 

unchanged and instability occurs with a unidirectional transfer of 

energy to the flexible wall, Landahl found that the amplitude of 

class A waves increases with a decrease in the energy of the syst—

em. This explains the destabilising effect of wall damping on 

class A waves since this damping absorbs energy. Amplification of 

class B waves involves an increase in energy level. Hence the 

stabilising effect of damping in the wp11. 

These ideas still hold for an inviscid fluid and are 

generally applicable to coupled fluid solid systems. 

Kaplan (1964) and Landahl and Kaplan (1965) have carried out 

numerical calculations for the boundary layer problem. These 

calculations, based on a Runge—aitta numerical integration across 
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the boundary layer, were mainly calculations for class,A disturb-

ances. There has been little interest in wall instability caused 

by the flow apart from Landahl (1962) who gave a few tentative 

class B curves. These were at very low Reynolds number, however, 

where the Orr-Sommerfeld equation is not, strictly speaking, 

applicable to the boundary layer stability problem. Kaplan (1964) 

gives a few class B curves which are, however, incorrect (see 

Landahl and Kaplan (1965)). For the class A waves, Benjamin (1964) 

gave three possibilities for the favourable use of a flexible vmll. 

Firstly, an increase in critical Reynolds number. Increases in 

critical Reynolds number have generally been found to be small for 

practical walls. Secondly, a reduction in the amplification rate 

of unstable disturbances. Thirdly, an increase in the group vel-

ocity of the unstable disturbances. In both of the last two cases 

Kaplan has found strong effects for certain cases. The numerical 

results of Kaplan and Landahl and Kaplan agree with the qualitative 

results found theoretically by Benjamin and Landahl. 

Heins and Price (1961a and b, 1962a and b) and. Heins (1964) 

have carried out numerical calculations for the problem of plane 

Poiseuille flow over flexible walls using a similar numerical 

integration to that of Kaplanland Landahl and Kaplan. They 

considered the two-dimensional problem of a viscous, incompressible 

fluid flowing between membrane walls. Considering walls with 

tension only, where the only possibility is class A disturbances, 
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they found that as they reduced the tension from its rigid wall value 

of infinity, the curve first closed and then reduced to a point. For 

lower values of the tension the flow was completely stable. This is 

however an unrealistic situation since the wall would have to be so 

light and under such a small tension that other stiffness criteria 

would dominate the design. 

Other work in this field has been done by Miles (1957, 1959a and 

b, 1962) where the emphasis was on water wave generation by wind, 

Linebarger (1961) who considered the effects of compressibility, 

Nonweiler (1963) who obtained qualitative results for an elastic layer 

model of the wall, Boggs and Tokita (1962) who determined free wave 

speeds for various elastic layer models of the wall without considering 

the fluid interaction and Korotkin (1965, 1966) who considered a flexible 

wall pliant in the tangential direction. 
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C. -ter 2. The boundary value problem.  

2.1. Governing equations.  

The Navier-Stokes equations for a viscous, incompressible, 

two-dimensional fluid are 

rs. 

av 	grad p 	2 
(v.grad)v = 	v grad v 

at 
	

P 

where 	v = Gilv) is the velocity, 

[cell = a a 
ax ay 

^, 2 	a2 	a2 grad. = 	+ 	) 

ax 	ay -72 -72 

- 
p = the pressure, 

p = the density, 

v = the kinematic viscosity 

2.1.1 

and the coordinates are as previously defined in Section 1.2 and 

Figure 1. ( N.B. The tilde, ", denotes dimensional quantities. ) 

The continuity equation is 

grad.v = 0 . 	2.1.2 

The equations are made dimensionless with respect to no, the velocity 

of the steady state flow at y = 0, h, half the width of the pipe, and 

p, the density of the fluid. We take the dimensionless variables 



21 

- u=_ , v=_ ,x.y— Y  t— U0  
- 	 and p = 	, and, 

Up 	U6 	h 	h 	h 	p Ug 

substituting in Equations 2.1.1 and 2.1.2, derive the equations 

au* u 	v 	= au 	au 	ap  + 1 grad2  u +  
=MM. 

at ax ay ax R 

av 	 p u av + v av = - a +1 grad2 v 

at ax ay 	ax R 

2.1.3 

2.1.4. 

and. 	au av 
= 
	 2.1.5 

ax ay 

Yire now take (ulv) = (U+10,v9 and p = P + pi, where U = (1-y2) is the 

steady state velocity, P is the steady state pressure and u', v' and 

p' are small disturbances from the steady state. We take a stream 

\It function, 	= 0(y)expi-ia(x-ct)11  for the disturbance velocities, 

u' and v', which automatically satisfies Equation 2.1.5. Hence we 

obtain 

(u' v') = 4(Y)expl-ia(x-ct)1, 

dy 

iagy)exp!-ia(x-ct)i
3 

. 

Substituting into Equations 2.1.3 and 2.1.4 and eliminating pressure, 

we obtain the Orr-Sommerfeld equation 

A4A 
- 2a2 	 + a4  

A2A 	) 0 
	a20 	] d2U + iaR [(U-c) 	- a2 ¢ 	- 	¢ 

dy dy
2 

-dy
2 dy2-  

i.  We make a and G dimensionless by a = a h and c  = 
U0 

2.1.6 
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where 0 = c(y) and U = (1-y2). 

This in the way in which the Orr-Sommerfeld equation is usually 

developed, and the computing for this problem has been performed using 

this equation. However, in order to obtain results for fixed physical 

wall parameters, we wish to vary the Reynolds number of the flow by 

varying Uo, without altering the dimensionless parameters describing 

the flexible wall. In other words, we envisage a situation in which a 

given channel and fluid are employed, while the fluid velocity is 

increased until instability occurs. We therefore render our physical 

wall parameters dimensionless with respect to h, v and p. In order 

that our computational results will be meaningful physically, it is 

found necessary to multiply the computational eigenvalue, c, by a 

factor R, to obtain a physical eigenvalue, c (i.e. c = R.c is the 

wave speed made dimensionless for given wall and fluid properties). 

This is due to the fact that the previous equations have been made 

dimensionless using U0, which is the parameter varied in order to vary 

R. In order to compare our eigenvalues with previous work we use c. 

Otherwise we use cp, which gives results which are more meaningful, 

physically, in the present work. 

Since our scheme of dimensionless variables is independent of Uol  

and it is not proposed to consider any anisotropic wall properties in 

this work, the consideration of the two-dimensional problem (as opposed 

to the three-dimensional problem) is justified by reference to the 

work of Squire (1933). 
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2.2. Boundary  conditions. 

In dimensionless terms, we have flexible walls positioned at y = 

and a steady state flow of the form U = (1-y2). The flexible walls are 

assumed to be surfaces inextensible in the longitudinal CO direction, 

with lateral motion governed by a dynamical equation which takes into 

account properties of mass, tension, elastic stiffness, viscous damping 

and flexural rigidity. We consider first the wall at y = +1. Let n'be 

the distance of displacement of the wall from its unperturbed state, 

= +1. Assuming that there is no slip at the wall gives 

clY) I 	expl -ia(x-ct)i = 0 
y = 1+7? a 	ly = 1-141 y 

/ Hence, substituting U = kl-y ), gives, to first order, 

- 2n + d0(4.1)expi_ia(x-ct)i = 0 
	

2.2.1 

dy 

We now assume that the fluid stays in contact with the flexible wall 

and obtain 

On = iagyl 	exp!-ia(x-ct)1 

at y = 1441 

and hence 

8T1  = iag+1)expi-ja(x-ot)1 	2.2.2 

at 

t . Ce make n dimensionless by 17 =

h  

es1 

n  
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Combining Equations 2.2.1 and 2.2.2 gives 

4(•i-1) 	2 0(4.1) . 0 	 2.2.3 

dy 

which is the first boundary condition, obtained from kinematic 

considerations. The equation of motion for normal forces on the wall 

at y = +1 is (see, for example, Timoshenko and Gere (1961)) 

2- 

1 	

2- a 77  
8 	— e1  - a an — :1 8 77  - 	= 

1 — 	 YY — 77,- 
ax2 
	 "2 

 

2.2.4- 

where 	T1  = the tension parameter, 

e
1 

= the elastic stiffness parameter, 

= the damping parameter, 

s1 = the flexural rigidity parameter
s  

m
1 

= the mass parameter 

and 	
YY 

= the component of the fluid stress tensor normal 

to the wall at y = +1. ( Suffix "1" denotes parameters for the wall 

at y = +1. ) The above component of the stress tensor is 

".1;t4. 2p  av 
yy 

ay 

t 
, and hence " "I— -"P = 	t- 212 au' 

YY 
ax 

t 
by continuity. 

( Here p = viscosity and v = P  = kinematic viscosity. ) The equation 

p 

is now made dimensionless with respect to h, p, 1 and p by putting 

These expressions being evaluated at the wall y = +1. 
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2 ,m1 

mi  si  
and s1 = 	. We also use 

ph 

h 
a 	 P t  = 

PUo 
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1 	X 

= 	2 X = 
h 

I 
— 

uo 1  ph 	e
1 ph

3  

—' t 	 Y T1 	 2 	el = 	2 170  

d0(+1) 
us(+1) = 	expf-ia(x-ct)i and Equations 2.2.1 and 2.2.3, and 

dy 

substitute into Equation 2.2.1. to obtain 

a2T1 	e1 	iad1 	a4s1 1{3.a
P ' (+1) = 0(1-1) [ ---c2.  + "--f + - + 	+ --- ] expf-ia(x-ct)i. 

	

2
cR 	R 	cR 	cR 

- a 2 cm1 
cR 

Substituting this in the x momentum equation (Equation_ 2.1.3), evaluated 

at y = +1, gives 

d395(+1) 	R 
+ - 

dy3  
(+1) = o 2.2.5 

where Ei 
-1 

= 
a2 	6 	a 

- 	[d1  +- + i cR2 

L e1 	+ a
2 
 T1  + a's1 	

a3cmi] 

This is the second boundary condition, obtained from dynamical 

considerations. 

The two remaining boundary conditions are the corresponding 

boundary conditions obtained at the wall at y = -1. These are 

2 d(--1) =0 2..2.6 

and d3¢ (-1)R 
- - p(-1) = 0 

dy3  Eb 
2.2.7 
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a
2 
	6 	a 

where 	
P-1 

= 	d 	
cR 	

e2  a
2
T2  a1s2] a3cm2 j  . c- c 

(  Suffix "2" denotes parameters for the wall at y = -1. ) 

These boundary conditions coincide with those of Hains and Price 

(1961a)except for the inclusions of the viscous component of the normal 

stress and flexural rigidity, the fact that there is no restriction to 

considering 95 as symmetric and also that the problem of the two flexible 

walls having different physical properties may be considered in the 

present work. The similarity between the present boundary conditions 

and those of Hains and Price facilitates comparisons of results. It 

should be noted that, with this scheme of dimensionless parameters, the 

flow may be varied by changing its velocity without affecting the 

parameters describing the flexible walls. As explained in Section 2.1, 

the eigenvalue, c, in these boundary conditions is the computational 

eigenvalue. 

The parameters E. and 74 will now be rewritten to make them 

comparable with the parameters involved in other work in the field by 

putting 	e
.4.T.a.2 

s.a d. 
c .2 and 	D. = —d 

m m . 
J 	 J 

OJ 

where j = 1 or 2 depending on whether the wall is taken at y = +1 or -1. 

c oj  is a dimensionless parameter representing the speed at which free 

waves would propagate along the undamped flexible walls when there is 

no fluid in the two-dimensional pipe. Hence we obtain 
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[ 	.2 a
2 

6a
2 	a3 c 

-1  . -m.D. — 	im. 	-11  c2  
0 	J J R 	cR 	c 	R2 

 

2.2.8 

 

A wide class of physical boundaries may be approximated by this 

representation. For comparison with the work by Landahl and Kaplan 

(1965) on the boundary layer problem, taking into account the different 

schemes of dimensionless variables, the following table is useful. 

( Here, the suffix "j" is dropped for the moment. ) 

Landahl and Kaplan 	present work 

in 

0
2 

c
o
2 

d. 

e 

mR2  

T 

mR2 

D 

R 

not taken into 
account 

In the work of Landahl and Kaplan, the parameters defining the wall 

properties are made dimensionless more appropriately in terms of U co 

and S. ( U equals the steady velocity of the boundary layer as y 

tends to infinity and 8 equals the boundary layer thickness, which 

is not constant in the x direction. ) There is some difficulty in 

interpreting their results to obtain results for fixed physical 

situations unless a "tailored" wall is employed. ( The term"tailored" 
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is used to describe a wall whose physical properties are altered to 

compensate for the change in thickness of the boundary layer. Of course, 

the wall equation itself is not changed so that this interpretation is 

unsound when the boundary layer thickness changes too rapidly: a 

situation which does not exist for the plane Poiseuille flow problem. ) 

The variety of possible schemes of dimensionless variables has lead to 

some confusion in the past. 

2.3. Related rroblems. 

There are a number of problems closely related to the present 

problem, some of which are listed below. They are not only related 

physically, but also, their solution may be tackled by the technique 

which will be described later. 

1). The same problem as at present, with the condition of-wall 

inextensibility in the streamwise direction relaxed. 

2). The problem of plane Couette flow with flexible walls. 

3). The problem of plane Poiseuille flow of a dusty gas. 

These problems can be considered seperately or in any combination 

and involve variations in the boundary conditions and steady velocity 

profile. 



a2 6a2 
= -m 

J
D 	+ im 

J 	. 
R cR 

where 2i2 _ c2 a3 

c R2 
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Chester  3. The method of solution of the problem.  

3.1. Outline of the method of solution.  

We now have to solve the boundary value problem of the 

Orr-Sommerfeld equation (Equation 2.1.6) 

0 	d2 	a2 	d2  
— 2a2 	+ a ¢ 	[(U-c) [ ---2- - a20 - --2  0] = 0 
dy 	dy 2 dy 	dy 

where 0 = gy) and U = (1-y2), with the boundary conditions (::quations 

2.2.3, 2.2.5, 2.2.6, 2.2.7 and 2.2.8) 

d0 (+1) 2 
(+1) = 0 

dy 

d30(+1) R 
+ -0(+1) = 0 

dyd  

d0(-1) 2 
— 	+ - ¢ (-1) = 0 and 
dy 

d30(-1) R 

E2 
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We regard this as an eigenvalue problem for c and proceed to solve 

it to obtain numerical values of the eigenvalue for given values of the 

fluid parameters and physical wall parameters. Because the boundary 

conditions contain c in a rather complicated way, the most common and 

convenient way of coping with this difficulty is to first obtain 

eigenvalues for fixed values of the parameters Ej and P. This we do 

using a new variational approach. We then use these results and adopt 

an iteration scheme, similar to the one used by Kaplan (1964), which 

gives us the eigenvalues in terms of fixed physical wall parameters. 

This approach to the problem provides an accurate and speedy solution 

from which we may easily obtain as many eigenvalues from the spectrum 

as we wish, within the space limitations of the computer being 

employed. We may also obtain the corresponding eigenvectors and hence 

the stream function and Reynolds stress distributions across the 

channel. 

3.2. The variational formulation.  

The variational formulation about to be presented is not peculiar 

to the particular problem associated with the present work and hence 

will be stated in general form. In essence, we merely extend the 

conventional variational problem to one which includes the boundary 

conditions as well as the governing equation, and we will therefore 

develop our general formulation in parallel with the conventional 

variational formulation. 
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Suppose we have a differential equation LO = 0, where L is a 

linear differential operator defined in the range [y1,y2] and 0 is 

some function of y. We denote the set of boundary conditions at y1  and 

y2  by tB0i = 0. The adjoint operator L*, together with a set of adjoint 

boundary condition operators fB*1, is defined such that, if u is any 

function satisfying 1Bui = 0 and v is any function satisfying IB*vi = 05  

then 
<v,Lu> ‹L*v,u> = 0 , where the inner product of a on3  

b is defined as 1 	Y, 

ca,b> = 	f ab dy 	, the star denoting 

Y2 -Y1 y 

an adjoint and the bar a complex conjugate. Now,.inserting the Orr-

Sommerfeld equation and the flexible wall boundary conditions (see 

Section 3.1) for 14 =-0 and fB01 = 0 respectively, we obtain the 

corresponding adjoint differential equation and adjoint boundary 

conditions (after integration by parts). The complex conjugate, adjoint 

differential equation is found to be 

d4¢', 	d2¢* 	 d  20* 	
d2 

2a2 	 7 + a 0-+ iaR 
dy 	dy 	d 2  y 	d

2 
Y 

(2_a24.a2y2),71 

 

d2-0* 
- a 2- 0] = 0 

dy2 

 

- ciaR 3.2.1 

  

where 57* = F*(y).. The complex conjugate, adjoint boundary conditions 
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are found to be 

3- 	- t \ d sOk+1) 	2 d.2  P0-1) 	[ R 	24_a2  

4Y) 	 c dy2 c 

dc7*(+1) 
= 0 3  

dy 

d3P(-1)2 d 2O*k- / -1, .\ R 4.a2 
- f — i"5:*(-1) = 0 	and 
Ft2 

    

dy-3 	c dy2  

 

 

677*(....1) 
3.2.2 

dy 

Now we consider vectors f(w) and ,(w), both belonging to a Hilbert 

space and being quadratically integrable, where 

E = 	(Vri y w2, . . . , Wm  ) y 

f (VI) = (1.1  (17), f2 (.0 y • • • I f
n 

 (17 ) ) 	and 

E,(7/ ) = (gi  60 ) g2  (Yr), • • • ' gn(E)).  

