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Abstrect,

The problem of plane Poiseuille flow with flexible walls is set
up a8 an eigenvelue provlem for the wave speed of infinitesimal
disturbances and solved by use of a new variationzl method. This novel
variational technique, developed in the present work, overcomes the
difficulty in the present problem that the eigenvalue is contained in
the boundary conditions., It also 2llows a completely general series
of’ functions to be used to approximate the stream function of +the
problem, The eigenvalues obfained from the method are used to give
stabillity curves, and the elgenvectors obtained are used to give stream
function and Reynolds stress distributions. The computer program,
developed from the variational method, is used to obtain stability
results for the flexible wall problem, and, by taking a limiting case
of this problem, to obtain results for the rigid wall problenm,
Convérgence tests and comparisons with previous work, for both the
Tlexible wall and rigid wall problems, give great confidence in the
accuracy of the present method., Stability results are obtained for
two flexible wall models: firstly, membrane walls, where the effectis
of variations in the damping and free wave sreed in the well are
examined, and secondly, thin plates, where the effects of flexural

rigidity are examined.
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Chapter 1, Introduction.

1.1, Genersal introduction.

Calculatidns of skin Triction drag on stream=lined bodies are
necessarily based on the correct location of the <transition re-
gion. The transition region is characterised by a besic instabili-
ty of the laminar boundary layer resuliing in a turbulent state
downstream of this regiomn. Althouéh recent work on non-linear
stability has shown that subecritical and supercritical
instabilities are important in considering transition to
turbulence, there is still value in studying the classical linear
problem. This is especially so when the added conmplication of
flexible walls is included,

The pfoblem of plane Poiseuille {low with flexible walls,
considered in the present work, is a lineérised stebility problem
in which the steady flow is purely parallel and there is an
interaction between the wall waves end the fluid waves, In the
boundary layer stability problem the steady flow is only
approximately parallel, the boundary layer thickness increasing
in the stream-wise direction. The boundary layer problem therefore
presents difficulties when considering the change in the nature of
the problem at very low Reynolds numbers, It is advantageous to

consider a purely parallel steady Tlow problem where the
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formulation of the problem is valid for all Reynolds numbers since
the modification of stable boundary layers by flexible walls may
be significant and introduce instabilities in regions where,
strictly speaking, the mathemetical formulation of the problem is
invelid (see Landahl (1962)).

Although Benjamin (1960) has presented excellent qualitative
argunentss for the beneficiel design of flexible walls, it should
be remembered that he considers walls which are nearly rigid or
fluids which produce only a small effect on the walls,and these
are probably exceptional caées. Landahl and Kaplan (1965) and
Hains and Price (1962) have obiained numerical results for some
intermedicte cases by integrating across the flow. The method
edopted herein to solve the problem is & novel variational method
which is adapted to the requirements of the present problem bui

which is generally applicable to other boundery value problems.

1.2. Statement of the problem,

The problem considered herein is of an incompressible,
viscous fluid flowing dowm a two-dimgnsional pipe (see Bigure 1).
The basic direction of flow is taken in the x direction, parallel
to the flexible side walls situated at y = *h (the tilde, ~,
denotes dimensional quantities), The basic £low is plane Poiseuille

flow (which is taken as U = U (1=y2/h%)). The fiuid is
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incompressible, two-dimensional and only infinitesimal disturb~
ances from the basic flow are considered. llence & stream function
for the dimensionless disturbance velocity of the form

¢ (y)expi-ia(x-ct)} may be chosen where t is the time, a is the
wave number (considered as real) and ¢ is the wave speed (con—
sidered as complex). The Reynolds number, R, of the problem is
defined by

(maximum stream velocity)x(half the width of the pipe)

R =
(the kinematic viscosity)

= bxh

v

The mathematical problem consists in solving the differential
equation associated with the fluid flow (the Orr-Sommerfeld
equation), coupled with the boundary conditions sssociated with
the flexible walls, We wish to examine the spectrum of ¢ which is
obtained for given values of a and R, If the imaginary part of ¢
is less than zero we have amplifiication, if greater than zero we
have decay. Neulral stability is found where ¢ is purely real,

Yie may plot curves of neutral stability in ths (a,R) plane, a&s is
customary (see Figure 2), and neutral stability curves will be
presented for inextensible walls with various oharacteristics,

We will mainly be considering stability in a temporal sense but
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curves of neutral stabilify in the spatial sense are obtained with

temporal stability results and will be presented.

1.3, Plane Poiseuille flow with rigid walls,

The problem of plane Poissuille flow with flexible walls is,
in several respects, a continuation of the problem of plane
Poiseuille flow with rigid walls. Hence, consideration of the
rigid wall problem is important in the present problem. Also, a
limiting case of the flexible wall problem may be taken and
numerical results for the rigid wall problem obtained. Previous
results for the rigid wall problem will provide a good check on
the accuracy of our computations.

Heisenberg (1924.) was the first to consider the stebility of
plane Poiseuille flow with rigid walls, He did not calculate a
critical Reynolds number but éid conclude thet the flow was
unstable for large enough Reynolds numbers, ( The critical
Reynolds number is the smallest Reymolds nurber at which infinit-
esimal disturbances may be unstable. ) Lin (1944) calculated the
neutral stability curve using an asymptotic expansion and Shen
(195%) calculated the curves of constant amplification by a
perturbation from Lin’s neutral curve. In these last results the
critical Reynolds number was found to be 53CO0.

The Tirst numerical calculations were mede by Thomas (1953).
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His results confirmed those of Lin, except at large velues of the
wave number where the asymptbtic expansions would be expected to be
inaccurate, and he found a critical Reynolds number of 5780. Other
work has been done in this field, but of perticplaer interest here
are the papers 5y Lee and Reynolds (1967) and Grosch and Salwen
(1968). Iee and Reynolds adopted a variational epproach to the
rigid wall problem. Grosch and Salwen obtained numericel results
for the rigid wall problem using a basically similar technique in
their study of time dependent plane Poiseuille flow with rigid
walls, These veriational, R;yléigh Ritz or Galerkin approaches,
which have been widely used in structural mechenics, have only
recently been applied to problems in fluid mechanics. In the
normal course of calculations, these methods find a particular
eigenvalue aeccurately and values of the other eigenvalues to
varying degrees of approximation, Grosch and Salwen obtained
higher eigenvalues (i.e, eigenvalues other than the most unsiable
in the spectrum of ¢). Previously, the only person to consider
this problem for the rigid wall problem was Grohne (1954).
Although there was disagreement in the exact results of Grohne
and Grosch and Salwen, both concluded that at most one eigenvalue

in the spectrum becomes unstable,
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1eho Plane Poiseuille flow with flexible walls,

Present interest in this problem stems {rom the experimental
work of Kramer (1957, 1960), Kramer®s first experiments (1957)
suggeéﬁed that.the transition of boundary lsyers from laminar to
turbulent flow may be delayed by introduction of artificial
damping (the artificial damping being introduced by use of a
flexible wall)., His later experiments (1960) suggested that the
addition of a flexible coating to & stream=lined body may reduce
its drage. |

These findings stimulated several theoretical studies
examining the possibilities of stabilisation of fluid {lows by
flexible walls,but these all tend to refute Kramer®s ideas,
although suggesting other possible ways of improving stability.
The main insight into the problem came from Benjenmin’s (1960)
investigation of the two-dimensional, incdmprassible, viscous
boundary layer over & plane flexible wall when the wall was wmade
slightly flexible or when the fluid produced a small loading on
the wall, His model for the flexible wall was an inextensible
membrane and he recognised three types of wave disturbénce which
he denoted by classes A, B and C,

Class A waves may be considersd as the Tollmien-Schlichting

waves which occur in the rigid wall problem but now being modified



16

by the effects of the flexible wall. Benjamin found that this class
of waves is stabilised by a stiffness controlled well (i.e. one
with an Yelastic response" as described by Bcnjamin), the greatest
stabilisation being, in the absence of other factors, when ¢ is
near but less then the free wave speed in the flexible well, This
class he found to be destabilised by damping in the wall,

( Stability here is considered in terms of the critical Reynolds
number. A stabilising effect is denoted by an increase in critical
Reynolds number and vice versa, ) Another ipportant effect is that
under suitable conditions tge unstable region in the (a, R) plane
may be shifted to smaller wave nmumbers.

Class B waves ere assoclated with the waves which can prop-
agate on the free flexible well in the absence of any fluid. This
class is only excited when the £luid velocity exceeds the free
vvave speed and it is found that damping in the wall is stabilisinge.
Thus the éamping reguirements of class A dnd class B waves are in
conflict,

Class C instability mey be considered as felvin-Helmholtz
instability in that it propageates along the interface between the
fluid and the flexible wall, is dependent on the presence of both
the fluid and the flexible wall and is larzely independent of
viscosity. It occurs when the wall becomes too flexible.

The previous provides a convenient classification when
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discussing the problem. However, in gerneral, the interaction
produces & wave spectrum whose precise origins may be difficult

to recognise. Indeed, where wall and fluid are of equal imporiance,
the various clesses may appear to be merged on a single stability
curve as nay bé seen in results presented later.

Landahl (1962) investigated the same problem and gave further
physicel insight into the principlecs behind the clessification of
the disturbances. His explanations were further amplified by
Benjamin (1963), Landahl explains that the excitation of
disturbances depends on energy transfers within the complete
system. For class C waves the total energy level remains virtuszlly
unchanged and instability occurs with & unidirectional transfer of
energy to the flexible wall, Iandahl found that the amplitulde of
c¢lass A waves increases with a decrecase in the energy of the syst-
em, This explains the destebilising effect of wall damping on
class A wéves since this damping absorbs énergy. Amplification of
c¢lass B waves involves an increase in energy level., lence the
stebilising effect of damping in the well.

These ideas st111 hold for en inviscid fluid and are
generally applicable to coupled fluid solid systems,

Kaplan (196L) and Landehl and Kaplan (1965) have carried out
numerical calcwletions for the boundary layer problem. These

calculations, based on a Runge-utte numerical integration across
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the boundary layer, were mainly calculations for class.A disturb-
ances. There has been little interest in wall instebility caused
by the flow apart from Landahl (1962) who gave a few tentative
class B curves. These were at very low Reynolds number, however,
~ where the Orr—éommerfeld equation is not, strictly speaking,
applicable to the boundary layer stability problem. Kaplan (196L.)
gives a few class B curves vhich are, however, incorrect (see
Landahl and Keplan (1965)). For the class A waves, Benjamin (196%)
gave three possibilities for the fevourable use of a flexible wall.
Firstly, an increase in critical Reynolds number, Increases in
critical Reynolds number have generally been found to be small for
practical walls, Secondly, a reduction in the amplification rate
of unstable disturbances., Thirdly, an increase in the group vel-
ocity of the unstable disturbances. In both of the last two cases
Kaplan has found strong effects for certain cases. The numerical
resulits of Nzplan and Landahl and Xaplan 5gree with the qualitative
results found theoretically by Benjamin and Landahl.

| Hains and Price (1961a and b, 1962a and b) and Hains (1964)
have carried out numerical calculations for the problem of plens
Poiseuille flow over flexible walls using a similar numerical
integration to that of Kaplan,end Landahl and Kaplan. They
considered the two-dimensional problem of a viscous, incompressible
fluid flowing between membrane walls. Considering walls with

tension only, where the only possibility is class A disturbances,
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they found that as they reduced the tension from its rigid wall value
of infinity, the curve first closed and then reduced to a point. Ior
lower values of the tension the flow was completely steble. This is
however an unrealistic situztion since the wall would have to be so
light and under such a small tension that other stiffness criteria
would dominate the design.

Other work in this field has been done by Miles (1957, 19592 and
b, 1962) where the emphasis was on water wave generation by wind,
Linebarger (1961) who considered the effects of compressibility,
Nonweiler (1963) who obtainéd qualitative results for an elastic layer
model of the wall; Boggs and Tokita (1962) who determined free wave
speeds for various elastic layer models of the wall without considering
the fluid interaction and Korotkin (1965, 1966) who considered a flexible

wall pliant in the tangentiel direction.
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Chapter 2. The boundary value problen,

2.1. Governing equations.

The Navier~Stokes equations for a viscous, incompressible,

two=dimensional fluid are

O 4 Ruprad)y = -BEEP Ly pBa® Yy , 2.1.1
ot p
where '\:r_ = (?1,;) is the wvelocity,
~ 2 2
grad = { —_— .._.} ’
0% 9y
2 2
52.";’:6_'.2 = ?.._. + .a.... ’
%2 05
; = the pressure,
p = the density,
v = the kinematic viscosity

end the coordinates are as praviously defined in Section 1.2 and
Figure 4, ( N.B. The tilde, ~, denotes dimensional quantities. )
The continuity equation is

gg':‘gl_.:\}’_ =0 . 2.1.2
The equations are made dimensionless with respect to Up, the velocity

of the steady state flow at y = 0, h, helf the width of the pipe, and

p, the density of the fluid. ¥We take the dimensionless variables
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,t:__Hf’__ andp:_f____
h PU§

substituting in Equa.tions' 2,1,1 and 2,1.2, derive the equations

, and,

i‘i+u?_‘i+v?_‘i=—a_€+igrad2u ’ 2.1.3
Jt 0x oy dx R
iv_+u_a_1+vi‘:_=—a_‘z+lgrad2v 24164
ot ox oy ox R
and ?i‘i‘.a_‘: =0 o. 2.105
ox Oy

vr

e now take (u,v) = (U+u',v') and p = P + p', where U = (1—y2) is the
steady state velocity, P is the steady state pressure and u', v' and
p' are smell disturbances from the steady state. e take a streanm
function, ¢ = ¢(y)exp{—ia (x-ot)}t for the disturbance velocities,

u' and v', which eutomatically satisfies Zquation 2.1.5. Hence we
obtain

(u',v') = { (Z‘_gi(y)expi—ia(x-c‘tﬂ, iac_.‘)(y)exp{-ia(:c.—ot)}} .
dy ‘

Substituling into Equetions 2.1.3 and 2.1.L and elimineting pressure,

we obtain the Orr-Sommerfeld equation

e 2 | 2 2 .
f__"l’_—zaz‘_l__'fnual*c,s + iaR {(U—c) {f‘_fs_-azgs}—fj;ﬁ}:o s 2.1.6
d.yl'r dy2 ‘dyz dy2

~ ~ 3 . bl -
Ve meke a and ¢ dimensionless by a =a h and ¢ =
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where ¢ = ¢(y) and U = (1-y2).

This is the way in which the Orr-Sommerfeld equation is usually
developed, aend the computing for +this problem has been performed using
this equation. However, in order to obtain results for fixed physical-
wall parameters; we wish to vary the Reynolds number of the flow by
varying Up, without altering the dimensionless parameters describing
the flexible wall. In other words, we envisage a situsation in which a
given channel and fluid are employed, while the fluid velocity is
increased until instaebility occurs. We therefore render our physical
wall parameters dimensionless with respect to h, v and p. In order
that our computational results will be meaningful physically, it is
found necessary to muitiply the computational eigenvalus, ¢, by a
factor R, to obtain a physical eigenvalue, cp (i.e. cp = R.c is the
wave speed made dimensionless for given wall and fluid properties).
This is duc to the fact that the previous equations have been made
dimensionless using Up, which is the paraﬁeter varied in order to veary
R. In order to compare our eigenvelues with previous work we use c.
Otherwise we use cp, wvhich gives results which ere more meaningful,
physically, in the present work.

Since our scheme of dimensionless variebles is independent of Up,
and it is not proposed to consider any anisotropic wall propsrties in
this work, the consideration of the two-dimensional problen (as opposed
to the three-dimensional problem) is Jjustified by reference to the

work of Squire (1933).
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2,2, Boundarvy conditions,

In dimensionless terms, we have flexible walls positioned at y = 1
and a steady state flow of the form U = (1—y2). The flexible walls are
assumed to be Surfaces inextensible in the longitudinal (x) direction,
with lateral motion governed by & dynamical equation which takes into
account properties of mass, tension, elastic stiffness, viscous damping
and flexural rigidity. We consider first the wall at y = +1. Let nfbe
the distance of displacement of the wall from its unperturbed state,

y = +1. Assuming that there.is no slip at the wall gives

U(y) + EECY) expi{-ia(x~ct)} =0 .
y=dm . Iy =1+

Hence, substituting U = (1—y2), gives, to first order,

-2n + Eg(+1)exp!—ia(x—ct)} =0 . 2.2.1
dy '

Yie now assume that the fluid stays in contact with the flexible wsall

and obtain

EZ}: ia¢(y) expf—ia(x—ct)} s
ot vy = 141
and hence
an . .
= iag(+1)expi-ia(x~ct)} . 2.2.2
dt

Vie make H dimensionless by n =

= IR
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Combining Equations 2,2.1 and 2,2.2 gives

() 2,01 -0 2.2.3
dy c

which is the first boundary condition, obtained from kinematic

" considerations., The equation of motion for normal forces on the wall

at y = +1 is (see, for example, Timoshenko and Gere (1961))

%11%-"*15 5,0 -3 3_7_ N A 2,21,
ox o% %" a%?
where %1 = the tension paraneter,
~1 = the elastic stiffness perameter,
51 = the damping parameter,
§1 = the flexural rigidity parameter,
;1 = the mass parameter
and T;; = the component of the fluid stress tensor normal

to the wall at y = +1. ( Suffix ™" denotes paremeters for the wall

at y = +1, ) The above component of the stress tensor is

I;; = =p'+ 2u i; s end hence %E; = =pt= 2i T;' by continuity.
oy ox

( Here p = viscosity and v =7 = kinematic viscosity. ) The equation

u
p

is now made dimensionless with respzct to h, p, T and p by putting

These expressions being evaluated at the wall y = 1,
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7 % B Tw %, en Sy o’
n=—,x=—,U'=‘,t="""T1= 2 % % e ?
h h Uo h u U

&, n 5 5, 5, 0
d1 = —— , p' = 5, my = and sy = . Ve also use
u pUo ph u2h
dg (+1)
u'(+1) =

exp{—ia(x—ct)} and Equations 2.2,1 and 2.2,3, and
ay

substitute into Equation 2.2,4 to obtain

a T1 e, iad1 a 5y 5 Lia '
p'(+1) = ¢(+1) { 5 + 5 + + 5~ eocm, + -—-} expi~ia(x~ct)].
cR cR R cR ch

Substituting this in the x momentum equation (Equation.2.1.3), evaluated

aty = +1, gives

d3¢(+1) R
—3. +—
dy B

a 6 a
where B 1 = - - {d1 + - } + i { -3 [ ey + a2T1 + aLs1} - aacm1} .
R c ck

This is the second boundary condition, obtained from dynamical

¢(+1) =0 2.2,5

considerations.

The two remaining boundery conditions sre the corresponding

boundary conditions obtained at the wall at y = -1. These are

Ei('1)+ 2 (1) = 2.2.6
&y

c

I
o

and d3¢(-1)
— - = d(-1) =0 , 2,27
dy Ea
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2
where Eb—1 = - i‘ { d, + E'} + i { —ii-{ e, + a2T2 + ahsz} - aBsz} .
c cR ‘
( Suffix "2" denotes parameters for the well at y = =1. )

These boundary conditions coincide with thoée of Hsins and Price
(1961a)except fbr the inclusions of the viscous component of the normal
stress and flexural rigidity, the fact that there is no restriction to
considering ¢ as symmetric and also that the problem of the two flexible
walls having different physical properties mey be considered in the
present work. The similarity between the present boundary conditions
and those of Hains and Pricé facilitates comparisons of results. It
should be noted that, with this scheme of dimensionless parameters, the
flow may be varied by changing its velocity without affecting the
parameters describing the flexible walls, As expleined in Section 2.1,
the eigenvalue, ¢, in these boundary conditions is the computational
eilgenvalue.

The parameters B and % will now be fewritten to nake thenm

comparable with the parameters involved in other work in the field by

putting 5 & T.8% 4 5.0k a.
c = -4 4 J and D, = - s

°d n.a° J o,

J J

where j = 1 or 2 depending on whether the well is taken at y = +i or -1,
coj is a dimensionless parameter representing the speed at which free
waves would propagate along the undamped flexible wells when there is

no fluid in the two-dimensional pipe. Hence we obtain



a2 6a a3 c .2
E.-1 = -p. D, = = —=—— 4 im, — { -9% - c%} . 2.2.8
J JJIRr  or Je R

A wide class of physical boundaries may be approximated by this
representation. For comparison with the work by Landahl and Xaplan
(1965) on the boundary layer problem, taking into account the different
schemes of dimensionless variables, the following table is useful.

( Here, the suffix "j" is dropped for the moment. )

Landahl and Kaplan present work
m m
2
t e
o ———
mR™
2 m
c T
o S —
mR2
d D
R
not taken into s
account

In the work of Landahl and KXaplan, the parameters d=fining the wall

properties are made dimensionless more appropriately in terms of U
[-e)

and 8. ( qw equals the steady velocity of the boundary layer as y
tends to infinity and 6 equals the boundary layer thickness, which
is not constant in the x direction. ) There is some difficulty in
interpreting their results to obtain results for fixed physical

situations unless a "tailored" wall is employed. ( The term"tailored"
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i8 used to describe a wall whose physical properties are altered to
compenéate for the change in thickness of the boundary layer. Of courss,
the wall equation itself is not changed so that this interpretetion is
unsound when the boundary layer thickness changes too rapidly: a
situation which-does not exist for the plane Poiseuille flow problem. )
The variety of possible schemes of dimensionless variables has lead to

some coniusion in the past.

2.3, Related problems.

There are a number of problems closely related to the present
problem, some of which are listed below. They &re not only related
physically, but also, their solution may be tackled by the technique
whiéh will be described later,

1)e The same problem as et present, with the condition of-wall
inextensibility in the streamwise direction relaxed.

2). The problem of plane Couette flow wiih flexible walls.

3). The problem of plene Poiseuille flow of a dusiy gas.

These problems can be considered seperatsly or in any combination
and involve variations in the boundary conditions and steady velocity

profile,
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Chapter 3. The method of solution of the nroblem,

3.1s Outline of the method of solution,

e now havé to solve the boundary value problem of the

Orr-Sommerfeld equation (Equation 2.1.6)

I8 2 2 2
d’¢ d’g ‘ a%¢ a“u
——— 22% — 4 o™ +ia3[(u-c)[-—-§- a2¢]-——2—¢}=0 ,

dyl* dy2 dy dy

where ¢ = ¢(y) and U = (1—1,r2), with the boundary conditions (Zquations

2.2.3, 2.2,5, 2.2.6, 2.2,7 and 2,2.8)

ag(+1) 2

- ""'95("'1) =0 ,

dy c

d3¢(+1) R

— o+ -¢(+1) =0 ,

dy B

ag(-1) 2

— 4+ -=¢(-1) =0 @and

dy c

a’¢(-1) R

—3 -=¢(-1) =0 ,

dy B
2 2 3 2
a“ 6e a c_.

where E.“‘I = =-m, D, = = = 4+ in, - { —Q‘% - 02} .
J JJd R eR do R
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7e regard this as an eigenvalue problem for ¢ and proceed to solve
it to 6btain numerical values of the eigenvalue for given values of the
f1uid parameters and physical wall paremeters. Because the boundary
conditions contain ¢ in a rather complicated way, the most common and-
convenient way bf coping with this difficulty is to first obtain
eigenvalues for fixed values of the parameters Es and Ez. This we do
using a new variational approach. e then use these results and adopt
an iteration scheme, similar to the ons used by Kaplan (1964), which
gives us the eigenvalues in terms of fixed physical wall parameters.,
This approach to the problem provides an accurate and speedy solution
from which we may easily obtain as many eigenvalues from the spzctrum
as we wish, within the space limitations of the computer being
employed, i'e may also obitain the corresponding eigenvectors and hence
the stream function and Reynolds stress distributions across the

channel,

3.2« The variational formulation.

The veriational formuletion about to be presented is not peculiar
to the particular problem asscciated with the present work and hence
will be stated in general form. In essence, we merely extend the
conventional variational problem to one which includes the boundary
conditions as well as the governing equation, and we will thérefore
develop our general formulation in parallel with the conventional

variational formulation.
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Suppose we have a differential equation I¢ = O, where L is a
linear differential operator defined in the range [y1,y2] and ¢ is
some function of y. We denote the set of boundary conditions at ¥y and
Yo by {Bpl = 0. The adjoint operator L¥*, together with a set of adjoint
boundary condifion operators fB*I, is defined such that, if u is any

function satisfying {Bu] = O and v is any function satisfying {B*v] = O,

then
<v,lu> - <Lv,u> = 0 , where the inner product of a and
b is defined as 1 Yo _
<a,b> = jh ab dy s the star denoting
1

an adjoint end the bar a complex conjugate. How,.inserting the Orr-
Sommerfeld equation and the flexible wall boundary conditions (see
Section 3.1) for Ip = 0 and {Bs} = O respectively, we obtain the
corresponding adjoint differential equation and adjointi boundary
conditions (after integration by parts). The complex conjugate, adjoint

differentiael equation is flound to dbe

a'gr L, a%r S O > 22-
- 2a —Z +a ¢*+ iaR { -3 - T + (2-a+ay )¢*}
dy* dy . dy dy
23
. ay 274
- ciaR —5 - & =1 =0 , 3,2.1
dy

where 5* = aﬁ(y), The complex conjugate, adjoint boundary conditions
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are found to be

gx(+1) 2 a%Fr(s1) R hal
= s { }8*(+1)=o ,

—+—-—-

joR c

dy) o dy2

ag*(+1)
— =0 ,
dy

agx(-1) 2 a%Fn(-1) R ha® ()
— + - — - - + = }¢%(~1) =0 and
dy3 cdy2 {I‘a c}

ag*(-1)

3.2.2

dy

Now we consider vectors £(w) and g(w), both belonging to a Hilbert
space and being quadratically integrable, where

1{- = (‘?1’ Wz’ * e e y T’m),

£@) = (€, @), £)@, « .. 1 &) emd

E.(YL) = (51(1’:_)} 82(‘2’), e e @ 3 gn(\l)).
Corresponding to the inner preduct of two scelar functions, we define

n
1
<£,g> = Z - ]f.g_ av s Where S = [dV and
3 Rt B

i=1 v v

dV = dw, dw

4 o v e e dwm « e now define



= 1 - - ol ) - L - .
E(.‘l) = L - ’ ,}_I_ﬁ(ﬁﬁ) = Ly ¥ s B = r‘fl’ and u¥ = | ¢¥ .‘
By By ey 2y
Rt v
B¢ B5¢ b, b,
BYaL .
B P59 °1 °2
B ¢ Brg® a a
X 1 2
| L Y | | ©

We shall interpret these equations with L3 = O as the Orr-Sommerfeld
equation, fBi¢I =0 (i=1, 2, 3 and },) as the corresponding boundary
conditions, fﬁa* = 0 as the complex conjuzate, adjoint equation and
{Eig*} =0 (i=1, 2, 3 and L) as the complex conjugate, adjoint boundary
conditions (see Section 3.1 and Equations 3.2.1 and 3.2.2). The 8y bys

cy and di (i=1 and 2) are determined by denanding that

<u*, H(u)> - <§?(g?),g?'= O is satisfied, where, in our case
+1
$ = ¢(y) end j'dV = j' dy + These criteria establish the necessary

v -1
structure of the Hilbert space,

We now return to the one-dimensional case., When ¢ and ¢¥ are
solutions of their respective problems, the functional I, which is
equal to <¢¥,Ig>, is zero, and is stationary with respect to
appropriately restricted arbitrary variations in ¢ and ¢™. The
appropriate restrictions are that the variations must satisfy the
boundary conditions of the appropriate problem. This is equivalent to

saying that Lp = O and I’g¥* = O are Euler equations of the problem

under consideration.



If we now suppose that the operator L is of the form L = P = AQ
(where A is an eigenvalue), then we can show that the ratio

<, o> _

e is stationary with respect to the same variations as

<, Q6>
before, when ¢ and ¢* are eigenfunctions. Also, it takes on the value
of the appropriate eigenvalue when ¢ and ¢¥ are eigenfunctions. For an
error of order € in ¢ and ¢%, the error in A is of order 62. Hence,
reasonably close approximatiéns to the eigenfunctions may produce more
accurate estimates of A,

The conventional variational method tekes series of approximating
functions £ and fﬁ which satisfy [Bfn} = 0 and {B*fgl =0

respactively. ie put
N N

¢ = Za f and ¥ = Z af® | where &_ and a¥ are
nn , nn n n
n=1 n=14

undetermined constants. Substituting these series into

N X
= R - 7 i = a¥ - -
I = <¢%, (P-\Q)¢> , we obtain I ZE: jgj anam(Bnm anm) s
n=1 =1
where
B = <%,Pf > and D = <«fR,0 > .
nm n’ m nn n’“n

The constants, e and ag, ars now determined by requiring I to be
stationary with respect to variations in these constants, If I is

stationary with respect to Eg, we obtain



- N
z&m (B-‘nm - ?xD‘nm) =0 (n=1, 2, « o« . , M.
=1

If I is stationary with respect to &, e obtain
N
zag (Bnm = an-m) =0 (m=1, 2, ‘. .o y N)t

n=1
We therefore have a set of N homogeneous, algebreic equations for the
N am’s and a seperate set of N eguations for the N E:’s. There are

non-trivial solutions,if, and only if,

|3 - 2 | =0 .
nm nn

This determines the eigenvalues, A, and the eigenvectors, whose components
are the am’s and ag’s. We may truncate the series et any point and
examine the convergence by incrementing K.

Ve now generalise the previous argument: when u and u¥ are solutions

to their respective problems, we demand that
<u¥*,H(u)> is zero and is stationary

with respect to variations in u and u®, Since the boundary conditions
have been included in the H(u) and 1*(u*), we choose the variastions in
u and u® arbitrarily end continue as in the ons~-dimensional case. This
is equivalent to substituting somé approximating series for ¢ in the
differential equation and boundary conditions end, in some suitable

manner, adding up the residues and setting them equal to zero. The
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bes£ choice of an approximating series would appear to be such tﬁat
the series is complete, not too restrictive and rapidly convergent.
This technique for solving an eigenvalues problem, when the
boundary conditions for the problem contain the eigenvalue, is
suggested by Ffiedman (1956). It is also suggested indirectly by

Fimayson and Seriven (1966)..

3.3. The iterative schemee.

Ye now incorporate the.previous variational technique (Section 3.2)
into an iterative scheme, developed by Xaplan (196#), for finding the
eigenvaluss (¢) in terms of fixed physicael wall properties. Ve take
identical walls, with Ea_1 =‘Eb-1 = e, end wish to find the eigenvalues
for given values of a, R and the physical wall parameters. Employing
a given (guessed) value of an eigenvalue (¢ = c°) in our expression
for e, as well as a, R and the physical wéll parameters, we obtain an
initial velue for e ( = eo), for use in the variational part of the
problen. From the resultant spectrum, we take_the eigenvalue correspondirg
to ¢® (¢') and, from ¢*, obtain a new value of e (e'). The sense in
which the eigenvalue chosen from the spectrum corresponds to c®, depends
on the particular eigenvalue sought,-Usually, we are seeking the most
unstable eigenvalue for a given physical situestion, and so we choose
the most unstable eigenvelue from the spectrum, If the initial

eigenvalue guess had been a sufficiently good zuess at an eigenvalue
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of the problem, we would have e® = o' and c° = o (these two conditions
occﬁring together). Hore generally, for any given guessed eigenvalue,
e® and e would differ, and the iterative scheme is developed so that
we may make this difference as small es we choose in finding en
eigenvalue of the problem. ( We use the difference between e° and e*
as our error criterion for purely numerical reassons, explained in
Section 4.5. ) To do this we now define X = ¢° - e, and the zeros
of K correspond to eigenvalues of the problem. Considering X as a

1

Taylor series in ¢~ and truncating the Taylor series, we have,

approximately,
K(c*) = e® - e* = A + Be' , where A and B are

constants, The value of e° is calculated using the estimated eigenvalue,
c®, and two values of e, ef and e, lying on either side of e°, and

close to it, are employed in the variational part of the problem,

giving ci, e1, o3 and e2. This gives us

e —el = A +Bct =X(ct) = K : and
e —eb =4 +Bcl =K(cF) =% .
We therefors obtain
Kooi - Kich N -K
A=—-—-—-—.—-—-—— &nd- B:"— P
('41"0% 01"0%

The next eslimate of the eigenvalus of the problem, ¢°, is given by

A K:.O% - KL70::L.

B B - %
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Proceeding as before, we may use ¢® to calculate a value of e (ez),

® and then a value e°. In assessing

and hence obtain an eigenvalue ¢
the proximity of ¢ to an eigenvalue of the problem, we compare e® and
e®e This is the basis of the iterative scheme for the case where we
have identical ﬁalls. For diff'erent walls, we may adopt a similar
iterative technique, but in this case the iterative technique vwould

be based on changes in c, since e would take different values for each
wall, Although it is possible to devise more sophisticated iterative
schenes, the one outlined above is particularly straightforward and

appears to present no difficulties with convergence in the numerical

computations,
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Chapter L. Computational aspects of the problem.

Let. The different variational formulations considered.

If the problem is set up using the genesral veriational technigue
described (Section 3.2), it is found that there is a certain freedom in
the representation of the problem. This can be explained by the fact
that the technigque involves substitution of an approximating series
in the differential equation and boundary conditions, followed by a
suitable combining of the résultant residues, The different
representations of the problem which are possible, correspond to
weighting the boundary conditions in different ways.

The problem was first set up as in Appendix A.+4, with no
preconceived ideas as to possible difficulties. Due to the complicated
nature of the boundary conditions and differential ecuation, it was
found that the latitude in choosing the formulation was small. In the
second and third positions of the vector ﬁ?, we find terms from the
problen (¢), mixed with terms from the adjoint problenm (¢*). Consider
the problen reduced to the form of a matrix to be solved, and consider
the (m,n) position of this matrix., In our general approach, the ﬁ?
is associated with the m, end the H(u) is associated with the n. It
can be seen that there is difficulty in deciding whether to associate
the mixed ¢ terms (in u®) with the m or the n. The problem was done

both vays, and these were called Formulations 1 and 2,
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To overcome the difficulty of these mixed terms, the problem was
reformulated, as in Appendix A.2, and this was called Formulation 3.
It can be seen that the problem of mixed terms still occurs, but this
time in the adjoint problem.

As will bé seen, the adjoint problem will be required in finding
the stream function and Reynolds stress distributions of the problem,
and so, to remove these mixed terms altogether, Formuletion 4 was
calculated. Previously, we defined H(u), H*, u and u* with a dimension
of five (corresponding to the differential equation and the four

boundary conditions). For Formulation i, we redefine these aS

B =1 | L m@ - [o9 ] Lu=[s] eai=[p
P B ! &
B¢ B5F* b1 b,
B3¢ Ega* c, cy
Bh¢ Brg® d1 dz
B9 Byg e, e,
| % | 1) | "2 |

(N,B. The last two terms in the vectors H(u) and H¥(u*) ere the first

peir of boundary conditions repeated.) The 2ss bi, c.y d., e. and

s A R
fi (i=1 and 2) are found as before. Nothing new is involved in this
enlarging the dimensions of the vectors. ¥We are, in effect, adding up

the differentiazl equation residue end the boundary condition rssidues
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in a different way. Formulation L is given in Appendix A.3 and, with
this formulation, we eliminate the previous difficulty from both the

problem under consideration and its adjoint.

Le2. The approximating series,

We choose trigonometric functions for the approximating functions
for both ¢ and ¢¥%. These form a complete set and have no inherent
disadvantages. Because of the more general formulation of the problem,
these approximating functioﬁs do not have to satisfy the boundary.
conditions,

For fhe rigid wall problem, a variety of test functions have
been employed. Iee and Reynolds (1967) solve the problem of plane
Poiseuille flow by a variational method, using polynomial approximating
functions which satisfy the rigid wall boundary conditions. Dolph and
Lewis (1958), in their approach to the same problen, adopt
approximating functions, ¢n’ which sre eigenfunctions of the boundary

value problem

1 2 2
E_ip - 2&2 E_fp + au¢ = A a2¢ -a ¢n s
T 5 n n n =3
dy dy dy
3+
with ¢n(i1) = Efp('1) =0 , whers A is the eigenvelue end ¢ = ¢n(y).

dy

Grosch and Salwen (1968), in their paper on steady and time dependent
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plane Poiseuille flow, adopted similar functions to Dolph and Lewis.
In both of these latter papers, the approximating functions were a
combination of hyperbolic and trigonometric functions. Chebyshev
polynonials have also been used to solve related stability problems
For this ahalysis, a half range Fourier series was chosen as the
approximating series, i.e. cos(nwy/?) (n=0,1,2, « .. ) and
sin(nmy/?) (n=o0, 1y 25 o o @ ) . e may truncate the series,
and the order of the terms in the truncated series is unimportant.
In certain circumstances, it may be advantageous to take a different
number of cosine terms to sine terms, in order to shorten the
numerical work without affecting the accuracy of the results. In the
case of symmetric disturbances, only the even cosine series is required.
It should be noted that the functions corresponding to & full
range Fourier series for -the interval, i.e. cos(mry) (n =0, 1,
2y o e o ) and sin(nﬂy) (n=0,1,2, « .. ) , are too
restrictive. This may be seen by substituting into the previous
formulations, when it is found that dependence on the wall parameters,
Fx and Ez, reduces to dependence on (Ea-1 - Eb-1) and (Ea-1 + Eb-1)

T 5™ with the ful1

with the half range Fourier series, and (3~
range Fourier series, Hence, when % = & (i.e. the walls have the
same properties), all dependence on the walls vanishes with the full

range Fourier series; an unsatisfactory situation, which shows the

inadequacy of this approximating series,
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It would appeer that a reasonable numbgr of terms of the chosen
series is suitable for approximating the stream function near the
critical point (y = Yo where U(yc) = 1-y§ = 0o, end ¢ = c. * ioi) and
the wall, where rapld changes might be expected (as for the stream
function distribution given by Thomas (1953) for rigid wall, plane
Poiseuille flow at a = 1 and R = 10000), This was not used as a criterion
to establish our approximating series, but does give us reason to
believe that our chosen series will converge rapidly. In fact, our
series was chosen as generally as possible. Comparisons of stream

functions will be given later (see Section 5.2).