Corresponding to the inner product of two scalar functions, we define 

<11,E? = 	- 
r S 

g. dV , where S = I dV and 
• 

i=1 

dV = dw
1 
dw2 . . . dwra  We now define 



1 

a1 

b1  

Cl 

d1 

S5-* 
a2 

b2 

c2 

a2 

and u = H (u) = 14 

B
1
4 

B295 

B395 

B 
21- 

) il(1114) = 
GI 

E:F,* 

11*(7* 
3 

E*To. 

33 

We shall interpret these equations with L = 0 as the Orr-Sommerfeld 

equation, 1131.01 = 0 (i=1, 2, 3 and 4) as the corresponding boundary 

conditions, W* = 0 as the complex conjugate, adjoint equation and 

ITKM = 0 (1=1, 2; 3 and 4) as the complex conjugate, adjoint boundary 

conditions (see Section 3.1 and Equations 3.2.1 and 3.2.2). The ail  b., 

c. and d. (1=1 and 2) are determined by demanding that 

<u*,H(u)> - <11*(u*),m> =0 is satisfied, where, in our case 

+1 

	

0 = ¢(y)1. 
	)( 

y) and 	dV = 	dy . These criteria establish the necessary 

	

V 	-1 

structure of the Hilbert space. 

We now return to the one-dimensional case. When 0 and 0* are 

solutions of their respective problems, the functional S, which is 

equal to <0*,L0>, is zero, and is stationary with respect to 

appropriately restricted arbitrary variations in 0 and 0*. The 

appropriate restrictions are that the variations must satisfy the 

boundary conditions of the appropriate problem. This is equivalent to 

saying that 1,0 = 0 and L*0* = 0 are Euler equations of the problem 

under consideration. 
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If we now suppose that the operator L is of the form L = P - XQ 

(where X is an eigenvalue), then we can show that the ratio 

<0*,r0> 
is stationary with respect to the same variations as 

 

<0*,W> 

before)  when 0 and 0* are eigenfunctions. Also, it takes on the value 

of the appropriate eigenvalue when ¢ and 0* are eigenfunctions. For an 

error of order e in 0 and 0*, the error in X is of order e2. Hence, 

reasonably close approximations to the eigenfunctions may produce more 

accurate estimates of X. 

The conventional variational method takes series of approximating 

functions fn and f* which satisfy 1
13fni = 0 and [B*f*1 = 0 

respectively. We put 

	

N 	 N 

0 = nfn 	
and 	0* = 	af* 1  where an and an are an  

fn 
 

	

n=1 	 n=1 

undetermined constants. Substituting these series into 

N N 

I = <0*, (P-X00> , we obtain I = ana*  .a 	
XD ) am nm 	nm 

n=1 
	0=1 

where 
B 	= cf* Pf > 	and 	D = <f*,Zf > 

nID 	n' m 

The constants, am  and an, are now determined by requiring I to be 

stationary with respect to variations in these constants. If I is 

stationary with respect to ;*, we obtain 

ma 	n 
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Tam  (arim  - xpilm) = 0 	(n=1, 2, . . . 	n). 
m=1 

If I is stationary with respect to am, we obtain 

n (r5 1m. 	Xinm) = 0 	(m=1, 2, • . . . , N). 

n=1 

We therefore have a set of N homogeneous, algebraic equations for the 

N a
m's and a seperate set of N equations for the N 	There are 

non—trivial solutions,if, and only if, 

XD nm 
 1 = 0 

This determines the eigenvalues, X, and the eigenvectors, whose components 

are the am's and a*'s. We may truncate the series at any point and 

examine the convergence by incrementing N. 

Vie now generalise the previous argument: when u and u* are solutions 

to their respective problems, we demand that 

<u*,H(u)> 	is zero and is stationary 

with respect to variations in u and u*. Since the boundary conditions 

have been included in the H(u) and H*(u*), we choose the variations in 

u and u* arbitrarily and continue as in the one—dimensional case. This 

is equivalent to substituting some approximating series for O in the 

differential equation and boundary conditions and, in some suitable 

manner, adding up the residues and setting them equal to zero. The 
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best choice of an approximating series would appear to be such that 

the series is complete, not too restrictive and rapidly convergent. 

This technique for solving an eigenvalue problem, when the 

boundary conditions for the problem contain the eigenvalue, is 

suggested by Friedman (1956). It is also suggested indirectly by 

Finlayson and Scriven (1966)..  

3.3. The iterative scheme.  

We now incorporate the previous variational technique (Section 3.2) 

into an iterative scheme, developed by Kaplan (1960, for finding the 

eigenvalues (c) in terms of fixed physical wall properties. We take 

—1 = . — identical walls, with Ei 	Fe
-1  = e, and wish to find the eigenvalues 

for given values of a, R and the physical wall parameters. Employing 

a given (guessed) value of an eigenvalue (c = c0) in our expression 

for e, as well as a, R and the physical wall parameters, we obtain an 

initial value for e ( = e°), for use in the variational part of the 

problem. From the resultant spectrum, we take the eigenvalue corresponding 

to c°  (ci) and, from ci, obtain a new value of e (ei). The sense in 

which the eigenvalue chosen from the spectrum corresponds to c°, depends 

on the particular eigenvalue sought..Usually, we are seeking the most 

unstable eigenvalue for a given physical situation, and so we choose 

the most unstable eigenvalue from the spectrum. If the initial 

eigenvalue guess had been a sufficiently good guess at an eigenvalue 
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of the problem, we would have e°  = el  and c°  = cl  (these two conditions 

occuring together). More generally, for any given guessed eigenvalue, 

e°  and el  would differ, and the iterative scheme is developed so that 

we may make this difference as small as we choose in finding an 

eigenvalue of the problem. ( We use the difference between e°  and e1  

as our error criterion for purely numerical reasons, explained in 

Section 1.5. ) To do this we now define K = e°  el, and the zeros 

of K correspond to eigenvalues of the problem. Considering K as a 

Taylor series in cl  and truncating the Taylor series, we have, 

approximately, 	
K(c1) = e°  - el  = A + Bc1  where A and B are 

constants. The value of e°  is calculated using the estimated eigenvalue, 

c°, and two values of e, e2 and e,9', lying on either side of e°, and 

close to it, are employed in the variational part of the problem, 

giving cl, el, cl and el. This gives us 

ei - el = A + Bel = K(cl) = K1 	and 

e3 - el = A 4- Bel = K(cl) = 

We therefore obtain 

KR 01 -K ci i 
A _ 	 and.  

K1  
B - 11 — 02 

• 

The next estimate of the eigenvalue of the problem, c2, is given by 

A 4. Bo2  = 0 p 	i.e. 	02  _ 
	A 	IC, 	- 	01 	

• 

- K2 



38 

Proceeding as before, we may use 02  to calculate a value of e (e2), 

and hence obtain an eigenvalue 03  and then a value e3. In assessing 

the proximity of 02  to an eigenvalue of the problem, we compare e2  and 

e3 This is the basis of the iterative scheme for the case where we 

have identical walls. For different walls, we may adopt a similar 

iterative technique, but in this case the iterative technique would 

be based on changes in 01  since e would take different values for each 

wall. Although it is possible to devise more sophisticated iterative 

schemes, the one outlined above is particularly straightforward and 

appears to present no difficulties with convergence in the numerical 

computations. 
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Chapter k. Computational aspects of the problem. 

4.1. The different variational formulations considered. 

If the problem is set up using the general variational technique 

described (Section 3.2), it is found that there is a certain freedom in 

the representation of the problem. This can be explained by the fact 

that the technique involves substitution of an approximating series 

in the differential equation and boundary conditions, followed by a 

suitable combining of the resultant residues. The different 

representations of the problem which are possible, correspond to 

weighting the boundary conditions in different ways. 

The problem was first set up as in Appendix A.4, with no 

preconceived ideas as to possible difficulties. Due to the complicated 

nature of the boundary conditions and differential equation, it was 

found that the latitude in choosing the formulation was small. In the 

second and third positions of the vector T1*, we find terms from the 

problem (p), mixed with terms from the adjoint problem (P). Consider 

the problem reduced to the form of a matrix to be solved, and consider 

the (m,n) position of this matrix. In our general approach, the 13* 

is associated with the m, and the H(u) is associated with the n. It 

can be seen that there is difficulty in deciding whether to associate 

the mixed O terms (in 71*) with the m or the n. The problem was done 

both ways, and these were called Formulations 1 and 2. 
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To overcome the difficulty of these mixed terms, the problem was 

reformulated, as in Appendix A.2, and this was called Formulation 3. 

It can be seen that the problem of mixed terms still occurs, but this 

time in the adjoint problem. 

As will be seen, the adjoint problem will be required in finding 

the stream function and Reynolds stress distributions of the problem, 

and so, to remove these mixed terms altogether, Formulation 4 was 

calculated. Previously, we defined H(u), n*, u and 71* with a dimension 

of five (corresponding to the differential equation and the four 

boundary conditions). For Formulation 4, we redefine these as 

H(u) = 

B1.0 

B
2
0 

B
3

O 

B4O 

B
1
55 

B 
2 

rier(71*) = 

E*7* 
1 

2 

3' 
;34* 

1. 

2r 

, u = 
4 	••• 

a1 
b1  

Cl 
d1  

e1 
f 

and 71* = 
VIM 

.* 

a2 

b
2 

c2 
d
2 

e2 
f
2 

IMO 

(N.B. The last two terms in the vectors H(u) and 11*(71*) are the first 

pair of boundary conditions repeated.) The a., 
ba_
.,  c., di, e.a. 

 and 

f. (1=1 and 2) are found as before. Nothing new is involved in this 

enlarging the dimensions of the vectors. ,7e are, in effect, adding up 

the differential equation residue and the boundary condition residues 

. 



in a different way. Formulation 4 is given in Appendix A.3 and, with 

this formulation, we eliminate the previous difficulty from both the 

problem under consideration and its adjoint. 

)..2. The approximating series.  

We choose trigonometric functions for the approximating functions 

for both 0 and 0*. These form a complete set and have no inherent 

disadvantages. Because of the more general formulation of the problem, 

these approximating functions do not have to satisfy the boundary 

conditions. 

For the rigid wall problem, a variety of test functions have 

been employed. Lee and Reynolds (1967) solve the problem of plane 

Poiseuille flow by a variational method, using polynomial approximating 

functions which satisfy the rigid wall boundary conditions. Dolph and 

Lewis (1958), in their approach to the same problem, adopt 

approximating functions, On, which are eigenfunctions of the boundary 

value problem 

I  2 
d C1'n 2a2 a  CI4n + a4On  = xn  a2On  — Yni 

dy 	dy
2 

dy
2 

with on(±1) = 
dO
n
(±1) = 0 	

where An is the eigenvalue and Oa  

dy 

Grosch and Salwen (1968), in their paper on steady and time dependent 
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plane Poiseuille flow, adopted similar functions to Dolph and Lewis. 

In both of these latter papers, the approximating functions were a 

combination of hyperbolic and trigonometric functions. Chebyshev 

polynomials have also been used to solve related stability problems 

For this analysis, a half range Fourier series was chosen as the 

approximating series, i.e. cos(ngy/2) ( n = 0, 1, 2, . . . ) and 

sin(nny/2) ( n = 0, 1, 2, . . . ) 	. We may truncate the series, 

and the order of the terms in the truncated series is unimportant. 

In certain circumstances, it may be advantageous to take a different 

number of cosine terms to sine terms, in order to shorten the 

numerical work without affecting the accuracy of the results. In the 

case of symmetric disturbances, only the even cosine series is required. 

It should be noted that the functions corresponding to a full 

range Fourier series for the interval, i.e. cos(nvy) ( n = 0, 1, 

2, . 	. ) and sin(nmy) ( n = 0, 1, 2, are too 

restrictive. This may be seen by substituting into the previous 

formulations, when it is found that dependence on the wall parameters, 

El  and E21  reduces to dependence on (Ei-i  - E2-1) and (E1-1 	E2-1) 

with the half range Fourier series, and (131-1  - 7E2-1) with the full 

range Fourier series. Hence, when El  = E2 (i.e. the walls have the 

same properties), all dependence on the walls vanishes with the full 

range Fourier series; an unsatisfactory situation, which shows the 

inadequacy of this approximating series. 



It would appear that a reasonable number of terms of the chosen 

series is suitable for approximating the stream function near the 

criticalpoint(y=y0,wheretqyd=1-72 =cr andc=c1.4-ic.)and 

the wall, where rapid changes might be'expected (as for the stream 

function distribution given by Thomas (1953) for rigid wall, plane 

Poiseuille flow at a = 1 and R = 10000). This was not used as a criterion 

to establish our approximating series, but does give us reason to 

believe that our chosen series will converge rapidly. In fact, our 

series was chosen as generally as possible. Comparisons of stream 

functions will be given later (see Section 5.2). 

Comparison of the  formulations. 

Since there is variability in the formulation of the approximate 

solution, it is of some interest to examine the effects that ,iifferent 

formulations may have on the results. Therefore, using these 

approximating functions, the matrices corresponding to the different 

formulations were set up (as described later, in Section 4.4). The 

eigenvalues of these matrices were computed, and comparisons made 

between the different formulations. For symmetric disturbances only, 

a cosine series is necessary, and convergence of the most unstable 

eigenvalue was examined for Ei  = Eb = 10-1f  ata = 1 and R = 1600 and 

2500. As will be seen, this value of F. and F corresponds to 

effectively rigid walls. Results for the different formulations are 

given in Tables 1 and 2, and these results are further discussed 



in Section 5.2. 

It can be seen that, apart from Formulation 2, there is very 

little difference in the convergence of the different formulations. 

It should be expected that any formulation which satisfies the criteria 

initially stated will converge to the correct result. We would hope to 

pick a formulation which converged reasonably quickly. Because of the 

complicated nature of the differential equation and boundary conditions, 

we have, in fact, very little latitude in choosing the formulations. 

The result is that, for the main part, the different formulations 

converge, in the eigenvalues, with equal speed. Formulation 4 is the 

one chosen, since it allows the adjoint problem to be calculated 

without the complication previously mentioned. Apart from providing 

a good check on the arithmetic, the solution of the adjoint problem 

proves to be the most satisfactory for calculating the stream function 

and Reynolds stress distributions (this point will be discussed in 

Section 4.5). 

It can be seen from the definitions of Fn and E2, that rigid 

walls correspond to !Ed and 1E61 tending to zero. Calculations, 

typically as given in Table 3 (and further discussed in Section 5.2) 

for Formulation 4 (the chosen formulation), show that a sufficiently 

small value of El  and E to simulate a rigid wall (or to make the 

ratio of wall to fluid resistance very large) is 10-4. The arguments 

ofFn ands are seen to be unimportant in this respect. 
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4.11-. Calculations for the chosen formulation.  

For the reasons given in Section 4..3, Formulation 4 is chosen. 

We return now to set up the approximate solution, using Formulation 4. 

as given in Appendix A.3. ( The principles are the same for setting up 

the approximate solution using any of the other formulations. ) 

Continuing with Formulation 4 therefore, we have 

+1 2 
1 = <u*IH(u)> = 	-'..' [ a4s5  

Jr  dy
4

- 

 
2a2 d255  + a

2
"¢ + iaR [k1-y 

dy2 	

( 2) [ a  cc  
itty2 

-1 

+1 

- 0 [ 	.5)-Ar 

d¢ (+1) 
+ 

	

	-iaR.97*(+1) 
dy 

[ iaR 
d 

(13r  

(+1) 	R 
+ •---- 

2E1 
.5*(+1)] 

[
a295] dy 

1 d3 ;* 
+ 
2 dy3 



d¢ (-1)_ 	R 
— 	-iaR7*(-1) 	---7*(-1)] 
dy 	2 dy) 	2.0  

where 0 =0(y) and 7* = 7*(0 in the integral terms. For our 

approximating series (see Section !.2), we substitute 

gy) = 

T*(y) = 

N-1 

T
am cos (carry /2) + 	am sin( (m-N),lly/2) 	and 

m=0 	m=N 

11-1--1 N-1 

E 
"I:* cos(n7y/2) + n 	TT).* sin((n-N)wy/2) Tan 	. 

n=0 	 n=N 

Since the series have been truncated, we will get identical results 

for any order of the functions in the approximating series, so we 

order them as above. If we initially substitite 

N+-1 
95  CY) = J a g (Y) m m 

m=0 

and ,F*(y) = 

  

n=0 

in <u*, lqu)> , we obtain 

Pig; M-1 N+M-1 
I = <u*,H(u)> = 

n=0 

T. a  a m _J 

m=0 

( (Bnm) - c(Dnm) ) 	s 
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where +1 

	

	 2gin d4-gm  2 d.2gm 	 2\ B 	 2a --7 4- a14-gn  4- iaR. [(1-y ) [ -Th- - a2gm] 
dy nm = i fn dyif - 	dy" 

-1 

1 d.3f (+1) 
+ 2g (+1) (+1) + --711  

2 dr' 

+ 2ga] dy 

R 
+ — f (+1) 

2E1. 