L.3. Comparison of the formulations.

Since there is variability in the formuletion of the approximate
solution, it is of some interest to examine the effects that different
formulations mey have on the results. Theréfore, using these
approximating functions, the matrices corresponding to the different
formulations were set up (as described later, in Section L), The
eigenvalues of these metrices were computed, and comparisons made
between the different formulations. For symmetric disturbances only,
a cosine series is necessary, and convergence of the most unstable
eigenvalue was exemined for Ey = E = 10_h at a =1 and R = 1600 and
2500, As will be seen, this value of Eix and I, corresponds ﬁo
effectively rigid walls. Results for the different formulations are

given in Tables 1 end 2, and these resultis are further discussed
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in Section 5.2.

It can be seen that, apart from Formulation 2, there is very
little difference in the convergence of the differsnt formulations.

It should be expected that any formulation which satisfies the criteria
initially statea will converge to the correct result. ife would hope to
pick a formulation which converged reasonably quickly, Because of the
complicated nature of the diffeerential equation and boundary conditions,
we have, in fact, very little latitude in choosing the formulations.
The result is that, for the main part, the different formulations
converge, in the eigenvalues, with equal spsed., Formulation 4 is the
one chosen, since it allows the adjoint problem to be calculated
without the complication previously mentioned. Apart from providing

a good check on the arithmetic, the solution of the adjoint problem
proves to be the most satisfactory for calculating the stream function
and Reynolds stress distributions (this point will be discussed in
Section L.5).

It can be seen from the definitions of B and E;, that rigid
walls correspond to lE&I and [Ebl tending to zero., Calculetions,
typically as given in Teble 3 (and further discussed in Section 5¢2)
for Formulation 4 (the chosen formulation), show that a sufficiently
small value of E; and E to simulate a rigid wall (or to mezke the
ratio of wall to fluid resistence very large) is 10~h. The arguments

of Bt and & are seen to be unimportant in this respect.
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Lo, Colculations for the chosen formulation.,

For the reasons given in Section L.3, Formulation 4 is chbsen.
Vie return now to set up the approximate solution, using Formulation A
as given in Appéndix A.3. ( The principles are the same for setting up
the approximate solution using eny of the other formulations,. )

Continuing with Formulation L4 therefore, we have

+1 b, 2 2
- (29 a¢ , a%¢
I=<utH(u> = /¢‘k{ - - 2a° -5 + a}"gs + iaR {(1-—;9'2) { -5 azgi}
dy " dy dy
-1
+ 296} ] ay
o 1 a%g(+1) R _
+ 28(+1) {:—ia,Pxp"’fm) + ==z + — 3%(+1 )}
2 dy 28,
_ 1 a%5%(-1) R _
+ 2(=1) [-iaw-«) - e = (e )}
2 dy . 2
- 5 a%g(+1) rR_
-3 + ¢ +1)] ——¢*\+1)}
C R d.y \_ Ei
- 5a7(-1) R
Ho— -4 -1)] - ¢*(—1)}
L R ay° L %
+1 2
- d ¢
IR
dy
-1
3"‘.:.
ag (+1) _ 1 a%g*%(+1) R _
o ( -iaR3*(+1) + = —3 + — &¥(+1 )}
dy . 2 dy 28
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3_
g (-1) _ 1 a7%¢*(-1) R _
- — { -iaRp¥(=1) - = —¢ R ¢1’r(_1)} } R
dy 2 dy”’ 25

where ¢ = ¢(y) and ¢* = ¢*(y) in the integral terms. For our

approximating series (see Section 4.2), we substitute

Ned Nt~
¢(y) = Zam cos (mmy/2) + Zam sin((m=-W)ny/2) and
n=0 n=N
N-1 Nahi=1
% (y) = ZE;‘ cos(nmy/2) + Zgﬁ sin((a-Wwy/2) .

n=0 n=i

Since the series have been truncated, we will get identical results
for any order of the functions in the approximating series, so we

order them as above, I we initially substitite

Nti=1 Ngli=1
$(y) = X a 8, () and  ¢*(y) = y air ()
; L
n=> n=O

in <u®, H(u)> , we obtain
Nttt Nydled
I = <u* H(u)> = ar -
w* g ) fnay () -l ),

n=0 m=0
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‘ L 2
d d gz
B = f ___‘?‘_m - 2a2 — 4 a. g + ieR (1—y2) —-—- - azg
nn n b dy2

+ 25;[1}.dy

(+1) iy o LRED R
+ 2g (#1 {-1&’1’? +1) - f-—- + = (+1 }
n 2 ay° oE, *

- 1 &¢ (-1) R
+ 2g (~1) {—1&111' (-1) - ;;—y—g + -2; £ (=1 )}

+{ gﬁ t e )} { - ifn(ﬂ)}

{;;}“”.-w} (o]

f L[ 57w

g \+ 3 +) 2
+(-1-:m( 1){-111an(+1) +1d—f(1 +E—fn(+1)}

dy 2 dy3 28
ag, (-1) 1@ (1) 1
- — {-iaR{‘ (1) - = __n f(1) .

Now, if we substitute the trigonometric functions for fn and &9
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as defined, it can be seen that the matrices (Bnm) and (Dnm) may be

partitioned in the following manner

1
(B = | By ) | (yy(p50)) and

(B, (p,a)) : (B, (p5a))

Op) = | 00 | @m0 |

L£?21(p,q)) ; (Ppo(psa))

Here, (B11(p,q)) and (D11(p,q)) correspond to fp(y) = cos(pmy/2)

(p=0, 1, « o « 5 N=1) and gqcy) = cos(qmy/2) (=0, 1, + « « , ¥-1),
(312(P,q)) and (D12(p,q)) corresbond to fp(y) = cos(pmy/2)

(p=0, 1, « « o N-1) and quy) = sin(qmy/é) (@=0, 1, « « o H—1),
(321(p,q)) and (D21(p,q)) correspond to fp(y) = sin(pny/2)

(=0, 1, « o+, ¥1) and g () = cos{aiy/2) (a=0, 1, & o o 5 N=1)
and (B22(p,q)) and (D22(p,q)) correspond to fp(y) = sin(pny/2)

(p=0, 1, « « o 5 ¥=1) and gqcy) = sin(amy/2) (g=0, 1, .+ « « 5 ¥-1).
The size of the matrices (Bnm) and (Dnm) is (U+N,4+N), and the sizes
of the smaller matrices are given by the maxima of the indices p

and q. The entries for (Bnm) and (Dnm)’ ter substitution of the
approximating series, are given in Appendix B,1., It can be seen that

the rows n=N and columns m=N of (Bnm) and (Dnm)’ corresponding to
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sin(O) (i.e. zero), ere identically zero, In the computations, these
rows and columns are omitted.

Now we demand that the functional, I, is stationary with respect
to variations in u and é? (i.e. with respect to variations in 8 and

Eg). Applying this, we obtain that

oI N+M"1
—, =0 loads to Z e ((B)-cb )) = O
& m=0
(n:"O’ 1, e s @ ,H+T.f—1)
and 98I N+H-1
—_— = ot -
- 0 leads to j{: alt ( (Bnm) c(Dnm) )20

n n=0
‘ (=0, 1, « o o 5 Nii=1).
This gives us (N+M) linear equations for the (iats) am’s, and (N+x>

To1r
:

linear equations for the (1430) Eg’s. e get non-trivial solutions if,

and only if,

| & )=-c® )]=0, bholre
which defines our eigenvalues c,

As we shall be continuing with Formulation 4, the other formulations

cere not given. The matrices for the adjoint of our problem, using
Formulaetion L, were also calculeted., The procedure was the same as that
employed ebove, and the resulting entries of the matrices are given
in Appendix B.2. For the adjoint problem, the functional teken is
I = <u,H*(u*)>, instead of T = <u%,H(u)>. { Actually, we have

considered the complex conjugate of the adjoint funetional,I=<¥ 3*(T%)s,)
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o5, Numerical considerations.

To obtain numerical results, we must determine the eigenvalues

(¢) of the characteristic equation (Equation holret)
) I (Bnm>-c(Dnm)|=O 3

the entries of the matrices (Bnm) and (Dnm) in this characteristic

equation being given in Appendix B,1. Standard numerical eigenvalue

procedures are normally basgd on (Dnm) being & unit matrix. It is

therefore necessary, having computed the entries of (Bnm) and (Dnm),

to multiply the characteristic equation by the inverse of (Dnm)

( )", This gives us _
- | (o )" ) - e | =0,

where (I) is the unit metrix. In order to obtain sccurate inverses

of the matrices involved, a double precision matrix inversion routine

was used, The eigenvalue routins, which aiso found the eigenvectors,

was a FORTRAN coded program; Share number SDA 3444, Anothzr routine,

Share number SDA 32099, which only evaluated the eigenvalues, wz2s elso

adapted for use with the progran,

Checks may be kept on the eccuracy of the inversion and eigenvalue
routines, The number of eigenvelues obtained, and their accuracy, is
determined by the number of terms used in the approximating series.

Ve conaider only symmetric disturbances, employing an approximating

series of cosines only, and find that a thirty term approximating
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series gives us the most unsteble eigenvalus with sufficient accuracye.
We gauge our accuracy by comparison with previous rigid wall work,
and by incrementing our approximoting series wuntil the resultant
stability curves and stream function and Reynolds stress distributioné
becone insensifive to further increase, e obtain results accurate to
four decimal places, and results showing the accuracy of the present
computations are described in Chapter 5. The complete spectrum of
eigenvalues and eigenvectors is obtained from this part of the program.
The necessary stebility curves may be obdbtained from the
eigenvalues, Vhen difficulty was encountered in obtaining accurate
results for the eigenvalues, it was found that use of an eigenvalue
pivot was very beneficial, Lee and Reynolds (1967) enployed such a
technique in their study of the rigid wall problem, ./hen eigenvalue

routines find the eigenvalue of largest modulus first (and most

accurately), the characteristic equation, | (B) - ¢(D) | = 0, cen be
rewritten as 1
| (D) = ——— (2-%D) | =0,
c=Ao

The eigenvalue pivot, Mo, may be chosen as complex (a1l the matrices
involved are complex and non—symmetric) end is chosen fairly close to
the desired eigenvalue c. In our case, X = ,2 produced adequate
results for the rigid wall problem. The eigenvalue routine is used

to find the eigenvalues of ((B—loD)“1(D)), after which, the effects

of the pivot are removed to give the correct eigenvalues.
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From the eigenvectors, the components of which are simply the
coefficients in the approximating series for é(y), the stream function
and Reynolds stress distributions may be obtained by substitution,

The stream function distributions, hence obtained, are unique apart
from an arbitrdny multiplying factor. This (complex) factor is used

to normalise the stream functions such that ¢r(0) = 1 and ¢i(0) = 0,
vhere the stream function = ¢(y) = ¢r(y) + i¢i(y). The Reynolds stress
distributions are obtained by substituting the normalised stream
Tunction distributions into the expression

6. 0) = -,

dy dy

{ dé. (v) . d¢ () }

(see, for example, Stuart (1963) Je This expression rcpresents the

pa
correct Reynolds stress for the problem, when multiplied by { - --}.
: s

The results are normalised in this mamner to facilitate comparisons
with previous results for the rigid well ﬁroblem.

Although the direct formulation gave accurate eigenvalue resultis,
when the stream function and Reynolds siress distributions were sought
it was found that the resultant distributions did not converge well
with incrementation of the approximeting series, did not give good
egreement with previous rigid well results and did not setisfy <the
relevant boundary conditions. However, when the transpose of the

direct formulation was used to find the adjoint siream function &nd

Reynolds stress distributions, good results were obtained (when
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Judged by the previous criteria). “hen the adjoint formulation was
used, it gave poor results for the adjoint distributions, but good
resplts for the distributions of the problem under consideretion
(obtained by transposing the matrices in the adjoint formulation).
These inaccuracies would appear to be due to numericel ill-conditioning.
Lee and Reynolds(196).) appear to have had the same %rouble, although,
using their approach to the rigid wall problem, they obtained good
results for the problem and poor results for the adjoint problem. For
the present results, the trgnspose of the adjoint formulation wsas used
to obtain results for the problem, and the transpose of the direct
formulation was used to obtain results for the adjoint problen.

The variational part of the solution is incorporated into the
iterative scheme (which is set up as described in Section 3.3), as
shown in the simple flow-diagram given in Appendix C. Accuracy may be
controlled by the choice of the eigenvalue guess (¢®), how close to e°

we choose the values ef and e and the number of iterations periormed.

Ve take ef = e° + pe® and e = ° - pe®, where p is a small constant
(O<p<<1), which depends on the estimated sensitivity to changes in
e of the eigenvalue sought and the accuracy of the eigenvalue guess,.
¥Yle may choose a different value of p for each iteration periformed in
a particular eigenvalue search. In the computer progrem, a typical
value of p for the first iteration was .01, decreasing by .0025 with

each successive iteration. Each iteration involved three uses of the

variational part of the solution. It was unusuval to take more than
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three iterations, -and, with a good eigenvalue guess, convergence could
be obtained with one iteration., If the program exceeded four iterations,
then it was better to start the program azain with = new eigenvalue
guess, and so a limit of four iterations vas kept for each eigenvalue
search, Ye judgé convergence by examining the changes in e, since this,
generally, changes more rapidly than c. In the present work, satisfectory
convergence of the eigenvalues was obtainedlwhen the two values of e
compared (e and e®), differed by less then .1%. This gave us the
eigenvalues accurate to four decimal places,

The computations were programmed in FORTRAN for the CDC 6600
computer, and all the resulis presented herein were obtained on this
computer, Some initial work was performed on an IBN 7094 computer. It
vas only found necessary to employ the eigenvalue pivoting technique
when working on the IBM 7094 computer. Cn the CDC 6600 computer, it
took approximately 11 seconds to obtain e spectrum of thirty eigenvalues
in terms of rixed values of the paramaters F: and E. The times taken
in the present work are roughly equivelent to those taken in previous
computations, taking into eccount the improvements in computer

storage and speed.
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Chapter 5., Discussion of numericael results,

5.1+ Introduction,

The numeriéal results obtained from the computer program, set up
as described previously, are presented in figures and tables at the
end of the thesis. These results, consisting partly of checks on
accuracy, and partly of solutions to representative flexible vall
situations, will be described and discussed in the present chapter.
The notation used in the figures end tables is defined in the relevant

part of the thesis, and further given at the beginning of the thesis.

5.2, Ririd wall results,

In Tables 1 and 2, the most unstable eigenvalue, c, is given for
the different formulations considered, shoﬁins the convergence of ¢
with increases in the number of terms in the epproximating series (at
a veluz a = 1 end values R = 1600 and 2500). The chosen valuss of B
and Iz simulate rigid walls, and convergence to the results given by
Thomas (1953), for the chosen formulation (Fornulation 4), is obtained
with sixteen and eighteen term series respectively. Lee and Reynolds
(196k, 1967) use &n approximating series especielly suited 4o their
variational solution of the rigid wall proﬁlem, and they obtain

convergence to Thomas’s results at (a,R) = (1,1600) (table 1) with
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an eleven term series. In their first paper (1954), higher eigenvalues
are given at (a,R) = (1,100), and these agree well with present results.
Apart from the Tollmien-Schlichting modes, numbers of spurious modes
occurred in the present eigenvalue spectrums, these spurious modes
being non—convefgent Witﬁ increases in the numter of terms in the
approximating series. Unfortunately, Lze and Reynolds did not give a
neutral stability curve in their results, and so comparisons with the’
present rigid wall neutral stability curve are impossible,- It should
be remembered that the approximating series in the present work has
been chosen as generally as possible, Irom these tsbles, it may elso
be seen that the real part of c, s converged more rapidly than
the imaginary part, Cye This is a feature of all the present resulits.
Table 3.gives the most unstable eigenvalue at (a,R) = (1,2500), using
a twenty cosine series, showing how suitable valuss of E; and E may
be chosen to simulate rigid walls, Tables 1, 2 and 3 &re further
discussed in Section.h.S; |

Table L gives values of the imaginary part of the most unstable
eigenvalue, c;, for different velues of the fluid parameters (a,R),
using a thirty cosine series. Curves of c, versus Ry for fixed values
of a, are plotted in Figure 3. As described in Section 1.2, neutral
stebility is found where c; = 0 (in the temporal sense), Points on
the rigid wall neutral stability curve are determined by plotting
curves of o; versus R for fixed a, and then finding the values of R
at which c; = O, In this way, values of the fluid psrarmeters, (a,R),

defining the neutral stability curves for both the rigid well and
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flexible wall problems, were determined. (lIn cases where portions of
the neutral stability curve lie parallel to the R axis, it is more
accurate to determine these portions of the neutral stebility curve
by using curves of s versus a for fixed Re ) Points on the constant
;mplification ourves are found where oy takes a constant value. Points
on the rigid wall neutral stability and constant ampliiication curves,
using a thirty cosine series, are given in Table 5. Points on the rigid
wall neutral stability curve, using a twenty cosine series, are given
in Table 7. The neutral stability and constant anplification curves
are plotted in Figure k. In.Figure 5, convergence of the present work
and comparisons with previous results are shovm. Velues of the real
part of the most unstable eigenvalue, s us?ng a thirty cosine series,
are given in Table 6, and these velues are used to plot the curves in
Figure 6. The neutral stability curve of ¢, versus R (i.e. the spatial
neutral stability curve) is obtained from these curves by finding the
values of . cofresponding to the values of a end R lying on the
temporal neutral stability curve. Points on the spatial neutral
stability curves, for twenty and thirty cosine series, are given in
Table 8, end the curves are plotted in Figure 7. For both the temporal
and spatial stability curves, results are given accurate to three
decimal places.

811 of the previous curves are very smooth, and give good agreement
with previous work, The curves in Figure g shaw how good the exact

egreement is, comparing the present with previous work. The earlier,
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asymptotic, curve, obtained by Shgn (195&), agrees well with the
low a part of the present curve, but at higher values of a, a fairly
large discrepancy may be seen, as would be expected considering the
limitations of the asymptotic anaslysis. The neutral stability curve
of Grosch snd Salwen (1968), which is obtained computationally by
using a similer technique +to the present, but for rigid walls, gives
excellent egreement with the present curve. It is believed that
Grosch and Salwen employed a thirty term series in obtaining their
curve. The present curve, obtained using a thirty cosine series, is
insensitive to further increase in the number of terms used in the
approximating series. Comparisons with the curve obtained by using a
twventy cosine series, show that the latter curve gives a very similar
critical Reynolds number and reesonable egreement for small velues of
e, but that, at larger values of &, the discrepancy becomes more
parked, and the latter stability curve falls too low. Convergence of
the spatial neutral stability curve is shoﬁﬁ in Figure 7, and the same
convergence tr%?ds may be noted as in the temporal neutral stability
curve (Figure K)c In this case, however, the convergence is more rapid,
since, as already pointed out, o, conversas more repidly than Cye
Rigid wall stream function and Reynolds stress distributions will
now be presented. In Tables 9(a), 10(b) and 12(&), points are given,
and in Figuwes 8, 9 and 10, the corresponding graphs plotted; for the
rigid well distributions at a = 1 and R = 100, 1600 and 10000, using

a thirty cosine series. It should be noted that, es stated in
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Section 4.5, the stream function, ¢(y), is normalised such that
¢r(0) = 1 and ¢i(o)"='0’ and also that the Reynolds stress plotted
is equal to the correct Reynolds stress divided by a factor(=pa/L).
This means that a positive sign for the plotted Reynolds stress impliés
conversion of ehergy from the mean flow into the disturbance. The rigid
wall boundary conditions are ag (+1)

$(#1) =0 and — = , and it may

dy

be observed that the streanm functions satisfy these conditions to high
accuracy. The Reynolds stresses are zero at the wall, as required, and
have a peak (at which the Reynolds stress is positive) near the critical
point, y = Y, (vhere Uch) = (1-yc2) = cr). This latter fact wquld be
expected, since, for the rigid wall problem, the critical point is close
to the wall and the jump in the value of the Reymolds stress, expected
at the critical point, ié quickly brought to zero by the viscous forces
at the wall, In Tables 9(b), 10(a), 11(&) and 11(b), points are given,
end, in Figures 11, 12, 13, 14 and 15, the corresponding graphs are
plotted, by means of which we exsmine the distributions for convergence
at values of (a,R) = (1,1600), using ten and twenty cosine series,
and (a2,R) = (1,6400), using twenty and thirty cosine series, It can
"be seen that the real parts of the stream functions have already
converged with the smeller numbers of terms in the series, while the
imaginary parts of the stream functions and the Reynolds stresses have

almost converged, although the increases in the numbers of terms in
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the series produce slight alterations of the curves. As pointed out
earlier, the variational approach would be expected to give the
eigenvaelues more asccurately then the eigenvectors. It may be observed
in these convergence results that, the higher the value of R used,

the lerger the humber of terms required in the approximating series,
for given accuracy. Figures 16, 17 and 18 show comparisons of present
results with those of Lee and Reynolds at (a,R) a (1,1600), and with
those of Thomas at (a,R) = (1,10000). At (a,R) = (1,1600),. a ten cosine
series is employed for the present results, to give a direct comparison
with Lee and Reynolds, and ét (a,R) = (1,10000), a thirty cosine series
was used, although no direct comparison can be made with Thomas from
the point of view of the number of terms used in the approximeting
series. In both cases, the comparisons ars very favourable. In Table
12(b), points are given, and in Figure 19, the corresponding grapns
plotted, for the stream function and Reynolds stress distributions

for the adjoint rigid wall problem at (a,R) = (1,100), using a thirty
cosine series. These are very smooth and agree exactly with curves
given by Lee end Reynolds, As mentioned in Sectiom 4.5, the transpose
of the direct formulation is used to obtain the adjoint stream function
and Reynolds stress distributions. The eigenvalues of the problem are
obtained using the direct formulation, and their accuracy is related

to the accuracy of these distributions. The adjoint results are

therefore included to show the accuracy of these distributions,
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At this stage it 1s possible to conclude that the problem set
up generally to solve the flexible wall problem is capable of giving
excellent results for the rigid wall situétion. As there is no particuler
bias in the modes towards rigid or non-rigid walls, we may now
anticipate, with some optinism, equally setisfectory results in the

flexible wall case,.

Be3. Flexible wall results.,

There are & number of results available from the publications of
Hains and Price (196%1a and b, 1962a and b) which mey be used to check
the present calculations. The simplest calculations ere for fixed values
of Es end K, corresponding to rather artificial flexible walls, since
the physical wall paremeters %ill vary along the stability curves (due
to the &, R and ¢ dependence in the definitions of Z and £ ). Stability
curves were calculated for z value of Ea-1'= Eb_1 = =10, and we first
examine the convergence of the present curves at this value. Points
on the stability curves, obtained using thiriy end twenty cosins saries
respectively, are given in Tables 13 end 1k. In Figure 20, we compare
the neutral stebility curves obtained with twenty and thirty cosine
series. It can be seen that, at small e, the curves have already
converged with a twenty cosine series. Along the high a portions of
the curves, there is a small difference when the number of terms in

the approximating series is increased, the largest difference being
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about & °/o. There is insignificant change for more than thirty terms
in the approximating series, In Figure 21, it can be seen that the
spatial stability curves have already converged with a twenty cosine
series (as pointed out in Section 5.2, more rapid convergence may be
expected with sbatial stability then with temporal stabiiity curves).
Also in Figures 20 and 21, we compare the present stability curves
with those of Hains and Price, for this value of E; and . Good
agreement is obtained in both comparisons, the largest diserepancy
between the present neutral stability curve for a thirty cosine series
end the neutral stability curve of Hains and Price being about 2 °/o.
It is possible to examine the effeect of omitting the viscous
component of the normal stress (Hains and Price, and Landahl and xaplan
(1965) omit this term in their respective celculations). This omission
is equivalent to subtracting a factor (—uaz/ER) from the expression
for Ej-1 G = 1,2) (see Section 2.2), and the largest modification of
Ej-1 is expected when the smellest value of danping is used. In the
present results, the smallest value of damping used was D = 250, end,
with this value of damping, omission of the above term caused an increase
of ebout 1 o/b in the critical Reynolds number of the class A node.
Changes would generally be expected to be smaller than this, end, with
a tension of .5x109 for the case of walls with tension only, an increass
in critical Reynolds number of about .2 o/b was experienced.

For certain flexible wall situations, it is possible to transform,

quite reedily, the neutral stability curve for rigid wall, plane
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Poiseuille flow into neutral stability curves for the flexiblé wall
problem, by use of the asymptotic analysis developed by Lin (1945,
1955). The basis of such a transformation lies in the analysis of
Benjamin (1960) for the qualitative behaviour of the stability curves
for the {lexible wall, boundary layer problem. For the present problem
of flexible wall, plane Poiseuille flow, we take that analysis a stage
further to establish a precise form for the transformation of the
Tollmien-Schlichting stability curve for a rigid wall to that for a
membrane wall with no structural damping. ‘e start with the characteristic
équation in tpe usual form and notation (see Benjamin (1960), where
A'= 0, and Lendahl (1962)):

3‘ (z)

u+iv+a= , 5e3e1

1+ (1 =3 (2))

where, in our notation (see Section 2.2), for a membrane without

structural damping, QQ(—1) °
v - B

2 [002 2}
na “é‘ - C
R

and (from Lin (1955), pages 37, 38 and 10)

au(-1) a
u = 1ilog c + 0(1) + dy ) (1 + 0(?5)) ’

T 0
az.[ (U—o)2 dy

-1
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d2U(yc)
av(-1) 2

ve-o —  — (s 0d)

dy { E(yc)} 3

dy

by, + 1) av(-1) _

A= —2

1, %(z) is the modified Tietjens function

c dy
auly )y 1
and z = { aR — } 3 (yc 1) . These terms are given, and will be
ay - .
used, to the order of accuracy employed in the calculations of the
rigid wall stability curve (Lin (19&5)), which is known to be quite

. Lfn this ordes of a‘)?vatzn“t;aﬁ
accurate., Since A and v are functions of ¢ alongv:} is a function of
z alone, z is a function of aR and ¢ alone and a is real, the parameters
aoy Ro and c, defining the rigid wall, neutral stability curve
Gaorresponding to a = O), may be used to obtain the parameters a, R
and ¢, defining the flexible wall, neutral stability curves, by keeping
¢ and T constant and only changing u through a (see Benjamin (1960)),
i.e. u(a,c) + a = ulao,c) and z(a,R,c) = z(a0,R0,¢) » (N.B. co is

the ree wave speed in the undamped membrane walls and not the value

of ¢ on the rigid wall, neutral stability curve. ) Hence we obtain

au(-1) | au(=1)
dy °

ay
0
2 2 2
a ]O (U - ¢)ay ao / (U-c)zdy
-1

-1
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and aoRo = aR. Hence, on substituting for U and a, and performing

the integration, we obtain

Lot [ [F )T e e

ao
8 L. 5
and aR = aoRo , where f(c) = { — = =C¢c + ¢ } e As Hains and
15 3

Price (1961b, 1962b) have calculated stability curves for membranes
under tension only, it is of interest to examine that case in more
detail. Hence, substituting m002 = T and m = O in the above two equations

and eliminatiﬁg R, we obtain

2 2] 1 R 1
a:ao{—t{—--—-f(c)}Z}. 5e343
2 L T
The two roots of this equation imply that each point on the rigid
wall curve has a double image in the transformed plane. It may further
be deduced that the neutral stability curve would be expected to close,
since, for sufficiently large Rs, a becomes complex, contradicting our
initial assumption that a is real. The neutral stability curves,
obtained by Hains end Price for membranes under tension only, do, in
fact, close, The neutral stability curve given by Lin (1945), for rizid
wall, plane Poiseuille flow, is used in the above transformation to
give a neutral stability curve for the case when T = .5x109. (Accurate

points on the flexible wall curve are found by using the table of rizid
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wall points given by Lin, more approximate points being obtaiﬁed by
using Lin’s curve to give the rigid wall points. ) This curve is compared
with the neutral stability curve obtained from the present program and
also that of Hains and Price, for this value of T. The curves are compared
in Figure 22 (the points for the present curve and the asympitotic curve
being given in Table 15). It may be seen that agreement is good along
the low R portions of the curves, while there is a marked discrepancy
between the curve of Hains and Price and the other two curves along
the high R portions, The curve for the present work is not completed,
since the program is unsuited to examine stability at the low values
of a and high values pf R involved. Since, for the asymptotic analysis,
that part of the rigid wall stability curve needed in the transformation
is knowvn to be quite'accurate, and since the same order of accuracy
is employed in the transformation, we would expect the flexible wall
stability curve to be of the same accuracy. It is therefore unexpected
to find the Hains and Price results in such disagreement with the
asymptotic theory and our calculations,

From Equation 5.3.3, we mdy further deduce that, at the value of

T for which

1 R
—= — f(e) = O when Ro is the rigid wall
L T '

critical Reynolds number (Roc), the region of instability shrinks to
a point, and, for T less than this value, there is no transforned

stability curve., Inserting the values given by Iin (1945) for a0, 2
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and ¢, corresponding to the rigid wall critical Reynolds‘number, ve
find that the asymptotic theory predicts the curves closing to a point
for T = 2.8x107. This value of T is less than half that obtained by
Hains and Price (T = 6.65x107). Further, the point at which the curves
disappear is given as (a,R) = (.74,7500) by the asymptotic theory and
as (a,R) = (;85,82&0) by Hains and Price, The present program was used
to search the neighbourhood of these points. Again, the asymptotic
theory was found to be more accurate. These results show that, for
limited physical wall situations, where‘there is obviously no class B
instebility, the asymptotic theory can give very good stability results.
They also cas; doubt on the accuracy of the computations of Hains and
Price.

‘e now examine a more general-wall situation: the general effects
of variations in free wave speed, co, and damping, D, in the walls,
for representative values of these parameters. First, we examine the
effect of changing co (or tension, for a membrane), keeping other
proparties constant. The mass parameter, m, for all these curves, is
fixed at e representative value of unity. A value of co, Suitable to
simulate a rigid wall, was found to be ¢o = 105, stability curves being
insensitive to further increase in this parameter. Stability curves
were found for valuss of co chosen to represent walls departing from
rigidity down to a value co = 3000, For a free, damped membrane, the

viave speed, op (op = R x ¢, see Section 2.1), is given by the expression
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iD p% 41
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C - - {Co - 2 ]2 >
p 2a, La
D
and underdamped waves exist provided the damping ratio, — , is less
Zaco

than unity.vThe value of damping chosen for the present results was

D = 1000, and, for wave numbers in the range associated with the critical
Reynolds numbers, the present values of co give underdamped waves in

the membrane, the situation closest to critical damping ( b/?aco =1)
occuring when co = 3000 (for this valuve of Co, a must be less than

1/% bef'ore the waves are overdamped; larger values of D, causing waves
to be overdamped at higher a, are of less interest since the damping
would then begin to swamp the effect of variations in ¢o). The perameters
chosen f'or the present model are qualitatively similar to those chosen
by Kaplan (1964) and Landahl end Raplan (1965), for the boundary layer
problem. ( Taking into account the differsnt schemes of dimensionless
variables, their values of D ranged from 20 to 3000, and their values

of ¢o ranged from 1000 to 3000, while m was fixed at unity. ) In the
present work, stability results were found for co = 3C00, 50C0, 10300
and 105. The points on the stability curves are given in Tables 16, 18
and 20. The neutral stability curves are compared in Figure 23. In this
figure, it can be seen that, for the values c¢co = 3000 and 5000, the
neutral stability curves have two (joined) parts exhibiting different

natures, These two parts will be referred to as the lower part and the
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upper part (from their position in the a versus R diagram). The neutral
stability curve for co = 10000 also exhibited this charactsristic,
although its upper part was at a Reymolds number of roughly 15000, Curves
for large values of co, close to the rigid wall curve (as typified‘by
the curve at co = 10000), have lower parts whose behaviour is predicted
by Benjamin (1960) in his description of the class A mode. However, as

co decreases further eway from its rigid wall value, the damping starts
to have a greater influence and the lower parts of the neutral stability
curves become mores unstable (in the sense of critical Reynolds number).
Spatial stebility curves are given in Figure 24, and it can be seen that,
in the vicinity of thg critical Reynolds number, the walls are stiffness
controlled, and hence (damped) f'ree wave speeds are always larger than
wave speeds associated with neutral stability curves. At significantly
lower values of og, the walls would become inertia controlled in the
vicinity of the critical Reynolds number and this, combined with the
damping effect, would cause an even faster shif't to. the left.

The upper parts of thelneutral stability curves become steadily
more unstable as the flexibility of the walls is increased (i.e. co
decreases). The class B mode of unstable disiturbance (Benjamin (1360)),
corresponding to unstable waves in the flexible walls, would be expected
when the wave speed, Cpr’ is near the free wave speed in the flexible
walls. It may be seen from Figure 2. that, as we move from the lower
parts to the upper parts of the neutrsl stability curves, Cpr is

steadily increasing, supporting the classification of the upper parts
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of the curves as class B disturbances. Another marked difference between
the lower parts and the upper parts of the neutral stability curves, is
the different rate of amplification experienced when crossing the stebility
boundaries of these two parts. This property is illustrated in Figure 25,
where a constant amplification curve is shown, caleculated for co = 50GO,
representing & constant rate of amplification of cpi = -2.5 (points

for this curve are given in Table 19), At a = .925 on the lower part

of the curve, it took an increase in R of roughly 400 4o achieve this
amplification rate, while at all points on the upper part of the curve,
the amplification rate was so rapid as to make distinction from the
neutral chrve\impossiple. In general, amplification rates increased by

a factor of between 10 and 100 when moving from the lower to the upper
parts of the stability curves. The sgbove difference between the
magnitudes of the amplification rates, experienced when crossing the

two parts of the neutral stability curves, is typified by a rapid change
of slope in curves of cpi versus R at fixed a, this rapid change occuring
in the neighbourhood of cpi = O. An illustration of this behaviour is
shoym in Figure 26, where curves of cpi versus R for fixed a are plotted
at co = 3000 (points on these curves are given in Table 17). The curve
at a = 1,05 shows the changes in cpi when crossing the upver part, and
the curve at & = .95 shows the changes in cpi when crossing the lower
part of the neutral stability curve. Results for other neutral stability
curves are similar. Another important aspect, shown here, is that tﬁe

region in which the amplification rate increases rapidly, lies not only
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behind the upper part but also-behind the lower part of the neutral
stability curve. Since the class B mode of disturbance is essentially

a resonance effect at values of Cpr near co, it might be expected that
a rapid amplification rate was experienced across a class B stability
boundarye. The critical Reynolds number may be associated with either
the lower or the upper parts of a neutral stability curve (for the
flexible wall parameters‘(m,D,co) = (1,250,5000), the upper part of

the neutral stability curve exhibited a critical Reynolds number
marginally smaller than that of the lower part). It would appear that,
in order ‘o oPtain reduction of the amplification rates, inhibition

of the upper parts of the stability curves would be far more important
than inhibition of the lower parts. Kaplan (1961.) gave a class B stability
boundary for the boundary layer over a membrane wall, although he later
reported an error in this result (Landahl and Kaplan (1965)). Hle found
this stability curve in a similar region of the (a,R) plane to the
region in which the upver parts of the present curves are found. He

did not, however, find a large difference in amplification rate between
class A and class B modes, his results showing that the amplification
rates were of' the same magnitude for both modes.