/ \ d3 fn k 	R 
+ 2g (-1)[-iaRfn 	 + 	f (-1)] 

2 dy3 	23, n  

• [ 
3  Eidg (+1) R 

+ gm  {+1) [ - fn  (+1) 
R dy3 Ei 

Ez  
• I

!3gm  (-1) - cm(-1)] [ ;2fn(-1)] R dy3  

+1 
f fa [ iaR [ 2m  - a

2gm}1 dy 
J 	dy  

-1 

dgm(+1) 1 d3fn(+1) R 
+ (+1) 4. fn(+1)] [ -iaRfn 	+ 

dy 2 dy 2 

!.51(  -1) 	1 d3f (-1) 
-iaRfn(-1) - fa j (-1)-1 

(1Y 	 2 dy3 	212,  

Now, if we substitute the trigonometric functions for fn.  and gm, 

and 

Dnm 

6 



(p,q)) I (B12 (p q)) 

(B21(p,q)) 	(B22
(p,q)) 

I 

(Bnm) and. 

Mil:M=1h 

as defined, it can be seen that the matrices (B ) and (Dnm) may be nm 

partitioned in the following manner 

WIMINAME111 	 0111••••• 

(D11(1)2(1))  I (D12(1)2°)  

(D21(1)2°) 	 (D22(1)2°)  

Here, (B11  (p,q)) and (D11  (p,q)) correspond to fp(y) = cos(pny/2) 

(p=0, 1, . . . 1  N-1) and gq(y) = cos(quy/2) (q=0, 1, . • . , N-1), 

(B12(1)2°) and (D12(p,q)) correspond to fp
(y) = cos(pvy/2) 

. 	. 	M-1), (p=0„ 1, . . . 	N-1) and gq(y) = sin(Try/2) (g=0, 1,  

(B21(p,q)) and (D21(p,q)) correspond to fp(y) = sin(pny/2) 

(p=0, 1, . . . 	M-1) and gq(y) = cos(vy/2) (g=0, 1, . . • 	N-1) 

and (B22(p,q)) and(D22(1)2°)  correspond to fp(y) = sin(P277/2) 

(p=0, 1, . . . 	M-1) and gq(y) = sin(qTry/2) (g=0, 1, • • • 

	M-1). 
The size of the matrices (Bnm) and (Dnn) is (:'444,M+N), and the sizes 

of the smaller matrices are given by the maxima of the indices p 

and q. The entries for (Bnm) and (D nn), after substitution of the 

approximating series, are given in Appendix B,1. It can be seen that 

the rows n=N and columns m=N of (Bnm) and (Dnm), corresponding to 
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sin(0) (i.e. zero), are identically zero. In the computations, these 

rows and columns are omitted. 

Now we demand that the functional, I, is stationary with respect 

to variations in u and T1* (i.e. with respect to variations in am 
and 

E7,*). Applying this, we obtain that 

81 
- = 0 leads to 
aa* 
n 

N+M-1 

m=0 

am  ( (Bnm) 	c(Dnin) ) -74 

(n=0, 1, . . . 1N+M-1) 

and @I 
- = 0 leads to 
asm 

N+1S-1 

E ari ( (Bnm) - c(Dnm) ) 	(3 

n=0 

(m=0, 1, . . . , N+M.-1). 

This gives us (1410 linear equations for the (N+M) am's, and (N+.', ) 

linear equations for the (N+M) Z;.*'s. We get non-trivial solutions if, 

and only if, 	
(B.n) 	c(Dnm) 1 = o 	4.4.1 

which defines our eigenvalues c. 

As we shall be continuing with Formulation 4, the other formulations 

are not given. The matrices for the adjoint of our problem, using 

Formulation 4, were also calculated. The procedure was the same as that 

employed above, and the resulting entries of the matrices are given 

in Appendix B.2. For the adjoint problem, the functional taken is 

I = <11„H*(u*)>, instead of I = <u*,H(u)>. ( Actually, we have 

considered the complex conjugate of the adjoint functional,I=<U,R*(71*)>.) 
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LI52iumerical considerations.  

To obtain numerical results, we must determine the eigenvalues 

(c) of the characteristic equation (Equation 4.4.1) 

I (Bnm) 	c(Dnm) I = 0 

the entries of the matrices (Bnm) and (Dnm) in this characteristic 

equation being given in Appendix B.1. Standard numerical eigenvalue 

procedures are normally based on (Dum) being a unit matrix. It is 

therefore necessary, having computed the entries of (Bnm) and (Dnm), 

to multiply the characteristic equation by the inverse of (Dnm) 

( (Dnm)-1). This gives us 	
I ((prim)-1(Bnm)) - c(I) I = 0 

where (1) is the unit matrix. In order to obtain accurate inverses 

of the matrices involved, a double precision matrix inversion routine 

was used. The eigenvalue routine, which also found the eigenvectors, 

was a FORTRAN coded program; Share number SDA 3441. Another routine, 

Share number SDA 3099, which only evaluated the eigenvalues, was also 

adapted for use with the program. 

Checks may be kept on the accuracy of the inversion and eigenvalue 

routines. The number of eigenvalues obtained, and their accuracy, is 

determined by the number of terms used. in the approximating series. 

We consider only symmetric disturbances, employing an approximating 

series of cosines only, and find that a thirty term approximating 
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series gives us the most unstable eigenvalue with sufficient accuracy. 

We gauge our accuracy by comparison with previous rigid wall work, 

and by incrementing our approximating series until the resultant 

stability curves and stream function and Reynolds stress distributions 

become insensitive to further increase. Ve obtain results accurate to 

four decimal places, and results showing the accuracy of the present 

computations are described in Chapter 5. The complete spectrum of 

eigenvalues and eigenvectors is obtained from this part of the program. 

The necessary stability curves may be obtained from the 

eigenvalues. When difficulty was encountered in obtaining accurate 

results for the eigenvalues, it was found that use of an eigenvalue 

pivot was very beneficial. Lee and Reynolds (1967) employed such a 

technique in their study of the rigid wall problem. When eigenvalue 

routines find the eigenvalue of largest modulus first (and most 

accurately), the characteristic equation, 1 (B) - c(D) I = 0, can be 

rewritten as 	1 
1 	(D)   (B-X0 D) I = 0 

(c-Xo) 

The eigenvalue pivot, X0, may be chosen as complex (all the matrices 

involved are complex and. non-symmetric) and is chosen fairly close to 

the desired eigenvalue c. In our case, We = .2 produced adequate 

results for the rigid wall problem. The eigenvalue routine is used 
N 	\\ 

to find the eigenvalues of ((B-X0D)
-1 
 On, after which, the effects 

of the pivot are removed to give the correct eigenvalues. 
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From the eigenvectors, the components of which are simply the 

coefficients in the approximating series for gy), the stream function 

and Reynolds stress distributions may be obtained by substitution. 

The stream function distributions, hence obtained, are unique apart 

from an arbitrary multiplying factor. This (complex) factor is used 

to normalise the stream functions such that Or(0) -4 1 and 0i(0) = 0, 

where the stream function = gy) = 55
r
(y) iOi(y). The Reynolds stress 

distributions are obtained by substituting the normalised stream 

function distributions into the expression 

dp.(y) 	clOr(Y) 

2  [ °r(3r) 	i(Y)  
dy 	dy 

(see, for example, Stuart (1963) ). This expression represents the 
pa 

correct Reynolds stress for the problem, when multiplied by — [ 71 
4 

The results are normalised in this manner to facilitate comparisons 

with previous results for the rigid wall problem. 

Although the direct formulation gave accurate eigenvalue results, 

when the stream function and Reynolds stress distributions were sought 

it was found that the resultant distributions did not converge well 

with incrementation of the approximating series, did not give good 

agreement with previous rigid wall results and did not satisfy the 

relevant boundary conditions. However, when the transpose of the 

direct formulation was used to find the adjoint stream function and 

Reynolds stress distributions, good results were obtained (when 
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judged by the previous criteria). Zhen the adjoint formulation was 

used, it gave poor results for the adjoint distributions, but good 

results for the distributions of the problem under consideration 

(obtained by transposing the matrices in the adjoint formulation). 

These inaccuracies would appear to be due to numerical ill-conditioning. 

Lee and Reynolds(1960 appear to have had the same trouble, although, 

using their approach to the rigid wall problem, they obtained good 

results for the problem and poor results for the adjoint problem. For 

the present results, the transpose of the adjoint formulation was used 

to obtain results for the problem, and the transpose of the direct 

formulation was used to obtain results for the adjoint problem. 

The variational part of the solution is incorporated into the 

iterative scheme (which is set up as described in Section 3.3), as 

shown in the simple flow-diagram given in Appendix C. Accuracy may be 

controlled by the choice of the eigenvalue guess (c0), how close to e° 

we choose the values 	and e2 and the number of iterations performed. 

We take ei = e°  + pe°  and e2 = e° - pe°, where p is a small constant 

(0<p«1), which depends on the estimated sensitivity to changes in 

e of the eigenvalue sought and the accuracy of the eigenvalue guess. 

Vie may choose a different value of p for each iteration performed in 

a particular eigenvalue search. In the computer program, a typical 

value of p for the first iteration was .01, decreasing by .0025 with 

each successive iteration. Each iteration involved three uses of the 

variational part of the solution. It was unusual to take more than 
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three iterations,- and, with a good eigenvalue guess, convergence could 

be obtained with one iteration. If the program exceeded four iterations, 

then it was better to start the program again with a new eigenvalue 

guess, and so a limit of four iterations was kept for each eigenvalue 

search. We judge convergence by examining the changes in el  since this, 

generally, changes more rapidly than c. In the present work, satisfactory 

convergence of the eigenvalues was obtained when the two values of e 

compared (e2  and es), differed by less than .19'o. This gave us the 

eigenvalues accurate to four decimal places. 

The computations were programmed in FORTRAN for the CDC 6600 

computer, and all the results presented herein were obtained on this 

computer. Some initial work was performed on an IBM 7094 computer. It 

was only found necessary to employ the eigenvalue pivoting technique 

when working on the IBM 7094 computer. On the CDC 6600 computer, it 

took approximately 11 seconds to obtain a spectrum of thirty eigenvalues 

in terms of fixed values of the parameters E and E2. The times taken 

in the present work are roughly equivalent to those taken in previous 

computations, taking into account the improvements in computer 

storage and speed. 
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Chapter 5. Discussion of numerical results. 

5,1. Introduction.  

The numerical results obtained from the computer program, set up 

as described previously, are presented in figures and tables at the 

end of the thesis. These results, consisting partly of checks on 

accuracy, and partly of solutions to representative flexible wall 

situations, will be described and discussed in the present chapter. 

The notation used in the figures and tables is defined in the relevant 

part of the thesis, and further given at the beginning of the thesis. 

5.2. Rigid wall results.  

In Tables 1 and 2, the most unstable eigenvalue, 01  is given for 

the different formulations considered, showing the convergence of c 

with increases in the number of terms in the approximating series (at 

a value a = 1 and values R = 1600 and 2500). The chosen values of El  

and E simulate rigid walls, and convergence to the results given by 

Thomas (1953), for the chosen formulation (Formulation 4)0  is obtained 

with sixteen and eighteen term series respectively. Lee and Reynolds 

(1904., 1967) use an approximating series esnecially suited to their 

variational solution of the rigid wall problem, and they obtain 

convergence to Thomas's results at (a,R) = (1,1600) (table 1) with 
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an eleven term series.. In their first paper (1960, higher eigenvalues 

are given at (a,R) = (1,100), and these agree well with present results. 

Apart from the Tollmien-Schlichting modes, numbers of spurious modes 

occuixed in the present eigenvalue spectrums, these spurious modes 

being non-convergent with increases in the number of terms in the 

approximating series. Unfortunately, Lee and Reynolds did not give a 

neutral stability curve in their results, and so comparisons with the 

present rigid wall neutral stability curve are impossible.-It should 

be remembered that the approximating series in the present work has 

been chosen as generally as possible. From these tables, it may also 

be seen that the real part of c, cr, converged more rapidly than 

the imaginary part, ci. This is a feature of all the present results. 

Table 3,gives the most unstable eigenvalue at (a,R) = (1,2500), using 

a twenty cosine series, showing how suitable values of Ei  and Eb may 

be chosen to simulate rigid walls. Tables 1, 2 and 3 are further 

discussed in Section L3. 

Table 4 gives values of the imaginary part of the most unstable 

eigenvalue, ci, for different values of the fluid parameters (a,R), 

usingathirtycosineseries.Curvesofc.versus ?, for fixed values 

of a, are plotted in Figure 3. As described in Section 1.2, neutral 

stability is found where ci  = 0 (in the temporal sense). Points on 

the rigid wall neutral stability curve are determined by plotting 

curves of 0. versus R for fixed a, and then finding the values of R. 

at which lc. = 0. In this way, values of the fluid parameters, (a,R), 

defining the neutral stability curves for both the rigid wall and 
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flexible wall problems, were determined. ( In oases where portions of 

the neutral stability curve lie parallel to the R axis, it is more 

accurate to determine these portions of the neutral stability curve 

by using curves of ci  versus a for fixed R. ) Points on the constant 

amplification curves are found where ci  takes a constant value. Points 

on the rigid wall neutral stability and constant amplification curves, 

using a thirty cosine series, are given in Table 5. Points on the rigid 

wall neutral stability curve, using a 

in Table 7. The neutral stability and 

are plotted in Figure k. In Figure 5, 

and comparisons with previous results 

part of the most unstable eigenvalue,  

twenty cosine series., are given 

constant amplification curves 

convergence of the present work 

are shown. Values of the real 

r 
using a thirty cosine series, 

are given in Table 6, and these values are used to plot the curves in 

Figure 6. The neutral stability curve of or  versus R (i.e. the spatial 

neutral stability curve) is obtained from these curves by finding the 

values of Cr corresponding to the values of a and R lying on the 

temporal neutral stability curve. Points on the spatial neutral 

stability curves, for twenty and thirty cosine series, are given in 

Table 8, and the curves are plotted in Figure 7. For both the temporal 

and spatial stability curves, results are given accurate to three 

decimal places. 

All of the previous curves are very smooth, and give good agreement 

1; 
with previous work. The curves in Figure show how good the exact 

agreement is, comparing the present with previous work. The earlier, 
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asymptotic curve, obtained by Shen (1954), agrees well with the 

low a part of the present curve, but at higher values of a, a fairly 

large discrepancy may be seen, as would be expected considering the 

limitations of the asymptotic analysis. The neutral stability curve 

of Grosch and Salwen (1968), which is obtained computationally by 

using a similar technique to the present, but for rigid walls, gives 

excellent agreement with the present curve. It is believed that 

Grosch and Salwen employed a thirty term series in obtaining their 

curve. The present curve, obtained using a thirty cosine series, is 

insensitive to further increase in the number of terms used in the 

approximating series. Comparisons with the curve obtained by using a 

twenty cosine series, show that the latter curve gives a very similar 

critical Reynolds number and reasonable agreement for small values of 

a, but that, at larger values of at  the discrepancy becomes more 

marked, and the latter stability curve falls too low. Convergence of 

the spatial neutral stability curve is shown in. Figure 7, and. the same 

convergence trends may be noted as in the temporal neutral stability 

curve (Figure \). In this case, however, the convergence is more rapid, 

since, as already pointed out, or  converges more rapidly than ci. 

Rigid wall stream function and Reynolds stress distributions will 

now be presented. In Tables 9(a), 10(b) and 12(a), points are given, 

and in Figures 8, 9 and 10, the corresponding graphs plotted;  for the 

rigid wall distributions at a = 1 and R = 100, 1600 and 10000, using 

a thirty cosine series. It should be noted that, as stated in 
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Section 4.5, the stream function, gy), is normalised such that 

951,(0) = 1 and 01.(0) = 0, and also that the Reynolds stress plotted 

is equal to the correct Reynolds stress divided by a factor(-pa/4). 