There is a strong suggestion in the nature of the present results
that, in the terminology of Denjamin, the two parts of the curves
represent class A and class B instabilities. This is a situation not
unlike that indicated elsewhere, although other results show two seperate

neutral stability curves for class A and class B instabilities: in the
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present case the curves have merged to form a comtinuous stebility
curve,

We now investigate the effect of damping variation, with other
properties remaining constant. The mass is agein kept at unity, and a
moderate value for the free wave speed, co = 5000, is chosen, at which
to make comparison. Results for these values, with a value for damping
of D = 1000, have been given above, A reduced value of the damﬁing,

D = 250, giving a lightly damped wall, is chosen, at which-to make
comparison with these above curves. For the lower value of the damping,
the stability results were taken to a very high value of a, in order

to examine more fully_the behaviour of the upper part of the curve,

and points on this curve are given in Table 21 ((a) and (b)). Figures
27 and 28 show the stability curves in the usual (a,R) region,and, in
Figure 27, the partitioning effect of the neutral stability curve is
again encountered. It cen be seen that, the decrease in damping has
stabilised the lower part of the stability curve, while destabilising
the upper part. These alterations are again in line with the predictions
of Benjamin (1960), classif'ying the lower and upper parts of the curves
as classes A and B respectively. In Figures 29 and 30, the upper parts
of the staebility curves, ot (m,D,co) = (1,250.5000), are plotted more
fully. The classical asymptotic analysis would be completely inadequate
at these high values of wave number, In Figure 29, the upper part of
the neutral stability ocuwrve is seen to exhibit a critical Reynolds

number (slightly lower than that of the lower part), and, for even
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higher values of a, the curve becomes somewhat wavy. This waviness is
due to the accuracy of the results dropping off at the high value of
a involved. A few points calculated for the stability curve with a
thirty-five term series, instead of the usual thirty, showed that this
waviness may be smoothed out. An interesting fact, noted from Figure
30, is that cpr reaches an almost constant value on the upper part of
the neutral stability curve, this constant value being slightly less
than the value of co being used. This would again lead to the conclusion
that the unper part of the stebility curve should be classified as a
class B mode,

Further insight into the nature of the different parts of the
stability curves may be gained by examining the spatial distribution
of the disturbance between the walls. Stream function and Reynolds siress
distributions were found at values of (m,D,co) = (1,1000,5000) for the
flexible well parameters, and at different points on the corresponding
stability curve, The first set of distributions (Table 22) were taken
at a point on the front of the lower part, the second (Table 23) at a
point on the back of the lower part and the third (Tablé 2l,) at a point
on the upper part of the neutral stability curve. The real parts of the
stream functions are compared in Figure 31, the imaginary parts of the
stream functions in Figure 32 and the Reynolds stresses in rfigure 33.
A further check on the accuracy of the calculations may be made by

investigating how closely the computed stream function distributions



Th

ag(+1) 2
satisfy the boundary condition; —- - —¢(+1) = 0 (see Section
dy c

2.2). By substituting the values of ¢r(+1), ¢i(+1) and ¢ into this
boundary condition, we may predict the values which the gradients of

the stream functions would be expected to take at the wall, These
predicted gradients are shown alongside the stream function disiributions
in Figures 31 and 32, and a detailed examination of the stream functions
at the wall shows that they chenge rapidly near the wall to produce

the predicted gradients with high accuracy. The Reynolds stresses are
Zero (or almost zero) at the wally—as~especiad, A marked difference

may be notice& between the three sets of distributions, and this ié
particularly noticeable and relevant in the Reynolds stress distributions.
All of these Reynolds stresses indicate a conversion of energy from

the mean flow to the disturbance., The first distribution is very similar
to that obtained at neutral stability for a rigid wall, being virtuslly
zero nearly up to the critical point (y = yc), where a rapid increass
takes place, this increase being brought to zero at the wall. A double
peak is just noticeable in this curve. The other two distributions
broaden out, end the double peak becomes more obvious, the first peak
occuring near the critical point and the second (larger) very close

to the wall., This second peak becomes more pronounced in the third

curve.  Reynolds stresses for other values of the flexible wall parameters
exhibit similar behaviour. This behaviour confirms earlier statements

by Benjamin (1960) and Landahl (195&) about the decrease in the
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thickness of the viscous wall layer caused by wall compliance. The
viscous and critical layers overlap at neutral stability in the rigid
wall problem; causing the maximum Reynolds stress to occur at (or near)
the critical point. However, when the thickness of the wall layer
decreases, the Jump in the Reynolds siress occurs at y = Ve (as predicied
by inviscid theory). The sharp peak in the Reynolds stress necar the wall
may be explained in terms of the rapidly oscillating and decaying

wall layer (Lin (1955)). Kaplan (1964) gives Reynolds stresses for class
A and B modes exhibiting similar behaviour to that of the first and
third curves in the present work. Again, the classification of the

lower and upper parts of the neutral stability curves as class A and

B modes appears Jjustified, .

The effect of variation in free wave speed (co) with a, may be
obtained, in principle, by a cross plotting of constant co neutral
stability curves. However, unless the variation of co with a is very
large, the present stability curves (Figure 23) are too widely spaced
(in terms of co) to be useful in this way. lievertheless, the general
behaviour may be predicted, and this is illustrated for the case of
thin plates. In this case, ¢o increases with a, and, for thin plate
neutral stsbility curves roughly coincident at a = .9 with the membrane
neutral stability curve for (m,D,co) = (1,1000,5000), we would expsct
the upper parts of the neutral stability curves to be stabilised, while
the lower parts are destabilised. ( By “stabilised", we mean that,

for the same value of a, the thin plate curve is found at higher values
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of R than those at which the membrane curve for (m,D,c0) = (1,1000,5000)
is found, and vice versa for "destabilised'. ) Results were found for
two such thin plates, the first at (m,D,co) = (1,1000,(&0002+ 107a2)%)
(Table 25(&)) and the second, a plate with no mid-plane tension, at
(m,D,c0) = (1,1000,(3x107a2)%) (Table 25(b)). The resultent curves

are compared with those for a membrane at (m,D,co) = (1,1000,5030)

in ®gures 34 and 35, and the predicted behaviour is seen to be
confirmed, Flexural rigidity may thus be seen to be beneficial in
promoting stability by moving the regions of high amplification rate
(associated with the upper parts of the neutral stebility curves) to

higher values of R,
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Chapter 6. Conclusionse

The results presented in the previcus chapter, and conclusions
dravn from them, support a general classification of the lower parts
of the neutral st&bility cwves as class A, and the upper parts as
class B, Although the classif'icetion of possible disturbances into
classes A, B and C is very convenient, the present work demonstirates
that, in practical situations, this exact classification may cease to
be of importance since unstable disturbances may represent mergers of
behaviour typ%cal of all three modes, For example, it might be argued
that the upper parts of the neutral stability curves are class C
(or Kelvin-Helmholtz) modes, since they become more unstable with
increased flexibility of the wall, are associated with regions of
large amplification rate, and cp is almost insensitive to changes in
R along the corresponding high a portions of the spatial stability
curves (see Figure 30). In fact, Xaplan (196L) reported, without
details, unstable class C modes in the region in which he presented
stability curves for other modes.

With regard to class A waves, it was established in Section 5.3
that & simple transformation existed to convert the rigid wall, neutrszl
stability curve into the tension-only membrane stability curves. It
was also established that the results of this transformation were more

accurate than previously computed stability curves. It therefore seems
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worthwhile to return to this analysis and examine it for more general
situations. The fundamental idea (both for the boundary layer and plene
Poiseuille flow problems) is that if the right hand side of Equation
5¢3¢1 is kept constant, then the net left hand side result must also
be constant, i.ee wp + ivp = u + iv + a or, in real and imaginery
parts, uw = u + ar and Yo =V + ai s where the subscript
"o!" denotes conditions on the rigid wall. These two equations may be
(for $lexible call) ({or ~qid wall)
thought of as defining values of (a,c) in terms of (ao,JS s the constancy
of the right hand side then determining the new R. Unfortunately, the
functional dependence on a and ¢ is of'ten so complicated that explicit
forms for the;e variables are not possible, and the only course open
is a numerical evaluation of the above equations; the problem falls
into this category if @, # 0 , Hence, all deductions that can be made
readily are for surfaces with no structural dissipation. ‘hen a; = o ,
v is unchanged, which, because of its approximete form, requires c¢ to
be unchanged. Hence, w = u + ., reduces to an equation for a, which,

for undamped membrane walls enclosing plane Poiseuille flow, has the

form given by Equation 5.3.2:
2
1 Co -1 1
~ { £(c) T { n { - - 02 ] } ] = =5 r(c) 1 ’
a ] ao

kL
where f(c) = { ~~ = =~C 02 ] « ( N.B, co is the free wave speed
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in the undamped membrane walls and should not be identified with

(ao,Ro). ) Therefore, the complete transformation becomes

2 2 2 2 2 2
a Ry 5 Co Ro 2 Co > 4@0 f(c) z
"2="2{°+”‘2}i-2§‘{°“‘2}‘—2 }
ag 2c0 L Ro 2co L Ro mRp
g
and R = = Rg . Depending upon the membrane properties, co and m, and

a
also upon the fact that Ro may not be less than the critical Reynolds

nunber of the rigid wall stability curve, it can be seen that the

discriminant, 5 co? 5 heo?r (o)
- { {c - - } - —— } , may, or may
Ro mRo

not, be negative. Unlike the trensformation for inertialess membranes,
the discriminant must become positive for sufficiently large Ro,
although, in a certain closed range of Rop, the discriminant may Dbe
negative., If, for example, m and co are so large that the discriminant
is always positive, there will be a double image of &ll rigid wall
points but no closed loop. Again, if the discriminant is negative at
the critical rizid wall Reynolds number (Roc), no closed loop exisis,
but, on the other hand, if the discriminant goes negative after Roc
(say at Ri), that part of the rigid wall, neutral stability curve up
to Ri, will map into & closed loop in the transformed (a,R) plane,
“hen the discriminant becomes positive again, the mapping gives stability

curves which eventually extend into regions where the asymptotic theory



breaks down. There is no reason to suppose, in this general discussion,
that the various regions of instability would not, in some céses,
overlap., Nevertheless, it can be stated that the closed stability loop
is not a unique product of the inertialess wall situation (although

a wall with a purely inertial response, co = 0, cannot exhibit such
behaviour). For all theses curves, ¢ is less than .3 , and the class B
ocurves, which would be expected in these cases, cannot be generated

by such-a transformation. ( N.B. All the stability curves obtained
from the present program have upper parts which exhibit values of c
greater than ,3 (sometimes markedly greater). )

The same observat?ons may be made in the Blasius boundary layer
situation, when the appropriate definitions of u and v are used and
alterations in the scheme of dimensionless variebles are taken into
account. Considering a membrane under tension only, and making the

tension dimensionless in the same manner as Hains (1965), we have

au(w) oR au(w)
A 5 s vwhere — is the steady state velocity
dy Ta dy

gradient evaluated at the wall, and T is the wall tension made
dimensionless with the free-stream flow velocity. %“hen u is taken for
the Blasius boundary layer in the form

au (w) c

S — — (Lin (1955)), a transformation
dy a(1-c)
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equivalent to those obtained for plane Poiseuille flow may be derived,

a a Ro 8o '
i.e. {-}3-{-}2+_(1"C)2=0 and R=—-R0.

2o - 8o aoT a

This transformation predicits that the rigid well neutral stability

curve 1is agéin transformed into closed loops which disappear at

(a,R) = (1.1,2900) when T = 2800, whereas Hains (1965), in his
calculations for this problem, obtained closed loops disappearing at
(a,R) = (1.0,4000) when T = 4025 . Hains (1965) has commented that,

if the tension were made dimensionless by using the boundary layer
thickness instead of the free-stream velocity, the curves vould probably

not close. Such a prediction is not born out by this analysis, since

neking the tension dimensionless in this manner merely changes ths

form of « to au(w) or?
- e 5 and the resulting trensformation still
dy Ta :

predicts the closure of the stability curvese.

The low wave number region elways causes some difficulty for the
boundary layer situation because the dominant term in the perturbation
pressure is the inviscid pressure (as expected when the boundary layer
thickness becomes insignifiicant on a wave length scale) and the stability
is then govérned by the classical Felvin-Helmholtz analysis. A pure

membrane loses its stiffness for large wave lengths (because of the

very small surface curvature) and is unstable when coupled to an inviscid
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flow. This has lead to considerable discussion (Benjamin (1960),
Landah1(1962)) dnd the employment of "local" stiffness terms in the
membrane formulation (Landahl (1962), FKaplan (196))). Such a difficulty
does not arise for plane Poiseuille flow since the coupling of the
membranes to the flow does not necessarily cause instability in this
caseo To show this, the leading term frou the asymptotic expression
for the pressure must be derived (by use of the results of Lin (1955))

and then inserted into the membrane equation (see Section 2.2), giving

2 l}- Dm 8 C02
c (1 + m) -Cc {»—-+ i ——-} + { —-n-3 } =0 *

3 al 15 R

~

This equation is equivalent to that used by Landahl (1962) 4o study
the role of damping in the boundery layer problem, and it predicts

instability to occur, for D # O, when

2

8 Co 15 2 )~
(1 + m) { —-n-— } > 0 or R > { — mCo } ’
15 R 8

and, for D = O, when

S Co b 1 8 L -3
(1+m){"—-m—§}>— or “>{——-—2[—--— } .
15 R 9 nco 15 9(4+m)

It can be seén therefore, that, as a tends to zero, the stability

boundaries in the (a,R) plane become parallel to the a axis, eventually

intercepting the R axis, and also that the effect of damping is
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destabilising. Inserting in these formulee the values of m and cp
considered in the present calculations, we obtain the following values

at which the R axis is intercepted

co (m=1) R (D #0) R (D = 0)
3000 4110 5370
5000 6850 8950
10 13700 : 17900
107 137000 179000

~

A ‘major point which can be made is that the asymptotic curves, for

very small &, are at greater Reynolds numbers than the critical Reynolds
numbers of the respective {lexible wall curves, and hence Rc is still
determined by the computed portions of the curves, Computations performed
to check the stability boundaries predicted by this asymptotic analysis
were inconclusive, because the progrenm is not well suited for examining
small a conditions,

It should, perhaps, be added that this argument is of limited
practical interest, since the parameters describing the flexible walls
would not be expected to hold in eny real physical situation on a length
scale where details of the oversll wall support conditions becomne
important. Further, when the wave length becomes much grea{er than the
width of the pipe, the physical limitations on the length of the pipe

would introduce the important effects of the ends.
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fnother region of interest in the present stability problem ié_that
of low Reynolds number. Landahl (19é:3 has found regions of class B
instability here, cond Nonweiler (1963), using a similar approach to
Benjamin’s to dbtain qualitative information on the stability of the
boundary layer over various flexible walls, has obtained results for
a membrane, similar in nature to those of Landahl (i.2. he predicted
regions of class B instability at low R). ( Lock (1954), using an
asymptotic analysis to study the flow in the laminar boundary layer
between parallel streams, also gives neutral stability curves at very
low R, ) A1l these results, based on the asymptotic analysis, assume
that aR is large. Fro¢ the aprearance of these curves, it may be more
informative to investigate small R solutions in order to see if the
wall waves can be excited by very small fluid velocities. Such an
approach may be summarized as follows, If we assume that the wall
damping is zero, and expand the wave speed, cp (the physical wave speed
is used since it has not been made dimensionless with the fluid velocity),
in terms of R, and then of m-1, in order to study the most unstable
class B disturbances at smell R and small departures from wall rigidity,
we obtain

oy = ( c11 + Cio/m + O(1/h2) ) + R{ co1 + Can/m + O(1/b2) )+ O(Rz) .

In this series, c11 = co (purely real), and, letting m tend to infinity,
we see that the remaining terms independent of m (021, Catls o o » etc, )

nust be zero since m tending to infinity corresponds to a free flexible
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wall. At R = O (zero flow velocity) there is no energy supply to feed
a wall disturbence, and so the imeginary part of ciz must be positive,
indicating stability., It may be seen that, for large values of m
(corresponding to class B modes, sinceAm is made dimensionless with
the fluid density, p), there must be a region of stasbility for low
enough R (R, strictly spealking, much less than unity). This result may
be derived analytically.

As regards possible favourable effects on {low stability es a result
of’ using flexible walls, we may see in the present results that increases
in Rc are possible, although not large, and that the regions of high
eniplification rate, agsociated with the upper parits of the neutral
stability curves, may be moved to higher Reynolds number by a suitable
choice of surface flexural rigidity. ilowever, we must echo the conclusions
of previous papers, that the new modes of instability introduced by the
wall flexibility produce a generally more complex situation, where ng
substantial improvement in stability zppears to be possible.

The cohputer program has been used to study the present staebility
problem for symmetric stream function distributions between two identical
vialls. For the rigid wall problem, symmetric strecam funcitions have been
demonstrated to be the most unstable, and no change is anticipated in
this respect, when the flexible walls are introduced. It is possible
that dissimilar walls could improve stzbility, and the present progran
has been set up to cope with this situation. However, no radical

improvements in stability would be expected, and no computations have



86

been performed for this case,

We may finally remark on the approach employed in the present vork.
This has proved very satisfactory, and no complications are envisaged
in applications of this method to othef problems. Indeed, given the
computing facilities, a general system of programs, with the same status
as that of Landahl’s programs (1966), could be constructed. /ith further
computing scope, the present method of solution could be modified to
solve directly for the eigenvalues. Moting that ¢ occurs quadratically
in the present problem (see Sectioﬁs 2.2 and L.h), the retention of
¢ in cxplicit\form when setting up the matrix equations would have

generated & matrix equation of the form

( (A)c2 + (B)c + (D)) %z =0 , where (A)} (3) and (C) are nmatrices

of the same order as those used in the present method, ¢ is the eigenvalue
and x the eigenvector. This may be converted to standard form by svbsititut-
ing (Dex = (I)x: ;s where (I) is the unit matrix and x; a vector,

and solving the above as two simultaneous equations %o give

| . n
(0) ;-(I) (ry x
e rihid T shaaketaataad | -0 .
(&)™ ®): W) ©) 5 (1) %

In this standaerd form, the matrices are of twice the order of those

involved in the present method., The great advantage is that this would
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provide directly the. complete spectrum of eigenvalues of the physical
problem, and would eliminate the need for an iterative scheme, as used

in the present solution.
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Appendix A, The different formulations.

A.1. Formulations 1 and 2,

The operator (2_1_), for TFormulations 1 and 2, is given by

) 2 2
HG = | 9 - 22227, oy san {(1-—51'2) {fl_f_
ay't ay® ) ay®
2¢ (+1)
26 (~1)
B g -
B d7¢(+1) + ¢(+1)
R dy3
B a%(-1) _ 4y
o a3
B
= 5 -
- ¢! daX (?‘_ﬁ - a2¢}
L2
dy
ag(+1)
dy
_dg(=1)
dy
0
.0 -

- 9.296} + 2(,5}

—
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where u= | 2¢ -

—iaRg (+1) + (*1)
dy

dy

1 a¢ (+1)
2 ay

1 ag(-1)
2 ay

iaR¢(=1) + E?_(_” {—az +» d___qi(_ﬂ}

°

1 d ¢<*1)}
2¢(41) ay”

26(=1) ay?

and ¢ = ¢(y) in the first entries of the vectors.