This means that a positive sign for the plotted Reynolds stress implies 

conversion of energy from the mean flow into the disturbance. The rigid 

wall boundary conditions are 
55(+1) = 0 and 

dy (+1) 
= 0 , and it may 

dy 

be observed that the stream functions satisfy these conditions to high 

accuracy. The Reynolds stresses are zero at the wall, as required, and 

have a peak (at which the Reynolds stress is positive) near the critical 

\ 
point, y = y

e 
(where U(y.c

) = (1-y 
2 
 ) = cr

). This latter fact would be 

expected, since, for the rigid wall problem, the critical point is close 

to the wall and the jump in the value of the Reynolds stress, expected 

at the critical point, is quickly brought to zero by the viscous forces 

at the wall. In Tables 9(b), 10(a), 11(a) and 11(b), points are given, 

and, in Figures 11, 12, 13, 14 and 15, the corresponding graphs are 

plotted, by means of which we examine the distributions for convergence 

at values of (a,R) = (1.31600), using ten and twenty cosine series, 

and (a,R) = (1,6400), using twenty and thirty cosine series. It can 

be seen that the real parts of the stream functions have already 

converged with the smaller numbers of terms in the series, while the 

imaginary parts of the stream functions and the Reynolds stresses have 

almost converged, although the increases in the numbers of terms in 
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the series produce slight alterations of the curves. As pointed out 

earlier, the variational approach would be expected to give the 

eigenvalues more accurately than the eigenvectors. It may be observed 

in these convergence results that, the higher the value of R. used, 

the larger the number of terms required in the approximating series, 

for given accuracy. Figures 16, 17 and 18 show comparisons of present 

results with those of Lee and Reynolds at (a,R) a (1,1600), and with 

those of Thomas at (a,R) = (1,10000). At (a,R) = (1,1600),.a ten cosine 

series is employed for the present results, to give a direct comparison 

with Lee and Reynolds, and at (a,R) = (1,10000), a thirty cosine series 

was used, although no direct comparison can be made with Thomas from 

the point of view of the number of terms used in the approximating 

series. In both cases, the comparisons are very favourable. In Table 

12(b), points are given, and in Figure 19, the corresponding graphs 

plotted, for the stream function and Reynolds stress distributions 

for the adjoint rigid wall problem at (a,R) = (1,100), using a thirty 

cosine series. These are very smooth and agree exactly with curves 

given by Lee and Reynolds. As mentioned in Section 4.5, the transpose 

of the direct formulation is used to obtain the adjoint stream function 

and Reynolds stress distributions. The eigenvalues of the problem are 

obtained using the direct formulation, and their accuracy is related 

to the accuracy of these distributions. The adjoint results are 

therefore included to show the accuracy of these distributions. 
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At this stage it is possible to conclude that the problem set 

up generally to solve the flexible wall problem is capable of giving 

excellent results for the rigid wall situation. As there is no particular 

bias in the modes towards rigid or non-rigid walls, we may now 

anticipate, with some optimism, equally satisfactory results in the 

flexible wall case. 

50. Flexible wall results.  

There are a number of results available from the publications of 

Hains and Price (1961a and b, 1962a and b) which may be used to check 

the present calculations. The simplest calculations are for fixed values 

of Ea and E2, corresponding to rather artificial flexible walls, since 

the physical wall parameters will vary along the stability curves (due 

to the a, R and c dependence in the definitions of Ea and 32 ). Stability 

curves were calculated for a value of El-1 	-1 = 	= -10, and we first 

examine the convergence of the present curves at this value. Points 

on the stability curves, obtained using thirty and twenty cosine series 

respectively, are given in Tables 13 and 1i. In Figure 20, we compare 

the neutral stability curves obtained with twenty and thirty cosine 

series. It can be seen that, at small a, the curves have already 

converged with a twenty cosine series. Along the high a portions of 

the curves, there is a small difference when the number of terms in 

the approximating series is increased, the largest difference being 
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about h. o/O. There is insignificant change for more than thirty terms 

in the approximating series. In Figure 21, it can be seen that the 

spatial stability curves have already converged with a twenty cosine 

series (as pointed out in Section 5.2, more rapid convergence may be 

expected with spatial stability than with temporal stability curves). 

Also in Figures 20 and 21, we compare the present stability curves 

with those of Heins and Price, for this value of E1  and E2. Good 

agreement is obtained in both comparisons, the largest discrepancy 

between the present neutral stability curve for a thirty cosine series 

and the neutral stability curve of Haim and Price being about 2 0/0. 

It is possible to examine the effect of omitting the viscous 

component of the normal stress (Hains and Price, and Landahl and Kaplan 

(1965) omit this term in their respective calculations). This omission 

, \ 
is equivalent to subtracting a factor (-4a

2 
 /cR) from the expression 

-1 , 
Mr. E., 	kj . 1,2) (see Section 2.2), and the largest modification of 

E 	is expected when the smallest value of damping is used. In the 

present results, the smallest value of damping used was D = 250, and, 

with this value of damping, omission of the above term caused an increase 

of about 1 0/0 in the critical Reynolds number of the class A mode. 

Changes would generally be expected to be smaller than this, and, with 

a tension of .5x109 for the case of walls with tension only, an increase 

in critical Reynolds number of about .2 0/ was experienced. 

For certain flexible wall situations, it is possible to transform, 

quite readily, the neutral stability curve for rigid wall, plane 
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Poiseuille flow into neutral stability curves for the flexible wall 

problem, by use of the asymptotic analysis developed by Lin (1945, 

1955). The basis of such a transformation lies in the analysis of 

Benjamin (1960) for the qualitative behaviour of the stability curves 

for the flexible wall, boundary layer problem. For the present problem 

of flexible wall, plane Poiseuille flow, we take that analysis a stage 

further to establish a precise form for the transformation of the 

Tollmien-Schlichting stability curve for a rigid wall to that for a 

membrane wall with no structural damping. We start with the characteristic 

equation in the usual form and notation (see Benjamin (1960), where 

X. = 0, and Landahl (1962)): 

(z) 
u + iv + a 

 

5.3.1 

 

1 + X(1 -21(z)) 

where, in our notation (see Section 2.2), for a membrane without 

structural damping, 	dU(-1) 0  

a = 

ma -- 2 [00
2 
- 

R
2 

and (from Lin (1955), pages 37, 38 and 40) 

dU(-1) 

u = —log c + 0(1) + 	dy  
0 

a2 jr 	x2 
(u-c) dy 

OL 

(1  + q)) 	s 
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V = 

x - 

and z = 

dU( -1 

d2U(syc  

(1 + 0(.3)) 	, 

is the modified Tietjens function 

These terms are given, and will be 

dy 
-TIC — 

dy 

(y0 + 1) 	au( 

aU(Y0)] 3 

dy 

-1) - 	1 	s'(z) 

1 
3 	(yc + 1) . 

dy 

dU(y )) 
aR 	° 

dy 

used, to the order of accuracy employed in the calculations of the 

rigid wall stability curve (Lin (1945)), which is known to be quite 
Lto -Eks ds.4e4 cf €t”t.1%:....1;0+1 

accurate. Since X and v are functions of c alon9V  - is a function of 

z alone, z is a function of aR and c alone and a is real, the parameters 

ao, Ro  and cs  defining the rigid wall, neutral stability curve 

(corresponding to a = 0), may be used to obtain the parameters a, R 

and cl  defining the flexible wall, neutral stability curves, by keeping 

c anal constant and only changing u through a (see Benjamin (1960)), 

i.e. u(alc) + a = u(ao,c) and z(a,R,c) = z(aol Rolc) . (N.B. co  is 

the free wave speed in the undamped membrane walls and not the value 

of c on the rigid wall, neutral stability curve. ) Hence we obtain 

au( -1) 

dy + a = 

dU( -1) 
— c 
dy 

   

2 
jr0 

a
2 r 

(u - 02dy 	ao 	(U - 02dy 



1 	f(c) -1  
2 a 

1 f(0-1 

ao
2 

5.3.2 
2 

R2 m 

[ co 
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and aoRo = aR. Hence, on substituting for U and a, and performing 

the integration, we obtain 

r  8 

15 3 
4 
- c 	02] . As Hains and and aR = aoRo , where f(c) = 

Price (1961b, 1962b) have calculated stability curves for membranes 

under tension only, it is of interest to examine that case in more 

detail. Hence, substituting moo2 = T and m = 0 in the above two eauations 

and eliminating R, we obtain 

1 	[ 1 	Rot 	1 
a
2 
= ao 

2 	4 	
f(c) 

 

  

• 5.3.3 

  

The two roots of this equation imply that each point on the rigid 

wall curve has a double image in the transformed plane. It may further 

be deduced that the neutral stability curve would be expected to close, 

since)  for sufficiently large Ro, a becomes complex, contradicting our 

initial assumption that a is real. The neutral stability curves, 

obtained by Heins and Price for membranes under tension only, do, in 

fact, close. The neutral stability curve given by Lin (1945), for rigid 

wall, plane Poiseuille flow, is used in the above transformation to 

give a neutral stability curve for the case when T = .5x109. (Accurate 

points on the flexible wall curve aro found by using the table of rigid 
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wall points given by Lin, more approximate points being obtained by 

using Lin's curve to give the rigid wall points. ) This curve is compared 

with the neutral stability curve obtained from the present program and 

also that of Heins and Price, for this value of T. The curves are compared 

in Figure 22 (the points for the present curve and the asymptotic curve 

being given in Table 15). It may be seen that agreement is good along 

the low R portions of the curves, while there is a marked discrepancy 

between the curve of Hains and Price and the other two curves along 

the high R portions. The curve for the present work is not completed, 

since the program is unsuited to examine stability at the low values 

of a and high values of R involved. Since, for the asymptotic analysis, 

that part of the rigid wall stability curve needed in the transformation 

is known to be quite accurate, and since the same order of accuracy 

is employed in the transformation, we would expect the flexible wall 

stability curve to be of the same accuracy. It is therefore unexpected 

to find the Hains and Price results in such disagreement with the 

asymptotic theory and our calculations. 

From Equation 5.3.3, we may further deduce that, at the value of 

T for which 	
1 	Ro 2 

- f (c) = 0 
	

when Ro  is the rigid wall 
T 

critical Reynolds number (Roc), the region of instability shrinks to 

a point, and, for T less than this value, there is no transformed 

stability curve. Inserting the values given by Lin (1945) for ao, Ro 
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and c, corresponding to the rigid wall critical Reynolds number, we 

find that the asymptotic theory predicts the curves closing to a point 

for T = 2.8x107. This value of T is less than half that obtained by 

Hains and Price (T = 6.65x107). Further, the point at which the curves 

disappear is given as (a,R) = (.71,.,7500) by the asymptotic theory and 

as (a,R) = (.-85,8240) by Hains and Price. The present program was used 

to search the neighbourhood of these points. Again, the asymptotic 

theory was found to be more accurate. These results show that, for 

limited physical wall situations, where there is obviously no class B 

instability, the asymptotic theory can give very good stability results. 

They also cast doubt on the accuracy of the computations of Hains and 

Price. 

We now examine a more general wall situation: the general effects 

of variations in free wave speed, co, and damping, D, in the walls, 

for representative values of these parameters. First, we examine the 

effect of changing co (or tension, for a membrane), keeping other 

properties constant. The mass parameter, in, for all these curves, is 

fixed at a representative value of unity. A value of co, suitable to 

simulate a rigid wall, was found to be co = 1052  stability curves being 

insensitive to further increase in this parameter. Stability curves 

were found for values of co  chosen to represent walls departing from 

rigidity down to a value co = 3000. For a free, damped membrane, the 

wave speed, c
P 
 (c

P 
 = R x c, see Section 2.1), is given by the expression 
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c = 
p 

iD 
+ 

2a 
[ 

D2 	1 
co-  - 	

] 4a
2 

D 
and underdamped waves exist provided the damping ratio, 	, is less 

taco 

than unity. The value of damping chosen for the present results was 

D = 1000, and, for wave numbers in the range associated with the critical 

Reynolds numbers, the present values of co give underdamped waves in 

the membrane, the situation closest to critical damping ( D/2aco = 1 

occuring when co  = 3000 (for this value of co, a must be less than 

1/6 before the waves are overdamped; larger values of D, causing waves 

to be overdamped at higher a, are of less interest since the damping 

would then begin to swamp the effect of variations in co). The parameters 

chosen for the present model are qualitatively similar to those chosen 

by Kaplan (1964) and Landahl and Kaplan (1965), for the boundary layer 

problem. ( Taking into account the different schemes of dimensionless 

variables, their values of D ranged from 20 to 3000, and their values 

of co ranged from 1000 to 3000, while m was fixed at unity. ) In the 

present work, stability results were found for co = 3000, 5000, 10300 

and 105. The points on the stability curves are given in Tables 16, 18 

and 20. The neutral stability curves are compared in Figure 23, In this 

figure, it can be seen that, for the values co = 3000 and 5000, the 

neutral stability curves have two (joined) parts exhibiting different 

natures. These two parts will be referred to as the lower part and the 
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upper part (from their position in the a versus R diagram). The neutral 

stability curve for co = 10000 also exhibited this characteristic, 

although its upper part was at a Reynolds number of roughly 15000. Curves 

for large values of co, close to the rigid wall curve (as typified by 

the curve at co = 10000), have lower parts whose behaviour is predicted 

by Benjamin (1960) in his description of the class A mode. However, as 

co decreases further away from its rigid wall value, the damping starts 

to have a greater influence and the lower parts of the neutral stability 

curves become more unstable (in the sense of critical Reynolds number). 

Spatial stability curves are given in Figure 24, and it can be seen that, 

in the vicinity of the critical Reynolds number, the walls are stiffness 

controlled, and hence (damped) free wave speeds are always larger than 

wave speeds associated with neutral stability curves. At significantly 

lower values of co, the walls would become inertia controlled in the 

vicinity of the critical Reynolds number and this, combined with the 

damping effect, would cause an even faster shift to. the left. 

The upper parts of the neutral stability curves become steadily 

more unstable as the flexibility of the walls is increased (i.e. co 

decreases). The class B mode of unstable disturbance (Benjamin (1960)), 

corresponding to unstable waves in the flexible walls, would be expected 

when the wave speed, o pr, is near the free wave speed in the flexible 

walls. It may be seen from Figure 24 that, as we move from the lower 

parts to the upper parts of the neutral stability curves, c
pr  is 

steadily increasing, supporting the classification of the upper parts 
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of the curves as class B disturbances. Another marked difference between 

the lower parts and the upper parts of the neutral stability curves, is 

the different rate of amplification experienced when crossing the stability 

boundaries of these two parts. This property is illustrated in Figure 25, 

where a constant amplification curve is shown, calculated for co  = 5000, 

representings-constantrateofamplificationofc
Pi 

 = —2.5 (points 

for this curve are given in Table 19). At a = .925 on the lower part 

of the curve, it took an increase in R of roughly WO to achieve this 

amplification rate, while at all points on the upper part of the curve, 

the amplification rate was so rapid as to make distinction from the 

neutral curve impossible. In general, amplification rates increased by 

a factor of between 10 and 100 when moving from the lower to the upper 

parts of the stability curves. The above difference between the 

magnitudes of the amplification rates, experienced when crossing the 

two parts of the neutral stability curves, is typified by a rapid change 

ofslopeincurvesofc
Pi 

 versus R at fixed a, this rapid change occuring 

intheneigUourhoodofc
Pi 

 = 0. An illustration of this behaviour is 

showninagure26,wherecurvesofc 
i 
 versus R for fixed a are plotted 

P 

at co = 3000 (points on these curves are given in Table 17). The curve 

ata=1.05shmsthechangesinc
Pi 

 when crossing the upper part, and 

the curve at a = .95 shows the changes in c 
pi 

 when crossing the lower 

part of the neutral stability curve. Results for other neutral stability 

curves are similar. Another important aspect, shown here, is that the 

region in which the amplification rate increases rapidly, lies not only 
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behind the upper part but also behind the lower part of the neutral 

stability curve. Since the class B mode of disturbance is essentially 

a resonance effect at values of cpr 
 near co, it might be expected that 

a rapid amplification rate was experienced across a class B stability 

boundary. The critical Reynolds number may be associated with either 

the lower or the upper parts of a neutral stability curve (for the 

flexible wall parameters (m,D,co) = (1,250,5000), the upper part of 

the neutral stability curve exhibited a critical Reynolds number 

marginally smaller than that of the lower part). It would appear that, 

in order to obtain reduction of the amplification rates, inhibition 

of the upper parts of the stability curves would be far more important 

than inhibition of the lower parts. Kaplan (1964) gave a class B stability 

boundary for the boundary layer over a membrane wall, although he later 

reported an error in this result (Landahl and Kaplan (1965)). He found 

this stability curve in a similar region of the (a,R) plane to the 

region in which the upper parts of the present curves are found. He 

did not, however, find a large difference in amplification rate between 

class A and class B modes, his results showing that the amplification 

rates were of the same magnitude for both modes. 

There is a strong suggestion in the nature of the present results 

that, in the terminology of Benjamin, the two parts of the curves 

represent class A and class B instabilities. This is a situation not 

unlike that indicated elsewhere, although other results show two seperate 

neutral stability curves for class A and class B instabilities: in the 
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present case the curves have merged to form a continuous stability 

curve. 

We now investigate the effect of damping variation, with other 

properties remaining constant. The mass is again kept at unity, and a 

moderate value for the free wave speed, co  = 5030, is chosen, at which 

to make comparison. Results for these values, with a value for damping 

of D = 1000, have been given above. A reduced value of the damping, 

D = 250, giving a lightly damped wall, is chosen, at which-to make 

comparison with these above curves. For the lower value of the damping, 

the stability results were taken to a very high value of a, in order 

to examine more fully the behaviour of the upper part of the curve, 

and points on this curve are given in Table 21 ((a) and (b)). Figures 

27 and 28 show the stability curves in the usual (a,R) region,and, in 

Figure 27, the partitioning effect of the neutral stability curve is 

again encountered. It can be seen that, the decrease in damping has 

stabilised the lower part of the stability curve, while destabilising 

the upper part. These alterations are again in line with the predictions 

of Benjamin (1960), classifying the lower and upper parts of the curves 

as classes A and B respectively. In Figures 29 and 30, the upper parts 

of the stability curves, at (m,D,co) = (1,250.5000), are plotted more 

fully. The classical asymptotic analysis would be completely inadequate 

at these high values of wave number. In Figure 29, the upper part of 

the neutral stability curve is seen to exhibit a critical Reynolds 

number (slightly lower than that of the lower part), and, for even 



73 

higher values of a, the curve becomes somewhat wavy. This waviness is 

due to the accuracy of the results dropping off at the high value of 

a involved. A few points calculated for the stability curve with a 

thirty-five term series, instead of the usual thirty, showed that this 

waviness may be smoothed out. An interesting fact, noted from Figure 

30, is that c reaches an almost constant value on the upper part of 
Pr 

the neutral stability curve, this constant value being slightly less 

than the value of co  being used. This would again lead to the conclusion 

that the upper part of the stability curve should be classified as a 

class B mode. 

Further insight into the nature of the different parts of the 

stability curves may be gained by examining the spatial distribution 

of the disturbance between the walls. Stream function and Reynolds stress 

distributions were found at values of (rn,D,co) = (1,1000,5000) for the 

flexible wall parameters, and at different points on the corresponding 

stability curve. The first set of distributions (Table 22) were taken 

at a point on the front of the lower part, the second (Table 23) at a 

point on the back of the lower part and the third (Table 2Z) at a point 

on the upper part of the neutral stability curve. The real parts of the 

stream functions are compared in Figure 31, the imaginary parts of the 

stream functions in Figure 32 and the Reynolds stresses in Figure 33. 

A further check on the accuracy of the calculations may be made by 

investigating how closely the computed stream function distributions 
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4(1-1) 	2 
satisfy the boundary condition, — 	— 0(4-1) = 0 (see Section 

dy 

2.2). By substituting the values of Or(4-1), 953.(1-1) and c into this 

boundary condition, we may predict the values which the gradients of 

the stream functions would be expected to take at the wall. These 

predicted gradients are shown alongside the stream function distributions 

in Figures 31 and 32, and a detailed examination of the stream functions 

at the wall shows that they change rapidly near the wall to produce 

the predicted gradients with high accuracy. The Reynolds stresses are 

zero (or almost zero) at the wall,  an em.poa4QA. A marked difference 

may be noticed between the three sets of distributions, and this is 

particularly noticeable and relevant in the Reynolds stress distributions. 

All of these Reynolds stresses indicate a conversion of energy from 

the mean flow to the disturbance. The first distribution is very similar 

to that obtained at neutral stability for a rigid wall, being virtually 

zero nearly up to the critical point (y = y ), where a rapid increase 

takes place, this increase being brought to zero at the wall. A double 

peak is just noticeable in this curve. The other two distributions 

broaden out, and the double peak becomes more obvious, the first peak 

occuring near the critical point and the second (larger) very close 

to the wall. This second peak becomes more pronounced in the third 

curve. Reynolds stresses for other values of the flexible wall parameters 

exhibit similar behaviour. This behaviour confirms earlier statements 

by Benjamin (1960) and Landahl (1961:) about the decrease in the 
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thickness of the viscous wall layer caused by wall compliance. The 

viscous and critical layers overlap at neutral stability in the rigid 

wall problem, causing the maximum Reynolds stress to occur at (or near) 

the critical point. However, when the thickness of the wall layer 

decreases, the jump in the Reynolds stress occurs at y = ye  (as predicted 

by inviscid theory). The sharp peak in the Reynolds stress near the wall 

may be explained in terms of the rapidly oscillating and decaying 

wall layer (Lin (1955)).  Kaplan (1964) gives Reynolds stresses for class 

A and B modes exhibiting similar behaviour to that of the first and 

third curves in the present work. Again, the classification of the 

lower and upper parts of the neutral stability curves as class A and 

B modes appears justified. 

The effect of variation in free wave speed (co) with a, may be 

obtained, in principle, by a cross plotting of constant co  neutral 

stability curves. However, unless the variation of co with a is very 

large, the present stability curves (Figure 23) are too widely spaced 

(in terms of co) to be useful in this way. Nevertheless, the general 

behaviour may be predicted, and this is illustrated for the case of 

thin plates. In this case, co increases with a, and, for thin plate 

neutral stability curves roughly coincident at a = .9 with the membrane 

neutral stability curve for (m,D,co) = (1,1000,5000), we would expect 

the upper parts of the neutral stability curves to be stabilised, while 

the lower parts are destabilised. ( By "stabilised", we mean that, 

for the same value of a, the thin plate curve is found at higher values 
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of R than those at which the membrane curve for (m,D,co) = (1,1000,5000) 

is found, and vice versa for "destabilised". ) Results were found for 

two such thin plates, the first at (m,Dleo) = (1,1000,()x0002+ 107a2)1) 

(Table 25(a)) and the second, a plate with no mid-plane tension, at 
9 1  

(m,D,co) = (1,1000,(3x107 a-)2) (Table 25(b)). The resultant curves 

are compared with those for a membrane at (m,D,co) = (1,1000,5000) 

in Figures 3)4. and 35, and the predicted behaviour is seen to be 

confirmed. Flexural rigidity may thus be seen to be beneficial in 

promoting stability by moving the regions of high amplification rate 

(associated with the upper parts of the neutral stability curves) to 

higher values of R. 



77 

Chapter 6. Conclusions..  

The results presented in the previous chapter, and conclusions 

drawn from them, support a general classification of the lower parts 

of the neutral stability curves as class A, and the upper parts as 

class B. Although the classification of possible disturbances into 

classes A, B and C is very convenient, the present work demonstrates 

that, in practical situations, this exact classification may cease to 

be of importance since unstable disturbances may represent mergers of 

behaviour typical of all three modes. For example, it might be argued 

that the upper parts of the neutral stability curves are class C 

(or Kelvin-Helmholtz) modes, since they become more unstable with 

increased flexibility of the wall, are associated with regions of 

large amplification rate, and c is almost insensitive to changes in 

R along the corresponding high a portions of the spatial stability 

curves (see Figure 30). In fact, Kaplan (1960 reported, without 

details, unstable class C modes in the region in which he presented 

stability curves for other modes. 

With regard to class A waves, it was established in Section 5.3 

that a simple transformation existed to convert the rigid wall, neutral 

stability curve into the tension-only membrane stability curves. It 

was also established that the results of this transformation were more 

accurate than previously computed stability curves. It therefore seems 
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worthwhile to return to this analysis and examine it for more general 

situations. The fundamental idea (both for the boundary layer and plane 

Poiseuille flow problems) is that if the right hand side of Equation 

5.3.1 is kept constant, then the net left hand side result must also 

be constant, i.e. uo  + ivo  = u + iv + a 	or, in real and imaginary 

parts, uo  = u + a
r 	

and 	vo = v + a.
a. 
 , where the subscript 

"0" denotes conditions on the rigid wall. These two equations may be 
({of 4.1ezige Sul 	# C4400. piNI A umMN 

thought of as defining values of (a,c) in terms of (aold) ;. the constancy 

of the right hand side then determining the new R. Unfortunately, the 

functional dependence on a and c is often so complicated that explicit 

forms for these variables are not possible, and the only course open 

is a numerical evaluation of the above equations; the problem falls 

into this category if ai  /0 . Hence, all deductions that can be made 

readily are for surfaces with no structural dissipation. When ai  = 0 

v is unchanged, which, because of its approximate form, requires 0 to 

be unchanged. Hence, uo  = u + ar  reduces to an equation for a, which, 

for undamped membrane walls enclosing plane Poiseuille flow, has the 

form given by Equation 5.3.2: 

2 a 

where f(c) 

f(c)-1  

= 
8 

15 

M  

r co 

4 
-.0 
3 

2 

2 
+ 0 

2 ao 

. ( N.B. co is the free wave speed 

°=JJ  
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in the undamped membrane walls and should not be identified with 

(ao,Ro). ) Therefore, the complete transformation becomes 

a
2 Ro2 Co 

2 
2 — = 	c 

ao
2 
	2co

2 
Ro  

2 	
2 cot  2 f(o) 2 2 Ro  

2c o2 	70
2   ) mR02  

ao  
and R = — R. . Depending upon the membrane properties, co  and m, and 

a 

also upon the fact that Ro  may not be less than the critical Reynolds 

number of the rigid wall stability curve, it can be seen that the 

discriminant, 	[ 2 	c° 
2  

2
1 2 4: 

-R-o-  ) 	

20f2 	
, may, or may [0   

not, be negative. Unlike the transformation for inertialess membranes, 

the discriminant must become positive for sufficiently large Ro, 

although, in a certain closed range of Ro, the discriminant may be 

negative. If, for example, m and co are so large that the discriminant 

is always positive, there will be a double image of all rigid wall 

points but no closed loop. Again, if the discriminant is negative at 

the critical rigid wall Reynolds number (Roe), no closed loop exists, 

but, on the other hand, if the discriminant goes negative after R00  

(say at MI  that part of the rigid wall, neutral stability curve up 

to R1, will map into a closed loop in the transformed (a,R) plane. 

When the discriminant becomes positive again, the mapping gives stability 

curves which eventually extend into regions where the asymptotic theory 



80 

breaks down. There is no reason to suppose, in this general discussion, 

that the various regions of instability would not, in some cases, 

overlap. Nevertheless, it can be stated that the closed stability loop 

is not a unique product of the inertialess wall situation (although 

a wall with a purely inertial response, co 0, cannot exhibit such 

behaviour). For all these curves, c is less than .3 , and the class B 

curves, which would be expected in these cases, cannot be generated 

by such a transformation. ( N.B. All the stability curves obtained 

from the present program have upper parts which exhibit values of c 

greater than .3 (sometimes markedly greater). ) 

The same observations may be made in the Blasius boundary layer 

situation, when the appropriate definitions of u and v are used and 

alterations in the scheme of dimensionless variables are taken into 

account. Considering a membrane under tension only, and making the 

tension dimensionless in the same manner as Hains (1965), we have 

dU(w) cR 	dU(w) 
a = 	

2 1  where — 	is the steady state velocity 
dy Ta 	dy 

gradient evaluated at the wall, and T is the wall tension made 

dimensionless with the free-stream flow velocity. When u is taken for 

the Blasius boundary layer in the form 

 

dU(w) 

 

(Lin (1955)), a transformation U = 

  

dy 	a(1-c)2  
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equivalent to those obtained for plane Poiseuille flow may be derived, 

i.e. 
aa 	Ro 	 ao [ 	2 4. 	(1 	c)2 . 0  

and R = — Ro  
ao 	L ao 	aoT 	 a 

This transformation predicts that the rigid wall neutral stability 

curve is again transformed into closed loops which disappear at 

(a,R) = (1.1,2900) when T = 2800, whereas Ilains (1965), in his 

calculations for this problem, obtained closed loops disappearing at 

(a2R) = (1.0,4000) when T = 4025 . Hains (1965) has commented that, 

if the tension were made dimensionless by using the boundary layer 

thickness instead of the free-stream velocity, the curves would probably 

not close. Such a prediction is not born out by this analysis, since 

making the tension dimensionless in this manner merely changes the 

form of a to 	dU(w) cR2 

_ — 
dy Ta

2 
and the resulting transformation still 

predicts the closure of the stability curves. 

The low wave number region always causes some difficulty for the 

boundary layer situation because the dominant term in the perturbation 

pressure is the inviscid pressure (as expected when the boundary layer 

thickness becomes insignificant on a wave length scale) and the stability 

is then governed by the classical Eelvin-Helmholtz analysis. A pure 

membrane loses its stiffness for large wave lengths (because of the 

very small surface curvature) and is unstable when coupled to an inviscid 



02(1 + m) - 	
i Dm 

3 	aR 

8 	co  
+ 	— - m -7 J = 0 15 

2 

• 
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flow. This has lead to considerable discussion (Benjamin (1960), 

Landahl(1962)) and the employment of "local" stiffness terms in the 

membrane formulation (Landahl (1962), Kaplan (1964)). Such a difficulty 

does not arise for plane Poiseuille flow since the coupling of the 

membranes to the flow does not necessarily cause instability in this 

case. To show this, the leading term from the asymptotic expression 

for the pressure must be derived (by use of the results of Lin (1955)) 

and then inserted into the membrane equation (see Section 2.2), giving 

This equation is equivalent to that used by Landahl (1962) to study 

the role of damping in the boundary layer problem, and it predicts 

instability to occur, for D /0, when 

8 	002 

(1 +m) [ 	- 	> 0 	or 
15 

[ 15 
m
2 2 

8 oo  
I 

and, for D = 0, when 

8 	CO  2 
	1 	8 	4 

m 	- m 	> 	or R > 	— 0  ) 	 • 
15 	9 	mco-  [ 15 	9(1+72) 

It can be seen therefore, that, as a tends to zero, the stability 

boundaries in the (a,R) plane become parallel to the a axis, eventually 

intercepting the R axis, and also that the effect of damping is 
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destabilising. Inserting in these formulae the values of m and co  

considered in the present calculations, we obtain the following values 

at which the R axis is intercepted 

co 	= 1) 
1 	

R (D / 0) 

3000 4110 

5000 6850 

104  13700 

105  137000 

A major point which can be made is that the asymptotic curves, for 

very small a, are at greater Reynolds numbers than the critical Reynolds 

numbers of the respective flexible wall curves, and. hence Re  is still 

determined by the computed portions of the curves. Computations performed 

to check the stability boundaries predicted by this asymptotic analysis 

were inconclusive, because the program is not well suited for examining 

small a conditions. 

It should, perhaps, be added that this argument is of limited 

practical interest, since the parameters describing the flexible walls 

would not be expected to hold in any real physical situation on a length 

scale where details of the overall wall support conditions become 

important. Further, when the wave length becomes much greater than the 

width of the pipe, the physical limitations on the length of the pipe 

would introduce the important effects of the ends. 
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Another region of interest in the present stability problem is that 

of low Reynolds number. Landahl (1900 has found regions of class B 

instability here, and Nonweiler (1963), using a similar approach to 

Benjamin's to obtain qualitative information on the stability of the 

boundary layer over various flexible walls, has obtained results for 

a membrane, similar in nature to those of Landahl (i.e. he predicted 

regions of class B instability at low R). ( Lock (1954), using an 

asymptotic analysis to study the flow in the laminar boundary layer 

between parallel streams, also gives neutral stability curves at very 

low R. ) All these results, based on the asymptotic analysis, assume 

that aR is large. From the appearance of these curves, it may be more 

informative to investigate small R solutions in order to see if the 

wall waves can be excited by very small fluid velocities. Such an 

approach may be summarized as follows. If we assume that the wall 

damping is zero, and expand the wave speed, c (the physical wave speed 

is used since it has not been made dimensionless with the fluid velocity), 

in terms of R, and then of m-1  in order to study the most unstable 

class B disturbances at small R and small departures from wall rigidity, 

we obtain 

op = ( cii  + clam. + 0(1/6
2) ) + R( c21 + 022/in + 0(1/62) ) 4. 0(R

2
) . 

In this series, cii = co  (purely real), and, letting m tend to infinity, 

we see that the remaining terms independent of m (c21, 031, . . . etc.) 

must be zero since m tending to infinity corresponds to a free flexible 
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wall. At R = 0 (zero flow velocity) there is no energy supply to feed 

a wall disturbance, and so the imaginary part of 012  must be positive, 

indicating stability. It may be seen that, for large values of m 

(corresponding to class B modes, since m is made dimensionless with 

the fluid density, p), there must be a region of stability for low 

enough R (Rs, strictly speaking, much less than unity). This result may 

be derived analytically. 

As regards possible favourable effects on flow stability as a result 

of using flexible walls, we may see in the present results that increases 

in R
c are possible, although not large,. and that the regions of high 

amplification rate, associated with the upper parts of the neutral 

stability curves, may be moved to higher Reynolds number by a suitable 

choice of surface flexural rigidity. However, we must echo the conclusions 

of previous papers, that the new modes of instability introduced by the 

wall flexibility produce a generally more complex situation, where no 

substantial improvement in stability appears to be possible. 

The computer program has been used to study the present stability 

problem for symmetric stream function distributions between two identical 

walls. For the rigid wall problem, symmetric stream functions have been 

demonstrated to be the most unstable, and no change is anticipated in 

this respect, when the flexible walls are introduced. It is possible 

that dissimilar walls could improve stability, and the present program 

has been set up to cope with this situation. However, no radical 

improvements in stability would be expected, and no computations have 
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been performed for this case. 

We may finally remark on the approach employed in the present work. 

This has proved very satisfactory, and no complications are envisaged 

in applications of this method to other problems. Indeed, given the 

computing facilities, a general system of programs, with the same status 

as that of Landahl's programs (1966), could be constructed. With further 

computing scope, the present method of solution could be modified to 

solve directly for the eigenvalues. Noting that c occurs quadratically 

in the present problem (see Sections 2.2 and 4.4), the retention of 

c in explicit form when setting up the matrix equations would have 

generated a matrix equation of the form 

( (002 	(B)c + (D) ) x = 0 	where (A), (B) and (C) are matrices 

of the same order as those used in the present method, c is the eigenvalue 

and x the eigenvector. This may be converted to standard form by substitut—

ing (I)cx = (I)x4 , where (I) is the unit matrix and asti a vector, 

and solving the above as two simultaneous equations to give 

[  

I 
(0) 	 I " (I) 

i 	

(I) 	 ; 	 (0) 	 X 

WO WO 	 M., ••11 ... 	
+ 	 c 	... ... ... .... Ir  

s.• Mgr 	 = 0 	. 