The complex conjugete adjoint operator (E*), for Formulations

1 and 2, is given by

s
fire(a®) = atgr _ o

o ¢y2

2 a%3%

a%3%(+1)

dy2

+ haza*(+1 )

, e

dy2

- 4a%3%(-1)

4+ a ¢‘~’ + iaR "
Ay dy?

%3 _ a%(y%
T2

+ (202402 D)5

e |
-
k}




where

5
H

2(;) k34

1 a7F%(+1)

2 dy3

2 ay°

- (1)

e

R 3(-1)

B

b e

- {iaR - f_}

_ 1 a%gH(-)
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c iaR {d ¢
ay
ag#(+1)

dy

ag*(-1)

dy
g (- 1),

dy3

2%

2Lz

"8.95*}

&FH(a1) _

dy

dy

R

gx(+1) + f‘f}(“) {-az

$*(+1)

Zgr(=1)

—

- {1&’{ - } 3x(=1) - 5*(—1) {_az

and 5*: #%*(y)in the first entries of the vectors.

+ d2¢(+1).

dy2

2
-1)
L aTs(-1)

dyz

i)

25 (+1)
1

;;?—1 )

}
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The operator (H), for Formulation 3, is given by

n) = | &°¢
!

+

dy 2

-2

dy
23(s1)
2¢ (=1)

By a’¢(+1)
R c‘fy3

¢ (+1)

B B, )

—— w————tans

R dy3

2 2
8.2 (}_f_ + iaR {(1—y2) {d_ﬁ - a2¢} + 2¢:§

s

dy2

—
. , —

iaR {ij’_ - a2¢»}

.'dy2
ag (+1)
dy
_ dg(=1)

dy

0




where

Ie

1

_ 1 ag(+1)

2 dy

_ 1.d¢(—1)

L 2% __|
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and ¢ = ¢Qy) in the first entries of the vectors.

The complex conjugate adjoint operator (E?), for Formulation 3,

is given by

Eﬁ(gﬁ) =

Il'.'ﬁ 2_*
o2 Y
2

dylF dy.

dy

_ d2¢(+1). ag*(+1)

dy

3% (~1). ag*(~1)

dy

o

dy2

dy2

-
p 29(1)

+ ghaﬁ + iaR.{

+ 1a7g%(41)

- 4a%F%(=1)

f_f_ -d 8% + (2—a2+a2y2)¢*}

&

Ovna—
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2-1
- ¢ | iaR {?__?_u - a2¢*}

ndy2
(-iaR¢(+1) - g2 @)y d_¢7*(+1)_
dy &y
(1R (~1) ~ a2 ‘_13('1) ) icfﬁ'_i(-‘l)

dy dy
| 37n ) R -
- d ¢ (+1 - 1 ¢:§'(+1)
dy3 _ B

_ aG5(=1) + R gn(1)

. [__dy3 Ez —
where
uk = | 2g% |
1 a2gn(s1) _ .2 ﬁ*(ﬂ) . ﬁ_ _ iaR} G2 (+1)
2 gy dy 2R
_1a%E() o2 (1) {'_‘l - iaR} % (=1)
2 dy° dy 2k
- 2 3(a)
Py
2 3(-1)
Fo —

and ¢*= ¢*(y)in the first entries of the vectors.
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Formulation L.

The operator (ﬂ), for Formulation k, is given by

—_—
2

a*p 02 48

dyl" 2

dy dy2

26 (+1)

2¢(-1)

joi} d3¢ (+1)

R ay’

+ ¢(+1)

B a(-1)

R dy

0]

- ¢(~1)

0

b

2
+ az*gé + iaR {(1"}'2) {i_?_ - 8-2¢

Smot——

} -
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vhere

I=
1

25 ,
~iaRp{+1) '

iaRs(=1)

_ 1 ag(+1)
2 dy

1 ap(-1)

— ———

2 dy

2

- i:i(+1) + (2a.2 + iaR) ¢(+1)
2
ay

2

i;f('1) - (2a2 + iaR) ¢(~1)
2

| & o

and ¢ = ¢(y) in the first entries of the vectors.
The complex conjugate adjoint operator (E?), for Formulation &4,

is given by

s |

R by 27y T T8
ﬂx‘:(gﬁ() = E-‘/Ji - 2&2 (—1-_9:5: ¢~fz + l&’i{ ‘F’ (J 95 (z_a sa y2)¢>\-}
1. 2 T

dy dy dy2 dy

dg(+1)

dy
ag*(~1)

dy
, a53%(+1)

dy2

D
2 TP o)

dy2

ag*(+1)

+ ha2§*(+1)

dy
dq_p‘:(_1)

a
el —




where

2
- ¢ | iaR {‘}_f_{ - agé'*}
Qyz
ag#(+1)
dy
ag*(~1)
dy
fi;ﬁ(+1) _ E. 3 (+1)
dy3 Ey
SLCUSUINL
ay’ Ea
0
| O, —
2¢% ——]
1 @254 (41) {R _ iaR} S4(41)
2 ay° 28
ok -
_1 a :( 1) . R _ iaR} 34(=1)
2 ay’ 2*32

- X E(a)

-

T

$7(-1)

I() O

and ¢*= @*(y)in the first entries of the vectors.
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Appendix B, The chosen formulation (Formulation ).

B.1, latrix entries for Formulation 4.

The (p,q) positions in the matrices for TFormulation 4 are given by

B“(p,q) = (ffﬁ—(.—nl’) (-1)%1-_, iaR(1+(-1);‘))(-1)% } {(1_1.(_1)(1)(_1 )'%]
“16 L
ity ()2 (5 =L
[“ (=) (=1)? }{16 (=D (1) 2 }
T (o2r2 . ] 2 2 .
+{{g_2:_ . az]z . 1&R{2 9_;_ 2]}%
+ {iaR {?_?_2 + a2 } } I, ’
P1aes) = - {:“ 0T et 1)5]{?1-(-1)%@1)%}
pig~1

}(1+(-1>P>(1 (-1)2=1) 2 ]
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D,(e00) = {% {1;1-f:}(u-(-nP)cw(-n%(-1) > ]

| Pq27r2 2 )2 22 2
321 (P,q) = { — +. a } + iak {2 - L - a } } I7
N I

- 2 2 5
+ iaR{_q_1+a }}18
-
N p+q—2
D, (pa) = = [ TR 1 e (c)P) (1= (1)) (1) 2
o1(psa) = =1 270 - _ (1=(-1)7) (1= (1)) (~
16 "B2
r - 2 2 2
-1iaR 37 4 a }}17
. \.Ll-

33 P -1 a-1
B, (psa) = {- P (44 (-1)P) (1) - iaR(1—(-1)p)(-1)E§] {(1-(—1)‘1) (-1)_2_7(
- e B

e, g
F=CoMED 2 [T a0) )
T 16

22
T 2 22
[T fe- 2 0]
L
. 0271’2 2
+[18.R{‘ + a }} 12 and
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3 R =t
Poo(psa) = {- 3_7.5 (1+(=1)P) (=1)2 = 1aR(1=(~1)P) (=1) }
16 q
. {E’_(nc-nqx-nZ }
L
' p+o=1

+{i”.‘3{1+1}(1-(-1)1”)(“(-1)‘1)(-1) 2 }

16 "B Ia

°n% 2 |
- ! iaR 4 +a I
3 s where

L

+1
2
I1 = /y CO\S(pﬂTy/Z) cos(amy/2) dy

-1

p+q-1
- v 4. 8 }(1—(-1)1’*‘1)(-1) 2
(p+q)w (prq)2a®
p-a=1
o [1 - __._8;__}0-(—1)1"‘1)(-1) 2
(p-q)wr (p-q)‘z_jr2 |
p+a - p-q
+ ___f*?__ (1+(=1)P¥ (1) 2 . b (a1 )P q)(-1) 2
(p4q) % (p=q)%r®
£ £ q,
1 2(-Ne e
= _+ forp=q#0,
3 q21T2

E_ for p = g =0,
3
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-+1
I, = [ oF sinGony/2) sinlay/2) ay

~}
p+g=1
I FR }(1-(-1)1’*‘1)(—1) 2
(p+a)r (p+q) &
p~g~1
w0 1—__1_] (1=(=1)P"9) (=1) 2
(p-q)rr (p=q) % "
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SR (P DL I G I N (P GO LD I DR
(p+q)%n? (pq)%®
for p # q,
= 1. 2(-1)1 for p=q # 0,
S 229
3 qm
= 0 . for p=q =0,
+1
Iy = / sin(pry/2) sin(amy/2) ay
-1
p-g-1 po-1
= =P ) 2 o (e )PHY () 2
(p-a)w (p+q)ar
for p £ q,

= 1 ., Torp=q#0,

= 0 for p = q = 0,
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+1
[ cos (py/2). cos(amy/2) dy

-1

ptg=1 p=g=1
L O O L T D B I CED L T CE D I
(prqlr (p-a)w
for p ¥ q,

1 for p=q#0,

2 forp=gq=20,

+1 .

f cos (pmy/2) sin(qmy/2) &y = O,
-1 N

+1

/ ¥° cos(pmy/2) sin(qry/2) dy = O ,
-1

+1
/ sin(pwy/2) cos(amy/2) dy = O and

/ y° sinlpmy/2) cos(qiy/2) dy = O .
-1



B.2. Matrix entries for the complex conjugate adjoint of Formulation L.

The (p,q) positions in the matrices for the complex conjugate

adjoint of Formulation 4 are given by

2 2 pa=1
B, (p,0) = K[Sj_ + ha? }(1-(-1)?)(14-1)%(-1) 2
8-2
2 2 B E o1
- [?__"Z (14(=1)P) (<)% + 22 (14(=1)P) (=1)2 } {3”_ (1= (1)) (=1) 2
b L
22 22
+ qw+a22-iaR q’+a2 T
— — L
([ s [2)
. qz'ir2 2 .
+{1aR {__4- a }} IJl +{27rq1aR}T1 s
I
- pxg=1
Dy (ps@) = iaR & (14(=1)") (1-(-1) D) (1) 2
4
3 N Big
+ P (4= (=)P) (1= (1)) (=) 2
6!
p+q-1
ot U RCECOLKECORICHIK
16 "B E
- jaR {?-212+ a2 } Il;- ’

L



Byp(pya) = f{fi’.

Ay

+ iaR {q

L

2 2 2
+a2}2-iaR{qW +a2}
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A

2 2 o
....7_7: + a }16 - [aniaR}Tj

2ig
b a) = o 72 L= L]0 =)0 2
12 16 ol
2 2
- iaR - o 3.2 I
i i ,
(£

R
Dy (psa) = PRy

16 =

} (12 (=1)P) (12 (1)) (= 1)

1
2

22

. Tr 2
-1&R{q +a }17 ,

L
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- 22 p+q-1
Ppopsn) = = T[T+ 262 ] (a0 (=G (1) 2
bk '
~ ]2+g"‘1
S LT ] =R e 2
IR

2 2 2 2
+{{gﬁr_+a2}2-iaR{‘qﬁ+aZ}}I3

L Tl
22
+ iaR [ﬁ_ + az} I, - {ZﬁqiaR} T, and
pta-1

Dyp(psa) = - der I (1=(=1)P) (14(-1) D) (1) 2
k

30 B9
= PO (4 (=1)P) (14 (-1) D) (1) 2
6l
pq=1.
» PR [‘_ o1 ] (14(=1)P) (4= (-1)9) (~1) 2
16 B2 E
- iaR {_qi’ii 02 } I ,

L

where the integrals from I1 up to 18 are given in Appendix B.1 and

m

the integrals from T, up to 11'_ are given by

1
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] .
/ y cos(pmy/2) sin(quy/2) dy

-1

p+q . pra-1i
- (1+(-1P" (1) & & (1=(-1)P*) (1) °
(p+a)m (p+q) 5”
B-q p-a=t
g E L G T (O S
(p-q)r (p-q)
] for p £ q,
(-)* for p=q#0,
0 for p=q =0,
+1
/ y sin(pny/.?) cos(qny/Z) dy
-1
pta p+a=1
- A= (-) 2 4 2 (=(=1)P (1) 2
(pro)m (p+q) 2
P-q p-c-1
- A+(=DP" (1) 2 4+ 2 ({4-(-1)P"V(-1) 2
(p=q)er (p~q)%”
) for p # q,
= _(i)q for p=q £ 0,
qr
0 for p=q=0,
+1

[ v cos(pmy/2) cos(quy/2) dy

-1

0

and
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‘ i sin(pmy/2) sin(anry/2) &y =0 .
Tl,.= / y

-1
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Appendix C. A simple flow diagram for the computer program,

IStart.!

/
\ |Read in a, R, <]E'more data. Convergence not obtains@ L.
7 jm, d, Cco, S in this search.
and ¢® and store.
o_,2.,.8
I —4 ¢ =¢ ;C . If number of
. tions = L.
Caloulate °, ef and iterations =k
e and store. If number of /N
4 iterations < L.
9 N
Set e=eji. ),
<
~
Ean
2 3
2 e° e
Calculate spectrum \If e=2". Find ¢°® Ifl‘*zp‘ > 001 .
A for e. 4 and store.
If e=29. 10 e=ef. \}’ A
_r Calculate
§ Pind eI Pind ¢} e and store.
Mend store, and store. N
‘ -
. Compare ¢° and e°. >
Set e=ed. Calculate ei,
ed, ¢® and e° \
and store. Yo of2_.z
\/ Ir|- T < .CD1 .
L e
4 & Set e=2%,
Print eigenvalue (c®).
N/
If required, calculate
. N
If nore data. and print stream function
< and Reynolds stress
distributions.
bV g /
\ If no nore data,
>

Stop.




Number of
cosine
terms in
series,

10
12
14
16
18

20

Formulation 1.

Real Imaginary

part. part.

.3186, .0292
0247

.0256

.3231,
03234,
.3231, .0261
.3251, ,0262
<3231, .0262

.3231, .0262

Formulation 2.

Real
part.

« 3455,
« 336k,
<3234,
3231,
.3232,
«3231,

3232,

Imaginary

part.

L0163
018l
.0269
0267
0261
.0262

.0263

Formulation 3.

Real

part.
.3187,
. 3230,
. 3228,
.3231,
3231,
« 3231,
3231,

Imaginary
part.
.0292
.024,6
0241
.0261
.0262
.0262

0262

Formulation L.

Real
part.
3187,
.3230,

. 3227,

..3231,

«3231,
3231,
.3231,

Imaginary
parte.

.0292
0245
0211
.0261
0262
0262

. 0262

Formulation L.

(Ad joint problem.)
Real Imaginary
part. part.

. 3187,
. 3230,
. 3235’

3231,

.0292
02,6
.0258
.0261
3231, ,0262
3231, 0262

.3231, .0262

Table 1. Convergence of the most unstable eigenvalue, using the different formulations

ata=1, R=1600 and B, = & = 10—4. ( For this case, Thomas obtained an

eigenvalue o

obtained an eigenvalue o = .3231 + .0262i. )

.3231 + ,02624 and Lee and Reynolds, uéing an eleven term series,

801



Number of Formulation 1. Formulation 2. Formulation 3. Formulation l. Formulation I,
cosine. (Adjoint problem.)
terms in Real Imaginary Real Imaginary Real Imaginary Real Imeginary Real Imaginary
series. part. part. part. parc. part. part. part., part, part. part.
8 .2870, .0051 «332h., 0089 .2873, 0055 .2873, 0055 2873, .0055

10 .2955, 0138 «3331, 0062 2954, 0139 2954, 0139 <2955, 0139

12 3014, JO145 . 3006, .0169 299, 0147 <299, .O1A7 301k, 0145

1 23016, 0143 « 3003, L0152 . 3015, 0143 _ . 3015, 0143 . 3015, 0143

16 3013, 0141 3010, 0149 « 3013, 0141 «3013, 0141 3013, L0141

18 .3012, 0142 3007, .0135 <3012, 0142 3012, 0142 .3012, ,0142

20 3011, 0142 . 3008, .0140 3012, 0142 . 3012, 0142 « 3012, ;0142

Table 2. Convergence of +the most unstable eigenvalue, using the different formulations

at a =1, R = 2500 and E

T = 10-4. ( For this case, Thomas obtained an

eigenvalus o = .3011 + 01421 end Lee and Reynolds, using a twelve term series,

obtained en eigenvalue o

L3010 + 014734, )

601
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Ea—1 = Eb-1 Tigenvalue. Ei—1 =»Eb-1 Eigenvalue,
Real Imaginary Real Imaginary = Real Imaginary Reel Imaginary
part. part, part. part. part. part. part. part,

10%, 0 .3013, 0148 -10%, 0o .7010, 0135

0, 10°  ,3018, .0140 0, -10°  .3005, .01L3
102, 102 .3016, .0k -10%, -10°  ,3007, .0139
10°, © 3012, L0142 -10%, 0 L3014, JO141
0, 10°  .,3012, .0i42 0, ~10°  .3011, 0142
102, 10°  .3012, 0142 ~107, -10° 3011, Ot
10%, 0o 3012, 0142 -0, 0 3012, 0142
o, 10*  .30i2, .0142 0, -10%  .3011, 0142
1o, 10t L3012, L0142 ok, 1ot L3012, Lofke
10°, © .3012, 0142 -10°, © 3012, 0142
0, 107  .3012, 0142 0, -10°  .3011, .0142
10°, 10° 3012, 0142 ~10%, «10°  .3011, .O1L2

Table 3. Calculetions to determine the values of Ey and F at
which the walls are, effectively, rigid, Por the above
results we use a twenty cosine series and tabulate the

most unstable eigenvalue at a = 1 and R = 2500,



R 1000 20C0 3000 1,000 5000 6000 7000 8000 9000 10000
.0638 .0388 .0260 L0181 .0127 . 0087 .0057 .0033 L0014 =.0002
.0578 .0329 .0207 .0133 .0085 .0049 .0023 .0002 . =,0013 .—.0026
..0521 .0278 0163 .0096 .0052 ,0022 -,0001 =-.0017 =.0030 -.0C40
.0L69 023l .0128 .0068 .0030 000,  —-.0014 ~,0027 —.0037 ~.00Lk
.0L.21 .0198 .0102 »0050 .0018 -.,0003 =.0017 -.0027 =-.0033 —-.0037
0400 .018, .0092 000 .0015 =.0003 =-.0015 =-.0023 -.0028 ~.0031
0380 «0171 L0085 © JO0W1 L0014 —=.0001 -.0011 =-.0017 -.0020 -.0022
.0363 0161 0080 L0039 -.0017 .0003 -,0005 -.0C09 ~-.0010  =.0010
0346 .0153 .0077 0040 0020 .0009 000N, .0002 0002 0003

Table 4. Tho imaginary part of the most unstable eigonvalue of the rigid wall problem,

for different values of the fluld paremeters (a,R); obtained using a thirty

cosine seriese.