;)"..1  ( DTI  .. (A ) 1  0; 	

I 

(0) 	 (I) 	 1.1.  

In this standard form, the matrices are of twice the order of those 

involved in the present method. The great advantage is that this would 
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provide directly the complete spectrum of eigenvalues of the physical  

problem, and would eliminate the need for an iterative scheme, as used 

in the present solution. 
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Appendix A. The different formulations.  

A.1. Formulations 1 and 2.  

The operator (H), for Formulations 1 and 2, is given by 
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and O = 0(y) in the first entries of the vectors. 

• The complex conjugate adjoint operator (n*), for Formulations 

1 and 2, is given by 
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A.2. Formulation 3.  

The operator (H), for Formulation 3, is given by 

r--- 2 
- 	iaR [a 	a20] 

dy2 

_ d0(-1) 
dy 

0 

0 

H(u) 
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where 	u = 

1 dqS (+1) 
:ENO 01•111M•11W 

2 dy 

d¢(-1) 

2.95 

1 

2 dy 

and = gy) in the first entries of the vectors. 
The complex conjugate adjoint operator (-1*), for Formulation 3, 

is given by 
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A.3. Formulation ins .  

The operator (H), for Formulation 4, is given by 
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where 	u = 

and 0 = gy) in the first entries of the vectors. 

The complex conjugate adjoint operator (R*), for Formulation 4, 

is given 
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dy3 	Eb 

0 

0 

•••••••••••II 

27* 

1 d3*(4.1) 4-  r. - ial (;7*(+1) - - — 
2 dy3 	24 

1 d 9* 3-r (-1) _ 	4. r - iaRi jeq_i) 
3 2 dy 	2E2  

... R 7*(41) 

Fri 

R  9S*(-1) 

C 

0 

c 

where 

and F*. 17*(y)in the first entries of the vectors. 
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Lpendix B. The chosen formulation (Formulation if ).  

B.1. Matri,: entries for Formulation 21..  

The (p,q) positions in the matrices for Formulation 4 are given by 

B11 (p q) = 
-ELL 	 a „ 	 0 

1P3v3(1-(-1)P) (-1) 2  - jaR(14-(-1)?)(-1)2 	(1-1-(-1)q)(-1)2  
16 

- /(1-1-(-1)P) (-1)2  

r2,77.2 2 2 + El 

4- 
2 2 

[iaR [q 	
+a2 

3,73 
(1-(-1)q) (-I) 

a2 

2  

I  

16 

iaR 
2 2

71-  [2 - 
ii. 

4. 

P-1 	 g 	 0-1 
D11 (p,q) 

	

	/23 (1- (-1 )7?) (-1) 2  - iaR.(1+(-1) 2 	]1(1-(-1)(2)(-1) 2  
16 

DA-0-1 
_ crarit 	+ 1 ](1+(...1 )p)(1_ (....1 )q (....1 ) 	2 

(-16 Ei E2 

2 2 
- [jail [q  r  + a2 14 

 

[
q.277-2+ a2 ]2 

/1. 
+ iaR [2 - 

  

B12 (p q) = a2 

 

   

+ riaR [ 2'72 + a2 	16 
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1  ](1-1-(-1)P)(1-1-(-1)(1)(-1) 2  
E2 

D12 (p' q) = 
 [

girl/. 11 _ 

16 (- Fd  

q27r2 2 - [iaR 	+ a 	15  
4. 

B21 (p q) 	
[ 

q 2 2 	 2 2 
+ a2 2 + iaR [2 - q 	a

2 	
17  

4 	 4. 

2 2 	0  
+ iq  + 	18 

p+q-2 
(I),(1) 	 cgrR [1 

••••••••• 	••=1. 	
)P 	 ) (1) (-1) 	2  

16 E1  E2 

[iaR [q27722 + a 	17 

B22 (p lq) 175 	 P. 	 0-1 
D3  (14- (-1)P) (-1)2  - iaR(1-(-1)P) (-1) 2 	[(1-(-1)c1)(-1 )-7-‘) 

J 16 

+ [ 

pz:_1 
(1+(-1)q) 

qr2  [2 - 

3 a 
(-1)2  

a2 
3 

(1-(-1)13 ) (-1 ) 

q217-2  + a2 ]2  

2 	iq 1  
16 

+ iaR 

0211.2 
+ {iaR 

/1 _ 
+a2 	12 and 



2 2 	2  
- [i.aR [q 	+ a 	13 

14. 
, where 
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3_3 	2. 
2  D22(p'q) [- P 	(1+(-1)P)(-1)2  iaR(1-(-1)P)(-1) 

.16 a 
)q)(-1 )2 

.11.1•••••=1 

p+o-1  
+ rq'TR  [1  + I  ](1-(-1)P)(1+(-1)q)(-1) 2  

L  16 Ei 

+1 
I1 = j y2 cos(puy/2) cos(qwy/2) dy 

p+o-1 
1 	[i - 	8 ](1-(-1)P+q)(-1) 2  

(1)+0217_2 (p+q)ri 

1 [1 
(p-q)-tr 

p-q-1 
8 ](1 _(_1)p-q)(_1) 2 

(p_q)2IT2 

- 
(1+(-1)P+q)(-1) 2  + 	 (1+(-1)p 

q 
 )(-1) 2  

(p+q)271.2 	 (p_q)27r2 
If 

= 

	

	 for p = q 0, 
3 q2

17-
2 

for p q, 

2 fOr p = q = 0, 
3 
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+1 
y2 sin(pny/2) sin(TryM dy 

-1 
p+q-1 

= - 	1 	[i 	8 	(1-(-1)P+q)(-1) 2  
(17+0277.2 (p+q)ir 

A-Q-1 
1 	 [1 

(p-017/7 

8 	] (1-(-1)13-q) (-1 
(p_0277.2 

2 

 

2:1:1 
(1+(-1)1".(1)(-1) 2  + 

   

21. 
4  	(1+(-1)p-q)(-1) 2  

 

     

(r+q)271,2 (p....(1)27.12 

1 2(-1)q 

3 q271 
for p = q t0, 

for p q, 

= 0 
	

for p = q = 0, 

f sin(pwyM sin(quyM dy 

p-q-1  
1 
	 (1-(-1)P-(1) (-I) 2 	- 	 (1-(-1)P+q) (-1) 2  

(p-q )ir 

for p q, 

= 1 	for p = q / 0, 

= 0 	for p = q = 0, 
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cos(pnyM cos(TryM dy 

p4-q-1 
1 

(1-(-1)P+q)(-1) 2 	
1 
	 (1-(-1)p-q)(-1) 2  

(p-q)ir (P+07r 

for p 7-/ q, 

1 	for p 	q 71. 0, 

2 	for p = q = 0, 

cos(pny/2) sin(q7ry/2) dy = 0 

2 
37* / cos.107r.T 2  sin.qTrY.2  dy = 0 

sin(piry/2) cos (q7/7/2) dy = 0 	and 

+1 

1
8 

=
J 
 y2  ain(p1y/2) cos(qTry/2) dy = 0 • 
-1 

-1 

-1 



B11 	' (p q) = [q  
2g2 

.4.  4a2 
p+o -1 

](1-(-1)P)(1+(-1)q)(-1) 2  
8 2 
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B.2. Matrix entries for the complex conjtyate adjoint of Formulation 4.  

The (p,q) positions in the matrices for the complex conjugate 

adjoint of Formulation 4 are given by 

0-1 (.102.w204.(..1)p)(.. 	2a2( 1+( ...1 )p)( ..1 )2 	
1

CrT ( 1-( -1 )(2)( ..1 ) 2 
t. 4 	 4 

[ 

2 2 2 
1 a2 

• 1. 
]2 - iaR {(I

T

2 
+ a2 	I1  

f 

 2 
+ [iaR r + a2

1 + [277-qiaR T1 

R.719:1. 
D11  (m)= iaR qw  (1+(-1)19 )(1-(-1)(1)(_1) 2  

4 

3 it- 
+ pq 	(1-(-1)p)(1-(-1)(1)(-1) 2  

64. 
p+q-1  

PITR  [1 	1  ] (1-(-1)P)(1 +(-1)q)(-1) 2  
16 El Fe  

]
272 

- iaR [q + a2 I4 
 

11- 

11- 



a2 T3  16 
tI- 

2 2 
+ iaR [ q 7/-  + [2(yriaR] 

D21 (Psq) = 
pn-R 11 	1 

16 -31. 2 
(1+(-1)13 )(1+(-1)q )(-1) 2  
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[q2v-2  + a2 2 r2 
- iaR iq  

 

1312(plq) = + a2 	15 

  

D12 (p l c].) + PwR [ I  - 	](1-(-1)P )(1-(-1)(1(-1) 2  
16 	• E2 

2 
- iaR q  7 

2 
{- + a2  ] 15 

21 (p q) = 
[[q21.2 

+ a2 
J2 

2 2 
iaR [q  

+ iaR [q 
27r2 

 + a2  18  + [2cyriaR] T4.  

- iaR 
[q2r2 

+ a2 

4- 



+ PwR 

	

	4, 1  ] (1+(-1)P)(1-(-1)q)(-1) 2  

1
3 

16 El  2 

- iaR [q w2
+ a2 

1014. 

B29(plq) = 	Pir [(12,I/.2 4 2a
2  

p+q -1 
(14-(-1)P)(1-(-1)(1)(-1) 2  

4 4 

2 2 	 p+q-1 
qir  [P 	+ 2a2 	(1-(-1)P)(1+(-1)q)(-1) 2  
4 4 

2 
+ q 2+ a2 ]2 - iaR (1272

4- a2
3 

4 	 - It  

2 2 	0  
+ iaR [q IT + 	12  - [277-qiaR] T2 	and 

PA-4-1  
D22(p 

	

	= - iaR (177-  (1-(-1)P)(1+(-1)q)(-1) 2  
4. 

3 4 
- pq 	 (14(-1)P)(11-(-1)(1)(-1) 2  

64 

where the integrals from 1i  up to 18  are given in Appendix B.1 and 

the integrals from T1  up to T4  are given by 
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+1 

T
1 
= 	y cos (prry/2) ain (wy/2) dy 

-1 

(1 + (-1 

(1 + (-1 

)1)+q) 

)1)-(1) 

12 (-1) 

(-1 ) 

Ern 

+. 

- 

2  (1-  (-I )1) 4-q) (-1 ) 

(1-  (-1 )p-q)(-1) 

2  

2  

(p+q)77- 
(1)+0277_2 

2 
2 

(p..0277_2 

for p 	(al  

for p = q / 0, 

= 0 
	

for p = q = 0, 

+1 

T2  = 	y sin (puy/2) cos (Try/2) dy 

1 
(1 

(1 

D-1-0 

+ 
2 

(1-(-1)114-q)(-1) 

(1- (-1 )P -q) (-1 ) 

±o-21 
+ (-1 )P4{1) (-1 ) 2  

L..' . 

2  

2:2=1 

(p+q)ir 

1 

) 

2 

277_2 

+ (-1 )P-q) (-1) 2 2  

(p -07r 
	(p-.q) 277_2 

for P r q, 

(p-Oir 

( —1 ) c1-1  

= - 

for p = q T 0, 

= 0 	for p = q = 0, 

+1 
T3  = 	y cos (prry/2) cos (Try/2) dy = 0 	and 

(-1) q-1  
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+1 
= 	I y sin (Try/2) sin (lotTyM dy = 0 . 

-1 



Read in a,. R, 
m, d, co, s 
and c°  and store. 

o Calculate e°, el  and 
e2 and store. 

If more data.  Convergence not obtained 
in this search. 

If number of 
iterations = 4. 

Set e=ei. 

Calculate 
for e. 

--75-1> .001 . 
e2 —ea 

If e==2.. 

'If e=e2. ,tIf e=4. 

Hind 
and store. A 

Calculate 
3  and store. 

.001 . 

Print eigenvalue 

If required, calculate 

If more data. 	and print stream function 
and Reynolds stress 
Llistributions. 
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Appendix C. A simple flow diagram for the computer program. 

If number of 
iterations < J-. 

If no more data. 

'Stop.' 



Number of 
oosine 
terms in 
series. 

Formulation 1. 

Real 	Imaginary 
part. 	part. 

Formulation 2. 

Real 	Imaginary 
part. 	part. 

Formulation 3. 

Real 	Imaginary 
part. 	part. 

Formulation 4.. 

Real 	Imaginary 
part. 	part. 

Formulation 4. 
(Lajoint problem.) 
Real 	Imaginary 
part. 	part. 

8 .3186, .0292 .3455, .0163 .3187, .0292 .3187, .0292 .3187, .0292 

10 .3231, .024.7 .3364, .0184. .3230, .024.6 .3230, .0245 .3230, .024.8 

12 .3234, .0256 .3234, .0269 .3228, .024.1 .3227, .024.1 .3235, .0258 

14. .3231, .0261 .3231, .0267 .3231, .0261 .3231, .0261 .3231, .0261 

16 .3231, .0262 .3232, .0264 .3231, .0262 .3231, .0262 .3231, .0262 

18 .3231, .0262 .3231, .0262 .3231, .0262 .3231, .0262 .3231, .0262 

20 .3231, .0262 .3232, .0263 .3231, .0262 .3231, .0262 .3231, .0262 

Table 1. Convergence of the most unstable eigenvalue, using the different formulations 

at a = 1, R = 1600 and Ft  = Eh = 10 4. ( For this case, Thomas obtained an 

eigenvalue o = .3231 + .0262i and Lee and Reynolds, using an eleven term series, 

obtained an eigenvalue o = .3231 + .0262i. ) 



Number of 
cosine 
terms in 
series. 

Formulation 1. 

Real 	Imaginary 
part. 	part. 

Formulation 2. 

Real 	Imaginary 
part. 	part. 

Formulation 3. 

Real 	Imaginary 
part. 	part. 

Formulation 4. 

Real 	Imaginary 
part. 	part. 

Formulation 4. 
(Adjoint problem.) 
Real 	Imaginary 
part. 	part. 

8 .2870, .0051 .3324, .0089 .2873, .0055 .2873, .0055 .2873, .0055 

10 .2955, .0138 .3331, .0062 .2954, .0139 .2954, .0139 .2955, .0139 

12 .3014, .0145 .3006, .0169 .2994, .0147 .2994, .0147 .3014, .0145 

14 .3016, .014.3 .3003, .0152 .3015, .0143 .3015, .0143 .3015, .0143 

16 .3013, .0141 .3010, .0149 .3013, .014.1 .3013, .0141 .3013, .0141 

18 .3012, .014.2 .3007, .0135 .3012, .0142 .3012, .0142 .3012, .014.2 

20 .3011, .0142 .3008, .0140 .3012, .0142 .3012, .014.2 .3012, .014.2 

Table 2. Convergence of the most unstable eigenvalue, using the different formulations 

( at a = 1, R = 2500 and El  = 	4  = 10 . For this case, Thomas obtained an 

eigenvalue o = .3011 + .0142i and Toe and Reynolds, using a twelve term series, 

obtained an eigenvalue o = .3010 .0143i. ) 
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Fn -1 	-1 	-1 	-1 = E6 	Eigenvalue. 	Fd. = 16 	Eigenvalue. 

Real 	Imaginary Real 	Imaginary 
part. part. 	part. part. 

Real 	Imaginary Real 	Imaginary 
part. part. 	part. part. 

1020  0 .3013, .0148 -1021  0 .3010, .0135 

0 , 102 .3018, .0140 0 , -102 .3005, .0143 

1020  102 .3016, .014 4 -1021  -102 .3007, .0139 

103, 0 .3012, .0142 -103, 0 .3011-2  .0141 

0 , 103  .3012, .0142 0 , -103  .3011, .0142 

103, 103  .3012, .0142 -1032  -103 .3011, .0141 

1042  0 .3012, .0142 4.  -io s  0 .3012, .014-2 

0 , 10
4  .3012, .0142 0 , -104.  .3011, .0142 

io4  o4-, 10 4 .3012, .0142 -1042  -104  .3012, .0142 

10
5
, .30122  0 

 .0142 -105, 0 .3012, .0142 

0 , 105  .3012, .0142 0 , -10 5 .3011, .0142 

105  2  105  .3012, .0142 -1052  -105  .3011 2  .0142 

Table 3. Calculations to determine the values of E1 and E6 at 

which the walls are, effectively, rigid. For the above 

results we use a twenty cosine series and tabulate the 

most unstable eigenvalue at a = 1 and R = 2500. 



a R 	1000 2000 3000 4.000 5000 6000 7000 8000 9000 10000 

.800 .0638 .0388 .0260 .0181 .0127 .0087 .0057 .0033 .0014. -.0002 

.850 .0578 .0329 .0207 .0133 .0085 .004.9 .0023 .0002. -.0013 -.0026 

.900 .0521 .0278 .0163 .0096 .0052 .0022 -.0001 -.0017 -.0030 -.0040 

.950 .04.69 .0234. .0128 .0068 .0030 .0004 -.0014. -.0027 -.0037 -.0044 

1.000 .04.21 .0198 .0102 .0050 .0018 -.0003 -.0017 -.0027 -.0033 -.0037 

1.025 .0400 .0184. .0092 .0044 .0015 -.0003 -.0015 -.0023 -.0028 -.0031 

1.050 .0380 .0171 .0085 .004.1 .0014 -.0001 -.0011 -.0017 -.0020 -.0022 

1.075 .0363 .0161 .0080 .0039 .0017 .0003 -.0005 -.0009 -.0010 -.0010 

1.100 .0346 .0153 .0077 .004.0 .0020 .0009 .0004 .0002 .0002 .0003 

Table 4.. The imaginary part of the most unstable eigonvalue of the rigid wall problem, 

for different values of the fluid parameters (a,R), obtained using a thirty 

cosine series. 
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a 

c. 	.002 

R 

0. 	r..; 	.001 
1 

c. = 	.000 c. 	= -.001 c. 	= -.002.  
1 

.800 8650 9250 9850 

.850 7100 7600 8150 8850 9600 

.900 6050 6500 6950 7550 8250 

.950 5350 5750 6200 6700 7400 

1.000 4900 5350 5850  640o 7300 

1.025 4750 5200 5800 6500 7500 

1.050 4700 5200 5900 6850 9000 

1.075 4800 5500 6350 

1.100 5000 5800 

R 

5000 

a 

.988 

a 	a 

1.100 

a a a a a a a 

6000 .905 .930 1.105 .970 1.060 

7000 .855 .875 .895 1.093 .930 1.055 

8000 .820 .835 .855 1.095 .880 1.070 .910 1.040 

9000 .805 .825 1.094 .845 1.075 .865 1.050 

10000 1.094 .815 1.075 .83o 1.055 

Table 5. Points on the rigid wall neutral stability and constant 

amplification curves, obtained using a thirty cosine series. 



a R 	1000 2000 3000 woo 5000 6000 7000 8000 9000 10000 

.800 .3064. .2772 .2606 .2490 .24.00 .2328 .2268 .2216 .2171 .2131 

.85o .3170 .2868 .2693 .2571 .2477 .2401 .2339 .2285. .2239 .2198 

.900 .3272 .2957 .2775 .2647 .2549 .2471 .2406 .2351 .2303 .2261 

.950 .3370 .3042 .2851 .2718 .2617 .2537 .2470 .2413 .2364 .2320 

1.000 .3463 .3121 .2923 .2785 .2681 .2598 .2529 .2471 .2420 .2375 

1.025 .3508 .3159 .2957 .2818 .2712 .2627 .2558 .2498 .2447 .2401 

1.050 .3551 .3195 .2990 .2848 .2742 .2656 .2585 .2524 .2472 .24.26 

1.075 .3593 .3231 .3023 .2879 .2770 .2683 .2610 .2549 .2496 .2449 

1.100 .3634 .3265 .3054 .2907 .2796 .2708 .2635 .2572 .2518 .2470 

Table 6. The real part of the most unstable eigenvalue of the rigid wall problem, for 

different values of the fluid parameters (a,R), obtained using a thirty 

cosine series. 
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a R R 	• R a a 
.85 8600 6000 .980 1.040 

.90 735o 7000 .910 1.058 

.95 6300 8000 .870 1.048 
1.00 5800 9000 .838 1.030 
1.05 6500 7800 10000 .818 1.015 

Table 7. Points on the rigid wall neutral stability curve, obtained 

using a twenty cosine series. 

20 cosine series. 
R 	cr 	cr 

30 cosine series. 
R 	cr or 

8600 .226 9850 .213 
7350 .239 8150 .228 

6300 .253 6950 .241 
5800 .262 6200 .252 

6500 .263 5850 .261 
7800 .254 5800 .263 
6000 

7000 

.258 

.242 6350 

.265 

.260 
5900 .266 

.266 
8000 .231 .253 6000 .256 .267 
9000 .222 .246 7000 .240 .262 
10000 .215 .239 8000 .229 .257 

9000 .221 .250 
10000 .246 

Table 8. Points on the spatial neutral stability curves, obtained 

using twenty and thirty cosine series for the rigid wall 

problem. 
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y Stream function. 	Reynolds 
stress. 

Real 	Imaginary 
part. 	part. 

y Stream function. 

Real 	Imaginary 
part. 	part. 

Reynolds 
stress. 

.00 1.0000 .0000 .0000 .00 1.0000 .0000 .0000 

.05 .9960 -.0021 -.1666 .05 .997L -.0001 -.0084 

.10 .9841 -.0082 -.3231 .10 .9899 -.0004 -.0181 

.15 .9640 -.0181 -.4597 .15 .9775 -.0010 -.0302 

.20 .9353 -.0309 -.5674 .20 .9603 -.0020 -.0448 

.25 .8978 -.0459 -.6388 .25 .9381 -.0033 -.0600 

.30 .8513 -.0618 -.6689 .3o .9106 -.0050 -.0722 
.35 .7958 -.0773 -.6564 .35 .8773 -.0069 -.0795 
.40 .7318 -.0909 -.6045 .40 .8381 -.0089 -.0853 
.45 .6602 -.1012 -.5206 .45 .7932 -.0111 -.0982 
.50 .5825 -.1070 -.4164 .50 .7422 -.0139 -.1257 
.55 .5007 -.1073 -.3057 .55 .6846 -.0177 -.1634 
.60 .4172 -.1019 -.2022 .60 .6188 -.0225 -.1901 
.65 .3348 -.0911 -.1170 .65 .5430 -.0273 -.1707 
.70 .2564 -.0758 -.0561 .70 .4564 -.0296 -.1094 
.75 .1846 -.0579 -.0198 .75 .3607 -.0265 -.0107 
.80 .1220 -.0395 -.0032 .80 .2608 -.0167 .0662 
.85 .0706 -.0229 .0012 .85 .1644 -.0029 .0786 
.90 .0322 -.0100 .0008 .90 .0815 .0074 .0393 
.95 .0083 -.0024 .0001 .95 .0229 .0066 .0052 

1.00 .0000 .0000 .0000 1.00 .0005 .0002 .0000 

(a) 	 (b) 

Table 9. Stream function and Reynolds stress distributions 
obtained for the rigid wall problem at 

(a) (alit) = (1,100) using a thirty cosine series, and 

(b) (a1R) = (1,1600) using a ten cosine series. 
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y Stream function.' Reynolds 
stress. 

Real 	Imaginary 
part. 	part. 

y Stream function. 

Real 	Imaginary 
part. 	part. 

Reynolds 
stress. 

.00 1.0000 .0000 .0000 .00 1.0000 .0000 .0000 

.05 .9976 -.0001 -.0111 .05 .9976 -.0001 -.0114 

.10 .9902 -.0006 -.0230 .10 .9902 -.0006 -.0229 

.15 .9780 -.0013 -.0348 .15 .9780 -.0013 -.0346 

.20 .9607 -.0023.  -.0462 .20 .9607 -.0023 -.0464 

.25 .9383 -.0036 -.0584. .25 .9382 -.0036 .-.0586 

.30 .9105 -.0052 -.0714 .30 .9105 -.0052 -.0712 

.35 .8774 -.0072 -.0841 .35 .8774 -.0072 -.0840 

.40 .8385 -.0094 -.0969 .40 .8385 -.0094 -.0972 

.4.5 .7936 -.0120 -.1121 .45 .7936 -.0120 -.1121 

.50 .7425 -.0151 -.1332 .50 .7425 -.0151 -.1330 

.55 .6846 -.0189 -.1625 .55 .684.6 -.0189 -.1627 

.60 .6187 -.0236 -.1916 .60 .6187 -.0236 -.1917 

.65 .5432 -.0286 -.1911 .65 .5432 -.0286 -.1909 

.70 .4566 -.0316 -.1310 .70 .14566 -.0316 -.1310 

.75 .3605 -.0290 -.0252 .75 .3605 -.0290 -.0253 

.80 .2601 -.0190 .0624 .80 .2601 -.0190 .0625 

.85 .1642 -.0045 .0780 .85 .1642 -.004.5 .0780 

.90 .0821 .0064 .0384 .90 .0821 .0064 .0384 

.95 .0230 .0061 .0050 .95 .0230 .0061 .0050 

1.00 .0000 .0000 .0000 1.00 .0000 .0000 .0000 

(a) 	 (b) 

Table 10. Stream function and Reynolds stress distributions 

obtained for the rigid wall problem at 

(a) (a,R) = (1,1600) using a twenty cosine series, and 

(b) (a,R) = (1,1600) using a thirty cosine series. 
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y Stream function. 

Real 	Imaginary 
part. 	part. 

Reynolds 
stress. 

y Stream function. 

Real 	Imaginary 
part. 	part. 

Reynolds 
stress. 

.00 1.0000 .0000 .0000 .00 1.0000 .0000 .0000 

.05 .9980 .0000 .0014. .05 .9979 .0000 .0003 

.10 .9917 .0000 .0001 .10 .9915 .0000 .0008 

.15 .9809 .0000 -.0006 .15 .9809 .0000 .0009 

.20 .9659 .0000 .0014. .20 .9659 .0001 .0015 

.25 .9466 .0001 .0022 .25 .9464 .0001 .0017 

.30 .9224 .0001 .0003 .30 .9224 .0002 .0020 

.35 .8934. .0001 .0003 .35 .8936 .0002 .0024 

.40 .8598 .0002 .0029 .40 .8598 .0003 .0026 

.4.5 .8207 .0002 .0026 .45 .8208 .0003 .0031 

.50 .7759 .0003 -.0003 .50 .7762 .0004. .0031 

.55 .7254 .0002 .0012 .55 .7256 .0005 .0034 

.60 .6686 .0003 .0048 .60 .6688 .0006 .0036 

.65 .6042 .0004 -.0008 .65 .6024.8 .0006 .0024 

.70 .5322 .0001 -.0117 .70 .5329 .0005 -.0050 

.75 .4508 -.0004 -.0010 .75 .4512 .0001 -.0031 

.80 .3558 .0012 .0580 .80 .3568 .0014 .0585 

.85 .2497 .0081 .1346 .85 .2509 .0087 .1440 

.90 .1)123 .0186 .1248 .90 .1425 .0193 .1247 

.95 .0464 .0170 .0289 .95 .0466 .0170 .0283 

1.00 .0001 -.0001 .0000 1.00 .0000 .0000 .0000 

(a) (b) 

Table 11. Stream function and Reynolds stress distributions 

obtained for the rigid wall problem at 

(a) (a,R) = (1,6400) using a twenty cosine series, and 

(b) (a,R) = (1,64.00) using a thirty cosine series. 
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y Stream function. 

Real 	Imaginary 
part. 	part. 

Reynolds 
stress. 

y Stream function. Reynolds 
stress. 

Real 	Imaginary 
part. 	part. 

.00 1.0000 .0000 .0000 .00 1.0000 .0000 .0000 

.05 .9980 .0000 .0011 .05 1.0060 .0069 .5557 

.10 .9919 .0001 .0029 .10 1.0230 .0280 1.1405 

.15 .9817 .0001. .0035 .15 1.04.79 .0642 1.7760 

.20 .9673 .0003 .0055 .20 1.0755 .1163 2.4.681 

.25 .94.86 .0004 .0064 .25 1.0992 .1846. 3.1996 

.30 .9255 .0006 .0079 .30 1.1113 .2675 3.9260 

.35 .8978 .0008 .0096 .35 1.1038 .3612 4.5757 

.40 .8654 .0010 .0104. .40 1.0701 .4593 5.0592 

.4.5 .8280 .0013 .0127 .4.5 1.0057 .5525 5.2865 

.50 .7852 .0017 .0136 .50 .9098 .6300 5.1907 

.55 .7367 .0020 .0156 .55 .7861 .6807 4.7515 

.60 .6820 .0024. .0173 .60 .6426 .6952 4.0116 

.65 .6206 .0029 .0189 .65 .4912 .6681 3.0766 

.70 .5516 .0034 .0199 .70 .3455 .5991 2.0962 

.75 .4737 .0036 .0135 .75 .2184 .4948 1.2258 

.80 .384.1 .004.0 .0372 .80 .1196 .3677 .5809 

.85 .2799 .0084 .1288 .85 .0531 .2349 .2005 

.90 .1665 .0190 .154.2 .90 .0167 .1163 .0399 

.95 .0582 .0198 .0458 .95 .0025 .0318 .0022 
1.00 .0000 .0000 .0000 1.00 .0000 .0000 .0000 

(a) 	 (b) 

Table 12. Stream function and Reynolds stress distributions 

(a) obtained for the rigid wall problem at (a1R) = (1,10000) 

using a thirty cosine series, and 

(b) obtained for the adjoint rigid wall problem at 

(a2R) = (1,100) using a thirty cosine series. 
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R a 0r a R c r 
3000 1.268 .326 .80 7250 .224 

3500 1.288. .319 .85 5750 .240 

4000 1.293 .313 .90 4750 .256 

4500 1.293 .306 .95 4000 .271 

5000 1.288 .303 1.00 3450 .284 

5500 1.285 .297 1.05 3100 .296 

6000 1.278 .292 1.10 2800 .308 

6500 1.270 .288 1.15 2650 .318 

7500 1.258 .281 1.20 2700 .323 

8000 1.253 .276 1.25 2850 .327 

- Table 13. Points on the stability curves, calculated for .r.d -1  = 

-1 = -10, using a thirty cosine series. 

R 	a 	or 	a 	R 	c  

3500 1.290 .321 .80 7400 .223 

4000 1.300 .315 .85 5800 .240 

4500 1.300 .309 .90 4750 .256 

5000 1.293 .304 .95 4000 .271 

5500 1.283 .298 1.00 3500 .284 

6000 1.270 .294 1.05 3100 .297 
6500 1.258 .289 1.10 2750 .308 

7000 1.240 .285 1.15 2650 .318 

7500 1.220 .280 1.20 2650 .325 

8000 1.205 .275 1.25 2750 .329 

Table 14. Points on the stability curves, calculated for E1-1  = 

E2 	= -10, using a twenty cosine series. 
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a a R a • R 

.109 42500 .713 12700 .38 32500 

.146 41500 .917 6170 .51 24700 

.184 40000 1.003 51,.10 .62 17400 

.379 32500 1.034 5350 .97 17000 

.483 27000 1.075 5750 .83 24700 

.595 20000 1.079 5970 .70 30100 

.723 12500 1.088 6680 .51 36500 

.800 9280 1.077 9520 

.850 7900 .235 38300 

.900 6840 .131 43200 

.950 6170 .122 44400 

1.000 5820 .124 44700 

1.050 6040 .137 44800 

1.081 7500 .144 44700 

1.068 10000 .164 44300 

1.042 12500 .241 42600 

.930 20000 

.790 27000 

.648 32500 

.370 40000 

.302 41500 

.258 42500 

.200 44000 

(a) 	 (b) 	 (0) 

Table 15. Points on the neutral stability curve for a membrane with 

tension only. The value of the tension is .5x109 and the three 

tables correspond to 

(a) the present work, 

00 accurate points for the asymptotic transformation and 

(c) approximate points for the asymptotic transformation. 
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a R c- r c 	- pr a R c 
r 

c pr 

.800 3680 .293 1080 .998 4200 .335 1410 

.825 3650 .297 1080 1.000 4450 .346 1540 

.850 3630 .301 1090 1.013 4790 .375 1800 

.875 3600 .305 1100 1.025 4860 .388 180 

.900 3600 .308 1110 1.050 4900 .393 1950 

.925 3620 .312 1130 1,075 4910 .417 2050 

.950 36 50 .315 1150 1.100 4910 .428 2100 

.975 3775 .321 1210 1.125 4920 .438 2150 

.983 3880 .324. 1260 

Table 16. Points on the flexible wall stability curves, calculated for 

(m,D,c0) = (1,1000,3000) using a thirty cosine series (i.e. 

damped membrane curves). 