Lt



6000
7000
8000
9000

10000

Table

8650
7100
6050
5350
4900
4750
4700
1,800

5000

. 588
.905
855
.820

002

R

1.100

C.
L

9250
7600

5750
5350

5200
5200
5500
5800

.930
875
.835

112

[ ] 001

1.105

C.
1

.000

1.060
1.093
1,095
1,094

1 . ngl-

C.
2

R

8850
7550
6700
6400
6500
6850

«930
.820
<845
815

= -.001

1.055
1,070
1.075
1,075

C,
1

9600
8250
7500
7300
7500

9000

. Points on the rigid wall necutral stability and constant

= -, 002

amplification curves, obtainad using & thirty cosine ssries.
P ! 3 o



.800

.850
.900
«950
1;000
1.025
1.050
1.075

1.100

Teble 6. The real part of the most unstable eigenvalue of the rigid wall problem, for

different values of the fluid parameters (a,R), obtained using a thirty

cosine series.

R 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
L3064 42772 L2606 .2,90 L2500 L2328 L2268 .2216  .2171  L,2131
170 .2868  .2693 L2571 L2477 L2401 .2339  ,2285. L2239 .2198
23272 42957 .2775  W2647 259 2471 2506 .2351  .2303  .2261
L3370 3042 J2851 L2718 .2617  .2537 2470 L2413 .236L  .2320
W3W63 3121 L2925 L2785 L2681 L2508 .2529 L2471 L2420 .2575
J3508 359 .2957  W2818 L2712 W2627 2558 L2498  J2UW7 2401
J3551 L3195 .2990 L2848  .27h2  .2656 2585  .252% L2472 L2426
J3593  W3231 .3023  .2879 2770 #2683 .2610  .2549 2496 2449
3634 o3265  W305h 42907 2796 L2708 .2635  .2572 2518 .2470

Ll
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a R R - R a T a
.85 8600 6000 980 1,040
.90 7350 7000 .910 1,058
.95 6300 8000 870 1.04,8
1,00 5800 9000 .838  1.030
1.05 6500 - 7800 10000 818 1,015

Table 7. Points on the rigid wall neutral stzbility curve, obtained

using a twenty cosine series.

20 cosine series, 30 cosine series.

R c. c. : R c. C.
8600  .226 9850 213
7350 .239 8150 «228
6300 .253 6950 .21
5800  ,262 : 6200 252
6500  .263 5850 <261
7600 « 250 5800 e 253
6000  ,258 +265 5500 «266
7000 242 «260 6350 « 266

80CO0 231 253 60C0 256 0267

9000 222 o246 7000 «2L0 «262

10000  ,215 «239 8000 229 «257

5000 221 «250

10000 246

Table 8. Points on the spatial neutral stebility curves, obtained
using twenty and thirty cosine series for the rigid wall

problein,
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Yy  Stream function.- Reymolds y  Streem function. Reynolds

stresse. stress.
Real Imaginary Real Imaginary
part. part, _ part. part.
00 1,0000 -0000 0000 .00 1.00C0 .00C0 .0000
05  .9960 -.0021 ~-,1666 05 997 -,0001 -,0084
.10 .98 4~.0082 -« 3231 .0 .98359  ~.0004 -.0181
15 9640 =.0181  -.4597 15  .9775 =.0010 -,0302
.20 L9353 -.,0309° -,567L .20  .,9603 -,0020 -,0,48
.25 .8978 -,0459 ~-,6388 «25 9381 -,0033 =,0600
«30  .8513 -,0618 ~,6689 30  .9106 =-,0050 -,0722
«35  .7958  =.0773 -~.656L &35 8773 -=.0069 -.0795
40 7318 ~,0909 -.6045 40,8331 -,0089 -,0853
L5 L6602 -,1012  =,5206 L5 .7932 =011 -,0982
.50 5825 ~,1070  -.h16L 50 Jj22 -,0139  -,1257
55 5007 -.1073 -, 3057 55 686 -,0177 -.163L
60 4172 ~,1019 ~.2022 .60  ,6183 ~,0225 ~-,150f1
.65 3348 =,0911 -,1170 65 B30 -,0273 -,17567
.70 .256h -,0758 -,0561 70 436 -,0296  -,109L
g5 .86 -,0579 -,0198 75 L3807 -.0265 -,0107
B0 1220 -,0395 -.0032 80 .2808  -.0167 06562
.85 0706 ~-,0229 0012 85  Ji8Lh ~,0029 .078%
.90 0322 -,0100 .0008 .50  ,0815 L007h .0393
.95 0083 ~,0024 « 0001 .95 .0223 . 0066 .0052
1.00 ,0C0Q «00C0 .00C0 1.00  ,0CC5 .0002 .CO00
(a) (v)

Teble 9. Stream function and Reynolds stress distrivutions
obtained flor the rigid wall problem at
(a) (a,R) = (1,100) using a thirty cosine scries, and

(®) (2,R) = (1,1600) using a ten cosine series.



.00
.05
.10
.15
.20
.25
«30
«35
40
45
50
«55
«60
65
« 70
.75
.80
«85
.90
<95
1.00

Stream function.’

Real

part.

1.0000
9976
+9902
.9780
9607
9383
.3105
877
.8385
.7936
o 1425
6816
+6187
» D32
11566
« 3605
<2601
J1642
.0821
.0230
. 0000
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Reynolds
stress.
Imaginary
part.

.C000 «0000
-,0001 -,0111
‘—.0006 -.02%0
-.0013 -.03,8
~-,0023 -.0462
~,0036 =-,058;
-.0052 -.0714
-.0072 -.,0841
~-.009  -.0969
-,0120 -, 1121
-.0151 =,1332
-.0189 =,1625
-.0236 =.1916
-.0286  -.1911
-.0316 =.1310
-.0290 -.0252
-,0190 0621,
~.00,5 .0780

. 006 038

0061 .0050

0000 0000

()

«55

«65
.70

Stream function. Reynolds

sStress,

Real Ipaginary

perte part.

1.0000 .0000 .0000 .
9976 -,0001 =.0114
.9902 -,0006 -,0229
.9780 -,0013 -.0346
09607  -.,0023 -, 0L6L
.9382 -,0036 -,0586
.9105 -,0052 -,0712
877, -.0072 -,0810
.8385 -.009y =-.0972
.7936 =.0120 -.1121
.7425 =-.0151 -,1330
686  -,0189 ~-.1627
5187  =-.0236 -,1917
Sh32  -,0286 -.1909
L4556 —=.0316 ~.1310
3605 =-,0290 -.0253
2601 -,01%0 .0625
JA642  -,0045 .0780
.0821 « 0064 .038L
.0230 . 0081 .0050
.0000 .0000 000

(v)

Table 10, 3tream {unction and Reynolds stress distributions

obtained for the rigid wall problem at

(a) (a,R) = (1,1600) using & twenty cosine series, and

(®) (a,R) = (1,1600) using a +hirty cosine series.
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y  Stream function.  Reynolds ¥y  Stream function. Reynolds

stress. stress.
Real Inaginary Real Imaginary
part. part. 4 part, part.
.00 1.0000 .0000 .0000 .00 1.0000 .0000 .0000
.05  .9980 »0000 +001L .05  .9979 0000 .0003
A0 L9917 .CO00 0001 10,9915 .0000 .0008
.15  .9809 .0000 ~-.0006 .15  .9809 .0000 »0009
.20 .9659  .0000-  LOOiL .20 .9659  .0001  ,0O15
25  JOL66 » 0001 .0022 .25 946k 0001 L0017
$30  ,922) . 0001 .0003 30 .922, . 0002 .0020
35 L8935k .0001 . 0003 .35 .8936 . 0002 .002},
L0 ,8598 .0002 . 0029 40 .8598 .0003 .0026
L5 8207 0002 . 0026 A5 ,8208 .0003 0031
50 7759 .0003 -,0003 FO L7762 0004 « 0031
<55  .7254% . 0002 0012 .55  .7256 . 0005 0034
.60  ,6686 L0003 .0048 .60 6688 0006 .0036
.65 .60,2 L0004 ~,0008 .65 L6048  .0006  .002L
.70 5322 0001  -,0117 .70  .5329 .0005 ~,0050
<75 4508 -,000h  -.0010 «75 4512 L0001 -,C031
.80  ,3558 0012 .0580 .80 .3568 <0014 .0585
.85  .24,97 » 0081 <1346 85 42509 .0087 <1440
.90 L1423 .0186 . 1248 .90 L1425 .0193 1247
.95  JOuEL .0170 .0289 .95 L0466 L0170 .0283
1.00 ,0001 ~,0001 .0000 1.00 0000 . 0000 .0000
(a) (v)

Table 11. Stream function end Reynolds stress distributions
obtained for the rigid wall problem at
(a) (a,R) = (1,6400) using & twenty cosine series, and

() (a,R) = (1,6L00) using a thirty cosine series.



118

¥y  Strecm functioh.. Reynolds ¥  Stream function, Reynolds
. stress, stress.
Regl Imeginary Real Imaginary
part, part. ’ part. part,
.00 1.0000 .0000 0000 .00 1.0000 0000 0000
.05 ,9980  ,0000  ,00%1 .05 11,0050 .0069 5557
.10 .9919 0001 .0029 .10 1,0230 L0280  1.1405
.15 9817 .0001.  ,0035 15 1.04.79 06L2 41,7760
.20 L9673 .0003 .0055 <20 1,0755 163 2.1681
25 L9486 .000L . 006} .25 1,0992 L1846 3.1996
<30 .9255 .0006 .0079 .30 1.,1413 <2675  3.9260
+35  .8978 .0008 .0096 .35 1.,1038 3612 L.5757
40 865 .0010 010, L0 1.0701 L4593 5.0592
45,8280 0013 0127 L5 1.0057 .5525  5,2865
50 7852 0017 .0135 .50  .2098 6300  5.1507
.55 7367 .0020 0156 .55 7861 6807 L.7515
.60 .6820  ,002h L0173 .60 JBL26  .6952  L.0116
65  ,6206 . 0029 .0189 65 4912 L6681 3,0756
.70  .B5516 L0034 .0199 .70 3455 5991 2,09862
75 NT37 .0036 L0135 75 218, 498  1,2258
.80 .3841 .0040 L0372 .80 L1196 <3677 .5809
«85  .2799 . 008, .1288 .85 .0531 «2349 . 2005
.90  ,1665 .0190 1542 .90 L0167 .1163 .0399
.95 .0582 .0198 L0158 .95 0025 .0318 . 0022
1,00 ,0000 .0000 <0000 1,00 0000 .0000 . 00C0
(e) (b)

Table 12, Stream function and Reynolds stress distributions
(a) obtained for the rigid wall problem at (&,R) = (1,10000)
using a thirdy cosine series, and
(b) obtained for the adjoint rizid well problem at

(a,R) = (1,100) using a thiriy cosine series.

o
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R a . a R c.
3000 1.268 . 326 .80 7250 221
3500 1.288. .319 .85 5750 240
4,000 1.293 .313 _ .90 4750 «256
4500 1.293 . 306 +95 4000 <271
5000 1,288 303 1,00 3450 <284
5500 1.285 +297 1.05 3100 «296
6000 1.278 . 292 1.10 2800 «308
6500 1,270 .288 1.15 2650 .318
7500 1,258 281 1.20 2700 «323
8000 1.253 .276 1.25 2850 e 327

Table 13. Points on the stability ecurves, calculated for Ea-1 =

-1

E = =10, using-a thirty cosine series.

R a . : & R c.
3500 1,260 o 321 .80 7400 0223
4000 1. 300 315 «85 58C0 . 240
4500 1,300 .309 .90 4750 <256
5000 1.293 « 304 «95 4000 271
5500 1,283 .298 1.00 3500 28
6000 1.270 294 1.05 3100 « 297
6500 1.258 .289 1.10 2750 .308
7000 1.240 .285 1.15 2650 . 318
7500 1.220 .280 1.20 2650 « 325
8000 1.205 275 1.25 2750 « 329

Table 14e Points on the stability curves, calculated for

-1 . . .
By = -10, using a twenty cosine series.



a

. 109
146
184
<379
483
«595
. 723
. 800
850
+» 900
<950
1,000
1.050
1,081
1,068
1.042
« 930
. 790
648
«370
« 302
.258
« 200

(a)
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R o a R a R
12500 713 12700 .38 32500
141500 917 6170 <51 21,700
40000 1,003 5410 .62 17400
32500 1.034 5350 ‘ .97 17000
27000 _ 1.075 5750 .83 2,700
20000 1.079 5970 .70 30100
12500 : 1.088 6680 .51 36500
9280 1.077 9520
7900 .235 38300
68,0 131 43200
6170 22 1,00
5820 L2 33,700
6000 137 1,800
7500 AL 14700
10000 6L 4300
12500 241 14,2600
20000

27000

32500

1,0000

41500

1.2500

11,000

(b) (c)

Table 15, Points on the nesutral stability curve for a nmembrane with

tension only. The vaelue of the tension is .5x109 and the three
tables correspond to

(a) the present work,

(b) accurate points for the esymptotic transformation and

(c) approximate points for the asymptotic transformation.
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a R o, cpr' a R c. cPr
.800 3680  .293 1080 ,998 1200 «335 1410
.825 3650 .297 1080 1,000 4450 $ 346 1540
.850 3630 301 1090 1,013 L790 375 1800
.875 3600 . 305 1100 1.025 4860 .388 1820
.900 3600 .308 1410 1,050 4300  .398 1950
.925 3620 $312 1130 1,075 4910 M7 2050
.950 3650 .315° 1150 1,400 4910 128 2100
975 3775 v 321 1210 1,125 14,920 138 2150

.588 3880 « 32 1260
Table 16, Points on the flexible wall siabiliiy curves, calculaied for
(m,Dyc0) = (1,1000,3000) using a thirty cosine series (i.e.

damped membrane curves).

(a) (b)

R o, cpi R s cpi
3000 0260 18.0 2000 L0060 18,0
3300 .0030 $e9 ' 3250 008 15.6
35C0 0012 be?2 3500 JO0h2 k.7
3800 -.0013 4.9 3750 OO 15.4
4000 -.0028 -11,2 L0O0 L0046 184
1,2C0 =003  =18.1 1,200 L0056 23,5
4400 -.C059 =26,0 41,00 0075 33.0
4500 -.0070  =31.5 4550 0095  43.2
1,600 -,0085 =39,2 L600 0104 47,9
1,800 -.0139  =66,7 165 0113 52,6
5000 -.0270 =135,0 1700 0121 56,9
Table 17, Points on the curves of c ; versus w750 .0126 59.9
R Tor (a) 2=,95 and (b) a=1.05, celeuleted for 4800 L0116 557
flexible walls with (a,D,co )=(1,1000,3000) 4850 -0072 3449

4800 L0030 00,0

using a thiriy cosine series (i.e, damped
' )*.950 "o0079 -33.1
5000 -.015, -77.0

membrane curves),



.825
. 850
875
. 900
925
« 934
« 93k
917
.892
863

6000
6500
7000
7500

Cc.

252
.258
.263
. 269
273

o 27k

o277
. 281
.28l
.286
« 290
o 29k
« 300
310

.
S e2h7

C
pr

1620
1610
1560
1530
1500
14,90
14,70
14,60
1480
1520
1570
1740
1910
2100
2330

122

a

840
833
843
850
375
900
«525
950
975
1.000
1.025
1,050
1.075
1,100
1.125

R

8000
8100
8200
8250
8300
8300
8285
8265
8250
8220
8135
8170
8110
8110
8085

Table 18. Points on the flexible wall stability curves,

a

820
850
« 9500
«910
«925

(n,D,co) = (1,1000,5000) using a thirty cosine :

danped membrane curves).

R
5630
5470
5470
5500
5750

.839
500
1,000
14100

Cn cpr
«333 2650
341 2760
e 354 2500
. 352 2920
.382 3470
« 357 3300
109 3390
120 3570
430 3550
W39 3610
L8 3670
157 3740
465 375
o473 5630
L8 388

5000
8200
8220
8110

Teble 19, Points on the constant amplification curve for ¢ 5 = -2.5,

pi
calculated for a flexible wall with (m,D,co) = (1,1000,5000)

using & thirty cosine series (i.e, & damped membrans curve).



€00
.850
500
950
975
1000
1.022
1,023
1.018
1.011
«999
987

Table 20, Points on the flexible wall sitability curvss,

7880
7030
61400
6000
5910
6050
6500

7500
8000
8500
9000

W 237

245
253
. 262
« 26
. 267

. 268

. 265
« 260,
- 261
259
259

Cor
1870
1720
1620
1570
1570
1620
1740
1850
1980
2050
2260
2330

123

.800
.825
.850
+855
.895
» 900
2950
.970
1.000
1.025
1.050
1.080
1,075
1,093
1,095
1,09

9850
5020
8150
8000
7000
6950
6200
60C0
5850
5800
5500
6000
6350
7000
8200
5000

°r cpr
213 2100
e 221 1850
« 226 1860 .
v 229 1830
.20 1680
o201 1670
« 252 1560
«256 1540
« 261 1530
+263 1540
« 266 1570
267 16C0
« 266 1650
e 262 1830
257 2050
«250 2250
calculated

for (&) (m,D,00) = (1,1002,10") erd () (m,D,c0) =

(1,1000,107), using a thirty cosine series (i.e. Gamped

membrane curves).
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a R c. - opr a R c. cpr
.600 710 263 1880 675 8500 423 3600
625 7025 ,26L 1860 690 8,70 L33 3660
650 6500 266 1810 .700 82,0 433 3700
675 6760 257 1810 .725 8380 U571 3780
700 6670 .269 4790 J750 8320 W6k 3850
.725 6540 271 1770 .800 8150 486 3980
+ 750 61,00 273 4750 850 8070 504 LOT0
775 6300 .273 1720 .900  7SLO .523 4160
.800 6250 .276 1730 .950 7820 « 51 1230
.810 6500 .282 1830 1,000 7700 .557 4290
800 6775 .285 1930 1,050 7590 572 L3LO
.783 7000 .287 2010 1,100 7,90 .585 1320
L7500 7390 ,293 2170 1.150 7390 .597 4420
.738 7500 <29 2200 1.250 7200 .621 1,70
<725 7630 .298 2270 1,350 7040 611 1510
« 700 7880 . 304 23290 1.450 6500 659 4550
686 8000 . 309 21,70 1.550 6770 670 570
675 8090 313 2530 1,650 6650 689 L350
660 8230 . 320 2630 1.750 6570 .701 4610
650 8320 326 2710 1.850 6180 712 1620
638 8400 «335 2810 1.950 6410 72 L6LO
.628 85C0 « 343 2970 2,050 6350 J731 LELO
625 8515 « 360 3080 2,150 6300 .738 L85
625 8555 . 362 3100 2.250 6250 745 LEEO
650 8540 407 3480 2,350 6220 . 751 L5670
685 8510 L22 3590 2.4,50 6200 «755 LES0

Table 21(a), Points on the stability curves for demped membrane vwalls,
5250

calculatad for (m,D,oo) = (1 9““,5000) using a thirty

cosine series,
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a R A c. Cpr a R c. cpr
2.550 6190 756 4680 3,480 7200 662 4770
2,650 6190 .758 4690 3,520 7300 654 780
2.750 6210 o 157 4700 : 3.540 74,00 646 L780
2,850 6260 .752 4710 3,560 7500 .638 14780
2.950 6340 W 4720 3,600 7600  .630 4790
3,050 6160 732 4720 3.660 7700 .623 1,800
3,120 6600 .718 4730 3,730 7800 .615 1800
3,180 6750 .703 L4740 3.790 7900 .608 1.800
2,260 6900 .689 4750 2,830 8000 «601 4810
3,340 7000 .680 4760 3.830 8100 « 59k 1810
3,420 7100 671 4760 3.840 8200 .588 1,820

Table 21(b). Points on the 5tability curves for demped membrane walls,
calowlated for (myD,co) = (1,250,5000) using a thirty

¢cosine series.