(a) 

	

c. 	c 

	

1 	Pi 
c. 1 c 	 . 

i 
3000 	.0060 	18.0 3000 .0060 18.0 

3300 	.0030 	9.9 3250 .0048 15.6 

3500 	.0012 	4.2 3500 .0042 14.7 

3800 	-.0013 	-4.9 3750 .0041 15.4 

4000 	-.0028 	-11.2 14000 .0046 13.4 

4200 	-.034.3 	-18.1 4200 ,0056 23.5 

1'400 	-.0059 	-26.0 4400 .0075 33.0 
4500 	-.0070 	-31.5 4550 .0095 43.2 

4600 	-.0085 	-39.2 4600 .0104 47.9  

4800 	-.0139 	-66.7 4.650 .0113 52.6 

5000 	-.0270 	-135.0 4700 .0121 56.9 

Table 17. Points on the curves of c 	versus 4750 .0126 59.9  
Pi 

R for (a) a=.95 and CO a=1.05, calculated for 4800 .0116 55.7 

flexible walls with (m,D,c0)=(1,1000,3000) 4850 .0072 34.9  

using a thirty cosine series (i.e. damped 4900 .0000 00.0 

membrane curves). 4950 -.0079 -39.1 
5000 -.0154 -77.0 
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a R c 	• c pr a cr  pr 

.600 6560 .247 1620 .840 8000 .333 2660 

.650 6320 .252 1610 .839 8100 .341 276.0 

.700 6060 .258 1560 .843 8200 .354 2900 

.750 5800 .263 1530 .850 8250 .362 2990 

.800 5560 .269 1500 .875 8300 .382 3170 

.825 5450 .273 1490 .900 8300 .397 3300 

.850 5380 .274-  111.70 .925 8285 .409 3390 

.875 5270 .277 1460 .950 8265 .420 3470 

.900 5270 .281 1480 .975 8250 .430 3550 

.925 5350 .284 1520 1.000 8220 .439 3610 

.934 5500 .286 1570 1.025 8195 .448 3670 

.934 6000 .290 1740 1.050 8170 .457 3740 

.917 6500 .294 1910 1.075 8140 .465 3790 

.892 7000 .300 2100 1.100 8110 .473 3830 

.863 7500 .310 2330 1.125 8085 .4&0 3880 

Table 18. Points on the flexible wall stability curves, calculated for 
(m,D,co) = (1,1000,5000) using a thirty cosine series (i.e. 
damped membrane curves). 

a R. a R a 

.800 5630 .924 6000 .839 8000 

.850 5470 .911 6500 .900 8300 

.900 511-70 .889 7000 1.0D0 8220 

.910 5500 .862 7500 1.100 8110 

.925 5750 

Table 19. Points on the constant amplification curve for 
calculated for a flexible wall with (m,D,c0) = 
using a thirty cosine series (i.e. a damped me 

o PI 
. = -2.5, 

(1,1000,5000) 
mbrane curve). 
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a R c r c pr a R c r pr 

.800 7860 .237 1870 .800 9850 .213 2100 

.850 7030 .245 1720 .825 9000 .221 1990 

.900 6400 .253 1620 .850 8150 .226 1860 

.950 6000 .262 1570 .855 8000 .229 1830 

.975 5940 .264. 1570 .895 7000 .240 1680 
10100 6050 .267 1620 .900 6950 .241 1670 
1.022 6500 .268 1740 .950 6200 .252 1560 
1.023 7000 .265 1850 .970 6000 .256 1540 
1.018 7500 .264 1980 1.000 5850 .261 1530 
1.011 8000 .261 2090 1.025 5600 .263 1540 
.999 8500 .259 2200 1.050 5900 .266 1570 
.987 9000 .259 2330 1.060 6000 .267 1600 

1.075 6350 .266 1690 

1.093 7000 .262 1830 

1.095 8000 .257 2060 
1.094 9000 .250 2250 

(a) 	 (b) 

Table 20. Points on the flexible wall stability curves, calculated 

for (a) (m,D,co) = (1,1000,1011 and (b) (m,D,co) 

(1,1000,105), using a thirty cosine series (i.e. da=ed 

membrane curves). 
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a r a pr r o pr 
.600 7140 .263 1880 .675 8500 .423 3600 

.625 7025 .264 1860 .690 8470 .433 3660 

.650 6900 .266 1840 .700 8440 .438 3700 

.675 676o .267 1810 .725 8380 .451 3780 

.700 6670 .269 1790 .750 8320 .464 3860 

.725 65140 .271 1770 .800 8190 .486 3980 

.750 61,.00 .273 1750 .850 8070 .504 1.070 

.775 6300 .273 1720 .900 7940 .523 4.160 

.80o 6250 .276 1730 .950 7820 .54,1 4.230 

.810 6500 .282 1830 1.000 7700 .557 4.290 

.800 6775 .285 1930 1.050 7590 .572 4340 

.783 7000 .287 2010 1.100 74.90 .585 4380 

.750 7390 .293 2170 1.150 7390 .597 4420 

.738 7500 .294 2200 1.250 7200 .621 4470 

.725 7630 .298 2270 1.350 7040 .641 4510 

.700 788o .304 2390 1.450 6900 .659 4550 

.686 8000 .309 2470 1.550 6770 .674 4570 

.675 8090 .313 2530 1.650 6660 .689 4590 

.660 8230 .320 2630 1.750 6570 .701 4610 

.650 8320 .326 2710 1.850 6480 .712 4620 

.638 8400 .335 2810 1.950 6410 .724 4640 

.628 8500 .34.9 2970 2.050 6350 .731 4640 

.625 8545 .360 3080 2.150 6300 .738 4650 

.625 8555 .362 3100 2.250 6250 .74.5 4660 

.650 8540 .4.07 3480 2.350 6220 .751 4670 

.665 8510 .422 3590 6200 .755 4.630 

Table 21(a). Points on the stability curves for damped membrane walls, 
calculated for (m,D,c0 ) = (1,29D,5000) using a thirty 
cosine series. 
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a R c r 0 
pr a R c 

r c 
pr 

2.550 6190 .756 4680 3.480 7200 .662 4770 

2.650 6190 .758 4690 3.520 7300 .654 4780 

2.750 6210 .757 4700 3.540 7400 .646 4780 

2.850 6260 .752 4710 3.560 7500 .638 4780 

2.950 6340 .744 4720 3.600 7600 .630 4790 

3.050 6460 .732 4720 3.660 7700 .623 4800 

3.120 6600 .718 4730 3.730 7800 .615 4800 

3.180 6750 .703 4740 3.790 7900 .608 4800 

3.260 6900 .689 4750 3.830 8000 .601 4810 

3.340 7000 .680 4760 3.830 8100 .594 4810 

3.420 7100 .671 4760 3.810 8200 .588 4820 

Table 21(b). Points on the stability curves for clamped membrane walls, 

calculated for (m,D,00) = (1,250,5000) using a thirty 

cosine series. 
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y Stream function. 	Reynolds 
stress. 

Real 	Imaginary 
part. 	part. 

Stream function, 

Real 	Imaginary 
part. 	part. 

Reynolds 
stress. 

.000 1.0000 .0000 .0000 .800 .2796 .0016 .0620 

.050 .9975 .0000 .0000 .810 .2581 .0027 .0746 

.100 .9901 .0000 .0001 .820 .2362 .0040 .0860 

.150 .9778 .0000 -.0001 .830 .2140 .0056 .0955 

.200 .9603 .0000 .0000 .840 .1920 .0073 .1027 

.250 .9378 .0000 -.0001 .850 .1692 .0092 .1071 

.300 .9100 .0000 -.0001 .860 .1466 .0112 .1087 

.350 .8768 .0000 -.0001 .870 .1240 .0131 .1076 

.400 .8381 .0000 -.0003 .880 .1015 .0150 .1043 

.450 .7935 .0000 -.0003 .890 .0791 .0167 .0995 

.500 .7429 .0000 -.0006 .900 .0569 .0181 .0938 

.525 .7152 .0000 -.0008 .910 .0350 .0191 .0883 

.550 .6858 -.0001 -.0008 .920 .0136 .0196 .0838 

.575 .6548 -.0001 -.0010 .930 -.0073 .0195 .0810 

.600 .6219 -.0001 -.0016 .940 -.0275 .0188 .0801 

.625 .5873 -.0001 -.0032 .950 -.0467 .0174 .0807 

.650 .5507 -.0002 -.0062 .960 -.0648 .0155 .0816 

.675 .5120 -.0004 -.0101 .970 -.0812 .0132 .0798 

.700 .4711 -.CC06 -.0124 .980 -.0968 .0108 .0708 

.725 .4275 -.0009 -.0090 .990 -.1081 .0090 .0474 

.750 .3812 -.0409 .0048 1.000 -.1178 .0086 .0000 

.775 .3318 -.0002 .0300 

Table 22. Points on the stream function and Reynolds stress distributions, 
calculated at (a,R) = (.9,5270) for damped membranes with 

(m 1D,co) = (1,1000,5000) using a thirty cosine series. The 
relevant eigenvalue is c = .281 . 
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y Stream. function. 	Reynolds 
stress. 

Real 	Imaginary 
part. 	part. 

y Stream function. 	Reynolds 
stress. 

Real 	Imaginary 
part. 	part. 

.000 1.0000 .0000 .0000 .800 .2196 .0006 .0456 
.05o .9973 .0000 .0000 .810 .1958 .0017 .0593 
..100 .9892 .0000 .0001 .820 .1715 .0032 .0725 
.150 .9757 .0000 -.0001 .830 .1468 .0050 .0842 
.200 .9566 .0000 .0001 .84o .1216 .0072 .0940 
.250 .9320 .0000 .0000 .850 .0961 .0097 .1015 
.300 .9017 .0000 .0000 .860 .0702 .0126 .1066 
.350 .8656 .0000 .0000 .87o .0441 .0156 .1097 
.400 .8234. .0000 -.0002 .880 .0178 .0188 .1111 

.450 .7750 .0000 -.0001 .890 -.0088 .0221 .1119 

.500 .720o .0000 -.0005 .900 -.0355 .0253 ..1131 

.525 .690o .0000 -.0006 .910 -.0623 .0284 .1158 

.550 .6582 .0000 -.0006 .92o -.0892 .0312 .1211 

.575 .62L.6 .0000 -.0007 .930 -.1161 .0337 .1299 

.600 .5892 -.0001 -.0009 .940 -.11129 .0356 .1424 

.625 .5517 -.0001 -.0018 .950 -.1693 .0370 .1575 

.650 .5123 -.0001 -.0041 .960 -.1952 .0377 .1719 

.675 .4707 -.0003 -.0086 .970 -.2201 .0381 .1787 

.700 .4267 -.0006 .980 -.2437 .0382 .1663 

.725 .3800 -.0010 -.0160 .990 -.2654 .0386 .1158 

.750 .3301 -.0013 -.0081 1.000 -.2850 .0402 .0001 

.775 .2767 -.0010 .013k 

Table 23. Points on the stream function and Reynolds stress distributions, 
calculated at (a,R) = (.863,7500) for damped membranes with 
(m,D,co) = (1,1000,5000) using a thirty cosine series. The 

relevant eigenvalue is c = .310 . 
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y Stream function. 	Reynolds 
stress. 

Real 	Imaginary 
part. 	part. 

y Stream function. 	Reynolds 
stress. 

Real 	Imaginary 
part. 	part. 

.000 1.0000 .0000 .0000 .800 .0725 .0171 .1556 

.050 .9969 .0000 .0002 .810 .0450 .0216 .1623 

.100 .9874 .0000 .0007 .820 .0174 .0267 .1657 

.150 .9717 .0000 .0008 .830 -.0103 .0321 .1665 

.200 .9495 .0001 .0013 .840 -.0381 .0380 .1653 

.250 .9209 .0001 .0014 .850 -.0659 .0441 .1629 

.300 .8855 .0001 .0018 .860 -.0938 .0506 .1602 

.350 .8433 .0002 .0021 .870 -.1218 .0572 .1578 

.400 .7941 .0002 .0022 .880 -.1499 .0639 .1566 

.450 .7375 .0003 .0025 .890 -.1763 .0708 .1570 

.500 .6731 .0004 .0025 .900 -.2068 .0777 .1599 

.525 .6379 .0004 .0027 .910 -.2356 .0846 .1663 

.550 .6006 .0004. .0029 .920 -.2648 .0914 .1772 

.575 .5611 .0004 .0023 .930 -.2942 .0981 .1938 

.600 .5194 .0004. -.0005 .940 -.3239 .1045 .2165 

.625 .4752 .0003 -.0062 .950 -.3538 .1107 .2442 

.650 .4284 .0000 -.0127 .960 -.3837 .1164. .2722 

.675 .3784 -.0004 -.0140 .970 -.4133 .1216 .2894 

.700 .3248 -.0006 -.0012 .980 -.4421 .1267 .2758 

.725 .2672 .0000 .0309 .990 -.4693 .1318 .1975 

.750 .2054 .0026 .0774 1.000 -.4957 .1379 .0038 

.775 .1402 .0081 .1240 

Table 24-. Points on the stream function and Reynolds stress distributions, 

calculated at (a,R) = (.9,8300) for damped membranes pith 

(m,D,co ) = (1,1000,5000) using a thirty cosine series. The 

relevant eigenvalue is c = .397 . 
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a cr  Pr 
a r cpr 

.800 5330 .272 1450 .800 5050 .276 1390 

.825 5280 .274 1450 .825 5070 .276 1400 

.85o 5225 .276 141.0 .850 5120 .279 1430 

.875 5200 .279 1450 .875 5140 .281 1450 

.900 5210 .281 1460 .900 5220 .281 14.70 

.925 5300 .284 1510 .925 5400 .284. 1530 

.934 5500 .287 1580 .938 5750 .286 1640 

.933 6000 .290 174.0 .936 6000 .288 1730 

.914 6500 .295 1920 .925 6330 .290 1840 

.887 7000 .304 2130 .917 6500 .294. 1910 

.858 7500 .322 24.20 .888 7000 .305 2130 

.853 7625 .330 2520 .866 7300 .321 2340 

.85o 7750 .339 2630 .861 7400 .328 2430 

.852 7875 .351 2760 .858 7500 .337 2530 

.865 8000 .368 2940 .858 7600 .345 2620 

.875 8058 .379 3050 .863 7750 .358 2770 

.900 8143 .394 3210 .875 7940 .376 2990 

.925 8210 .4.09 3360 .900 8180 .397 3250 

.950 8270 .419 3470 .925 8390 .410 3440 

.975 8330 .430 3580 .950 8600 .4214. 3650 

1.000 8380 .441 3690 .975 8800 .435 3830 

1.025 84.30 .451 3800 1 .000 9000 .447 4020 

1..050 8490 .46o 3910 .025 9190 .457 4210 

1.075 850 .468 400o .050 9370 .469 41,00 

1.100 8590 .479 4120 .075 9550 .479 4580 

.100 9720 .489 4.760 

(a) 
	

(b) 

Table 25. Points on the stability curves for thin pla 

for (a) (m,D2c0) = (1110001(40004-107a2)`) 

(b) (m,D,c0) = (1,10001(3x107a2)), using a 

series. 

tes, calculated 

and 

thirty cosine 
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Figure 1. The coordinate system for plane Poiseulle flow 

with flexible walls. 

the neutral stability 
curve 

the unstable region 

the critical Reynolds number 

Figure 2. A typical neutral stability curve. 
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(1) a = .80 

(2) a = .85 
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(4) a = 1.00 
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Figure3.Curvesofc.versus R,at fixed values of a, obtained 

for the rigid wall problem using a thirty cosine series. 
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Figure 4. The neutral stability and constant amplification curves for 

the rigid wall problem, obtained using a thirty cosine series. 
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o 	) 	= present work (20 cosine series) 

= present work (30 cosine series) 

X 	 = Grosch and Salwen 
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Figure 5. Convergence of the present rigid wall neutral stability 

curve and comparisons with previous neutral stability curves. 
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Figure 6. Curves of cr  versus R, at fixed values of a, obtained 

for the rigid wall problem using a thirty cosine series. 
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= 30 cosine series 
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Figure 7. Convergence of the spatial neutral stability curve for 

the rigid wall problem. 
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Figure 8. Comparison of the real parts of the rigid wall stream 

function distributions, obtained using a thirty cosine 

series. 
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Figure 9. Comparison of the imaginary parts of the rigid wall stream 

function distributions, obtained using a thirty cosine series. 
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Figure 10. Comparison of the rigid wall Reynolds stress distributions, 

obtained using a thirty cosine series. 
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Figure 11. Convergence of the real parts of the rigid wall stream 

function distributions. 
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Figure 12. Convergence of the imaginary part of the rigid wail 

stream function distribution at (a,R) = (1,1600). 
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Figure 15. Convergence of the rigid wall Reynolds stress distribution 

at (a,R) = (1,6400). 
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Figure 19. The adjoint rigid wall distributions at (a,R) = (1,100), 

obtained using a thirty cosine series. 
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Figure 23. Ileutral stability curves calculated for damped membrane 
walls with (m,D) = (1,1000) and (a) co  = 3000, (b) co = 5000, 
(c) co = 1014 and (d) co = 105, using a thirty cosine series. 
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Figure 24.. Spatial stability curves calculated for damped membrane 
walls with (ra,D) = (1,1000) and (a) co  = 3000, (b) co = 5000, 
(0) co  = 101+  and (d) co = 105, using a thirty cosine series. 
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membrane with (mp,c0) = (1,1000,5000) using a thirty 

cosine series. 
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Figure 27. Neutral stability curves calculated for damped membrane 
walls using a thirty cosine series. 
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Figure 28. Spatial stability curves calculated for damped membrane 

walls using a thirty cosine series. 



4.0, 

a 

3.5 

8000 R  8500 

157 

Figure 29. The more complete neutral stability curve calculated for the 

damped membranes with (m,D,c0) = (1,250,5000) using a thirty 

cosine series. 



R 8500 

158 
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damped membranes with (mIDIco) = (1,250,5000) using a thirty 

cosine series. 
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Figure 31. The real parts of the stream function distributions, calculated 

for damped membranes with (m,D,c0) = (1,1000,5000) using a 

thirty cosine series. 
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calculated for Jampod me:branes with (m,D,00) = (1,1000,5000) 
using a thirty cosine series. 
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Figure 33. The Reynolds stress distributions, calculated for damped 

membranes with (m,D,c0) = (1,1000,5000) using a thirty 

cosine series. 
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using a thirty cosine series. 
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