.000
.050
. 100
+150
. 200
+250
« 300
« 350
400
450
«500
«525
«550
<575
«600
625
650
.675
« 700
« 725
750
775
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Stream function. Reynolds ¥y Stream function, Reynolds
' stress. stresse

Real Imaginary Real Imaginary

part. - part. part. part.

1.0000 .0C0D .0000 800  .2796 .0016 .0620
«9975 .0000 « 0000 L8110 .2581 .0027 L0746
.9901 0000 . 0001 .820 ,2362 .00,0 . 0860
.9778 ,0000  -~,0001 830 2140 . 0056 0955
. 9603 .0C00 .0000 Lo L1920 L0073 . 1027
. 9378 .00C0  -,0001 850 .1692 .0092 1071
. 9100 ,0000 =,0001 .860 1466 0112 .1087
.8768 L0020  =,0001 870  .1240 0131 . 1076
« 8381 0000 =,0003 .880 .,1015 0150 1043
« 7935 .0000  =-,0003 .890 0791 0167 .0995
« 7429 .0000  -,0006 .900 ,0569 .0181 -0938
7152 0000  ~,0008 £910 L0350 «0191 .0883
6858 =,0001 -.0008 «920 .0136 L0195 0838
65,8  -,0000  ~,0010 .930 =-,0073  .0195  ,0810
6219 =,0001 ~,0016 L0 -.0275 .01E8 .0801
.5873 =,0001 -.0032 «950 ~,0L67 L017L 0807
5507 -.0002  -.0062 .960 =-,06,8 0155  .0816
.5120 -,000L -,0101 970 =~,0812 0132 .0793
471 -.C006  -,012L .980 ~,0968 .0108 .0708
L2275  ~,0009  =-,0090 950 =-,1081 .00%0 JO4T7h
.3812 =,0009 .COL8 1,000 -,1173 .0C36 0000

03318 ™} 0002 00300

Table 22, Poinis on %the streanm function and Reynolds stress distributions,

caloulated at (2,R) = (.9,5270) for damped membranes with
(m,Dyc0) = (1,1000,5000) using a thirty cosine series. The

relevant eigenvelue is ¢ = .281 .
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y Stream function. Reynolds y Stream function. Reynolds
stresse. stress.,
Resal Taginary Real Imaginary
part. part. part. part.
.000 1.0000 0000 .0000 800 L2196 .0006 LOL56
050  .9973 » 0000 . 0000 810  .1958 0017 .0583
~400 .9892 = ,0000 .0001 .820 1715 .0032 .0725
JA50 9757 .0000  -,0001 830 .1L68 0050 08,2
200 L9566 .0000 0001 L850 L1216 .0072 .0950
250  .9320 0000 . C000 850  .0961 .0097 . 1015
»300 9017 « 0000 .0000 .860 ,0702 0126 . 1066
«350 .8656 . 0000 0000 870 JOk4 .0156 .1097
400 823 0000  ~,0002 880 0178 .0188 1111
450 7750 0000  =,0001 890 -.0088 .0221 1119
500 ,7200 0000  -,0005 .500 ~-,0355 .0253 ce 1131
«525  ,6200 0000  ~,0004 .910 ~,0623 028k .1158
550  .6582 .0000 ~,0006 .920 =-,0892 0312 1211
575 6246 L0000  -~,0007 .930 -.1161 .0337 .1299
600 ,5892 ~,0000 -,0009 L0~ 1429 0356 SAL2L
.625  ,5517  -.0001 -.0018 <950 =-~.1633 .0370 1575
650  .5123  ~,0001  ~-.0041 «960 -,1952 0377 1719
675 4707 -~,0003 -,0086 870 =,2201 .0381 1787
700 4267 -,0006 -,0140 .980 =.2437 .0382 .1663
.725 ,3800 -,0010 -,0160 «990 =.265L .0386 .1158
«750 43301 -.0013 =-,0081 1,000 =.2850 0102 « 0001

775 2767 -.0010 .013h

Table 23, Points on the strsam function and Reymolds stress distributions,
calculated at (a,R) = (.863,7500) for damped membranss with
(n,D,c0) = (1,1000,5000) using a thirty cosine series. The

relevant eigenvalue is ¢ = ,310 .
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y Stream function. Reynolds ¥ Stream function, Z2eynolds
stress. stress.
Real Imaginary Real Imaginary
part, parte. part. part.
.000 11,0000 .0000 .0000 .800 .0725 L0171 +1556
050  .9969  .0000  ,0002 810 L0450 L0216 1623
.100  ,9874, = ,0000 .0007 .820 0174 L0267 .1657
L0 .9717 0000 . 0008 .830 =,0103 .0321 «1665
«200 L9495 +0001 20013 80 ~,0381 .0380 .1653
250 .9209 . 0001 <0014 .850 =-.0659 ~OLL1 <1629
.300 L8855 . 0001 .0018 .860 -,0938 . 0506 . 1602
«350 833 0002 . 0021 870 ~-,1218 .0572 .1578
00 L7941 0002 0022 880 -.1493  .0639 <1566
450 L7375 .0003 .0025 .820 =-.1783 0708 .1570
«500 L6731 . 000k .0025 .200 =-,2068 0777 +1599
«525 6379 . 0001 .0027 910 =,2355 . 0816 1663
550 6006 +000L. .0029 .920 =,2648 L0914 772
575 L5611 « 000k 0023 «930 -,29,2 . 0981 +1938
600 5194 000k  -,0005 90 =.3239 «10L5 «2165
625 4752 .0003  -,0062 £950 =-.3538 . 1107 21,2
650 428l L0000  -,0127 960 -.3837 A6 L2722
675 378, -,0004,  -,0140 .970 =133 1216 289
700 3248 -,0006 -,0012 980 =021 . 1267 . 2758
e 725 L2672 + 0000 0309 «990 =-.4698 .1318 1975
750,205, .0026 077 1,000 =,4957 <1379 0038

o775 1402 . 0081 . 1250

Table 2L, Points on the stream function and Reynolds stress disiributicns,
calculated at (a,R) = (.9,8300) for damped pembranss with
(m,D,co) = (1,1000,5000) using a thirty cosine series. The

relevant eigenvalue is ¢ = 397 .



.800
.825
850
875
.9C0
«925
e 93U
.933
91k
.887
.858
L4 855
.850
.852
« 865
875
« 900
«925
«950
975
1.000
1,025
1.0%0
1.075
1.400

5320
5280
5225

5200

5210
5300
5500
6000
6500
7000
7500
7625
7750
7875
8000
8058
8143
8210
8270
8320
8380
8,30
84,50
85,0
85%0

(2)

272
o 27k
.276
279
. 281

287
« 290
+295
o 30k
e 322
320
«339
« 351
. 368
«379
o594
405
419
«430
N
451
60
168
479

Cop
1450
14,50
1040
1,50
1460
1510
1580
1740
1920
2130
2L.20
2520
2620
2760
29&@
3050
3210
3360
370
3580
3650
3800
3910
L 000
1120
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5050
5070
5120
5140
5220
5400
5750
6000
6330
6500
7000
7300
71,00
7500
7600
7750
7940
8180

8320
8600
8800
9000
9150
9370
9550
9720

C
T

.276
$ 276
279
281
0281
.28,
+286
.288
290
« 204
« 305
o321
328
« 337
« 345
« 358
376
« 397
L0
o2k
L35
o7
457
169
479
89
(b)

Cor
1350
1400
1130
1450
14,70
1530
1640
1730
1840
1910
2130
2340
2130
2530
2620
2770
2930
3250
2440
3650
3830
4020
4,210
12,00
1580
4760

Table 25. Points on the stability curves for thin plates, calculated
for (&) (m,D,c0) = (1,1000,(AOOO?+1O7a2)§) and
(®) (m,D,00) = (1,1ooo,(5x1o7a2)§), using a thirty cosine

series.
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2
?

ﬁ::-%h;

"R
N/

Figure 1. The coordinate system for plan=2 Poiseulle flow

with flexible walls.
the neutral stability
curve
a /™

the unstable region

the stable
regicn

,/}ﬁ R

the critical Reynolds numver

Figure 2. A typical neutral stability curve.
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"'001

oA

2000

1,000

6000

8000

Figure 3, Gurves of ¢, versus R,at fixed values of a, obtained

for the rigid wall problem using a thirty cosine series.
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.90

T 7 T ¥ ¥ 1 3

5000 6000 7600 8000 9000 100CO
R

Figure 4. The neutral stability and constent amplification curves for

the rigid wall problem, obigcined using a thirty cosine series,
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1.10

= precsent work (50 cosine series)
P

‘N Y S = Grosch and Salwen

«95.
© 0 & - Shen

« 90

«85]
~

..80.
| 1 ] v T 1 1

5000 6000 7000 8000 3000 10000

R
Figure 5, Convergence of the present rigid wall neutral stability

curve and comparisons with previous neutral stability curves.
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1.10
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0 2000 4,000 6000 80C0 10000
R

Figure 6. Curves of ¢, versus R, at fixed values of &, obtzined

for the rigid wall problem using a thir{y cosine series.
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«30

c e~ = = 20 cosine series

—_——— = %0 cosins series

o2l

022

.20 A

¥ L4 * 1 A )

5000 6000 7000 80C0 9200 10000
R

Figure 7. Convergence of' the spatial neutrel stebility curve for

the rigid wall problem.
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Figure 8, Comparison of the real perts of the rigid well strean

function distributions, obtainsd using a thirty cosine

series,
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-12 .

R = 10000

' T T L ¥ 1

oO .2 -l}- -6 - .8 1.0
y

Figure 9, Comparison of the imaginary parts of the rizid wall streem

function distributions, obtoinad using & thirty cosine series.
’ &
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Reynolds
stress.

oA
L]
[02]

-O 02 .ll- . 100

Figure 10, Comparison of the rigid wall Reynolds stress distributions,

obtained using a thirty cosine series.
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=1, R = 6,00 (20 and 30 cosine
series)

l8‘

a =1, R=1600
o6 (10 and 20 cosine series)

.2&

0,

.0 o2 ol o6 8 1.0

Figure 11. Convergence of the real parts of the rigid wall streem

function distributions,.
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-03 = 20 cosine series
% £ 4« = 10 cosine series
a =1, R= 1600
-002‘
-.01-
P
I~ <.
aY
W00 ey At
‘O1I‘
| 4 ¥ T ¥ 14 1
.O 02 .l{- .6 .8 100

Figure 12, Convergence of the imeginary part of the rigid wall

streem function distribution et (a,2) = (1,1600).
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-.OO@
6,
e V)
+ 000 fommttseentiemi ey T -
« 004 = 30 cosine series
% % = 20 cosine series
.0084 ;(
a=1%, R = 6400
.0124
016 ,L
QOZO,J
Ly ] 1 T T 1
OO .2 |Li- 06 08 100

Figure 13. Convergence of the imaginary pert of the rigid wall

streem function distribution at {a,R) = {(1,6400),
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Reynolds
streas,

-l

-]

it

20 cosine series

% « ¢ = 10 cosine series

"'01

o1

oo .2 cl{- .6 08 1-0

Figure 1lL. Convergence of the rigid well Reynolds stress distribution

Par N

at (a,2) = (1,16C0).
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Reynolds
stress. N %
.00 -*%mé‘;‘vi’r&':;f-w':;’;.”_'——_fwﬁﬁ VIS ot S = % }/\‘, -2
= 30 cosine series
054 VARVARNEES 20 cosine series
b4
15
.20
1 1 ) 1 4 i}
QO .2 o}+ .6 .8 1.0
y

Figure 15. Convergence of the rigid wall Reynolds stress distribution

at (a,R) = (1,6400).
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%‘::;
o
5 a=1,R=1000O§’ +honas
U « present work
(30 cosine series)
N
a =
" ('Lee and Reynolds (9 term serie
i | present work (10 cosine series)
02 ]
.0
7 7 T T \
.0 2 o .6 8 1.0

Figure 16. Comparisons of the resal parts of the present rigid wall

stream function distributions with previous work.
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~.05_,
¢ mrmmmm = Loe and Reynolds (9 term series)

=0} , . .
e BERVA %A = present work (10 cozine series)

e 03

.01

ARy U Al
e /\ ﬂx?" ._..l‘.‘uu?:....i)‘ _5 ‘7—‘—‘}5-"‘"}" 3 ,'. ;’«: } R
% s"“"“{

N
01 S L « =present work (30 cosine series)
—_
%5 = Thomes a =1, R = 10000
002—4
H | ] T ‘ T t
OO I2 cll» 06 '8 1.0

Tigure 17. Comparisons of the imaginary parts of the present rigid

wall stream function distributions with previous worz.
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Reynolds
stress.
-2 = Lee and Reynolds
(9 term series)
%« o= present work
(10 cosine series)
"'.1 "
-O -«
A
02 -t
e B e S S &
¥ % ¥ = present work (30 cosine series;
= Thomas
o1 a =1, R = 100C0
Peynolds
«2 J  gstress,
T ¥ ¥ T V
.O .2 ol(n .6 .8 1.0

y
Figure 18, Comparisons of the present rigid wall Reynolds stress

distributions with previous work,
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adjoint

-6,0q Reynolds

stress,

) \] 1 1} 3

.0 2 ok 6 .8 1.0
y

Figure 19. The adjoint rigid wall distributions at {a,R) = (1,1c0),

obtained using & thirty cosins series.
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Figure 20, Convergence of the present neutrzl stzbility curve and
comparison with that of Hains and Price, for values of

BT =8 = ~10,
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o 3h

-t

32

030

«28 4

= present work (20 and 30 cosine
series)

Y Y ¥ = Hains and Price

Vl"'

cgll-"‘

022 4

3000 L4000 000 6000 7000 8000

Figure 21. Convergence of the pressent spatial stability curve and

comparison with that of Hains and Price, for values of
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iﬁ. i (a) present work (30 cosine serics)
ol (b) Hains and Price
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Figure 22. Comparison of neutral stability curves for c membrane with tension only. The value of the

9.

tension is .5x10
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1. 1Q (d)

)

(a)

1.0Q A \

.95
i (v)
«50
.85, }
.€0
1000 5000 6000 7060 8000 5000
R

Figure 23, Deutral stability curves calculated for damped membrane
walls with (m,D) = (4,1000) and (2) co = 3000, (b) co = 5000,

! . s . .
{c) co = 10" and (@) co = 105, using e thirty cosins ssries.
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1,000+

o]

pr |

30004

2000

(a)
1000 . ,
1 4 ¥ 1 R} 1 3 * 3 k) 1|
1000 5000 6CC0 7000 8000 5000

Figure 24. Spatial s3tability curves czlculated for damped membrans
walls with (m,D) = (1,1020) and (a) co = 3000, (b) co = 5000,

(c) Co = 10ZF and (d) Co = 105, using a thirty cosine series,
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1.10.

. T T T

1000 5000 6000 7000 8000

0
3

R

Figure 25, Constant amplifiicaetion curves calculiated for a damped
membrane with (m,D,co) = (1,1000,5000) using a thirty

cosine series.
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a =1.05

-1C0 4

3050 3400 3800 200 4600 S0GO

Figure 26, Curves showing the variztion of c 5 with 2 at fixed a,

ith (m,D,c0) = (1,1C00,3000)

oy

calculeted for a damped nembrane

using & thirty cosine series.



1.00= 155

.95 ] -
(myD,yc0) = (1,1000,5000)

« 90

.85

-

(n,Dyc0) = (1,250,5000)

.75

« 70 4

-65.«
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FPigure 27. Yeutrel stability curves calculated for damped nembreans

walls using a thirty cosins series,
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4000 .
C -
pr
3000
2000 -
~_——(=,D,00) = (1,250,5000)
(m,D,c0) = (1,10C0C,5000)
1000 : . , . :
1000 5000 6000 7000 8000 5000

Figure 28, Spatial stebility curves calculetzd for danped membrane

walls using a thirty cosine series,
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.0

3,07

2.0

1.54

\
] 13 T

6000 6550 7060 7500 8000 8500

izure 29, The more complete nesutral stability curve calculated Tor the
daemped membranes with (m,D,cQ) = (1,250,5000) using a thirty

cosin2 series.
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4500 |

1000

3500 1

3000
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2500 4
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1500 ¥ T ) ¥ !
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Figure 30, The more conplete spatial stability curve calculated for the
damped meubranes with (m,D,co) = (1,250,5000) using a thirty

cosine scries,
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predicted gradients
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Figure 31, The real parts of the strzam function distributions, calculated
for damped membranes with (m,P,ce) = (4,1000,5000) using a

thirty cosinz series,
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predicted gradients
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(2)

(2)

(1) (a,3) = (.200,5270)

(2) (2,3) = (.863,7500

(3) {e,3) = (.3C0,5300)

(3)

(3)

32. The imaginary parts of the streem function distributions,

calculated for Gamped

using a thirty cosins

membranes with {m,D,oo) = (1,1000,5003)

o 3 2
S22 85,



Reynolds 161

7
O i3 s,,l- "-) M_'Q—/ﬂ/’:‘\aif;\\.a '9 y 1.0
; : = : 1
.1 .2 .O
i
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